WO2011052631A1 - 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体、建材用断熱材、盛土用部材及び車両内装材 - Google Patents

発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体、建材用断熱材、盛土用部材及び車両内装材 Download PDF

Info

Publication number
WO2011052631A1
WO2011052631A1 PCT/JP2010/069053 JP2010069053W WO2011052631A1 WO 2011052631 A1 WO2011052631 A1 WO 2011052631A1 JP 2010069053 W JP2010069053 W JP 2010069053W WO 2011052631 A1 WO2011052631 A1 WO 2011052631A1
Authority
WO
WIPO (PCT)
Prior art keywords
polystyrene resin
flame retardant
resin particles
expandable polystyrene
tetrabromobisphenol
Prior art date
Application number
PCT/JP2010/069053
Other languages
English (en)
French (fr)
Inventor
樽本 裕之
良輔 地海
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009246293A external-priority patent/JP2011093950A/ja
Priority claimed from JP2009246290A external-priority patent/JP5750221B2/ja
Priority claimed from JP2009246291A external-priority patent/JP2011093948A/ja
Priority claimed from JP2009246292A external-priority patent/JP2011093949A/ja
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to US13/504,072 priority Critical patent/US20120214885A1/en
Priority to EP10826763.4A priority patent/EP2495277B1/en
Priority to CN2010800596359A priority patent/CN102686654A/zh
Publication of WO2011052631A1 publication Critical patent/WO2011052631A1/ja
Priority to US15/098,702 priority patent/US20160229974A1/en
Priority to US15/617,823 priority patent/US10358538B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0019Use of organic additives halogenated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/582Component parts, details or accessories; Auxiliary operations for discharging, e.g. doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • B29B9/065Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion under-water, e.g. underwater pelletizers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/136Phenols containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Definitions

