WO2011052072A1 - 車両用摩擦クラッチの油圧制御装置 - Google Patents

車両用摩擦クラッチの油圧制御装置 Download PDF

Info

Publication number
WO2011052072A1
WO2011052072A1 PCT/JP2009/068693 JP2009068693W WO2011052072A1 WO 2011052072 A1 WO2011052072 A1 WO 2011052072A1 JP 2009068693 W JP2009068693 W JP 2009068693W WO 2011052072 A1 WO2011052072 A1 WO 2011052072A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
hydraulic
friction clutch
clutch
pressure
Prior art date
Application number
PCT/JP2009/068693
Other languages
English (en)
French (fr)
Inventor
森瀬 勝
貴久 水田
山田 正信
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011538170A priority Critical patent/JP5445588B2/ja
Priority to EP09850851.8A priority patent/EP2495469B1/en
Priority to PCT/JP2009/068693 priority patent/WO2011052072A1/ja
Priority to US13/505,141 priority patent/US8851261B2/en
Priority to CN200980162248.5A priority patent/CN102597564B/zh
Publication of WO2011052072A1 publication Critical patent/WO2011052072A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • F16D25/082Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member the line of action of the fluid-actuated members co-inciding with the axis of rotation
    • F16D25/083Actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0221Valves for clutch control systems; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0266Actively controlled valves between pressure source and actuation cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0278Two valves in series arrangement for controlling supply to actuation cylinder

