WO2011052066A1 - 内燃機関の制御装置 - Google Patents
内燃機関の制御装置 Download PDFInfo
- Publication number
- WO2011052066A1 WO2011052066A1 PCT/JP2009/068664 JP2009068664W WO2011052066A1 WO 2011052066 A1 WO2011052066 A1 WO 2011052066A1 JP 2009068664 W JP2009068664 W JP 2009068664W WO 2011052066 A1 WO2011052066 A1 WO 2011052066A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- pressure egr
- passage
- low
- internal combustion
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/12—Introducing corrections for particular operating conditions for deceleration
- F02D41/123—Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D41/0005—Controlling intake air during deceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
- F02D41/0055—Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2438—Active learning methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2441—Methods of calibrating or learning characterised by the learning conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2474—Characteristics of sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/02—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/06—Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/38—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/45—Sensors specially adapted for EGR systems
- F02M26/46—Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
- F02M26/47—Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B29/00—Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
- F02B29/04—Cooling of air intake supply
- F02B29/0406—Layout of the intake air cooling or coolant circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/0065—Specific aspects of external EGR control
- F02D41/0072—Estimating, calculating or determining the EGR rate, amount or flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/04—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/09—Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
- F02M26/10—Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/14—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
- F02M26/15—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/23—Layout, e.g. schematics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to a control device for an internal combustion engine, and more particularly to a control device for an internal combustion engine provided with a high pressure EGR mechanism and a low pressure EGR mechanism.
- Patent Document 1 Japanese Unexamined Patent Application Publication No. 2009-185791
- a control device for an internal combustion engine including a high pressure EGR mechanism and a low pressure EGR mechanism is known.
- the recirculation state of the exhaust gas is appropriately controlled by properly using the high pressure EGR mechanism and the low pressure EGR mechanism in accordance with the operating state of the internal combustion engine.
- this type of conventional technology there is a configuration in which the flow rate of exhaust gas recirculated to the intake system by the low pressure EGR mechanism is controlled based on the output of the differential pressure sensor.
- the differential pressure sensor detects a pressure difference (differential pressure) between the upstream portion and the downstream portion of the low pressure EGR passage, and outputs the detection result to the control device.
- the control device can detect the recirculation amount of the exhaust gas by converting the output signal of the differential pressure sensor into a flow rate.
- the output signal of the differential pressure sensor is prone to errors due to changes in the temperature environment.
- Patent Document 2 Japanese Unexamined Patent Publication No. 2008-38661
- the differential pressure sensor is used to detect the differential pressure between the upstream side and the downstream side of the particulate filter and to grasp the amount of particulate matter (PM) collected by the filter.
- PM particulate matter
- the learning control in a state where PM in the filter is oxidized and removed, a differential pressure detected by the differential pressure sensor is compared with a reference differential pressure obtained in advance to learn a sensor error.
- the above-described prior art of Patent Document 2 has a configuration in which a certain reference state is created by oxidizing and removing PM, and then learning control of the differential pressure sensor is performed.
- a certain reference state is to be created, it is necessary to install, for example, solenoid valves at the upstream end and the downstream end of the low pressure EGR passage, respectively, and close the low pressure EGR passage.
- solenoid valves at the upstream end and the downstream end of the low pressure EGR passage, respectively, and close the low pressure EGR passage.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to learn to learn the output characteristics of a differential pressure sensor only by performing control using an existing configuration.
- An object of the present invention is to provide a control device for an internal combustion engine that can easily satisfy a condition.
- a first invention includes a turbine provided in an exhaust passage of an internal combustion engine and a compressor provided in an intake passage, and a turbocharger that supercharges intake air using exhaust pressure,
- a high-pressure EGR passage that recirculates the exhaust gas branched from the exhaust passage on the upstream side of the turbine to the intake passage, the flow rate of the exhaust gas being adjusted by a high-pressure EGR valve;
- a low-pressure EGR passage in which exhaust gas diverted from the exhaust passage on the downstream side of the turbine is recirculated to the intake passage on the upstream side of the compressor, the flow rate of the exhaust gas being adjusted by a low-pressure EGR valve;
- a high-pressure throttle valve that opens and closes the intake passage downstream of the compressor; One of the throttle valves that opens and closes the intake passage upstream of the low-pressure EGR passage and the exhaust throttle valve that opens and closes the exhaust passage downstream of the low-pressure EGR passage.
- a low pressure throttle valve A differential pressure sensor for detecting the pressure difference in order to control a recirculation amount of exhaust gas based on a pressure difference between an upstream portion and a downstream portion of the low pressure EGR passage;
- at least one of the high pressure EGR valve, the low pressure EGR valve, the high pressure throttle valve, and the low pressure throttle valve is used to upstream the low pressure EGR passage.
- Learning condition setting means for zeroing the pressure difference between the downstream portion and the downstream portion;
- Learning control means for learning output characteristics based on the output of the differential pressure sensor in a state where the pressure difference of the low pressure EGR passage is made zero by the learning condition setting means; It is characterized by providing.
- the learning condition setting means opens the high-pressure EGR valve and the low-pressure EGR valve when the fuel cut control of the internal combustion engine is being executed, and opens the high-pressure throttle valve. The valve is closed to make the pressure difference zero.
- the learning condition setting means opens the high pressure EGR valve and the low pressure EGR valve when fuel cut control of the internal combustion engine is being executed, and the high pressure throttle valve The low pressure throttle valve is closed to make the pressure difference zero.
- the learning condition setting means opens the low-pressure EGR valve so that the pressure difference becomes zero when engine stop control for temporarily stopping the internal combustion engine is executed. It is said.
- the 5th invention is equipped with the temperature acquisition means to acquire the temperature of the said differential pressure sensor,
- the learning control means is configured to learn temperature characteristics of an offset that is a zero point output of the differential pressure sensor.
- the learning condition setting means uses at least one of the high pressure EGR valve, the low pressure EGR valve, the high pressure throttle valve, and the low pressure throttle valve to reduce the pressure difference in the low pressure EGR passage to zero. Can be set.
- the sensor signal output from the differential pressure sensor becomes a signal value (zero point output) when there is no pressure difference. Therefore, the learning control means can learn the output characteristics of the sensor based on this signal value. That is, in an internal combustion engine equipped with a high pressure side and a low pressure side EGR mechanism, when performing differential pressure sensor learning control, the pressure difference can be reduced to zero simply by controlling the valve using an existing configuration.
- the learning condition can be easily established by setting. Therefore, there is no need to add an extra solenoid valve or the like or make a design change in order to perform learning control, so that the system configuration can be simplified and cost reduction can be promoted.
- the learning condition setting means can close the high pressure throttle valve and shut off the low pressure EGR passage from the intake negative pressure of the internal combustion engine when the fuel cut control is being executed. . Further, the learning condition setting means can open the high-pressure EGR valve to return the gas discharged by pumping from the cylinder during fuel cut into the cylinder by the high-pressure EGR passage. That is, this gas can be circulated in the flow path cut off from the low pressure EGR passage by the high pressure throttle valve. Furthermore, by opening the low-pressure EGR valve, it is possible to realize a state in which the pressure difference in the low-pressure EGR passage is unlikely to occur transiently. Therefore, the pressure difference in the low pressure EGR passage can be set to zero, and this state can be stably maintained.
- the learning condition setting means can close the low pressure throttle valve in addition to the valve control similar to the second invention when the fuel cut control is being executed. .
- the low pressure throttle valve In a state where the low pressure throttle valve is closed, even if pressure fluctuation occurs on the upstream end side of the intake passage due to traveling wind of the vehicle, the low pressure EGR passage can be blocked from this pressure fluctuation. Therefore, in addition to the effects of the second invention, the influence of traveling wind and the like can be eliminated, and the state where the pressure difference in the low pressure EGR passage becomes zero can be further stabilized.
- the learning condition can be easily established using this. That is, if the low pressure EGR valve is opened during engine stop control, the pressure difference in the low pressure EGR passage is reduced to zero without controlling other valves (high pressure EGR valve, high pressure throttle valve, and low pressure throttle valve). It can be set, and valve control can be simplified.
- the learning control means learns the temperature characteristics of the offset based on the zero point output (offset) of the differential pressure sensor and the sensor temperature in a state where the pressure difference in the low pressure EGR passage is held at zero. can do.
- Embodiment 1 of this invention It is a whole block diagram for demonstrating the system configuration
- Embodiment 1 of this invention it is a flowchart which shows the control performed by ECU.
- Embodiment 2 of this invention it is a flowchart which shows the control performed by ECU.
- FIG. 1 is an overall configuration diagram for explaining a system configuration according to the first embodiment of the present invention.
- the system according to the present embodiment includes an internal combustion engine 10 composed of a diesel engine.
- the internal combustion engine 10 includes an intake passage 14 that sucks intake air into each cylinder 12 and an exhaust passage through which exhaust gas is discharged from each cylinder 12. 16.
- the intake passage 14 is provided with two intake throttle valves 18 and 20 constituted by electromagnetically driven butterfly valves or the like. The details of the intake throttle valves 18 and 20 will be described later.
- each cylinder 12 is provided with exhaust purification devices such as a catalyst 22 for purifying exhaust gas, a DPF (diesel particulate filter) 24, and the like, and these exhaust purification devices are arranged on the downstream side of a turbine 30 described later.
- each cylinder 12 is provided with a fuel injection valve 26 that injects fuel into the intake air, and an intake valve and an exhaust valve (not shown).
- the internal combustion engine 10 includes a turbocharger 28 that supercharges intake air using exhaust pressure.