  • the present invention relates to a polystyrene resin foam molded article excellent in environmental compatibility and flame retardancy, an expandable polystyrene resin particle used in the production of this molded article, and a method for producing the same.
  • the polystyrene-based resin foam-molded article of the present invention is suitably used in a foam-molded article that requires flame retardancy, such as a building material application, a banking member, and an automobile interior material.
  • polystyrene resin particles according to the present invention are specifically flame retardant-containing polystyrene resin particles, expandable polystyrene resin particles for manufacturing heat insulating materials for building materials, expandable polystyrene resin particles for manufacturing members for embankments, and These are expandable polystyrene resin particles for producing vehicle interior materials.
  • these may be collectively referred to simply as “expandable polystyrene resin particles” as necessary.
  • Patent Documents 1 to 3 Conventionally, for example, conventional techniques disclosed in Patent Documents 1 to 3 have been proposed as expandable polystyrene resin particles containing a flame retardant.
  • Patent Document 1 an organic solvent solution containing 0.1 to 10 parts by mass of a brominated flame retardant having a predetermined structure and a foaming agent are added to 100 parts by mass of a styrene resin, and it is difficult to heat and foam.
  • a method for producing a flame-retardant foamed styrene resin is disclosed.
  • tetrabromobisphenol A diallyl ether is dispersed so as to have a particle size of 50 ⁇ m or less in the presence of a surfactant, and then a polystyrene resin particle together with a softening agent, a flame retardant aid, a plasticizer, and a foaming agent.
  • a method for producing self-extinguishing polystyrene resin particles characterized by impregnating the resin particles and a molded product obtained using the resin particles are disclosed.
  • Patent Document 3 discloses a particulate expandable styrene polymer containing uniformly distributed graphite powder, a self-extinguishing foam obtained by processing this, and as a flame retardant, 70% by mass or It is disclosed that it can be treated to provide a self-extinguishing foam that contains an organic bromine compound having a higher bromine content and passes the flammability test B2 (according to DIN 4102).
  • the organic bromine compound include hexabromocyclododecane, pentabromomonochlorocyclohexane, and pentabromophenyl allyl ether.
  • a heat insulation method in which a heat insulating material is disposed between joists on the floor or between support members such as pillars and studs on a wall in order to improve heat insulation performance in a house or the like.
  • a heat insulating material used in such a heat insulating method glass wool has been widely used in general.
  • glass wool tends to have a low heat insulation effect due to moisture absorption, a high heat insulation effect cannot be expected over a long period of time, and there is a problem in workability. For this reason, in recent years, this type of heat insulating material is shifting to a polystyrene-based resin foam molded article excellent in dimensional stability and heat insulating properties.
  • Insulating materials for building materials are usually required to have a certain level or more of flame retardancy from the viewpoints of preventing the occurrence of fire and the like, and preventing the spread of fire due to the spread of fire during a fire.
  • a flame retardant is added to the expandable polystyrene resin particles for producing the foam molded article.
  • a heat insulating material for building materials in addition to waterproofness, moisture absorption resistance, moisture proofing, heat insulating properties, and the like, it is required not to expand or contract due to a temperature change (dimensional stability).
  • the heat insulating material for building materials is required to reduce the emission amount of volatile organic compounds as a countermeasure against sick house syndrome, which has been increasing in recent years.
  • volatile organic compounds As causative compounds of sick house syndrome, formaldehyde, acetaldehyde, toluene, xylene, ethylbenzene, styrene and the like are listed as volatile organic compounds (VOCs) with concentration guidelines by the Ministry of Health, Labor and Welfare.
  • Patent Document 4 discloses that when 100 parts by weight of expandable polystyrene resin particles are subjected to vacuum distillation under a pressure of 6.666 ⁇ 10 ⁇ 4 MPa (5 mmHg) at 350 to 1200 ppm of styrene monomer. Expandable polystyrene resin particles characterized by containing 0.1 to 2 parts by mass of a plasticizer that cannot be distilled at the following temperatures and a foaming agent are disclosed.
  • embankments using foamed synthetic resin blocks have been widely used for embankments on soft ground or sloped ground, embankments in gardens, and also for embedding and backfilling underground structures.
  • a polystyrene resin foam is often used from the viewpoint of strength, water resistance and the like.
  • expandable polystyrene resin particles also called beads
  • a foam-molded article produced by a molding method is common.
  • the embankment member is usually required to have a certain level or more of flame retardancy from the viewpoint of preventing the occurrence of a fire or the like and preventing the ground from becoming unstable due to the spread of fire.
  • a flame retardant is added to the expandable polystyrene resin particles for producing the foam molded article.
  • a method of adding a flame retardant to a polystyrene-based resin foam molded article a method of adding a flame retardant together with a styrene monomer at the time of polymerization (for example, see Patent Document 4 above), or a foaming agent is added to polystyrene resin particles.
  • various types of synthetic resin products are used as interior materials in various vehicles such as automobiles.
  • this synthetic resin product non-foamed products are also used, but the purpose is to improve cushioning and improve ride comfort, absorb impact and protect passengers, ensure flatness in the vehicle, etc. Therefore, many vehicle interior materials made of synthetic resin foamed moldings are used.
  • this foamed molded article various resins such as foamable urethane and foamable polystyrene are used, and foamable polystyrene resins are often used because of their excellent moldability and functionality.
  • examples of the vehicle interior material in which the expandable polystyrene resin is used include automobile interior materials, particularly floor spacers, door pads, tool boxes and the like.
  • a vehicle interior material As a vehicle interior material, flame retardancy of a certain level or more is usually required from the viewpoint of prevention of fire and the like and self-extinguishing properties. In order to impart sufficient flame retardancy to a polystyrene resin foam molded article, a flame retardant is added to the expandable polystyrene resin particles for producing the foam molded article. In addition, vehicle interior materials are strongly required to extremely reduce the content of volatile organic compounds in order to prevent the aforementioned sick house syndrome.
  • Patent Document 8 Conventionally, for example, a technique disclosed in Patent Document 8 has been proposed for reducing volatile organic compounds in an expandable polystyrene resin.
  • Patent Document 8 0.1 to 2 plasticizers having a residual styrene monomer of 1 to 300 ppm, benzene of 1 ppm or less, and an SP value of 7 to 10 compatible with styrene are contained in the styrene-based expandable resin particles.
  • Styrenic expandable resin particles containing mass% and a foaming agent are disclosed.
  • Patent Document 4 when 100 parts by mass of expandable polystyrene resin particles are subjected to vacuum distillation under a pressure of 6.666 ⁇ 10 ⁇ 4 MPa (5 mmHg) at 350 to 1200 ppm of styrene monomer. Further, there is disclosed an expandable polystyrene resin particle comprising 0.1 to 2 parts by mass of a plasticizer that cannot be distilled at a temperature of 250 ° C. or less and a foaming agent.
  • a flame retardant is preliminarily dissolved in an organic solvent and supplied into an extruder and an autoclave.
  • a volatile solvent in the step of dissolving the flame retardant in an organic solvent has a large adverse effect on the environment, and is not preferable from the viewpoint of generation of a volatile organic compound (VOC) from the foamed molded article.
  • VOC volatile organic compound
  • the working environment is deteriorated due to volatilization of the foaming agent.
  • Patent Document 2 After a flame retardant is dispersed in the presence of a surfactant so that the particle diameter is 50 ⁇ m or less, a polystyrene resin together with a softening agent, a flame retardant aid, a plasticizer and a foaming agent. Flame retardant-containing expandable polystyrene resin particles are produced by impregnating the particles. However, in this method of impregnating polystyrene resin particles with a flame retardant, the flame retardant is impregnated near the surface of the polystyrene resin particles, but there is no flame retardant near the resin particle center or the content is low. Only a flame retardant-containing expandable polystyrene resin particle can be obtained.
  • an organic bromine compound such as hexabromocyclododecane is used as a flame retardant.
  • hexabromocyclododecane is a type 1 monitoring chemical substance under the Chemical Substances Control Regulation Law, and it has been pointed out that it is difficult to decompose and highly enriched in the existing chemical substance safety inspection by the Ministry of Economy, Trade and Industry, and it falls under the scope of European risk assessment assessment. Since there is a problem with its safety, it is desired to eliminate its use. Therefore, this type of organic bromine compound is difficult to use in the field of flame retardant polystyrene-based resin foam moldings.
  • Patent Document 4 describes a suspension polymerization method as a specific method for producing expandable polystyrene resin particles, and hexabromocyclododecane is present in the entire styrene polymerization process. Further, it is known that hexabromocyclododecane causes polymerization inhibition of styrene monomer when added to the polymerization process of styrene. As a result, the expandable polystyrene resin particles obtained contain a large amount of residual volatile organic compounds, making it difficult to cope with sick house syndrome, which has been requested in recent years. Therefore, hexabromocyclododecane is not suitable for use in the production of building insulation materials and vehicle interior materials.
  • the absorption of the powdery flame retardant into the resin particles becomes uneven, and some of the resin particles absorb a lot of the flame retardant.
  • the flame retardant is impregnated near the surface of the polystyrene resin particles, but the flame retardant is not present or contained near the resin particle center. Only low amount of resin particles can be obtained.
  • Polystyrene resin foam moldings obtained by pre-foaming such resin particles and foam-molding the resulting pre-foamed particles are inferior in mechanical strength, dimensional stability is reduced, and moldability and appearance are further reduced. Therefore, it is not suitable for use in the production of embankment members and vehicle interior materials.
  • An object of the present invention is to provide an expandable polystyrene resin foam molded article, a heat insulating material for building materials, a member for embankment, and a vehicle interior material.
  • the present invention provides a flame retardant-containing expandable polystyrene resin particle having a polystyrene resin containing a flame retardant and a foaming agent in the form of particles, and the flame retardant has a bromine atom in the molecule.
  • the bromine content is less than 70% by weight
  • the molecule has a benzene ring
  • the flame retardant has a 5% by weight decomposition temperature in the range of 200 to 300 ° C.
  • Flame retardant content in which the ratio (B / A) of the total flame retardant content (A) of the resin particles to the flame retardant content (B) on the surface of the resin particles is in the range of 0.8 to 1.2 Expandable polystyrene resin particles are provided.
  • the flame retardant-containing expandable polystyrene resin particles of the present invention are prepared by adding a flame retardant and a foaming agent to a polystyrene resin in a resin supply device, kneading, and attaching a flame retardant / foaming agent-containing molten resin to the tip of the resin supply device. Extruded directly into the cooling liquid through the small holes of the die, and extrudate is cut at the same time as extrusion, and the extrudate is cooled and solidified by contact with the liquid to obtain flame retardant-containing expandable polystyrene resin particles It is preferably obtained by the method.
  • the present invention also provides flame retardant polystyrene resin pre-expanded particles obtained by heating the flame retardant-containing expandable polystyrene resin particles.
  • the present invention also provides a flame retardant polystyrene resin foam molded article obtained by filling the flame retardant polystyrene resin pre-expanded particles in a cavity of a mold and heating and foaming.
  • the present invention is a foamable polystyrene resin particle for manufacturing a heat insulating material for building materials in which a polystyrene resin containing a flame retardant and a foaming agent is in the form of particles, and the flame retardant comprises: Having a bromine atom in the molecule, a bromine content of less than 70% by weight, a benzene ring in the molecule, and a 5% by weight decomposition temperature of the flame retardant in the range of 200 to 300 ° C .; A flame retardant and foaming agent are added to and kneaded with polystyrene resin in the resin supply device, and the molten resin containing the flame retardant / foaming agent is extruded directly into the cooling liquid through a small hole in the die attached to the tip of the resin supply device.
  • the total content of aromatic organic compounds composed of styrene monomer, ethylbenzene, isopropylbenzene, normal propylbenzene, xylene, toluene, benzene is less than 500 ppm. Is preferred.
  • the present invention also provides pre-expanded particles for producing a building material heat insulating material obtained by heating the expandable polystyrene resin particles for producing the building material heat insulating material.
  • the present invention is obtained by filling the above pre-expanded particles for manufacturing a heat insulating material for building materials into a cavity of a mold, heating and foaming, and having a density in the range of 0.010 to 0.050 g / cm 3. Provide insulation for building materials.
  • the present invention is obtained by filling the above pre-expanded particles for manufacturing a heat insulating material for building materials in a cavity of a molding die and heating and foaming, and the foam chord having a foam multiple of 40 times has an average chord length of bubbles.
  • a heat insulating material for building materials in the range of 50 to 350 ⁇ m.
  • the present invention is an expandable polystyrene resin particle for embankment member production in which a polystyrene resin containing a flame retardant and a foaming agent is in the form of particles, and the flame retardant is a molecule. Having a bromine atom in it, a bromine content of less than 70% by weight, a benzene ring in the molecule, and a 5% by weight decomposition temperature of the flame retardant in the range of 200 to 300 ° C.
  • a foamable polystyrene resin for producing embankment members obtained by a melt extrusion method in which extrudate is cut simultaneously with extrusion and the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles.
  • this invention provides the pre-expanded particle for embankment member manufacture obtained by heating the said expandable polystyrene resin particle for embedding member manufacture.
  • the present invention provides the embankment having a density in the range of 0.010 to 0.050 g / cm 3 obtained by filling the pre-expanded particles for producing the embankment member into a cavity of a mold and heating and foaming. A member is provided.
  • the present invention is obtained by filling the above-mentioned pre-expanded particles for producing embankment members into a cavity of a molding die and heating and foaming, and an average chord length of bubbles is 40 for a foamed molded product having a foaming factor of 50 times.
  • An embankment member having a range of ⁇ 200 ⁇ m is provided.
  • the present invention provides a banking member having an oxygen index of 26 or more, obtained by filling the pre-expanded particles for producing the banking member in a cavity of a mold, heating and foaming.
  • the present invention is an expandable polystyrene resin particle for producing vehicle interior materials in which a polystyrene resin containing a flame retardant and a foaming agent is in the form of particles, and the flame retardant is a molecule. Having a bromine atom in it, a bromine content of less than 70% by weight, a benzene ring in the molecule, and a 5% by weight decomposition temperature of the flame retardant in the range of 200 to 300 ° C.
  • the total content of aromatic organic compounds composed of styrene monomer, ethylbenzene, isopropylbenzene, normal propylbenzene, xylene, toluene, and benzene may be less than 500 ppm. preferable.
  • the present invention also provides pre-expanded particles for producing vehicle interior materials obtained by heating the expandable polystyrene resin particles for producing vehicle interior materials.
  • the present invention is obtained by filling the above-mentioned pre-expanded particles for producing vehicle interior materials into a cavity of a molding die and heating and foaming, and an average chord length of bubbles is 40 for a foamed molded product having a expansion ratio of 40 times.
  • vehicle interior materials in the range of ⁇ 350 ⁇ m.
  • the present invention also provides a vehicle having a density in the range of 0.015 to 0.066 g / cm 3 obtained by filling the pre-expanded particles for producing the vehicle interior material into a cavity of a mold, heating and foaming. Provide interior materials.
  • the flame retardant is preferably one or more selected from the group consisting of tetrabromobisphenol A or a derivative thereof.
  • the flame retardant is tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-bis (2,3-dibromo).
  • Propyl ether) and tetrabromobisphenol A-bis (allyl ether) are preferably selected from the group consisting of one or more.
  • the present invention provides a polystyrene resin in a resin supply apparatus having a bromine atom in the molecule, a bromine content of less than 70% by mass, a benzene ring in the molecule, and a flame retardant.
  • a flame retardant and foaming agent with a 5 mass% decomposition temperature in the range of 200 to 300 ° C., and directly add the flame retardant / foaming agent-containing molten resin directly from the small hole of the die attached to the tip of the resin feeder.
  • Flame retardant-containing expandable polystyrene resin particles obtained by extruding into a cooling liquid, cutting the extrudate at the same time as extrusion, and cooling and solidifying the extrudate by contact with the liquid to obtain the flame retardant-containing expandable polystyrene resin particles A manufacturing method is provided.
  • the present invention provides a polystyrene resin in a resin supply apparatus having a bromine atom in the molecule, a bromine content of less than 70% by mass, a benzene ring in the molecule, and a flame retardant.
  • a flame retardant and foaming agent with a 5 mass% decomposition temperature in the range of 200 to 300 ° C., and directly add the flame retardant / foaming agent-containing molten resin directly from the small hole of the die attached to the tip of the resin feeder.
  • the present invention provides a polystyrene resin in a resin supply apparatus having a bromine atom in the molecule, a bromine content of less than 70% by mass, a benzene ring in the molecule, and a flame retardant.
  • a flame retardant and foaming agent with a 5 mass% decomposition temperature in the range of 200 to 300 ° C., and directly add the flame retardant / foaming agent-containing molten resin directly from the small hole of the die attached to the tip of the resin feeder.
  • a method for producing expandable polystyrene resin particles for producing a member is provided.
  • the present invention provides a polystyrene resin in a resin supply apparatus having a bromine atom in the molecule, a bromine content of less than 70% by mass, a benzene ring in the molecule, and a flame retardant.
  • a flame retardant and foaming agent with a 5 mass% decomposition temperature in the range of 200 to 300 ° C., and directly add the flame retardant / foaming agent-containing molten resin directly from the small hole of the die attached to the tip of the resin feeder.
  • the flame retardant is preferably one or more selected from the group consisting of tetrabromobisphenol A or a derivative thereof.
  • the flame retardant is tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-bis (2,3- Dibromopropyl ether) and tetrabromobisphenol A-bis (allyl ether) are preferably used alone or in combination.
  • a masterbatch material containing the flame retardant at a predetermined concentration in the resin is supplied into the resin supply apparatus together with the polystyrene resin, and melt-kneaded in the apparatus. Is preferred.
  • the expandable polystyrene resin particles of the present invention have a bromine atom in the molecule, a bromine content of less than 70% by mass, a benzene ring in the molecule, and a 5% by mass decomposition temperature of the flame retardant.
  • a flame retardant in the range of 200-300 ° C.
  • the flame retardant is highly safe for the environment and organisms.
  • the tetrabromobisphenol A derivative can provide sufficient flame retardancy when added to a polystyrene resin foam molded article, and is safe for the environment and organisms. high. Therefore, it can be used for the production of flame-retardant polystyrene-based resin foam molded articles for various applications.
  • the ratio (B / A) of the total flame retardant content (A) of the resin particles to the flame retardant content (B) on the surface of the resin particles is 0. Since it is within the range of 0.8 to 1.2, the flame retardant is uniformly present in the resin particles. As a result, the mechanical strength of the resulting polystyrene-based resin foam molded article is higher than that of particles in which the flame retardant is present in the resin particles non-uniformly, and a foam molded article having excellent moldability and appearance can be obtained. .
  • the expandable polystyrene resin particles for manufacturing a heat insulating material for building material are polystyrene-based in a resin supply device. Add and knead the flame retardant and foaming agent to the resin, and extrude the molten resin containing the flame retardant / foaming agent directly into the cooling liquid from the small hole of the die attached to the tip of the resin feeder. In addition to cutting, it is obtained by a melt extrusion method in which the extrudate is cooled and solidified by contact with a liquid to obtain expandable polystyrene resin particles.
  • the obtained heat insulating material for building materials, embankment members and vehicle interior materials The mechanical strength is increased, and the building material heat insulating material, the embankment member and the vehicle interior material which are excellent in dimensional stability and formability are obtained.
  • the polystyrene resin foam molded article of the present invention is obtained by heating and foaming the expandable polystyrene resin particles, filling the obtained prefoamed particles in a cavity of a mold, and heating and foaming. It is done. Therefore, flame retardant polystyrene resin foam moldings (building materials) that have sufficient flame retardant performance using flame retardants that are highly safe for the environment and living organisms, and that have excellent mechanical strength, moldability, dimensional stability, and appearance. Heat insulating material, embankment member and vehicle interior material).
  • the method for producing expandable polystyrene resin particles of the present invention it is possible to efficiently produce expandable polystyrene resin particles having excellent effects as described above.
  • the method for producing a flame retardant-containing expandable polystyrene resin particle of the present invention the total flame retardant content (A) of the resin particles and the flame retardant content (B) on the surface of the resin particles are almost equal. It is possible to efficiently produce flame retardant-containing expandable polystyrene resin particles in which the same flame retardant is uniformly contained in the resin particles.
  • expandable polystyrene resin particles for producing heat insulating materials for building materials and expandable polystyrene resin particles for producing vehicle interior materials styrene monomer, ethylbenzene, isopropylbenzene, normal propylbenzene, xylene Expandable polystyrene resin particles for producing a heat insulating material for building materials having a low content of an aromatic organic compound composed of toluene, benzene can be produced with high efficiency.
  • a master batch material containing the flame retardant at a predetermined concentration in the resin is supplied into the resin supply apparatus together with the polystyrene resin, and melt kneaded in the apparatus. By doing so, a flame retardant can be more uniformly contained in the resin particles.
  • FIG. 1 It is a block diagram which shows an example of the manufacturing apparatus used for the manufacturing method of the expandable polystyrene-type resin particle of this invention. It is a schematic front view which shows the state at the time of cutting the molded object skin part of the polystyrene-type resin foam molded object performed in the Example.
  • the polystyrene resin in the resin supply apparatus has a bromine atom in the molecule, the bromine content is less than 70% by mass, and a benzene ring in the molecule.
  • a flame retardant and a foaming agent having a 5 mass% decomposition temperature within the range of 200 to 300 ° C. are added and kneaded, and a molten resin containing the flame retardant / foaming agent is attached to the tip of the resin supply device.
  • the extruded die is directly extruded into the cooling liquid from the small hole, and at the same time the extrudate is cut, the extrudate is cooled and solidified by contact with the liquid to obtain expandable polystyrene resin particles.
  • FIG. 1 is a block diagram showing an example of a production apparatus used in the method for producing expandable polystyrene resin particles of the present invention.
  • the manufacturing apparatus of this example includes an extruder 1 as a resin supply apparatus, a die 2 having a large number of small holes attached to the tip of the extruder 1, and a raw material supply hopper that inputs resin raw materials into the extruder 1. 3, a high-pressure pump 4 for press-fitting the foaming agent into the molten resin in the extruder 1 through the foaming agent supply port 5, and a resin discharge surface provided with a small hole in the die 2 so as to contact the cooling water.
  • the dehydration dryer 10 with a solid-liquid separation function Cooling from the cutting chamber 7 into which the cooling water is circulated and supplied to the room, the cutter 6 rotatably provided in the cutting chamber 7 so as to cut the resin extruded from the small hole of the die 2, and the cutting chamber 7
  • the foamable particles carried along with the water flow are separated from the cooling water and dehydrated and dried to obtain expandable particles.
  • extruder 1 either an extruder using a screw or an extruder not using a screw can be used.
  • the extruder using a screw include a single-screw extruder, a multi-screw extruder, a vent-type extruder, and a tandem extruder.
  • the extruder that does not use a screw include a plunger type extruder and a gear pump type extruder.
  • any extruder can use a static mixer.
  • an extruder using a screw is preferable from the viewpoint of productivity.
  • the conventionally well-known apparatus used in the granulation method by melt extrusion of resin can also be used for the cutting chamber 7 which accommodated the cutter 6. FIG.
  • the polystyrene resin is not particularly limited. Examples thereof include homopolymers of styrene monomers such as styrene, ⁇ -methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, and copolymers thereof.
  • a polystyrene-based resin containing 50% by mass or more is preferable, and polystyrene is more preferable.
  • the polystyrene resin may be a copolymer of the styrene monomer and a vinyl monomer copolymerizable with the styrene monomer, the main component of which is the styrene monomer.
  • vinyl monomers examples include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, alkyl (meth) acrylates such as cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate,
  • alkyl (meth) acrylates such as cetyl (meth) acrylate, (meth) acrylonitrile, dimethyl maleate
  • bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.
  • the polystyrene resin is the main component, other resins may be added.
  • the resin to be added include diene rubbery heavy polymers such as polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer in order to improve the impact resistance of the foamed molded product.
  • diene rubbery heavy polymers such as polybutadiene, styrene-butadiene copolymer, and ethylene-propylene-nonconjugated diene three-dimensional copolymer in order to improve the impact resistance of the foamed molded product.
  • examples thereof include rubber-modified polystyrene resins to which coalescing has been added, so-called high impact polystyrene.
  • a polyethylene resin, a polypropylene resin, an acrylic resin, an acrylonitrile-styrene copolymer, an acrylonitrile-butadiene-styrene copolymer, and the like can be given.
  • the polystyrene resin used as a raw material is a recycled raw material such as a commercially available ordinary polystyrene resin or a polystyrene resin newly produced by a method such as suspension polymerization.
  • a non-polystyrene resin (virgin polystyrene) can be used, and a recycled material obtained by regenerating a used polystyrene resin foamed molded product can be used.
  • used polystyrene-based resin foam moldings such as fish boxes, household appliance cushioning materials, food packaging trays, etc. are collected and recycled from the recycled materials recovered by the limonene dissolution method or heating volume reduction method.
  • a raw material having a weight average molecular weight Mw in the range of 120,000 to 400,000 can be appropriately selected, or a plurality of recycled raw materials having different weight average molecular weights Mw can be used in appropriate combination.
  • the flame retardant has a bromine atom in the molecule, a bromine content of less than 70% by mass, a benzene ring in the molecule, and a flame retardant.
  • a flame retardant having a 5 mass% decomposition temperature in the range of 200 to 300 ° C. is used.
  • one or more of the flame retardants may be mixed, or the flame retardant as a main component and other flame retardants may be used in combination.