Definitions

  • the present invention relates to a hydraulic control device for a vehicle friction clutch, and more particularly to a technique for improving the responsiveness of the opening operation of the vehicle friction clutch.
  • a hydraulic control device for a vehicle friction clutch driven by a hydraulic cylinder having a piston divided in the axial direction is known.
  • a hydraulic control device for a friction clutch for a vehicle for example, even when vibration of a drive source for a vehicle such as an engine is transmitted to one of a pair of pistons via the friction clutch, between the pair of pistons.
  • By forming the minute gap transmission of the vibration to the other of the pair of pistons is suppressed. Therefore, it is possible to suppress the vibration from being transmitted between the piston and the pressure chamber of the hydraulic cylinder and to transmit the pressure chamber to a seal member that seals the pressure tightly, and the durability of the seal member is improved.
  • Patent Document 1 discloses a hydraulic control device having a throttle (orifice) provided between a pressure chamber of a hydraulic cylinder and a control oil passage for supplying hydraulic oil to the pressure chamber.
  • the inertia of the hydraulic oil when the hydraulic oil flows out from the hydraulic cylinder is the pressure chamber side when the hydraulic oil flows out from the pressure chamber of the hydraulic cylinder through an oil passage communicated with the hydraulic cylinder in order to release the friction clutch. It is the inertia of the hydraulic fluid which goes to the said oil path side from.
  • the acceleration applied to the hydraulic oil by the behavior of the vehicle is communicated with the pressure chamber of the hydraulic cylinder and the pressure chamber in accordance with, for example, longitudinal acceleration or lateral acceleration applied to the vehicle when the vehicle travels. It is the acceleration of the hydraulic oil that is applied to the hydraulic oil in the oil passage from the pressure chamber side toward the oil passage side.
  • the pressure chamber side piston provided on the pressure chamber side of the pair of pistons divided in the axial direction is opposite to the output side piston that outputs the clutch operating force to the other piston, that is, the friction clutch. May be moved to. In some cases, a relatively large gap exceeding a fine gap necessary and sufficient to suppress transmission of the vibration is formed between the pair of pistons.
  • the hydraulic pressure in the pressure chamber of the hydraulic cylinder does not increase until the relatively large gap is closed when the vehicle friction clutch is released, and the friction clutch is not released. Occurs. Therefore, the responsiveness of the opening operation of the vehicle friction clutch may be reduced.
  • the present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a hydraulic control device for a vehicle friction clutch capable of improving the responsiveness of the opening operation.
  • the gist of the invention according to claim 1 for achieving the above object is (a) a hydraulic control device for a friction clutch for a vehicle driven by a hydraulic cylinder having a piston divided in an axial direction. (B) provided in an oil passage through which hydraulic oil flows out from the hydraulic cylinder in order to engage the friction clutch, and when the pressure on the hydraulic cylinder side exceeds a predetermined release pressure, the hydraulic oil from the hydraulic cylinder
  • the brake valve which permits the outflow of the engine is included.
  • the gist of the invention according to claim 2 is that, in the invention according to claim 1, the opening pressure is the inertia of the hydraulic oil when the hydraulic oil flows out from the hydraulic cylinder, or the behavior of the vehicle. Therefore, when a negative pressure is generated in the hydraulic cylinder due to the acceleration applied to the hydraulic oil, the pressure value is larger than the pressure value applied to the hydraulic cylinder side of the brake valve.
  • hydraulic fluid from a hydraulic source is supplied to the hydraulic cylinder to open the friction clutch, and the friction clutch A flow control valve for allowing the hydraulic oil in the hydraulic cylinder to flow out.
  • the brake valve is provided in a control oil passage connecting the flow control valve and the hydraulic cylinder.
  • (B) provided in parallel with the brake valve in the control oil passage, and permits the flow of hydraulic oil from the flow rate control valve to the hydraulic cylinder, but from the hydraulic cylinder to the flow rate control valve.
  • the gist of the invention according to claim 5 is that, in the invention according to claim 3, the brake valve is provided in a drain oil passage through which hydraulic oil flows out from the flow control valve. is there.
  • the gist of the invention according to claim 6 is that, in the invention according to claim 4, it includes a throttle provided in parallel with the brake valve.
  • a gist of the invention according to claim 7 is that, in the invention according to claim 4, a predetermined gap is provided with respect to the inner wall surface of the valve chamber in the cylindrical valve chamber provided in the control oil passage.
  • a cylindrical valve element which is accommodated in a state of being separated so as to be movable in the axial direction and is provided on a first seating surface formed on the hydraulic cylinder side in the valve chamber so as to be separable from each other, and the opening pressure is set.
  • a spring for urging the cylindrical valve element toward the first seating surface with a predetermined urging force, and a second seating surface provided on the opposite side of the hydraulic cylinder side in the cylindrical valve element And a small valve element housed in the cylindrical valve element so as to be separable from each other, and having a composite valve device that functions as the brake valve and the one-way valve, respectively.
  • the gist of the invention according to claim 8 is that, in the invention according to claim 6, a predetermined gap is provided with respect to the inner wall surface of the valve chamber in the cylindrical valve chamber provided in the control oil passage.
  • a cylindrical valve element which is accommodated in a state of being separated so as to be movable in the axial direction and is provided on a first seating surface formed on the hydraulic cylinder side in the valve chamber so as to be separable from each other, and the opening pressure is set.
  • a spring for urging the cylindrical valve element toward the first seating surface with a predetermined urging force, and a second seating surface provided on the opposite side of the hydraulic cylinder side in the cylindrical valve element A small valve element accommodated in the cylindrical valve element so as to be separable from the cylindrical valve element, and a side wall of the cylindrical valve element, wherein the cylindrical valve element is seated on the first seating surface and The cylindrical valve chamber even when the small valve element is seated on the second seating surface And a throttle hole to a predetermined aperture distribution state, the brake valve, the diaphragm, the combined valve device functioning respectively as the one-way valve, is to have.
  • the hydraulic control apparatus for a vehicle friction clutch of the first aspect of the present invention it is provided in an oil passage through which hydraulic oil flows out from the hydraulic cylinder to engage the friction clutch, and the pressure on the hydraulic cylinder side is provided.
  • a brake valve that allows the hydraulic oil to flow out of the hydraulic cylinder when the hydraulic pressure exceeds a predetermined opening pressure, so that the hydraulic oil is driven by the inertia of the hydraulic oil or the behavior of the vehicle when the hydraulic oil is discharged from the hydraulic cylinder. Even when a negative pressure is generated in the pressure chamber of the hydraulic cylinder due to the acceleration applied to the hydraulic cylinder, the brake valve causes the hydraulic oil to flow out of the pressure chamber and the oil passage between the pressure chamber and the brake valve.
  • the release pressure depends on the inertia of the hydraulic oil when the hydraulic oil flows out from the hydraulic cylinder or the behavior of the vehicle.
  • a negative pressure is generated in the hydraulic cylinder due to acceleration applied to the hydraulic oil
  • the pressure value is larger than the pressure value applied to the hydraulic cylinder side of the brake valve.
  • the brake valve does not open due to the force applied to the hydraulic cylinder, preventing hydraulic fluid from flowing out of the pressure chamber of the hydraulic cylinder due to the negative pressure and expanding the gap between the pair of pistons in the hydraulic cylinder. Therefore, the start of increase in the hydraulic pressure in the pressure chamber of the hydraulic cylinder accompanying the supply of hydraulic oil for releasing the friction clutch is accelerated, and the friction clutch is opened. It is possible to improve the responsiveness of the operation.
  • hydraulic oil from a hydraulic source is supplied to the hydraulic cylinder and the friction clutch is engaged in order to open the friction clutch. Therefore, since the flow control valve for allowing the hydraulic oil in the hydraulic cylinder to flow out is included, the operation of the friction clutch can be controlled by mechanically or electrically controlling the flow control valve.
  • the brake valve is provided in a control oil passage that connects the flow control valve and the hydraulic cylinder. And a one-way valve that is provided in parallel with the brake valve in the control oil passage and permits the flow of hydraulic oil from the flow rate control valve toward the hydraulic cylinder, so that the brake valve is a hydraulic cylinder in the hydraulic control device.
  • the negative pressure generated in the pressure chamber of the hydraulic cylinder is further reduced by being provided in the control oil path that is closer to the position, and the expansion of the gap formed between the pair of pistons of the hydraulic cylinder is further suppressed.
  • the friction valve Since the flow of hydraulic oil supplied to the hydraulic cylinder to release the clutch is not hindered, the response of the friction clutch can be improved. For example, engine stall can occur when the friction clutch is released. Even when the property is high, the engine stall can be prevented by releasing the friction clutch earlier.
  • the hydraulic control device for a friction clutch for a vehicle of the invention since it includes a throttle provided in parallel with the brake valve, even if the brake valve does not open, the hydraulic cylinder
  • the hydraulic oil can flow out to such an extent that a fine gap can be formed between the pair of pistons of the hydraulic cylinder through the throttle, so that, for example, the vibration of the drive source such as an engine causes the pressure of the hydraulic cylinder through the pair of pistons of the hydraulic cylinder.
  • Transmission to a seal member that seals the chamber in an oil-tight manner can be suppressed, and the durability of the seal member can be improved.
  • the composite valve device comprising the brake valve and the one-way valve in combination, each functioning as the brake valve and the one-way valve, It is configured. If it does in this way, while being able to comprise a brake valve and a one-way valve small, the oil path in which it is provided can be shortened.
  • the brake valve, the throttle, and the one-way valve are provided in combination, and the brake valve, the throttle, and the one-way valve are provided.
  • a composite valve device each functioning as If it does in this way, while being able to comprise a brake valve, the said throttle
  • the brake valve is provided at a position as close as possible to the pressure chamber of the hydraulic cylinder.
  • it is provided between a pressure chamber of a hydraulic cylinder and a pipe for supplying hydraulic oil to the pressure chamber.
  • the negative pressure generated in the pressure chamber of the hydraulic cylinder due to the inertia of the hydraulic oil when the hydraulic oil flows out from the hydraulic cylinder or the acceleration applied to the hydraulic oil due to the behavior of the vehicle is further reduced. Therefore, it is possible to further suppress an increase in the gap formed between the pair of pistons of the hydraulic cylinder due to the negative pressure in the pressure chamber.
  • the composite valve device includes a spring that urges the small valve element toward the second seating surface with a predetermined urging force.
  • the small valve element can be stably operated as compared with a structure in which the small valve element is configured to be seated on the second seating surface by its own weight. Installation is enhanced. For example, it is possible to prevent the operation of the one-way valve from becoming unstable due to movement of the small valve element due to vibration or the like.
  • the compound valve device can be installed so that the small valve element is positioned below the second seating surface.
  • parallel means that both terminals of two members are connected to each other. Therefore, providing the brake valve and the throttle in parallel means that the ports on the hydraulic cylinder side of the brake valve and the throttle are connected to each other and the ports on the opposite side of the hydraulic cylinder are connected to each other. . Also, the brake valve and the one-way valve are provided in parallel means that the brake cylinder and the one-way valve on the hydraulic cylinder side are connected to each other and the opposite port to the hydraulic cylinder is connected to each other. Means that.
  • FIG. 1 is a schematic view showing a hydraulic control device for a vehicle friction clutch according to an embodiment of the present invention and a vehicle drive device to which the hydraulic control device is applied. It is sectional drawing which shows the friction clutch for vehicles of FIG. 1, and its peripheral part.
  • FIG. 2 is a cross-sectional view specifically showing an example of a composite valve device that includes the brake valve and the throttle shown in FIG.
  • FIG. 2 is a cross-sectional view specifically showing an example of a composite valve device that includes the brake valve and the throttle shown in FIG.
  • FIG. 10 is a cross-sectional view showing a composite valve device according to another embodiment of the present invention and a part of a metal pipe connected to one end thereof, corresponding to FIG. It is sectional drawing which shows the XII-XII arrow part cross section of FIG.
  • the composite valve device shown in FIG. 11 the composite valve device in a state where the cylindrical valve element is seated on the first seating surface and the small valve element is separated from the second seating surface and is brought into contact with the spring receiving member. It is sectional drawing shown.
  • FIG. 10 is a cross-sectional view showing a composite valve device according to another embodiment of the present invention and a part of a metal pipe connected to one end thereof, corresponding to FIG.
  • FIG. 11 shows the XII-XII arrow part cross section of FIG.
  • the composite valve device shown in FIG. 11 the composite valve device in a state where the cylindrical valve element is seated on the first seating surface and the small valve element is separated from the second seating surface and is brought into contact with the spring receiving
  • FIG. 1 shows a hydraulic control device 12 for a vehicle friction clutch (hereinafter referred to as a friction clutch) 10 according to an embodiment of the present invention, and a vehicle drive device (hereinafter referred to as a drive device) to which the hydraulic control device 12 is applied.
  • the drive device 14 transmits the output of the engine 16 as a drive source to the transmission 18 via the friction clutch 10, and a propeller shaft and a differential gear device (not shown) from the output shaft 20 of the transmission 18. It is comprised so that it may transmit to a pair of right-and-left drive wheels via.
  • the drive device 14 of the present embodiment is suitably used for a front engine rear wheel drive (FR) vehicle.
  • FR front engine rear wheel drive
  • the transmission 18 is, for example, a stepped transmission having a well-known parallel-shaft always-mesh transmission mechanism, and a shift stage is driven by a shift actuator 24 that is driven by a shift stage control unit 22 a included in the electronic control unit 22. Is switched.
  • the shift speed to be switched is determined based on, for example, a shift speed instruction signal output from a shift speed instruction device 23 operated by a vehicle driver.
  • the electronic control unit 22 includes a plurality of so-called microcomputers including a CPU, a ROM, a RAM, an input / output interface, and the like.
  • the electronic control unit 22 uses a temporary storage function of the RAM and signals according to a program stored in the ROM in advance. By performing the processing, drive control of the shift actuator 24, drive control of a flow rate control valve 62 described later, and the like are executed.
  • the electronic control unit 22 of this embodiment includes a shift speed control unit 22a that drives the shift actuator 24 to switch the shift speed of the transmission 18, the flow rate of hydraulic oil supplied to the clutch cylinder 40, which will be described later, and the clutch cylinder 40.
  • a hydraulic control unit 22b that drives the flow rate control valve 62 to control the flow rate of the hydraulic fluid to be discharged is provided.
  • FIG. 2 is a cross-sectional view showing the friction clutch 10 and its peripheral parts.
  • the friction clutch 10 is a well-known disc clutch for vehicles, and includes a flywheel 30 connected to a crankshaft (not shown) in a cylindrical clutch housing 26, an input shaft 28 of the transmission 18, and the like. It is provided in the power transmission path between.
  • the friction clutch 10 when an operation force, that is, a clutch operation force is not applied to the inner peripheral end portion of the diaphragm spring 32 by a clutch cylinder 40 described later, the pressure plate 34 is caused to fly by the outer peripheral end portion of the diaphragm spring 32.
  • the clutch disk 36 is pinched between the pressure plate 34 and the flywheel 30 by being pressed to the 30 side.
  • FIG. 2 shows this state.
  • the friction clutch 10 when the inner peripheral end portion of the diaphragm spring 32 is operated toward the engine 16 by the clutch cylinder 40, the pressure plate 34 is applied to the clutch disk 36 according to the operating force, that is, the clutch operating force. The pressing force is changed, and the clutch disk 36 and the flywheel 30 are changed between the half-engaged state and the released state. Then, the pressure of the pressure plate 34 against the clutch disk 36 is eliminated, so that the clutch disk 36 and the flywheel 30 are completely released. As a result, the friction clutch 10 is in a power cut-off state.