- the turbocharger 28 includes a turbine 30 that is disposed in the exhaust passage 16 and is driven to rotate by exhaust pressure, and a compressor 32 that is disposed in the intake passage 14 and rotates together with the turbine 14 to compress intake air.
- the intake passage 14 is provided with an intercooler 34 for cooling the intake air downstream of the compressor 32, and the exhaust passage 16 bypasses the turbine 30 for exhaust gas.
- a turbo bypass valve 36 is provided for circulation.
- the high-pressure EGR mechanism is a mechanism that recirculates high-pressure exhaust gas that has been branched from the exhaust passage 16 upstream of the turbine 30 to the intake passage 14 as EGR gas, and includes a high-pressure EGR passage 38 and a high-pressure EGR valve 40. ing. One end of the high pressure EGR passage 38 is connected to the exhaust passage 16 on the upstream side of the turbine 30, and the other end of the high pressure EGR passage 38 is connected to the intake passage 14 on the downstream side of the compressor 32.
- the high-pressure EGR valve 40 is composed of an electromagnetically driven flow control valve or the like, and is configured to adjust the flow rate of exhaust gas flowing through the high-pressure EGR passage 38.
- the low-pressure EGR mechanism is a mechanism for returning low-pressure exhaust gas (EGR gas) branched from the exhaust passage 16 on the downstream side of the turbine 30 to the intake passage 14 on the upstream side of the compressor 32.
- a low-pressure EGR valve 46 The low pressure EGR passage 44 is connected to the exhaust passage 16 at the upstream portion 44a, which is one end side thereof, on the downstream side of the turbine 30 and the exhaust purification device. Further, the downstream portion 44 b, which is the other end side of the low pressure EGR passage 44, is connected to the intake passage 14 on the upstream side of the compressor 32.
- the low pressure EGR valve 46 is composed of a flow rate control valve and the like similar to the high pressure side, and is configured to adjust the flow rate of exhaust gas flowing through the low pressure EGR passage 44.
- the low pressure EGR passage 44 is provided with an EGR cooler 48 for cooling EGR gas.
- the low pressure EGR valve 46 and the EGR cooler 48 are provided between the upstream portion 44a and the downstream portion 44b of the low pressure EGR passage 44. Has been placed.
- the first intake throttle valve 18 constitutes the low pressure throttle valve of the present embodiment, and is arranged upstream of the compressor 32 and the low pressure EGR passage 44.
- the second intake throttle valve 20 constitutes the high-pressure throttle valve of the present embodiment, and is disposed on the downstream side of the compressor 32 and the intercooler 34 and on the upstream side of the high-pressure EGR passage 38.
- These intake throttle valves 18 and 20 can individually open and close the intake passage 14, and not only increase or decrease the intake air amount in accordance with the accelerator opening, but also EGR (Exhaust Gas Recirculation) control described later. This is also used when the EGR amount is controlled by.
- the system of the present embodiment includes a sensor system including a water temperature sensor 50, an intake air temperature sensor 52, a differential pressure sensor 54, and the like, and an ECU (Electronic Control Unit) 60 that controls the operating state of the internal combustion engine 10. Yes.
- the water temperature sensor 50 detects the cooling water temperature of the internal combustion engine
- the intake air temperature sensor 52 detects the temperature of intake air (intake air temperature).
- the differential pressure sensor 54 is configured by a general-purpose pressure sensor or the like, and is provided in the low pressure EGR passage 44. A pressure difference (differential pressure) is generated between the upstream portion 44 a and the downstream portion 44 b of the low pressure EGR passage 44 according to the pressure loss or the like when the exhaust gas passes through the EGR cooler 48.
- the differential pressure sensor 54 detects a differential pressure between the upstream portion 44a and the downstream portion 44b, and outputs a sensor signal S corresponding to the differential pressure to the ECU 60.
- the sensor signal S is finally converted into an EGR gas flow rate by an arithmetic process described later, and is used for EGR control.
- the sensor system includes various sensors necessary for controlling the vehicle and the internal combustion engine in addition to the sensors 50 to 54 described above.
- An example of such a sensor is an air flow meter that detects the intake air amount, a crank angle sensor that outputs a signal synchronized with the rotation of the crankshaft, an accelerator opening sensor that detects the accelerator opening, and an exhaust air-fuel ratio that is detected.
- An air-fuel ratio sensor that detects the temperature of the catalyst and exhaust gas.
- the ECU 60 controls the operating state by driving each actuator while detecting the operating state of the internal combustion engine by the sensor system. For example, the ECU 60 sets the fuel injection amount and the injection timing based on the intake air amount detected by the air flow meter, and executes the fuel injection control for driving the fuel injection valve 26 based on the set content. To do. Further, when it is detected that the vehicle is in a decelerating state based on an output from an accelerator opening sensor or the like, a fuel cut control is executed to temporarily stop fuel injection in each cylinder until the decelerating state is released. . Further, the ECU 60 performs EGR control for controlling the recirculation amount (EGR amount) of EGR gas during operation of the internal combustion engine.
- EGR amount recirculation amount
- EGR control using the two-system EGR mechanism is generally known, for example, from Japanese Unexamined Patent Publication No. 2009-185791 and Japanese Unexamined Patent Publication No. 2009-216059.
- this EGR control for example, when the operating state of the internal combustion engine is a low load and a low rotation speed, the responsiveness of the entire EGR is improved by preferentially using a high-pressure EGR mechanism that excels in responsiveness. Secure.
- the EGR gas temperature does not become too high by increasing the EGR amount of the low pressure EGR mechanism and decreasing the EGR amount of the high pressure EGR mechanism. To suppress the gas temperature. Thereby, EGR control can be performed smoothly in a wide operation region.
- the EGR amount of the high pressure EGR mechanism can be arbitrarily controlled by adjusting the opening degree of the high pressure EGR valve 40 or the second intake throttle valve 20. Specifically, for example, by increasing the opening degree of the high-pressure EGR valve 40 or decreasing the opening degree of the second intake throttle valve 20, the EGR amount on the high-pressure side can be increased.
- the EGR amount of the low pressure EGR mechanism can be arbitrarily controlled by adjusting the opening degree of the low pressure EGR valve 46 and the first intake throttle valve 18. Specifically, the amount of EGR on the low pressure side can be increased by increasing the opening of the low pressure EGR valve 46 or decreasing the opening of the first intake throttle valve 18, for example.
- the differential pressure sensor 54 In the low pressure side EGR control, the differential pressure sensor 54 generates a voltage signal corresponding to the differential pressure ⁇ P between the upstream portion 44a and the downstream portion 44b of the low pressure EGR passage 44, and this voltage signal is used as the sensor signal S as an ECU 60. Output to.
- the ECU 60 performs feedback control of the EGR amount based on the flow rate G by converting the sensor signal S into the differential pressure ⁇ P and further converting the differential pressure ⁇ P into the flow rate G of the EGR gas.
- the ECU 60 includes map data f1 in which the relationship between the sensor signal S and the differential pressure ⁇ P is set, and map data f2 in which the relationship between the differential pressure ⁇ P and the flow rate G is set.
- map data f1, f2 the flow rate G can be calculated from the sensor signal S based on the following equations (1), (2).
- ⁇ S in the above equation (1) is a correction amount for correcting the error of the sensor signal S. That is, an error is likely to occur in the output of the differential pressure sensor 54 due to temperature change, deterioration with time, and the like. For this reason, the ECU 60 stores a correction map that is map data for correcting the sensor signal S in advance.
- FIG. 2 is an explanatory diagram showing a correction map. This correction map stores the temperature characteristic of the offset, which is the zero point output of the differential pressure sensor 54, that is, the relationship between the value (offset) of the sensor signal S and the sensor temperature when the differential pressure ⁇ P is zero.
- the ECU 60 acquires the sensor temperature by a method described later, and calculates a correction amount ⁇ S corresponding to the sensor temperature based on the correction map. Then, by calculating the above equation (1) in consideration of the correction amount ⁇ S, the error of the differential pressure sensor 54 can be corrected and the flow rate G can be accurately calculated.
- the ECU 60 performs learning control for updating the data content of the correction map at an appropriate timing. According to the learning control, even when the output characteristic of the sensor signal S changes due to an error, the latest output characteristic can be learned and reflected in the correction map. For this reason, the ECU 60 is equipped with a non-volatile storage circuit that can rewrite data contents and retain the data contents even when the power is turned off, and the correction map is stored in the storage circuit.
- the present embodiment is characterized in that the above-described learning control is performed using an existing configuration in an internal combustion engine having two EGR mechanisms, and the contents thereof will be described below.
- learning condition setting control When performing learning control, first, learning condition setting control is executed in order to create a reference state prior to actual learning operation.
- learning condition setting control when the fuel cut control of the internal combustion engine is being executed, the first intake throttle valve 18 and the second intake throttle valve 20 are held in the closed state (fully closed state), and the high pressure EGR is maintained.
- the valve 40 and the low-pressure EGR valve 46 are held in an open state (fully open state) (hereinafter, this state is referred to as a prescribed state). Thereby, the differential pressure generated between the upstream portion 44a and the downstream portion 44b of the low pressure EGR passage 44 can be set to zero.
- the downstream portion 44b of the low pressure EGR passage 44 is cut off from the intake negative pressure generated on the cylinder 12 side.
- the downstream portion 44b is also cut off from pressure fluctuations that occur on the upstream end side of the intake passage 14 due to the traveling wind of the vehicle or the like.
- the high-pressure EGR valve 40 is opened, the gas discharged by pumping from the cylinder 12 during fuel cut is guided to the intake negative pressure of the cylinder 12 and flows into the high-pressure EGR passage 38, and the second intake air The air is returned from the intake passage 14 into the cylinder 12 on the downstream side of the throttle valve 20.