  • a flame retardant with a bromine content exceeding 70% by mass and having no benzene ring in the molecule is unlikely to be a flame retardant with high environmental and biological safety, and has excellent mechanical strength, moldability and appearance.
  • the lower limit of the bromine content is not particularly limited, but 50% by mass or more is preferable because the flame retardancy is good.
  • a more preferable range of the bromine content is 55 to 69% by mass.
  • a preferable range of the 5 mass% decomposition temperature of the flame retardant is 230 to 300 ° C, a more preferable range is 240 to 295 ° C, and a most preferable range is 265 to 290 ° C.
  • preferred flame retardants include one or more selected from the group consisting of tetrabromobisphenol A or derivatives thereof.
  • tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether)
  • tetrabromobisphenol A-bis (2,3-dibromopropyl ether)
  • tetrabromobisphenol A- It is preferable that it is 1 type, or 2 or more types selected from the group consisting of bis (allyl ether).
  • Tetrabromobisphenol A-bis (2,3-dibromopropyl ether) and tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether) having a high 5% decomposition temperature are more preferable, and tetrabromobisphenol A- Bis (2,3-dibromopropyl ether) is most preferred.
  • the amount of the flame retardant added is in the range of 0.5 to 8.0% by mass with respect to 100 parts by mass of the resin content of the flame retardant-containing expandable polystyrene resin particles. The range of 1.0 to 6.0% by mass is more preferable.
  • the addition amount of the flame retardant is less than the above range, the flame retardancy of the obtained foamed molded product is lowered.
  • the amount of the flame retardant added exceeds the above range, the mechanical strength, moldability, and appearance of the obtained foamed molded product may be deteriorated.
  • the foaming agent is not particularly limited.
  • normal pentane, isopentane, cyclopentane, cyclopentadiene and the like can be used alone or in admixture of two or more.
  • normal butane, isobutane, propane and the like can be mixed and used with the pentane as a main component.
  • pentanes are preferably used because they easily suppress foaming of the resin particles when discharged into the water stream from the small holes of the die.
  • the amount of the foaming agent to be contained in the polystyrene resin is in the range of 3 to 10 parts by mass, more preferably in the range of 4 to 7 parts by mass with respect to 100 parts by mass of the polystyrene resin.
  • the expandable polystyrene resin particles of the present invention may have other additives commonly used in the production of expandable polystyrene resin particles, for example, talc, Calcium silicate, synthetic or naturally produced silicon dioxide, ethylene bisstearic acid amide, foaming nucleating agents such as methacrylic acid ester copolymers, flame retardant aids such as diphenylalkane and diphenylalkene, carbon black, iron oxide, Additives such as graphite and other colorants, phenolic antioxidants, sulfur-based antioxidants, antioxidants such as phosphorus-based antioxidants, stabilizers such as hindered amines, UV absorbers, etc. in polystyrene resins Can be added.
  • additives commonly used in the production of expandable polystyrene resin particles, for example, talc, Calcium silicate, synthetic or naturally produced silicon dioxide, ethylene bisstearic acid amide, foaming nucleating agents such as methacrylic acid ester copolymers, flame retardant
  • the raw material polystyrene resin In order to produce the expandable polystyrene resin particles of the present invention using the production apparatus shown in FIG. 1, first, the raw material polystyrene resin, the flame retardant, the foam nucleating agent, and a desired addition that is added as necessary.
  • the agent is weighed and charged into the extruder 1 from the raw material supply hopper 3.
  • the raw polystyrene resin may be pelletized or granulated and mixed well in advance and then fed from one raw material supply hopper. For example, when multiple lots are used, the supply amount for each lot may be reduced.
  • a plurality of adjusted raw material supply hoppers may be charged and mixed in an extruder. Also, when using a combination of recycled materials from multiple lots, mix the raw materials from multiple lots in advance and remove foreign matter using appropriate sorting methods such as magnetic sorting, sieving, specific gravity sorting, and air blowing sorting. It is preferable to keep it.
  • a masterbatch material containing a flame retardant at a predetermined concentration in the resin is used, and this is supplied into a resin supply apparatus together with a polystyrene resin. It is preferable to melt and knead.
  • a master batch material containing the flame retardant at a predetermined concentration in the resin is supplied into the resin supply apparatus together with the polystyrene resin, and the resin particles are more uniformly contained in the resin particles by melting and kneading in the apparatus. Can do.
  • the resin After supplying polystyrene-based resin and flame retardant, further foaming aid and other additives into the extruder 1, the resin is heated and melted, and the flame retardant-containing molten resin is transferred to the die 2 side while supplying the foaming agent supply port.
  • the foaming agent is press-fitted with a high-pressure pump 4 from 5, the foaming agent is mixed with the flame retardant-containing molten resin, and the melt is further kneaded through a foreign matter removing screen provided in the extruder 1 as necessary.
  • the melted material added with the blowing agent is pushed out from the small hole of the die 2 attached to the tip of the extruder 1.
  • the resin discharge surface in which the small holes of the die 2 are drilled is disposed in the cutting chamber 7 in which cooling water is circulated and supplied into the chamber, and the resin extruded from the small holes of the die 2 is placed in the cutting chamber 7.
  • a cutter 6 is provided so as to be rotatable. Extruding the melt with the blowing agent added through a small hole in the die 2 attached to the tip of the extruder 1 causes the melt to be cut into granules, and at the same time, brought into contact with cooling water and rapidly cooled to solidify while suppressing foaming. Thus, expandable polystyrene resin particles are obtained.
  • the formed expandable polystyrene resin particles are transferred from the cutting chamber 7 to the dewatering dryer 10 with a solid-liquid separation function along with the flow of the cooling water, where the expandable polystyrene resin particles are separated from the cooling water. And dehydrated and dried. The dried expandable polystyrene resin particles are stored in the storage container 11.
  • the expandable polystyrene resin particles produced by the above-described method for producing expandable polystyrene resin particles are particles of a polystyrene resin containing a flame retardant and a foaming agent.
  • the said flame retardant used for the expandable polystyrene resin particle of this invention has high safety
  • tetrabromobisphenol A derivatives can give sufficient flame retardancy when added to polystyrene resin foam moldings and are highly safe for the environment and living organisms. It can be used for the production of a molded body.
  • the flame-retardant expandable polystyrene resin particles of the present invention the expandable polystyrene resin particles for manufacturing a heat insulating material for building materials, the expandable polystyrene resin particles for embedding member manufacturing, and the vehicle manufactured by the above method
  • the detail of the expandable polystyrene resin particle for interior material manufacture is each demonstrated.
  • the flame retardant has a bromine atom in the molecule, a bromine content is less than 70% by mass, a benzene ring in the molecule, and
  • the 5 mass% decomposition temperature of the flame retardant is in the range of 200 to 300 ° C.
  • the ratio (B / A) of the total flame retardant content (A) of the expandable polystyrene resin particles to the flame retardant content (B) on the surface of the resin particles is 0.8 to 1.2. Within range.
  • the flame retardant is uniformly contained in the resin particles.
  • the ratio (B / A) is more preferably in the range of 0.9 to 1.1, and in the range of 0.95 to 1.05. More preferably.
  • the ratio (B / A) is out of the range of 0.8 to 1.2, the mechanical strength, moldability, appearance, and flame retardancy of the obtained flame-retardant polystyrene resin foam molding may be inferior. .
  • the ratio (B / A) of the total flame retardant content (A) of the resin particles to the flame retardant content (B) on the surface of the resin particles is 0. Within the range of 8 to 1.2.
  • the flame retardant is uniformly present in the resin particles, and the mechanical strength of the obtained flame retardant polystyrene resin foam molded article is higher than that in which the flame retardant is unevenly present in the resin particles.
  • a foamed molded article having high moldability and appearance can be obtained.
  • the flame retardant-containing expandable polystyrene resin particles obtained by the production method according to the present invention described above are pre-foamed by heating by steam heating or the like using a well-known apparatus and method in the field of production of foamed resin moldings, Let it be a flame-retardant polystyrene resin pre-expanded particle.
  • the pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the foamed molded product to be manufactured.
  • its bulk density is not limited, usually in the range of 0.010 ⁇ 0.033g / cm 3, preferably in the range of 0.015 ⁇ 0.025g / cm 3.
  • the bulk density of the polystyrene-based resin pre-expanded particles refers to those measured as follows. ⁇ Bulk density and bulk expansion ratio of pre-expanded particles> First, Wg was collected from polystyrene resin pre-expanded particles as a measurement sample, and this measurement sample was naturally dropped into a graduated cylinder, and then the bottom of the graduated cylinder was struck to make the apparent volume (V) cm 3 of the sample constant. The mass and volume are measured, and the bulk density of the polystyrene resin pre-expanded particles is measured based on the following formula.
  • Bulk density (g / cm 3 ) mass of measurement sample (W) / volume of measurement sample (V)
  • the bulk expansion ratio of the pre-expanded particles is a numerical value calculated by the following formula.
  • Bulk foam multiple (times) 1 / bulk density (g / cm 3 )
  • the flame-retardant polystyrene-based resin pre-expanded particles are filled in a cavity of a molding die using a well-known apparatus and method in the field of manufacturing a foamed resin molded body, heated by steam heating or the like, and subjected to in-mold foam molding, A flame-retardant polystyrene-based resin foam molded article is produced.
  • the density of the flame-retardant polystyrene resin foamed molded product of the present invention is not particularly limited, usually in the range of 0.010 ⁇ 0.033g / cm 3, in the range of 0.015 ⁇ 0.025g / cm 3 Is preferable.
  • the density of the polystyrene-based resin foam molding is a density measured by the method described in JIS K7122: 1999 “Measurement of foamed plastic and rubber-apparent density”.
  • ⁇ Density and expansion ratio of foamed molded product> Cut a specimen of 50 cm 3 or more (100 cm 3 or more in the case of semi-rigid and soft materials) without changing the original cell structure of the material, measure its mass, and calculate the density of the foamed molded product by the following formula: To do.
  • the flame retardant is bromine in the molecule. It has atoms, has a bromine content of less than 70% by mass, has a benzene ring in the molecule, and has a 5% by mass decomposition temperature of the flame retardant in the range of 200 to 300 ° C.
  • the flame retardant is uniform in the resin particles. It is contained in. If the flame retardant is not uniformly contained in the resin particles, the mechanical strength, moldability, dimensional stability, appearance and flame retardancy of the resulting polystyrene resin foam molded article may be inferior.
  • the flame retardant is uniformly contained in the resin particles. Existing. Therefore, compared to the resin particles with non-uniformity of flame retardant, the resulting foamed molded product (heat insulation for building materials) has higher mechanical strength and has excellent moldability and dimensional stability. A heat insulating material, an embankment member, and a vehicle interior material are obtained.
  • polystyrene as a raw material If a resin raw material with a low content of aromatic organic compound consisting of styrene monomer, ethylbenzene, isopropylbenzene, normal propylbenzene, xylene, toluene, benzene is selected as the resin, the aromatic organic compound is mixed in the manufacturing process. It is possible to obtain expandable polystyrene resin particles without causing them.
  • the aromatic organic compound in the obtained expandable polystyrene resin particles for manufacturing heat insulating materials for building materials, expandable polystyrene resin particles for manufacturing members for embankment, and expandable polystyrene resin particles for manufacturing vehicle interior materials The total content of can be less than 500 ppm.
  • the total content of the aromatic organic compound is more preferably 450 ppm or less, and still more preferably 400 ppm or less. If the total content of the aromatic organic compound is low, the mechanical strength of the heat insulating material for building materials, the material for embankment and the vehicle interior material obtained is increased, and the dimensional change rate is decreased.
  • the total content of the aromatic organic compound is a value measured by the following ⁇ Measurement method of volatile organic compound (VOC) content>.
  • ⁇ Measurement method of volatile organic compound (VOC) content> Weigh accurately 1 g of expandable polystyrene resin particles, add 1 ml of a dimethylformamide solution containing 0.1% by volume of cyclopentanol as an internal standard solution, and then add dimethylformamide to the dimethylformamide solution to measure 25 ml. A solution is prepared, and 1.8 ⁇ l of this measurement solution is supplied to a 230 ° C. sample vaporization chamber to obtain a chart of each volatile organic compound detected by a gas chromatograph.
  • the amount of volatile organic compound is calculated from each chart, and the amount of volatile organic compound in the expandable polystyrene resin particles is calculated.
  • the total amount of each volatile organic compound corresponding to the aromatic organic compound is defined as “total amount of aromatic organic compound”.
  • a foamable polystyrene resin particle for producing a heat insulating material for building material, an expandable polystyrene resin particle for producing a member for embankment, and an expandable polystyrene resin particle for producing a vehicle interior material obtained by the production method according to the present invention Using a well-known apparatus and method in the field of manufacturing a molded body, it is heated by steam heating or the like and pre-expanded to obtain flame-retardant polystyrene-based pre-expanded particles (hereinafter referred to as pre-expanded particles).
  • the pre-expanded particles are pre-expanded so as to have a bulk density equivalent to the density of the foamed molded article (building material heat insulating material) to be manufactured.
  • the bulk density is not limited.
  • the bulk density is usually in the range of 0.010 to 0.050 g / cm 3. , 0.015 to 0.033 g / cm 3 is preferable.
  • the bulk density is usually set in the range of 0.015 ⁇ 0.066g / cm 3, to a range of 0.015 ⁇ 0.050g / cm 3 Is preferred.
  • the pre-expanded particles are filled with the pre-expanded particles in a cavity of a mold using a well-known apparatus and technique in the field of manufacturing a foamed resin molded body, and heated by steam heating or the like to be subjected to in-mold foam molding.
  • Manufactures heat insulating materials for building materials, embankment members and vehicle interior materials made of flame-retardant polystyrene resin foam moldings.
  • the density of the heat insulating material for building materials and the embankment member of the present invention is not particularly limited, but is usually in the range of 0.010 to 0.050 g / cm 3 and in the range of 0.015 to 0.033 g / cm 3. It is preferable to do this.
  • the density of the vehicle interior material of the present invention is not particularly limited, but is usually in the range of 0.015 to 0.066 g / cm 3 and in the range of 0.015 to 0.055 g / cm 3. preferable.
  • the average chord length of the bubbles is preferably in the range of 50 to 350 ⁇ m, and more preferably in the range of 60 to 300 ⁇ m for the foamed molded article having a foaming ratio of 40 times.
  • the average chord length of the bubbles is the average chord length of the bubbles of the foam molded article measured by the following method. ⁇ Average string length> The average chord length of bubbles in the foamed molded product is measured in accordance with the test method of ASTM D2842-69.
  • the foamed molded product is cut into approximately halves, and the cut surface is photographed with a scanning electron microscope (trade name “S-3000N” manufactured by Hitachi, Ltd.) at a magnification of 100 times.
  • the photographed image is printed on A4 paper, and a straight line having a length of 60 mm is drawn at an arbitrary position, and the average chord length (t) of the bubbles is calculated from the following formula from the number of bubbles existing on the straight line.
  • Average string length t 60 / (number of bubbles ⁇ photo magnification)
  • the bubbles in which both ends of the straight line are positioned are included in the number of bubbles. Further, the average chord length is calculated in the same manner as described above at any five locations in the photographed image, and the arithmetic mean value of these average chord lengths is set as the average chord length of the bubbles of the foam molded body.
  • the shape, dimensions, etc. of the embankment member are not particularly limited, and can be appropriately determined according to the construction method, scale, etc. of embankment to be carried out. That is, the embankment member can have various sizes and shapes such as a thick plate shape, a block shape, and a shape having engagement grooves and protrusions.
  • the foamed molded body having a foaming ratio of 50 times preferably has an average cell chord length in the range of 40 to 200 ⁇ m, more preferably in the range of 50 to 150 ⁇ m.
  • the oxygen index is preferably 26 or more. If the oxygen index is less than 26, sufficient flame retardancy may not be obtained.
  • the foam chord having a foam expansion ratio of 40 times preferably has an average cell chord length in the range of 40 to 350 ⁇ m, more preferably in the range of 50 to 300 ⁇ m.
  • Example 1 (Production of expandable styrene resin particles) Tetrabromobisphenol A-bis (2,3-dibromo-2-methylpropyl ether) (flame retardant) for 100 parts by mass of polystyrene resin (trade name “HRM-10N”, manufactured by Toyo Styrene Co., Ltd.) as the base resin 7 parts by mass of a polystyrene resin masterbatch (made by Daiichi Kogyo Seiyaku Co., Ltd.) containing 50% by mass (equivalent to 3.5 parts by mass of flame retardant) and 0.3 parts by mass of finely powdered talc are previously mixed uniformly using a tumbler mixer.
  • polystyrene resin trade name “HRM-10N”, manufactured by Toyo Styrene Co., Ltd.
  • the resin After being fed into a single screw extruder with a diameter of 90 mm at a rate of 160 kg / hr per hour, the resin is heated and melted, and then 6 parts by mass of isopentane is extruded with respect to 100 parts by mass of the resin as a foaming agent. Press-fitted from the middle of the machine. Then, while kneading the resin and the foaming agent in the extruder, while cooling so that the resin temperature at the tip of the extruder is 190 ° C., it is connected to the extruder and held at 320 ° C.
  • the expandable polystyrene resin particles produced as described above were placed in a 15 ° C. cool box and allowed to stand for 72 hours, and then supplied to a cylindrical batch type pre-foaming machine to generate steam with a blowing pressure of 0.05 MPa. To obtain pre-expanded particles.
  • the obtained pre-expanded particles had a bulk density of 0.015 g / cm 3 (bulk foam multiple 67 times).
  • the pre-expanded particles obtained were allowed to stand for 24 hours in a room temperature atmosphere, and then the pre-expanded particles were filled into a mold having a rectangular cavity of length 400 mm ⁇ width 300 mm ⁇ height 50 mm.
  • the inside of the mold cavity is heated with water vapor at a gauge pressure of 0.08 MPa for 20 seconds, and then cooled until the pressure in the mold cavity becomes 0.01 MPa.
  • a rectangular foam molded body having a length of 400 mm, a width of 300 mm, and a height of 50 mm was taken out.
  • the obtained foamed molded product had a density of 0.015 g / cm3 (foaming factor: 67 times).
  • Example 1 The following evaluation tests were conducted on the polystyrene resin, the expandable polystyrene resin particles, the pre-expanded particles, and the foamed molded product of Example 1 manufactured by the above method.
  • Flame retardant content (% by mass) Measured value of bromine content ⁇ (Molecular weight of the entire flame retardant / Amount of bromine in the entire flame retardant)
  • a method for measuring the ratio (B / A) of the total flame retardant content (A) of the expandable polystyrene resin particles to the flame retardant content (B) on the surface of the resin particles will be described below.
  • the flame retardant content was calculated from the bromine content obtained according to the following formula, and was defined as the flame retardant content (B) on the surface of the resin particles.
  • Flame retardant content (% by mass) Measured value of bromine content ⁇ (Molecular weight of the entire flame retardant / Amount of bromine in the entire flame retardant) The equipment and measurement conditions used for the analysis are as follows.
  • Measuring apparatus X-ray fluorescence analyzer manufactured by Rigaku Corporation RIX-2100 X-ray tube: Vertical Rh / Cr tube (3 / 2.4 kW) Analysis diameter: 30 mm ⁇ Slit: Standard spectral crystal: LiF detector: SC measurement mode: Qualitative analysis (FP thin film method-BrPS30-balance component C8H8) The ratio (B / A) between (A) and (B) was calculated by dividing the flame retardant content (B) determined above by the flame retardant content (A).
  • the density of the polystyrene-based resin foam molding 21 used as a measurement sample was 0.02 g / cm 3 (50 times the expansion factor). When the density of the molded body 21 was less than 0.02 g / cm 3 due to poor foaming properties, the molded body 21 having the lowest density was used as a measurement sample.
  • Method 1 It was measured by the method described in JIS A 9511: 1995 “Foamed plastic heat insulating material” measuring method A. Five test pieces were cut out of a foam molded article sample having a thickness of 10 mm, a length of 200 mm, and a width of 25 mm, and a prescribed ignition limit indicator line and a combustion limit indicator line were attached. After the test piece was burned to the ignition limit indicator line with a candle for the fire source, the flame was retreated, the time (seconds) from the moment to the extinction of the flame was measured, and the flame retardance was judged based on the following criteria .
  • Method 2 A test piece having a thickness of 10 mm, a length of 150 mm, and a width of 10 mm was cut out from the obtained foamed molded article with a vertical cutter, cured in a 50 ° C. oven for 7 days, and then adjusted to a temperature of 23 ° C. and a relative humidity of 50%. The condition was adjusted for 4 days, the oxygen index was measured according to JIS K7201, and the flame retardancy was evaluated based on the following criteria. ⁇ (Good): Oxygen index is 26 or more x (Poor): Oxygen index is less than 26
  • the mass reduction rate of the sample was measured under the conditions of 30 to 800 ° C., and a graph was obtained with the mass reduction rate of the sample on the vertical axis and the temperature on the horizontal axis. And based on the obtained graph, the temperature when the mass reduction rate of the sample reached 5% was defined as a 5 mass% decomposition temperature.
  • Detector FID Column: GL Sciences (3mm ⁇ ⁇ 2.5m) Liquid phase: PEG-20M PT 25% Carrier; Chromosorb W AW-DMCS Mesh: 60/80 Column temperature: 100 ° C Detector temperature: 230 ° C DET temperature: 230 ° C Carrier gas (nitrogen) Carrier gas flow rate (40ml / min)
  • Example 2 Foam molding with a foam expansion factor of 67 times in the same manner as in Example 1 except that the same amount of tetrabromobisphenol A-bis (2,3-dibromopropyl ether) (Daiichi Kogyo Seiyaku Co., Ltd.) was used as a flame retardant. The body was manufactured.
  • Example 3 A foamed molded article having a foam expansion factor of 67 times was produced in the same manner as in Example 1 except that the same amount of tetrabromobisphenol A-bis (allyl ether) (Daiichi Kogyo Seiyaku Co., Ltd.) was used as the flame retardant.
  • Example 4 Except that 3.2 parts by mass of tetrabromobisphenol A-bis (2,3-dibromopropyl ether) and 0.3 parts by mass of tetrabromobisphenol A-bis (allyl ether) were used as a flame retardant, In the same manner as in Example 1, a foamed molded article having a foam multiple of 67 times was produced.
  • Example 5 A foamed molded product was produced in the same manner as in Example 1 except that the bulk foaming factor of the pre-expanded particles was 40 times and the foaming factor of the foamed molded product was 40 times. The average chord length of bubbles in this foamed molded product was 183 ⁇ m.
  • Example 6 A foamed molded article having a foam multiple of 67 times was produced in the same manner as in Example 1 except that the blending amount of the flame retardant A was 5.0 parts by mass.
  • Example 1 A foamed molded article was produced in the same manner as in Example 1 except that the same amount of hexabromocyclododecane (Daiichi Kogyo Seiyaku Co., Ltd.) was used as the flame retardant.
  • Example 2 A foam molded article was produced in the same manner as in Example 1 except that the same amount of tris- (2,3-dibromopropyl) isocyanurate (Nihon Kasei Co., Ltd.) was used as the flame retardant.
  • Example 3 A foamed molded article was produced in the same manner as in Example 1 except that the same amount of pentabromobenzyl acrylate (Daiichi Kogyo Seiyaku Co., Ltd.) was used as the flame retardant.
  • Example 4 A foamed molded article was produced in the same manner as in Example 1 except that the same amount of tris (tribromoneopentyl) phosphate (manufactured by Daihachi Chemical Co., Ltd.) was used as a flame retardant.
  • Example 5 A foamed molded article having an expansion ratio of 67 times was produced in the same manner as in Example 1 except that the foamable polystyrene resin particles were obtained by suspension polymerization as a method for producing the expandable styrene resin particles. Details of the suspension polymerization method are shown below.
  • This emulsion was prepared by dispersing 88 kg of benzoyl peroxide (purity 75%) as a polymerization initiator in a dispersion of 6 kg of pure water, 2 g of sodium dodecylbenzenesulfonate and 20 g of magnesium pyrophosphate, t-butylperoxy-2-ethylhexyl mono 5 kg of styrene in which 50 g of carbonate was dissolved was added, and the mixture was stirred and emulsified with a homomixer.
  • the styrene resin particles are held for 30 minutes so that the styrene and the polymerization initiator are well absorbed, and then 28 kg of styrene is added to the inside of the autoclave at 0.2 ° C./min from 75 ° C. to 108 ° C. over 160 minutes. It was dripped continuously while raising the temperature. Next, 20 minutes after the completion of dropping of styrene, the temperature was raised to 120 ° C. at a rate of 1 ° C./min, and maintained for 90 minutes to obtain polystyrene particles by seed polymerization.
  • Comparative Example 6 A foam molded article having a foam expansion ratio of 67 times was produced in the same manner as in Comparative Example 5, except that the same amount of tetrabromobisphenol A-bis (allyl ether) (Daiichi Kogyo Seiyaku Co., Ltd.) was used as the flame retardant.
  • Table 1 summarizes the bromine content of the flame retardants used in Examples 1 to 6 and Comparative Examples 1 to 6, the presence or absence of a benzene ring in the flame retardant molecule, and the 5 mass% decomposition temperature.
  • Table 2 summarizes the measurement and evaluation results of Examples 1 to 6 and Comparative Examples 1 to 6.
  • the examples have bromine atoms in the molecule, the bromine content is less than 70% by mass, the molecule has a benzene ring, and the flame retardant has a 5% by mass decomposition temperature.
  • the flame retardants A to C within the range of 200 to 300 ° C.
  • the bead foamability, flame retardancy, and the appearance of the foam were all good.
  • Comparative Example 1 using the flame retardant D having a high bromine content of 75% by mass and having no benzene ring in the molecule had poor bead foaming properties, and the appearance of the foam was slightly inferior.
  • the comparative example 2 using the flame retardant E which does not have a benzene ring in the molecule had poor bead foaming properties, and the foam had poor appearance.
  • Comparative Example 3 using the flame retardant F having a high bromine content of 75% by mass and a 5% by mass decomposition temperature exceeding 300 ° C. has a slightly poor bead foaming property and poor flame retardancy. The appearance of the foam was slightly poor.
  • Flame retardants A and C having a bromine content of less than 70% by mass, having a benzene ring in the molecule, and having a 5% by mass decomposition temperature of the flame retardant within the range of 200 to 300 ° C. are polystyrene resins. In Comparative Examples 5 and 6 using the method of impregnating the particles, both the flame retardancy and the appearance of the foam were poor.
  • the present invention relates to a flame-retardant polystyrene resin foam molded article having sufficient flame retardancy using a flame retardant having high safety to the environment and living organisms, and excellent in mechanical strength, moldability and appearance, and the molded article.
  • the present invention relates to an expandable polystyrene resin particle used in the production of the resin and a production method thereof.
  • the polystyrene-based resin foam molded article of the present invention is suitably used in a foam molded article requiring flame retardancy, for example, a building material application, an automobile interior material, and the like.
  • SYMBOLS 1 Extruder (resin supply apparatus), 2 ... Die, 3 ... Raw material supply hopper, 4 ... High pressure pump, 5 ... Foam supply port, 6 ... Cutter, 7 ... Cutting chamber, 8 ... Water tank, 9 ... High pressure pump, DESCRIPTION OF SYMBOLS 10 ... Dehydration dryer with a solid-liquid separation function, 11 ... Storage container, 21 ... Polystyrene-type resin foam molding, 22 ... Molded body skin part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 難燃剤及び発泡剤を含有するポリスチレン系樹脂を粒子状としてなる発泡性ポリスチレン系樹脂粒子において、前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内であり、前記発泡性ポリスチレン系樹脂粒子の全体の難燃剤含有量(A)と、樹脂粒子の表面の難燃剤含有量(B)との比(B/A)が0.8~1.2の範囲内である。また、この発泡性ポリスチレン系樹脂粒子を予備発泡し、さらに型内で発泡することにより、難燃性を有するポリスチレン系樹脂発泡成形体が得られる。この発明によれば、環境や生物に対する安全性が高い難燃剤を用い、十分な難燃性能を有し、機械強度・成形性・外観にも優れたポリスチレン系樹脂発泡成形体を提供することができる。