  • a clutch cylinder 40 corresponding to the hydraulic cylinder of the present invention is provided on the transmission 18 side of the inner peripheral end of the diaphragm spring 32.
  • the clutch cylinder 40 is a well-known coaxial type provided coaxially with the input shaft 28, and is fixed on the outer peripheral side of the input shaft 28 at the center of the partition wall 26 a with the transmission 18 of the clutch housing 26.
  • a cylindrical cylinder housing 42 is provided.
  • An annular pressure chamber 44 that is formed on the outer peripheral side of the input shaft 28 in the cylinder housing 42 and receives the hydraulic oil supplied from the hydraulic control device 12 is slidably fitted in the cylinder housing 42.
  • An annular output side piston 46 that outputs a clutch operating force to the friction clutch 10 via a release bearing 45, and a pressure chamber 44 side of the output side piston 46 that can be separated from the output side piston 46;
  • An annular pressure chamber side piston 48 that receives the clutch operating oil pressure in the pressure chamber 44 and transmits thrust to the output side piston 46, and the pressure chamber side piston 48 is provided on the pressure chamber 44 side.
  • a sealing member 50 for hermetically sealing.
  • the output side piston 46 and the pressure chamber side piston 48 correspond to pistons divided in the direction of the axis O in the present invention.
  • the cylinder housing 42 protrudes radially outward on the outer peripheral side of the pressure chamber 44, and is connected to a metal pipe 53 constituting the control oil passage 52 of the hydraulic control device 12, and the control oil passage 52 and the pressure chamber 44.
  • the output side piston 46 is diaphragmed according to the clutch operating oil pressure of the pressure chamber 44 that is increased or decreased by supplying hydraulic oil to the pressure chamber 44 by the hydraulic control device 12 or flowing out of the pressure chamber 44.
  • the spring 32 is moved toward or away from the inner peripheral end portion.
  • a clutch operating force corresponding to the clutch operating oil pressure of the pressure chamber 44 is transmitted to the inner peripheral end portion of the diaphragm spring 32 by the output side piston 46.
  • the friction clutch 10 is driven by a clutch cylinder 40.
  • the piston of the clutch cylinder 40 is composed of an output side piston 46 and a pressure chamber side piston 48 that are divided in the direction of the axis O and can be separated from each other.
  • the output side piston 46 is positioned at a position corresponding to the fully engaged state of the friction clutch 10, even when the vibration of the engine 16 is transmitted to the output side piston 46 via the friction clutch 10.
  • the vibration can be prevented from being transmitted to the pressure chamber side piston 48 and the seal member 50. .
  • the hydraulic pressure control device 12 supplies hydraulic oil from the hydraulic power source 60 and the pressure chamber 44 of the clutch cylinder 40 in order to open the friction clutch 10 to engage the friction clutch 10.
  • a flow rate control valve 62 for allowing hydraulic oil in the pressure chamber 44 of the clutch cylinder 40 to flow out and a hydraulic pressure control unit 22b of the electronic control unit 22 are provided.
  • the hydraulic power source 60 includes an electric oil pump 66 that pumps hydraulic oil from an oil tank 64, and an accumulator provided in a discharge oil passage 70 connected to a discharge port of the oil pump 66 via a check valve 68. 72.
  • the flow control valve 62 includes a pump port P connected to the discharge oil passage 70, a control port C connected to the control oil passage 52, and a drain port D connected to the drain oil passage 74.
  • the control oil passage 52 is an oil passage connecting the pressure chamber 44 of the clutch cylinder 40 and the flow control valve 62.
  • the drain oil passage 74 is an oil passage through which hydraulic oil flows from the flow control valve 62 to the oil tank 64.
  • the drain oil passage 74 allows the hydraulic oil to flow from the clutch cylinder 40 side to the oil tank 64 side when the pressure on the clutch cylinder 40 side exceeds a predetermined opening pressure (cracking pressure) set in advance.
  • a throttle 78 provided in parallel with the brake valve 76.
  • the drain oil passage 74 corresponds to an oil passage through which hydraulic oil flows out from the clutch cylinder (hydraulic cylinder) 40 in order to engage the friction clutch 10 in the present invention.
  • the hydraulic control device 12 of this embodiment includes a composite valve device 80 that functions as the brake valve 76 and the throttle 78, respectively.
  • FIGS. 3 and 4 are cross-sectional views specifically showing an example of the composite valve device 80 including the brake valve 76 and the throttle 78 shown in FIG.
  • the cylindrical member 84 is fitted in the opening of the metal pipe 82 on the oil tank 64 side of the pair of metal pipes 82 constituting the drain oil passage 74.
  • a cylindrical valve chamber 86 provided in the above.
  • the cylindrical member 84 is formed at the end of the metal pipe 82 on the clutch cylinder 40 side of the pair of metal pipes 82 with respect to the tapered surface 88 formed on the end face on the flow control valve 62 side, that is, the clutch cylinder 40 side.
  • the taper surface 90 is pressed and fixed by a pipe connecting nut 92.
  • the compound valve device 80 is accommodated in the valve chamber 86 so as to be movable in the axial direction with a predetermined gap from the inner wall surface 94 of the valve chamber 86.
  • a cylindrical valve element 98 provided on the first seating surface 96 formed on the first seating surface 96 so as to be separable from the first seating surface 96, and a predetermined biasing force of the cylindrical valve element 98 toward the first seating surface 96 in order to set the release pressure.
  • the cylindrical valve chamber 86 is formed in a predetermined state even when the cylindrical valve element 98 is seated on the first seating surface 96.
  • a throttle hole 102 in a throttle distribution state.
  • the throttle hole 102 functions as the throttle 78
  • the cylindrical member 84, the cylindrical valve element 98, and the spring 100 function as the brake valve 76.
  • the cylindrical valve element 98 includes a plurality of guide portions 98a protruding outward in the radial direction at equal circumferential intervals on the outer peripheral portion and continuous in the axial direction. Then, a bottomed cylindrical spring receiving member 104 whose bottom is located on the oil tank 64 side is located in the opening on the oil tank 64 side of the cylindrical member 84 located on the oil tank 64 side of the cylindrical valve element 98. Is inserted.
  • the spring 100 is interposed between the cylindrical valve element 98 and the spring receiving member 104 in a state where a predetermined predetermined preload is applied.
  • a plurality of through holes 106 functioning as hydraulic oil circulation holes are provided at the bottom of the spring receiving member 104. Then, as shown in FIG.
  • the spring receiving member 104 abuts against the guide portion 98 a of the cylindrical valve element 98 that is moved in the axial direction against the preload of the spring 100, thereby the cylindrical valve element.
  • the movement of 98 to the oil tank 64 side is regulated.
  • FIG. 3 is a cross-sectional view showing the composite valve device 80 in a state where the cylindrical valve element 98 is seated on the first seating surface 96.
  • the hydraulic oil moves through the throttle hole 102 so that the valve chamber 86 is in a predetermined throttle flow state.
  • FIG. 4 shows a composite valve device in which the cylindrical valve element 98 is separated from the first seating surface 96 against the preload of the spring 100 and is brought into contact with the end surface of the spring receiving member 104.
  • FIG. 4 In the state shown in FIG. 4, as indicated by an arrow b in the figure, the flow rate of the hydraulic oil is controlled through a plurality of gaps continuous in the circumferential direction between the cylindrical valve element 98 and the cylindrical member 84 in addition to the throttle hole 102.
  • the brake valve 76 is brought into an open circulation state by flowing from the valve 62 (see FIG. 1) side to the oil tank 64 (see FIG. 1) side.
  • the pressure chamber of the clutch cylinder 40 is caused by the inertia of the hydraulic oil in the oil passage between the pressure chamber 44 of the clutch cylinder 40 and the brake valve 76 when the hydraulic oil flows out from the clutch cylinder 40 through the flow control valve 62.
  • the maximum pressure value applied to the clutch cylinder 40 side of the brake valve 76 is defined as a first pressure value.
  • the clutch of the brake valve 76 The maximum pressure value applied to the cylinder 40 side is set as the second pressure value.
  • the opening pressure is set to be larger than a larger value of the first pressure value and the second pressure value by setting a preload of the spring 100, for example.
  • the first pressure value and the second pressure value are obtained experimentally, for example. Therefore, for example, as shown in FIG. 4, the cylindrical valve element 98 is separated from the first seating surface 96 when the pressure value applied to the clutch cylinder 40 side of the cylindrical valve element 98 exceeds the above-mentioned opening pressure. is there.
  • the hydraulic oil control device 12 is provided in the drain oil passage 74 through which hydraulic fluid flows from the clutch cylinder (hydraulic cylinder) 40 through the flow control valve 62 in order to engage the friction clutch 10.
  • a brake valve 76 that allows the hydraulic oil to flow out from the clutch cylinder 40 side to the oil tank 64 side is included. For this reason, the negative pressure is generated in the pressure chamber 44 of the clutch cylinder 40 due to the inertia of the hydraulic oil when the hydraulic oil flows out from the clutch cylinder 40 or the acceleration applied to the hydraulic oil due to the behavior of the vehicle.
  • the release pressure is determined by setting the preload of the spring 100 so that the inertia of the hydraulic oil when the hydraulic oil flows out from the clutch cylinder 40 and the acceleration applied to the hydraulic oil due to the behavior of the vehicle.
  • the maximum pressure value (the larger one of the first pressure value and the second pressure value) applied to the clutch cylinder side of the cylindrical valve element 98 of the brake valve 76 is larger. Therefore, the brake valve 76 is not opened by the force applied to the side of the clutch cylinder 40 of the cylindrical valve element 98 by the generation of the negative pressure, and the pressure chamber 44 of the clutch cylinder 40 is caused by the negative pressure.
  • the hydraulic oil is prevented from flowing out and the gap between the output side piston 46 and the pressure chamber side piston 48 of the clutch cylinder 40 is prevented from expanding. Door can be. Therefore, the start of pressure increase in the pressure chamber 44 accompanying the supply of hydraulic oil to the clutch cylinder 40 for opening the friction clutch 10 is accelerated, so that the response of the opening operation of the friction clutch 10 can be improved.
  • the throttle 78 provided in parallel with the brake valve 76 is included, even when the brake valve 76 is not opened, the output side piston 46 of the clutch cylinder 40 passes through the throttle 78 from the pressure chamber 44 of the clutch cylinder 40. Since the hydraulic fluid can be moved to such an extent that a fine gap for suppressing vibration transmission can be formed between the piston 16 and the pressure chamber side piston 48, for example, vibration of the engine 16 or the like causes the output side piston 46 and the pressure chamber side piston to vibrate. Transmission to the sealing member 50 via 48 can be suppressed, and the durability of the sealing member 50 can be improved.
  • hydraulic oil from the hydraulic pressure source 60 is supplied to the pressure chamber 44 of the clutch cylinder 40 to release the friction clutch 10, and hydraulic oil in the pressure chamber 44 of the clutch cylinder 40 is engaged to engage the friction clutch 10. Therefore, the operation of the friction clutch 10 can be controlled by electrically controlling the flow rate control valve 62. Specifically, by adjusting the drive current input to the flow control valve 62, the hydraulic oil is supplied from the hydraulic source 60 to the clutch cylinder 40 according to the drive current, and the oil tank 64 from the clutch cylinder 40 is supplied. The operation of the friction clutch 10 is controlled by controlling the clutch operating force of the clutch cylinder 40 with respect to the friction clutch 10 by switching the state in which the hydraulic oil flows out and continuously controlling the flow rate of the flowing hydraulic oil. can do.
  • the brake valve 76 is provided in the drain oil passage 74, the flow of the hydraulic oil supplied to the clutch cylinder 40 in order to release the friction clutch 10 is not hindered. For example, even when there is a high possibility that an engine stall occurs during the opening operation of the friction clutch 10, the engine stall can be prevented by quickly releasing the friction clutch 10.
  • the brake valve 76 and the throttle 78 can be configured to be small, and the drain oil passage 74 can be shortened.
  • the oil passage of the hydraulic control device 12 becomes longer in the front-rear direction of the vehicle.
  • the longitudinal acceleration applied to the hydraulic oil in the pressure chamber 44 of the clutch cylinder 40 and the oil passage communicating with the clutch cylinder 40 is increased by the longitudinal acceleration, so that the negative pressure generated in the pressure chamber 44 due to the longitudinal acceleration is also large.
  • the expansion of the gap formed between the output side piston 46 and the pressure chamber side piston 48 can be preferably suppressed.
  • FIG. 5 is a schematic diagram showing a hydraulic control device 12 according to another embodiment of the present invention and a vehicle drive device 14 to which the hydraulic control device 12 is applied.
  • the drain oil passage 74 of the hydraulic control device 12 of the present embodiment does not include the composite valve device 80 and connects the drain port D of the flow control valve 62 and the oil tank 64 in a constantly communicating state.
  • the control oil passage 52 of the present embodiment is provided in parallel with the brake valve 76, the throttle 78 provided in parallel to the brake valve 76, and the brake valve 76 and the throttle 78, as indicated by the arrow in FIG.
  • a one-way valve that permits the flow of hydraulic oil from the flow control valve 62 indicated by c to the clutch cylinder 40 but prevents the flow of hydraulic oil from the clutch cylinder 40 indicated by arrow d in FIG. 5 to the flow control valve 62. 110.
  • the control oil passage 52 corresponds to an oil passage through which hydraulic oil flows out from the clutch cylinder 40 in order to engage the friction clutch 10 in the present invention.
  • the hydraulic control device 12 includes a composite valve device 112 that functions as the brake valve 76, the throttle 78, and the one-way valve 110.
  • FIG. 6 is a cross-sectional view showing a part of the clutch cylinder 40 shown in FIG. 5, the composite valve device 112 connected to the pipe connection portion 42 a of the clutch cylinder 40, and a metal pipe 53 connected to the composite valve device 112. It is. As shown in FIG. 6, the pipe connection portion 42 a of this embodiment is provided so as to protrude downward in the radial direction on the outer peripheral side of the pressure chamber 44.
  • the composite valve device 112 includes a cylindrical member 113 that connects the pipe connection portion 42 a and the metal pipe 53 to each other and constitutes a part of the control oil passage 52.
  • FIG. 7 is a cross-sectional view showing the composite valve device 112 shown in FIG. 6 and a part of the metal pipe 53 connected to one end thereof.
  • FIG. 8 is a cross-sectional view showing a cross section taken along the line VIII-VIII in FIG. 7 and 8, the composite valve device 112 is in a state where a predetermined gap is separated from the inner wall surface 115 of the valve chamber 114 in a cylindrical valve chamber 114 formed in the cylindrical member 113.
  • a cylindrical valve element 118 which is accommodated so as to be movable in the axial direction, is provided on a first seating surface 116 formed on the side of the clutch cylinder 40 in the valve chamber 114 so as to be separable.
  • the cylindrical valve element 118 has a smaller diameter than the inner diameters of the plurality of guide portions 118a projecting outward in the radial direction at equal intervals in the circumferential direction and continuing in the axial direction, and the inner wall surface 115 and the spring 120.
  • the cylindrical small-diameter portion 118b protrudes in the axial direction toward the flow rate control valve 62 side, that is, the oil tank 64 side.
  • the small-diameter portion 118b is provided with a plurality of through holes 120 that function as circulation holes for hydraulic oil that are penetrated in the radial direction at equal intervals in the circumferential direction.
  • the composite valve device 112 is provided between the cylindrical valve disc 118 and the annular disc-shaped spring receiving member 122 provided on the opposite side of the cylindrical valve disc 118 from the clutch cylinder 40 side, that is, on the flow control valve 62 side.
  • a spring 124 is provided to urge the cylindrical valve element 118 toward the first seating surface 116 with a predetermined urging force.
  • the spring receiving member 122 is provided with a through hole 126 that functions as a flow hole for hydraulic oil that is penetrated in the axial direction.
  • the composite valve device 112 is accommodated in the cylindrical valve element 118 so as to be separable and separable on a tapered second seating surface 128 provided on the opposite side to the clutch cylinder 40 side in the cylindrical valve element 118. It is formed so as to penetrate the spherical small valve element 130 and the side wall part 118c as the side wall of the cylindrical valve element 118, the cylindrical valve element 118 is seated on the first seating surface 116, and the small valve element 130 is the second one.
  • a throttle hole 132 is provided for bringing the valve chamber 114 into a predetermined throttle flow state even when seated on the seating surface 128.
  • a stopper member 134 for preventing the child 130 from coming out of the cylindrical valve 118 is provided.