- the first intake throttle valve 18 is closed.
- the present invention is not limited to this, and the first intake throttle valve 18 may not necessarily be closed. That is, in the learning condition setting control, only the second intake throttle valve 20 among the four valves 18, 19, 40, 46 is kept closed, and the first intake throttle valve 18 and the EGR valves 40, 46 are opened. It is good also as a structure hold
- the ECU 60 switches the four valves 18, 19, 40, 46 to a prescribed state and maintains the differential pressure in the low pressure EGR passage 44 at zero, which is suitable for learning control.
- the conditions are satisfied.
- a predetermined time for example, about 0.5 seconds
- the fluctuation range of the sensor signal S It is good also as a structure which determines with learning conditions being satisfied, when becomes below a predetermined value (for example, 0.2 kPa or less in pressure conversion value).
- the differential pressure in the low pressure EGR passage 44 can be considered to be zero, so the learning control is started.
- the temperature (sensor temperature) T of the differential pressure sensor 54 is estimated based on the intake air temperature detected by the intake air temperature sensor 52 and the cooling water temperature detected by the water temperature sensor 50.
- the ECU 60 characteristics of the sensor temperature with respect to the intake air temperature and the cooling water temperature are stored in advance as map data. Therefore, the sensor temperature T can be estimated based on this map data.
- the sensor temperature may be affected by the traveling wind, in the present invention, for example, the vehicle speed detected by the vehicle speed sensor or the like is used as a parameter corresponding to the traveling wind, and the vehicle speed, intake air temperature, and cooling water temperature are used.
- the sensor temperature may be estimated based on
- the sensor signal S in a state where the learning condition is satisfied is detected as a zero point output (offset) S0 of the differential pressure sensor 54 at the temperature T, and the above-described correction map (see FIG. 2) is rewritten by this offset S0.
- a certain ratio of the difference between the detected value and the learned value may be added to the learned value. That is, if ⁇ is a constant ratio (1> ⁇ > 0) and the old and new learning values are L and L ′, respectively, the configuration may be calculated by the following equation (3).
- the amount by which the learning value is changed in one learning operation may be smaller as the learning control opportunity (frequency) increases. Therefore, in the present invention, the ratio ⁇ may be reduced as the learning frequency increases.
- the learning control not only the learning value corresponding to the estimated sensor temperature T but also the learning value corresponding to another sensor temperature may be rewritten.
- T ⁇ 10, 60, 80 ° C.
- S0 30 is also reflected at the predetermined ratios ⁇ 1, ⁇ 2, and ⁇ 3 for the learning values L -10 , L 60 , and L 80 .
- L ⁇ 10 (S0 ⁇ L ⁇ 10 ′) ⁇ ⁇ 1 + L ⁇ 10 ′ (3)
- L 60 (S0 ⁇ L 60 ′) ⁇ ⁇ 2 + L 60 ′ (4)
- L 80 (S0 ⁇ L 80 ′) ⁇ ⁇ 3 + L 80 ′ (5)
- FIG. 3 is a flowchart showing the control executed by the ECU in the first embodiment of the present invention.
- the routine shown in FIG. 3 is repeatedly executed during operation of the internal combustion engine.
- the sensor temperature is estimated based on the vehicle speed, the intake air temperature, and the coolant temperature (step 100).
- F / C fuel cut control
- the control is terminated (step 102).
- the above-described four valves 18, 19, 40, 46 are held in a prescribed state, and learning condition setting control is executed (step 104).
- step 106 it is determined whether or not a learning condition is satisfied by determining whether or not a predetermined time has passed in a state where the fluctuation of the sensor output is small (step 106). If the learning condition is satisfied, learning control is executed based on the sensor signal S and the sensor temperature T (step 108). When the learning condition is not satisfied, the process waits until it is satisfied.
- the four valves 18, 19, 40 Only by controlling 46, the differential pressure in the low pressure EGR passage 44 can be set to zero. That is, the learning condition can be easily established using the existing system configuration and fuel cut control. Therefore, there is no need to add an extra solenoid valve or the like or make a design change in order to perform learning control, so that the system configuration can be simplified and cost reduction can be promoted.
- the second intake throttle valve 20 can be closed during the fuel cut control, and the low pressure EGR passage 44 can be shut off from the intake negative pressure.
- the high-pressure EGR valve 40 the gas discharged by pumping from the cylinder 12 during fuel cut can be returned into the cylinder by the high-pressure EGR passage 38. That is, this gas can be circulated through the flow path that is blocked from the low pressure EGR passage 44 by the second intake throttle valve 20.
- the low pressure EGR valve 46 it is possible to realize a state in which the differential pressure in the low pressure EGR passage 44 is hardly generated even in a transient state.
- the low pressure EGR passage 44 can be cut off from this pressure fluctuation. it can. Therefore, the differential pressure in the low pressure EGR passage 44 can be set to zero, and this state can be stably maintained.
- the temperature characteristic of the offset can be learned based on the zero point output (offset) of the differential pressure sensor 54 and the sensor temperature, and the error of the sensor signal due to temperature change or deterioration with time can be learned. Can be absorbed by control.
- Embodiment 2 a second embodiment of the present invention will be described with reference to FIG.
- the present embodiment employs the same system configuration (FIG. 1) as that of the first embodiment, the configuration differs from the first embodiment in the control contents described below.
- the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- the system according to the present embodiment is configured to perform engine stop control for temporarily stopping the internal combustion engine in a situation where the output of the internal combustion engine is unnecessary.
- Engine stop control includes, for example, idle stop control that stops the internal combustion engine during idle operation from when the vehicle stops until it restarts, or motor travel that travels with an electric motor while the internal combustion engine is stopped in a hybrid vehicle or the like Control etc. are included.
- the low pressure EGR valve 46 is opened during the execution of the engine stop control described above. That is, when the internal combustion engine is stopped, intake negative pressure and exhaust pressure are not generated. Therefore, by opening the low pressure EGR valve 46, the differential pressure in the low pressure EGR passage 44 is maintained at zero, and the learning condition is satisfied. be able to. And after learning conditions are satisfied, it is the structure which performs the learning control similar to Embodiment 1. FIG.
- FIG. 4 is a flowchart showing the control executed by the ECU in the second embodiment of the present invention.
- the routine shown in FIG. 4 is repeatedly executed during operation of the internal combustion engine.
- the sensor temperature is estimated as in the first embodiment (step 200).
- the learning condition can be more easily established. That is, if the low pressure EGR valve 46 is opened during engine stop control, the differential pressure in the low pressure EGR passage 44 can be set to zero without controlling the intake throttle valves 18 and 20 and the high pressure EGR valve 40.
- the valve control can be simplified.
- Embodiment 3 a third embodiment of the present invention will be described with reference to FIG.
- the present embodiment employs a system configuration substantially similar to that of the first embodiment, an exhaust throttle valve is used instead of the first intake throttle valve as the low pressure throttle valve. Therefore, the configuration is different from that of the first embodiment.
- the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
- FIG. 5 is an overall configuration diagram for explaining a system configuration according to the third embodiment of the present invention.
- the exhaust throttle valve 70 is provided at a position on the downstream side of the low pressure EGR passage 44 in the exhaust passage 16.
- the exhaust throttle valve 70 is configured by an electromagnetically driven butterfly valve or the like, and opens and closes the exhaust passage 16 in accordance with a control signal input from the ECU 60.
- the exhaust throttle valve 70 functions in the same manner as the first intake throttle valve 18 of the first embodiment. That is, by reducing the opening degree of the exhaust throttle valve 70, the amount of EGR by the low pressure EGR mechanism can be increased.
- the exhaust throttle valve 70 and the second intake throttle valve 20 are held in the closed state, and the high pressure EGR valve 40 and the low pressure EGR valve 46 are held in the opened state.
- the differential pressure in the low pressure EGR passage 44 can be made zero.
- steps 104 and 204 in FIGS. 3 and 4 show specific examples of learning condition setting means.
- steps 108 and 208 show specific examples of learning control means, and steps 100 and 200 show specific examples of temperature acquisition means.
- the sensor temperature is estimated based on the vehicle speed, the intake air temperature, and the cooling water temperature.
- the present invention is not limited to this.