Description

発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体、建材用断熱材、盛土用部材及び車両内装材
 本発明は、環境適合性及び難燃性に優れたポリスチレン系樹脂発泡成形体、この成形体の製造に用いる発泡性ポリスチレン系樹脂粒子とその製造方法に関する。本発明のポリスチレン系樹脂発泡成形体は、難燃性が要求される発泡成形体、例えば、建材用用途、盛土用部材、自動車用内装材などにおいて好適に使用される。本願は、2009年10月27日に日本に出願された特願2009-246290号、特願2009-246291号、特願2009-246292号、及び特願2009-246293号に基づき優先権を主張し、それらの内容をここに援用する。
なお、本発明に係るポリスチレン系樹脂粒子は、具体的には難燃剤含有ポリスチレン系樹脂粒子、建材用断熱材製造用発泡性ポリスチレン系樹脂粒子、盛土用部材製造用発泡性ポリスチレン系樹脂粒子、及び車両内装材製造用発泡性ポリスチレン系樹脂粒子であるが、以下、必要に応じ、これらを総称して単に「発泡性ポリスチレン系樹脂粒子」と呼称する場合がある。
 従来、難燃剤を含有する発泡性ポリスチレン系樹脂粒子として、例えば、特許文献1~3に開示された従来技術が提案されている。
 特許文献1には、スチレン系樹脂100質量部に対して、所定構造の臭素系難燃剤を0.1~10質量部を含有する有機溶媒溶液と、発泡剤とを添加し、加熱発泡せしめる難燃性発泡スチレン系樹脂の製造方法が開示されている。
 特許文献2には、テトラブロモビスフェノールAジアリルエーテルを界面活性剤の存在下において粒子径が50μm以下になるように分散した後、軟化剤、難燃助剤、可塑剤及び発泡剤と共にポリスチレン樹脂粒子に含浸させることを特徴とする自己消火性ポリスチレン樹脂粒子の製造方法及びこの樹脂粒子を用いて得た成形品が開示されている。
 特許文献3には、均一に分布されたグラファイト粉末を含有する粒子状膨張性スチレン重合体、これを処理することにより得られる自己消火性発泡体が開示され、また難燃剤として、70質量%又はこれより多い臭素分を有する有機臭素化合物を含有し、燃焼テストB2(DIN4102による)にパスする自己消火性発泡体をもたらすように処理され得ることが開示されている。前記有機臭素化合物としては、ヘキサブロモシクロドデカン、ペンタブロモモノクロロシクロヘキサン、ペンタブロモフェニルアリルエーテルが記載されている。
 また、住宅等において断熱性能を高めるために、床における根太の間、あるいは、壁における柱や間柱等の支持部材の間に断熱材を配設する断熱工法は知られている。このような断熱工法において用いられる断熱材としては、従来よりグラスウールが広く一般に用いられている。しかしながら、グラスウールは吸湿によって断熱効果が低下し易いため、長期間にわたって高い断熱効果を期待できず、また施工性にも問題がある。このため、近年、この種の断熱材は、寸法安定性、断熱性に優れたポリスチレン系樹脂発泡成形体に移行しつつある。
 建材用断熱材としては、火災等の発生防止、火災時の延焼による火災の拡大防止等の観点から、通常、一定レベル以上の難燃性能が要求されている。ポリスチレン系樹脂発泡成形体に十分な難燃性能を付与するために、発泡成形体製造用の発泡性ポリスチレン系樹脂粒子に難燃剤を添加して使用している。
 また、建材用断熱材としては、防水性、耐吸湿性、防湿性及び断熱性等のほかに、温度変化によって膨張したり収縮しないこと(寸法安定性)が求められている。
 さらに、建材用断熱材は、近年増加傾向にあるシックハウス症候群に対する対策のため、揮発性有機化合物の放散量を低減することが求められている。シックハウス症候群の原因化合物には、厚生労働省による濃度指針のある揮発性有機化合物(VOC)として、ホルムアルデヒド、アセトアルデヒド、トルエン、キシレン、エチルベンゼン、スチレンなどが挙げられている。
 従来、建材用断熱材として利用される発泡性ポリスチレン系樹脂粒子として、例えば、特許文献4に開示された従来技術が提案されている。
 特許文献4には、発泡性ポリスチレン系樹脂粒子100重量部の中に、スチレンモノマーが350~1200ppmと、圧力6.666×10-4MPa(5mmHg)下で減圧蒸留を行った場合に250℃以下の温度では蒸留できない可塑剤0.1~2質量部と、発泡剤を含有してなることを特徴とする発泡性ポリスチレン系樹脂粒子が開示されている。
 また、従来より、発泡合成樹脂ブロックを用いた盛土は、軟弱地盤上や傾斜地での盛土や、庭園の築山での盛土、更には地下構造物の埋込み、埋戻し等に広く用いられている。このような部材に用いられる発泡体としては、強度・耐水性等の観点からポリスチレン系樹脂発泡体が多く使用されている。中でも発泡性ポリスチレン系樹脂粒子(ビーズ等とも称される)を加熱して予備発泡し、得られた予備発泡粒子を成形型のキャビティ内に充填し、型内で加熱発泡、成形する型内発泡成形法で製造された発泡成形体が一般的である。
 盛土用部材は、火災等の発生防止、延焼による地盤不安定化防止等の観点から、通常、一定レベル以上の難燃性能が要求されている。ポリスチレン系樹脂発泡成形体に十分な難燃性能を付与するために、発泡成形体製造用の発泡性ポリスチレン系樹脂粒子に難燃剤を添加して使用している。
 従来、ポリスチレン系樹脂発泡成形体に難燃剤を添加する方法としては、難燃剤をスチレン系モノマーと共に重合時に添加する方法(例えば、上記特許文献4参照。)や、ポリスチレン系樹脂粒子に発泡剤を含浸させる際、難燃剤を発泡剤と同時に加え、ポリスチレン系樹脂粒子にこれらを含浸させて発泡性ポリスチレン系樹脂粒子を製造する方法(例えば、特許文献5~7参照。)がある。
 また、従来、自動車など各種の車両には、内装材として、合成樹脂製品が多く使用されている。この合成樹脂製品としては、非発泡の製品も用いられているが、緩衝性を高めて乗り心地を向上させる、衝撃を吸収して乗員を保護する、車両内の平坦性を確保するなどの目的から、合成樹脂の発泡成形体からなる車両内装材が多く用いられている。この発泡成形体としては、発泡性ウレタンや発泡性ポリスチレンなどの種々の樹脂が用いられるが、成形性や機能性に優れていることから発泡性ポリスチレン系樹脂が多く用いられている。また、発泡性ポリスチレン系樹脂が使用される車両内装材としては、例えば、自動車内装材、特にフロアスペーサ、ドアパッド、ツールボックスなどが挙げられる。
 車両内装材としては、火災等の発生防止、自己消火性等の観点から、通常、一定レベル以上の難燃性能が要求されている。ポリスチレン系樹脂発泡成形体に十分な難燃性能を付与するために、発泡成形体製造用の発泡性ポリスチレン系樹脂粒子に難燃剤を添加して使用している。
 また、車両内装材には、上述したシックハウス症候群に対する対策のため、揮発性有機化合物の含有量を極めて少なくすることが強く求められている。
 従来、発泡性ポリスチレン系樹脂中の揮発性有機化合物を低減化に関して、例えば、特許文献8に開示された技術が提案されている。
 特許文献8には、スチレン系発泡性樹脂粒子の中に,残留スチレンモノマーが1~300ppmと、ベンゼン1ppm以下と、スチレンと相溶性を有するSP値が7~10の可塑剤0.1~2質量%と、発泡剤とを含有してなるスチレン系発泡性樹脂粒子が開示されている。
 また、上記特許文献4には、発泡性ポリスチレン系樹脂粒子100質量部の中に、スチレンモノマーが350~1200ppmと、圧力6.666×10-4MPa(5mmHg)下で減圧蒸留を行った場合に250℃以下の温度では蒸留できない可塑剤0.1~2質量部と、発泡剤を含有してなることを特徴とする発泡性ポリスチレン系樹脂粒子が開示されている。
日本国特開昭63-172744号公報 日本国特開平11-130898号公報 日本国特表2001-525001号公報 日本国特開2003-64212号公報 日本国特開2003-335891号公報 日本国特開2002-194130号公報 日本国特許第4035979号公報 日本国特開平11-106548号公報
 しかしながら、前述した従来技術には、次のような問題がある。
 特許文献1に開示された従来技術では、難燃剤を有機溶媒に予め溶解することにより押出機、オートクレーブ中に供給している。しかしながら、難燃剤を有機溶媒に溶かす工程において揮発性溶媒を用いることは、環境に与える悪影響が大きく、発泡成形体からの揮発性有機化合物(VOC)の発生の観点から好ましくない。また、発泡に使用する低級脂肪族炭化水素(ブタン、ペンタン)に溶解する工程において、発泡剤の揮発により作業環境が悪化する。
 特許文献2に開示された従来技術では、難燃剤を界面活性剤の存在下において粒子径が50μm以下になるように分散した後、軟化剤、難燃助剤、可塑剤及び発泡剤と共にポリスチレン樹脂粒子に含浸させて難燃剤含有発泡性ポリスチレン樹脂粒子を製造している。しかしながら、このようにポリスチレン樹脂粒子に難燃剤を含浸させる方法では、ポリスチレン樹脂粒子の表面付近に難燃剤が含浸されるものの、樹脂粒子中心付近には難燃剤が存在しないか、含有量が低い難燃剤含有発泡性ポリスチレン樹脂粒子しか得られない。その結果、このような樹脂粒子を予備発泡し、更に得られた予備発泡粒子を型内発泡成形して得られる難燃性ポリスチレン系樹脂発泡成形体の機械強度が劣り、成形性や外観が悪くなる。
 特許文献3に開示された従来技術では、難燃剤としてヘキサブロモシクロドデカン等の有機臭素化合物を用いている。しかしながら、ヘキサブロモシクロドデカンは化学物質審査規制法第1種監視化学物質であり、経済産業省の既存化学物質安全性点検で難分解・高濃縮が指摘され、さらに欧州リスクアセス評価対象に該当するなど、その安全性には問題があることから、その使用を無くすことが望まれている。従って、この種の有機臭素化合物は、今後は難燃性ポリスチレン系樹脂発泡成形体の分野においては使用し難い。
 特許文献4には、具体的な発泡性ポリスチレン系樹脂粒子の製造方法として懸濁重合法が記載されており、スチレンの重合過程の全てにおいてヘキサブロモシクロドデカンが存在している。また、ヘキサブロモシクロドデカンは、スチレンの重合過程に添加した場合、スチレンモノマーの重合阻害を発生させることが知られている。その結果、得られる発泡性ポリスチレン系樹脂粒子中には残存揮発性有機化合物が多く含有されており、近年要望されているシックハウス症候群への対応が困難になる。そのため、ヘキサブロモシクロドデカンは、建材用断熱材や車両内装材の製造用途には適さない。
 また、特許文献5~7に開示されたように、ポリスチレン系樹脂粒子に発泡剤を含浸させる際、難燃剤を発泡剤と同時に加え、ポリスチレン系樹脂粒子にこれらを含浸させる方法では、難燃剤を有機溶媒に溶かして添加すると、使用した有機溶媒が樹脂粒子中に残留し、得られる発泡性ポリスチレン系樹脂粒子中には残存揮発性有機化合物が多く含有される。そのため、この方法は、建材用断熱材や車両内装材の製造用途には適さない。
 また、特許文献5~7に開示された方法では、粉末状難燃剤が懸濁液中で二次凝集を起こすことによって、難燃剤の懸濁液中における分散が不均一となる。その結果、粉末状の難燃剤の樹脂粒子への吸収が不均一となって、一部の樹脂粒子が難燃剤を多く吸収してしまう。
 また、前記のようにポリスチレン樹脂粒子に難燃剤を含浸させて添加する方法では、ポリスチレン樹脂粒子の表面付近に難燃剤が含浸されるものの、樹脂粒子中心付近には難燃剤が存在しないか、含有量が低い樹脂粒子しか得られない。このような樹脂粒子を予備発泡し、更に得られた予備発泡粒子を型内発泡成形して得られるポリスチレン系樹脂発泡成形体は機械強度が劣り、寸法安定性が低下し、更に成形性や外観が悪くなるため、盛土用部材や車両内装材の製造用途には適さない。
 本発明は、前記事情に鑑みてなされ、環境や生物に対する安全性が高い難燃剤を用いて十分な難燃性能を有し、機械強度・成形性・外観・寸法安定性にも優れた難燃性ポリスチレン系樹脂発泡成形体、建材用断熱材、盛土用部材及び車両内装材の提供を目的とする。
 前記目的を達成するため、本発明は、難燃剤及び発泡剤を含有するポリスチレン系樹脂を粒子状としてなる難燃剤含有発泡性ポリスチレン系樹脂粒子であって、前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内であり、前記発泡性ポリスチレン系樹脂粒子の全体の難燃剤含有量(A)と、樹脂粒子の表面の難燃剤含有量(B)との比(B/A)が0.8~1.2の範囲内である難燃剤含有発泡性ポリスチレン系樹脂粒子を提供する。
 本発明の難燃剤含有発泡性ポリスチレン系樹脂粒子は、樹脂供給装置内でポリスチレン系樹脂に難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して難燃剤含有発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られることが好ましい。
 また、本発明は、前記難燃剤含有発泡性ポリスチレン系樹脂粒子を加熱して得られた難燃性ポリスチレン系樹脂予備発泡粒子を提供する。
 また、本発明は、前記難燃性ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られた難燃性ポリスチレン系樹脂発泡成形体を提供する。
 また、前記目的を達成するため、本発明は、難燃剤及び発泡剤を含有するポリスチレン系樹脂を粒子状としてなる建材用断熱材製造用発泡性ポリスチレン系樹脂粒子であって、前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内であり、樹脂供給装置内でポリスチレン系樹脂に難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して建材用断熱材製造用発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られた建材用断熱材製造用発泡性ポリスチレン系樹脂粒子を提供する。
 本発明の建材用断熱材製造用発泡性ポリスチレン系樹脂粒子において、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物の含有総量が500ppm未満であることが好ましい。
 また、本発明は、前記建材用断熱材製造用発泡性ポリスチレン系樹脂粒子を加熱して得られた建材用断熱材製造用予備発泡粒子を提供する。
 また、本発明は、前記建材用断熱材製造用予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、密度が0.010~0.050g/cmの範囲である建材用断熱材を提供する。
 また、本発明は、前記建材用断熱材製造用予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、発泡倍数40倍の発泡成形体について、気泡の平均弦長が50~350μmの範囲である建材用断熱材を提供する。
 また、前記目的を達成するため、本発明は、難燃剤及び発泡剤を含有するポリスチレン系樹脂を粒子状としてなる盛土用部材製造用発泡性ポリスチレン系樹脂粒子であって、前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内であり、樹脂供給装置内でポリスチレン系樹脂に難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られた盛土用部材製造用発泡性ポリスチレン系樹脂粒子を提供する。
 また、本発明は、前記盛土用部材製造用発泡性ポリスチレン系樹脂粒子を加熱して得られた盛土用部材製造用予備発泡粒子を提供する。
 また、本発明は、前記盛土用部材製造用予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、密度が0.010~0.050g/cmの範囲である盛土用部材を提供する。
 また、本発明は、前記盛土用部材製造用予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、発泡倍数50倍の発泡成形体について、気泡の平均弦長が40~200μmの範囲である盛土用部材を提供する。
 また、本発明は、前記盛土用部材製造用予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、酸素指数が26以上である盛土用部材を提供する。
 また、前記目的を達成するため、本発明は、難燃剤及び発泡剤を含有するポリスチレン系樹脂を粒子状としてなる車両内装材製造用発泡性ポリスチレン系樹脂粒子であって、前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内であり、樹脂供給装置内でポリスチレン系樹脂に難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して車両内装材製造用発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られた車両内装材製造用発泡性ポリスチレン系樹脂粒子を提供する。
 本発明の車両内装材製造用発泡性ポリスチレン系樹脂粒子において、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物の含有総量が500ppm未満であることが好ましい。
 また、本発明は、前記車両内装材製造用発泡性ポリスチレン系樹脂粒子を加熱して得られた車両内装材製造用予備発泡粒子を提供する。
 また、本発明は、前記車両内装材製造用予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、発泡倍数40倍の発泡成形体について、気泡の平均弦長が40~350μmの範囲である車両内装材を提供する。
 また、本発明は、前記車両内装材製造用予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、密度が0.015~0.066g/cmの範囲である車両内装材を提供する。
 なお、本発明の発泡性ポリスチレン系樹脂粒子において、前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上であることが好ましい。
 また、本発明の発泡性ポリスチレン系樹脂粒子において、前記難燃剤が、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(アリルエーテル)からなる群から選択される1種又は2種以上であることが好ましい。
 また、本発明は、樹脂供給装置内でポリスチレン系樹脂に、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して前記難燃剤含有発泡性ポリスチレン系樹脂粒子を得る難燃剤含有発泡性ポリスチレン系樹脂粒子の製造方法を提供する。
 また、本発明は、樹脂供給装置内でポリスチレン系樹脂に、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を製造する方法において、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物を使用せずに発泡性ポリスチレン系樹脂粒子を得る建材用断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法を提供する。
 また、本発明は、樹脂供給装置内でポリスチレン系樹脂に、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して、前記本発明に係る盛土用部材製造用発泡性ポリスチレン系樹脂粒子を得る盛土用部材製造用発泡性ポリスチレン系樹脂粒子の製造方法を提供する。
 また、本発明は、樹脂供給装置内でポリスチレン系樹脂に、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を製造する方法において、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物を使用せずに発泡性ポリスチレン系樹脂粒子を得る車両内装材製造用発泡性ポリスチレン系樹脂粒子の製造方法を提供する。
本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上であることが好ましい。
 本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、前記難燃剤が、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(アリルエーテル)からなる群から選択される1種又は2種以上であることが好ましい。
 本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、樹脂中に所定濃度で前記難燃剤を含むマスターバッチ材を前記ポリスチレン系樹脂とともに樹脂供給装置内に供給し、この装置内で溶融混練することが好ましい。
 本発明の発泡性ポリスチレン系樹脂粒子は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である難燃剤を含有している。前記難燃剤は、環境や生物に対する安全性が高く、特に、テトラブロモビスフェノールA誘導体は、ポリスチレン系樹脂発泡成形体に添加した場合に十分な難燃性能を付与でき、環境や生物に対する安全性が高い。そのため、種々の用途の難燃性ポリスチレン系樹脂発泡成形体の製造に用いることができる。