  • the stopper member 134 is formed so as not to obstruct the flow of the hydraulic oil in the cylindrical valve element 118 even when it is in contact with the small valve element 130.
  • the stopper member 118 includes a short cylindrical portion 134a fitted in the opening of the cylindrical valve element 118, and a plurality of protrusions protruding radially inward from the inner peripheral portion at equal intervals in the circumferential direction. Part 134b.
  • the plurality of convex portions 134 b are arranged so that the distance between the pair of convex portions 134 b facing each other in the direction orthogonal to the axial center of the cylindrical valve element 118 is smaller than the diameter of the small valve element 130.
  • the small valve element 130 is prevented from coming out of the cylindrical valve element 118 by coming into contact with the convex portion 134 b of the stopper member 118.
  • the throttle hole 132 functions as the throttle 78
  • the first seating surface 116 of the cylindrical member 113, the cylindrical valve 118, and the spring 124 serve as the brake valve 76.
  • the second seating surface 128 of the cylindrical valve element 118 and the small valve element 130 function as the one-way valve 110.
  • FIG. 7 is a sectional view showing the composite valve device 112 in a state where the cylindrical valve element 118 is seated on the first seating surface 116 and the small valve element 130 is seated on the second seating surface 128.
  • the hydraulic oil moves through the throttle hole 132, whereby the valve chamber 114 is brought into a predetermined throttle circulation state.
  • FIG. 9 shows that the cylindrical valve element 118 is seated on the first seating surface 116 and the small valve element 130 is separated from the second seating surface 128 and is brought into contact with the convex portion 134 b of the stopper member 134.
  • FIG. 9 shows the compound valve apparatus 112 of the state which was in a state.
  • the hydraulic oil passes through the plurality of gaps formed between the small valve element 130 and the convex portion 134 b of the stopper member 134 in addition to the throttle hole 132.
  • the one-way valve 110 is in an open flow state.
  • FIG. 10 shows that the small valve element 130 is seated on the second seating surface 128 and the cylindrical valve element 118 is separated from the first seating surface 116 against the preload of the spring 130, and the small diameter portion 118 b is formed.
  • FIG. 10 shows the compound valve apparatus 112 in the state contact
  • FIG. 10 In the state shown in FIG. 10, as indicated by an arrow g in the figure, the working oil is not only in the throttle hole 132, but also in a plurality of gaps that penetrate in the circumferential direction between the cylindrical valve element 118 and the cylindrical member 113, and through The brake valve 76 is in an open flow state by passing through the holes 126 and flowing from the clutch cylinder 40 (see FIG. 5) side to the flow control valve 62 (see FIG. 5) side.
  • the hydraulic oil is allowed to flow out of the pressure chamber 44. It is like that.
  • the opening pressure is set to be larger than a larger value of the first pressure value and the second pressure value. Therefore, for example, as shown in FIG. 10, the cylindrical valve element 118 is separated from the first seating surface 116 because the pressure value applied to the clutch valve 40 side of the cylindrical valve element 118 and the stopper member 134 is the opening pressure. It is time to exceed.
  • the configuration other than the above is the same as that of the first embodiment described above, and hydraulic oil is allowed to flow out from the clutch cylinder 40 in order to engage the friction clutch 10.
  • a brake valve 76 that is provided in the control oil passage 52 as the drain oil passage 74 and allows the hydraulic oil to flow out from the clutch cylinder 40 side to the oil tank 64 side when the pressure on the clutch cylinder 40 side exceeds a predetermined opening pressure. Therefore, even when a negative pressure is generated in the pressure chamber 44 of the clutch cylinder 40, the pressure cylinder side piston 46 is formed between the output side piston 46 and the pressure chamber side piston 48 due to the negative pressure. The expansion of the gap that is generated can be suppressed.
  • the brake valve 76 is provided in a control oil passage 52 that connects the flow control valve 62 and the clutch cylinder 40, and is provided in parallel with the brake valve 76 and the throttle 78 in the control oil passage 52. And the one-way valve 110 that permits the flow of hydraulic oil from the flow rate control valve 62 toward the clutch cylinder 40, the brake chamber 76 is provided at a position closer to the clutch cylinder 40, whereby the pressure chamber 44 of the clutch cylinder 40 is provided. While the negative pressure generated inside is further reduced, the expansion of the gap formed between the output-side piston 46 and the pressure chamber-side piston 48 of the clutch cylinder 40 is further suppressed, and the friction is reduced.
  • the friction clutch Since the flow of the hydraulic oil supplied to the clutch cylinder 40 to release the clutch 10 is not hindered, the friction clutch It is possible to further improve the responsiveness of the opening operation of 10. For example, even when there is a high possibility that an engine stall occurs when the friction clutch 10 is released, the engine stall can be prevented by quickly releasing the friction clutch 10.
  • the brake valve 76, the throttle 78, and the one-way valve 110 can be configured in a small size.
  • the control oil passage 52 can be shortened.
  • FIG. 11 is a cross-sectional view showing the composite valve device 140 according to another embodiment of the present invention and the pipe connection portion 42a of the cylinder housing 42 connected to both ends thereof and a part of the metal pipe 53.
  • FIG. 8 is a diagram corresponding to FIG. 7 of the second embodiment.
  • 12 is a cross-sectional view showing a cross section taken along the line XII-XII in FIG. 11 and 12, the composite valve device 140 includes a cylindrical member 142 that connects the pipe connecting portion 42 a and the metal pipe 53 to each other and constitutes a part of the control oil passage 52.
  • the compound valve device 140 is movable in the axial direction in a cylindrical valve chamber 144 formed in the cylindrical member 142 with a predetermined gap from the inner wall surface 146 of the valve chamber 144. And a cylindrical valve element 150 provided on the first seating surface 148 formed on the side of the clutch cylinder 40 in the valve chamber 144 so as to be separable.
  • the cylindrical valve element 150 of the present embodiment is formed such that the length of the guide part 150a, the small diameter part 150b, and the side wall part 118c in the axial direction is longer than the cylindrical valve element 118 of the above-described second embodiment.
  • the composite valve device 140 is interposed between the spring receiving member 122 and the cylindrical valve element 150, and the cylindrical valve element 150 is moved toward the first seating surface 148 in order to set the release pressure.
  • the spring 1154 urged by the urging force and the tapered second seating surface 156 provided on the opposite side to the clutch cylinder 40 side in the cylindrical valve element 150 can be separated from each other. It is formed so as to penetrate the accommodated stepped cylindrical small valve element 158 and the side wall part 150c as the side wall of the cylindrical valve element 150, and the cylindrical valve element 150 is seated on the first seating surface 148 and is small. Even when the valve element 158 is seated on the second seating surface 156, the valve chamber 144 is provided with a throttle hole 160 that brings the valve chamber 144 into a predetermined throttle flow state.
  • the small valve element 158 is a stepped cylindrical member having a small diameter on the clutch cylinder 40 side, and has a tapered contact surface 162 facing the second seating surface 156 on the end surface opposite to the clutch cylinder 40 side. And so-called poppets.
  • a disc-shaped spring receiving member 164 is fitted in the opening on the clutch cylinder 40 side of the small valve element 158 and in the clutch cylinder side of the cylindrical valve element 150.
  • the composite valve device 140 is interposed between the spring receiving member 164 and the stepped portion end surface of the small valve element 158 with a predetermined preload applied thereto, and the small valve element 158 is inserted into the second seat.
  • a spring 166 that is biased toward the surface 156 with a predetermined biasing force is provided.
  • the spring receiving member 164 contacts the small valve element 158 moved to the clutch cylinder 40 against the preload of the spring 166, thereby preventing the small valve element 158 from coming out of the cylindrical valve element 150. However, it is formed so as not to hinder the flow of the hydraulic oil in the cylindrical valve element 150 in a state where it is in contact with the small valve element 158.
  • the spring receiving member 164 has a plurality of through holes 168 that are penetrated in a direction parallel to the axial center and function as hydraulic oil flow holes.
  • the throttle hole 160 functions as the throttle 78
  • the first seating surface 148 of the cylindrical member 142, the cylindrical valve element 150, and the spring 154 function as the brake valve 76
  • the second seating surface 156, the small valve element 158, and the spring 166 of the cylindrical valve element 150 function as the one-way valve 110.
  • the preload applied to the spring 166 is set smaller than the preload applied to the spring 154.
  • the opening pressure of the one-way valve 110 is made smaller than the opening pressure of the brake valve 76.
  • FIG. 11 is a cross-sectional view showing the composite valve device 140 in a state in which the cylindrical valve element 150 is seated on the first seating surface 148 and the small valve element 158 is seated on the second seating surface 156.
  • the hydraulic oil moves through the throttle hole 160 so that the valve chamber 144 is in a predetermined throttle flow state.
  • FIG. 13 shows that the cylindrical valve element 150 is seated on the first seating surface 148 and the small valve element 158 is separated from the second seating surface 156 against the preload of the spring 166, and the spring receiving member.
  • FIG. 6 is a cross-sectional view showing the composite valve device 140 in a state in which the composite valve device 140 is brought into contact with 164.
  • the hydraulic oil passes through the through hole 168 of the stopper member 164 in addition to the throttle hole 160 and from the flow control valve 62 (see FIG. 5) side to the clutch cylinder 40 ( The one-way valve 110 is in an open circulation state by flowing to the side (see FIG. 5).
  • FIG. 14 also shows that the small valve element 158 is seated on the second seating surface 156 and the cylindrical valve element 150 is separated from the first seating surface 148 against the preload of the spring 154, and the small diameter portion 150 b is
  • FIG. 14 In the state shown in FIG. 14, as indicated by an arrow j in the drawing, a plurality of gaps in which hydraulic oil continues in the circumferential direction between the cylindrical valve element 150 and the cylindrical member 42 in addition to the throttle hole 160, and a plurality of gaps
  • the brake valve 76 is in an open flow state by flowing from the clutch cylinder 40 (see FIG. 5) side to the flow rate control valve 62 (see FIG. 5) side.
  • the hydraulic oil is allowed to flow out of the pressure chamber 44. It is like that.
  • the opening pressure of the brake valve 76 is set to be larger than the larger value of the first pressure value and the second pressure value. Therefore, for example, as shown in FIG. 14, the cylindrical valve element 150 is separated from the first seating surface 148 because the pressure value applied to the clutch valve 40 side of the cylindrical valve element 150 and the spring receiving member 164 is released as described above. When the pressure is exceeded.
  • the configuration other than the above is the same as that of the above-described second embodiment, and therefore, in the pressure chamber 44 of the clutch cylinder 40 as in the first and second embodiments.
  • the expansion of the gap formed between the output side piston 46 and the pressure chamber side piston 48 of the clutch cylinder 40 due to the negative pressure of the clutch cylinder 40 can be suppressed, and the responsiveness of the opening operation of the friction clutch 10 can be improved. The effect of being able to be obtained.
  • the composite valve device 140 of the present embodiment includes the spring 166 that biases the small valve element 158 toward the second seating surface 156 of the cylindrical valve element 150 with a predetermined biasing force.
  • the one-way valve 110 can be stably operated and Installation is enhanced. For example, it is possible to prevent the operation of the one-way valve 110 from becoming unstable due to the movement of the small valve element 158 due to vibration or the like.
  • the small valve element 158 is installed so as to be positioned above the second seating surface 156.
  • the urging force of the spring 166 to the small valve element 158 is the small valve element.
  • the composite valve device 140 can be installed so that the small valve element 158 is positioned below the second seating surface 156 by setting the force so as to be larger than the force due to its own weight.
  • the transmission 18 is a stepped transmission having a well-known parallel shaft type constantly meshing transmission mechanism, and the transmission speed is changed by the transmission speed instruction device 23 operated by the driver.
  • it is a manual transmission to be switched, for example, an automatic transmission in which the gear position is switched by the electronic control unit 22 based on, for example, a vehicle speed and a driving force related value from a previously stored relationship, Such a continuously variable transmission may be used.
  • the vehicle is of the front engine rear wheel drive system (FR).
  • FR front engine rear wheel drive system
  • FF front engine front wheel drive system
  • RR rear engine rear wheel drive system
  • Other drive type vehicles may be used.
  • the present invention is applicable not only to a two-wheel drive vehicle but also to a four-wheel drive vehicle.
  • the vehicle drive device 14 includes the friction clutch 10, the transmission 18, a propeller shaft (not shown), and a differential gear device in this order on the rear stage side of the engine 16.
  • Clutch operation generated by an oil pump 66 provided in the transmission 18 provided at the rear of the vehicle is provided with the friction clutch 10, the propeller shaft, the transmission 18, and the differential gear device in order on the rear stage side of the engine 16.
  • the hydraulic pressure may be supplied from the oil pump 66 to the clutch cylinder 40 through the control oil passage 52 connected to the clutch cylinder 40 provided in the friction clutch 10 located in front of the vehicle.
  • the composite valve devices 112 and 140 include the throttle holes 132 and 160, and the composite valve devices 112 and 140 function as the throttle 78.
  • the composite valve devices 112 and 140 do not necessarily include the throttle holes 132 and 160. There is no need, so that the compound valve devices 112 and 140 do not need to function as a restriction 78.
  • the opening pressure is set to be larger than the larger one of the first pressure value and the second pressure value, but it is not always necessary to set it as such. For example, it may be set to a value greater than the first pressure value, may be set to a value greater than the second pressure value, or may be set to a value smaller than the first pressure value or the second pressure value. May be. Still, a temporary effect can be obtained.
  • the contact surface 162 of the small valve element 158 is disposed above the second seating surface 156.
  • the composite valve device 112 is not necessarily disposed in this manner. do not have to.
  • the contact surface 162 may be disposed so as to be located below the second seating surface 156.
  • the transmission 18 is configured such that the shift speed is switched by the shift actuator 24 that operates according to the instruction from the shift speed indicating device 23.
  • the gear position may be switched according to the operation of the gear position instruction device 23 mechanically connected to the machine 18.
  • the hydraulic control device 12 has the hydraulic source 60 having the electric oil pump 66 and the like, and the flow control valve 62 through which the hydraulic oil is electrically driven from the hydraulic source 60 is provided.
  • the stroke is generated according to the operation amount of the clutch pedal 170 operated by the driver to generate the hydraulic pressure.
  • the clutch master cylinder 172 may be provided as a hydraulic pressure source, and hydraulic oil may be supplied from the clutch master cylinder 172 to the clutch cylinder 40.
  • the clutch cylinder 40 includes the output side piston 46, the pressure chamber side piston 48, and the seal member 50 in order from the diaphragm spring 32 side.
  • the pressure chamber side piston 48 may not be provided, and the seal member 50 may be configured to also serve as the pressure chamber side piston 48, or the pressure chamber side piston 48 and the seal member 50 may be configured integrally.
  • various modes are possible such that the output side piston 46, the pressure chamber side piston 48, and the seal member 50 may be integrally configured.
  • the clutch cylinder 40 is configured such that a fine gap for suppressing transmission of vibration is formed between the output side piston 46 and the pressure chamber side piston 48. It may be configured to be formed between the pressure chamber side piston 48 and the seal member 50. In short, the fine gap may be configured to be formed between the diaphragm spring 32 and the seal member 50.
  • Friction clutch for vehicle 12 Hydraulic control device 40: Clutch cylinder (hydraulic cylinder) 46: Output side piston (piston) 48: Pressure chamber side piston (piston) 52: Control oil passage (oil passage through which hydraulic oil flows out from the hydraulic cylinder) 60: Hydraulic source 62: Flow control valve 74: Drain oil passage (oil passage through which hydraulic oil flows out from the hydraulic cylinder) 76: Brake valve 78: Restriction 110: One-way valve 112, 140: Compound valve device 114, 144: Valve chamber 115, 146: Inner wall surface 116, 148: First seating surface 118, 150: Cylindrical valves 118c, 150c : Side wall (side wall) 124, 154: spring 128, 156: second seating surface 130, 158: small valve element 132, 160: throttle hole O: axial center