- the temperature sensor may directly detect the temperature of the differential pressure sensor.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Supercharger (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
Abstract
この発明は、高圧EGR機構と低圧EGR機構とを備えた内燃機関において、既存の構成を利用して制御を行うだけで、差圧センサの出力特性を学習するための学習条件を容易に成立させることを目的とする。 ECU60は、燃料カット制御が実行中であるときに、吸気絞り弁18,20を閉弁し、かつEGR弁40,46を開弁する。これにより、低圧EGR通路44の上流部44aと下流部44bとの間の圧力差が零となるので、この状態を利用して差圧センサ54の出力特性を学習する。これにより、2系統のEGR機構を備えた内燃機関において、差圧センサ54の出力特性を学習する場合には、既存のシステム構成と燃料カット制御とを利用して、簡単な弁制御により学習条件を容易に成立させることができる。
Description
本発明は、内燃機関の制御装置に関し、特に、高圧EGR機構と低圧EGR機構とを備えた内燃機関の制御装置に関する。
従来技術として、例えば特許文献1(日本特開2009-185791号公報)に開示されているように、高圧EGR機構と低圧EGR機構とを備えた内燃機関の制御装置が知られている。この従来技術では、内燃機関の運転状態に応じて高圧EGR機構と低圧EGR機構とを使い分けることにより、排気ガスの還流状態を適切に制御するようにしている。また、この種の従来技術においては、低圧EGR機構により吸気系に還流される排気ガスの流量を、差圧センサの出力に基いて制御する構成としたものがある。この場合、差圧センサは、低圧EGR通路の上流部と下流部との間の圧力差(差圧)を検出し、検出結果を制御装置に出力する。これにより、制御装置は、差圧センサの出力信号を流量に換算し、排気ガスの還流量を検出することができる。
しかし、差圧センサの出力信号には、温度環境の変化等による誤差が生じ易い。このため、例えば特許文献2(日本特開2008-38661号公報)に開示された従来技術では、差圧センサの出力誤差を学習するようにしている。この従来技術において、差圧センサは、パティキュレートフィルタの上流側と下流側の差圧を検出し、フィルタに捕集された粒子状物質(PM)の量を把握するために用いられている。そして、学習制御では、フィルタ内のPMを酸化除去した状態において、差圧センサにより検出した差圧と、予め求めておいた基準差圧とを比較し、センサの誤差を学習する構成としている。
ところで、上述した特許文献2の従来技術では、PMの酸化除去により一定の基準状態を作り出し、その後に差圧センサの学習制御を行う構成としている。一方、特許文献1の従来技術においても、排気ガスの還流量を正確に制御するために、差圧センサの学習制御を行うのが好ましい。しかしながら、この従来技術において、一定の基準状態を作り出そうとすると、例えば低圧EGR通路の上流端と下流端にそれぞれ電磁弁等を設置し、低圧EGR通路を閉塞する必要がある。このため、特許文献1の従来技術では、差圧センサの学習制御を実行しようとすると、システム構成が複雑化したり、コストアップが生じるという問題がある。
本発明は、上述のような課題を解決するためになされたもので、本発明の目的は、既存の構成を利用して制御を行うだけで、差圧センサの出力特性を学習するための学習条件を容易に成立させることが可能な内燃機関の制御装置を提供することにある。
第1の発明は、内燃機関の排気通路に設けられたタービンと吸気通路に設けられたコンプレッサとを有し、排気圧を利用して吸入空気を過給するターボチャージャと、
前記タービンの上流側で前記排気通路から分流させた排気ガスを前記吸気通路に還流させる通路であって、高圧EGR弁により排気ガスの流量が調整される高圧EGR通路と、
前記タービンの下流側で前記排気通路から分流させた排気ガスを前記コンプレッサの上流側で前記吸気通路に還流させる通路であって、低圧EGR弁により排気ガスの流量が調整される低圧EGR通路と、
前記コンプレッサの下流側で前記吸気通路を開,閉する高圧用絞り弁と、
前記低圧EGR通路の上流側で前記吸気通路を開,閉する吸気絞り弁と前記低圧EGR通路の下流側で前記排気通路を開,閉する排気絞り弁のうち、何れか一方の絞り弁により構成された低圧用絞り弁と、
前記低圧EGR通路の上流部と下流部との間の圧力差に基いて排気ガスの還流量を制御するために、前記圧力差を検出する差圧センサと、
前記差圧センサの出力特性を学習するために、前記高圧EGR弁、前記低圧EGR弁、前記高圧用絞り弁及び前記低圧用絞り弁のうち少なくとも1つの弁を用いて前記低圧EGR通路の上流部と下流部との間の圧力差を零にする学習条件設定手段と、
前記学習条件設定手段により前記低圧EGR通路の圧力差を零にした状態で、前記差圧センサの出力に基いて出力特性を学習する学習制御手段と、
を備えることを特徴とする。
前記タービンの上流側で前記排気通路から分流させた排気ガスを前記吸気通路に還流させる通路であって、高圧EGR弁により排気ガスの流量が調整される高圧EGR通路と、
前記タービンの下流側で前記排気通路から分流させた排気ガスを前記コンプレッサの上流側で前記吸気通路に還流させる通路であって、低圧EGR弁により排気ガスの流量が調整される低圧EGR通路と、
前記コンプレッサの下流側で前記吸気通路を開,閉する高圧用絞り弁と、
前記低圧EGR通路の上流側で前記吸気通路を開,閉する吸気絞り弁と前記低圧EGR通路の下流側で前記排気通路を開,閉する排気絞り弁のうち、何れか一方の絞り弁により構成された低圧用絞り弁と、
前記低圧EGR通路の上流部と下流部との間の圧力差に基いて排気ガスの還流量を制御するために、前記圧力差を検出する差圧センサと、
前記差圧センサの出力特性を学習するために、前記高圧EGR弁、前記低圧EGR弁、前記高圧用絞り弁及び前記低圧用絞り弁のうち少なくとも1つの弁を用いて前記低圧EGR通路の上流部と下流部との間の圧力差を零にする学習条件設定手段と、
前記学習条件設定手段により前記低圧EGR通路の圧力差を零にした状態で、前記差圧センサの出力に基いて出力特性を学習する学習制御手段と、
を備えることを特徴とする。
第2の発明によると、前記学習条件設定手段は、内燃機関の燃料カット制御が実行されているときに、前記高圧EGR弁と前記低圧EGR弁とを開弁し、かつ前記高圧用絞り弁を閉弁して前記圧力差を零にする構成としている。
第3の発明によると、前記学習条件設定手段は、内燃機関の燃料カット制御が実行されているときに、前記高圧EGR弁と前記低圧EGR弁とを開弁し、かつ前記高圧用絞り弁と前記低圧用絞り弁とを閉弁して前記圧力差を零にする構成としている。
第4の発明によると、前記学習条件設定手段は、内燃機関を一時的に停止させる機関停止制御が実行されているときに、前記低圧EGR弁を開弁して前記圧力差を零にする構成としている。
第5の発明は、前記差圧センサの温度を取得する温度取得手段を備え、
前記学習制御手段は、前記差圧センサの零点出力であるオフセットの温度特性を学習する構成としている。
前記学習制御手段は、前記差圧センサの零点出力であるオフセットの温度特性を学習する構成としている。
第1の発明によれば、学習条件設定手段は、高圧EGR弁、低圧EGR弁、高圧用絞り弁及び低圧用絞り弁のうち少なくとも1つの弁を用いて、低圧EGR通路の圧力差を零に設定することができる。この状態で、差圧センサから出力されるセンサ信号は、圧力差がない場合の信号値(零点出力)となる。従って、学習制御手段は、この信号値に基いてセンサの出力特性を学習することができる。即ち、高圧側と低圧側のEGR機構を備えた内燃機関において、差圧センサの学習制御を行う場合には、既存の構成を利用して弁の制御を行うだけで、前記圧力差を零に設定して学習条件を容易に成立させることができる。従って、学習制御を行うために余分な電磁弁等を追加したり、設計変更を行う必要がないので、システム構成を簡略化し、コストダウンを促進することができる。
第2の発明によれば、学習条件設定手段は、燃料カット制御が実行されているときに、高圧用絞り弁を閉弁し、低圧EGR通路を内燃機関の吸気負圧から遮断することができる。また、学習条件設定手段は、高圧EGR弁を開弁することにより、燃料カット中の気筒からポンピングにより排出されるガスを、高圧EGR通路によって筒内に戻すことができる。つまり、このガスを、高圧用絞り弁により低圧EGR通路から遮断された流路で循環させることができる。さらに、低圧EGR弁を開弁することにより、低圧EGR通路の圧力差が過渡的にも生じ難い状態を実現することができる。従って、低圧EGR通路の圧力差を零に設定し、この状態を安定的に保持することができる。
第3の発明によれば、学習条件設定手段は、燃料カット制御が実行されているときに、前記第2の発明と同様の弁制御に加えて、低圧用絞り弁を閉弁することができる。低圧用絞り弁を閉弁した状態では、車両の走行風等により吸気通路の上流端側に圧力変動が生じた場合でも、この圧力変動から低圧EGR通路を遮断することができる。従って、第2の発明による作用効果に加えて、走行風等の影響も排除することができ、低圧EGR通路の圧力差が零となった状態を更に安定させることができる。
第4の発明によれば、機関停止制御の実行中には、吸気負圧や排気圧が生じないので、これを利用して学習条件を容易に成立させることができる。即ち、機関停止制御中に低圧EGR弁を開弁すれば、他の弁(高圧EGR弁、高圧用絞り弁及び低圧用絞り弁)を制御しなくても、低圧EGR通路の圧力差を零に設定することができ、弁制御を簡略化することができる。
第5の発明によれば、学習制御手段は、低圧EGR通路の圧力差が零に保持された状態で、差圧センサの零点出力(オフセット)とセンサ温度とに基いてオフセットの温度特性を学習することができる。
実施の形態1.