 本発明の難燃剤含有発泡性ポリスチレン系樹脂粒子は、樹脂粒子の全体の難燃剤含有量(A)と、樹脂粒子の表面の難燃剤含有量(B)との比(B/A)が0.8~1.2の範囲内であるので、樹脂粒子中に難燃剤が均一に存在している。その結果、樹脂粒子中に難燃剤が不均一に存在している粒子と比べ、得られるポリスチレン系樹脂発泡成形体の機械強度が高くなり、成形性や外観にも優れた発泡成形体が得られる。
また、本発明の建材用断熱材製造用発泡性ポリスチレン系樹脂粒子、盛土用部材製造用発泡性ポリスチレン系樹脂粒子及び車両内装材製造用発泡性ポリスチレン系樹脂粒子は、樹脂供給装置内でポリスチレン系樹脂に難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られる。そのため、樹脂粒子中に難燃剤が均一に存在しており、樹脂粒子中に難燃剤が不均一に存在している樹脂粒子と比べ、得られる建材用断熱材、盛土用部材及び車両内装材の機械強度が高くなり、寸法安定性や成形性にも優れた建材用断熱材、盛土用部材及び車両内装材が得られる。
 本発明のポリスチレン系樹脂発泡成形体は、前記発泡性ポリスチレン系樹脂粒子を加熱して予備発泡させ、更に、得られた予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られる。そのため、環境や生物に対する安全性が高い難燃剤を用いて十分な難燃性能を有し、機械強度・成形性・寸法安定性・外観にも優れた難燃性ポリスチレン系樹脂発泡成形体(建材用断熱材、盛土用部材及び車両内装材)を提供することができる。
また、前記難燃剤をポリスチレン系樹脂中に添加して使用することで、上記成形体におけるスチレン系モノマーなどの残存揮発性有機化合物の含有量を低くすることが可能となる。その結果、シックハウス症候群への対応が可能になる。
 本発明の発泡性ポリスチレン系樹脂粒子の製造方法によれば、前述したように優れた効果を有する発泡性ポリスチレン系樹脂粒子を効率よく製造することができる。特に、本発明の難燃剤含有発泡性ポリスチレン系樹脂粒子の製造方法によれば、樹脂粒子の全体の難燃剤含有量(A)と、樹脂粒子の表面の難燃剤含有量(B)とがほぼ等しい、難燃剤が樹脂粒子内に均一に含有された難燃剤含有発泡性ポリスチレン系樹脂粒子を高効率で製造することができる。
特に、本発明の建材用断熱材製造用発泡性ポリスチレン系樹脂粒子及び車両内装材製造用発泡性ポリスチレン系樹脂粒子の製造方法によれば、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物の含有量が低い建材用断熱材製造用発泡性ポリスチレン系樹脂粒子を高効率で製造することができる。
また、本発明の発泡性ポリスチレン系樹脂粒子の製造方法において、樹脂中に所定濃度で前記難燃剤を含むマスターバッチ材を前記ポリスチレン系樹脂とともに樹脂供給装置内に供給し、この装置内で溶融混練することによって、難燃剤をより均一に樹脂粒子に含有させることができる。
本発明の発泡性ポリスチレン系樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図である。 実施例で行ったポリスチレン系樹脂発泡成形体の成形体表皮部をカットする時の状態を示す概略正面図である。
 以下、図面を参照して本発明の実施形態を説明する。
 本発明の発泡性ポリスチレン系樹脂粒子の製造方法では、樹脂供給装置内でポリスチレン系樹脂に、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得ている。
 図1は、本発明の発泡性ポリスチレン系樹脂粒子の製造方法に用いられる製造装置の一例を示す構成図である。本例の製造装置は、樹脂供給装置としての押出機1と、押出機1の先端に取り付けられた多数の小孔を有するダイ2と、押出機1内に樹脂原料等を投入する原料供給ホッパー3と、押出機1内の溶融樹脂に発泡剤供給口5を通して発泡剤を圧入する高圧ポンプ4と、ダイ2の小孔が穿設された樹脂吐出面に冷却水を接触させるように設けられ、室内に冷却水が循環供給されるカッティング室7と、ダイ2の小孔から押し出された樹脂を切断できるようにカッティング室7内に回転可能に設けられたカッター6と、カッティング室7から冷却水の流れに同伴して運ばれる発泡性粒子を冷却水と分離すると共に脱水乾燥して発泡性粒子を得る固液分離機能付き脱水乾燥機10と、固液分離機能付き脱水乾燥機10にて分離された冷却水を溜める水槽8と、この水槽8内の冷却水をカッティング室7に送る高圧ポンプ9と、固液分離機能付き脱水乾燥機10にて脱水乾燥された発泡性粒子を貯留する貯留容器11とを備えて構成されている。
 なお、押出機1としては、スクリュを用いる押出機またはスクリュを用いない押出機のいずれも用いることができる。スクリュを用いる押出機としては、例えば、単軸式押出機、多軸式押出機、ベント式押出機、タンデム式押出機などが挙げられる。スクリュを用いない押出機としては、例えば、プランジャ式押出機、ギアポンプ式押出機などが挙げられる。また、いずれの押出機もスタティックミキサーを用いることができる。これらの押出機のうち、生産性の面からスクリュを用いた押出機が好ましい。また、カッター6を収容したカッティング室7も、樹脂の溶融押出による造粒方法において用いられている従来周知の装置を用いることができる。
 本発明の発泡性ポリスチレン系樹脂粒子において、ポリスチレン系樹脂は特に限定されない。例えば、スチレン、α-メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i-プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられ、スチレンを50質量%以上含有するポリスチレン系樹脂が好ましく、ポリスチレンがより好ましい。
 また、前記ポリスチレン系樹脂としては、前記スチレンモノマーを主成分とする、前記スチレン系モノマーとこのスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよい。このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性モノマーなどが挙げられる。
 また、ポリスチレン系樹脂が主成分であれば、他の樹脂を添加してもよい。添加する樹脂としては、例えば、発泡成形体の耐衝撃性を向上させるために、ポリブタジエン、スチレン-ブタジエン共重合体、エチレン-プロピレン-非共役ジエン三次元共重合体などのジエン系のゴム状重合体を添加したゴム変性ポリスチレン系樹脂、いわゆるハイインパクトポリスチレンが挙げられる。あるいは、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体などが挙げられる。
 本発明の発泡性ポリスチレン系樹脂粒子において、原料となるポリスチレン系樹脂としては、市販されている通常のポリスチレン系樹脂、懸濁重合法などの方法で新たに作製したポリスチレン系樹脂などの、リサイクル原料でないポリスチレン系樹脂(バージンポリスチレン)を使用できる他、使用済みのポリスチレン系樹脂発泡成形体を再生処理して得られたリサイクル原料を使用することができる。このリサイクル原料としては、使用済みのポリスチレン系樹脂発泡成形体、例えば、魚箱、家電緩衝材、食品包装用トレーなどを回収し、リモネン溶解方式や加熱減容方式によって再生したリサイクル原料の中から、重量平均分子量Mwが12万~40万の範囲となる原料を適宜選択し、又は重量平均分子量Mwが異なる複数のリサイクル原料を適宜組み合わせて用いることができる。
 本発明の発泡性ポリスチレン系樹脂粒子において、難燃剤としては、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である難燃剤が用いられる。この場合、前記難燃剤の1種又は2種以上を混合して、或いは、前記難燃剤を主体として、それに他の難燃剤を組み合わせて使用してもよい。
 臭素分含有量が70質量%を超え、分子内にベンゼン環を有さない難燃剤は、環境や生物に対する安全性が高い難燃剤となり難く、また機械強度・成形性・外観にも優れた難燃性ポリスチレン系樹脂発泡成形体を提供するという本発明の効果を達成し難くなる。臭素分含有量の下限は特に限定しないが50質量%以上であれば難燃効率が良いので好ましい。臭素分含有量のより好ましい範囲は55~69質量%である。
 また、難燃剤の5質量%分解温度が200℃未満であると、難燃剤とポリスチレン系樹脂とを押出機1内で溶融混練する際に、難燃剤が分解して難燃効果が得られなくなる可能性がある。5質量%分解温度が300℃を超える難燃剤を用いた場合には、得られる発泡成形体の難燃性が低下してしまう。難燃剤の5質量%分解温度の好ましい範囲は230~300℃であり、より好ましい範囲は240~295℃であり、最も好ましい範囲は265~290℃である。
 本発明において、好ましい難燃剤としては、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上が挙げられる。これらの難燃剤の中でも、特に、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(アリルエーテル)からなる群から選択される1種又は2種以上であることが好ましい。5%分解温度が高いテトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)がより好ましく、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)が最も好ましい。
 本発明の発泡性ポリスチレン系樹脂粒子において、前記難燃剤の添加量は、難燃剤含有発泡性ポリスチレン系樹脂粒子の樹脂分100質量部に対して0.5~8.0質量%の範囲とすることが好ましく、1.0~6.0質量%の範囲が更に好ましい。難燃剤の添加量が前記範囲未満であると、得られる発泡成形体の難燃性が低下してしまう。難燃剤の添加量が前記範囲を超えると、得られる発泡成形体の機械強度・成形性・外観が劣化してしまう可能性がある。
 本発明の発泡性ポリスチレン系樹脂粒子において、発泡剤としては特に限定されないが、例えば、ノルマルペンタン、イソペンタン、シクロペンタン、シクロペンタジエン等を単独で、もしくは2種以上混合して使用することができる。また、前記ペンタン類を主成分として、ノルマルブタン、イソブタン、プロパン等を混合して使用することもできる。特にペンタン類は、ダイの小孔から水流中に吐出される際の樹脂粒子の発泡を抑制しやすいので好適に用いられる。ポリスチレン系樹脂に含有させる前記発泡剤の量は、ポリスチレン系樹脂100質量部に対し、3~10質量部の範囲であり、より好ましくは4~7質量部の範囲である。
 本発明の発泡性ポリスチレン系樹脂粒子は、必要に応じて前記難燃剤及び発泡剤以外にも、発泡性ポリスチレン系樹脂粒子の製造において一般的に使用されている他の添加剤、例えば、タルク、珪酸カルシウム、合成あるいは天然に産出される二酸化ケイ素、エチレンビスステアリン酸アミド、メタクリル酸エステル系共重合体等の発泡核剤、ジフェニルアルカン、ジフェニルアルケン等の難燃助剤、カーボンブラック、酸化鉄、グラファイト等の着色剤、フェノール系酸化防止剤、硫黄系酸化防止剤、リン系酸化防止剤等の酸化防止剤、ヒンダードアミン類等の安定剤、紫外線吸収剤、などの添加剤を、ポリスチレン系樹脂中に添加することができる。
 図1に示す製造装置を用い、本発明の発泡性ポリスチレン系樹脂粒子を製造するには、まず、原料のポリスチレン系樹脂、前記難燃剤、発泡核剤、必要に応じて添加される所望の添加剤を秤量し、原料供給ホッパー3から押出機1内に投入する。原料のポリスチレン系樹脂は、ペレット状や顆粒状にして事前に良く混合してから1つの原料供給ホッパーから投入してもよいし、あるいは例えば複数のロットを用いる場合は各ロットごとに供給量を調整した複数の原料供給ホッパーから投入し、押出機内でそれらを混合してもよい。また、複数のロットのリサイクル原料を組み合わせて使用する場合には、複数のロットの原料を事前に良く混合し、磁気選別や篩分け、比重選別、送風選別などの適当な選別手段により異物を除去しておくことが好ましい。
 本発明の好ましい実施形態において、前記難燃剤を添加する場合、樹脂中に所定濃度で難燃剤を含むマスターバッチ材を用い、これをポリスチレン系樹脂とともに樹脂供給装置内に供給し、この装置内で溶融混練することが好ましい。樹脂中に所定濃度で前記難燃剤を含むマスターバッチ材を前記ポリスチレン系樹脂とともに樹脂供給装置内に供給し、この装置内で溶融混練することによって、難燃剤をより均一に樹脂粒子に含有させることができる。
 押出機1内にポリスチレン系樹脂と難燃剤、さらに発泡助剤やその他の添加剤を供給後、樹脂を加熱溶融し、その難燃剤含有溶融樹脂をダイ2側に移送しながら、発泡剤供給口5から高圧ポンプ4によって発泡剤を圧入し、難燃剤含有溶融樹脂に発泡剤を混合し、押出機1内に必要に応じて設けられる異物除去用のスクリーンを通して、溶融物をさらに混練しながら先端側に移動させ、発泡剤を添加した溶融物を押出機1の先端に付設したダイ2の小孔から押し出す。
 ダイ2の小孔が穿設された樹脂吐出面は、室内に冷却水が循環供給されるカッティング室7内に配置され、且つカッティング室7内には、ダイ2の小孔から押し出された樹脂を切断できるようにカッター6が回転可能に設けられている。発泡剤添加済みの溶融物を押出機1の先端に付設したダイ2の小孔から押し出すと、溶融物は粒状に切断され、同時に冷却水と接触して急冷され、発泡が抑えられたまま固化して発泡性ポリスチレン系樹脂粒子となる。
 形成された発泡性ポリスチレン系樹脂粒子は、カッティング室7から冷却水の流れに同伴して固液分離機能付き脱水乾燥機10に運ばれ、ここで発泡性ポリスチレン系樹脂粒子を冷却水と分離すると共に脱水乾燥する。乾燥された発泡性ポリスチレン系樹脂粒子は、貯留容器11に貯留される。
 前述した発泡性ポリスチレン系樹脂粒子の製造方法で製造された発泡性ポリスチレン系樹脂粒子は、難燃剤及び発泡剤を含有するポリスチレン系樹脂を粒子状としたものである。本発明の発泡性ポリスチレン系樹脂粒子に用いる前記難燃剤は、環境や生物に対する安全性が高い。特に、テトラブロモビスフェノールA誘導体は、ポリスチレン系樹脂発泡成形体に添加した場合に十分な難燃性能を付与でき、環境や生物に対する安全性が高いので、種々の用途の難燃性ポリスチレン系樹脂発泡成形体の製造に用いることができる。
 以下、上記方法にて製造された、本発明の難燃性発泡性ポリスチレン系樹脂粒子、建材用断熱材製造用発泡性ポリスチレン系樹脂粒子、盛土用部材製造用発泡性ポリスチレン系樹脂粒子、及び車両内装材製造用発泡性ポリスチレン系樹脂粒子の詳細についてそれぞれ説明する。
本発明の難燃性発泡性ポリスチレン系樹脂粒子において、前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である。また、前記発泡性ポリスチレン系樹脂粒子の全体の難燃剤含有量(A)と、樹脂粒子の表面の難燃剤含有量(B)との比(B/A)が0.8~1.2の範囲内である。
 すなわち、本発明の難燃性発泡性ポリスチレン系樹脂粒子では、前記難燃剤が樹脂粒子内に均一に含有されている。本発明の難燃性発泡性ポリスチレン系樹脂粒子において、前記比(B/A)は、0.9~1.1の範囲内であることがより好ましく、0.95~1.05の範囲内であることがさらに好ましい。前記比(B/A)が0.8~1.2の範囲を外れると、得られる難燃性ポリスチレン系樹脂発泡成形体の機械強度、成形性、外観及び難燃性が劣る可能性がある。
 本発明の難燃剤含有発泡性ポリスチレン系樹脂粒子では、樹脂粒子の全体の難燃剤含有量(A)と、樹脂粒子の表面の難燃剤含有量(B)との比(B/A)が0.8~1.2の範囲内である。その結果、樹脂粒子中に難燃剤が均一に存在しており、樹脂粒子中に難燃剤が不均一に存在しているものと比べ、得られる難燃性ポリスチレン系樹脂発泡成形体の機械強度が高くなり、成形性や外観にも優れた発泡成形体が得られる。
 前述した本発明に係る製造方法により得られた難燃剤含有発泡性ポリスチレン系樹脂粒子を、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡し、難燃性ポリスチレン系樹脂予備発泡粒子とする。この予備発泡粒子は、製造するべき発泡成形体の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度は限定されないが、通常は0.010~0.033g/cmの範囲内とし、0.015~0.025g/cmの範囲内とするのが好ましい。
 なお、本発明において、ポリスチレン系樹脂予備発泡粒子の嵩密度とは、次のようにして測定されたものをいう。
<予備発泡粒子の嵩密度と嵩発泡倍数>
 先ず、ポリスチレン系樹脂予備発泡粒子を測定試料としてWg採取し、この測定試料をメスシリンダー内に自然落下させた後、メスシリンダーの底をたたいて試料の見掛け体積(V)cmを一定にし、その質量と体積を測定し、下記式に基づいてポリスチレン系樹脂予備発泡粒子の嵩密度を測定する。
 嵩密度(g/cm)=測定試料の質量(W)/測定試料の体積(V)
 また、予備発泡粒子の嵩発泡倍数は次式により算出される数値である。
 嵩発泡倍数(倍)=1/嵩密度(g/cm
 前記難燃性ポリスチレン系樹脂予備発泡粒子を、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、難燃性ポリスチレン系樹脂発泡成形体を製造する。
 本発明の難燃性ポリスチレン系樹脂発泡成形体の密度は特に限定されないが、通常は0.010~0.033g/cmの範囲内とし、0.015~0.025g/cmの範囲内とするのが好ましい。
 なお、本発明においてポリスチレン系樹脂発泡成形体の密度とは、JIS K7122:1999「発泡プラスチック及びゴム-見掛け密度の測定」記載の方法で測定した密度である。
<発泡成形体の密度と発泡倍数>
 50cm以上(半硬質及び軟質材料の場合は100cm以上)の試験片を材料の元のセル構造を変えない様に切断し、その質量を測定し、次式により発泡成形体の密度を算出する。
 密度(g/cm)=試験片質量(g)/試験片体積(cm
 試験片状態調節、測定用試験片は、成形後72時間以上経過した試料から切り取り、23℃±2℃×50%±5%または27℃±2℃×65%±5%の雰囲気条件に16時間以上放置したものである。
 また、発泡成形体の発泡倍数は次式により算出される数値である。
 発泡倍数(倍)=1/密度(g/cm
 本発明の建材用断熱材製造用発泡性ポリスチレン系樹脂粒子、盛土用部材製造用発泡性ポリスチレン系樹脂粒子及び車両内装材製造用発泡性ポリスチレン系樹脂粒子において、前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である。
 本発明の建材用断熱材製造用発泡性ポリスチレン系樹脂粒子、盛土用部材製造用発泡性ポリスチレン系樹脂粒子及び車両内装材製造用発泡性ポリスチレン系樹脂粒子では、前記難燃剤が樹脂粒子内に均一に含有されている。難燃剤が樹脂粒子内に均一に含有されていないと、得られるポリスチレン系樹脂発泡成形体の機械強度、成形性、寸法安定性、外観及び難燃性が劣る可能性がある。
 本発明の建材用断熱材製造用発泡性ポリスチレン系樹脂粒子、盛土用部材製造用発泡性ポリスチレン系樹脂粒子及び車両内装材製造用発泡性ポリスチレン系樹脂粒子では、樹脂粒子中に難燃剤が均一に存在している。そのため、樹脂粒子中に難燃剤が不均一に存在しているものと比べ、得られる発泡成形体(建材用断熱材)の機械強度が高くなり、成形性や寸法安定性にも優れた建材用断熱材、盛土用部材及び車両内装材が得られる。
 本発明に係る建材用断熱材製造用発泡性ポリスチレン系樹脂粒子、盛土用部材製造用発泡性ポリスチレン系樹脂粒子及び車両内装材製造用発泡性ポリスチレン系樹脂粒子の製造方法において、原料であるポリスチレン系樹脂として、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物の含有量が低い樹脂原料を選択すれば、製造工程中で前記芳香族有機化合物を混入させることなく発泡性ポリスチレン系樹脂粒子を得ることができる。その結果、得られた建材用断熱材製造用発泡性ポリスチレン系樹脂粒子、盛土用部材製造用発泡性ポリスチレン系樹脂粒子及び車両内装材製造用発泡性ポリスチレン系樹脂粒子中における、前記芳香族有機化合物の含有総量を500ppm未満とすることができる。前記芳香族有機化合物の含有総量は、450ppm以下であることがより好ましく、400ppm以下であることが更に好ましい。前記芳香族有機化合物の含有総量が低ければ得られる建材用断熱材、盛土用部材及び車両内装材の機械強度が高くなり、寸法変化率が低下する。また、近年要望されているシックハウス症候群への対応が可能となり、建材用断熱材、盛土用部材及び車両内装材の製造用途に好適となる。更に、盛土用部材の保管時の安全性を確保することができる。
 なお、本発明において、前記芳香族有機化合物の含有総量は、次の<揮発性有機化合物(VOC)含有量の測定方法>により測定した値である。
<揮発性有機化合物(VOC)含有量の測定方法>
 発泡性ポリスチレン系樹脂粒子1gを精秤し、0.1体積%のシクロペンタノールを含有するジメチルホルムアミド溶液1mlを内部標準液として加えた後、更にジメチルホルムアミド溶液にジメチルホルムアミドを加えて25mlとして測定溶液を作製し、この測定溶液1.8μlを230℃の試料気化室に供給してガスクロマトグラフで検出された各揮発性有機化合物のチャートを得る。そして予め測定しておいた、各揮発性有機化合物の検量線に基づいて、各チャートから揮発性有機化合物量をそれぞれ算出し、発泡性ポリスチレン樹脂粒子中の揮発性有機化合物量を算出する。
 なお、本発明では、前述した揮発性有機化合物(VOC)含有量のうち、前記芳香族有機化合物に該当する各揮発性有機化合物量の合計量を「芳香族有機化合物の含有総量」としている。
 本発明に係る製造方法により得られた建材用断熱材製造用発泡性ポリスチレン系樹脂粒子、盛土用部材製造用発泡性ポリスチレン系樹脂粒子及び車両内装材製造用発泡性ポリスチレン系樹脂粒子を、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、水蒸気加熱等により加熱して予備発泡し、難燃性ポリスチレン系予備発泡粒子(以下、予備発泡粒子と記す)とする。この予備発泡粒子は、製造するべき発泡成形体(建材用断熱材)の密度と同等の嵩密度となるように予備発泡される。本発明において、その嵩密度は限定されないが、建材用断熱材製造用及び盛土用部材製造用の予備発泡粒子の場合、嵩密度を通常は0.010~0.050g/cmの範囲内とし、0.015~0.033g/cmの範囲内とするのが好ましい。一方、車両内装材製造用の予備発泡粒子の場合、嵩密度を通常は0.015~0.066g/cmの範囲内とし、0.015~0.050g/cmの範囲内とするのが好ましい。
 前記予備発泡粒子は、発泡樹脂成形体の製造分野において周知の装置及び手法を用い、この予備発泡粒子を成形型のキャビティ内に充填し、水蒸気加熱等により加熱して型内発泡成形し、難燃性ポリスチレン系樹脂発泡成形体からなる建材用断熱材、盛土用部材及び車両内装材を製造する。
 本発明の建材用断熱材及び盛土用部材の密度は特に限定されないが、通常は0.010~0.050g/cmの範囲内とし、0.015~0.033g/cmの範囲内とするのが好ましい。また、本発明の車両内装材の密度は特に限定されないが、通常は0.015~0.066g/cmの範囲内とし、0.015~0.055g/cmの範囲内とするのが好ましい。
 本発明の建材用断熱材では、発泡倍数40倍の発泡成形体について、気泡の平均弦長が50~350μmの範囲であることが好ましく、60~300μmの範囲がより好ましい。なお、本発明において気泡の平均弦長とは、下記の方法で測定した発泡成形体の気泡の平均弦長である。
<平均弦長>
 発泡成形体の気泡の平均弦長は、ASTM D2842-69の試験方法に準拠して測定されたものをいう。具体的には、発泡成形体を略二等分となるように切断し、切断面を走査型電子顕微鏡(日立製作所社製 商品名「S-3000N])を用いて100倍に拡大して撮影する。撮影した画像をA4用紙に印刷し、任意の箇所に長さ60mmの直線を一本描き、この直線上に存在する気泡数から気泡の平均弦長(t)を下記式より算出する。
 平均弦長t=60/(気泡数×写真の倍率)
 なお、直線を描くにあたり、直線が気泡に点接触してしまう場合には、この気泡も気泡数に含め、更に、直線の両端部が気泡を貫通することもなく、気泡内に位置した状態となる場合には、直線の両端部が位置している気泡も気泡数に含める。更に、撮影した画像の任意の5箇所において上述と同様の要領で平均弦長を算出し、これらの平均弦長の相加平均値を発泡成形体の気泡の平均弦長とする。
 また、本発明の盛土用部材において、盛土用部材の形状・寸法等は特に限定されず、実施する盛土等の工法や規模等に応じて適宜決められる。すなわち、盛土用部材は、厚板状、ブロック状、係合溝や突起を有する形状など、種々の大きさや形状とすることができる。
 本発明の盛土用部材では、発泡倍数50倍の発泡成形体について、気泡の平均弦長が40~200μmの範囲であることが好ましく、50~150μmの範囲がより好ましい。
 また、本発明の盛土用部材では、酸素指数が26以上であることが好ましい。酸素指数が26未満であると充分な難燃性が得られない可能性がある。
 また、本発明の車両内装材では、発泡倍数40倍の発泡成形体について、気泡の平均弦長が40~350μmの範囲であることが好ましく、50~300μmの範囲がより好ましい。
以下、実施例を示し、本発明の効果について説明する。
[実施例1](発泡性スチレン系樹脂粒子の製造)
 基材樹脂としてポリスチレン樹脂(東洋スチレン社製、商品名「HRM-10N」)100質量部に対して、難燃剤としてテトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)(第一工業製薬社製)を50質量%含むポリスチレン樹脂マスターバッチ7質量部(難燃剤量で3.5質量部相当)、微粉末タルク0.3質量部を、予めタンブラーミキサーにて均一に混合したものを、時間当たり160kg/hrの割合で口径90mmの単軸押出機押出機内へ供給し、樹脂を加熱溶融させた後、発泡剤として樹脂100質量部に対して6質量部のイソペンタンを押出機途中より圧入した。
 そして、押出機内で樹脂と発泡剤を混練しつつ、押出機先端部での樹脂温度が190℃となるように冷却しながら、押出機に連接しヒーターにより320℃に保持した、直径0.6mm、ランド長さ3.0mmのノズルを200個有する造粒用ダイスを通して、30℃の冷却水が循環するチャンバー内に押し出すと同時に、円周方向に10枚の刃を有する高速回転カッターをダイスに密着させて、毎分3000回転で切断し、脱水乾燥して球形の発泡性ポリスチレン樹脂粒子を得た。得られた発泡性樹脂粒子は変形、ヒゲ等の発生もなく、平均粒径1.1mmであった。
 得られた発泡性ポリスチレン系樹脂粒子100質量部に対して、ポリエチレングリコール0.03質量部、ステアリン酸亜鉛0.15質量部、ステアリン酸モノグリセライド0.05質量部、ヒドロキシステアリン酸トリグリセライド0.05質量部を発泡性ポリスチレン系樹脂粒子の表面全面に均一に被覆した。
(発泡成形体の製造)
 前記の通り製造した発泡性ポリスチレン系樹脂粒子は、15℃の保冷庫中に入れ、72時間に亘って放置した後、円筒型バッチ式予備発泡機に供給して、吹き込み圧0.05MPaの水蒸気により加熱し、予備発泡粒子を得た。得られた予備発泡粒子は、嵩密度0.015g/cm3(嵩発泡倍数67倍)であった。続いて、得られた予備発泡粒子を室温雰囲気下、24時間に亘って放置した後、長さ400mm×幅300mm×高さ50mmの長方形状のキャビティを有する成形型内に予備発泡粒子を充填し、その後、成形型のキャビティ内を水蒸気でゲージ圧0.08MPaの圧力で20秒間に亘って加熱し、その後、成形型のキャビティ内の圧力が0.01MPaになるまで冷却し、その後成形型を開き、長さ400mm×幅300mm×高さ50mmの長方形状の発泡成形体を取り出した。
 得られた発泡成形体は、密度0.015g/cm3(発泡倍数67倍)であった。
 上記の方法で製造した実施例1のポリスチレン系樹脂、発泡性ポリスチレン系樹脂粒子、予備発泡粒子及び発泡成形体について、以下の評価試験を行った。
 発泡性ポリスチレン系樹脂粒子の全体と表面の難燃剤含有量を調べる方法としては、例えば、蛍光X線分析によって難燃剤分子中の臭素含有量を定量分析し、得られた値から次式より難燃剤含有量を算出する方法が挙げられる。
 難燃剤含有量(質量%)=臭素元素含有量測定値×(難燃剤全体の分子量/難燃剤全体中の臭素元素量)
 発泡性ポリスチレン系樹脂粒子の全体の難燃剤含有量(A)と、樹脂粒子の表面の難燃剤含有量(B)との比(B/A)の測定方法を以下に述べる。
<難燃剤含有量(A)と(B)、及びその比(B/A)の測定>
 得られたポリスチレン系樹脂発泡成形体を50℃で24時間乾燥後、図2に示すように、ポリスチレン系樹脂発泡成形体21から得られた試料樹脂2gを温度190℃にて熱プレスして35mmφのタブレットを作製する。このタブレットの質量を測定後、坪量を算出し、バランス成分をPSにし、臭素量を蛍光X線分析法によりオーダー分析にて樹脂中の臭素含有量を算出する。得られた臭素含有量から次式により難燃剤含有量を算出し、樹脂粒子の全体の難燃剤含有量(A)とした。
 難燃剤含有量(質量%)=臭素元素含有量測定値×(難燃剤全体の分子量/難燃剤全体中の臭素元素量)
 次に、図2に示すように、発泡成形体表皮部22をハムスライサー(富士島工機製:FK-18N型)を用いて厚み0.3mmでカットし、発泡成形体表皮部22から得られた試料樹脂2gを温度190℃にて熱プレスして35mmφのタブレットを作製した。このタブレットの質量を測定後、坪量を算出し、バランス成分をPSにし、臭素量を蛍光X線分析法によりオーダー分析にて樹脂中の臭素含有量を算出する。得られた臭素含有量から次式により難燃剤含有量を算出し、樹脂粒子の表面の難燃剤含有量(B)とした。
 難燃剤含有量(質量%)=臭素元素含有量測定値×(難燃剤全体の分子量/難燃剤全体中の臭素元素量)
 分析に用いる機器、測定条件は以下の通りである。
測定装置:リガク社製 蛍光X線分析装置 RIX-2100X線管 :縦型Rh/Cr管(3/2.4kW)分析径 :30mmφスリット:標準分光結晶:LiF検出器 :SC測定モード:定性分析(FP薄膜法-BrPS30-バランス成分C8H8)
 上記により求められた難燃剤含有量(B)を難燃剤含有量(A)で除すことにより、(A)と(B)との比(B/A)を算出した。
 測定試料とするポリスチレン系樹脂発泡成形体21の密度は、0.02g/cm(発泡倍数50倍)とした。なお、発泡性不良により成形体21の密度が0.02g/cm未満の場合は最低密度となる成形体21をもって測定試料とした。
<ビーズ発泡性の評価>
 実施例(及び比較例)で得られた発泡性ポリスチレン系樹脂粒子を15℃の保冷庫に72時間保管した後、これを円筒型バッチ式予備発泡機に供給して、吹き込み蒸気圧0.05MPaの水蒸気により2分間に亘って加熱し、得られた予備発泡粒子の嵩発泡倍数を下記の通り測定し、下記の基準に基づき、ビーズ発泡性を評価した。
○(良):嵩発泡倍数60倍以上
△(やや良):嵩発泡倍数50倍以上60倍未満
×(不良):嵩発泡倍数50倍未満
<発泡体の外観評価>
 上記ポリスチレン系樹脂予備発泡粒子を発泡成形機の金型に充填し、水蒸気を用いて二次発泡させることによって長さ400mm、幅300mm、厚み50mmの直方体状の発泡成形体を得た。
 発泡成形体の外観を目視にて観察し、下記の基準に基づき発泡体の外観を評価した。
◎(極めて良):発泡粒子間の間隙がなく、表面が極めて平滑な状態である。
○(良):発泡粒子間の間隙がなく、表面が平滑な状態である。
△(やや良):発泡粒子間の間隙が少なく、表面の平滑が少し劣る。
×(不良):発泡粒子間の間隙が大きく、表面の平滑がかなり劣る。
<難燃性の評価>
 以下の2種のうち、一方または双方の方法で難燃性を評価した。
方法1:
JIS A 9511:1995「発泡プラスチック保温材」測定方法A記載の方法で測定した。 
 試験片は、発泡成形体試料から厚さ10mm長さ200mm幅25mmを5個切り出し、規定の着火限界指示線及び燃焼限界指示線を付けた。試験片を火源用ろうそくで着火限界指示線まで燃焼させた後、炎を後退させ、その瞬間から炎が消えるまでの時間(秒)を測定し、下記の基準に基づき難燃性を判断した。
○(良):5個の試験片すべてについて炎が3秒以内に消えると共に残塵がなく、燃焼限界指示線を越えて燃焼しなかった。
×(不良):○の基準を満たさない、または自消性がなかった。
方法2:
 得られた発泡成形体から、厚み10mm×長さ150mm×幅10mmの大きさの試験片をバーチカルカッターにて切り出し、50℃オーブンにて7日間養生した後、温度23℃、相対湿度50%にて4日間状態調節し、JIS K7201に準じて酸素指数を測定し、下記の基準に基づいて難燃性を評価した。
○(良):酸素指数が26以上
×(不良):酸素指数が26未満
<発泡成形体の断熱性の評価>
 発泡成形体から縦200mm×横200mm×厚さ25mmの直方体形状の試験片を切り出した。そして、この試験片の熱伝導率をJIS A1412に準拠して平板熱流計法にて測定温度23℃で測定し、下記の基準に基づき発泡成形体の断熱性を判断した。
○:熱伝導率が0.040(W/m・k)未満
×:熱伝導率が0.040(W/m・k)以上
<難燃剤の分解温度の測定>
 難燃剤を20mg採取して試料とし、示差熱・熱量同時測定装置 TG/DTA 300型(セイコー電子工業社製)を用いて、窒素ガス量30ミリリットル/分、加熱温度10℃/分、測定温度30~800℃の条件下にて試料の質量減少率を測定し、縦軸に試料の質量減少率を、横軸に温度をとったグラフを得た。そして、得られたグラフに基づいて、試料の質量減少率が5%に達した時の温度を5質量%分解温度とした。
<発泡性ポリスチレン系樹脂粒子中の揮発性有機化合物(VOC)含有量の測定>
 発泡性ポリスチレン系樹脂粒子1gを精秤し、0.1体積%のシクロペンタノールを含有するジメチルホルムアミド溶液1mlを内部標準液として加えた後、更にジメチルホルムアミド溶液にジメチルホルムアミドを加えて25mlとして測定溶液を作製した。この測定溶液1.8μlを230℃の試料気化室に供給して下記測定条件にてガスクロマトグラフ(島津製作所社製、商品名「GC-14A」で検出された各揮発性有機化合物のチャートを得た。そして、予め測定しておいた、各揮発性有機化合物の検量線に基づいて、各チャートから揮発性有機化合物量をそれぞれ算出し、発泡性ポリスチレン粒子中の揮発性有機化合物量を算出した。
   検出器  :FID
   カラム  :ジーエルサイエンス製  (3mmφ×2.5m)
      液相;PEG-20M PT 25%
      担体;Chromosorb  W  AW-DMCS
      メッシュ:60/80
   カラム温度:100℃
   検出器温度:230℃
   DET温度:230℃
   キャリアーガス(窒素)
   キャリヤーガス流量(40ml/min)
<総合評価>
 前記<ビーズ発泡性の評価>、<難燃性の評価><発泡成形体の外観評価>及び<発泡成形体の断熱性の評価>の各評価項目について、不良(×)が無いものを良(○)とし、1つ以上不良(×)が有るものを不良(×)として総合評価した。
また、以下の実施例及び比較例についても、適宜上記の測定及び評価を行なった。
[実施例2]
 難燃剤として、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)(第一工業製薬社製)を同量用いたこと以外は、実施例1と同様にして発泡倍数67倍の発泡成形体を製造した。
[実施例3]
 難燃剤として、テトラブロモビスフェノールA-ビス(アリルエーテル)(第一工業製薬社製)を同量用いたこと以外は、実施例1と同様にして発泡倍数67倍の発泡成形体を製造した。
[実施例4]
 難燃剤として、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)3.2質量部、テトラブロモビスフェノールA-ビス(アリルエーテル)0.3質量部を混合して用いたこと以外は、実施例1と同様にして発泡倍数67倍の発泡成形体を製造した。
[実施例5]
 予備発泡粒子の嵩発泡倍数を40倍とし、且つ発泡成形体の発泡倍数を40倍としたこと以外は、実施例1と同様にして発泡成形体を製造した。この発泡成形体の気泡の平均弦長は183μmであった。
[実施例6]
 難燃剤Aの配合量を5.0質量部としたこと以外は、実施例1と同様にして発泡倍数67倍の発泡成形体を製造した。
[比較例1]
 難燃剤として、ヘキサブロモシクロドデカン(第一工業製薬社製)を同量用いたこと以外は、実施例1と同様にして発泡成形体を製造した。
[比較例2]
 難燃剤として、トリス-(2,3-ジブロモプロピル)イソシアヌレート(日本化成社製)を同量用いたこと以外は、実施例1と同様にして発泡成形体を製造した。
[比較例3]
 難燃剤として、ペンタブロモベンジルアクリレート(第一工業製薬社製)を同量用いたこと以外は、実施例1と同様にして発泡成形体を製造した。
[比較例4]
 難燃剤として、トリス(トリブロモネオペンチル)フォスフェート(大八化学社製)を同量用いたこと以外は、実施例1と同様にして発泡成形体を製造した。
[比較例5]
 発泡性スチレン系樹脂粒子の製造方法として懸濁重合法により発泡性ポリスチレン系樹脂粒子を得たこと以外は、実施例1と同様にして発泡倍数67倍の発泡成形体を製造した。
 懸濁重合法の詳細を以下に示す。
 内容積100リットルの撹拌機付オートクレーブにリン酸三カルシウム(大平化学社製)120g、ドデシルベンゼンスルフォン酸ソーダ4g、過酸化ベンゾイル(純度75%)140g、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート30g、イオン交換水40kg及びスチレン単量体40kgを投入した後、100rpmの撹拌下で溶解及び分散させて懸濁液を形成した。
 引き続き、撹拌羽を100rpmで撹拌しながらオートクレーブ内の温度を90℃まで昇温した後、90℃で6時間保持した。
 その後、さらにオートクレーブ内の温度を120℃まで昇温し、120℃で2時間保持した後、オートクレーブ内の温度を25℃まで冷却し、オートクレーブから内容物を取り出し、脱水・乾燥・分級して粒子径が0.6~0.85mmで重量平均分子量が30万のスチレン系樹脂粒子を得た。
 次いで、100リットルの撹拌機付オートクレーブに純水30kg、ドデシルベンゼンスルフォン酸ソーダ4g、ピロリン酸マグネシウム100gを入れ、さらに前記記載の粒子径0.60~0.85mmで重量平均分子量が30万のポリスチレン核粒子11kgを加えて120rpmで撹拌し液中に分散させた。
 次いで、予め用意しておいた乳濁液を75℃に保持した反応器に添加した。この乳濁液は、純水6kg、ドデシルベンゼンスルホン酸ソーダ2g、ピロリン酸マグネシウム20gの分散液に、重合開始剤の過酸化ベンゾイル(純度75%)88g、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート50gを溶解したスチレン5kgを加え、ホモミキサーで撹拌して乳濁化させたものである。その後、スチレン系樹脂粒子中にスチレンと重合開始剤とがよく吸収されるように30分間保持し、その後スチレン28kgを160分かけてオートクレーブ内を75℃から108℃まで0.2℃/分で昇温しながら連続的に滴下した。
次に、スチレンの滴下が終了してから20分後に、1℃/分の割合で120℃まで昇温し、90分間保持してシード重合によりポリスチレン粒子を得た。
 温水2kg、ドデシルベンゼンスルホン酸ソーダ0.8gの分散液に、アジピン酸ジイソブチル(田岡化学工業社製、商品名:DI4A)308gを加え、ホモミキサーで撹拌して乳濁液を調製した。
 その後、1℃/分の割合で90℃までオートクレーブを冷却後、予め調製しておいた前記乳濁液を反応器に添加した。この乳濁液を添加してから30分後に、難燃剤としてテトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)(第一工業製薬社製)1540gを添加後、密閉し、発泡剤としてペンタン(イソペンタン/ノルマルペンタン=20/80)3520gを窒素加圧してオートクレーブ内に30分間で圧入し、その状態で3時間保持した後、オートクレーブ内の温度を25℃まで冷却し、オートクレーブから内容物を取り出し、脱水・乾燥・分級して粒子径が0.85~1.2mmで重量平均分子量が30万の発泡性ポリスチレン系樹脂粒子を得た。
[比較例6]
 難燃剤として、テトラブロモビスフェノールA-ビス(アリルエーテル)(第一工業製薬社製)を同量用いたこと以外は、比較例5と同様にして発泡倍数67倍の発泡成形体を製造した。
 前記実施例1~6及び比較例1~6で用いた難燃剤の臭素分含有量、難燃剤分子中ベンゼン環の有無、5質量%分解温度を表1にまとめて記す。
 また、前記実施例1~6及び比較例1~6の測定・評価結果を表2にまとめて記す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1,2の結果より、実施例分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である難燃剤A~Cを用いた、本発明に係る実施例1~6は、ビーズ発泡性、難燃性及び発泡体の外観がいずれも良好であった。
 一方、臭素分含有量が75質量%と多く、分子中にベンゼン環の無い難燃剤Dを用いた比較例1は、ビーズ発泡性が不良となり、発泡体の外観もやや劣っていた。
 また、分子中にベンゼン環の無い難燃剤Eを用いた比較例2は、ビーズ発泡性が不良となり、発泡体の外観も不良となった。
 また、臭素分含有量が75質量%と多く、5質量%分解温度が300℃を超える難燃剤Fを用いた比較例3は、ビーズ発泡性がやや不良であり、難燃性が不良であり、発泡体の外観がやや不良となった。
 また、臭素分含有量が75質量%と多く、分子中にベンゼン環が無く、5質量%分解温度が300℃を超える難燃剤Gを用いた比較例4は、ビーズ発泡性、難燃性、発泡体の外観のいずれも不良となった。
 また、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である難燃剤A、Cをポリスチレン樹脂粒子に含浸させる方法を用いた比較例5、6は、難燃性及び発泡体の外観がいずれも不良であった。
 本発明は、環境や生物に対する安全性が高い難燃剤を用いて十分な難燃性能を有し、機械強度・成形性・外観にも優れた難燃性ポリスチレン系樹脂発泡成形体、この成形体の製造に用いる発泡性ポリスチレン系樹脂粒子とその製造方法に関する。本発明のポリスチレン系樹脂発泡成形体は、難燃性が要求される発泡成形体、例えば、建材用用途、自動車用内装材などにおいて好適に使用される。
 1…押出機(樹脂供給装置)、2…ダイ、3…原料供給ホッパー、4…高圧ポンプ、5…発泡剤供給口、6…カッター、7…カッティング室、8…水槽、9…高圧ポンプ、10…固液分離機能付き脱水乾燥機、11…貯留容器、21…ポリスチレン系樹脂発泡成形体、22…成形体表皮部。

Claims (43)

  1.  難燃剤及び発泡剤を含有するポリスチレン系樹脂を粒子状としてなる発泡性ポリスチレン系樹脂粒子であって、
     前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内であり、
     前記発泡性ポリスチレン系樹脂粒子の全体の難燃剤含有量(A)と、樹脂粒子の表面の難燃剤含有量(B)との比(B/A)が0.8~1.2の範囲内である発泡性ポリスチレン系樹脂粒子。
  2.  樹脂供給装置内でポリスチレン系樹脂に難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して難燃剤含有発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られた請求項1に記載の発泡性ポリスチレン系樹脂粒子。
  3.  前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上である請求項1に記載の発泡性ポリスチレン系樹脂粒子。
  4.  前記難燃剤が、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(アリルエーテル)からなる群から選択される1種又は2種以上である請求項3に記載の発泡性ポリスチレン系樹脂粒子。
  5.  請求項1に記載の発泡性ポリスチレン系樹脂粒子を加熱して得られたポリスチレン系樹脂予備発泡粒子。
  6.  請求項5に記載の難燃性ポリスチレン系樹脂予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られたポリスチレン系樹脂発泡成形体。
  7.  樹脂供給装置内でポリスチレン系樹脂に、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して請求項1に記載の難燃剤含有発泡性ポリスチレン系樹脂粒子を得る発泡性ポリスチレン系樹脂粒子の製造方法。
  8.  前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上である請求項7に記載の発泡性ポリスチレン系樹脂粒子の製造方法。
  9.  前記難燃剤が、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(アリルエーテル)からなる群から選択される1種又は2種以上である請求項8に記載の発泡性ポリスチレン系樹脂粒子の製造方法。
  10.  樹脂中に所定濃度で前記難燃剤を含むマスターバッチ材を前記ポリスチレン系樹脂とともに樹脂供給装置内に供給し、装置内で溶融混練する請求項7に記載の発泡性ポリスチレン系樹脂粒子の製造方法。
  11.  難燃剤及び発泡剤を含有するポリスチレン系樹脂を粒子状としてなる建材用断熱材製造用発泡性ポリスチレン系樹脂粒子であって、
     前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内であり、
     樹脂供給装置内でポリスチレン系樹脂に難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られた建材用断熱材製造用発泡性ポリスチレン系樹脂粒子。
  12.  スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物の含有総量が500ppm未満である請求項11に記載の発泡性ポリスチレン系樹脂粒子。
  13.  前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上である請求項11に記載の発泡性ポリスチレン系樹脂粒子。
  14.  前記難燃剤が、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(アリルエーテル)からなる群から選択される1種又は2種以上である請求項11に記載の発泡性ポリスチレン系樹脂粒子。
  15.  請求項11に記載の発泡性ポリスチレン系樹脂粒子を加熱して得られた建材用断熱材製造用予備発泡粒子。
  16.  請求項15に記載の予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、密度が0.010~0.050g/cmの範囲である建材用断熱材。
  17.  請求項15に記載の予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、発泡倍数40倍の発泡成形体について、気泡の平均弦長が50~350μmの範囲である建材用断熱材。
  18.  樹脂供給装置内でポリスチレン系樹脂に、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を製造する方法において、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物を使用せずに請求項11に記載の発泡性ポリスチレン系樹脂粒子を得る建材用断熱材製造用発泡性ポリスチレン系樹脂粒子の製造方法。
  19.  前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上である請求項18に記載の発泡性ポリスチレン系樹脂粒子の製造方法。
  20.  前記難燃剤が、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(アリルエーテル)からなる群から選択される1種又は2種以上である請求項19に記載の発泡性ポリスチレン系樹脂粒子の製造方法。
  21.  樹脂中に所定濃度で前記難燃剤を含むマスターバッチ材を前記ポリスチレン系樹脂とともに樹脂供給装置内に供給し、この装置内で溶融混練する請求項18に記載のポリスチレン系樹脂粒子の製造方法。
  22.  難燃剤及び発泡剤を含有するポリスチレン系樹脂を粒子状としてなる盛土用部材製造用発泡性ポリスチレン系樹脂粒子であって、
     前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内であり、
     樹脂供給装置内でポリスチレン系樹脂に難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られた盛土用部材製造用発泡性ポリスチレン系樹脂粒子。
  23.  前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上である請求項22に記載の発泡性ポリスチレン系樹脂粒子。
  24.  前記難燃剤が、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(アリルエーテル)からなる群から選択される1種又は2種以上である請求項23に記載の発泡性ポリスチレン系樹脂粒子。
  25.  請求項22に記載の発泡性ポリスチレン系樹脂粒子を加熱して得られた盛土用部材製造用予備発泡粒子。
  26.  請求項25に記載の予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、密度が0.010~0.050g/cmの範囲である盛土用部材。
  27.  請求項25に記載の予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、発泡倍数50倍の発泡成形体について、気泡の平均弦長が40~200μmの範囲である盛土用部材。
  28.  請求項25に記載の予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、酸素指数が26以上である盛土用部材。
  29.  樹脂供給装置内でポリスチレン系樹脂に、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して、請求項22に記載の発泡性ポリスチレン系樹脂粒子を得る盛土用部材製造用発泡性ポリスチレン系樹脂粒子の製造方法。
  30.  前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上である請求項29に記載の発泡性ポリスチレン系樹脂粒子の製造方法。
  31.  前記難燃剤が、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(アリルエーテル)からなる群から選択される1種又は2種以上である請求項30に記載の発泡性ポリスチレン系樹脂粒子の製造方法。
  32.  樹脂中に所定濃度で前記難燃剤を含むマスターバッチ材を前記ポリスチレン系樹脂とともに樹脂供給装置内に供給し、この装置内で溶融混練する請求項29に記載の発泡性ポリスチレン系樹脂粒子の製造方法。
  33.  難燃剤及び発泡剤を含有するポリスチレン系樹脂を粒子状としてなる車両内装材製造用発泡性ポリスチレン系樹脂粒子であって、
     前記難燃剤は、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内であり、
     樹脂供給装置内でポリスチレン系樹脂に難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を得る溶融押出法により得られた車両内装材製造用発泡性ポリスチレン系樹脂粒子。
  34.  スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物の含有総量が500ppm未満である請求項33に記載の発泡性ポリスチレン系樹脂粒子。
  35.  前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上である請求項33に記載の発泡性ポリスチレン系樹脂粒子。
  36.  前記難燃剤が、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(アリルエーテル)からなる群から選択される1種又は2種以上である請求項33に記載の発泡性ポリスチレン系樹脂粒子。
  37.  請求項33に記載の発泡性ポリスチレン系樹脂粒子を加熱して得られた車両内装材製造用予備発泡粒子。
  38.  請求項37に記載の予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、密度が0.010~0.050g/cmの範囲である車両内装材。
  39.  請求項37に記載の予備発泡粒子を成形型のキャビティ内に充填して加熱、発泡させて得られ、発泡倍数40倍の発泡成形体について、気泡の平均弦長が40~350μmの範囲である車両内装材。
  40.  樹脂供給装置内でポリスチレン系樹脂に、分子内に臭素原子を有し、臭素分含有量が70質量%未満であり、分子内にベンゼン環を有し、且つ難燃剤の5質量%分解温度が200~300℃の範囲内である難燃剤及び発泡剤を添加、混練し、難燃剤・発泡剤含有の溶融樹脂を樹脂供給装置先端に付設されたダイの小孔から直接冷却用液体中に押し出し、押し出すと同時に押出物を切断するとともに、押出物を液体との接触により冷却固化して発泡性ポリスチレン系樹脂粒子を製造する方法において、スチレン系モノマー、エチルベンゼン、イソプロピルベンゼン、ノルマルプロピルベンゼン、キシレン、トルエン、ベンゼンからなる芳香族有機化合物を使用せずに請求項33に記載の発泡性ポリスチレン系樹脂粒子を得る車両内装材製造用発泡性ポリスチレン系樹脂粒子の製造方法。
  41.  前記難燃剤が、テトラブロモビスフェノールAまたはその誘導体からなる群から選択される1種又は2種以上である請求項40に記載の発泡性ポリスチレン系樹脂粒子の製造方法。
  42.  前記難燃剤が、テトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(アリルエーテル)からなる群から選択される1種又は2種以上である請求項41に記載の発泡性ポリスチレン系樹脂粒子の製造方法。
  43.  樹脂中に所定濃度で前記難燃剤を含むマスターバッチ材を前記ポリスチレン系樹脂とともに樹脂供給装置内に供給し、この装置内で溶融混練する請求項40に記載の発泡性ポリスチレン系樹脂粒子の製造方法。
PCT/JP2010/069053 2009-10-27 2010-10-27 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体、建材用断熱材、盛土用部材及び車両内装材 WO2011052631A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/504,072 US20120214885A1 (en) 2009-10-27 2010-10-27 Foamable polystyrene resin particles and process for production thereof, polystyrene resin prefoamed particles, polystyrene resin foam-molded article, heat-insulating material for building material, banking member, and vehicle interior material
EP10826763.4A EP2495277B1 (en) 2009-10-27 2010-10-27 Foamable polystyrene resin particles and process for production thereof, polystyrene resin prefoamed particles, polystyrene resin foam-molded article, heat-insulating material for building material, banking member, and vehicle interior material
CN2010800596359A CN102686654A (zh) 2009-10-27 2010-10-27 发泡性聚苯乙烯系树脂颗粒及其制造方法、聚苯乙烯系树脂预发泡颗粒、聚苯乙烯系树脂发泡成型体、建材用绝热材料、填土用部件和车辆内饰材料
US15/098,702 US20160229974A1 (en) 2009-10-27 2016-04-14 Foamable polystyrene resin particles and polystyrene resin prefoamed particles
US15/617,823 US10358538B2 (en) 2009-10-27 2017-06-08 Foamable polystyrene resin particles and polystyrene resin prefoamed particles

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-246293 2009-10-27
JP2009-246290 2009-10-27
JP2009246293A JP2011093950A (ja) 2009-10-27 2009-10-27 車両内装材製造用発泡性ポリスチレン系樹脂粒子とその製造方法、車両内装材製造用予備発泡粒子及び車両内装材
JP2009246290A JP5750221B2 (ja) 2009-10-27 2009-10-27 難燃剤含有発泡性ポリスチレン系樹脂粒子とその製造方法、難燃性ポリスチレン系樹脂予備発泡粒子及び難燃性ポリスチレン系樹脂発泡成形体
JP2009246291A JP2011093948A (ja) 2009-10-27 2009-10-27 建材用断熱材製造用発泡性ポリスチレン系樹脂粒子とその製造方法、建材用断熱材製造用予備発泡粒子及び建材用断熱材
JP2009-246291 2009-10-27
JP2009-246292 2009-10-27
JP2009246292A JP2011093949A (ja) 2009-10-27 2009-10-27 盛土用部材製造用発泡性ポリスチレン系樹脂粒子とその製造方法、盛土用部材製造用予備発泡粒子及び盛土用部材

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/504,072 A-371-Of-International US20120214885A1 (en) 2009-10-27 2010-10-27 Foamable polystyrene resin particles and process for production thereof, polystyrene resin prefoamed particles, polystyrene resin foam-molded article, heat-insulating material for building material, banking member, and vehicle interior material
US15/098,702 Continuation-In-Part US20160229974A1 (en) 2009-10-27 2016-04-14 Foamable polystyrene resin particles and polystyrene resin prefoamed particles

Publications (1)

Publication Number Publication Date
WO2011052631A1 true WO2011052631A1 (ja) 2011-05-05

Family

ID=43922056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069053 WO2011052631A1 (ja) 2009-10-27 2010-10-27 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体、建材用断熱材、盛土用部材及び車両内装材

Country Status (5)

Country Link
US (1) US20120214885A1 (ja)
EP (1) EP2495277B1 (ja)
CN (2) CN102686654A (ja)
TW (1) TWI439503B (ja)
WO (1) WO2011052631A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023508A (ja) * 2011-07-15 2013-02-04 Kaneka Corp 難燃性発泡性スチレン系樹脂粒子の製造方法
JP2014077030A (ja) * 2012-10-09 2014-05-01 Dai Ichi Kogyo Seiyaku Co Ltd 粒状難燃剤組成物および熱可塑性樹脂組成物
CN105374426A (zh) * 2015-11-24 2016-03-02 安徽南洋新材料科技股份有限公司 一种高韧性耐磨耐撕裂阻燃电缆
JP2016037573A (ja) * 2014-08-08 2016-03-22 株式会社ジェイエスピー 発泡性スチレン系樹脂粒子及びその製造方法
JP2016117912A (ja) * 2016-03-30 2016-06-30 株式会社カネカ 難燃性発泡性スチレン系樹脂粒子の製造方法
US20160229974A1 (en) * 2009-10-27 2016-08-11 Sekisui Plastics Co., Ltd. Foamable polystyrene resin particles and polystyrene resin prefoamed particles
US10358538B2 (en) 2009-10-27 2019-07-23 Sekisui Plastics Co., Ltd. Foamable polystyrene resin particles and polystyrene resin prefoamed particles

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772362B1 (en) 2013-02-15 2014-07-08 Nexkemia Petrochimie Inc. Expanded polystyrene made using D-limonene as a plasticizer
US9644079B2 (en) 2013-02-15 2017-05-09 Nexkemia Petrochemicals, Inc. Shaping of expanded polystyrene made using D-limonene as a plasticizer
KR101939057B1 (ko) * 2014-07-31 2019-01-16 세키스이가세이힝코교가부시키가이샤 스티렌계 수지 발포성 입자 및 그 제조 방법, 발포 입자, 발포 성형체 및 그 용도
DE102015220203A1 (de) * 2015-10-16 2017-04-20 Alois Edler Verfahren und Vorrichtung zum Herstellen eines Polystyrol-Granulats
JP6609636B2 (ja) * 2015-10-30 2019-11-20 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
JP6639517B2 (ja) * 2015-11-05 2020-02-05 株式会社カネカ スチレン系樹脂押出発泡体およびその製造方法
IT201600071347A1 (it) 2016-07-08 2018-01-08 Versalis Spa Composizioni espandibili contenenti polimeri vinil aromatici aventi proprietà autoestinguenti e migliorata processabilità
JP6282774B1 (ja) * 2017-08-17 2018-02-21 第一工業製薬株式会社 難燃性発泡スチレン系樹脂組成物
CN109880248B (zh) * 2019-02-23 2022-03-25 山东兄弟科技股份有限公司 一种甲基八溴醚阻燃聚苯乙烯复合材料及其制备方法
EP3708936B1 (de) * 2019-03-15 2024-04-17 Polymetrix AG Verfahren zum recycling von polyolefinen
CN113502080B (zh) * 2021-07-29 2022-11-11 亚士创能科技(乌鲁木齐)有限公司 阻燃涂料、石墨聚苯阻燃颗粒、石墨聚苯阻燃板及制备方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63172744A (ja) 1987-01-13 1988-07-16 Teijin Chem Ltd 難燃性発泡スチレン系樹脂の製造方法
JPH0435979B2 (ja) 1985-02-18 1992-06-12 Furukawa Battery Co Ltd
JPH08302056A (ja) * 1995-05-12 1996-11-19 Sekisui Chem Co Ltd 難燃性樹脂発泡体の製造方法
JPH11106548A (ja) 1997-09-30 1999-04-20 Mitsubishi Kagaku Basf Kk スチレン系発泡性樹脂粒子
JPH11130898A (ja) 1997-10-31 1999-05-18 Hitachi Chem Co Ltd 自己消火性発泡ポリスチレン樹脂粒子の製造方法及び成形品
JP2001525001A (ja) 1997-05-14 2001-12-04 ビーエーエスエフ アクチェンゲゼルシャフト グラファイト粒子を含有する発泡可能のスチレン重合体
JP2002194130A (ja) 2000-10-20 2002-07-10 Kanegafuchi Chem Ind Co Ltd 発泡性ポリスチレン系樹脂粒子及びその製造方法
JP2003064212A (ja) 2001-08-27 2003-03-05 Kanegafuchi Chem Ind Co Ltd 発泡性ポリスチレン系樹脂粒子およびポリスチレン系樹脂発泡成形体
JP2003335891A (ja) 2002-05-21 2003-11-28 Kanegafuchi Chem Ind Co Ltd 発泡性ポリスチレン系樹脂粒子、ポリスチレン系発泡成形体、およびその製造方法
JP2005139356A (ja) * 2003-11-07 2005-06-02 Kaneka Corp スチレン系樹脂発泡体およびその製造方法
JP2007169408A (ja) * 2005-12-21 2007-07-05 Sekisui Plastics Co Ltd スチレン系樹脂発泡性粒子とその製造方法及び型内発泡成形品
JP2007211177A (ja) * 2006-02-10 2007-08-23 Dai Ichi Kogyo Seiyaku Co Ltd 難燃性スチレン系樹脂組成物
JP2007238927A (ja) * 2006-02-07 2007-09-20 Kaneka Corp 熱可塑性樹脂発泡体
JP2008291181A (ja) * 2007-05-28 2008-12-04 Kaneka Corp 熱可塑性樹脂発泡体
JP2009246290A (ja) 2008-03-31 2009-10-22 Kobelco & Materials Copper Tube Inc ヒートパイプ用内面溝付管及びヒートパイプ
JP2009246291A (ja) 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The 面発光レーザアレイ素子
JP2009246293A (ja) 2008-03-31 2009-10-22 Toda Kogyo Corp 磁気記録用金属磁性粒子粉末及びその製造法、並びに磁気記録媒体
JP2009246292A (ja) 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The 電界効果トランジスタ
WO2010125894A1 (ja) * 2009-04-28 2010-11-04 第一工業製薬株式会社 難燃性発泡スチレン系樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425642C (zh) * 2002-08-09 2008-10-15 株式会社钟化 发泡性苯乙烯类树脂粒子、和使用其的预发泡粒子、发泡成型体
JP2004075952A (ja) * 2002-08-22 2004-03-11 Teijin Chem Ltd 難燃性発泡性ポリスチレン系樹脂組成物およびそれからの成形品
JP4914000B2 (ja) * 2004-11-12 2012-04-11 株式会社ジェイエスピー ポリスチレン系樹脂押出発泡板
JP4937610B2 (ja) * 2005-04-12 2012-05-23 第一工業製薬株式会社 難燃性発泡ポリスチレン系樹脂およびその成形体
DE102005039976A1 (de) * 2005-08-23 2007-03-08 Basf Ag Partikel aus expandierbarem Polystyrol und daraus erhältliche Formteile mit verbessertem Brandverhalten

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435979B2 (ja) 1985-02-18 1992-06-12 Furukawa Battery Co Ltd
JPS63172744A (ja) 1987-01-13 1988-07-16 Teijin Chem Ltd 難燃性発泡スチレン系樹脂の製造方法
JPH08302056A (ja) * 1995-05-12 1996-11-19 Sekisui Chem Co Ltd 難燃性樹脂発泡体の製造方法
JP2001525001A (ja) 1997-05-14 2001-12-04 ビーエーエスエフ アクチェンゲゼルシャフト グラファイト粒子を含有する発泡可能のスチレン重合体
JPH11106548A (ja) 1997-09-30 1999-04-20 Mitsubishi Kagaku Basf Kk スチレン系発泡性樹脂粒子
JPH11130898A (ja) 1997-10-31 1999-05-18 Hitachi Chem Co Ltd 自己消火性発泡ポリスチレン樹脂粒子の製造方法及び成形品
JP2002194130A (ja) 2000-10-20 2002-07-10 Kanegafuchi Chem Ind Co Ltd 発泡性ポリスチレン系樹脂粒子及びその製造方法
JP2003064212A (ja) 2001-08-27 2003-03-05 Kanegafuchi Chem Ind Co Ltd 発泡性ポリスチレン系樹脂粒子およびポリスチレン系樹脂発泡成形体
JP2003335891A (ja) 2002-05-21 2003-11-28 Kanegafuchi Chem Ind Co Ltd 発泡性ポリスチレン系樹脂粒子、ポリスチレン系発泡成形体、およびその製造方法
JP2005139356A (ja) * 2003-11-07 2005-06-02 Kaneka Corp スチレン系樹脂発泡体およびその製造方法
JP2007169408A (ja) * 2005-12-21 2007-07-05 Sekisui Plastics Co Ltd スチレン系樹脂発泡性粒子とその製造方法及び型内発泡成形品
JP2007238927A (ja) * 2006-02-07 2007-09-20 Kaneka Corp 熱可塑性樹脂発泡体
JP2007211177A (ja) * 2006-02-10 2007-08-23 Dai Ichi Kogyo Seiyaku Co Ltd 難燃性スチレン系樹脂組成物
JP2008291181A (ja) * 2007-05-28 2008-12-04 Kaneka Corp 熱可塑性樹脂発泡体
JP2009246290A (ja) 2008-03-31 2009-10-22 Kobelco & Materials Copper Tube Inc ヒートパイプ用内面溝付管及びヒートパイプ
JP2009246291A (ja) 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The 面発光レーザアレイ素子
JP2009246293A (ja) 2008-03-31 2009-10-22 Toda Kogyo Corp 磁気記録用金属磁性粒子粉末及びその製造法、並びに磁気記録媒体
JP2009246292A (ja) 2008-03-31 2009-10-22 Furukawa Electric Co Ltd:The 電界効果トランジスタ
WO2010125894A1 (ja) * 2009-04-28 2010-11-04 第一工業製薬株式会社 難燃性発泡スチレン系樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2495277A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160229974A1 (en) * 2009-10-27 2016-08-11 Sekisui Plastics Co., Ltd. Foamable polystyrene resin particles and polystyrene resin prefoamed particles
US10358538B2 (en) 2009-10-27 2019-07-23 Sekisui Plastics Co., Ltd. Foamable polystyrene resin particles and polystyrene resin prefoamed particles
JP2013023508A (ja) * 2011-07-15 2013-02-04 Kaneka Corp 難燃性発泡性スチレン系樹脂粒子の製造方法
JP2014077030A (ja) * 2012-10-09 2014-05-01 Dai Ichi Kogyo Seiyaku Co Ltd 粒状難燃剤組成物および熱可塑性樹脂組成物
JP2016037573A (ja) * 2014-08-08 2016-03-22 株式会社ジェイエスピー 発泡性スチレン系樹脂粒子及びその製造方法
CN105374426A (zh) * 2015-11-24 2016-03-02 安徽南洋新材料科技股份有限公司 一种高韧性耐磨耐撕裂阻燃电缆
JP2016117912A (ja) * 2016-03-30 2016-06-30 株式会社カネカ 難燃性発泡性スチレン系樹脂粒子の製造方法

Also Published As

Publication number Publication date
US20120214885A1 (en) 2012-08-23
EP2495277A4 (en) 2014-05-21
EP2495277B1 (en) 2021-03-24
CN105542216A (zh) 2016-05-04
TWI439503B (zh) 2014-06-01
TW201124462A (en) 2011-07-16
CN102686654A (zh) 2012-09-19
EP2495277A1 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
WO2011052631A1 (ja) 発泡性ポリスチレン系樹脂粒子とその製造方法、ポリスチレン系樹脂予備発泡粒子、ポリスチレン系樹脂発泡成形体、建材用断熱材、盛土用部材及び車両内装材
JP5750221B2 (ja) 難燃剤含有発泡性ポリスチレン系樹脂粒子とその製造方法、難燃性ポリスチレン系樹脂予備発泡粒子及び難燃性ポリスチレン系樹脂発泡成形体
JP4316305B2 (ja) 黒鉛粉を含有するスチレン系樹脂発泡体の製造方法
JP4774293B2 (ja) スチレン系樹脂発泡性粒子とその製造方法及び型内発泡成形品
JP2013514397A (ja) 難燃性ポリマー発泡体
JP6473675B2 (ja) スチレン系樹脂発泡性粒子及びその製造方法、発泡粒子、発泡成形体並びにその用途
JP2010229205A (ja) 発泡性熱可塑性樹脂粒子とその製造方法、予備発泡粒子及び発泡成形体
JP6612634B2 (ja) スチレン系樹脂発泡性粒子、発泡粒子及び発泡成形体
US20160229974A1 (en) Foamable polystyrene resin particles and polystyrene resin prefoamed particles
JP4271999B2 (ja) アルミニウム粉を含有するスチレン系樹脂発泡体
JP6349697B2 (ja) 発泡性ポリスチレン系樹脂粒子の製造方法
JP2011093948A (ja) 建材用断熱材製造用発泡性ポリスチレン系樹脂粒子とその製造方法、建材用断熱材製造用予備発泡粒子及び建材用断熱材
JP6407113B2 (ja) スチレン系樹脂発泡成形体及びその製造方法並びにその用途
US10358538B2 (en) Foamable polystyrene resin particles and polystyrene resin prefoamed particles
JP2011093953A (ja) 床暖房用断熱材製造用発泡性ポリスチレン系樹脂粒子とその製造方法、床暖房用断熱材製造用予備発泡粒子、床暖房用断熱材及び床暖房装置
JP2011094024A (ja) 不燃剤含有発泡性ポリスチレン系樹脂粒子とその製造方法、不燃性ポリスチレン系樹脂予備発泡粒子及び不燃性ポリスチレン系樹脂発泡成形体
JP2011093950A (ja) 車両内装材製造用発泡性ポリスチレン系樹脂粒子とその製造方法、車両内装材製造用予備発泡粒子及び車両内装材
JP6854669B2 (ja) 発泡性ポリスチレン系樹脂粒子、予備発泡粒子、成形体
KR20160072411A (ko) 성형성이 우수하고 단열성능과 난연성능이 우수한 발포성 폴리스티렌 입자 및 이의 제조방법
JP2017132971A (ja) スチレン系樹脂発泡粒子及びスチレン系樹脂発泡成形体
JP3913460B2 (ja) スチレン系樹脂発泡体およびその製造方法
JP5909903B2 (ja) 難燃性発泡性スチレン系樹脂粒子の製造方法
JP2011093949A (ja) 盛土用部材製造用発泡性ポリスチレン系樹脂粒子とその製造方法、盛土用部材製造用予備発泡粒子及び盛土用部材
JP2011093952A (ja) 貯湯タンク用断熱材製造用発泡性ポリスチレン系樹脂粒子とその製造方法、貯湯タンク用断熱材製造用予備発泡粒子及び貯湯タンク用断熱材
JP2011093951A (ja) 屋根下断熱材製造用発泡性ポリスチレン系樹脂粒子とその製造方法、屋根下断熱材製造用予備発泡粒子及び屋根下断熱材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080059635.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826763

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13504072

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010826763

Country of ref document: EP