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

 開放作動の応答性を向上させることができる車両用摩擦クラッチの油圧制御装置を提供する。 摩擦クラッチ10を係合させるためにクラッチシリンダ40から作動油が流出させられる油路に設けられ、クラッチシリンダ40側の圧力が所定の開放圧を超えるとクラッチシリンダ40からの作動油の流出を許容するブレーキ弁76を含むことから、クラッチシリンダ40の圧力室44内に負圧が発生する場合であっても圧力室44内の作動油の流出がブレーキ弁76により抑制されるので、クラッチシリンダ40の一対のピストン46および48の間に形成される隙間の拡大を抑制することができ、摩擦クラッチ10の開放作動の応答性を向上させることができる。

Description

車両用摩擦クラッチの油圧制御装置
 本発明は、車両用摩擦クラッチの油圧制御装置に関し、特に、その車両用摩擦クラッチの開放作動の応答性を向上させる技術に関するものである。
 軸心方向に分割されたピストンを有する油圧シリンダにより駆動される車両用摩擦クラッチの油圧制御装置が知られている。このような車両用摩擦クラッチの油圧制御装置においては、例えばエンジン等の車両用駆動源の振動が摩擦クラッチを介して一対のピストンの一方へ伝達する場合であっても、それら一対のピストン間に微隙間が形成されることで上記振動が一対のピストンの他方へ伝達することが抑制される。そのため、上記振動がピストンと油圧シリンダの圧力室との間に設けられてその圧力室を油密に封止するシール部材に伝達することを抑制することができ、そのシール部材の耐久性が向上する。また、特許文献1には、油圧シリンダの圧力室とその圧力室に作動油を供給するための制御油路との間に設けられた絞り(オリフィス)を有する油圧制御装置が開示されている。
特開2008-190718号公報
 ところで、前記従来の車両用摩擦クラッチの油圧制御装置では、例えば、前記油圧シリンダから作動油が流出させられる時の作動油の慣性、又は車両の挙動により作動油に加えられる加速度により油圧シリンダの圧力室内に負圧が発生する場合がある。上記油圧シリンダから作動油が流出させられる時の作動油の慣性とは、摩擦クラッチを開放させるために油圧シリンダの圧力室からそれと連通された油路を通して作動油を流出させるときに上記圧力室側から上記油路側へ向かう作動油の慣性のことである。また、上記車両の挙動により作動油に加えられる加速度とは、車両の走行時にその車両に例えば前後加速度や左右加速度が加えられることに応じて、油圧シリンダの圧力室内およびその圧力室と連通された油路内の作動油に加えられる上記圧力室側から上記油路側へ向かう作動油の加速度のことである。これにより、軸心方向に分割された一対のピストンのうち圧力室側に設けられた圧力室側ピストンが、他方のピストンすなわち摩擦クラッチに対してクラッチ操作力を出力する出力側ピストンとは反対側へ移動させられる場合がある。そして、前記振動の伝達を抑制するために必要十分な微隙間を超える比較的大きな隙間が上記一対のピストン間に形成される場合がある。そのような場合には、車両用摩擦クラッチを開放させる際に上記比較的大きな隙間が詰まるまでの間は油圧シリンダの圧力室内の油圧が上昇せず、摩擦クラッチの開放作動が開始されない、という問題が発生する。したがって、車両用摩擦クラッチの開放作動の応答性が低下する場合があった。
 本発明は以上の事情を背景としてなされたものであり、その目的とするところは、開放作動の応答性を向上させることができる車両用摩擦クラッチの油圧制御装置を提供することにある。
 かかる目的を達成するための請求項1にかかる発明の要旨とするところは、(a)軸心方向に分割されたピストンを有する油圧シリンダにより駆動される車両用摩擦クラッチの油圧制御装置であって、(b)前記摩擦クラッチを係合させるために前記油圧シリンダから作動油が流出させられる油路に設けられ、前記油圧シリンダ側の圧力が所定の開放圧を超えると前記油圧シリンダからの作動油の流出を許容するブレーキ弁を、含むことにある。
 また、請求項2にかかる発明の要旨とするところは、請求項1にかかる発明において、前記開放圧は、前記油圧シリンダから作動油が流出させられる時の作動油の慣性、又は前記車両の挙動により上記作動油に加えられる加速度により前記油圧シリンダ内に負圧が発生するときに前記ブレーキ弁の前記油圧シリンダ側に加えられる圧力値よりも大きい値であることにある。
 また、請求項3にかかる発明の要旨とするところは、請求項1または2にかかる発明において、前記摩擦クラッチを開放させるために油圧源からの作動油を前記油圧シリンダへ供給し、その摩擦クラッチを係合させるために前記油圧シリンダ内の作動油を流出させる流量制御弁を、含むことにある。
 また、請求項4にかかる発明の要旨とするところは、請求項3にかかる発明において、(a)前記ブレーキ弁は、前記流量制御弁と前記油圧シリンダとの間を接続する制御油路に設けられたものであり、(b)前記制御油路において前記ブレーキ弁と並列に設けられ、前記流量制御弁から前記油圧シリンダに向かう作動油の流通は許可するが、その油圧シリンダから前記流量制御弁に向かう作動油の流通を阻止する一方向弁を、さらに含むことにある。
 また、請求項5にかかる発明の要旨とするところは、請求項3にかかる発明において、前記ブレーキ弁は、前記流量制御弁から作動油を流出させるドレン油路に設けられたものであることにある。
 また、請求項6にかかる発明の要旨とするところは、請求項4にかかる発明において、前記ブレーキ弁と並列に設けられた絞りを含むことにある。
 また、請求項7にかかる発明の要旨とするところは、請求項4にかかる発明において、前記制御油路に設けられた円筒状の弁室内においてその弁室の内壁面に対して所定の間隙を隔てた状態で軸心方向の移動可能に収容され、前記弁室内の前記油圧シリンダ側に形成された第1着座面に着座離隔可能に設けられた円筒状弁子と、前記開放圧を設定するためにその円筒状弁子を前記第1着座面に向かって所定の付勢力で付勢するスプリングと、前記円筒状弁子内の前記油圧シリンダ側とは反対側に設けられた第2着座面に着座離隔可能に前記円筒状弁子内に収容された小弁子とを備え、前記ブレーキ弁、前記一方向弁としてそれぞれ機能する複合弁装置を、有することにある。
 また、請求項8にかかる発明の要旨とするところは、請求項6にかかる発明において、前記制御油路に設けられた円筒状の弁室内においてその弁室の内壁面に対して所定の間隙を隔てた状態で軸心方向の移動可能に収容され、前記弁室内の前記油圧シリンダ側に形成された第1着座面に着座離隔可能に設けられた円筒状弁子と、前記開放圧を設定するためにその円筒状弁子を前記第1着座面に向かって所定の付勢力で付勢するスプリングと、前記円筒状弁子内の前記油圧シリンダ側とは反対側に設けられた第2着座面に着座離隔可能に前記円筒状弁子内に収容された小弁子と、前記円筒状弁子の側壁を貫通するように形成され、前記円筒状弁子が前記第1着座面に着座し且つ前記小弁子が前記第2着座面に着座した状態でも前記円筒状弁室を所定の絞り流通状態とする絞り穴とを備え、前記ブレーキ弁、前記絞り、前記一方向弁としてそれぞれ機能する複合弁装置を、有することにある。
 請求項1にかかる発明の車両用摩擦クラッチの油圧制御装置によれば、前記摩擦クラッチを係合させるために前記油圧シリンダから作動油が流出させられる油路に設けられ、前記油圧シリンダ側の圧力が所定の開放圧を超えると前記油圧シリンダからの作動油の流出を許容するブレーキ弁を含むことから、油圧シリンダから作動油が流出させられる時の作動油の慣性、又は車両の挙動により作動油に加えられる加速度により油圧シリンダの圧力室内に負圧が発生する場合であっても、圧力室内およびその圧力室とブレーキ弁との間の油路内に介在された作動油の流出がブレーキ弁により抑制されるので、上記圧力室内の負圧に起因して油圧シリンダの一対のピストン間に形成される隙間が拡大するのを抑制することができる。そのため、摩擦クラッチを開放させるための作動油の供給に伴う油圧シリンダの圧力室内の油圧の上昇開始が早まるので、摩擦クラッチの開放作動の応答性を向上させることができる。
 また、請求項2にかかる発明の車両用摩擦クラッチの油圧制御装置によれば、前記開放圧は、前記油圧シリンダから作動油が流出させられる時の作動油の慣性、又は前記車両の挙動により上記作動油に加えられる加速度により前記油圧シリンダ内に負圧が発生するときに前記ブレーキ弁の前記油圧シリンダ側に加えられる圧力値よりも大きい値であることから、上記負圧の発生によりブレーキ弁の油圧シリンダ側に加えられる力によってもブレーキ弁は開かず、上記負圧に起因して油圧シリンダの圧力室から作動油が流出してその油圧シリンダの一対のピストン間の隙間が拡大するのを防止することができるので、摩擦クラッチを開放させるための作動油の供給に伴う油圧シリンダの圧力室内の油圧の上昇開始が早まり、摩擦クラッチの開放作動の応答性を向上させることができる。
 また、請求項3にかかる発明の車両用摩擦クラッチの油圧制御装置によれば、前記摩擦クラッチを開放させるために油圧源からの作動油を前記油圧シリンダへ供給し、その摩擦クラッチを係合させるために前記油圧シリンダ内の作動油を流出させる流量制御弁を、含むことから、上記流量制御弁を機械的または電気的に制御することで摩擦クラッチの作動を制御することができる。
 また、請求項4にかかる発明の車両用摩擦クラッチの油圧制御装置によれば、前記ブレーキ弁は、前記流量制御弁と前記油圧シリンダとの間を接続する制御油路に設けられたものであり、前記制御油路において前記ブレーキ弁と並列に設けられ、前記流量制御弁から前記油圧シリンダに向かう作動油の流通を許可する一方向弁をさらに含むことから、ブレーキ弁が油圧制御装置において油圧シリンダにより近い位置である制御油路に設けられることで油圧シリンダの圧力室内に発生する負圧がより一層低減されて、油圧シリンダの一対のピストン間に形成される隙間の拡大がより抑制されるという効果を享受しつつも、摩擦クラッチを開放させるために油圧シリンダに供給される作動油の流通が阻害されないので、摩擦クラッチの開放作動の応答性をより向上させることができる。例えば、摩擦クラッチを開放作動させるときにエンストが生じる可能性が高い場合であっても、摩擦クラッチがより早く開放されることでエンストを防止することができる。
 また、請求項5にかかる発明の車両用摩擦クラッチの油圧制御装置によれば、前記ブレーキ弁は、前記流量制御弁から作動油を流出させるドレン油路に設けられたものであることから、摩擦クラッチを開放させるために油圧シリンダに供給する作動油の流通が阻害されないので、摩擦クラッチの開放作動の応答性をより向上させることができ、例えば、摩擦クラッチを開放作動させるときにエンストが生じる可能性が高い場合であっても、摩擦クラッチがより早く開放されることでエンストを防止することができる。
 また、請求項6にかかる発明の車両用摩擦クラッチの油圧制御装置によれば、前記ブレーキ弁と並列に設けられた絞りを含むことから、ブレーキ弁が開かない場合であっても、油圧シリンダから絞りを通して油圧シリンダの一対のピストン間に微隙間が形成可能な程度に作動油を流出させることができるので、例えばエンジン等の駆動源の振動が油圧シリンダの一対のピストンを介して油圧シリンダの圧力室を油密に封止するシール部材に伝達することを抑制することができ、そのシール部材の耐久性を向上させることができる。
 また、請求項7にかかる発明の車両用摩擦クラッチの油圧制御装置によれば、前記ブレーキ弁および前記一方向弁を複合的に備え、それらブレーキ弁および一方向弁としてそれぞれ機能する複合弁装置を有して構成される。このようにすれば、ブレーキ弁および一方向弁を小さく構成することができるとともに、それが設けられる油路を短くすることができる。
 また、請求項8にかかる発明の車両用摩擦クラッチの油圧制御装置によれば、前記ブレーキ弁、前記絞り、および前記一方向弁を複合的に備え、それらブレーキ弁、前記絞り、および一方向弁としてそれぞれ機能する複合弁装置を有して構成される。このようにすれば、ブレーキ弁、前記絞り、および一方向弁を小さく構成することができるとともに、それが設けられる油路を短くすることができる。
 ここで、好適には、前記ブレーキ弁は、油圧シリンダの圧力室に可及的に近い位置に設けられる。例えば、油圧シリンダの圧力室とその圧力室へ作動油を供給するための配管との間に設けられる。このようにすれば、油圧シリンダから作動油が流出させられる時の作動油の慣性、又は車両の挙動により作動油に加えられる加速度により油圧シリンダの圧力室内に発生する負圧がより一層低減されるので、上記圧力室内の負圧に起因して油圧シリンダの一対のピストン間に形成される隙間が拡大するのをより抑制することができる。
 また、好適には、前記複合弁装置は、前記小弁子を第2着座面に向かって所定の付勢力で付勢するスプリングを備える。このようにすれば、例えば小弁子が自重により第2着座面に着座するように構成されたものと比較して小弁子を安定的に作動させることが可能となるとともに、複合弁装置の設置性が高まる。例えば、振動等により小弁子が動くことで一方向弁の作動が不安定になるのを防止することができる。そして、例えば、小弁子が第2着座面に対して下に位置するように複合弁装置を設置することができる。
 本明細書中において、並列とは、2つの部材の両端子同士を相互に接続することを意味する。したがって、ブレーキ弁と絞りとが並列に設けられるとは、ブレーキ弁および絞りの油圧シリンダ側のポートが相互に接続されるとともに油圧シリンダとは反対側のポートが相互に接続されることを意味する。また、ブレーキ弁と一方向弁とが並列に設けられるとは、ブレーキ弁および一方向弁の油圧シリンダ側のポートが相互に接続されるとともに油圧シリンダとは反対側のポートが相互に接続されることを意味する。
本発明の一実施例の車両用摩擦クラッチの油圧制御装置と、それが適用された車両用駆動装置とを示す模式図である。 図1の車両用摩擦クラッチおよびその周辺部位を示す断面図である。 図1に示すブレーキ弁および絞りを複合的に備える複合弁装置の一例を具体的に示す断面図であって、絞り流通状態を示す図である。 図1に示すブレーキ弁および絞りを複合的に備える複合弁装置の一例を具体的に示す断面図であって、開放流通状態を示す図である。 本発明の他の実施例の油圧制御装置と、それが適用された車両用駆動装置とを示す模式図である。 図5に示すクラッチシリンダ、そのクラッチシリンダの配管接続部に接続された複合弁装置、およびその複合弁装置に接続された金属配管の一部を示す断面図である。 図6に示す複合弁装置とその一端部に接続された金属配管の一部とを示す断面図である。 図7のVIII-VIII矢視部断面を示す断面図である。 図7に示す複合弁装置において、円筒状弁子が第1着座面に着座し且つ小弁子が第2着座面から離隔させられてストッパ部材の凸部に当接させられた状態の複合弁装置を示す断面図である。 図7に示す複合弁装置において、小弁子が第2着座面に着座し且つ円筒状弁子が第1着座面から離隔させられてその小径部がばね受け部材に当接させられた状態の複合弁装置を示す断面図である。 本発明の他の実施例の複合弁装置とその一端部に接続された金属配管の一部とを示す断面図であって、実施例2の図7に対応する図である。 図11のXII-XII矢視部断面を示す断面図である。 図11に示す複合弁装置において、円筒状弁子が第1着座面に着座し且つ小弁子が第2着座面から離隔させられてばね受け部材に当接させられた状態の複合弁装置を示す断面図である。 図11に示す複合弁装置において、小弁子が第2着座面に着座し且つ円筒状弁子が第1着座面から離隔させられてその小径部がばね受け部材に当接させられた状態の複合弁装置を示す断面図である。 本発明の他の実施例の油圧制御装置と、それが適用された車両用駆動装置とを示す模式図である。
 以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
 図1は、本発明の一実施例の車両用摩擦クラッチ(以下、摩擦クラッチと記載する)10の油圧制御装置12と、それが適用された車両用駆動装置(以下、駆動装置と記載する)14とを示す模式図である。図1において、駆動装置14は、駆動源としてのエンジン16の出力が摩擦クラッチ10を介して変速機18へ伝達され、その変速機18の出力軸20から図示しないプロペラシャフトおよび差動歯車装置などを介して左右一対の駆動輪に伝達されるように構成されている。本実施例の駆動装置14は、前置エンジン後輪駆動方式(FR)の車両に好適に用いられるものである。
 変速機18は、例えば、良く知られた平行軸式常時噛合型変速機構を有する有段式変速機であり、電子制御装置22が備える変速段制御部22aによって駆動されるシフトアクチュエータ24により変速段が切り替えられる。上記切り替えられる変速段は、例えば、車両の運転者により操作される変速段指示装置23から出力された変速段指示信号に基づいて判断される。
 上記電子制御装置22は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを複数含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことにより、シフトアクチュエータ24の駆動制御や後述の流量制御弁62の駆動制御などを実行する。本実施例の電子制御装置22は、変速機18の変速段を切り替えるためにシフトアクチュエータ24を駆動させる変速段制御部22aと、後述のクラッチシリンダ40へ供給する作動油の流量およびクラッチシリンダ40から流出させる作動油の流量を制御するために流量制御弁62を駆動させる油圧制御部22bとを備えている。