[実施の形態1の構成]
以下、図1乃至図3を参照しつつ、本発明の実施の形態1について説明する。図1は、本発明の実施の形態1のシステム構成を説明するための全体構成図である。本実施の形態のシステムは、ディーゼルエンジンからなる内燃機関10を備えており、内燃機関10は、各気筒12に吸入空気を吸込む吸気通路14と、各気筒12から排気ガスが排出される排気通路16とを備えている。吸気通路14には、電磁駆動式のバタフライ弁等により構成された2つの吸気絞り弁18,20が設けられている。なお、吸気絞り弁18,20の詳細については後述する。また、排気通路16には、排気ガスを浄化する触媒22、DPF(ディーゼルパティキュレートフィルタ)24等の排気浄化装置が設けられており、これらの排気浄化装置は後述するタービン30の下流側に配置されている。一方、各気筒12には、吸入空気中に燃料を噴射する燃料噴射弁26と、吸気バルブ及び排気バルブ(図示せず)とが設けられている。
[実施の形態1の構成]
以下、図1乃至図3を参照しつつ、本発明の実施の形態1について説明する。図1は、本発明の実施の形態1のシステム構成を説明するための全体構成図である。本実施の形態のシステムは、ディーゼルエンジンからなる内燃機関10を備えており、内燃機関10は、各気筒12に吸入空気を吸込む吸気通路14と、各気筒12から排気ガスが排出される排気通路16とを備えている。吸気通路14には、電磁駆動式のバタフライ弁等により構成された2つの吸気絞り弁18,20が設けられている。なお、吸気絞り弁18,20の詳細については後述する。また、排気通路16には、排気ガスを浄化する触媒22、DPF(ディーゼルパティキュレートフィルタ)24等の排気浄化装置が設けられており、これらの排気浄化装置は後述するタービン30の下流側に配置されている。一方、各気筒12には、吸入空気中に燃料を噴射する燃料噴射弁26と、吸気バルブ及び排気バルブ(図示せず)とが設けられている。
また、内燃機関10は、排気圧を利用して吸入空気を過給するターボチャージャ28を備えている。ターボチャージャ28は、排気通路16に配置されて排気圧により回転駆動されるタービン30と、吸気通路14に配置されてタービン14と一緒に回転することにより吸入空気を圧縮するコンプレッサ32とにより構成されている。また、ターボ機構に対応して、吸気通路14には、コンプレッサ32の下流側で吸入空気を冷却するインタークーラ34が設けられており、排気通路16には、タービン30をバイパスして排気ガスを流通させるためのターボバイパス弁36が設けられている。
次に、内燃機関10に搭載された高圧EGR機構と低圧EGR機構について説明する。まず、高圧EGR機構は、タービン30の上流側で排気通路16から分流させた高圧な排気ガスをEGRガスとして吸気通路14に還流させる機構であり、高圧EGR通路38と高圧EGR弁40とを備えている。高圧EGR通路38は、その一端がタービン30の上流側で排気通路16に接続されており、高圧EGR通路38の他端は、コンプレッサ32の下流側で吸気通路14に接続されている。また、高圧EGR弁40は、電磁駆動式の流量制御弁等からなり、高圧EGR通路38を流れる排気ガスの流量を調整するように構成されている。
一方、低圧EGR機構は、タービン30の下流側で排気通路16から分流させた低圧な排気ガス(EGRガス)をコンプレッサ32の上流側で吸気通路14に還流させる機構であり、低圧EGR通路44と低圧EGR弁46とを備えている。低圧EGR通路44は、その一端側である上流部44aがタービン30及び排気浄化装置の下流側で排気通路16に接続されている。また、低圧EGR通路44の他端側である下流部44bは、コンプレッサ32の上流側で吸気通路14に接続されている。一方、低圧EGR弁46は、高圧側と同様の流量制御弁等からなり、低圧EGR通路44を流れる排気ガスの流量を調整するように構成されている。また、低圧EGR通路44には、EGRガスを冷却するEGRクーラ48が設けられており、低圧EGR弁46とEGRクーラ48とは、低圧EGR通路44の上流部44aと下流部44bとの間に配置されている。
次に、吸気通路14に設けられた第1吸気絞り弁18と第2吸気絞り弁20について説明する。第1吸気絞り弁18は、本実施の形態の低圧用絞り弁を構成するもので、コンプレッサ32及び低圧EGR通路44の上流側に配置されている。また、第2吸気絞り弁20は、本実施の形態の高圧用絞り弁を構成するもので、コンプレッサ32及びインタークーラ34の下流側かつ高圧EGR通路38の上流側に配置されている。これらの吸気絞り弁18,20は、吸気通路14をそれぞれ個別に開,閉することができ、アクセル開度に応じて吸入空気量を増減させるだけでなく、後述のEGR(Exhaust Gas Recirculation)制御によりEGR量を制御する場合にも用いられる。
さらに、本実施の形態のシステムは、水温センサ50、吸気温センサ52、差圧センサ54等を含むセンサ系統と、内燃機関10の運転状態を制御するECU(Electronic Control Unit)60とを備えている。水温センサ50は、内燃機関の冷却水温を検出し、吸気温センサ52は、吸入空気の温度(吸気温)を検出するものである。また、差圧センサ54は、汎用的な圧力センサ等により構成されており、低圧EGR通路44に設けられている。低圧EGR通路44の上流部44aと下流部44bとの間には、排気ガスがEGRクーラ48を通過するときの圧損等に応じて圧力差(差圧)が生じる。差圧センサ54は、上流部44aと下流部44bとの間の差圧を検出し、この差圧に対応したセンサ信号SをECU60に出力する。センサ信号Sは、後述の演算処理により最終的にEGRガスの流量に換算され、EGR制御に用いられる。
また、センサ系統には、上述したセンサ50~54の他に、車両や内燃機関の制御に必要な各種のセンサが含まれている。このようなセンサの一例を挙げれば、吸入空気量を検出するエアフロメータ、クランク軸の回転に同期した信号を出力するクランク角センサ、アクセル開度を検出するアクセル開度センサ、排気空燃比を検出する空燃比センサ、触媒や排気ガスの温度を検出する温度センサ等である。これらのセンサはECU60の入力側に接続されている。一方、ECU60の出力側には、上述した吸気絞り弁18,20、燃料噴射弁26、ターボバイパス弁36、EGR弁40,46等を含む各種のアクチュエータが接続されている。
ECU60は、内燃機関の運転状態をセンサ系統により検出しつつ、各アクチュエータを駆動することにより運転状態を制御する。具体例を挙げれば、ECU60は、エアフロメータにより検出した吸入空気量等に基いて燃料の噴射量及び噴射時期を設定し、この設定内容に基いて燃料噴射弁26を駆動する燃料噴射制御を実行する。また、アクセル開度センサ等の出力に基いて車両が減速状態となったことを検出したときには、減速状態が解除されるまで各気筒での燃料噴射を一時的に停止する燃料カット制御を実行する。さらに、ECU60は、内燃機関の運転中にEGRガスの還流量(EGR量)を制御するEGR制御を行う。
ここで、2系統のEGR機構を用いたEGR制御は、例えば日本特開2009-185791号公報、日本特開2009-216059号公報等により一般的に公知なものである。具体的に述べると、このEGR制御では、例えば内燃機関の運転状態が低負荷及び低回転数の場合には、応答性に優れる高圧EGR機構を優先して用いることにより、EGR全体の応答性を確保する。また、内燃機関の運転状態が高負荷または高回転数の場合には、低圧EGR機構のEGR量を増大させ、高圧EGR機構のEGR量を減少させることにより、EGRガスの温度が高くなり過ぎないようにガス温度を抑制する。これにより、広い運転領域においてEGR制御を円滑に行うことができる。
また、高圧EGR機構のEGR量は、高圧EGR弁40や第2吸気絞り弁20の開度を調整することにより、任意に制御することができる。具体的には、例えば高圧EGR弁40の開度を大きくするか、または第2吸気絞り弁20の開度を小さくすることにより、高圧側のEGR量を増大させることができる。一方、低圧EGR機構のEGR量は、低圧EGR弁46や第1吸気絞り弁18の開度を調整することにより、任意に制御することができる。具体的には、例えば低圧EGR弁46の開度を大きくするか、または第1吸気絞り弁18の開度を小さくすることにより、低圧側のEGR量を増大させることができる。
[実施の形態1の特徴]
低圧側のEGR制御において、差圧センサ54は、低圧EGR通路44の上流部44aと下流部44bとの間の差圧ΔPに対応した電圧信号を生成し、この電圧信号をセンサ信号SとしてECU60に出力する。ECU60は、センサ信号Sを差圧ΔPに換算し、更に差圧ΔPをEGRガスの流量Gに換算することにより、この流量Gに基いてEGR量をフィードバック制御する。このため、ECU60は、センサ信号Sと差圧ΔPとの関係が設定されたマップデータf1と、差圧ΔPと流量Gとの関係が設定されたマップデータf2とを備えている。これらのマップデータf1,f2によれば、下記の(1),(2)式に基いてセンサ信号Sから流量Gを算出することができる。
低圧側のEGR制御において、差圧センサ54は、低圧EGR通路44の上流部44aと下流部44bとの間の差圧ΔPに対応した電圧信号を生成し、この電圧信号をセンサ信号SとしてECU60に出力する。ECU60は、センサ信号Sを差圧ΔPに換算し、更に差圧ΔPをEGRガスの流量Gに換算することにより、この流量Gに基いてEGR量をフィードバック制御する。このため、ECU60は、センサ信号Sと差圧ΔPとの関係が設定されたマップデータf1と、差圧ΔPと流量Gとの関係が設定されたマップデータf2とを備えている。これらのマップデータf1,f2によれば、下記の(1),(2)式に基いてセンサ信号Sから流量Gを算出することができる。
ΔP=f1(S+ΔS) ・・・(1)
G=f2(ΔP) ・・・(2)
G=f2(ΔP) ・・・(2)
ここで、上記(1)式中のΔSは、センサ信号Sの誤差を補正するための補正量である。即ち、差圧センサ54の出力には、温度変化や経時劣化等により誤差が生じ易い。このため、ECU60には、センサ信号Sを補正するためのマップデータである補正マップが予め記憶されている。図2は、補正マップを示す説明図である。この補正マップは、差圧センサ54の零点出力であるオフセットの温度特性、即ち、差圧ΔPが零のときのセンサ信号Sの値(オフセット)とセンサ温度との関係を記憶している。ECU60は、後述の方法によりセンサ温度を取得し、このセンサ温度に対応した補正量ΔSを補正マップに基いて算出する。そして、補正量ΔSを加味して上記(1)式を演算することにより、差圧センサ54の誤差を補正し、流量Gを正確に算出することができる。
また、ECU60は、上記補正マップのデータ内容を適切なタイミングで更新する学習制御を行う。学習制御によれば、センサ信号Sの出力特性が誤差により変化する場合でも、最新の出力特性を学習して補正マップに反映させることができる。このため、ECU60には、データ内容が書換可能であり、かつ電源を切ってもデータ内容が保持される不揮発性の記憶回路が搭載されており、補正マップはこの記憶回路に記憶されている。本実施の形態は、2系統のEGR機構を備えた内燃機関において、既存の構成を利用して上記学習制御を行うことを特徴としており、以下、その内容について説明する。
(学習条件設定制御)
学習制御を行うときには、まず、実際の学習動作に先立って基準の状態を作り出すために、学習条件設定制御を実行する。学習条件設定制御とは、内燃機関の燃料カット制御が実行中であるときに、第1吸気絞り弁18と第2吸気絞り弁20とを閉弁状態(全閉状態)に保持し、高圧EGR弁40と低圧EGR弁46とを開弁状態(全開状態)に保持するものである(以下、この状態を規定の状態と称す)。これにより、低圧EGR通路44の上流部44aと下流部44bとの間に生じる差圧を零に設定することができる。
学習制御を行うときには、まず、実際の学習動作に先立って基準の状態を作り出すために、学習条件設定制御を実行する。学習条件設定制御とは、内燃機関の燃料カット制御が実行中であるときに、第1吸気絞り弁18と第2吸気絞り弁20とを閉弁状態(全閉状態)に保持し、高圧EGR弁40と低圧EGR弁46とを開弁状態(全開状態)に保持するものである(以下、この状態を規定の状態と称す)。これにより、低圧EGR通路44の上流部44aと下流部44bとの間に生じる差圧を零に設定することができる。
具体的には、まず、第2吸気絞り弁20が閉弁されると、低圧EGR通路44の下流部44bは、気筒12側で生じる吸気負圧から遮断された状態となる。また、第1吸気絞り弁18が閉弁されると、下流部44bは、車両の走行風等により吸気通路14の上流端側に生じる圧力変動からも遮断された状態となる。一方、高圧EGR弁40が開弁した状態において、燃料カット中の気筒12からポンピングにより排出されるガスは、当該気筒12の吸気負圧に導かれて高圧EGR通路38に流入し、第2吸気絞り弁20の下流側で吸気通路14から気筒12内に戻される。即ち、このガスは、第2吸気絞り弁20により低圧EGR通路44から遮断された流路を循環することになるので、低圧EGR通路44内の圧力には影響を与えない。さらに、低圧EGR弁46が開弁することにより、上流部44aと下流部44bとの間の差圧が過渡的にも生じ難くなる。以上の動作により、低圧EGR通路44の差圧を零に設定し、この状態を安定的に保持することができる。
なお、上記説明では、第1吸気絞り弁18を閉弁するものとしたが、本発明はこれに限らず、第1吸気絞り弁18は必ずしも閉弁しなくてもよい。即ち、学習条件設定制御では、4つの弁18,19,40,46のうち第2吸気絞り弁20だけを閉弁状態に保持し、第1吸気絞り弁18とEGR弁40,46とを開弁状態に保持する構成としてもよい。この場合にも、車両の走行風等が低圧EGR通路44内の圧力に与える影響は小さいので、第1吸気絞り弁18を閉弁した状態とほぼ同等の効果を得ることができる。また、学習条件設定制御では、ターボバイパス弁36を閉弁状態に保持し、排気ガス(排気圧の変動)がタービン30の下流側に漏れるのを可能な限り防止するのが好ましい。
上述したように、学習条件設定制御では、ECU60により4つの弁18,19,40,46を規定の状態に切換え、低圧EGR通路44内の差圧を零に保持することにより、学習制御に適した条件(学習条件)を成立させる。しかし、本発明では、差圧が零となった状態を安定させるために、規定の状態が実現されてから所定時間(例えば、0.5秒程度)が経過し、かつセンサ信号Sの変動幅が所定値以下(例えば、圧力換算値で0.2kPa以下)となったときに、学習条件が成立したと判定する構成としてもよい。
(学習制御)
学習条件の成立後には、低圧EGR通路44内の差圧が零であるとみなせるので、学習制御を開始する。学習制御では、まず、吸気温センサ52により検出した吸気温と、水温センサ50により検出した冷却水温とに基いて差圧センサ54の温度(センサ温度)Tを推定する。ECU60には、吸気温及び冷却水温に対するセンサ温度の特性がマップデータとして予め記憶されている。従って、このマップデータに基いてセンサ温度Tを推定することができる。なお、センサ温度は走行風の影響も受ける場合があるので、本発明では、例えば車速センサ等により検出した車両の速度を走行風に対応するパラメータとして使用し、車両の速度、吸気温及び冷却水温に基いてセンサ温度を推定してもよい。
学習条件の成立後には、低圧EGR通路44内の差圧が零であるとみなせるので、学習制御を開始する。学習制御では、まず、吸気温センサ52により検出した吸気温と、水温センサ50により検出した冷却水温とに基いて差圧センサ54の温度(センサ温度)Tを推定する。ECU60には、吸気温及び冷却水温に対するセンサ温度の特性がマップデータとして予め記憶されている。従って、このマップデータに基いてセンサ温度Tを推定することができる。なお、センサ温度は走行風の影響も受ける場合があるので、本発明では、例えば車速センサ等により検出した車両の速度を走行風に対応するパラメータとして使用し、車両の速度、吸気温及び冷却水温に基いてセンサ温度を推定してもよい。
そして、学習条件が成立した状態でのセンサ信号Sを、温度Tにおける差圧センサ54の零点出力(オフセット)S0として検出し、このオフセットS0により前述の補正マップ(図2参照)を書き換える。具体例を挙げれば、例えばT=30℃においてオフセットの検出値がS030=-0.3Vである場合には、図2中で該当するオフセットの学習値L30=-0.1Vを、検出値S030に書き換える。なお、この書換処理では、過剰な補正を避けるために、検出値と学習値の差分のうち一定の割合だけを学習値に加算する構成としてもよい。即ち、αを一定の割合(1>α>0)とし、新旧の学習値をそれぞれL,L′とすれば、下記(3)式により算出する構成としてもよい。
L=(S0-L′)×α+L′ ・・・(3)
また、1回の学習動作で学習値を変化させる量は、学習制御の機会(頻度)が増えるほど少なくてもよい。従って、本発明において、上記の割合αは、学習頻度が増えるにつれて減少させる構成としてもよい。
一方、学習制御では、推定したセンサ温度Tに対応する学習値だけでなく、他のセンサ温度に対応する学習値も書き換える構成としてもよい。この場合、例えばT=30℃での検出値S030により当該温度の学習値L30を書き換えるときには、下記(4)~(6)式に示すように、T=-10,60,80℃の学習値L-10,L60,L80に対しても、S030を所定の割合β1,β2,β3で反映させる。
L-10=(S0-L-10′)×β1+L-10′ ・・・(3)
L60=(S0-L60′)×β2+L60′ ・・・(4)
L80=(S0-L80′)×β3+L80′ ・・・(5)
L60=(S0-L60′)×β2+L60′ ・・・(4)
L80=(S0-L80′)×β3+L80′ ・・・(5)
なお、上記の割合β1~β3は、学習時点でのセンサ温度(上記例ではT=30℃)に対する温度差が大きくなるにつれて、徐々に減少させるのが好ましい。一例を挙げれば、β1=0.3、β2=0.2、β3=0.1等のように設定してもよい。
[実施の形態1を実現するための具体的な処理]
図3は、本発明の実施の形態1において、ECUにより実行される制御を示すフローチャートである。なお、図3に示すルーチンは、内燃機関の運転中に繰り返し実行されるものである。このルーチンでは、まず、車両の速度、吸気温及び冷却水温に基いてセンサ温度を推定する(ステップ100)。次に、内燃機関が燃料カット制御(F/C)中であるか否かを判定し、燃料カット中でない場合には、制御を終了する(ステップ102)。また、燃料カット中である場合には、前述した4つの弁18,19,40,46を規定の状態に保持し、学習条件設定制御を実行する(ステップ104)。そして、例えばセンサ出力の変動が小さい状態で所定時間が経過したか否かを判定することにより、学習条件が成立したか否かを判定する(ステップ106)。そして、学習条件が成立した場合には、センサ信号Sとセンサ温度Tとに基いて学習制御を実行する(ステップ108)。また、学習条件が不成立の場合には、成立するまで待機する。
図3は、本発明の実施の形態1において、ECUにより実行される制御を示すフローチャートである。なお、図3に示すルーチンは、内燃機関の運転中に繰り返し実行されるものである。このルーチンでは、まず、車両の速度、吸気温及び冷却水温に基いてセンサ温度を推定する(ステップ100)。次に、内燃機関が燃料カット制御(F/C)中であるか否かを判定し、燃料カット中でない場合には、制御を終了する(ステップ102)。また、燃料カット中である場合には、前述した4つの弁18,19,40,46を規定の状態に保持し、学習条件設定制御を実行する(ステップ104)。そして、例えばセンサ出力の変動が小さい状態で所定時間が経過したか否かを判定することにより、学習条件が成立したか否かを判定する(ステップ106)。そして、学習条件が成立した場合には、センサ信号Sとセンサ温度Tとに基いて学習制御を実行する(ステップ108)。また、学習条件が不成立の場合には、成立するまで待機する。
以上詳述した通り、本実施の形態によれば、高圧EGR機構と低圧EGR機構を備えた内燃機関において、差圧センサ54の学習制御を行う場合には、4つの弁18,19,40,46を制御するだけで、低圧EGR通路44の差圧を零に設定することができる。即ち、既存のシステム構成と燃料カット制御とを利用して、学習条件を容易に成立させることができる。従って、学習制御を行うために余分な電磁弁等を追加したり、設計変更を行う必要がないので、システム構成を簡略化し、コストダウンを促進することができる。
また、学習条件を成立させるときには、燃料カット制御中に第2吸気絞り弁20を閉弁し、低圧EGR通路44を吸気負圧から遮断することができる。そして、高圧EGR弁40を開弁することにより、燃料カット中の気筒12からポンピングにより排出されるガスを、高圧EGR通路38によって筒内に戻すことができる。つまり、このガスを、第2吸気絞り弁20により低圧EGR通路44から遮断された流路で循環させることができる。また、低圧EGR弁46を開弁することにより、低圧EGR通路44の差圧が過渡的にも生じ難い状態を実現することができる。
さらに、第1吸気絞り弁18を閉弁することにより、車両の走行風等により吸気通路14の上流端側に圧力変動が生じた場合でも、この圧力変動から低圧EGR通路44を遮断することができる。従って、低圧EGR通路44の差圧を零に設定し、この状態を安定的に保持することができる。そして、学習条件が成立した状態では、差圧センサ54の零点出力(オフセット)とセンサ温度とに基いてオフセットの温度特性を学習することができ、温度変化や経時劣化によるセンサ信号の誤差を学習制御により吸収することができる。
実施の形態2.