 図2は、前記摩擦クラッチ10およびその周辺部位を示す断面図である。図2において、摩擦クラッチ10は、良く知られた車両用円板クラッチであって、筒状のクラッチハウジング26内において図示しないクランク軸に連結されたフライホイール30と変速機18の入力軸28との間の動力伝達経路に設けられている。この摩擦クラッチ10では、ダイヤフラムスプリング32の内周端部に対して後述のクラッチシリンダ40により操作力すなわちクラッチ操作力が作用しない場合には、プレッシャープレート34がダイヤフラムスプリング32の外周端部によりフライホイール30側へ押圧されることでクラッチディスク36がプレッシャープレート34とフライホイール30との間で挟圧される。そして、クラッチディスク36とフライホイール30とが摩擦材38を介して完全に係合させられる。これにより、摩擦クラッチ10は動力伝達状態とされる。図2はその状態を表している。また、摩擦クラッチ10では、ダイヤフラムスプリング32の内周端部がクラッチシリンダ40によりエンジン16側に操作される場合には、その操作力すなわちクラッチ操作力に応じてプレッシャープレート34のクラッチディスク36への押圧力が変化してクラッチディスク36とフライホイール30とが半係合状態から開放状態までの間で変化させられる。そして、上記プレッシャープレート34のクラッチディスク36への押圧力が無くなることによりクラッチディスク36とフライホイール30とが完全に開放させられる。これにより、摩擦クラッチ10は動力遮断状態とされる。
 ダイヤフラムスプリング32の内周端部の変速機18側には、本発明の油圧シリンダに相当するクラッチシリンダ40が設けられている。このクラッチシリンダ40は、入力軸28と同軸に設けられた良く知られた所謂同軸型のものであり、入力軸28の外周側においてクラッチハウジング26の変速機18との隔壁26aの中央部に固定された筒状のシリンダハウジング42を備えている。そして、そのシリンダハウジング42内において入力軸28の外周側に形成され、油圧制御装置12から供給された作動油を受け入れる円環状の圧力室44と、シリンダハウジング42内に摺動可能に嵌め入れられ、レリーズベアリング45を介して摩擦クラッチ10へのクラッチ操作力を出力する円環状の出力側ピストン46と、その出力側ピストン46から離間可能に出力側ピストン46の圧力室44側に設けられ、その圧力室44内のクラッチ作動油圧を受けて出力側ピストン46へ推力を伝達する円環状の圧力室側ピストン48と、その圧力室側ピストン48の圧力室44側に設けられ、圧力室44を油密に封止するためのシール部材50とを備えている。上記出力側ピストン46および圧力室側ピストン48は、本発明における軸心O方向に分割されたピストンに相当するものである。
 上記シリンダハウジング42は、圧力室44の外周側において半径方向外側へ突設され、油圧制御装置12の制御油路52を構成する金属配管53に接続されると共にその制御油路52と圧力室44とを連通させる連通孔54が形成された配管接続部42aを備えている。
 このクラッチシリンダ40では、油圧制御装置12により作動油が圧力室44に供給されるか或いは圧力室44から流出させられることで増減させられる圧力室44のクラッチ作動油圧に従って、出力側ピストン46がダイヤフラムスプリング32の内周端部に対して接近或いは離間させられる。そして、その出力側ピストン46によりダイヤフラムスプリング32の内周端部に圧力室44のクラッチ作動油圧に応じたクラッチ操作力が伝達されるようになっている。摩擦クラッチ10は、クラッチシリンダ40により駆動される。
 なお、本実施例では、クラッチシリンダ40のピストンは、軸心O方向に分割されて相互に離間可能な出力側ピストン46および圧力室側ピストン48から構成されている。そして、出力側ピストン46が摩擦クラッチ10の完全係合状態に対応する位置に位置させられたときには、エンジン16の振動が摩擦クラッチ10を介して出力側ピストン46に伝達される場合であっても、出力側ピストン46と圧力室側ピストン48との間に微隙間が形成されることで上記振動が圧力室側ピストン48およびシール部材50に伝達するのを防止することができるようになっている。
 図1に戻って、油圧制御装置12は、油圧源60と、摩擦クラッチ10を開放させるために油圧源60から作動油をクラッチシリンダ40の圧力室44へ供給し、摩擦クラッチ10を係合させるためにクラッチシリンダ40の圧力室44内の作動油を流出させる流量制御弁62と、電子制御装置22の油圧制御部22bとを備えている。
 上記油圧源60は、オイルタンク64から作動油を圧送する電動式のオイルポンプ66と、そのオイルポンプ66の吐出口に逆止弁68を介して接続された吐出油路70に設けられたアキュムレータ72とを備えている。
 前記流量制御弁62は、吐出油路70に接続されたポンプポートPと、制御油路52に接続された制御ポートCと、ドレン油路74に接続されたドレンポートDとを備え、入力された駆動電流に応じて、作動油がポンプポートPから制御ポートCへ流通する状態および制御ポートCからドレンポートDへ流通する状態を相互に切り替えると共にその流通させられる作動油の流量を連続的に制御するものである。上記制御油路52は、クラッチシリンダ40の圧力室44と流量制御弁62との間を接続する油路である。
 上記ドレン油路74は、流量制御弁62からオイルタンク64へ作動油を流出させる油路である。このドレン油路74は、クラッチシリンダ40側の圧力が予め設定された所定の開放圧(クラッキング圧)を超えるとクラッチシリンダ40側からオイルタンク64側への作動油の流出を許容するブレーキ弁76と、そのブレーキ弁76と並列に設けられた絞り78とを備えている。なお、ドレン油路74は、本発明において摩擦クラッチ10を係合させるためにクラッチシリンダ(油圧シリンダ)40から作動油が流出させられる油路に相当するものである。本実施例の油圧制御装置12は、上記ブレーキ弁76および絞り78としてそれぞれ機能する複合弁装置80を備えている。
 図3および図4は、図1に示すブレーキ弁76および絞り78を複合的に備える複合弁装置80の一例を具体的に示す断面図である。図3および図4に示すように、複合弁装置80は、ドレン油路74を構成する一対の金属配管82のうちオイルタンク64側の金属配管82の開口内に円筒部材84が嵌め入れられることで設けられた円筒状の弁室86を有している。上記円筒部材84は、その流量制御弁62側すなわちクラッチシリンダ40側の端面に形成されたテーパ面88に対して一対の金属配管82のうちクラッチシリンダ40側の金属配管82の端部に形成されたテーパ面90が押し付けられた状態で、管接続用ナット92により固定されている。複合弁装置80は、弁室86内においてその弁室86の内壁面94に対して所定の間隙を隔てた状態で軸心方向の移動可能に収容され、その弁室86内のクラッチシリンダ40側に形成された第1着座面96に着座離隔可能に設けられた円筒状弁子98と、前記開放圧を設定するために円筒状弁子98を第1着座面96に向かって所定の付勢力で付勢するスプリング100と、円筒状弁子98の軸心を貫通するように形成され、その円筒状弁子98が第1着座面96に着座した状態でも円筒状の弁室86を所定の絞り流通状態とする絞り穴102とを備えている。この複合弁装置80では、絞り穴102が前記絞り78として機能し、また、円筒部材84、円筒状弁子98、およびスプリング100が前記ブレーキ弁76として機能する。
 上記円筒状弁子98は、その外周部において周方向の等間隔で半径方向外側へ突き出すと共に軸心方向に連なる複数のガイド部98aを備えている。そして、その円筒状弁子98のオイルタンク64側に位置する円筒部材84のオイルタンク64側の開口内には、底部がオイルタンク64側に位置させられた有底円筒状のばね受け部材104が嵌め入れられている。上記スプリング100は、予め定められた所定の予荷重を付与された状態で円筒状弁子98とばね受け部材104との間に介在させられている。なお、ばね受け部材104の底部には、作動油の流通孔として機能する複数の貫通孔106が設けられている。そして、ばね受け部材104は、図4に示すようにスプリング100の予荷重に抗して軸心方向に移動させられた円筒状弁子98のガイド部98aと当接することでその円筒状弁子98のオイルタンク64側への移動を規制する
 図3は、円筒状弁子98が第1着座面96に着座させられた状態の複合弁装置80を示す断面図である。この図3に示す状態では、図中に矢印aで示すように、作動油が絞り穴102を通して移動することで弁室86が所定の絞り流通状態とされる。
 これに対して図4は、スプリング100の予荷重に抗して円筒状弁子98が第1着座面96から離隔させられてばね受け部材104の端面に当接させられた状態の複合弁装置80を示す断面図である。この図4に示す状態では、図中に矢印bで示すように、作動油が絞り穴102に加えて円筒状弁子98と円筒部材84との間において周方向に連なる複数の隙間を通して流量制御弁62(図1参照)側からオイルタンク64(図1参照)側へ流通することで、ブレーキ弁76が開放流通状態とされる。
 ここで、クラッチシリンダ40から流量制御弁62を通して作動油が流出させられる時のクラッチシリンダ40の圧力室44とブレーキ弁76との間の油路内の作動油の慣性によりクラッチシリンダ40の圧力室44内に負圧が発生するときにおいて、ブレーキ弁76のクラッチシリンダ40側に加えられる最大圧力値を第1圧力値とする。また、車両の挙動により圧力室44とブレーキ弁76との間の油路内の作動油に加えられる加速度によりクラッチシリンダ40の圧力室44内に負圧が発生するときにおいて、ブレーキ弁76のクラッチシリンダ40側に加えられる最大圧力値を第2圧力値とする。前記開放圧は、例えばスプリング100の予荷重を設定することで上記第1圧力値および第2圧力値のうち大きい値よりも大きくなるように設定される。上記第1圧力値および第2圧力値は、例えば実験的に求められる。したがって、例えば図4に示すように円筒状弁子98が第1着座面96から離隔させられるのは、円筒状弁子98のクラッチシリンダ40側に加えられる圧力値が上記開放圧を超えるときである。
 本実施例の摩擦クラッチ10の油圧制御装置12によれば、摩擦クラッチ10を係合させるためにクラッチシリンダ(油圧シリンダ)40から流量制御弁62を通して作動油が流出させられるドレン油路74に設けられ、クラッチシリンダ40側の圧力が所定の開放圧を超えるとそのクラッチシリンダ40側からオイルタンク64側への作動油の流出を許容するブレーキ弁76を含む。このため、クラッチシリンダ40から作動油が流出させられる時の作動油の慣性、又は車両の挙動により作動油に加えられる加速度によりクラッチシリンダ40の圧力室44内に負圧が発生する場合であっても、圧力室44内およびその圧力室44とブレーキ弁76との間の油路内に介在された作動油の流出がブレーキ弁76により抑制されるので、上記圧力室44内の負圧に起因するクラッチシリンダ40の出力側ピストン46と圧力室側ピストン48との間に形成される隙間が拡大するのを抑制することができる。そのため、摩擦クラッチ10を開放させるための圧力室44への作動油の供給に伴うクラッチシリンダ40の圧力室44の昇圧開始が早まるので、摩擦クラッチ10の開放作動の応答性を向上させることができる。
 また、前記開放圧は、スプリング100の予荷重を設定することにより、クラッチシリンダ40から作動油が流出させられる時の作動油の慣性、および車両の挙動により上記作動油に加えられる加速度によりクラッチシリンダ40内に負圧が発生するときにブレーキ弁76の円筒状弁子98のクラッチシリンダ側に加えられる最大圧力値(第1圧力値および第2圧力値のうち大きい値)よりも大きくなるように設定されることから、上記負圧の発生により円筒状弁子98のクラッチシリンダ40側に加えられる力によってもブレーキ弁76は開かず、上記負圧に起因してクラッチシリンダ40の圧力室44から作動油が流出してそのクラッチシリンダ40の出力側ピストン46と圧力室側ピストン48との間の隙間が拡大するのを防止することができる。そのため、摩擦クラッチ10を開放させるためのクラッチシリンダ40への作動油の供給に伴う圧力室44内の昇圧開始が早まるので、摩擦クラッチ10の開放作動の応答性を向上させることができる。
 また、ブレーキ弁76と並列に設けられた絞り78を含むことから、ブレーキ弁76が開かない場合であっても、クラッチシリンダ40の圧力室44から絞り78を通してそのクラッチシリンダ40の出力側ピストン46と圧力室側ピストン48との間に振動伝達抑制のための微隙間が形成可能な程度に作動油を移動させることができるので、例えばエンジン16等の振動が出力側ピストン46および圧力室側ピストン48を介してシール部材50に伝達することを抑制することができ、そのシール部材50の耐久性を向上させることができる。
 また、摩擦クラッチ10を開放させるために油圧源60からの作動油をクラッチシリンダ40の圧力室44へ供給し、その摩擦クラッチ10を係合させるためにクラッチシリンダ40の圧力室44内の作動油を流出させる流量制御弁62を、含むことから、その流量制御弁62を電気的に制御することで摩擦クラッチ10の作動を制御することができる。具体的には、流量制御弁62に入力される駆動電流を調節することで、その駆動電流に応じて、油圧源60からクラッチシリンダ40へ作動油を供給する状態およびクラッチシリンダ40からオイルタンク64へ作動油を流出させる状態を切り替えると共に、その流通させられる作動油の流量を連続的に制御することで、クラッチシリンダ40の摩擦クラッチ10に対するクラッチ操作力を制御し、摩擦クラッチ10の作動を制御することができる。
 また、ブレーキ弁76がドレン油路74に設けられることで、摩擦クラッチ10を開放させるためにクラッチシリンダ40に供給する作動油の流通が阻害されないので、摩擦クラッチ10の開放作動の応答性をより向上させることができ、例えば、摩擦クラッチ10の開放作動の際にエンストが生じる可能性が高いような場合であっても、摩擦クラッチ10がすばやく開放されることでエンストを防止することができる。
 また、ブレーキ弁76および絞り78としてそれぞれ機能する複合弁装置80が設けられていることから、それらブレーキ弁76および絞り78を小さく構成することができ、ドレン油路74を短くすることができる。
 また、本実施例のように前置エンジン後輪駆動方式(FR)の車両では、油圧制御装置12の油路たとえば制御油路52やドレン油路74が車両の前後方向へ長くなり、車両の前後加速によりクラッチシリンダ40の圧力室44内およびそれに連通された油路内の作動油に加えられる前後加速度が大きくなるため、上記前後加速度に起因して圧力室44内に発生する負圧も大きくなるが、そのような場合であっても好適に出力側ピストン46と圧力室側ピストン48との間に形成される隙間の拡大を抑制することができる。
 次に、本発明の他の実施例について説明する。なお、以下の実施例の説明において、実施例相互に重複する部分については、同一の符号を付してその説明を省略する。
 図5は、本発明の他の実施例の油圧制御装置12と、それが適用された車両用駆動装置14とを示す模式図である。図5に示すように、本実施例の油圧制御装置12のドレン油路74は、複合弁装置80を備えず、流量制御弁62のドレンポートDとオイルタンク64とを常時連通状態で接続している。また、本実施例の制御油路52は、ブレーキ弁76と、そのブレーキ弁76に並列に設けられた絞り78と、ブレーキ弁76および絞り78に対して並列に設けられ、図5中において矢印cで示す流量制御弁62からクラッチシリンダ40に向かう作動油の流通は許可するが、図5中において矢印dで示すクラッチシリンダ40から流量制御弁62に向かう作動油の流通を阻止する一方向弁110とを備えている。なお、本実施例では、制御油路52が本発明において摩擦クラッチ10を係合させるためにクラッチシリンダ40から作動油が流出させられる油路に相当する。本実施例の油圧制御装置12は、上記ブレーキ弁76、絞り78、および一方向弁110としてそれぞれ機能する複合弁装置112を備えている。
 図6は、図5に示すクラッチシリンダ40、そのクラッチシリンダ40の配管接続部42aに接続された複合弁装置112、およびその複合弁装置112に接続された金属配管53の一部を示す断面図である。図6に示すように、本実施例の配管接続部42aは、圧力室44の外周側において半径方向外側の下方へ突き出して設けられている。複合弁装置112は、配管接続部42aと金属配管53とを相互に連結すると共に制御油路52の一部を構成する円筒部材113を備えている。
 図7は、図6に示す複合弁装置112とその一端部に接続された金属配管53の一部とを示す断面図である。また、図8は、図7のVIII-VIII矢視部断面を示す断面図である。図7および図8において、前記複合弁装置112は、円筒部材113内に形成された円筒状の弁室114内において、その弁室114の内壁面115に対して所定の間隙を隔てた状態で軸心方向の移動可能に収容され、その弁室114内のクラッチシリンダ40側に形成された第1着座面116に着座離隔可能に設けられた円筒状弁子118を備えている。この円筒状弁子118は、その外周部において周方向の等間隔で半径方向外側へ突き出すと共に軸心方向に連なる複数のガイド部118aと、内壁面115およびスプリング120の内径よりも小径であって、流量制御弁62側すなわちオイルタンク64側に向けて軸心方向に突き出す円筒状の小径部118bとを有している。上記小径部118bには、周方向に等間隔で半径方向に貫通させられた作動油の流通孔として機能する複数の貫通孔120が設けられている。
 また、複合弁装置112は、円筒状弁子118のクラッチシリンダ40側とは反対側すなわち流通制御弁62側に設けられた円環板状のばね受け部材122と円筒状弁子118との間に介在させられて、前記開放圧を設定するために円筒状弁子118を第1着座面116に向かって所定の付勢力で付勢するスプリング124を備えている。上記ばね受け部材122には、軸心方向に貫通させられた作動油の流通孔として機能する貫通孔126が設けられている。
 また、複合弁装置112は、円筒状弁子118内のクラッチシリンダ40側とは反対側に設けられたテーパ状の第2着座面128に着座離隔可能に円筒状弁子118内に収容された球状の小弁子130と、円筒状弁子118の側壁としての側壁部118cを貫通するように形成され、円筒状弁子118が第1着座面116に着座し且つ小弁子130が第2着座面128に着座した状態でも弁室114を所定の絞り流通状態とする絞り穴132とを備えている。上記小弁子130のクラッチシリンダ40側であって円筒状弁子118のクラッチシリンダ40側の開口内には、クラッチシリンダ40側に移動させられた小弁子130と当接することでその小弁子130が円筒状弁子118から抜け出すことを防止するストッパ部材134が設けられている。このストッパ部材134は、小弁子130と当接させられた状態であっても円筒状弁子118内の作動油の流通を阻害しないように形成されている。具体的には、ストッパ部材118は、円筒状弁子118の開口内に嵌め着けられた短円筒部134aと、その内周部から周方向の等間隔に半径方向内側に向けて突き出す複数の凸部134bとを備えている。上記複数の凸部134bは、円筒状弁子118の軸心に直交する方向において対向する一対の凸部134b間の間隔が小弁子130の直径よりも小さくなるように配設されている。小弁子130は、ストッパ部材118の凸部134bに当接することで円筒状弁子118内から抜け出ないようになっている。
 このように構成される複合弁装置112では、絞り穴132が前記絞り78として機能し、また、円筒部材113の第1着座面116、円筒状弁子118、およびスプリング124が前記ブレーキ弁76として機能し、また、円筒状弁子118の第2着座面128および小弁子130が一方向弁110として機能する。
 図7は、円筒状弁子118が第1着座面116に着座し且つ小弁子130が第2着座面128に着座した状態の複合弁装置112を示す断面図である。この図7に示す状態では、図中に矢印eで示すように、作動油が絞り穴132を通して移動することで弁室114が所定の絞り流通状態とされる。
 これに対して図9は、円筒状弁子118が第1着座面116に着座し且つ小弁子130が第2着座面128から離隔させられてストッパ部材134の凸部134bに当接させられた状態の複合弁装置112を示す断面図である。この図9に示す状態では、図中に矢印fで示すように、作動油が絞り穴132に加えて小弁子130とストッパ部材134の凸部134bとの間に形成される複数の隙間を通して流量制御弁62(図5参照)側からクラッチシリンダ40(図5参照)側へ流通することで、一方向弁110の開放流通状態とされる。
 また、図10は、小弁子130が第2着座面128に着座し且つ円筒状弁子118がスプリング130の予荷重に抗して第1着座面116から離隔させられてその小径部118bがばね受け部材122に当接させられた状態の複合弁装置112を示す断面図である。この図10に示す状態では、図中に矢印gで示すように、作動油が絞り穴132に加えて円筒状弁子118と円筒部材113との間において周方向に連なる複数の隙間、および貫通孔126をそれぞれ通してクラッチシリンダ40(図5参照)側から流量制御弁62(図5参照)側へ流通することで、ブレーキ弁76の開放流通状態とされる。
 なお、本実施例の複合弁装置112においても、クラッチシリンダ40の圧力室44とブレーキ弁76との間の圧力が所定の開放圧を超えると圧力室44からの作動油の流出が許容されるようになっている。そして、例えば、スプリング124の予荷重を設定することで前記開放圧が前記第1圧力値および第2圧力値のうち大きい値よりも大きくなるように設定される。したがって、例えば図10に示すように円筒状弁子118が第1着座面116から離隔させられるのは、円筒状弁子118およびストッパ部材134のクラッチシリンダ40側に加えられる圧力値が上記開放圧を超えるときである。
 本実施例の摩擦クラッチ10の油圧制御装置12によれば、上記以外の構成は前述の実施例1と同じであり、摩擦クラッチ10を係合させるためにクラッチシリンダ40から作動油が流出させられるドレン油路74としての制御油路52に設けられ、クラッチシリンダ40側の圧力が所定の開放圧を超えるとそのクラッチシリンダ40側からオイルタンク64側への作動油の流出を許容するブレーキ弁76を含むことから、クラッチシリンダ40の圧力室44内に負圧が発生する場合であっても、その負圧に起因するクラッチシリンダ40の出力側ピストン46と圧力室側ピストン48との間に形成される隙間の拡大を抑制することができる。そのため、実施例1と同様に、摩擦クラッチ10を開放させるための圧力室44への作動油の供給開始とともにその圧力室44内の昇圧が開始されるので、摩擦クラッチ10の開放作動の応答性を向上させることができるという効果が得られる。
 また、ブレーキ弁76は、流量制御弁62とクラッチシリンダ40との間を接続する制御油路52に設けられたものであり、その制御油路52においてブレーキ弁76および絞り78とそれぞれ並列に設けられ、流量制御弁62からクラッチシリンダ40に向かう作動油の流通を許可する一方向弁110を含むことから、ブレーキ弁76がクラッチシリンダ40により近い位置に設けられることでクラッチシリンダ40の圧力室44内に発生する負圧がより一層低減されて、クラッチシリンダ40の出力側ピストン46と圧力室側ピストン48との間に形成される隙間の拡大がより抑制されるという効果を享受しつつ、摩擦クラッチ10を開放させるためにクラッチシリンダ40に供給される作動油の流通が阻害されないので、摩擦クラッチ10の開放作動の応答性をより向上させることができる。例えば、摩擦クラッチ10の開放作動の際にエンストが生じる可能性が高いような場合であっても、摩擦クラッチ10がすばやく開放されることでエンストを防止することができる。
 また、ブレーキ弁76、絞り78、および一方向弁110としてそれぞれ機能する複合弁装置112が設けられていることから、それらブレーキ弁76、絞り78、および一方向弁110を小型に構成することができ、制御油路52を短くすることができる。
 図11は、本発明の他の実施例の複合弁装置140とその両端部に接続されたシリンダハウジング42の配管接続部42aおよび金属配管53の一部とを示す断面図であって、前述の実施例2の図7に対応する図である。また、図12は、図11のXII-XII矢視部断面を示す断面図である。図11および図12において、複合弁装置140は、配管接続部42aと金属配管53とを相互に連結すると共に制御油路52の一部を構成する円筒部材142を備えている。
 また、複合弁装置140は、円筒部材142内に形成された円筒状の弁室144内において、その弁室144の内壁面146に対して所定の間隙を隔てた状態で軸心方向の移動可能に収容され、その弁室144内のクラッチシリンダ40側に形成された第1着座面148に着座離隔可能に設けられた円筒状弁子150を備えている。本実施例の円筒状弁子150は、前述の実施例2の円筒状弁子118に比較して、ガイド部150a、小径部150b、および側壁部118cの軸心方向の長さが長く形成され、また、小径部150bの軸心方向の2箇所に周方向の等間隔で半径方向に貫通させられた作動油の流通孔として機能する複数の貫通孔152が設けられていること以外は、同じ構成である。
 また、複合弁装置140は、ばね受け部材122と円筒状弁子150との間に介在させられて、前記開放圧を設定するために円筒状弁子150を第1着座面148に向かって所定の付勢力で付勢するスプリング1154と、円筒状弁子150内のクラッチシリンダ40側とは反対側に設けられたテーパ状の第2着座面156に着座離隔可能に円筒状弁子150内に収容された段付円筒状の小弁子158と、円筒状弁子150の側壁としての側壁部150cを貫通するように形成され、円筒状弁子150が第1着座面148に着座し且つ小弁子158が第2着座面156に着座した状態でも弁室144を所定の絞り流通状態とする絞り穴160とを備えている。
 上記小弁子158は、クラッチシリンダ40側が小径となる段付円筒状部材であって、クラッチシリンダ40側とは反対側の端面に第2着座面156と対向するテーパ状の当接面162を有しており、所謂ポペットとも称されるものである。この小弁子158のクラッチシリンダ40側であって円筒状弁子150のクラッチシリンダ側の開口内には、円板状のばね受け部材164が嵌め着けられている。そして、複合弁装置140は、ばね受け部材164と小弁子158の段付部端面との間に予め定められた予荷重と付与された状態で介在させられ、小弁子158を第2着座面156に向かって所定の付勢力で付勢するスプリング166を備えている。上記ばね受け部材164は、スプリング166の予荷重に抗してクラッチシリンダ40側に移動させられた小弁子158と当接することでその小弁子158が円筒状弁子150から抜け出すことを防止しつつも、その小弁子158と当接させられた状態において円筒状弁子150内の作動油の流通を阻害しないように形成されている。具体的には、ばね受け部材164は、軸心と平行な方向に貫通させられて作動油の流通孔として機能する複数の貫通孔168を有している。なお、
 このような複合弁装置140では、絞り穴160が前記絞り78として機能し、また、円筒部材142の第1着座面148、円筒状弁子150、およびスプリング154が前記ブレーキ弁76として機能し、また、円筒状弁子150の第2着座面156、小弁子158、およびスプリング166が一方向弁110として機能する。なお、本実施例では、スプリング166に付与される予荷重は、スプリング154に付与される予荷重よりも小さく設定される。これにより、一方向弁110の開放圧はブレーキ弁76の開放圧よりも小さくされる。
 図11は、円筒状弁子150が第1着座面148に着座し且つ小弁子158が第2着座面156に着座した状態の複合弁装置140を示す断面図である。この図11に示す状態では、図中に矢印hで示すように、作動油が絞り穴160を通して移動することで弁室144が所定の絞り流通状態とされる。
 これに対して図13は、円筒状弁子150が第1着座面148に着座し且つ小弁子158がスプリング166の予荷重に抗して第2着座面156から離隔させられてばね受け部材164に当接させられた状態の複合弁装置140を示す断面図である。この図13に示す状態では、図中に矢印iで示すように、作動油が絞り穴160に加えてストッパ部材164の貫通孔168を通して流量制御弁62(図5参照)側からクラッチシリンダ40(図5参照)側へ流通することで、一方向弁110の開放流通状態とされる。
 また、図14は、小弁子158が第2着座面156に着座し且つ円筒状弁子150がスプリング154の予荷重に抗して第1着座面148から離隔させられてその小径部150bがばね受け部材122に当接させられた状態の複合弁装置140を示す断面図である。この図14に示す状態では、図中に矢印jで示すように、作動油が絞り穴160に加えて円筒状弁子150と円筒部材42との間において周方向に連なる複数の隙間、および複数の貫通孔152をそれぞれ通してクラッチシリンダ40(図5参照)側から流量制御弁62(図5参照)側へ流通することで、ブレーキ弁76の開放流通状態とされる。
 なお、本実施例の複合弁装置140においても、クラッチシリンダ40の圧力室44とブレーキ弁76との間の圧力が所定の開放圧を超えると圧力室44からの作動油の流出が許容されるようになっている。そして、例えば、スプリング154の予荷重を設定することでブレーキ弁76の開放圧が前記第1圧力値および第2圧力値のうち大きい値よりも大きくなるように設定される。したがって、例えば図14に示すように円筒状弁子150が第1着座面148から離隔させられるのは、円筒状弁子150およびばね受け部材164のクラッチシリンダ40側に加えられる圧力値が上記開放圧を超えるときである。
 本実施例の摩擦クラッチ10の油圧制御装置12によれば、上記以外の構成は前述の実施例2と同じであることから、実施例1および2と同様に、クラッチシリンダ40の圧力室44内の負圧に起因するクラッチシリンダ40の出力側ピストン46と圧力室側ピストン48との間に形成される隙間の拡大を抑制することができ、摩擦クラッチ10の開放作動の応答性を向上させることができるという効果が得られる。
 また、本実施例の複合弁装置140は、小弁子158を円筒状弁子150の第2着座面156に向かって所定の付勢力で付勢するスプリング166を備えることから、例えば前述の実施例2のように小弁子130が自重により第2着座面128に着座するように構成されたものに比較して、一方向弁110を安定的に作動させることができると共に複合弁装置140の設置性が高まる。例えば、振動等によって小弁子158が動くことで一方向弁110の作動が不安定になることを防止することができる。また、本実施例では、小弁子158が第2着座面156に対して上に位置するように設置されているが、例えば、スプリング166による小弁子158への付勢力がその小弁子158の自重による力よりも大きくなるように設定されることで、小弁子158が第2着座面156に対して下に位置するように複合弁装置140を設置することも可能となる。
 以上、本発明の一実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、別の態様でも実施され得る。
 例えば、前述の実施例において、変速機18は、良く知られた平行軸式常時噛合型変速機構を有する有段式変速機であり且つ運転者により操作される変速段指示装置23により変速段が切り替えられる手動変速機であったが、例えば予め記憶された関係から例えば車速と駆動力関連値とに基づいて電子制御装置22により変速段が切り替えられる自動変速機であっても、また、例えばCVT等の無段変速機であってもよい。
 また、前述の実施例では、車両が前置エンジン後輪駆動方式(FR)のものであったが、例えば前置エンジン前輪駆動方式(FF)や後置エンジン後輪駆動方式(RR)等のその他の駆動方式の車両であってもよい。また、二輪駆動方式の車両に限らず、四輪駆動方式の車両であっても本発明が適用可能である。
 また、前述の実施例において、車両用駆動装置14は、エンジン16の後段側に順に摩擦クラッチ10、変速機18、図示しないプロペラシャフトおよび差動歯車装置を備えて構成されていたが、例えば、エンジン16の後段側に順に摩擦クラッチ10、上記プロペラシャフト、変速機18、および上記差動歯車装置を備え、車両後方に位置する変速機18に設けられたオイルポンプ66で発生させられたクラッチ作動油圧が、そのオイルポンプ66から車両前方に位置する摩擦クラッチ10に設けられたクラッチシリンダ40まで接続された制御油路52を通してそのクラッチシリンダ40まで供給されるように構成されてもよい。このような場合には、制御油路52が特に車両前後方向に長くなるために、クラッチシリンダ40から作動油が流出させられる時の制御油路52内の作動油の慣性、および車両の前方加速度により制御油路52内の作動油に加えられる加速度が大きくなる。そのため、クラッチシリンダ40の圧力室44内に発生する負圧が大きくなるが、そのような場合であっても、本発明によれば、上記圧力室44内の比較的大きな負圧に起因してクラッチシリンダ40の出力側ピストン46と圧力室側ピストン48との間に形成される隙間が拡大するのを抑制することができる。言い換えれば、上記のようにクラッチシリンダ40の圧力室44内に発生する負圧が大きいほど本発明の隙間の拡大を抑制するという効果が顕著に現れる。
 また、前述の実施例において、複合弁装置112および140は絞り穴132および160を備え、それら複合弁装置112および140は絞り78として機能するものであったが、必ずしも絞り穴132および160を備える必要はなく、それにより複合弁装置112および140が絞り78として機能する必要もない。
 また、前述の実施例において、開放圧は、前記第1圧力値および第2圧力値のうち大きい値よりも大きくなるように設定されていたが、必ずしもそのように設定する必要はない。例えば、第1圧力値よりも大きい値に設定されてもよいし、第2圧力値よりも大きい値に設定されてもよいし、それら第1圧力値や第2圧力値よりも小さい値に設定されてもよい。それでも一応の効果は得られる。
 また、前述の実施例3の複合弁装置112は、小弁子158の当接面162が第2着座面156よりも上に位置するように配設されていたが、必ずしもこのように配設する必要はない。例えば当接面162が第2着座面156よりも下に位置するように配設されてもよい。
 また、前述の実施例において、変速機18は、変速段指示装置23からの指示に従って作動するシフトアクチュエータ24により変速段が切り替えられるように構成されていたが、例えば、図15に示すように変速機18と機械的に連結された変速段指示装置23の操作に応じて変速段が切り替えられるように構成されてもよい。
 また、前述の実施例において、油圧制御装置12は、電動式のオイルポンプ66等を有する油圧源60を有し、作動油がその油圧源60から電気的に駆動させられる流量制御弁62を介してクラッチシリンダ40に供給されるように構成されていたが、例えば、図15に示すように、運転者により操作されるクラッチペダル170の操作量に応じてストロークさせられて油圧を発生させる良く知られたクラッチマスターシリンダ172を油圧源として備え、そのクラッチマスターシリンダ172からクラッチシリンダ40へ作動油が供給されるように構成されてもよい。
 また、前述の実施例において、クラッチシリンダ40は、ダイヤフラムスプリング32側から順に、出力側ピストン46と、圧力室側ピストン48と、シール部材50とを備えていたが、これに限らず、例えば、圧力室側ピストン48が備えられず、シール部材50が圧力室側ピストン48を兼ねて構成されてもよいし、また、圧力室側ピストン48とシール部材50とが一体的に構成されてもよいし、また、出力側ピストン46と圧力室側ピストン48とシール部材50とが一体的に構成されてもよい等、種々の態様が可能である。
 また、前述の実施例において、クラッチシリンダ40は、振動の伝達抑制のための微隙間が出力側ピストン46と圧力室側ピストン48との間に形成されるように構成されていたが、例えば、圧力室側ピストン48とシール部材50との間に形成されるように構成されてもよい。要するに、上記微間隙は、ダイヤフラムスプリング32とシール部材50との間に形成されるように構成されていればよい。
 なお、上述したのはあくまでも一実施形態であり、その他一々例示はしないが、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づいて種々変更、改良を加えた態様で実施することができる。
10:車両用摩擦クラッチ
12:油圧制御装置
40:クラッチシリンダ(油圧シリンダ)
46:出力側ピストン(ピストン)
48:圧力室側ピストン(ピストン)
52:制御油路(油圧シリンダから作動油が流出させられる油路)
60:油圧源
62:流量制御弁
74:ドレン油路(油圧シリンダから作動油が流出させられる油路)
76:ブレーキ弁
78:絞り
110:一方向弁
112,140:複合弁装置
114,144:弁室
115,146:内壁面
116,148:第1着座面
118,150:円筒状弁子
118c,150c:側壁部(側壁)
124,154:スプリング
128,156:第2着座面
130,158:小弁子
132,160:絞り穴
O:軸心

Claims (8)

  1.  軸心方向に分割されたピストンを有する油圧シリンダにより駆動される車両用摩擦クラッチの油圧制御装置であって、
    前記摩擦クラッチを係合させるために前記油圧シリンダから作動油が流出させられる油路に設けられ、該油圧シリンダ側の圧力が所定の開放圧を超えると前記油圧シリンダからの作動油の流出を許容するブレーキ弁を、含むことを特徴とする車両用摩擦クラッチの油圧制御装置。
  2.  前記開放圧は、前記油圧シリンダから作動油が流出させられる時の作動油の慣性、又は前記車両の挙動により該作動油に加えられる加速度により前記油圧シリンダ内に負圧が発生するときに前記ブレーキ弁の前記油圧シリンダ側に加えられる圧力値よりも大きい値であることを特徴とする請求項1の車両用摩擦クラッチの油圧制御装置。
  3.  前記摩擦クラッチを開放させるために油圧源からの作動油を前記油圧シリンダへ供給し、該摩擦クラッチを係合させるために該油圧シリンダ内の作動油を流出させる流量制御弁を、含むことを特徴とする請求項1または2の車両用摩擦クラッチの油圧制御装置。
  4.  前記ブレーキ弁は、前記流量制御弁と前記油圧シリンダとの間を接続する制御油路に設けられたものであり、
     前記制御油路において前記ブレーキ弁と並列に設けられ、前記流量制御弁から前記油圧シリンダに向かう作動油の流通は許可するが、該油圧シリンダから該流量制御弁に向かう作動油の流通を阻止する一方向弁を、さらに含むことを特徴とする請求項3の車両用摩擦クラッチの油圧制御装置。
  5.  前記ブレーキ弁は、前記流量制御弁から作動油を流出させるドレン油路に設けられたものであることを特徴とする請求項3の車両用摩擦クラッチの油圧制御装置。
  6.  前記ブレーキ弁と並列に設けられた絞りを、含むことを特徴とする請求項4の車両用摩擦クラッチの油圧制御装置。
  7.  前記制御油路に設けられた円筒状の弁室内において該弁室の内壁面に対して所定の間隙を隔てた状態で軸心方向の移動可能に収容され、該弁室内の前記油圧シリンダ側に形成された第1着座面に着座離隔可能に設けられた円筒状弁子と、前記開放圧を設定するために該円筒状弁子を前記第1着座面に向かって所定の付勢力で付勢するスプリングと、該円筒状弁子内の前記油圧シリンダ側とは反対側に設けられた第2着座面に着座離隔可能に該円筒状弁子内に収容された小弁子とを備え、前記ブレーキ弁、前記一方向弁としてそれぞれ機能する複合弁装置を、有することを特徴とする請求項4の車両用摩擦クラッチの油圧制御装置。
  8.  前記制御油路に設けられた円筒状の弁室内において該弁室の内壁面に対して所定の間隙を隔てた状態で軸心方向の移動可能に収容され、該弁室内の前記油圧シリンダ側に形成された第1着座面に着座離隔可能に設けられた円筒状弁子と、前記開放圧を設定するために該円筒状弁子を前記第1着座面に向かって所定の付勢力で付勢するスプリングと、該円筒状弁子内の前記油圧シリンダ側とは反対側に設けられた第2着座面に着座離隔可能に該円筒状弁子内に収容された小弁子と、前記円筒状弁子の側壁を貫通するように形成され、前記円筒状弁子が前記第1着座面に着座し且つ前記小弁子が前記第2着座面に着座した状態でも前記円筒状弁室を所定の絞り流通状態とする絞り穴とを備え、前記ブレーキ弁、前記絞り、前記一方向弁としてそれぞれ機能する複合弁装置を、有することを特徴とする請求項6の車両用摩擦クラッチの油圧制御装置。
PCT/JP2009/068693 2009-10-30 2009-10-30 車両用摩擦クラッチの油圧制御装置 WO2011052072A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011538170A JP5445588B2 (ja) 2009-10-30 2009-10-30 車両用摩擦クラッチの油圧制御装置
EP09850851.8A EP2495469B1 (en) 2009-10-30 2009-10-30 Hydraulic control device for friction clutch for vehicle
PCT/JP2009/068693 WO2011052072A1 (ja) 2009-10-30 2009-10-30 車両用摩擦クラッチの油圧制御装置
US13/505,141 US8851261B2 (en) 2009-10-30 2009-10-30 Hydraulic control device for vehicular friction clutch
CN200980162248.5A CN102597564B (zh) 2009-10-30 2009-10-30 车辆用摩擦离合器的液压控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068693 WO2011052072A1 (ja) 2009-10-30 2009-10-30 車両用摩擦クラッチの油圧制御装置

Publications (1)

Publication Number Publication Date
WO2011052072A1 true WO2011052072A1 (ja) 2011-05-05

Family

ID=43921513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068693 WO2011052072A1 (ja) 2009-10-30 2009-10-30 車両用摩擦クラッチの油圧制御装置

Country Status (5)

Country Link
US (1) US8851261B2 (ja)
EP (1) EP2495469B1 (ja)
JP (1) JP5445588B2 (ja)
CN (1) CN102597564B (ja)
WO (1) WO2011052072A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013006047A1 (de) * 2013-04-06 2014-10-09 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Drosselventil für eine hydraulische Kupplungsbetätigungseinrichtung
JP2015206426A (ja) * 2014-04-22 2015-11-19 キャタピラー エス エー アール エル スローリターンチェック弁
JP6059768B1 (ja) * 2015-06-18 2017-01-11 本田技研工業株式会社 クラッチ制御油圧回路
JP2017044320A (ja) * 2015-08-28 2017-03-02 本田技研工業株式会社 クラッチ操作装置
JP6330852B2 (ja) 2016-02-23 2018-05-30 マツダ株式会社 自動変速機
US10697500B2 (en) * 2017-11-03 2020-06-30 GM Global Technology Operations LLC Two path sealed clutch

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297852A (ja) * 1987-05-28 1988-12-05 Fuji Heavy Ind Ltd ロックアップトルコン付無段変速機の油圧制御装置
JPH01176816A (ja) * 1987-12-28 1989-07-13 Koyo Seiko Co Ltd 油圧式クラッチユニット
JPH07127664A (ja) * 1993-11-02 1995-05-16 Mitsubishi Agricult Mach Co Ltd 油圧クラツチ作動回路構造
JP2000085413A (ja) * 1998-09-11 2000-03-28 Toyota Motor Corp 自動クラッチ制御装置
JP2002340031A (ja) * 2001-05-21 2002-11-27 Koyo Seiko Co Ltd 油圧式クラッチ遮断装置
JP2008190718A (ja) 2007-02-07 2008-08-21 Valeo Embrayages 油圧制御解除装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3643596B2 (ja) * 1994-03-29 2005-04-27 ルーク リーミントン リミテッド アクチュエーションシステム及び機構
JPH09206992A (ja) 1996-01-31 1997-08-12 Sugino Mach Ltd 等方加圧装置用圧力容器
US6146311A (en) * 1999-07-06 2000-11-14 General Motors Corporation Automatic transmission hydraulic circuit
US6644350B1 (en) * 2000-05-26 2003-11-11 Acutex, Inc. Variable pressure solenoid control valve
JP3866907B2 (ja) * 2000-07-21 2007-01-10 株式会社ジェイテクト ダンパーバルブ及びそれを用いた油圧式パワーステアリング装置
GB0026178D0 (en) * 2000-10-25 2000-12-13 Luk Lamellen & Kupplungsbau Hydraulic actuation systems
DE50313084D1 (de) * 2003-12-09 2010-10-21 Gkn Driveline Int Gmbh Hydrauliksystem
JP4872844B2 (ja) 2007-07-26 2012-02-08 トヨタ自動車株式会社 油圧式クラッチ操作装置の組み付け補助具、油圧式クラッチ操作装置の組み付け方法
CN101896752B (zh) * 2008-05-29 2012-11-14 爱信艾达株式会社 电磁阀装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297852A (ja) * 1987-05-28 1988-12-05 Fuji Heavy Ind Ltd ロックアップトルコン付無段変速機の油圧制御装置
JPH01176816A (ja) * 1987-12-28 1989-07-13 Koyo Seiko Co Ltd 油圧式クラッチユニット
JPH07127664A (ja) * 1993-11-02 1995-05-16 Mitsubishi Agricult Mach Co Ltd 油圧クラツチ作動回路構造
JP2000085413A (ja) * 1998-09-11 2000-03-28 Toyota Motor Corp 自動クラッチ制御装置
JP2002340031A (ja) * 2001-05-21 2002-11-27 Koyo Seiko Co Ltd 油圧式クラッチ遮断装置
JP2008190718A (ja) 2007-02-07 2008-08-21 Valeo Embrayages 油圧制御解除装置

Also Published As

Publication number Publication date
CN102597564A (zh) 2012-07-18
US20120211325A1 (en) 2012-08-23
JP5445588B2 (ja) 2014-03-19
EP2495469A4 (en) 2016-04-20
US8851261B2 (en) 2014-10-07
EP2495469B1 (en) 2017-09-13
EP2495469A1 (en) 2012-09-05
JPWO2011052072A1 (ja) 2013-03-14
CN102597564B (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5445588B2 (ja) 車両用摩擦クラッチの油圧制御装置
US8454477B2 (en) Power transmitting device and vehicle having same mounted thereon
WO2009122858A1 (ja) 発進装置の油圧制御装置
JP6477658B2 (ja) クラッチ操作装置
US20160016587A1 (en) Automatic transmission
JP2011038547A (ja) 車両用油圧式クラッチ装置
JP6330849B2 (ja) 自動変速機の制御方法及び制御装置
US8715138B2 (en) Hydraulic control device
US8784251B2 (en) Hydraulic control device
JP2020008034A (ja) クラッチの断接装置
JP2009019768A (ja) 油圧により操作可能なクラッチ機器を備えたクラッチシステム
JP4526727B2 (ja) マスタシリンダ
JP4760965B2 (ja) 車両用クラッチ装置
JP5447462B2 (ja) 油圧制御装置
JP2007205445A (ja) 油圧脈動吸収装置
JP4735215B2 (ja) 車両用自動変速機の油圧制御装置
US20200018364A1 (en) Clutch connecting/disconnecting device
WO2019093118A1 (ja) 車両のパワートレイン装置
JP6640637B2 (ja) 電磁弁、車両用ブレーキ液圧制御装置および電磁弁の製造方法
JP6355101B2 (ja) シリンダ装置及びブレーキシステム
JP2000220661A (ja) 自動車のクラッチ装置
JP4695004B2 (ja) トランスミッション付きトルクコンバータのクラッチ油圧制御装置
WO2022071210A1 (ja) 流量可変バルブ及び、油圧供給システム
JP2009287682A (ja) 動力伝達装置用の駆動装置および車両並びに駆動装置の制御方法
JP2013241956A (ja) 油圧制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162248.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850851

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011538170

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13505141

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009850851

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009850851

Country of ref document: EP