次に、図4を参照して、本発明の実施の形態2について説明する。本実施の形態では、前記実施の形態1と同様のシステム構成(図1)を採用しているものの、以下に述べる制御内容において、実施の形態1と構成が異なっている。なお、本実施の形態では、前記実施の形態1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
次に、図4を参照して、本発明の実施の形態2について説明する。本実施の形態では、前記実施の形態1と同様のシステム構成(図1)を採用しているものの、以下に述べる制御内容において、実施の形態1と構成が異なっている。なお、本実施の形態では、前記実施の形態1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
[実施の形態2の特徴]
本実施の形態のシステムは、内燃機関の出力が不要な状況において、内燃機関を一時的に停止させる機関停止制御を行う構成としている。機関停止制御には、例えば車両が停止してから再発進するまでのアイドル運転中に内燃機関を停止させるアイドル停止制御や、ハイブリッド車等において内燃機関を停止した状態で電動モータにより走行するモータ走行制御などが含まれる。
本実施の形態のシステムは、内燃機関の出力が不要な状況において、内燃機関を一時的に停止させる機関停止制御を行う構成としている。機関停止制御には、例えば車両が停止してから再発進するまでのアイドル運転中に内燃機関を停止させるアイドル停止制御や、ハイブリッド車等において内燃機関を停止した状態で電動モータにより走行するモータ走行制御などが含まれる。
そして、学習条件設定制御では、上述した機関停止制御の実行中に低圧EGR弁46を開弁する。即ち、内燃機関が停止した状態では、吸気負圧や排気圧が生じないので、低圧EGR弁46を開弁することにより、低圧EGR通路44の差圧を零に保持し、学習条件を成立させることができる。そして、学習条件の成立後には、実施の形態1と同様の学習制御を実行する構成となっている。
[実施の形態2を実現するための具体的な処理]
図4は、本発明の実施の形態2において、ECUにより実行される制御を示すフローチャートである。なお、図4に示すルーチンは、内燃機関の運転中に繰り返し実行されるものである。このルーチンでは、まず、実施の形態1と同様にセンサ温度を推定する(ステップ200)。次の処理では、機関停止制御の実行中であるか否かを判定し、判定が不成立の場合には、制御を終了する(ステップ202)。また、機関停止制御の実行中である場合には、まず、低圧EGR弁46を開弁する(ステップ204)。そして、実施の形態1のステップ106,108と同様の処理により、学習条件が成立したか否かを判定し、学習制御を実行する(ステップ206,208)。
図4は、本発明の実施の形態2において、ECUにより実行される制御を示すフローチャートである。なお、図4に示すルーチンは、内燃機関の運転中に繰り返し実行されるものである。このルーチンでは、まず、実施の形態1と同様にセンサ温度を推定する(ステップ200)。次の処理では、機関停止制御の実行中であるか否かを判定し、判定が不成立の場合には、制御を終了する(ステップ202)。また、機関停止制御の実行中である場合には、まず、低圧EGR弁46を開弁する(ステップ204)。そして、実施の形態1のステップ106,108と同様の処理により、学習条件が成立したか否かを判定し、学習制御を実行する(ステップ206,208)。
このように構成される本実施の形態でも、前記実施の形態1とほぼ同様の作用効果を得ることができる。そして、特に本実施の形態では、機関停止制御を利用したので、学習条件を更に容易に成立させることができる。即ち、機関停止制御中に低圧EGR弁46を開弁すれば、吸気絞り弁18,20及び高圧EGR弁40を制御しなくても、低圧EGR通路44の差圧を零に設定することができ、弁制御を簡略化することができる。
実施の形態3.
次に、図5を参照して、本発明の実施の形態3について説明する。本実施の形態では、前記実施の形態1とほぼ同様のシステム構成を採用しているものの、低圧用絞り弁としては、第1吸気絞り弁に代えて排気絞り弁が用いられており、この点で実施の形態1と構成が異なっている。なお、本実施の形態では、前記実施の形態1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
次に、図5を参照して、本発明の実施の形態3について説明する。本実施の形態では、前記実施の形態1とほぼ同様のシステム構成を採用しているものの、低圧用絞り弁としては、第1吸気絞り弁に代えて排気絞り弁が用いられており、この点で実施の形態1と構成が異なっている。なお、本実施の形態では、前記実施の形態1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
[実施の形態3の特徴]
図5は、本発明の実施の形態3のシステム構成を説明するための全体構成図である。本実施の形態では、排気通路16のうち低圧EGR通路44の下流側となる位置に排気絞り弁70が設けられている。排気絞り弁70は、電磁駆動式のバタフライ弁等により構成されており、ECU60から入力される制御信号に応じて排気通路16を開,閉するものである。そして、排気絞り弁70は、実施の形態1の第1吸気絞り弁18と同様に機能する。即ち、排気絞り弁70の開度を小さくすることにより、低圧EGR機構によるEGR量を増大させることができる。
図5は、本発明の実施の形態3のシステム構成を説明するための全体構成図である。本実施の形態では、排気通路16のうち低圧EGR通路44の下流側となる位置に排気絞り弁70が設けられている。排気絞り弁70は、電磁駆動式のバタフライ弁等により構成されており、ECU60から入力される制御信号に応じて排気通路16を開,閉するものである。そして、排気絞り弁70は、実施の形態1の第1吸気絞り弁18と同様に機能する。即ち、排気絞り弁70の開度を小さくすることにより、低圧EGR機構によるEGR量を増大させることができる。
また、学習条件設定制御では、排気絞り弁70と第2吸気絞り弁20とを閉弁状態に保持し、高圧EGR弁40と低圧EGR弁46とを開弁状態に保持する。これにより、実施の形態1の場合と同様に、低圧EGR通路44の差圧を零にすることができる。このように構成される本実施の形態でも、前記実施の形態1とほぼ同様の作用効果を得ることができ、本発明を適用可能なシステム構成を多様化することができる。
なお、前記実施の形態では、図3及び図4中のステップ104,204が学習条件設定手段の具体例を示している。また、ステップ108,208は、学習制御手段の具体例を示し、ステップ100,200は、温度取得手段の具体例を示している。
また、実施の形態1では、車両の速度、吸気温及び冷却水温に基づいてセンサ温度を推定する構成とした。しかし、本発明はこれに限らず、例えば温度センサにより差圧センサの温度を直接検出する構成としてもよい。
10 内燃機関
12 気筒
14 吸気通路
16 排気通路
18 第1吸気絞り弁(低圧用絞り弁)
20 第2吸気絞り弁(高圧用絞り弁)
22 触媒
24 DPF
26 燃料噴射弁
28 ターボチャージャ
30 タービン
32 コンプレッサ
34 インタークーラ
36 ターボバイパス弁
38 高圧EGR通路
40 高圧EGR弁
44 低圧EGR通路
44a 上流部
44b 下流部
46 低圧EGR弁
48 EGRクーラ
50 水温センサ
52 吸気温センサ
54 差圧センサ
60 ECU
70 排気絞り弁(低圧用絞り弁)
12 気筒
14 吸気通路
16 排気通路
18 第1吸気絞り弁(低圧用絞り弁)
20 第2吸気絞り弁(高圧用絞り弁)
22 触媒
24 DPF
26 燃料噴射弁
28 ターボチャージャ
30 タービン
32 コンプレッサ
34 インタークーラ
36 ターボバイパス弁
38 高圧EGR通路
40 高圧EGR弁
44 低圧EGR通路
44a 上流部
44b 下流部
46 低圧EGR弁
48 EGRクーラ
50 水温センサ
52 吸気温センサ
54 差圧センサ
60 ECU
70 排気絞り弁(低圧用絞り弁)
Claims (5)
- 内燃機関の排気通路に設けられたタービンと吸気通路に設けられたコンプレッサとを有し、排気圧を利用して吸入空気を過給するターボチャージャと、
前記タービンの上流側で前記排気通路から分流させた排気ガスを前記吸気通路に還流させる通路であって、高圧EGR弁により排気ガスの流量が調整される高圧EGR通路と、
前記タービンの下流側で前記排気通路から分流させた排気ガスを前記コンプレッサの上流側で前記吸気通路に還流させる通路であって、低圧EGR弁により排気ガスの流量が調整される低圧EGR通路と、
前記コンプレッサの下流側で前記吸気通路を開,閉する高圧用絞り弁と、
前記低圧EGR通路の上流側で前記吸気通路を開,閉する吸気絞り弁と前記低圧EGR通路の下流側で前記排気通路を開,閉する排気絞り弁のうち、何れか一方の絞り弁により構成された低圧用絞り弁と、
前記低圧EGR通路の上流部と下流部との間の圧力差に基いて排気ガスの還流量を制御するために、前記圧力差を検出する差圧センサと、
前記差圧センサの出力特性を学習するために、前記高圧EGR弁、前記低圧EGR弁、前記高圧用絞り弁及び前記低圧用絞り弁のうち少なくとも1つの弁を用いて前記低圧EGR通路の上流部と下流部との間の圧力差を零にする学習条件設定手段と、
前記学習条件設定手段により前記低圧EGR通路の圧力差を零にした状態で、前記差圧センサの出力に基いて出力特性を学習する学習制御手段と、
を備えることを特徴とする内燃機関の制御装置。 - 前記学習条件設定手段は、内燃機関の燃料カット制御が実行されているときに、前記高圧EGR弁と前記低圧EGR弁とを開弁し、かつ前記高圧用絞り弁を閉弁して前記圧力差を零にする構成としてなる請求項1に記載の内燃機関の制御装置。
- 前記学習条件設定手段は、内燃機関の燃料カット制御が実行されているときに、前記高圧EGR弁と前記低圧EGR弁とを開弁し、かつ前記高圧用絞り弁と前記低圧用絞り弁とを閉弁して前記圧力差を零にする構成としてなる請求項1に記載の内燃機関の制御装置。
- 前記学習条件設定手段は、内燃機関を一時的に停止させる機関停止制御が実行されているときに、前記低圧EGR弁を開弁して前記圧力差を零にする構成としてなる請求項1に記載の内燃機関の制御装置。
- 前記差圧センサの温度を取得する温度取得手段を備え、
前記学習制御手段は、前記差圧センサの零点出力であるオフセットの温度特性を学習する構成としてなる請求項1乃至4のうち何れか1項に記載の内燃機関の制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09850845.0A EP2495419B1 (en) | 2009-10-30 | 2009-10-30 | Control system for internal combustion engine |
PCT/JP2009/068664 WO2011052066A1 (ja) | 2009-10-30 | 2009-10-30 | 内燃機関の制御装置 |
JP2011538165A JP5218669B2 (ja) | 2009-10-30 | 2009-10-30 | 内燃機関の制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/068664 WO2011052066A1 (ja) | 2009-10-30 | 2009-10-30 | 内燃機関の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011052066A1 true WO2011052066A1 (ja) | 2011-05-05 |
Family
ID=43921507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/068664 WO2011052066A1 (ja) | 2009-10-30 | 2009-10-30 | 内燃機関の制御装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2495419B1 (ja) |
JP (1) | JP5218669B2 (ja) |
WO (1) | WO2011052066A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012251509A (ja) * | 2011-06-06 | 2012-12-20 | Nissan Motor Co Ltd | 内燃機関の排気還流装置 |
WO2013030562A1 (en) * | 2011-08-26 | 2013-03-07 | Perkins Engines Company Limited | System for calibrating egr pressure sensing systems |
US20130269662A1 (en) * | 2012-03-26 | 2013-10-17 | Robert Bosch Gmbh | Method and device for monitoring errors in an exhaust gas recirculation system |
JP2014114758A (ja) * | 2012-12-11 | 2014-06-26 | Honda Motor Co Ltd | 差圧検出装置のゼロ点学習装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10220838B2 (en) * | 2015-12-22 | 2019-03-05 | Mazda Motor Corporation | Vehicle control device |
US11680533B2 (en) * | 2019-11-15 | 2023-06-20 | Nissan Motor Co., Ltd. | Method of estimating actual EGR ratio in EGR system and EGR system |
US11215129B2 (en) | 2020-04-03 | 2022-01-04 | Ford Global Technologies, Llc | System and method for operating an engine in a fuel cut-out mode |
US11352968B1 (en) | 2021-06-29 | 2022-06-07 | Ford Global Technologies, Llc | Methods and systems for reducing catalyst cooling during fuel cut via pre-chamber ignition system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004245123A (ja) * | 2003-02-13 | 2004-09-02 | Denso Corp | 内燃機関の排気浄化装置 |
JP2008002347A (ja) * | 2006-06-22 | 2008-01-10 | Toyota Motor Corp | 内燃機関の排気還流装置 |
JP2008038661A (ja) * | 2006-08-02 | 2008-02-21 | Toyota Motor Corp | 内燃機関の排気浄化システム |
JP2009013872A (ja) * | 2007-07-04 | 2009-01-22 | Toyota Motor Corp | 内燃機関の吸気制御装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7168250B2 (en) * | 2005-04-21 | 2007-01-30 | International Engine Intellectual Property Company, Llc | Engine valve system and method |
JP4528206B2 (ja) * | 2005-06-09 | 2010-08-18 | 本田技研工業株式会社 | 蒸発燃料処理系のリークを判定する装置 |
JP4797880B2 (ja) * | 2006-04-25 | 2011-10-19 | 株式会社デンソー | 内燃機関用排気ガス浄化装置 |
JP2009156090A (ja) * | 2007-12-25 | 2009-07-16 | Toyota Motor Corp | 可変気筒内燃機関の排気還流装置 |
-
2009
- 2009-10-30 JP JP2011538165A patent/JP5218669B2/ja not_active Expired - Fee Related
- 2009-10-30 EP EP09850845.0A patent/EP2495419B1/en not_active Not-in-force
- 2009-10-30 WO PCT/JP2009/068664 patent/WO2011052066A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004245123A (ja) * | 2003-02-13 | 2004-09-02 | Denso Corp | 内燃機関の排気浄化装置 |
JP2008002347A (ja) * | 2006-06-22 | 2008-01-10 | Toyota Motor Corp | 内燃機関の排気還流装置 |
JP2008038661A (ja) * | 2006-08-02 | 2008-02-21 | Toyota Motor Corp | 内燃機関の排気浄化システム |
JP2009013872A (ja) * | 2007-07-04 | 2009-01-22 | Toyota Motor Corp | 内燃機関の吸気制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2495419A4 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012251509A (ja) * | 2011-06-06 | 2012-12-20 | Nissan Motor Co Ltd | 内燃機関の排気還流装置 |
US9091223B2 (en) | 2011-06-06 | 2015-07-28 | Nissan Motor Co., Ltd. | Exhaust gas recirculation system for an internal combustion engine |
WO2013030562A1 (en) * | 2011-08-26 | 2013-03-07 | Perkins Engines Company Limited | System for calibrating egr pressure sensing systems |
GB2509620A (en) * | 2011-08-26 | 2014-07-09 | Perkins Engines Co Ltd | System for calibrating EGR pressure sensing systems |
GB2509620B (en) * | 2011-08-26 | 2018-09-26 | Perkins Engines Co Ltd | System for calibrating EGR pressure sensing systems |
US20130269662A1 (en) * | 2012-03-26 | 2013-10-17 | Robert Bosch Gmbh | Method and device for monitoring errors in an exhaust gas recirculation system |
JP2014114758A (ja) * | 2012-12-11 | 2014-06-26 | Honda Motor Co Ltd | 差圧検出装置のゼロ点学習装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2495419B1 (en) | 2014-12-24 |
JP5218669B2 (ja) | 2013-06-26 |
EP2495419A4 (en) | 2014-01-01 |
JPWO2011052066A1 (ja) | 2013-03-14 |
EP2495419A1 (en) | 2012-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5218669B2 (ja) | 内燃機関の制御装置 | |
JP5196036B2 (ja) | 内燃機関の制御装置 | |
US10174719B2 (en) | Control device for internal combustion engine | |
JP5187123B2 (ja) | 内燃機関の制御装置 | |
JP5169439B2 (ja) | 内燃機関制御装置及び内燃機関制御システム | |
JP2005220888A (ja) | 過給機付き内燃機関の過給圧推定装置 | |
JP6093258B2 (ja) | 過給機付きエンジンの排気還流装置のための故障検出装置 | |
JP6394529B2 (ja) | エンジンの制御装置 | |
JP5590234B2 (ja) | 内燃機関の制御装置 | |
WO2008059362A2 (en) | Exhaust gas recirculation system for internal combustion engine and method for controlling the same | |
US10450974B2 (en) | Control device for internal combustion engine and control method for internal combustion engine | |
JP2007085198A (ja) | 内燃機関の過給圧制御システム | |
JP2007009877A (ja) | 過給圧制御システムの異常診断装置 | |
JP2007303380A (ja) | 内燃機関の排気制御装置 | |
JP6565109B2 (ja) | 内燃機関の制御方法及び制御装置 | |
JP2014227844A (ja) | 内燃機関の制御装置 | |
JP2018155167A (ja) | 内燃機関の制御装置 | |
JP6127906B2 (ja) | 内燃機関の制御装置 | |
JP2007162502A (ja) | 内燃機関の制御装置 | |
US9732667B2 (en) | EGR control method of internal combustion engine | |
JP2007303355A (ja) | 内燃機関のegr制御装置 | |
JP2019152122A (ja) | 内燃機関システム | |
JP6323263B2 (ja) | 可変圧縮比内燃機関の制御装置および制御方法 | |
JP5791586B2 (ja) | 差圧検出装置のゼロ点学習装置 | |
JP2011241723A (ja) | 過給機付き内燃機関のegr装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09850845 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011538165 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009850845 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |