WO2011052047A1 - 冷凍サイクル装置 - Google Patents

冷凍サイクル装置 Download PDF

Info

Publication number
WO2011052047A1
WO2011052047A1 PCT/JP2009/068456 JP2009068456W WO2011052047A1 WO 2011052047 A1 WO2011052047 A1 WO 2011052047A1 JP 2009068456 W JP2009068456 W JP 2009068456W WO 2011052047 A1 WO2011052047 A1 WO 2011052047A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
heat
water
heat source
Prior art date
Application number
PCT/JP2009/068456
Other languages
English (en)
French (fr)
Inventor
若本 慎一
直史 竹中
山下 浩司
裕之 森本
祐治 本村
傑 鳩村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011538148A priority Critical patent/JP5518089B2/ja
Priority to US13/504,162 priority patent/US20120216989A1/en
Priority to PCT/JP2009/068456 priority patent/WO2011052047A1/ja
Priority to CN200980162212.7A priority patent/CN102667366B/zh
Priority to EP09850827.8A priority patent/EP2495512B1/en
Publication of WO2011052047A1 publication Critical patent/WO2011052047A1/ja
Priority to US14/622,067 priority patent/US9822995B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves

Definitions

  • the present invention relates to a refrigeration cycle apparatus, and more particularly to a refrigeration cycle apparatus capable of continuously controlling the heat exchange capacity of a heat source side heat exchanger.
  • Patent Document 1 discloses that “the heat source side heat exchanger 3 is branched and connected in parallel to each other. 1 refrigerant circuit 21, a second refrigerant circuit 22, and a third refrigerant circuit 23.
  • the first refrigerant circuit 21 is provided with a first heat exchanger 24, and one end of the four-way valve 2 side. Includes a first heat source side heat exchanger open / close solenoid valve 3a capable of opening and closing a bidirectional flow, and a third heat source side heat exchanger open / close solenoid valve capable of opening and closing a bidirectional flow at the other end.
  • the refrigerant flow to the first refrigerant circuit 21 is controlled by opening and closing these two electromagnetic valves 3a and 3c, and the presence or absence of heat exchange in the first heat exchanger 24 is controlled.
  • the second refrigerant circuit 22 is provided with a second heat exchanger 25, and at one end of the four-way valve 2 side,
  • the second heat source side heat exchanger open / close solenoid valve 3b that can open and close the direction flow
  • the fourth heat source side heat exchanger open / close solenoid valve 3d that can open and close the bidirectional flow are arranged at the other end.
  • the refrigerant flow to the second refrigerant circuit 22 is controlled by opening and closing these two solenoid valves 3b and 3d, and the presence or absence of heat exchange in the second heat exchanger 25 is controlled.
  • a first heat source side heat exchanger bypass electromagnetic valve 3e capable of opening and closing a bidirectional flow is provided in the middle of the piping of the circuit 23. By opening and closing the electromagnetic valve 3e, the first heat exchanger 24 and the second heat exchanger 24e are arranged. The presence or absence of a refrigerant flow that bypasses the heat exchanger 25 is controlled.
  • the refrigerant is circulated through both the first and second heat exchangers 24 and 25, and the third refrigerant circuit
  • the refrigerant is not circulated through 23, but the air flow rate of the heat source machine side fan 18 is adjusted from the stop to the full speed by an inverter or the like (not shown).
  • the second stage corresponds to the case where the heat exchange capacity on the side of the heat source machine next to the first stage is required, ... the refrigerant is circulated only through the second heat exchanger 25, and ...
  • the first heat exchange The refrigerant is not circulated in the heater 24 and the third refrigerant circuit 23, the heat transfer area of the heat source device side heat exchanger 3 is greatly reduced, and the air volume of the heat source device side fan 18 is changed to an inverter or the like (not shown).
  • the third stage corresponds to the case where the heat source side heat exchange capacity smaller than the second stage is required, ... the refrigerant is circulated through the second heat exchanger 25 and the third refrigerant circuit 23, and
  • the refrigerant circuit 21, that is, the first heat exchanger 24, does not circulate the refrigerant, greatly reduces the heat transfer area of the heat source apparatus side heat exchanger 3, and is connected to the second heat exchanger 25.
  • the refrigerant flow rate is decreased, and the air flow rate of the heat source device side blower 18 is adjusted from the stop to the full speed by an inverter or the like (not shown).
  • the fourth stage corresponds to the case where the smallest heat source machine side heat exchange capacity is required, and opens the first heat source machine side heat exchanger bypass electromagnetic valve 3e, and the first, second, third, The fourth heat source unit side heat exchanger opening / closing electromagnetic valves 3a, 3b, 3c, 3d are closed to eliminate the heat exchange amount of the heat source unit side heat exchanger 3. ...
  • the heat source side heat exchange capacity AK2 MAX when the second stage heat source side fan 18 is at full speed is the first stage outside wind and the heat source side blower 18 is heat source equipment side is greater than the heat exchange capacity AK1 MAX when the stop, that is, if the AK2 MAX> AK1 MAX become wind speed below the outer air, the first and second stages can be continuously controlled.
  • the heat source side heat exchange capacity AK3 MAX when the third stage heat source side fan 18 is at full speed is the second stage outside wind and the heat source side blower.
  • the second stage and the third stage can be controlled continuously. Has been proposed.
  • the above-described conventional refrigeration cycle apparatus has the following problems.
  • the supply device that supplies the heat exchange target to the heat source side heat exchanger cannot continuously control the supply amount of the heat exchange target to the heat source side heat exchanger from the maximum supply amount to zero.
  • a blower in which a minimum rotation speed (minimum air volume) is specified in order to cool a motor that drives a fan. Such a blower cannot continuously control the air volume from full speed to stop.
  • an object of the present invention is to provide a refrigeration cycle apparatus capable of continuously controlling the heat exchange capacity of the heat source side heat exchanger without increasing the number of heat exchangers constituting the heat source side heat exchanger. To do.
  • the refrigeration cycle apparatus includes a heat source side heat exchanger in which a plurality of heat exchangers are connected in parallel, and a heat exchange target for heat exchange with a refrigerant flowing through the heat exchanger, to a heat exchanger with a variable supply amount.
  • a refrigeration cycle apparatus having a supply device for supplying, A flow path opening and closing device that opens and closes each refrigerant flow path of the heat exchanger, a bypass pipe connected in parallel with the heat exchanger, and a flow rate adjusting device that is provided in the bypass pipe and controls the flow rate of the refrigerant flowing through the bypass pipe; , With.
  • the refrigerant in each stage of gradually increasing or decreasing the number of heat exchangers that circulate the refrigerant, the refrigerant is circulated through the bypass pipe, and the flow rate of the refrigerant is continuously increased or decreased by the flow regulator.
  • the heat exchange capacity of the heat source side heat exchanger can be continuously controlled. For this reason, even in a supply device in which the supply amount of the heat exchange target to the heat source side heat exchanger cannot be continuously controlled from the maximum supply amount to 0 (the minimum heat exchange capacity of the heat source side heat exchanger at the stage where the heat exchange capacity is large). ) Can be made smaller than (the maximum heat exchange capacity of the heat source side heat exchanger at the stage where the heat exchange capacity is small).
  • the supply amount of the heat exchange target to the heat source side heat exchanger cannot be continuously controlled from the maximum supply amount to 0, without increasing the number of heat exchangers constituting the heat source side heat exchanger.
  • the heat exchange capacity of the heat source side heat exchanger can be controlled continuously. Note that the circulation of the refrigerant to the bypass pipe does not have to be performed at all stages in which the number of heat exchangers through which the refrigerant is circulated is gradually increased or decreased, and may be performed at a desired stage.
  • FIG. 1 is a diagram illustrating a refrigerant circuit of an air conditioner as an example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the air conditioner according to the first embodiment is an example of a multi-room heat pump air conditioner in which a plurality of indoor units are connected to one heat source unit. For indoor units, heating can also be selected.
  • This air conditioner includes a heat source unit A, a relay unit E, and indoor units B, C, and D connected in parallel to each other.
  • the heat source machine A includes a compressor 1, a four-way valve 2, a heat source side heat exchanger 3, a blower 18 that blows air to the heat source side heat exchanger 3, and a flow of refrigerant discharged from the compressor 1.
  • a switching valve 4 for switching the path is provided.
  • the blower 18 corresponds to the supply device of the present invention.
  • the heat exchange target that exchanges heat with the refrigerant flowing through the heat source side heat exchanger 3 is air.
  • a pump or the like may be used as a supply device that supplies the heat source target to the heat source side heat exchanger 3.
  • the heat source side heat exchanger 3 is configured by connecting a plurality of heat exchangers in parallel.
  • two heat exchangers first heat exchanger 24 and second heat exchanger 25
  • the heat source side heat exchanger 3 includes a first refrigerant circuit 21, a second refrigerant circuit 22, and a third refrigerant circuit 23 that are branched and connected in parallel to each other.
  • the first refrigerant circuit 21 is provided with a first heat exchanger 24, an electromagnetic valve 3 a is provided at one end of the first heat exchanger 24 on the four-way valve 2 side, and the other one of the first heat exchanger 24 is provided.
  • One end is provided with a solenoid valve 3c.
  • the refrigerant flow to the first refrigerant circuit 21 is controlled (the refrigerant flow path is opened and closed), and the presence or absence of heat exchange in the first heat exchanger 24 is controlled.
  • a second heat exchanger 25 is provided in the second refrigerant circuit 22, and the electromagnetic valve 3 b is provided at one end of the second heat exchanger 25 on the four-way valve 2 side, and the other heat exchanger 25 is provided with the other heat exchanger 25.
  • One end is provided with a solenoid valve 3d.
  • the refrigerant flow to the second refrigerant circuit 22 is controlled by opening and closing these two electromagnetic valves 3b and 3d (the refrigerant flow path is opened and closed), and the presence or absence of heat exchange in the second heat exchanger 25 is controlled.
  • a flow rate control valve 40 is provided in the middle of the piping of the third refrigerant circuit 23, and the flow rate of the refrigerant that bypasses the first heat exchanger 24 and the second heat exchanger 25 (the third flow rate control valve 40). The flow rate of the refrigerant flowing through the refrigerant circuit 23 is controlled.
  • the solenoid valves 3a to 3d correspond to the flow path opening and closing device of the present invention.
  • the third refrigerant circuit 23 corresponds to the bypass pipe in the present invention.
  • the flow control valve 40 corresponds to the flow control device of the present invention.
  • the valve structure is adopted for the flow path opening / closing device and the flow rate adjusting device, but the present invention is not limited to this.
  • the structure of the flow path opening / closing device is arbitrary as long as the refrigerant flow paths of the first heat exchanger 24 and the second heat exchanger 25 can be opened and closed.
  • the structure of the flow rate adjusting device is arbitrary as long as the flow rate of the refrigerant flowing through the third refrigerant circuit 23 can be controlled.
  • the switching valve 4 includes four check valves (a first check valve 4a, a second check valve 4b, a third check valve 4c, and a fourth check valve 4d).
  • the fourth check valve 4d is provided between the heat source side heat exchanger 3 and the second heat source unit side connection pipe 16A, and from the heat source side heat exchanger 3 to the second heat source unit side connection pipe 16A. Allow refrigerant to flow only to
  • the first check valve 4a is provided between the four-way valve 2 of the heat source machine A and the first heat source machine side connection pipe 15A, and only from the first heat source machine side connection pipe 15A to the four-way valve 2. Allow refrigerant flow.
  • the third check valve 4c is provided between the four-way valve 2 of the heat source unit A and the second heat source unit side connection pipe 16A, and only the refrigerant from the four-way valve 2 to the second heat source unit side connection pipe 16A. Allow distribution.
  • the second check valve 4b is a second check valve provided between the heat source side heat exchanger 3 and the first heat source unit side connection pipe 15A, and from the first heat source unit side connection pipe 15A. Only the refrigerant flow to the heat source side heat exchanger 3 is allowed.
  • the other end of the second heat source unit side connection pipe 16A is connected to a gas-liquid separator 7 of the relay E described later.
  • the other end of the first heat source unit side connection pipe 15A is connected to a first branching unit 5 of the relay E described later.
  • the refrigerant discharged from the compressor 1 always flows into the relay E through the second heat source unit side connection pipe 16 ⁇ / b> A, and the refrigerant flowing out of the relay E always has the first heat source. It will pass through machine side connection piping 15A. For this reason, it is possible to make the pipe diameter of the second heat source unit side connection pipe 16A smaller than the pipe diameter of the first heat source unit side connection pipe 15A.
  • the heat source machine A is provided with a condensing temperature detecting device 19 and an evaporating temperature detecting device 20 such as a temperature sensor, for example.
  • the condensing temperature detector 19 is provided in the high-pressure part of the refrigeration cycle, and is disposed in the discharge pipe of the compressor 1 in the first embodiment.
  • the evaporating temperature detection device 20 is provided in the low pressure portion of the refrigeration cycle, and is disposed in the suction pipe of the compressor 1 in the first embodiment.
  • the indoor unit B includes an indoor unit side heat exchanger 10B.
  • One end of the indoor unit side heat exchanger 10B is connected to a first branching unit 5 of the relay unit E described later via a first indoor unit side connection pipe 15B.
  • the other end of the indoor unit side heat exchanger 10B is connected to a second branching unit 6 of the relay unit E, which will be described later, via a second indoor unit side connection pipe 16B.
  • a flow control valve 11B is provided in the second indoor unit side connection pipe 16B.
  • the indoor unit C includes an indoor unit side heat exchanger 10C.
  • the indoor unit side heat exchanger 10C is connected to a first branching unit 5 of the relay unit E described later via a first indoor unit side connection pipe 15C.
  • the other end of the indoor unit side heat exchanger 10C is connected to a second branching unit 6 of the relay unit E described later via a second indoor unit side connection pipe 16C.
  • a flow control valve 11C is provided in the second indoor unit side connection pipe 16C.
  • the indoor unit D includes an indoor unit side heat exchanger 10D.
  • One end of the indoor unit side heat exchanger 10D is connected to a first branching unit 5 of the relay unit E described later via a first indoor unit side connection pipe 15D.
  • the other end of the indoor unit side heat exchanger 10D is connected to a second branching unit 6 of the relay unit E described later via a second indoor unit side connection pipe 16D.
  • a flow control valve 11D is provided in the second indoor unit side connection pipe 16D.
  • the repeater E includes a first branch part 5, a second branch part 6, a gas-liquid separator 7, a flow rate control valve 8, a flow rate control valve 9, and the like.
  • the first branch part 5 includes electromagnetic valves 13B, 13C, 13D and electromagnetic valves 14B, 14C, 14D.
  • One end of each of the electromagnetic valves 13B, 13C, and 13D is connected to the first heat source unit side connection piping 15A.
  • the other end of the solenoid valve 13B is connected to the first indoor unit side connection pipe 15B, and the other end of the solenoid valve 13C is connected to the first indoor unit side connection pipe 15C.
  • the other end of the electromagnetic valve 13D is connected to the first indoor unit side connection pipe 15D.
  • One end of each of the electromagnetic valves 14B, 14C, and 14D is connected to the gas-liquid separator 7.
  • the other end of the solenoid valve 14B is connected to the first indoor unit side connection pipe 15B, and the other end of the solenoid valve 14C is connected to the first indoor unit side connection pipe 15C.
  • the other end of the electromagnetic valve 14D is connected to the first indoor unit side connection pipe 15D.
  • the second branch section 6 is for branch-connecting the second indoor unit side connection pipes 16B, 16C, 16D and the second heat source unit side connection pipe 16A.
  • the gas-liquid separator 7 is provided in the second heat source unit side connection pipe 16A, the gas phase part thereof is connected to the electromagnetic valves 14B, 14C, 14D, and the liquid phase part thereof is connected to the second branch part 6. It is connected.
  • the flow control valve 8 is connected between the gas-liquid separator 7 and the second branch part 6, and the flow control valve 9 is connected between the second branch part 6 and the first heat source unit side connection pipe 15A. It is connected to the.
  • electric expansion valves are used as the flow control valve 8 and the flow control valve 9.
  • FIG. 2 illustrates the refrigerant flow in the case of only the cooling operation (hereinafter referred to as “all cooling operation”) and the refrigerant flow in the case of only the heating operation (hereinafter referred to as “all heating operation”) will be described.
  • FIG. 3 illustrates the refrigerant flow when cooling and heating coexist and the heat source side heat exchanger 3 acts as a condenser (hereinafter referred to as cooling main operation).
  • FIG. 4 illustrates the refrigerant flow when cooling and heating coexist and the heat source side heat exchanger 3 acts as an evaporator (hereinafter referred to as heating main operation).
  • FIG. 2 is a diagram illustrating the refrigerant flow during the cooling operation and the heating operation of the refrigerant circuit of the air conditioner as an example of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the direction of the solid line arrow shown in FIG. 2 is the refrigerant flow direction during the cooling only operation.
  • the refrigerant flowing into the heat source side heat exchanger 3 is condensed and liquefied by exchanging heat with the air sent from the blower 18 here.
  • the condensed and liquefied high-pressure liquid refrigerant passes through the fourth check valve 4d, passes through the second heat source unit side connection pipe 16A, the gas-liquid separator 7, and the flow rate control valve 8 in this order, and passes through the second branch section 6. Flow into.
  • the high-pressure liquid refrigerant that has flowed into the second branch section 6 flows into the indoor units B, C, and D via the second indoor unit side connection pipes 16B, 16C, and 16D.
  • the refrigerant flowing into the indoor units B, C, D is decompressed to a low pressure by the flow control valves 11B, 11C, 11D, exchanges heat with the indoor air in the indoor unit side heat exchangers 10B, 10C, 10D, and evaporates. Then gasify and cool the room.
  • the opening degree of flow control valve 11B, 11C, 11D is controlled by the superheat amount of the exit of each indoor unit side heat exchanger 10B, 10C, 10D.
  • coolant which became this gas state is 1st indoor unit side connection piping 15B, 15C, 15D, electromagnetic valve 13B, 13C, 13D, the 1st branch part 5, 1st heat source unit side connection piping 15A, The air is sucked into the compressor 1 through the first check valve 4 a and the four-way valve 2.
  • the solenoid valves 13B, 13C, 13D are opened, and the solenoid valves 14B, 14C, 14D are closed. Therefore, the refrigerant flows through the first indoor unit side connecting pipes 15B, 15C, 15D, the second indoor unit side connecting pipes 16B, 16C, 16D, and the indoor units B, C, D in the direction of the solid line arrow.
  • first heat source unit side connection pipe 15A is low pressure
  • second heat source unit side connection pipe 16A is high pressure
  • the connection end to the switching valve 4 of the heat source side heat exchanger 3 is high pressure
  • the switching valve 4 of the four-way valve 2 Since the connection end to the low pressure is low pressure, the refrigerant inevitably flows to the first check valve 4a and the fourth check valve 4d.
  • the direction of the broken line arrow shown in FIG. 2 is the flow direction of the refrigerant during the heating only operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the four-way valve 2.
  • the refrigerant that has exited the four-way valve 2 passes through the third check valve 4 c, the second heat source unit side connection pipe 16 ⁇ / b> A, and the gas-liquid separator 7 and flows into the first branch portion 5.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first branch portion 5 passes through the solenoid valves 14B, 14C, and 14D, and the first indoor unit side connection pipes 15B, 15C, and 15D in this order, and passes through the indoor units B, C, and D. Inflow.
  • the high-temperature and high-pressure gas refrigerant that has flowed into each of the indoor units B, C, and D exchanges heat with the indoor air in the indoor unit-side heat exchangers 10B, 10C, and 10D to be condensed and liquefied, thereby heating the room.
  • the refrigerant in the liquid state is controlled by the subcooling amount at the outlet of each indoor unit side heat exchanger 10B, 10C, 10D and passes through the flow control valves 11B, 11C, 11D in a substantially fully opened state, and the second indoor unit. From the side connection pipes 16 ⁇ / b> B, 16 ⁇ / b> C, and 16 ⁇ / b> D, they flow into the second branch portion 6 and join together, and further pass through the third flow control valve 9.
  • the liquid refrigerant that has exited the indoor unit side heat exchangers 10B, 10C, and 10D is in a low-pressure gas-liquid two-phase state in one of the flow rate control valves 11B, 11C, and 11D or the third flow rate control valve 9. The pressure is reduced to.
  • the low-pressure gas-liquid two-phase refrigerant flows into the first heat source unit side connection pipe 15A.
  • the low-pressure two-phase refrigerant that has flowed into the first heat source unit side connection pipe 15 ⁇ / b> A flows into the heat source side heat exchanger 3.
  • the refrigerant that has flowed into the heat source side heat exchanger 3 exchanges heat with the air blown by the blower 18 with variable air flow, and evaporates into a gas state.
  • the refrigerant in the gas state is sucked into the compressor 1 through the four-way valve 2 of the heat source unit.
  • the solenoid valves 14B, 14C, and 14D are opened, and the solenoid valves 13B, 13C, and 13D are closed. For this reason, the refrigerant flows through the first indoor unit side connecting pipes 15B, 15C, 15D, the second indoor unit side connecting pipes 16B, 16C, 16D, and the indoor units B, C, D in the direction of the dashed arrow.
  • first heat source machine side connection pipe 15A is low pressure
  • second heat source machine side connection pipe 16A is high pressure
  • the connection end to the switching valve 4 of the heat source side heat exchanger 3 is low pressure
  • the switching valve 4 of the four-way valve 2 Since the connecting end to the high pressure is, the refrigerant inevitably flows to the second check valve 4b and the third check valve 4c.
  • FIG. 3 is a diagram showing a refrigerant flow during heating-main operation of the refrigerant circuit of the air conditioner as an example of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the direction of the broken-line arrow shown in FIG. 3 is the refrigerant flow direction during heating-main operation.
  • FIG. 3 shows a case where the indoor units B and C perform the heating operation and the indoor unit D performs the cooling operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the four-way valve 2.
  • the refrigerant that has exited the four-way valve 2 passes through the third check valve 4 c, the second heat source unit side connection pipe 16 ⁇ / b> A, and the gas-liquid separator 7 and flows into the first branch portion 5.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first branch section 5 flows into the indoor units B and C through the solenoid valves 14B and 14C and the first indoor unit side connecting pipes 15B and 15C in this order.
  • the refrigerant in the liquid state is controlled by the subcooling amount at the outlets of the indoor unit side heat exchangers 10B and 10C, passes through the flow control valves 11B and 11C in the fully open state, and is slightly depressurized. It flows into the 2nd branch part 6 from machine side connection piping 16B and 16C.
  • a part of the refrigerant that has flowed into the second branch section 6 enters the indoor unit D to be cooled through the second indoor unit side connection pipe 16D. Then, the refrigerant enters the flow control valve 11D controlled by the superheat amount at the outlet of the indoor unit side heat exchanger 10D and is depressurized. The decompressed refrigerant exchanges heat with the indoor unit side heat exchanger 10D, evaporates and gasifies, and cools the room. The refrigerant in the gas state flows into the first heat source unit side connection pipe 15A through the electromagnetic valve 13D.
  • the remaining refrigerant in the second branch section 6 is high pressure (for example, the pressure of the second heat source unit side connection pipe 16A) and intermediate pressure (for example, the pressure of the second indoor unit side connection pipes 16B, 16C, 16D).
  • a third flow rate control valve 9 that is controlled so that the differential pressure falls within a predetermined range. Thereafter, the refrigerant merges with the refrigerant that has passed through the indoor unit D to be cooled in the first heat source unit side connection pipe 15A.
  • the low-pressure two-phase refrigerant that has flowed into the first heat source unit side connection pipe 15A flows into the heat source unit A, and flows into the heat source side heat exchanger 3 through the second check valve 4b.
  • the refrigerant which is evaporated and gasified by exchanging heat with the air blown by the blower 18 with variable air flow is sucked into the compressor 1 through the four-way valve 2 of the heat source machine.
  • the solenoid valves 14B and 14C are open and the solenoid valves 13B and 13C are closed during the heating main operation, the first indoor unit side connection pipes 15B and 15C, the second indoor unit side connection pipe 16B, In 16C, the indoor units B and C are heated by the refrigerant flowing in the direction of the broken arrow.
  • the solenoid valve 14D is closed and the solenoid valve 13D is opened, the direction of the broken line arrow in the first indoor unit side connection pipe 15D, the second indoor unit side connection pipe 16D, and the indoor unit D Refrigerant flows through and cools.
  • first heat source machine side connection pipe 15A is low pressure
  • second heat source machine side connection pipe 16A is high pressure
  • the connection end to the switching valve 4 of the heat source side heat exchanger 3 is low pressure
  • the switching valve 4 of the four-way valve 2 Since the connecting end to the high pressure is, the refrigerant inevitably flows to the second check valve 4b and the third check valve 4c.
  • FIG. 4 is a diagram showing the refrigerant flow during the cooling main operation of the refrigerant circuit of the air conditioner as an example of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the direction of the broken line arrow shown in FIG. 4 is the refrigerant flow direction during the cooling main operation.
  • FIG. 4 shows a case where the indoor units B and C perform a cooling operation and the indoor unit D performs a heating operation.
  • the refrigerant that has flowed into the heat source side heat exchanger 3 exchanges heat with the air sent from the blower 18 here, and is condensed and liquefied halfway to be in a two-phase state of high temperature and high pressure.
  • the refrigerant that has flowed into the gas-liquid separator 7 is separated into a gas refrigerant and a liquid refrigerant.
  • the gas refrigerant separated by the gas-liquid separator 7 passes through the first branch portion 5, the electromagnetic valve 14D, and the first indoor unit side connection piping 15D in this order, and flows into the indoor unit D to be heated.
  • the gas refrigerant flowing into the indoor unit D exchanges heat with indoor air in the indoor unit-side heat exchanger 10D to condense and liquefy, thereby heating the room.
  • the liquid refrigerant that has flowed out of the indoor unit side heat exchanger 10D is controlled by the subcooling amount at the outlet of the indoor unit side heat exchanger 10D, and is slightly decompressed in the process of passing through the flow control valve 11D that is almost fully open. It flows into the 2nd branch part 6 through the indoor unit side connection piping 16D.
  • the liquid refrigerant separated by the gas-liquid separator 7 has a high pressure (for example, the pressure of the second heat source unit side connection pipe 16A) and an intermediate pressure (for example, the pressure of the second indoor unit side connection pipes 16B, 16C, 16D). ) Flows into the second branch section 6 through the flow rate control valve 8 that is controlled so that the differential pressure with respect to a predetermined range falls within a predetermined range. And this refrigerant
  • the refrigerant that has flowed out of the second branch section 6 flows through the second indoor unit side connection pipes 16B and 16C and into the indoor units B and C.
  • the refrigerant flowing into the indoor units B and C is depressurized to a low pressure by the flow control valves 11B and 11C, exchanges heat with the indoor air in the indoor unit side heat exchangers 10B and 10C, and evaporates and gasifies to indoors. Cool down.
  • the opening degree of the flow control valves 11B and 11C is controlled by the superheat amount at the outlet of each indoor unit side heat exchanger 10B, 10C, and 10D.
  • coolant which became this gas state is 1st indoor unit side connection piping 15B, 15C, solenoid valve 13B, 13C, the 1st branch part 5, 1st heat-source unit side connection piping 15A, 1st reverse.
  • the air is sucked into the compressor 1 through the stop valve 4a and the four-way valve 2.
  • the solenoid valves 13B and 13C are opened and the solenoid valves 14B and 14C are closed during the cooling main operation, the first indoor unit side connection pipes 15B and 15C, the second indoor unit side connection pipe 16B, In 16C and the indoor units B and C, the refrigerant flows in the direction of the solid arrow and cools.
  • the solenoid valve 13D is closed and the solenoid valve 14D is opened, the direction of the solid arrow on the first indoor unit side connection pipe 15D, the second indoor unit side connection pipe 16D, and the indoor unit D
  • the refrigerant flows into the room and heats up.
  • first heat source unit side connection pipe 15A is low pressure
  • second heat source unit side connection pipe 16A is high pressure
  • the connection end to the switching valve 4 of the heat source side heat exchanger 3 is high pressure
  • the switching valve 4 of the four-way valve 2 Since the connection end to the low pressure is low pressure, the refrigerant inevitably flows to the first check valve 4a and the fourth check valve 4d.
  • Heat exchange capacity control method of heat source side heat exchanger 3 Next, a method for controlling the heat exchange capacity of the heat source side heat exchanger 3 will be described.
  • the purpose of controlling the heat exchange capacity of the heat source side heat exchanger 3 (more specifically, the capacity of the heat source side heat exchanger 3 and the air flow rate of the blower 18) will be described.
  • the air-conditioning apparatus according to Embodiment 1 is in the cooling only operation.
  • the capacity of the heat source side heat exchanger 3 and the air volume of the air blower 18 are designed so that the air flow rate of the air blower 18 becomes full speed, and the difference between the outside air temperature and the condensation temperature is, for example, 10 ° C. Before and after.
  • the condensation temperature becomes a temperature obtained by adding about 10 ° C. to the outside air temperature. For this reason, the condensation temperature becomes very low as compared with the case where the outside air temperature is high, and the condensation pressure of the refrigeration cycle also becomes low.
  • the inlet / outlet pressure difference between the flow control valves 11B, 11C, and 11D becomes small, and the opening degree of the flow control valves 11B, 11C, and 11D needs to be increased.
  • the opening degree of the flow control valves 11B, 11C, and 11D is finite and cannot be increased beyond a certain level. Therefore, if it is necessary to increase the upper limit value, it is necessary to select a flow control valve having a large capacity. come. However, in this case, the flow rate control valves 11B, 11C, and 11D are increased in size, and the flow rate fluctuation amount per minimum opening width is increased, and fine control cannot be performed.
  • the condensation pressure of the refrigeration cycle does not become too low. It is necessary to do so.
  • the air-conditioning apparatus according to Embodiment 1 is in the all-heating operation.
  • the capacity of the heat source side heat exchanger 3 and the air flow rate of the air blower 18 are designed so that the air flow rate of the air blower 18 becomes full speed.
  • the outside air temperature is high, if the capacities of the heat source side heat exchanger 3 and the blower 18 are the same as when the outside air temperature is low, the evaporation temperature becomes very high and the evaporation pressure of the refrigeration cycle also becomes high.
  • the inlet / outlet pressure difference between the flow control valves 11B, 11C, and 11D becomes small, and the opening degree of the flow control valves 11B, 11C, and 11D needs to be increased.
  • the opening degree of the flow control valves 11B, 11C, and 11D is finite and cannot be increased beyond a certain level. Therefore, if it is necessary to increase the upper limit value, it is necessary to select a flow control valve having a large capacity. come. However, in this case, the flow rate control valves 11B, 11C, and 11D are increased in size, and the flow rate fluctuation amount per minimum opening width is increased, and fine control cannot be performed.
  • the heat exchange capacity of the heat source side heat exchanger 3 (the capacity of the heat source side heat exchanger 3 and the blower 18) so that the evaporation temperature becomes a predetermined value, the evaporation pressure of the refrigeration cycle becomes too high. It is necessary not to.
  • the capacity of the heat source side heat exchanger 3 and the air flow rate of the blower 18 are designed so that the air flow rate of the blower 18 becomes full speed when the outside air temperature is high in the cooling only operation, and the difference between the outside air temperature and the condensation temperature is designed. Is, for example, around 10 ° C. In the cooling-dominated operation, since the heating load is generated, the outside air temperature is usually low.
  • capacitance of the heat source side heat exchanger 3 and the air flow rate of the air blower 18 are designed so that the air flow rate of the air blower 18 becomes a full speed when the outside air temperature is low in the all heating operation.
  • the cooling load since the cooling load is generated, the outside air temperature is usually relatively high.
  • the capacity of the heat source side heat exchanger 3 and the blower 18 is the same as the case where the outside air temperature is low in the all heating operation, the amount of the outside air is high, and further, the amount of evaporation in the cooling indoor unit D, Evaporation temperature will rise.
  • the capacity of the cooling indoor unit D is insufficient. For this reason, it is necessary to control the heat exchange capacity of the heat source side heat exchanger 3 (the capacity of the heat source side heat exchanger 3 and the blower 18) so that the evaporation temperature becomes a predetermined value.
  • the heat exchange capacity adjustment device 152 controls the heat exchange capacity of the heat source side heat exchanger 3 as follows.
  • FIG. 5 is a diagram showing the control contents of the heat exchange capacity adjustment device of the air conditioner as an example of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the heat exchange capacity adjusting device 152 is based on the detected temperatures of the condensing temperature detecting device 19 and the evaporating temperature detecting device 20, and the air volume (capacity) of the blower 18, opening / closing of the electromagnetic valves 3a, 3b, 3c, 3d, and the flow control valve 40. To control the opening degree.
  • the heat exchange capacity of the heat source side heat exchanger 3 is controlled in the following four stages.
  • the first stage corresponds to the case where the heat source side heat exchanger 3 requires the largest heat exchange capacity.
  • the solenoid valves 3a, 3b, 3c, 3d and closing the flow control valve 40 the refrigerant flows through the first and second refrigerant circuits 21, 22, and the third refrigerant circuit 23 Avoid circulating refrigerant. That is, the refrigerant is circulated through both the first heat exchanger 24 and the second heat exchanger 25 and the refrigerant is not circulated through the third refrigerant circuit 23. Then, the air flow rate of the blower 18 is adjusted between the minimum air flow rate and the full speed by an inverter or the like (not shown).
  • the second stage corresponds to the case where the heat source side heat exchanger 3 requires the next largest heat exchange capacity after the first stage.
  • the solenoid valves 3a and 3c are opened, the solenoid valves 3b and 3d are closed, and the flow control valve 40 is closed.
  • the refrigerant is allowed to flow only through the first refrigerant circuit 23 and is not allowed to flow through the second refrigerant circuit 22 and the third refrigerant circuit 23. That is, the refrigerant is circulated only through the first heat exchanger 24 and is not circulated through the second heat exchanger 25 and the third refrigerant circuit 23, so that the heat transfer of the heat source side heat exchanger 3 is performed.
  • the area is greatly reduced.
  • the air flow rate of the blower 18 is adjusted between the minimum air flow rate and the full speed by an inverter or the like (not shown).
  • the heat exchange amount due to the outside wind due to the building wind or the like is also greatly reduced, and the heat exchange amount due to natural convection when there is no outside wind is also greatly reduced, so that the heat source side heat exchanger 3 is connected to the condenser.
  • the decrease in the condensation temperature and in the case of the evaporator, the increase in the evaporation temperature is small.
  • the third stage corresponds to the case where the heat source side heat exchanger 3 requires a smaller heat exchange capacity than the second stage.
  • the solenoid valves 3a and 3c are opened, the solenoid valves 3b and 3d are closed, and the opening degree of the flow control valve 40 is adjusted.
  • the refrigerant is circulated through the first refrigerant circuit 21 and the third refrigerant circuit 23, and the refrigerant is not circulated through the second refrigerant circuit 22. That is, the refrigerant is circulated through the first heat exchanger 24 and the third refrigerant circuit 23, and the refrigerant is not circulated through the second heat exchanger 25.
  • the air flow rate of the blower 18 is adjusted between the minimum air flow rate and the full speed by an inverter or the like (not shown).
  • the amount of refrigerant flowing through the second refrigerant circuit 23 can be continuously controlled by controlling the opening degree of the flow control valve 40, and the heat source side heat exchanger 3 (more specifically, the first heat exchange)
  • the heat exchange capacity of the vessel 24 can be controlled continuously.
  • the heat exchange amount due to the outside wind such as the building wind is further reduced than in the second stage, and the heat exchange amount due to the natural convection when there is no outside wind is similarly reduced, so that the heat source side heat exchanger 3
  • the condensation temperature decreases, and in the case of an evaporator, the increase in the evaporation temperature is further reduced.
  • the fourth stage corresponds to the case where the heat source side heat exchanger 3 requires the smallest heat exchange capacity.
  • the flow rate control valve 40 is fully opened and the solenoid valves 3a, 3b, 3c, 3d are closed, so that the heat exchange amount of the heat source side heat exchanger 3 is eliminated.
  • the refrigerant flow path of the second heat exchanger 25 is closed in the second stage (the electromagnetic valves 3b and 3d are closed), and the first heat exchanger 24 in the fourth stage.
  • the refrigerant flow path was closed (electromagnetic valves 3a and 3c were closed).
  • the refrigerant flow path of the first heat exchanger 24 is closed in the second stage (the electromagnetic valves 3a and 3c are closed), and the refrigerant flow path of the second heat exchanger 25 is closed in the fourth stage.
  • the electromagnetic valves 3b and 3d may be closed.
  • the continuous controllability of the first stage and the second stage, and the second stage and the third stage by the heat exchange capacity adjusting device 152 will be described. Even if there is an outside wind, (the heat source side heat exchange capacity AK2 MAX when the second stage blower 18 is at full speed) is (the heat source side heat exchange capacity AK1 MAX when the first stage blower 18 has the minimum air volume).
  • the first stage and the second stage can be controlled continuously if the outside wind is larger than the wind speed, that is, AK2 MAX > AK1 MAX or less.
  • the heat-source-unit-side heat exchange capacity AK3 MAX when the third stage blower 18 is at full speed can be increased. For this reason, it becomes easier to control the transition from the second stage to the third stage continuously than in the conventional air conditioner.
  • the heat exchange capacity of the heat source side heat exchanger 3 can be continuously controlled. That is, when the heat source side heat exchanger 3 is a condenser, the condensation temperature can be controlled within a predetermined value or within a predetermined range.
  • the circulation of the refrigerant to the third refrigerant circuit 23 is not limited to the above-described stage.
  • the refrigerant may be circulated to the third refrigerant circuit 23 in the first stage.
  • the heat-source-unit-side heat exchange capacity AK1 MAX when the blower 18 in the first stage has the minimum air volume is reduced.
  • the heat source unit side heat exchange capacity AK1 MAX becomes smaller as the refrigerant flow rate to the third refrigerant circuit 23 is increased.
  • the transition from the second stage to the third stage can be continuously controlled as compared with the conventional air conditioner. For this reason, it becomes easier to control the transition from the first stage to the second stage continuously than in the conventional air conditioner.
  • FIG. 6 is a diagram illustrating a control flow of the heat exchange capacity adjustment device when the heat source side heat exchanger of the air-conditioning apparatus is a condenser as an example of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • step 160 (the detected temperature TC of the condensing temperature detecting device 19) is compared with (a predetermined first target condensing temperature TC1). If TC> TC1, the process proceeds to step 161.
  • step 161 it is determined whether or not the blower 18 is at full speed. If the blower 18 is not at full speed, the routine proceeds to step 162 where the amount of blown air is increased and the routine returns to step 160.
  • step 163 it is determined in step 163 whether the electromagnetic valves 3a, 3c are opened or closed. If the solenoid valves 3a and 3c are closed, the solenoid valves 3a and 3c are opened in step 164, the first refrigerant circuit 21, that is, the first heat exchanger 24 is opened, and the process returns to step 160. If the solenoid valves 3a and 3c are open, the process proceeds to step 165.
  • step 165 the opening degree of the flow control valve 40 is determined. If the opening degree of the flow control valve 40 is not fully closed, the opening degree of the flow control valve 40 is decreased in step 166 and the process returns to step 160. If the opening degree of the flow control valve 40 is fully closed, the process proceeds to step 167. In step 167, it is determined whether the electromagnetic valves 3b and 3d are open or closed. If the solenoid valves 3b and 3d are closed, the solenoid valves 3b and 3d are opened in step 168, the second refrigerant circuit 22, that is, the second heat exchanger 25 is opened, and the process returns to step 160. Even if the solenoid valves 3b and 3d are open, the process returns to step 160.
  • step 160 determines whether or not the blower 18 has the minimum air volume. If the blower 18 is not at the minimum air volume, the process proceeds to step 172 to decrease the air volume and returns to step 160.
  • step 173 it is determined in step 173 whether the electromagnetic valves 3b, 3d are opened or closed. If the solenoid valves 3b and 3d are open, the solenoid valves 3b and 3d are closed in step 174, the second refrigerant circuit 22, that is, the second heat exchanger 25 is closed, and the process returns to step 160. If the solenoid valves 3b and 3d are closed, the process proceeds to step 175.
  • step 175 the opening degree of the flow control valve 40 is determined. If the opening degree of the flow control valve 40 is not fully open, the opening degree of the flow control valve 40 is increased in step 176 and the process returns to step 160. If the opening degree of the flow control valve 40 is fully open, the process proceeds to step 177. In step 177, it is determined whether the solenoid valves 3a and 3c are opened or closed. If the solenoid valves 3a and 3c are open, the solenoid valves 3a and 3c are closed in step 178, the first refrigerant circuit 21, that is, the first heat exchanger 24 is closed, and the process returns to step 160. Even if the solenoid valves 3a and 3c are closed in step 177, the process returns to step 160. In this way, the detected temperature TC of the condensing temperature detector 19 can be controlled to a temperature between the first target condensing temperature TC1 and the second target condensing temperature TC2.
  • FIG. 7 is a diagram showing a control flow of the heat exchange capacity adjustment device when the heat source side heat exchanger of the air-conditioning apparatus is an evaporator as an example of the refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • Step 180 (the detected temperature TE of the evaporating temperature detecting device 20) is compared with (a predetermined first target evaporating temperature TE1). If TE ⁇ TE1, the process proceeds to step 181.
  • step 181 it is determined whether or not the blower 18 is at full speed. If the blower 18 is not at full speed, the flow proceeds to step 182 to increase the amount of blown air and returns to step 180.
  • step 183 the opening / closing of the solenoid valves 3a, 3c is determined in step 183. If the solenoid valves 3a and 3c are closed, the solenoid valves 3a and 3c are opened in step 184, the first refrigerant circuit 21, that is, the first heat exchanger 24 is opened, and the process returns to step 180. If the solenoid valves 3a and 3c are open, the process proceeds to step 185.
  • step 185 the opening degree of the flow control valve 40 is determined. If the opening degree of the flow control valve 40 is not fully closed, the opening degree of the flow control valve 40 is lowered at step 186 and the process returns to step 180. If the opening degree of the flow control valve 40 is fully closed, the process proceeds to step 187. In step 187, it is determined whether the solenoid valves 3b and 3d are opened or closed. If the solenoid valves 3b and 3d are closed, the solenoid valves 3b and 3d are opened in step 188, the second refrigerant circuit 22, that is, the second heat exchanger 25 is opened, and the process returns to step 180. Even if the solenoid valves 3b and 3d are open, the process returns to step 180.
  • step 180 determines whether TE ⁇ TE1
  • step 190 (the detected temperature TE of the evaporating temperature detecting device 20) is compared with (the second target evaporating temperature TE2 that is set in advance larger than the first target evaporating temperature). If TE> TE2, the process proceeds to step 191. If TE ⁇ TE2, the process returns to step 180. In step 191, it is determined whether or not the blower 18 has the minimum air volume. If the blower 18 is not at the minimum air volume, the process proceeds to step 192 to decrease the air volume and returns to step 180.
  • step 193 it is determined in step 193 whether the electromagnetic valves 3b and 3d are opened or closed. If the solenoid valves 3b and 3d are open, the solenoid valves 3b and 3d are closed in step 194, the second refrigerant circuit 22, that is, the second heat exchanger 25 is closed, and the process returns to step 180. If the solenoid valves 3b and 3d are closed, the process proceeds to step 195.
  • step 195 the opening degree of the flow control valve 40 is determined. If the opening degree of the flow control valve 40 is not fully open, the opening degree of the flow control valve 40 is increased in step 196 and the process returns to step 180. If the opening degree of the flow control valve 40 is fully open, the process proceeds to step 197. In step 197, it is determined whether the electromagnetic valves 3a and 3c are opened or closed. If the solenoid valves 3a and 3c are open, the solenoid valves 3a and 3c are closed in step 198, the first refrigerant circuit 21, that is, the first heat exchanger 24 is closed, and the process returns to step 180. Even if the solenoid valves 3a and 3c are closed in step 197, the process returns to step 180. In this way, the detected temperature TE of the evaporation temperature detecting device 20 can be controlled to a temperature between the first target evaporation temperature TE1 and the second target evaporation temperature TE2.
  • FIG. 8 it is a connection part of the 1st refrigerant circuit 21, the 2nd refrigerant circuit 22, and the 3rd refrigerant circuit 23, Comprising:
  • a heat source side heat exchanger 3 becomes an evaporator, it is a refrigerant
  • a distributor 30 that flows out to the downstream portion at a predetermined ratio (for example, equal) may be provided in the connection portion on the inlet side.
  • a predetermined ratio for example, equal
  • a refrigerant having an equal gas-liquid ratio can be distributed to the second refrigerant circuit 22 and the third refrigerant circuit 23). For this reason, a refrigerant with an excessively high gas ratio or a refrigerant with an excessively high liquid ratio flows into the heat source side heat exchanger 3 and the heat exchange capacity in the heat source side heat exchanger 3 becomes unstable. Can be prevented. That is, it is possible to stably control the heat exchange capacity of the heat source side heat exchanger 3.
  • the refrigerant to be used is not particularly mentioned.
  • a heat exchange target for example, air or water
  • the heat exchange target is heated in a supercritical state without being condensed.
  • a refrigerant may be used.
  • the air conditioning apparatus shown in the first embodiment is merely an example.
  • the heat source device A and the relay E may be a single unit (the components in the heat source device A and the components in the relay E may be arranged in one housing).
  • it is good also as an air conditioning apparatus which can perform only a cooling operation or a heating operation.
  • it is not necessary to provide the four-way valve 2 and the switching valve 4 in the heat source device A.
  • it may be an air conditioner including a single indoor unit instead of an air conditioner of another room type including a plurality of indoor units.
  • the refrigeration cycle apparatus according to the present invention can be adopted other than the air conditioner.
  • the refrigeration cycle apparatus according to the present invention may be employed in a hot water storage type hot water supply apparatus or the like.
  • Embodiment 2 When the heat source side heat exchanger 3 in which a plurality of heat exchangers are connected in parallel is used as a condenser, the density of the refrigerant flowing through the heat source side heat exchanger 3 may increase and the flow rate may decrease. For this reason, there is a concern that the heat transfer coefficient of the refrigerant (the heat exchange efficiency of the heat source side heat exchanger 3) is lowered. By adding the following configuration, this concern can be solved and a more efficient air conditioner can be obtained.
  • items not particularly described are the same as those in the first embodiment.
  • FIG. 9 is a diagram showing a refrigerant circuit of an air conditioner as an example of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • a bypass pipe 50 and an electromagnetic valve 51 are added to the configuration of the air conditioner according to Embodiment 1.
  • Bypass piping 50 arranges the 1st heat exchanger 24 and the 2nd heat exchanger 25 in series.
  • One end of the bypass pipe 50 is connected to the second refrigerant circuit 22 between the second heat exchanger 25 and the electromagnetic valve 3d.
  • the other end of the bypass pipe 50 is connected to the first refrigerant circuit 21 between the first heat exchanger 24 and the electromagnetic valve 3a.
  • the solenoid valve 51 is provided in the bypass pipe 50 and opens and closes the refrigerant flow path of the bypass pipe 50.
  • bypass pipe 50 corresponds to the connection pipe of the present invention.
  • the electromagnetic valve 51 corresponds to the opening / closing device of the present invention.
  • a valve structure is employed for the opening / closing device, but the present invention is not limited to this. As long as the refrigerant flow path of the bypass pipe 50 can be opened and closed, the structure of the opening and closing device is arbitrary.
  • the air conditioner according to the second embodiment has five stages of heat exchange capacity of the heat source side heat exchanger 3. To control.
  • the first stage corresponds to the case where the heat source side heat exchanger 3 requires the largest heat exchange capacity.
  • the electromagnetic valves 3b and 3c are opened, and the electromagnetic valves 3a and 3d and the flow control valve 40 are closed. Further, the electromagnetic valve 51 is opened.
  • the refrigerant flows in the order of the second heat exchanger 25 and the first heat exchanger 24, and no refrigerant flows through the third refrigerant circuit 23.
  • the air flow rate of the blower 18 is adjusted between the minimum air flow rate and the full speed by an inverter or the like (not shown).
  • FIG. 10 illustrates the refrigerant flow of the heat source side heat exchanger 3 during the cooling only operation as an example of the refrigerant flow of the heat source side heat exchanger 3 in the first stage.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the four-way valve 2.
  • the refrigerant that has exited the four-way valve 2 flows into the heat source side heat exchanger 3.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 3 first flows into the second heat exchanger 25. Then, the refrigerant flows into the first heat exchanger 24 through the bypass pipe 50.
  • the refrigerant that has flowed out of the first heat exchanger 24 flows into the second heat source unit side connection pipe 16A through the fourth check valve 4d.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 3 and the air sent from the blower 18 in the process from flowing into the second heat exchanger 25 to flowing out of the first heat exchanger 24 Heat exchanges to condense and liquefy.
  • coolant flow after 16 A of 2nd heat-source equipment side connection piping is the same as the air conditioning apparatus shown in Embodiment 1, and abbreviate
  • the heat exchange capacity of the heat source side heat exchanger 3 is controlled by the same control method as in the first embodiment. That is, the first to fourth stages shown in the first embodiment are the second to fifth stages in the second embodiment.
  • control method of the heat exchange capacity of the heat source side heat exchanger 3 according to the second embodiment is as shown in FIG.
  • FIG. 11 is a diagram illustrating a control flow of the heat exchange capacity adjustment device when the heat source side heat exchanger of the air conditioner is a condenser as an example of the refrigeration cycle device according to Embodiment 2 of the present invention.
  • step 160 (the detected temperature TC of the condensing temperature detecting device 19) is compared with (a predetermined first target condensing temperature TC1). If TC> TC1, the process proceeds to step 161.
  • step 161 it is determined whether or not the blower 18 is at full speed. If the blower 18 is not at full speed, the routine proceeds to step 162 where the amount of blown air is increased and the routine returns to step 160.
  • step 163 it is determined in step 163 whether the electromagnetic valves 3a, 3c are opened or closed. If the solenoid valves 3a and 3c are closed, the solenoid valves 3a and 3c are opened in step 164, the first refrigerant circuit 21, that is, the first heat exchanger 24 is opened, and the process returns to step 160. If the solenoid valves 3a and 3c are open, the process proceeds to step 165.
  • step 165 the opening degree of the flow control valve 40 is determined. If the opening degree of the flow control valve 40 is not fully closed, the opening degree of the flow control valve 40 is decreased in step 166 and the process returns to step 160. If the opening degree of the flow control valve 40 is fully closed, the process proceeds to step 167. In step 167, it is determined whether the electromagnetic valves 3b and 3d are open or closed. If the solenoid valves 3b and 3d are closed, the solenoid valves 3b and 3d are opened in step 168, the second refrigerant circuit 22, that is, the second heat exchanger 25 is opened, and the process returns to step 160. If the solenoid valves 3b and 3d are open, the process proceeds to step 200.
  • step 200 it is determined whether the electromagnetic valve 51 is opened or closed. If the solenoid valve 51 is closed, the solenoid valves 3a and 3d are closed in step 201, the solenoid valve 51 is opened in step 202, and the process returns to step 160. That is, the refrigerant flow path is opened so that the second heat exchanger 25 and the first heat exchanger 24 are connected in series, and the process returns to Step 160. If the solenoid valve 51 is open, the process returns to step 160.
  • step 160 determines whether or not the blower 18 has the minimum air volume. If the blower 18 is not at the minimum air volume, the process proceeds to step 172 to decrease the air volume and returns to step 160. If the blower 18 has the minimum air flow, the process proceeds to step 210.
  • step 210 it is determined whether the solenoid valve 51 is opened or closed. If the solenoid valve 51 is open, the solenoid valves 3a and 3d are opened in step 211, the solenoid valve 51 is closed in step 212, and the process returns to step 160. That is, the refrigerant flow path is opened so that the second heat exchanger 25 and the first heat exchanger 24 are connected in parallel, and the process returns to Step 160. If the solenoid valve 51 is closed, the process proceeds to step 173.
  • step 173 it is determined whether the solenoid valves 3b and 3d are opened or closed. If the solenoid valves 3b and 3d are open, the solenoid valves 3b and 3d are closed in step 174, the second refrigerant circuit 22, that is, the second heat exchanger 25 is closed, and the process returns to step 160. If the solenoid valves 3b and 3d are closed, the process proceeds to step 175.
  • step 175 the opening degree of the flow control valve 40 is determined. If the opening degree of the flow control valve 40 is not fully open, the opening degree of the flow control valve 40 is increased in step 176 and the process returns to step 160. If the opening degree of the flow control valve 40 is fully open, the process proceeds to step 177. In step 177, it is determined whether the solenoid valves 3a and 3c are opened or closed. If the solenoid valves 3a and 3c are open, the solenoid valves 3a and 3c are closed in step 178, the first refrigerant circuit 21, that is, the first heat exchanger 24 is closed, and the process returns to step 160. Even if the solenoid valves 3a and 3c are closed in step 177, the process returns to step 160. In this way, the detected temperature TC of the condensing temperature detector 19 can be controlled to a temperature between the first target condensing temperature TC1 and the second target condensing temperature TC2.
  • the electromagnetic valve 51 is closed and the heat source side heat exchanger 3 is used in the same manner as in the first embodiment. Control the heat exchange capacity.
  • the first heat exchanger 24 and the second heat By connecting the exchangers 25 in series, the refrigerant flow path cross-sectional area can be made smaller than when the first heat exchanger 24 and the second heat exchanger 25 are connected in parallel. For this reason, a decrease in the flow rate of the refrigerant flowing through the heat source side heat exchanger 3 can be suppressed. Therefore, the heat transfer coefficient of the refrigerant (heat exchange efficiency of the heat source side heat exchanger 3) when the heat source side heat exchanger 3 is used as a condenser is increased.
  • the first heat exchanger 24 and the second heat exchanger 25 are arranged in parallel.
  • an increase in the flow rate of the refrigerant flowing through the heat source side heat exchanger 3 can be suppressed.
  • the pressure loss of the refrigerant flowing through the heat source side heat exchanger 3 can be reduced. Therefore, the efficiency of the air conditioner is further improved.
  • the air blown by the blower flows into the first heat exchanger 24 on the downstream side in the refrigerant flow direction and then becomes the upstream side in the refrigerant flow direction. It flows into the second heat exchanger 25. For this reason, the air whose temperature has risen in the first heat exchanger 24 and the high-temperature refrigerant flowing into the second heat exchanger 25 from the compressor 1 exchange heat. Therefore, the heat exchange efficiency of the heat source side heat exchanger 3 is improved, and the efficiency of the air conditioner is improved.
  • Embodiment 3 In consideration of the influence on the human body such as the toxicity of the refrigerant and flammability, the allowable concentration of the refrigerant leaking into the space such as the room is determined by international standards. For example, R410A is 0.44 kg / m 3, which is one of flon refrigerant, CO 2 is 0.07 kg / m 3, propane is a 0.008 kg / m 3, determined the allowable concentration of the refrigerant leaking into the room ing. In order to prevent such refrigerant from leaking into the room, water, antifreeze liquid, or the like may be circulated through the indoor heat exchanger. Therefore, it is also effective to implement the present invention in an air conditioner in which water, antifreeze, etc. circulate in the indoor heat exchanger. In Embodiment 3, items that are not particularly described are the same as those in Embodiment 1 or Embodiment 2.
  • FIG. 12 is a diagram illustrating a refrigerant circuit of an air-conditioning apparatus as an example of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • the air conditioning apparatus according to Embodiment 3 is an air conditioning apparatus in which water flows to the indoor heat exchanger.
  • the air conditioner is a multi-room air conditioner in which a plurality of indoor units are connected to one heat source unit.
  • the air conditioner includes a heat source device A, a relay E ′, and a plurality of indoor units 71.
  • three indoor units 71a, 71b, 71c are provided.
  • the heat source machine A is the same as that of the first embodiment, and the compressor 1, the four-way valve 2, the heat source side heat exchanger 3, the blower 18 with variable air volume for blowing air to the heat source side heat exchanger 3, and the compression The switching valve 4 etc. which switch the flow path of the refrigerant
  • the fourth check valve 4d is connected to the first branch section 5 and the electromagnetic valve in the relay E ′ described later via the second heat source apparatus side connection pipe 16A.
  • 68 is connected to the refrigerant pipe.
  • the first check valve 4a is connected to a first branch portion 5 of a relay E ′ described later via a first heat source unit side connection pipe 15A.
  • Each of the indoor units 71a, 71b, 71c has the same configuration. More specifically, the indoor unit 71a includes an indoor side heat exchanger 70a. One end of the indoor heat exchanger 70a is connected to a first water switching valve 72a of a relay E ′ described later through a third water pipe 65a. The other end of the indoor heat exchanger 70a is connected to a second water switching valve 73a of a relay E ′ described later via a fourth water pipe 66a.
  • the indoor unit 71a includes an indoor heat exchanger 70b. One end of the indoor heat exchanger 70b is connected to a first water switching valve 72b of a relay E ′ described later via a third water pipe 65b.
  • the other end of the indoor heat exchanger 70b is connected to a second water switching valve 73b of a relay E ′ described later via a fourth water pipe 66b.
  • the indoor unit 71c is provided with the indoor side heat exchanger 70c.
  • One end of the indoor heat exchanger 70c is connected to a first water switching valve 72c of a relay E ′ described later via a third water pipe 65c.
  • the other end of the indoor heat exchanger 70c is connected to a second water switching valve 73c of a relay E ′ described later via a fourth water pipe 66c.
  • the relay E ′ includes a first branch part 5, a second branch part 6, a flow control valve 9, a first water-refrigerant heat exchanger 55B, a second water-refrigerant heat exchanger 55C, and a plurality of first 1 water switching valve 72 (first water switching valves 72a, 72b, 72c), a plurality of second water switching valves 73 (second water switching valves 73a, 73b, 73c), a plurality of pumps 60 (pump 60B). , 60C), and a solenoid valve 68 or the like.
  • the first branching unit 5 includes electromagnetic valves 13B and 13C and electromagnetic valves 14B and 14C.
  • One end of each of the solenoid valves 13B and 13C is connected to the first heat source unit side connection pipe 15A.
  • the other end of the electromagnetic valve 13B is connected to the first water-refrigerant heat exchanger 55B via the first water-refrigerant heat exchanger connection pipe 63B.
  • the other end of the solenoid valve 13C is connected to the second water-refrigerant heat exchanger 55C via the first water-refrigerant heat exchanger connection pipe 63C.
  • One end of each of the electromagnetic valves 14 ⁇ / b> B and 14 ⁇ / b> C is connected to the second branch portion 6.
  • the other end of the solenoid valve 14B is connected to the first heat source unit side connection pipe 15A via the first water-refrigerant heat exchanger connection pipe 63B.
  • the other end of the solenoid valve 14C is connected to the second water-refrigerant heat exchanger 55C via the first water-refrigerant heat exchanger connection pipe 63C.
  • An electromagnetic valve 68 is provided in the refrigerant pipe between the electromagnetic valves 14B and 14C and the second branching section 6, and the second pipe is connected between the electromagnetic valves 14B and 14C and the electromagnetic valve 68 of the pipe.
  • the heat source machine side connection pipe 16A is connected.
  • the second branching section 6 branches and connects the second water-refrigerant heat exchanger connection pipes 64B and 64C and the second heat source unit side connection pipe 16A.
  • the second water-refrigerant heat exchanger connection pipe 64B is connected to the first water-refrigerant heat exchanger 55B, and the second water-refrigerant heat exchanger connection pipe 64B is provided with a flow control valve 11B. It has been.
  • the second water-refrigerant heat exchanger connection pipe 64C is connected to the second water-refrigerant heat exchanger 55C, and the flow rate control valve 11C is connected to the second water-refrigerant heat exchanger connection pipe 64C. Is provided.
  • the flow control valve 9 is connected between the second branch portion 6 and the first heat source unit side connection pipe 15A.
  • the first water-refrigerant heat exchanger 55B exchanges heat between the refrigerant flowing through the heat source side refrigerant circuit on the heat source unit A side and the water passing through the use side refrigerant circuit on the indoor unit 71 side.
  • the first water-refrigerant heat exchanger 55B includes the first water-refrigerant heat exchanger connection pipe 63B and the second water-refrigerant heat exchanger connection pipe 64B as the heat source side refrigerant circuit as described above. It is connected.
  • a first water pipe 61B and a second water pipe 62B are connected to the first water-refrigerant heat exchanger 55B as a use-side refrigerant circuit.
  • the first water pipe 61B is also connected to the second water switching valves 73a, 73b, 73c.
  • the second water pipe 62B is also connected to the second water switching valves 73a, 73b, 73c.
  • the first water pipe 61B is provided with a pump 60B that circulates water in the use-side refrigerant circuit.
  • the second water-refrigerant heat exchanger 55C exchanges heat between the refrigerant flowing through the heat source side refrigerant circuit on the heat source unit A side and the water passing through the use side refrigerant circuit on the indoor unit 71 side.
  • the first water-refrigerant heat exchanger 55C includes the first water-refrigerant heat exchanger connection pipe 63C and the second water-refrigerant heat exchanger connection pipe 64C as the heat source side refrigerant circuit. It is connected.
  • a first water pipe 61C and a second water pipe 62C are connected to the first water-refrigerant heat exchanger 55C as a use-side refrigerant circuit.
  • the first water pipe 61C is also connected to the first water switching valves 72a, 72b, 72c.
  • the second water pipe 62C is also connected to the second water switching valves 73a, 73b, 73c.
  • the first water pipe 61C is provided with a pump 60C for circulating water in the use side refrigerant circuit.
  • FIG. 13 illustrates the refrigerant flow during the cooling only operation and the refrigerant flow during the heating only operation.
  • FIG. 14 the refrigerant
  • FIG. 15 illustrates the refrigerant flow during the cooling main operation.
  • FIG. 13 is a diagram illustrating the refrigerant flow during the cooling operation and the heating operation of the refrigerant circuit of the air conditioner as an example of the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • the direction of the solid arrow shown in FIG. 13 is the refrigerant flow direction during the cooling only operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the four-way valve 2.
  • the refrigerant that has exited the four-way valve 2 flows into the heat source side heat exchanger 3.
  • the refrigerant flowing into the heat source side heat exchanger 3 is condensed and liquefied by exchanging heat with the air sent from the blower 18 here.
  • the condensed and liquefied high-pressure liquid refrigerant passes through the fourth check valve 4d, passes through the second heat source unit side connection pipe 16A, and the electromagnetic valve 68 in this order, and flows into the second branch section 6.
  • the high-pressure liquid refrigerant that has flowed into the second branch section 6 flows into the flow control valves 11B and 11C via the second water-refrigerant heat exchanger connection pipes 64B and 64C.
  • This refrigerant is depressurized to a low pressure by flow control valves 11B and 11C controlled by superheat amounts at the outlets of the first water-refrigerant heat exchanger 55B and the second water-refrigerant heat exchanger 55C.
  • the heat exchangers 55B and 55C exchange heat with water, evaporate and gasify to cool the water.
  • the refrigerant in the gas state includes the first water-refrigerant heat exchanger connection pipes 63B and 63C, the electromagnetic valves 13B and 13C, the first branch portion 5, the first heat source unit side connection pipe 15A, 1 is sucked into the compressor 1 through the check valve 4a and the four-way valve 2.
  • the solenoid valve 68 is opened, the solenoid valves 13B and 13C are opened, and the solenoid valves 14B and 14C are closed. Therefore, the first water-refrigerant heat exchanger connection pipes 63B, 63C, the second water-refrigerant heat exchanger connection pipes 64B, 64C, the first water-refrigerant heat exchanger 55B, and the second water-refrigerant The refrigerant flows in the direction of the solid arrow in the heat exchanger 55C.
  • first heat source unit side connection pipe 15A is low pressure
  • second heat source unit side connection pipe 16A is high pressure
  • the connection end to the switching valve 4 of the heat source side heat exchanger 3 is high pressure
  • the switching valve 4 of the four-way valve 2 Since the connection end to the low pressure is low pressure, the refrigerant inevitably flows to the first check valve 4a and the fourth check valve 4d.
  • the direction of the solid arrow shown in FIG. 13 is the direction of water flow during the cooling only operation.
  • the water cooled by the first water-refrigerant heat exchanger 55B and the second water-refrigerant heat exchanger 55C is boosted by the pumps 60B and 60C, respectively, and passes through the first water pipes 61B and 61C.
  • the water switching valves 72a, 72b and 72c join together.
  • the water merged by the first water switching valves 72a, 72b, 72c passes through the third water pipes 65a, 65b, 65c and flows into the indoor units 71a, 71b, 71c.
  • the water flowing into the indoor units 71a, 71b, 71c rises in temperature while cooling the indoor air in the indoor heat exchangers 70a, 70b, 70c.
  • the water heated in the indoor heat exchangers 70a, 70b, and 70c passes through the fourth water pipes 66a, 66b, and 66c and flows into the second water switching valves 73a, 73b, and 73c.
  • the water that has flowed into the second water switching valves 73a, 73b, 73c branches into a second water pipe 62B and a second water pipe 62C, and the first water-refrigerant heat exchanger 55B and the second water -Return to each of the refrigerant heat exchangers 55C.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first branching section 5 passes through the solenoid valves 14B and 14C and the first water-refrigerant heat exchanger connection pipes 63B and 63C in this order, and the first water-refrigerant heat exchanger 55B. And flows into the second water-refrigerant heat exchanger 55C.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first water-refrigerant heat exchanger 55B and the second water-refrigerant heat exchanger 55C exchanges heat with water, condenses and liquefies, and heats the water.
  • the refrigerant in the liquid state is controlled by the subcooling amounts at the outlets of the first water-refrigerant heat exchanger 55B and the second water-refrigerant heat exchanger 55C, and flows through the flow control valves 11B, 11C in a substantially fully opened state. And flows into the second water-refrigerant heat exchanger connection pipes 64B and 64C. These refrigerants flow into the second branch 6 and merge, and further pass through the third flow control valve 9.
  • one of the flow control valves 11B and 11C or the third flow control valve 9 is depressurized to a low-pressure gas-liquid two-phase state.
  • the refrigerant depressurized to a low pressure flows into the heat source side heat exchanger 3 through the first heat source unit side connection pipe 15A and the second check valve 4b of the heat source unit A.
  • the refrigerant that has flowed into the heat source side heat exchanger 3 exchanges heat with the air blown by the blower 18 with variable air flow, and evaporates into a gas state.
  • the refrigerant in the gas state is sucked into the compressor 1 through the four-way valve 2 of the heat source unit.
  • the solenoid valve 68 is closed, the solenoid valves 14B and 14C are opened, and the solenoid valves 13B and 13C are closed. Therefore, the first water-refrigerant heat exchanger connection pipes 63B, 63C, the second water-refrigerant heat exchanger connection pipes 64B, 64C, the first water-refrigerant heat exchanger 55B, and the second water-refrigerant The refrigerant flows through the heat exchanger 55C in the direction of the broken line arrow.
  • first heat source machine side connection pipe 15A is low pressure
  • second heat source machine side connection pipe 16A is high pressure
  • the connection end to the switching valve 4 of the heat source side heat exchanger 3 is low pressure
  • the switching valve 4 of the four-way valve 2 Since the connecting end to the high pressure is, the refrigerant inevitably flows to the second check valve 4b and the third check valve 4c.
  • the direction of the dashed arrow shown in FIG. 13 is the direction of water flow during the all-heating operation.
  • the water heated by the first water-refrigerant heat exchanger 55B and the second water-refrigerant heat exchanger 55C is boosted by the pumps 60B and 60C, respectively, and passes through the first water pipes 61B and 61C.
  • the water switching valves 72a, 72b and 72c join together.
  • the water merged by the first water switching valves 72a, 72b, 72c passes through the third water pipes 65a, 65b, 65c and flows into the indoor units 71a, 71b, 71c.
  • the water flowing into the indoor units 71a, 71b, 71c drops in temperature while heating the indoor air in the indoor heat exchangers 70a, 70b, 70c.
  • the water whose temperature has decreased in the indoor heat exchangers 70a, 70b, 70c passes through the fourth water pipes 66a, 66b, 66c and flows into the second water switching valves 73a, 73b, 73c.
  • the water that has flowed into the second water switching valves 73a, 73b, 73c branches into a second water pipe 62B and a second water pipe 62C, and the first water-refrigerant heat exchanger 55B and the second water -Return to each of the refrigerant heat exchangers 55C.
  • FIG. 14 is a diagram illustrating the refrigerant flow during heating-main operation of the refrigerant circuit of the air-conditioning apparatus as an example of the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • FIG. 14 shows a case where the indoor units 71a and 71b perform heating operation and the indoor unit 71c performs cooling operation.
  • the heat source side heat exchanger 3 acts as an evaporator
  • the first water-refrigerant heat exchanger 55B acts as a condenser
  • the second water-refrigerant heat exchanger 55C acts as an evaporator. Acts as
  • the direction of the broken-line arrow shown in FIG. 14 is the refrigerant flow direction during heating-main operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the four-way valve 2.
  • the refrigerant that has exited the four-way valve 2 passes through the third check valve 4c and the second heat source unit side connection pipe 16A, and flows into the first branch portion 5 of the relay E ′.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first branch portion 5 passes through the solenoid valve 14B and the first water-refrigerant heat exchanger connection pipe 63B in this order, and then flows into the first water-refrigerant heat exchanger 55B.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the first water-refrigerant heat exchanger 55B exchanges heat with water to condense and liquefy it, thereby heating the water.
  • the refrigerant in the liquid state is controlled by the subcooling amount at the outlet of the first water-refrigerant heat exchanger 55B, and is slightly depressurized through the flow control valve 11B in the almost fully opened state, so that the second water-refrigerant heat is generated. It flows into the 2nd branch part 6 via the exchanger connection piping 64B.
  • Part of the refrigerant that has flowed into the second branch portion 6 passes through the second water-refrigerant heat exchanger connection pipe 64C and enters the second water-refrigerant heat exchanger 55C that is intended to cool the water. Then, the refrigerant enters the flow control valve 11C controlled by the superheat amount at the outlet of the second water-refrigerant heat exchanger 55C and is depressurized. The decompressed refrigerant exchanges heat with the second water-refrigerant heat exchanger 55C and evaporates into a gas state to cool the water. The refrigerant in the gas state flows into the first heat source unit side connection pipe 15A through the electromagnetic valve 13C.
  • the remaining refrigerant in the second branch section 6 includes high pressure (for example, the pressure of the second heat source unit side connection pipe 16A) and intermediate pressure (for example, the pressure of the second water-refrigerant heat exchanger connection pipes 64B and 64C). )
  • high pressure for example, the pressure of the second heat source unit side connection pipe 16A
  • intermediate pressure for example, the pressure of the second water-refrigerant heat exchanger connection pipes 64B and 64C.
  • the refrigerant merged in the first heat source unit side connection pipe 15A flows into the heat source unit A, and flows into the heat source side heat exchanger 3 through the second check valve 4b.
  • the refrigerant which is evaporated and gasified by exchanging heat with the air blown by the blower 18 with variable air flow is sucked into the compressor 1 through the four-way valve 2 of the heat source machine.
  • the solenoid valve 68 is closed, the solenoid valve 14B is opened, and the solenoid valve 13B is closed. Therefore, the first water—refrigerant heat exchanger connection pipe 63B, first water— The refrigerant flows in the direction of the broken line arrow in the refrigerant heat exchanger 55B and the second water-refrigerant heat exchanger connection pipe 64B to heat the water.
  • the solenoid valve 14C is closed and the solenoid valve 13C is opened, the first water-refrigerant heat exchanger connection pipe 63C, the second water-refrigerant heat exchanger 55C, the second water- The refrigerant flows through the refrigerant heat exchanger connection pipe 64C in the direction of the broken line arrow to cool the water.
  • the first heat source machine side connection pipe 15A is low pressure
  • the second heat source machine side connection pipe 16A is high pressure
  • the connection end to the switching valve 4 of the heat source side heat exchanger 3 is low pressure
  • the switching valve 4 of the four-way valve 2 Since the connecting end to the high pressure is, the refrigerant inevitably flows to the second check valve 4b and the third check valve 4c.
  • the direction of the broken-line arrow shown in FIG. 14 is the flow direction of water used for the heating operation.
  • the direction of the solid arrow shown in FIG. 14 is the flow direction of water used for the cooling operation.
  • the water heated by the first water-refrigerant heat exchanger 55B is pressurized by the pump 60B, passes through the first water pipe 61B, and flows into the first water switching valves 72a and 72b.
  • the water that flows into the first water switching valves 72a and 72b passes through the third water pipes 65a and 65b and flows into the indoor units 71a and 71b.
  • the temperature of the water flowing into the indoor units 71a and 71b decreases while heating the indoor air with the indoor heat exchangers 70a and 70b.
  • the water whose temperature has decreased in the indoor heat exchangers 70a and 70b passes through the fourth water pipes 66a and 66b and flows into the second water switching valves 73a and 73b.
  • the water flowing into the second water switching valves 73a and 73b returns to the first water-refrigerant heat exchanger 55B.
  • the water cooled by the second water-refrigerant heat exchanger 55C is pressurized by the pump 60C, passes through the first water pipe 61C, and flows into the first water switching valve 72c.
  • the water that has flowed into the first water switching valve 72c passes through the third water pipe 65c and flows into the indoor unit 71c.
  • the water flowing into the indoor unit 71c rises in temperature while cooling the indoor air in the indoor heat exchanger 70c.
  • the water heated by the indoor heat exchanger 70c passes through the fourth water pipe 66c and flows into the second water switching valve 73c.
  • the water that flows into the second water switching valve 73c returns to the second water-refrigerant heat exchanger 55C.
  • FIG. 15 is a diagram illustrating the refrigerant flow during the cooling main operation of the refrigerant circuit of the air-conditioning apparatus as an example of the refrigeration cycle apparatus according to Embodiment 3 of the present invention.
  • FIG. 15 shows a case where the indoor unit 71a performs heating operation and the indoor units 71b and 71c perform cooling operation.
  • the heat source side heat exchanger 3 acts as a condenser
  • the first water-refrigerant heat exchanger 55B acts as a condenser
  • the second water-refrigerant heat exchanger 55C acts as an evaporator. Acts as
  • the direction of the solid line arrow shown in FIG. 15 is the flow direction of the refrigerant during the cooling main operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the four-way valve 2.
  • the refrigerant that has exited the four-way valve 2 flows into the heat source side heat exchanger 3.
  • the refrigerant that has flowed into the heat source side heat exchanger 3 exchanges heat with the air sent from the blower 18 here, and is condensed and liquefied halfway to be in a two-phase state of high temperature and high pressure.
  • This high-temperature, high-pressure two-phase refrigerant flows through the fourth check valve 4d and the second heat source unit side connection pipe 16A into the first branching section 5 of the relay E ′.
  • the high-temperature and high-pressure two-phase refrigerant that has flowed into the first branch portion 5 passes through the solenoid valve 13B and the first water-refrigerant heat exchanger connecting pipe 63B in this order, and then flows into the first water-refrigerant heat exchanger 55B. To do.
  • the high-temperature and high-pressure two-phase refrigerant that has flowed into the first water-refrigerant heat exchanger 55B exchanges heat with water to condense and liquefy it, thereby heating the water.
  • the refrigerant in the liquid state is controlled by the subcooling amount at the outlet of the first water-refrigerant heat exchanger 55B, and is slightly depressurized through the flow control valve 11B in the almost fully opened state, so that the second water-refrigerant heat is generated. It flows into the 2nd branch part 6 via the exchanger connection piping 64B.
  • the refrigerant that has flowed into the second branch section 6 passes through the second water-refrigerant heat exchanger connection pipe 64C and enters the second water-refrigerant heat exchanger 55C that is intended to cool the water. Then, the refrigerant enters the flow control valve 11C controlled by the superheat amount at the outlet of the second water-refrigerant heat exchanger 55C and is depressurized to a low pressure. The decompressed refrigerant exchanges heat with the second water-refrigerant heat exchanger 55C and evaporates into a gas state to cool the water.
  • the refrigerant in the gas state includes the first water-refrigerant heat exchanger connection pipe 63C, the electromagnetic valve 13C, the first branch portion 5, the first heat source unit side connection pipe 15A, and the first check valve 4a.
  • the air is sucked into the compressor 1 through the four-way valve 2.
  • the solenoid valve 68 is closed, the solenoid valve 14B is opened, and the solenoid valve 13B is closed. Therefore, the first water—refrigerant heat exchanger connection pipe 63B, first water— The refrigerant flows in the direction of the solid arrow in the refrigerant heat exchanger 55B and the second water-refrigerant heat exchanger connection pipe 64B to heat the water.
  • the solenoid valve 14C is closed and the solenoid valve 13C is opened, the first water-refrigerant heat exchanger connection pipe 63C, the second water-refrigerant heat exchanger 55C, the second water- The refrigerant flows in the direction of the solid arrow in the refrigerant heat exchanger connection pipe 64C to cool the water.
  • the first heat source unit side connection pipe 15A is low pressure
  • the second heat source unit side connection pipe 16A is high pressure
  • the connection end to the switching valve 4 of the heat source side heat exchanger 3 is high pressure
  • the switching valve 4 of the four-way valve 2 Since the connection end to the low pressure is low pressure, the refrigerant inevitably flows to the first check valve 4a and the fourth check valve 4d.
  • the direction of the broken line arrow shown in FIG. 15 is the flow direction of water used for the heating operation.
  • the direction of the solid arrow shown in FIG. 15 is the flow direction of water used for the cooling operation.
  • the water heated by the first water-refrigerant heat exchanger 55B is pressurized by the pump 60B, passes through the first water pipe 61B, and flows into the first water switching valve 72a.
  • the water that has flowed into the first water switching valve 72a passes through the third water pipe 65a and flows into the indoor unit 71a.
  • the temperature of the water flowing into the indoor unit 71a is lowered while heating the indoor air in the indoor heat exchanger 70a.
  • the water whose temperature has decreased in the indoor heat exchanger 70a passes through the fourth water pipe 66a and flows into the second water switching valve 73a.
  • the water that has flowed into the second water switching valve 73a returns to the first water-refrigerant heat exchanger 55B.
  • the water cooled by the second water-refrigerant heat exchanger 55C is boosted by the pump 60C, passes through the first water pipe 61C, and flows into the first water switching valves 72b and 72c.
  • the water that flows into the first water switching valves 72b and 72c passes through the third water pipes 65b and 65c and flows into the indoor units 71b and 71c.
  • the water flowing into the indoor units 71b and 71c rises in temperature while cooling the indoor air with the indoor heat exchangers 70b and 70c.
  • the water heated by the indoor heat exchangers 70b and 70c passes through the fourth water pipes 66b and 66c and flows into the second water switching valves 73b and 73c.
  • the water that flows into the second water switching valve 73c returns to the second water-refrigerant heat exchanger 55C.
  • the air conditioner configured in this way, in addition to the same effects as those of the first embodiment, an effect that the refrigerant in the heat source side refrigerant circuit does not leak into the room can be obtained. For this reason, a natural refrigerant having flammability and toxicity and a refrigerant having a high effect of suppressing global warming can be used in the heat source side refrigerant circuit. Therefore, the air conditioning apparatus which can ensure both a global warming suppression effect and indoor safety can be obtained. Furthermore, since the latent heat of water can be used even during operation mode switching or defrost operation that may temporarily stop the compressor 1, indoor heating or cooling can be performed in a short time. The effect which can improve comfort is acquired.

Abstract

 熱源側熱交換器の熱交換容量の連続制御性を向上することが可能な冷凍サイクル装置を得る。 第1の熱交換器24及び第2の熱交換器25が並列接続された熱源側熱交換器3と、第1の熱交換器24及び第2の熱交換器25の熱交換対象となる空気を供給量可変に供給する送風機18とを有する冷凍サイクル装置(空気調和装置)において、第1の熱交換器24及び第2の熱交換器25の冷媒流路を開閉する電磁弁3a~3dと、第1の熱交換器24及び第2の熱交換器25と並列接続された第3の冷媒回路23と、第3の冷媒回路23を流れる冷媒の流量を制御する流量制御弁40とを備えたものである。 

Description

冷凍サイクル装置
 本発明は冷凍サイクル装置に関し、特に熱源側熱交換器の熱交換容量を連続的に制御可能な冷凍サイクル装置に関する。
 熱源側熱交換器の熱交換容量を連続的に制御可能とするため、従来の冷凍サイクル装置として、例えば特許文献1には、「熱源機側熱交換器3は互いに並列に分岐接続された第1の冷媒回路21、第2の冷媒回路22、第3の冷媒回路23より形成される。第1の冷媒回路21には第1の熱交換器24が配備され、その四方弁2側の一端には双方向の流れを開閉できる第1の熱源機側熱交換器開閉用電磁弁3aを、他の一端には双方向の流れを開閉できる第3の熱源機側熱交換器開閉用電磁弁3cを配してある。これら2個の電磁弁3a,3cの開閉により第1の冷媒回路21への冷媒流通を制御し、第1の熱交換器24における熱交換の有無を制御する。第2の冷媒回路22には第2の熱交換器25が配備され、その四方弁2側の一端には双方向の流れを開閉できる第2の熱源機側熱交換器開閉用電磁弁3bを、他の一端には双方向の流れを開閉できる第4の熱源機側熱交換器開閉用電磁弁3dを配してある。これら2個の電磁弁3b,3dの開閉により第2の冷媒回路22への冷媒流通を制御し、第2の熱交換器25における熱交換の有無を制御する。第3の冷媒回路23の配管途中には双方向の流れを開閉できる第1の熱源機側熱交換器バイパス用電磁弁3eが配備され、この電磁弁3eの開閉により第1の熱交換器24、第2の熱交換器25をバイパスする冷媒流れの有無を制御する。
 …熱源機側熱交換容量を以下に示す4段階で調整する。…第1段階は最も大きな熱源機側熱交換容量を必要とする場合に対応し、…第1および第2の熱交換器24,25の両方に冷媒を流通させ、かつ、第3の冷媒回路23には冷媒を流通させないで、熱源機側送風機18の送風量をインバータ等(図示せず)により停止から全速までの間で調整する。…第2段階は第1段階の次に大きな熱源機側熱交換容量を必要とする場合に対応し、…第2の熱交換器25のみに冷媒を流通させ、かつ、…第1の熱交換器24および第3の冷媒回路23には冷媒を流通させないで、熱源機側熱交換器3の伝熱面積を大幅に減少させ、熱源機側送風機18の送風量をインバータ等(図示せず)により停止から全速までの間で調整する。…第3段階は第2段階よりも小さな熱源機側熱交換容量を必要とする場合に対応し、…第2の熱交換器25および第3の冷媒回路23に冷媒を流通させ、かつ、第1の冷媒回路21、すなわち第1の熱交換器24には冷媒を流通させないで、熱源機側熱交換器3の伝熱面積を大幅に減少させ、かつ、第2の熱交換器25への冷媒流量を減少させ、熱源機側送風機18の送風量をインバータ等(図示せず)により停止から全速までの間で調整する。…第4段階は最も小さい熱源機側熱交換容量を必要とする場合に対応し、第1の熱源機側熱交換器バイパス用電磁弁3eを開弁し、第1、第2、第3、第4の熱源機側熱交換器開閉用電磁弁3a,3b,3c,3dを閉弁することにより、熱源機側熱交換器3の熱交換量を皆無にするようにしてある。
 …外風があっても、第2段階の熱源機側送風機18が全速のときの熱源機側熱交換容量AK2MAX が、第1段階の外風であって、かつ、熱源機側送風機18が停止のときの熱源機側熱交換容量AK1MAX より大きい、つまりAK2MAX >AK1MAX となる風速以下の外風であれば、第1段階と第2段階は連続的に制御可能である。同様に、外風があっても、第3段階の熱源機側送風機18が全速のときの熱源機側熱交換容量AK3MAX  が、第2段階の外風であって、かつ、熱源機側送風機18が停止のときの熱源機側熱交換容量AK2MAX より大きい、つまりAK3MAX >AK2MAX となる風速以下の外風であれば、第2段階と第3段階は連続的に制御可能である。」というものが提案されている。
特許第4211094号公報(段落0003,0017,0018、図26,30)
 ところで、上記した従来の冷凍サイクル装置では以下に示すような課題があった。
 まず、熱源側熱交換器に熱交換対象を供給する供給装置には、熱源側熱交換器への熱交換対象の供給量を最大供給量から0まで連続的に制御できない場合がある。例えば、送風機は、ファンを駆動するモーターを冷却するため、最低回転数(最低風量)が規定されているものがある。このような送風機は、風量の制御を全速から停止まで連続的に制御することができない。このため、冷媒を流通させる熱交換器の数を徐々に増減させる各段階において、(熱交換容量が大きい段階における熱源側熱交換器の最低熱交換容量)が(熱交換容量が小さい段階における熱源側熱交換器の最大熱交換容量)よりも大きくなってしまう場合がある。このため、冷媒を流通させる熱交換器の数を徐々に増減させる各段階の移行時において、熱源側熱交換器の熱交換容量を連続的に制御できない場合があるという課題があった。
 また、熱源側熱交換器への熱交換対象の供給量を最大供給量から0まで連続的に制御できない供給装置でも、熱源側熱交換器の熱交換容量を連続的に制御しようとする場合、冷媒を流通させる熱交換器の数を徐々に増減させる各段階において熱交換容量の差を小さくするために、熱源側熱交換器を構成する熱交換器の数を増加させる必要がある。このため、各熱交換器への冷媒流路を開閉する電磁弁等が増えてしまうという課題があった。
 本発明は、上述のような従来の課題を解決するためになされたものであり、熱源側熱交換器への熱交換対象の供給量を最大供給量から0まで連続的に制御できない場合であっても、熱源側熱交換器を構成する熱交換器の数を増やさずに、熱源側熱交換器の熱交換容量を連続的に制御することが可能な冷凍サイクル装置を提供することを目的とする。
 本発明に係る冷凍サイクル装置は、複数の熱交換器が並列接続された熱源側熱交換器と、熱交換器を流れる冷媒と熱交換を行う熱交換対象を、供給量可変に熱交換器へ供給する供給装置と、を有する冷凍サイクル装置において、
 熱交換器のそれぞれの冷媒流路を開閉する流路開閉装置と、熱交換器と並列接続されたバイパス配管と、バイパス配管に設けられ、バイパス配管を流れる冷媒の流量を制御する流量調整装置と、を備えたものである。
 本発明においては、冷媒を流通させる熱交換器の数を徐々に増減させる各段階において、バイパス配管に冷媒を流通させ、流量調整装置によってバイパス配管を流れる冷媒流量を連続的に増減させることにより、熱源側熱交換器の熱交換容量を連続的に制御することができる。
 このため、熱源側熱交換器への熱交換対象の供給量を最大供給量から0まで連続的に制御できない供給装置でも、(熱交換容量が大きい段階における熱源側熱交換器の最低熱交換容量)を(熱交換容量が小さい段階における熱源側熱交換器の最大熱交換容量)よりも小さくすることが可能となる。
 したがって、熱源側熱交換器への熱交換対象の供給量を最大供給量から0まで連続的に制御できない場合であっても、熱源側熱交換器を構成する熱交換器の数を増やさずに、熱源側熱交換器の熱交換容量を連続的に制御することができる。
 なお、バイパス配管への冷媒の流通は、冷媒を流通させる熱交換器の数を徐々に増減させる各段階の全てにおいて行う必要はなく、所望の段階において行えばよい。
本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の冷媒回路を示す図である。 本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の冷媒回路の冷房運転時と暖房運転時の冷媒の流れを示す図である。 本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の冷媒回路の暖房主体運転時の冷媒の流れを示す図である。 本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の冷媒回路の冷房主体運転時の冷媒の流れを示す図である。 本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の熱交換容量調整装置の制御内容を示す図である。 本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の熱源側熱交換器が凝縮器の場合における熱交換容量調整装置の制御の流れを示す図である。 本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の熱源側熱交換器が蒸発器の場合における熱交換容量調整装置の制御の流れを示す図である。 本発明の実施の形態1による冷凍サイクル装置の別の一例として、空気調和装置の冷媒回路を示す図である。 本発明の実施の形態2による冷凍サイクル装置の一例として、空気調和装置の冷媒回路を示す図である。 本発明の実施の形態2による冷凍サイクル装置の一例として、空気調和装置の冷媒回路の全冷房運転時の冷媒の流れ(第1段階)を示す図である。 本発明の実施の形態2による冷凍サイクル装置の一例として、空気調和装置の熱源側熱交換器が凝縮器の場合における熱交換容量調整装置の制御の流れを示す図である。 本発明の実施の形態3による冷凍サイクル装置の一例として、空気調和装置の冷媒回路を示す図である。 本発明の実施の形態3による冷凍サイクル装置の一例として、空気調和装置の冷媒回路の冷房運転時と暖房運転時の冷媒の流れを示す図である。 本発明の実施の形態3による冷凍サイクル装置の一例として、空気調和装置の冷媒回路の暖房主体運転時の冷媒の流れを示す図である。 本発明の実施の形態3による冷凍サイクル装置の一例として、空気調和装置の冷媒回路の冷房主体運転時の冷媒の流れを示す図である。
 以下、図面を参照して本発明の実施の形態について説明する。
実施の形態1.
 図1は、本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の冷媒回路を示す図である。
 本実施の形態1に係る空気調和装置は、熱源機1台に対して複数台の室内機を接続した多室型ヒートポンプ空気調和装置の一例で、ある室内機で冷房を選択しながら、別の室内機では暖房も選択できるものである。この空気調和装置は、熱源機A、中継器E、及び、互いに並列接続された室内機B,C,Dを備えている。
(熱源機A)
 熱源機Aは、圧縮機1、四方弁2、熱源側熱交換器3、熱源側熱交換器3に空気を送風する送風量可変の送風機18、及び、圧縮機1から吐出された冷媒の流路を切り替える切替弁4等を備えている。
 ここで、送風機18が本発明の供給装置に相当する。なお、本実施の形態1では、熱源側熱交換器3を流れる冷媒と熱交換する熱交換対象を空気としている。例えば、熱源側熱交換器3を流れる冷媒と熱交換する熱交換対象が水や不凍液等の場合、熱源側熱交換器3へ熱交換対象を供給する供給装置として、ポンプ等を用いるとよい。
 熱源側熱交換器3は、複数の熱交換器が並列接続されて構成されている。本実施の形態1では、2つの熱交換器(第1の熱交換器24、第2の熱交換器25)が並列接続されて構成されている。より詳しくは、熱源側熱交換器3は、互いに並列に分岐接続された第1の冷媒回路21、第2の冷媒回路22及び第3の冷媒回路23を備えている。第1の冷媒回路21には第1の熱交換器24が配備され、第1の熱交換器24の四方弁2側の一端には電磁弁3aを、第1の熱交換器24の他の一端には電磁弁3cを配してある。これら2個の電磁弁3a,3cの開閉により、第1の冷媒回路21への冷媒流通を制御し(冷媒流路を開閉し)、第1の熱交換器24における熱交換の有無を制御する。第2の冷媒回路22には第2の熱交換器25が配備され、第2の熱交換器25の四方弁2側の一端には電磁弁3bを、第2の熱交換器25の他の一端には電磁弁3dを配してある。これら2個の電磁弁3b,3dの開閉により第2の冷媒回路22への冷媒流通を制御し(冷媒流路を開閉し)、第2の熱交換器25における熱交換の有無を制御する。第3の冷媒回路23の配管途中には流量制御弁40が配備され、この流量制御弁40により第1の熱交換器24、第2の熱交換器25をバイパスする冷媒の流量(第3の冷媒回路23を流れる冷媒の流量)を制御する。
 ここで、電磁弁3a~3dが本発明の流路開閉装置に相当する。第3の冷媒回路23が本発明におけるバイパス配管に相当する。流量制御弁40が本発明の流量調整装置に相当する。なお、本実施の形態1では流路開閉装置及び流量調整装置に弁構造を採用しているが、これに限るものではない。第1の熱交換器24及び第2の熱交換器25の冷媒流路を開閉できるものであれば、流路開閉装置の構造は任意である。また、第3の冷媒回路23を流れる冷媒の流量を制御できるものであれば、流量調整装置の構造は任意である。
 切替弁4は、4つの逆止弁(第1の逆止弁4a、第2の逆止弁4b、第3の逆止弁4c、第4の逆止弁4d)を備えている。
 第4の逆止弁4dは、熱源側熱交換器3と第2の熱源機側接続配管16Aとの間に設けられており、熱源側熱交換器3から第2の熱源機側接続配管16Aへのみ冷媒流通を許容する。第1の逆止弁4aは、熱源機Aの四方弁2と第1の熱源機側接続配管15Aとの間に設けられており、第1の熱源機側接続配管15Aから四方弁2へのみ冷媒流通を許容する。第3の逆止弁4cは熱源機Aの四方弁2と第2の熱源機側接続配管16Aとの間に設けられており、四方弁2から第2の熱源機側接続配管16Aへのみ冷媒流通を許容する。第2の逆止弁4bは熱源側熱交換器3と第1の熱源機側接続配管15Aとの間に設けられた第2の逆止弁であり、第1の熱源機側接続配管15Aから熱源側熱交換器3へのみ冷媒流通を許容する。
 なお、第2の熱源機側接続配管16Aの他方の端部は、後述する中継器Eの気液分離器7と接続されている。また、第1の熱源機側接続配管15Aの他方の端部は、後述する中継器Eの第1の分岐部5と接続されている。
 切替弁4を設けることによって、圧縮機1から吐出された冷媒は常に第2の熱源機側接続配管16Aを通って中継器Eに流入し、中継器Eから流出する冷媒は常に第1の熱源機側接続配管15Aを通ることとなる。このため、第2の熱源機側接続配管16Aの管径を第1の熱源機側接続配管15Aの管径よりも細くすることが可能となる。
 また、熱源機Aには、例えば温度センサー等である凝縮温度検出装置19及び蒸発温度検出装置20が設けられている。凝縮温度検出装置19は、冷凍サイクルの高圧部分に設けられており、本実施の形態1では圧縮機1の吐出配管に配せられている。蒸発温度検出装置20は、冷凍サイクルの低圧部分に設けられており、本実施の形態1では圧縮機1の吸入配管に配せられている。
(室内機B,C,D)
 室内機B,C,Dのそれぞれは、同様の構成となっている。
 より詳しくは、室内機Bは室内機側熱交換器10Bを備えている。室内機側熱交換器10Bの一方の端部は、第1の室内機側接続配管15Bを介して、後述する中継器Eの第1の分岐部5と接続されている。室内機側熱交換器10Bの他方の端部は、第2の室内機側接続配管16Bを介して、後述する中継器Eの第2の分岐部6と接続されている。第2の室内機側接続配管16Bには、流量制御弁11Bが設けられている。
 また、室内機Cは室内機側熱交換器10Cを備えている。室内機側熱交換器10Cの一方の端部は、第1の室内機側接続配管15Cを介して、後述する中継器Eの第1の分岐部5と接続されている。室内機側熱交換器10Cの他方の端部は、第2の室内機側接続配管16Cを介して、後述する中継器Eの第2の分岐部6と接続されている。第2の室内機側接続配管16Cには、流量制御弁11Cが設けられている。
 また、室内機Dは室内機側熱交換器10Dを備えている。室内機側熱交換器10Dの一方の端部は、第1の室内機側接続配管15Dを介して、後述する中継器Eの第1の分岐部5と接続されている。室内機側熱交換器10Dの他方の端部は、第2の室内機側接続配管16Dを介して、後述する中継器Eの第2の分岐部6と接続されている。第2の室内機側接続配管16Dには、流量制御弁11Dが設けられている。
(中継器E)
 中継器Eは、第1の分岐部5、第2の分岐部6、気液分離器7、流量制御弁8、及び流量制御弁9等を備えている。
 第1の分岐部5は、電磁弁13B,13C,13D及び電磁弁14B,14C,14Dを備えている。
 電磁弁13B,13C,13Dのそれぞれの一方の端部は、第1の熱源機側接続配管15Aと接続されている。また、電磁弁13Bの他方の端部は第1の室内機側接続配管15Bと接続されており、電磁弁13Cの他方の端部は第1の室内機側接続配管15Cと接続されており、電磁弁13Dの他方の端部は第1の室内機側接続配管15Dと接続されている。
 電磁弁14B,14C,14Dのそれぞれの一方の端部は、気液分離器7と接続されている。また、電磁弁14Bの他方の端部は第1の室内機側接続配管15Bと接続されており、電磁弁14Cの他方の端部は第1の室内機側接続配管15Cと接続されており、電磁弁14Dの他方の端部は第1の室内機側接続配管15Dと接続されている。
 第2の分岐部6は、第2の室内機側接続配管16B,16C,16Dと第2の熱源機側接続配管16Aとを分岐接続するものである。気液分離器7は、第2の熱源機側接続配管16Aに設けられており、その気相部は電磁弁14B,14C,14Dと接続され、その液相部は第2の分岐部6と接続されている。流量制御弁8は気液分離器7と第2の分岐部6との間に接続されており、流量制御弁9は第2の分岐部6と第1の熱源機側接続配管15Aとの間に接続されている。本実施の形態1では、流量制御弁8及び流量制御弁9として電気式膨張弁を用いている。
<冷媒流れ>
 続いて、本実施の形態1に係る空気調和装置の冷媒流れを図2、図3、図4に添って説明する。図2では、冷房のみの運転の場合(以下全冷房運転と称する)の冷媒流れと暖房運転のみの場合(以下全暖房運転と称する)の冷媒流れを説明する。図3では、冷房と暖房が混在し、熱源側熱交換器3が凝縮器として作用する場合(以下冷房主体運転と称する)の冷媒流れを説明する。図4では、冷房と暖房が混在し、熱源側熱交換器3が蒸発器として作用する場合(以下暖房主体運転と称する)の冷媒流れを説明する。
(全冷房運転時の冷媒流れ)
 図2は、本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の冷媒回路の冷房運転時と暖房運転時の冷媒の流れを示す図である。図2に示す実線矢印の方向が、全冷房運転時における冷媒の流れ方向である。
 圧縮機1から吐出された高温高圧のガス冷媒が四方弁2に流入する。四方弁2を出た冷媒は、熱源側熱交換器3へ流入する。熱源側熱交換器3へ流入した冷媒は、ここで送風機18から送られる空気と熱交換して凝縮・液化する。凝縮・液化した高圧の液冷媒は、第4の逆止弁4dを経て、第2の熱源機側接続配管16A、気液分離器7、流量制御弁8の順に通り、第2の分岐部6へ流入する。第2の分岐部6へ流入した高圧の液冷媒は、第2の室内機側接続配管16B,16C,16Dを経て各室内機B,C,Dに流入する。そして、各室内機B,C,Dに流入した冷媒は、流量制御弁11B,11C,11Dにより低圧まで減圧され、室内機側熱交換器10B,10C,10Dで室内空気と熱交換し、蒸発しガス化して室内を冷房する。なお、流量制御弁11B,11C,11Dの開度は、各室内機側熱交換器10B,10C,10Dの出口のスーパーヒート量により制御される。そして、このガス状態となった冷媒は、第1の室内機側接続配管15B,15C,15D、電磁弁13B,13C,13D、第1の分岐部5、第1の熱源機側接続配管15A、第1の逆止弁4a、四方弁2を経て圧縮機1に吸入される。
 全冷房運転時、電磁弁13B,13C,13Dが開弁し、電磁弁14B,14C,14Dが閉弁している。このため、第1の室内機側接続配管15B,15C,15D、第2の室内機側接続配管16B,16C,16D、室内機B,C,Dには実線矢印の向きに冷媒が流れる。また、第1の熱源機側接続配管15Aが低圧、第2の熱源機側接続配管16Aが高圧、熱源側熱交換器3の切替弁4への接続端が高圧、四方弁2の切替弁4への接続端が低圧であるため、冷媒は必然的に第1の逆止弁4a、第4の逆止弁4dへ流通する。
(全暖房運転時の冷媒流れ)
 図2に示す破線矢印の方向が、全暖房運転時における冷媒の流れ方向である。
 圧縮機1から吐出された高温高圧のガス冷媒は四方弁2に流入する。四方弁2を出た冷媒は、第3の逆止弁4c、第2の熱源機側接続配管16A、気液分離器7を通り、第1の分岐部5へ流入する。第1の分岐部5へ流入した高温高圧のガス冷媒は、電磁弁14B,14C,14D、第1の室内機側接続配管15B,15C,15Dの順に通り、各室内機B,C,Dに流入する。そして、各室内機B,C,Dに流入した高温高圧のガス冷媒は、室内機側熱交換器10B,10C,10Dで室内空気と熱交換して凝縮液化し、室内を暖房する。
 この液状態となった冷媒は、各室内機側熱交換器10B,10C,10Dの出口のサブクール量により制御されてほぼ全開状態の流量制御弁11B,11C,11Dを通り、第2の室内機側接続配管16B,16C,16Dから第2の分岐部6に流入して合流し、更に第3の流量制御弁9を通る。ここで、室内機側熱交換器10B,10C,10Dを出た液状冷媒は、流量制御弁11B,11C,11D、又は第3の流量制御弁9のどちらか一方で低圧の気液二相状態まで減圧される。
 この低圧気液二相状態の冷媒は、第1の熱源機側接続配管15Aに流入する。第1の熱源機側接続配管15Aに流入した低圧二相状態の冷媒は、熱源側熱交換器3へ流入する。熱源側熱交換器3へ流入した冷媒は、ここで送風量可変の送風機18によって送風される空気と熱交換して蒸発しガス状態となる。ガス状態となった冷媒は、熱源機の四方弁2を経て圧縮機1に吸入される。
 全暖房運転時、電磁弁14B,14C,14Dが開弁し、電磁弁13B,13C,13Dが閉弁している。このため、第1の室内機側接続配管15B,15C,15D、第2の室内機側接続配管16B,16C,16D、室内機B,C,Dには破線矢印の向きに冷媒が流れる。また、第1の熱源機側接続配管15Aが低圧、第2の熱源機側接続配管16Aが高圧、熱源側熱交換器3の切替弁4への接続端が低圧、四方弁2の切替弁4への接続端が高圧であるため、冷媒は必然的に第2の逆止弁4b、第3の逆止弁4cへ流通する。
(暖房主体運転時の冷媒流れ)
 図3は、本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の冷媒回路の暖房主体運転時の冷媒の流れを示す図である。図3に示す破線矢印の方向が、暖房主体運転時における冷媒の流れ方向である。なお、図3では、室内機B,Cが暖房運転を行い、室内機Dが冷房運転を行う場合を示している。
 圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2に流入する。四方弁2を出た冷媒は、第3の逆止弁4c、第2の熱源機側接続配管16A、気液分離器7を通り、第1の分岐部5へ流入する。第1の分岐部5へ流入した高温高圧のガス冷媒は、電磁弁14B,14C、第1の室内機側接続配管15B,15Cの順に通り、各室内機B,Cに流入する。そして、各室内機B,Cに流入した高温高圧のガス冷媒は、室内空気と熱交換して凝縮液化し、室内を暖房する。この液状態となった冷媒は、各室内機側熱交換器10B,10Cの出口のサブクール量により制御されてほぼ全開状態の流量制御弁11B,11Cを通り、少し減圧されて、第2の室内機側接続配管16B,16Cから第2の分岐部6に流入する。
 第2の分岐部6に流入した冷媒の一部は、第2の室内機側接続配管16Dを通って、冷房しようとする室内機Dに入る。そして、この冷媒は、室内機側熱交換器10D出口のスーパーヒート量により制御される流量制御弁11Dに入って減圧される。減圧された冷媒は、室内機側熱交換器10Dで熱交換し、蒸発しガス化して室内を冷房する。このガス状態となった冷媒は、電磁弁13Dを経て、第1の熱源機側接続配管15Aに流入する。
 一方、第2の分岐部6における残りの冷媒は、高圧(例えば第2の熱源機側接続配管16Aの圧力)と中間圧(例えば第2の室内機側接続配管16B,16C,16Dの圧力)との差圧が所定範囲となるように制御される第3の流量制御弁9を通る。その後、この冷媒は、冷房しようとする室内機Dを通った冷媒と第1の熱源機側接続配管15Aで合流する。
 第1の熱源機側接続配管15Aに流入した低圧二相状態の冷媒は、熱源機Aに流入し、第2の逆止弁4bを通って熱源側熱交換器3へ流入する。ここで送風量可変の送風機18によって送風される空気と熱交換して蒸発しガス状態となった冷媒は、熱源機の四方弁2を経て圧縮機1に吸入される。
 暖房主体運転時、電磁弁14B,14Cが開弁し、電磁弁13B,13Cが閉弁しているので、第1の室内機側接続配管15B,15C、第2の室内機側接続配管16B,16C、室内機B,Cには破線矢印の向きに冷媒が流れて暖房する。また、電磁弁14Dが閉弁し、電磁弁13Dが開弁しているので、第1の室内機側接続配管15D、第2の室内機側接続配管16D、室内機Dには破線矢印の向きに冷媒が流れて冷房する。また、第1の熱源機側接続配管15Aが低圧、第2の熱源機側接続配管16Aが高圧、熱源側熱交換器3の切替弁4への接続端が低圧、四方弁2の切替弁4への接続端が高圧であるため、冷媒は必然的に第2の逆止弁4b、第3の逆止弁4cへ流通する。
(冷房主体運転時の冷媒流れ)
 図4は、本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の冷媒回路の冷房主体運転時の冷媒の流れを示す図である。図4に示す破線矢印の方向が、冷房主体運転時における冷媒の流れ方向である。なお、図4では、室内機B,Cが冷房運転を行い、室内機Dが暖房運転を行う場合を示している。
 圧縮機1から吐出された高温高圧のガス冷媒が四方弁2に流入する。四方弁2を出た冷媒は、熱源側熱交換器3へ流入する。熱源側熱交換器3へ流入した冷媒は、ここで送風機18から送られる空気と熱交換し半ば凝縮・液化して、高温・高圧の二相状態となる。この高温・高圧の二相冷媒は、第4の逆止弁4dを経て、中継器Eの気液分離器7に流入する。気液分離器7に流入した冷媒はガス冷媒と液冷媒に分離される。
 気液分離器7で分離されたガス冷媒は、第1の分岐部5、電磁弁14D、第1の室内機側接続配管15Dの順に通り、暖房しようとする室内機Dに流入する。室内機Dに流入したガス冷媒は、室内機側熱交換器10Dで室内空気と熱交換して凝縮・液化し、室内を暖房する。更に、室内機側熱交換器10Dを流出した液冷媒は、室内機側熱交換器10D出口のサブクール量により制御されほぼ全開状態の流量制御弁11Dを通る過程で少し減圧されて、第2の室内機側接続配管16Dを経て第2の分岐部6に流入する。
 一方、気液分離器7で分離された液冷媒は、高圧(例えば第2の熱源機側接続配管16Aの圧力)と中間圧(例えば第2の室内機側接続配管16B,16C,16Dの圧力)との差圧が所定範囲となるように制御される流量制御弁8を通って、第2の分岐部6に流入する。そして、この冷媒は、暖房しようとする室内機Dを通った冷媒と合流する。
 第2の分岐部6から流出した冷媒は、第2の室内機側接続配管16B,16Cを通り、各室内機B,Cに流入する。そして、各室内機B,Cに流入した冷媒は、流量制御弁11B,11Cにより低圧まで減圧され、室内機側熱交換器10B,10Cで室内空気と熱交換し、蒸発しガス化して室内を冷房する。なお、流量制御弁11B,11Cの開度は、各室内機側熱交換器10B,10C,10Dの出口のスーパーヒート量により制御される。そして、このガス状態となった冷媒は、第1の室内機側接続配管15B,15C、電磁弁13B,13C、第1の分岐部5、第1の熱源機側接続配管15A、第1の逆止弁4a、四方弁2を経て圧縮機1に吸入される。
 冷房主体運転時、電磁弁13B,13Cが開弁し、電磁弁14B,14Cが閉弁しているので、第1の室内機側接続配管15B,15C、第2の室内機側接続配管16B,16C、室内機B,Cには実線矢印の向きに冷媒が流れて冷房する。また、電磁弁13Dが閉弁し、電磁弁14Dが開弁しているので、第1の室内機側接続配管15D、第2の室内機側接続配管16D、室内機Dには実線矢印の向きに冷媒が流れて暖房する。また、第1の熱源機側接続配管15Aが低圧、第2の熱源機側接続配管16Aが高圧、熱源側熱交換器3の切替弁4への接続端が高圧、四方弁2の切替弁4への接続端が低圧であるため、冷媒は必然的に第1の逆止弁4a、第4の逆止弁4dへ流通する。
<熱源側熱交換器3の熱交換容量制御方法>
 次に、熱源側熱交換器3の熱交換容量の制御方法について説明する。
 まず、熱源側熱交換器3の熱交換容量(より詳しくは、熱源側熱交換器3の容量及び送風機18の送風量)を制御する目的について説明する。
 初めに、本実施の形態1に係る空気調和装置が全冷房運転の場合について説明する。通常、外気温度が高い場合に送風機18の送風量が全速となるように、熱源側熱交換器3の容量及び送風機18の送風量は設計され、外気温度と凝縮温度との差は例えば10℃前後となる。外気温度が低い場合に、もし熱源側熱交換器3及び送風機18の容量を外気温度が高い場合と同じにすると、凝縮温度は外気温度に約10℃を加算した温度となる。このため、外気温度が高い場合に対して凝縮温度が非常に低くなり、冷凍サイクルの凝縮圧力も低くなる。
 この結果、流量制御弁11B,11C,11Dの出入口圧力差が小さくなり、流量制御弁11B,11C,11Dの開度を大きくする必要がある。流量制御弁11B,11C,11Dの開度は有限であり、ある一定以上には大きくできないので、その上限値よりも大きくする必要があれば、容量の大きな流量制御弁を選定する必要がでてくる。しかし、その場合、流量制御弁11B,11C,11Dは、大形化する上に、最小開度幅当たりの流量変動量が大きくなり、きめこまかな制御ができなくなる。
 したがって、凝縮温度が所定値となるように熱源側熱交換器3の熱交換容量(熱源側熱交換器3及び送風機18の容量)を制御することで、冷凍サイクルの凝縮圧力が低くなり過ぎないようにする必要がある。
 次に、本実施の形態1に係る空気調和装置が全暖房運転の場合について説明する。通常、外気温度が低い場合に送風機18の送風量が全速となるように、熱源側熱交換器3の容量及び送風機18の送風量は設計されている。外気温度が高い場合に、もし熱源側熱交換器3及び送風機18の容量を外気温度が低い場合と同じにすると、蒸発温度は非常に高くなり、冷凍サイクルの蒸発圧力も高くなる。
 この結果、流量制御弁11B,11C,11Dの出入口圧力差が小さくなり、流量制御弁11B,11C,11Dの開度を大きくする必要がある。流量制御弁11B,11C,11Dの開度は有限であり、ある一定以上には大きくできないので、その上限値よりも大きくする必要があれば、容量の大きな流量制御弁を選定する必要がでてくる。しかし、その場合、流量制御弁11B,11C,11Dは、大形化する上に、最小開度幅当たりの流量変動量が大きくなり、きめこまかな制御ができなくなる。
 したがって、蒸発温度が所定値となるように、熱源側熱交換器3の熱交換容量(熱源側熱交換器3及び送風機18の容量)を制御することで、冷凍サイクルの蒸発圧力が高くなり過ぎないようにする必要がある。
 次に、本実施の形態1に係る空気調和装置が冷房主体運転の場合について説明する。通常、全冷房運転で外気温度が高い場合に送風機18の送風量が全速となるように、熱源側熱交換器3の容量及び送風機18の送風量は設計され、外気温度と凝縮温度との差は例えば10℃前後となる。冷房主体運転は暖房負荷が発生しているので、通常は外気温度が低い。冷房主体運転の場合に、もし熱源側熱交換器3及び送風機18の容量を全冷房運転で外気温度が高い場合と同じにすると、外気温度が低い分、更に暖房室内機Dでの凝縮分、凝縮温度が低下してしまう。故に、暖房室内機Dの能力が不足する。このため、凝縮温度が所定値となるように、熱源側熱交換器3の熱交換容量(熱源側熱交換器3及び送風機18の容量)を制御する必要がある。
 次に、本実施の形態1に係る空気調和装置が暖房主体運転の場合について説明する。通常、全暖房運転で外気温度が低い場合に送風機18の送風量が全速となるように、熱源側熱交換器3の容量及び送風機18の送風量は設計されている。暖房主体運転は冷房負荷が発生しているので、通常は外気温度が比較的高い。暖房主体運転の場合に、もし熱源側熱交換器3及び送風機18の容量を全暖房運転で外気温度が低い場合と同じにすると、外気温度が高い分、更に冷房室内機Dでの蒸発分、蒸発温度が上昇してしまう。故に、冷房室内機Dの能力が不足する。このため、蒸発温度が所定値となるように、熱源側熱交換器3の熱交換容量(熱源側熱交換器3及び送風機18の容量)を制御する必要がある。
 そこで、本実施の形態1に係る空気調和装置では、熱交換容量調整装置152により、熱源側熱交換器3の熱交換容量を以下のように制御している。
 図5は、本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の熱交換容量調整装置の制御内容を示す図である。熱交換容量調整装置152は、凝縮温度検出装置19及び蒸発温度検出装置20の検出温度に基づいて、送風機18の風量(容量)、電磁弁3a,3b,3c,3dの開閉、流量制御弁40の開度を制御する。
 具体的には、熱源側熱交換器3の熱交換容量を以下に示す4段階で制御する。
 第1段階は、熱源側熱交換器3が最も大きな熱交換容量を必要とする場合に対応している。電磁弁3a,3b,3c,3dを開弁し、流量制御弁40を閉弁することにより、第1及び第2の冷媒回路21,22に冷媒を流通させ、第3の冷媒回路23には冷媒を流通させないようにする。すなわち、第1の熱交換器24及び第2の熱交換器25の両方に冷媒を流通させ、第3の冷媒回路23には冷媒を流通させないようにする。そして、送風機18の送風量を、インバータ等(図示せず)により最低風量から全速までの間で調整する。
 この場合、ビル風等の外風があれば、送風機18を最低風量にしてもかなり大きな熱交換をしてしまう。このため、熱源側熱交換器3が凝縮器の場合には凝縮温度が低下し、蒸発器の場合には蒸発温度が上昇してしまう。また、外風がないときでも自然対流による熱交換量以下の熱交換容量は得られないので、外気温度と熱源側熱交換器3における冷媒の凝縮温度又は蒸発温度との温度差が大きいと、凝縮温度が低下し又は蒸発温度が上昇してしまう。
 第2段階は、熱源側熱交換器3が第1段階の次に大きな熱交換容量を必要とする場合に対応している。第2段階では、電磁弁3a,3cを開弁し、電磁弁3b,3dを閉弁し、流量制御弁40を閉弁する。これにより、第1の冷媒回路23のみに冷媒を流通させ、第2の冷媒回路22及び第3の冷媒回路23には冷媒を流通させないようにする。すなわち、第1の熱交換器24のみに冷媒を流通させ、かつ、第2の熱交換器25及び第3の冷媒回路23には冷媒を流通させないようにし、熱源側熱交換器3の伝熱面積を大幅に減少させる。そして、送風機18の送風量を、インバータ等(図示せず)により最低風量から全速までの間で調整する。
 この場合、ビル風等による外風による熱交換量も大幅に減少し、また、外風がない場合の自然対流による熱交換量も大幅に減少するので、熱源側熱交換器3が凝縮器の場合には凝縮温度の低下、蒸発器の場合には蒸発温度の上昇が小さくなる。
 第3段階は、熱源側熱交換器3が第2段階よりも小さな熱交換容量を必要とする場合に対応している。第3段階では、電磁弁3a,3cを開弁し、電磁弁3b,3dを閉弁し、流量制御弁40の開度を調整する。これにより、第1の冷媒回路21及び第3の冷媒回路23に冷媒を流通させ、第2の冷媒回路22には冷媒を流通させないようにする。すなわち、第1の熱交換器24及び第3の冷媒回路23に冷媒を流通させ、第2の熱交換器25には冷媒を流通させないようにする。そして、送風機18の送風量を、インバータ等(図示せず)により最低風量から全速までの間で調整する。このとき、流量制御弁40の開度を制御することにより、第2の冷媒回路23に流通する冷媒量を連続的に制御でき、熱源側熱交換器3(より詳しくは、第1の熱交換器24)の熱交換容量を連続的に制御することができる。
 この場合、ビル風等の外風による熱交換量も第2段階よりも更に減少し、また、外風がないときの自然対流による熱交換量も同様に減少するので、熱源側熱交換器3が凝縮器の場合には凝縮温度の低下、蒸発器の場合には蒸発温度の上昇が更に小さくなる。
 第4段階は、熱源側熱交換器3が最も小さな熱交換容量を必要とする場合に対応している。流量制御弁40を全開し、電磁弁3a,3b,3c,3dを閉弁することにより、熱源側熱交換器3の熱交換量を皆無にするようにしてある。
 なお、本実施の形態1では、第2段階において第2の熱交換器25の冷媒流路を閉じ(電磁弁3b,3dを閉弁し)、第4段階において第1の熱交換器24の冷媒流路を閉じた(電磁弁3a,3cを閉弁した)。これに限らず、第2段階において第1の熱交換器24の冷媒流路を閉じ(電磁弁3a,3cを閉弁し)、第4段階において第2の熱交換器25の冷媒流路を閉じてもよい(電磁弁3b,3dを閉弁してもよい)。
 次に、熱交換容量調整装置152による第1段階と第2段階、第2段階と第3段階の連続制御性について説明する。外風があっても、(第2段階の送風機18が全速のときの熱源機側熱交換容量AK2MAX )が(第1段階の送風機18が最低風量のときの熱源機側熱交換容量AK1MAX )より大きい、つまりAK2MAX >AK1MAX となる風速以下の外風であれば、第1段階と第2段階は連続的に制御可能である。
 同様に、外風があっても、(第3段階の送風機18が全速のときの熱源機側熱交換容量AK3MAX )が(第2段階の送風機18が最低風量のときの熱源機側熱交換容量AK2MAX )より大きい、つまりAK3MAX >AK2MAXとなる風速以下の外風であれば、第2段階と第3段階は連続的に制御可能である。
 本実施の形態1では、第3の冷媒回路23を流れる冷媒流量の増減を、連続的に制御可能となっている。このため、第2の冷媒回路23を流れる冷媒流量を減少させることにより、第3段階の送風機18が全速のときの熱源機側熱交換容量AK3MAX を大きくすることができる。このため、従来の空気調和装置よりも、第2段階から第3段階への移行を連続的に制御しやすくなる。
 このように、熱源側熱交換器3のバイパス流量(第3の冷媒回路23を流れる冷媒流量)を制御し、熱源側熱交換器3の熱交換容量を4段階で調整することによって、ある程度の外風があっても、熱源側熱交換器3の熱交換容量を連続的に制御することができる。つまり、熱源側熱交換器3が凝縮器の場合には凝縮温度を、蒸発器の場合には蒸発温度を所定値又は所定範囲内に制御することができる。
 なお、第3の冷媒回路23への冷媒の流通は、上記の段階に限られるものではない。例えば、第1段階において、第3の冷媒回路23へ冷媒を流通させてもよい。第1段階において第3の冷媒回路23へ冷媒を流通させることにより、第1段階の送風機18が最低風量のときの熱源機側熱交換容量AK1MAX が小さくなる。この熱源機側熱交換容量AK1MAX は、第3の冷媒回路23への冷媒流量を増加させるほど、小さくなる。このため、従来の空気調和装置よりも、第2段階から第3段階への移行を連続的に制御することができる。このため、従来の空気調和装置よりも、第1段階から第2段階への移行を連続的に制御しやすくなる。
 次に、図6のフローチャートに添って、熱源側熱交換器3が凝縮器となる場合の熱交換容量調整装置152の制御内容を説明する。
 図6は、本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の熱源側熱交換器が凝縮器の場合における熱交換容量調整装置の制御の流れを示す図である。
 ステップ160では、(凝縮温度検出装置19の検出温度TC)と(予め定められた第1の目標凝縮温度TC1)とを比較する。TC>TC1であればステップ161へ進む。ステップ161で送風機18が全速か否かを判定する。送風機18が全速でなければ、ステップ162へ進んで送風量を増加してステップ160へ戻る。送風機18が全速であれば、ステップ163で電磁弁3a,3cの開閉を判定する。電磁弁3a,3cが閉弁していれば、ステップ164にて電磁弁3a,3cを開弁し、第1の冷媒回路21すなわち第1の熱交換器24を開路してステップ160に戻る。電磁弁3a,3cが開弁していればステップ165へ進む。
 ステップ165では流量制御弁40の開度を判定する。流量制御弁40の開度が全閉でなければ、ステップ166にて流量制御弁40の開度を小さくしてステップ160に戻る。流量制御弁40の開度が全閉であればステップ167に進む。ステップ167では電磁弁3b,3dの開閉を判定する。電磁弁3b,3dが閉弁していればステップ168にて電磁弁3b,3dを開弁し、第2の冷媒回路22すなわち第2の熱交換器25を開路してステップ160に戻る。電磁弁3b,3dが開弁していてもステップ160に戻る。
 一方、ステップ160でTC≦TC1と判定されるとステップ170に進む。ステップ170では、(凝縮温度検出装置19の検出温度TC)と(第1の目標凝縮温度より小さく予め定められた第2の目標凝縮温度TC2)とを比較する。TC<TC2であればステップ171へ進み、TC≧TC2であればステップ160へ戻る。ステップ171では送風機18が最低風量か否かを判定する。送風機18が最低風量でなければ、ステップ172へ進んで送風量を減少してステップ160へ戻る。送風機18が最低風量であれば、ステップ173で電磁弁3b,3dの開閉を判定する。電磁弁3b,3dが開弁していればステップ174にて電磁弁3b,3dを閉弁し、第2の冷媒回路22すなわち第2の熱交換器25を閉路してステップ160に戻る。電磁弁3b,3dが閉弁していればステップ175へ進む。
 ステップ175では流量制御弁40の開度を判定する。流量制御弁40の開度が全開でなければ、ステップ176にて流量制御弁40の開度を増加させてステップ160に戻る。流量制御弁40の開度が全開であればステップ177に進む。ステップ177では電磁弁3a,3cの開閉を判定する。電磁弁3a,3cが開弁していればステップ178にて電磁弁3a,3cを閉弁し、第1の冷媒回路21すなわち第1の熱交換器24を閉路してステップ160に戻る。ステップ177で電磁弁3a,3cが閉弁していてもステップ160に戻る。
 このようにして、凝縮温度検出装置19の検出温度TCを第1の目標凝縮温度TC1と第2の目標凝縮温度TC2の間の温度に制御することができる。
 次に、図7のフローチャートに添って、熱源側熱交換器3が蒸発器となる場合の熱交換容量調整装置152の制御内容を説明する。
 図7は、本発明の実施の形態1による冷凍サイクル装置の一例として、空気調和装置の熱源側熱交換器が蒸発器の場合における熱交換容量調整装置の制御の流れを示す図である。
 ステップ180では、(蒸発温度検出装置20の検出温度TE)と(予め定められた第1の目標蒸発温度TE1)とを比較する。TE<TE1であればステップ181へ進む。ステップ181で送風機18が全速か否かを判定する。送風機18が全速でなければ、ステップ182へ進んで送風量を増加してステップ180へ戻る。送風機18が全速であれば、ステップ183で電磁弁3a,3cの開閉を判定する。電磁弁3a,3cが閉弁していれば、ステップ184にて電磁弁3a,3cを開弁し、第1の冷媒回路21すなわち第1の熱交換器24を開路してステップ180に戻る。電磁弁3a,3cが開弁していればステップ185へ進む。
 ステップ185では流量制御弁40の開度を判定する。流量制御弁40の開度が全閉でなければ、ステップ186にて流量制御弁40の開度を下げてステップ180に戻る。流量制御弁40の開度が全閉であればステップ187に進む。ステップ187では電磁弁3b,3dの開閉を判定する。電磁弁3b,3dが閉弁していれば、ステップ188にて電磁弁3b,3dを開弁し、第2の冷媒回路22すなわち第2の熱交換器25を開路してステップ180に戻る。電磁弁3b,3dが開弁していてもステップ180に戻る。
 一方、ステップ180でTE≧TE1と判定されるとステップ190に進む。ステップ190では、(蒸発温度検出装置20の検出温度TE)と(第1の目標蒸発温度よりも大きく予め定められた第2の目標蒸発温度TE2)とを比較する。TE>TE2であればステップ191へ進み、TE≦TE2であればステップ180へ戻る。ステップ191では送風機18が最低風量か否かを判定する。送風機18が最低風量でなければ、ステップ192へ進んで送風量を減少してステップ180へ戻る。送風機18が最低風量であれば、ステップ193で電磁弁3b,3dの開閉を判定する。電磁弁3b,3dが開弁していれば、ステップ194にて電磁弁3b,3dを閉弁し、第2の冷媒回路22すなわち第2の熱交換器25を閉路してステップ180に戻る。電磁弁3b,3dが閉弁していればステップ195へ進む。
 ステップ195では流量制御弁40の開度を判定する。流量制御弁40の開度が全開でなければ、ステップ196にて流量制御弁40の開度を増加させてステップ180に戻る。流量制御弁40の開度が全開であればステップ197に進む。ステップ197では電磁弁3a,3cの開閉を判定する。電磁弁3a,3cが開弁していれば、ステップ198にて電磁弁3a,3cを閉弁し、第1の冷媒回路21すなわち第1の熱交換器24を閉路してステップ180に戻る。ステップ197で電磁弁3a,3cが閉弁していてもステップ180に戻る。
 このようにして、蒸発温度検出装置20の検出温度TEを第1の目標蒸発温度TE1と第2の目標蒸発温度TE2の間の温度に制御することができる。
 以上のような形態の空気調和装置であれば、送風機18の風量の制御範囲を全速から停止まで連続的に制御できない場合においても、第3の冷媒回路23に流れる冷媒流量を調整することにより、熱源側熱交換器3の熱交換容量を連続的に制御できる。
 また、各段階における熱源側熱交換器3の熱交換容量の差を小さくするため、従来の空気調和装置のように、熱源側熱交換器3を構成する熱交換器の数を増加させる必要もない。このため、熱源側熱交換器3を構成する各熱交換器への冷媒流路を開閉する際に必要な電磁弁等が増加することを防止できる。
 なお、図8に示すように、第1の冷媒回路21、第2の冷媒回路22及び第3の冷媒回路23の接続部であって、熱源側熱交換器3が蒸発器となる際に冷媒入口側となる接続部に、気液二相冷媒の気液比を所定の比率(例えば均等)にして下流部へ流出する分配器30を設けてもよい。このように構成した空気調和装置では、熱源側熱交換器3が蒸発器として動作する場合、低圧の気液二相状態の冷媒が流入した場合においても、各冷媒回路(第1の冷媒回路21、第2の冷媒回路22及び第3の冷媒回路23)に例えば均等な気液比の冷媒を分配できる。このため、熱源側熱交換器3にガスの比率が過剰に多い冷媒や逆に液の比率が過剰に多い冷媒が流入し、熱源側熱交換器3における熱交換容量が不安定になることを防止できる。つまり、熱源側熱交換器3の熱交換容量を安定して制御できる効果が得られる。
 また、本実施の形態1では使用する冷媒について特に言及しなかったが、凝縮器で熱交換対象(例えば空気や水等)を加熱する際、凝縮することなく超臨界状態で熱交換対象を加熱する冷媒を用いてもよい。このような冷媒を用いることにより、空気調和装置の冷媒回路に気液分離器7を設ける必要がなくなる。このため、冷房主体運転においても、暖房室内機での圧力損失の増大や暖房能力の低下を招くことがなく、効率よく空気調和装置を運転できる効果が得られる。
 また、本実施の形態1で示した空気調和装置は、あくまでも一例である。例えば、熱源機Aと中継器Eを1つのユニットとしてもよい(熱源機A内の構成要素と中継器E内の構成要素を1つの筐体内に配置してもよい)。例えば、全冷房運転又は全暖房運転のみを行える空気調和装置としてもよい。この場合、熱源機Aに四方弁2や切替弁4を設ける必要がなくなる。例えば、複数の室内機を備えた他室型の空気調和装置でなく、一台の室内機を備えた空気調和装置であってもよい。
 また、本発明に係る冷凍サイクル装置は、空気調和装置以外に採用できることも、もちろん可能である。例えば、貯湯式給湯装置等に本発明に係る冷凍サイクル装置を採用してもよい。
実施の形態2.
 複数の熱交換器が並列接続された熱源側熱交換器3を凝縮器として用いる場合、熱源側熱交換器3を流れる冷媒は、その密度が大きくなり、流速が低下してしまうことがある。このため、冷媒の熱伝達率(熱源側熱交換器3の熱交換効率)が低下してしまうことが懸念される。以下の構成を追加することにより、この懸念事項も解消し、さらに効率のよい空気調和装置を得ることができる。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とする。
 図9は、本発明の実施の形態2による冷凍サイクル装置の一例として、空気調和装置の冷媒回路を示す図である。
 本実施の形態2に係る空気調和装置は、実施の形態1に係る空気調和装置の構成に、バイパス配管50及び電磁弁51が追加されている。
 バイパス配管50は、第1の熱交換器24と第2の熱交換器25を直列配列するものである。このバイパス配管50の一方の端部は、第2の熱交換器25と電磁弁3dとの間の第2の冷媒回路22と接続されている。また、バイパス配管50の他方の端部は、第1の熱交換器24と電磁弁3aとの間の第1の冷媒回路21に接続されている。電磁弁51は、バイパス配管50に設けられており、バイパス配管50の冷媒流路を開閉する。
 ここで、バイパス配管50が、本発明の接続配管に相当する。また、電磁弁51が、本発明の開閉装置に相当する。なお、本実施の形態2では開閉装置に弁構造を採用しているが、これに限るものではない。バイパス配管50の冷媒流路を開閉できるものであれば、開閉装置の構造は任意である。
 次に、熱源側熱交換器3の熱交換容量の制御方法を説明する。本実施の形態2に係る空気調和装置は、熱源側熱交換器3が凝縮器として動作する場合(全冷房運転時及び冷房主体運転時)、熱源側熱交換器3の熱交換容量を5段階で制御する。
 第1段階は、熱源側熱交換器3が最も大きな熱交換容量を必要とする場合に対応している。電磁弁3b,3cを開弁し、電磁弁3a,3d及び流量制御弁40を閉弁する。また、電磁弁51を開弁する。これにより、第2の熱交換器25、第1の熱交換器24の順に冷媒が流通し、かつ、第3の冷媒回路23には冷媒が流通しない状態となる。そして、送風機18の送風量をインバータ等(図示せず)により最低風量から全速までの間で調整する。
 図10に、第1段階における熱源側熱交換器3の冷媒流れの一例として、全冷房運転時の熱源側熱交換器3の冷媒流れを説明する。
 圧縮機1から吐出された高温高圧のガス冷媒が四方弁2に流入する。四方弁2を出た冷媒は、熱源側熱交換器3へ流入する。熱源側熱交換器3へ流入した高温高圧のガス冷媒は、まず第2の熱交換器25に流入する。そして、この冷媒は、バイパス配管50を通って第1の熱交換器24へ流入する。その後、第1の熱交換器24を流出した冷媒は、第4の逆止弁4dを経て、第2の熱源機側接続配管16Aに流入する。熱源側熱交換器3へ流入した高温高圧のガス冷媒は、第2の熱交換器25に流入してから第1の熱交換器24を流出するまでの過程において、送風機18から送られる空気と熱交換して凝縮・液化する。
 なお、第2の熱源機側接続配管16A以降の冷媒流れは、実施の形態1に示した空気調和装置と同一であり、ここでは説明を省略する。
 第1段階の場合、ビル風等の外風があれば、送風機18を最低風量にしてもかなり大きな熱交換をしてしまう。そして、熱源側熱交換器3が凝縮器の場合には凝縮温度が低下し、蒸発器の場合には蒸発温度が上昇してしまう。このため、第1段階以降は実施の形態1と同様の制御方法により熱源側熱交換器3の熱交換容量を制御する。つまり、実施の形態1で示した第1段階~第4段階が、本実施の形態2における第2段階~第5段階となる。
 より具体的には、本実施の形態2に係る熱源側熱交換器3の熱交換容量の制御方法は、図11に示すようになる。
 図11は、本発明の実施の形態2による冷凍サイクル装置の一例として、空気調和装置の熱源側熱交換器が凝縮器の場合における熱交換容量調整装置の制御の流れを示す図である。
 ステップ160では、(凝縮温度検出装置19の検出温度TC)と(予め定められた第1の目標凝縮温度TC1)とを比較する。TC>TC1であればステップ161へ進む。ステップ161で送風機18が全速か否かを判定する。送風機18が全速でなければ、ステップ162へ進んで送風量を増加してステップ160へ戻る。送風機18が全速であれば、ステップ163で電磁弁3a,3cの開閉を判定する。電磁弁3a,3cが閉弁していれば、ステップ164にて電磁弁3a,3cを開弁し、第1の冷媒回路21すなわち第1の熱交換器24を開路してステップ160に戻る。電磁弁3a,3cが開弁していればステップ165へ進む。
 ステップ165では流量制御弁40の開度を判定する。流量制御弁40の開度が全閉でなければ、ステップ166にて流量制御弁40の開度を小さくしてステップ160に戻る。流量制御弁40の開度が全閉であればステップ167に進む。ステップ167では電磁弁3b,3dの開閉を判定する。電磁弁3b,3dが閉弁していればステップ168にて電磁弁3b,3dを開弁し、第2の冷媒回路22すなわち第2の熱交換器25を開路してステップ160に戻る。電磁弁3b,3dが開弁していれば、ステップ200に進む。
 ステップ200では、電磁弁51の開閉を判定する。電磁弁51が閉弁していれば、ステップ201で電磁弁3a,3dを閉弁し、ステップ202で電磁弁51を開弁し、ステップ160に戻る。つまり、第2の熱交換器25及び第1の熱交換器24が直列接続されるように冷媒流路を開き、ステップ160に戻る。電磁弁51が開弁していれば、ステップ160に戻る。
 一方、ステップ160でTC≦TC1と判定されるとステップ170に進む。ステップ170では、(凝縮温度検出装置19の検出温度TC)と(第1の目標凝縮温度より小さく予め定められた第2の目標凝縮温度TC2)とを比較する。TC<TC2であればステップ171へ進み、TC≧TC2であればステップ160へ戻る。ステップ171では送風機18が最低風量か否かを判定する。送風機18が最低風量でなければ、ステップ172へ進んで送風量を減少してステップ160へ戻る。送風機18が最低風量であれば、ステップ210へ進む。
 ステップ210では、電磁弁51の開閉を判定する。電磁弁51が開弁していれば、ステップ211で電磁弁3a,3dを開弁し、ステップ212で電磁弁51を閉弁し、ステップ160に戻る。つまり、第2の熱交換器25及び第1の熱交換器24が並列接続されるように冷媒流路を開き、ステップ160に戻る。電磁弁51が閉弁していれば、ステップ173に進む。
 ステップ173で電磁弁3b,3dの開閉を判定する。電磁弁3b,3dが開弁していればステップ174にて電磁弁3b,3dを閉弁し、第2の冷媒回路22すなわち第2の熱交換器25を閉路してステップ160に戻る。電磁弁3b,3dが閉弁していればステップ175へ進む。
 ステップ175では流量制御弁40の開度を判定する。流量制御弁40の開度が全開でなければ、ステップ176にて流量制御弁40の開度を増加させてステップ160に戻る。流量制御弁40の開度が全開であればステップ177に進む。ステップ177では電磁弁3a,3cの開閉を判定する。電磁弁3a,3cが開弁していればステップ178にて電磁弁3a,3cを閉弁し、第1の冷媒回路21すなわち第1の熱交換器24を閉路してステップ160に戻る。ステップ177で電磁弁3a,3cが閉弁していてもステップ160に戻る。
 このようにして、凝縮温度検出装置19の検出温度TCを第1の目標凝縮温度TC1と第2の目標凝縮温度TC2の間の温度に制御することができる。
 なお、熱源側熱交換器3が蒸発器として動作する場合(全暖房運転時、暖房主体運転時)、電磁弁51は閉弁し、実施の形態1と同様の方法で熱源側熱交換器3の熱交換容量を制御する。
 以上のように構成された空気調和装置においては、熱源側熱交換器3が凝縮器として動作し、高圧で密度の大きい冷媒が流れた場合でも、第1の熱交換器24及び第2の熱交換器25を直列接続することにより、第1の熱交換器24及び第2の熱交換器25を並列接続するときよりも冷媒の流路断面積を小さくできる。このため、熱源側熱交換器3を流れる冷媒の流速低下を抑制することができる。したがって、熱源側熱交換器3を凝縮器として用いる際の冷媒の熱伝達率(熱源側熱交換器3の熱交換効率)が上昇する。
 さらに、熱源側熱交換器3内を流れる冷媒の密度が小さい場合、つまり熱源側熱交換器3が凝縮器として動作する場合、第1の熱交換器24及び第2の熱交換器25を並列接続することにより、熱源側熱交換器3を流れる冷媒の流速の増加を抑制することができる。このため、熱源側熱交換器3を流れる冷媒の圧力損失を低減できる。
 したがって、空気調和装置の効率がより向上する。
 また、このように構成された空気調和装置においては、送風機で送風された空気は、冷媒流れ方向の下流側となる第1の熱交換器24へ流入した後、冷媒流れ方向の上流側となる第2の熱交換器25へ流入する。このため、第1の熱交換器24で温度上昇した空気と圧縮機1から第2の熱交換器25に流入した高温の冷媒とが熱交換することとなる。したがって、熱源側熱交換器3の熱交換効率が向上し、空気調和装置の効率が向上する。
実施の形態3.
 冷媒の毒性等の人体へ与える影響や可燃性を考慮して、室内等の空間中に漏洩する冷媒の許容濃度が国際規格で決められている。例えば、フロン冷媒の一つであるR410Aは0.44kg/m、COは0.07kg/m、プロパンは0.008kg/mと、室内中に漏洩する冷媒の許容濃度が決められている。
 このような冷媒が室内に漏洩するのを防止するため、水や不凍液等を室内熱交換器に流通させるとよい。したがって、水や不凍液等が室内熱交換器に流通する空気調和装置に本発明を実施することも有効である。なお、本実施の形態3において、特に記述しない項目については実施の形態1又は実施の形態2と同様とする。
 図12は、本発明の実施の形態3による冷凍サイクル装置の一例として、空気調和装置の冷媒回路を示す図である。
 本実施の形態3に係る空気調和装置は、水が室内熱交換器に流通する空気調和装置である。また、この空気調和装置は、熱源機1台に対して複数台の室内機を接続した多室型の空気調和装置である。この空気調和装置は、熱源機A、中継器E’、及び複数の室内機71を備えている。本実施の形態3では、3つの室内機71a,71b,71cを備えている。
(熱源機A)
 熱源機Aは、実施の形態1と同様であり、圧縮機1、四方弁2、熱源側熱交換器3、熱源側熱交換器3に空気を送風する送風量可変の送風機18、及び、圧縮機1から吐出された冷媒の流路を切り替える切替弁4等を備えている。
 本実施の形態3に係る熱源機Aでは、第4の逆止弁4dが、第2の熱源機側接続配管16Aを介して、後述する中継器E’における第1の分岐部5と電磁弁68との間の冷媒配管と接続されている。また、第1の逆止弁4aが、第1の熱源機側接続配管15Aを介して、後述する中継器E’の第1の分岐部5と接続されている。
(室内機71)
 室内機71a,71b,71cのそれぞれは、同様の構成となっている。
 より詳しくは、室内機71aは室内側熱交換器70aを備えている。室内側熱交換器70aの一方の端部は、第3の水配管65aを介して、後述する中継器E’の第1の水切替弁72aと接続されている。室内側熱交換器70aの他方の端部は、第4の水配管66aを介して、後述する中継器E’の第2の水切替弁73aと接続されている。
 また、室内機71aは室内側熱交換器70bを備えている。室内側熱交換器70bの一方の端部は、第3の水配管65bを介して、後述する中継器E’の第1の水切替弁72bと接続されている。室内側熱交換器70bの他方の端部は、第4の水配管66bを介して、後述する中継器E’の第2の水切替弁73bと接続されている。
 また、室内機71cは室内側熱交換器70cを備えている。室内側熱交換器70cの一方の端部は、第3の水配管65cを介して、後述する中継器E’の第1の水切替弁72cと接続されている。室内側熱交換器70cの他方の端部は、第4の水配管66cを介して、後述する中継器E’の第2の水切替弁73cと接続されている。
(中継器E’)
 中継器E’は、第1の分岐部5、第2の分岐部6、流量制御弁9、第1の水―冷媒熱交換器55B、第2の水―冷媒熱交換器55C、複数の第1の水切替弁72(第1の水切替弁72a,72b,72c)、複数の第2の水切替弁73(第2の水切替弁73a,73b,73c)、複数のポンプ60(ポンプ60B,60C)、及び電磁弁68等を備えている。
 第1の分岐部5は、電磁弁13B,13C及び電磁弁14B,14Cを備えている。
 電磁弁13B,13Cのそれぞれの一方の端部は、第1の熱源機側接続配管15Aと接続されている。また、電磁弁13Bの他方の端部は、第1の水―冷媒熱交換器接続配管63Bを介して、第1の水―冷媒熱交換器55Bと接続されている。電磁弁13Cの他方の端部は、第1の水―冷媒熱交換器接続配管63Cを介して、第2の水―冷媒熱交換器55Cと接続されている。
 電磁弁14B,14Cのそれぞれの一方の端部は、第2の分岐部6と接続されている。また、電磁弁14Bの他方の端部は、第1の水―冷媒熱交換器接続配管63Bを介して、第1の熱源機側接続配管15Aと接続されている。電磁弁14Cの他方の端部は、第1の水―冷媒熱交換器接続配管63Cを介して、第2の水―冷媒熱交換器55Cと接続されてている。
 電磁弁14B,14Cと第2の分岐部6との間の冷媒配管には電磁弁68が設けられており、この配管の電磁弁14B,14Cと電磁弁68との間には、第2の熱源機側接続配管16Aが接続されている。
 第2の分岐部6は、第2の水―冷媒熱交換器接続配管64B,64Cと第2の熱源機側接続配管16Aとを分岐接続するものである。この第2の水―冷媒熱交換器接続配管64Bは第1の水―冷媒熱交換器55Bと接続されており、第2の水―冷媒熱交換器接続配管64Bには流量制御弁11Bが設けられている。また、第2の水―冷媒熱交換器接続配管64Cは第2の水―冷媒熱交換器55Cと接続されており、第2の水―冷媒熱交換器接続配管64Cには流量制御弁11Cが設けられている。
 流量制御弁9は第2の分岐部6と第1の熱源機側接続配管15Aとの間に接続されている。
 第1の水―冷媒熱交換器55Bは、熱源機A側の熱源側冷媒回路を流れる冷媒と室内機71側の利用側冷媒回路を通る水とが熱交換するものである。この第1の水―冷媒熱交換器55Bには、熱源側冷媒回路として、上述のように第1の水―冷媒熱交換器接続配管63B及び第2の水―冷媒熱交換器接続配管64Bが接続されている。また、この第1の水―冷媒熱交換器55Bには、利用側冷媒回路として、第1の水配管61B及び第2の水配管62Bが接続されている。
 また、第1の水配管61Bは、第2の水切替弁73a,73b,73cとも接続されている。第2の水配管62Bは、第2の水切替弁73a,73b,73cとも接続されている。
 第1の水配管61Bには、利用側冷媒回路内に水を循環させるポンプ60Bが設けられている。
 第2の水―冷媒熱交換器55Cは、熱源機A側の熱源側冷媒回路を流れる冷媒と室内機71側の利用側冷媒回路を通る水とが熱交換するものである。この第1の水―冷媒熱交換器55Cには、熱源側冷媒回路として、上述のように第1の水―冷媒熱交換器接続配管63C及び第2の水―冷媒熱交換器接続配管64Cが接続されている。また、この第1の水―冷媒熱交換器55Cには、利用側冷媒回路として、第1の水配管61C及び第2の水配管62Cが接続されている。
 また、第1の水配管61Cは、第1の水切替弁72a,72b,72cとも接続されている。第2の水配管62Cは、第2の水切替弁73a,73b,73cとも接続されている。
 第1の水配管61Cには、利用側冷媒回路内に水を循環させるポンプ60Cが設けられている。
<冷媒流れ>
 続いて、本実施の形態3に係る空気調和装置の冷媒流れを図13、図14、図15に添って説明する。図13では、全冷房運転時の冷媒流れと全暖房運転時の冷媒流れを説明する。図14では、暖房主体運転時の冷媒流れを説明する。図15では、冷房主体運転時の冷媒流れを説明する。
(全冷房運転時の冷媒流れ)
 図13は、本発明の実施の形態3による冷凍サイクル装置の一例として、空気調和装置の冷媒回路の冷房運転時と暖房運転時の冷媒の流れを示す図である。
 まず、熱源機A側の熱源側冷媒回路を流れる冷媒流れについて説明する。図13に示す実線矢印の方向が、全冷房運転時における冷媒の流れ方向である。
 圧縮機1から吐出された高温高圧のガス冷媒が四方弁2に流入する。四方弁2を出た冷媒は、熱源側熱交換器3へ流入する。熱源側熱交換器3へ流入した冷媒は、ここで送風機18から送られる空気と熱交換して凝縮・液化する。凝縮・液化した高圧の液冷媒は、第4の逆止弁4dを経て、第2の熱源機側接続配管16A、電磁弁68の順に通り、第2の分岐部6へ流入する。第2の分岐部6へ流入した高圧の液冷媒は、第2の水―冷媒熱交換器接続配管64B,64Cを経て、流量制御弁11B,11Cに流入する。
 この冷媒は、第1の水―冷媒熱交換器55B及び第2の水―冷媒熱交換器55Cの出口のスーパーヒート量により制御される流量制御弁11B,11Cにより低圧まで減圧され、水―冷媒熱交換器55B,55Cで水と熱交換し、蒸発しガス化して水を冷却する。そして、このガス状態となった冷媒は、第1の水-冷媒熱交換器接続配管63B,63C、電磁弁13B,13C、第1の分岐部5、第1の熱源機側接続配管15A、第1の逆止弁4a、四方弁2を経て圧縮機1に吸入される。
 全冷房運転時、電磁弁68が開弁し、電磁弁13B,13Cが開弁し、電磁弁14B,14Cが閉弁している。このため、第1の水-冷媒熱交換器接続配管63B,63C、第2の水-冷媒熱交換器接続配管64B,64C、第1の水―冷媒熱交換器55B及び第2の水―冷媒熱交換器55Cには、実線矢印の向きに冷媒が流れる。また、第1の熱源機側接続配管15Aが低圧、第2の熱源機側接続配管16Aが高圧、熱源側熱交換器3の切替弁4への接続端が高圧、四方弁2の切替弁4への接続端が低圧であるため、冷媒は必然的に第1の逆止弁4a、第4の逆止弁4dへ流通する。
 次に、室内機71側の利用側冷媒回路を流れる水の流れについて説明する。図13に示す実線矢印の方向が、全冷房運転時における水の流れ方向である。
 第1の水―冷媒熱交換器55B及び第2の水―冷媒熱交換器55Cで冷却された水は、それぞれポンプ60B,60Cによって昇圧され、第1の水配管61B,61Cを通り、第1の水切替弁72a,72b,72cで合流する。第1の水切替弁72a,72b,72cで合流した水は、第3の水配管65a,65b,65cを通り、室内機71a,71b,71cに流入する。室内機71a,71b,71cに流入した水は、室内側熱交換器70a,70b,70cで室内の空気を冷却しながら温度上昇する。室内側熱交換器70a,70b,70cで加熱された水は、第4の水配管66a,66b,66cを通り、第2の水切替弁73a,73b,73cに流入する。第2の水切替弁73a,73b,73cに流入した水は、第2の水配管62Bと第2の水配管62Cとに分岐し、第1の水―冷媒熱交換器55B及び第2の水―冷媒熱交換器55Cのそれぞれに戻る。
(全暖房運転時の冷媒流れ)
 まず、熱源機A側の熱源側冷媒回路を流れる冷媒流れについて説明する。図13に示す破線矢印の方向が、全暖房運転時における冷媒の流れ方向である。
 圧縮機1から吐出された高温高圧のガス冷媒は四方弁2に流入する。四方弁2を出た冷媒は、第3の逆止弁4c、第2の熱源機側接続配管16Aを通り、第1の分岐部5へ流入する。第1の分岐部5へ流入した高温高圧のガス冷媒は、電磁弁14B,14C、第1の水-冷媒熱交換器接続配管63B,63Cの順に通り、第1の水―冷媒熱交換器55B及び第2の水―冷媒熱交換器55Cに流入する。そして、第1の水―冷媒熱交換器55B及び第2の水―冷媒熱交換器55Cに流入した高温高圧のガス冷媒は、水と熱交換して凝縮液化し、水を加熱する。
 この液状態となった冷媒は、第1の水―冷媒熱交換器55B及び第2の水―冷媒熱交換器55Cの出口のサブクール量により制御されてほぼ全開状態の流量制御弁11B,11Cを通り、第2の水―冷媒熱交換器接続配管64B,64Cへ流入する。これら冷媒は、第2の分岐部6に流入して合流し、更に第3の流量制御弁9を通る。ここで、流量制御弁11B,11C又は第3の流量制御弁9のどちらか一方で、低圧の気液二相状態まで減圧される。そして、低圧まで減圧された冷媒は、第1の熱源機側接続配管15A、熱源機Aの第2の逆止弁4bを通って、熱源側熱交換器3に流入する。熱源側熱交換器3へ流入した冷媒は、ここで送風量可変の送風機18によって送風される空気と熱交換して蒸発しガス状態となる。ガス状態となった冷媒は、熱源機の四方弁2を経て圧縮機1に吸入される。
 全暖房運転時、電磁弁68が閉弁し、電磁弁14B,14Cが開弁し、電磁弁13B,13Cが閉弁している。このため、第1の水-冷媒熱交換器接続配管63B,63C、第2の水-冷媒熱交換器接続配管64B,64C、第1の水―冷媒熱交換器55B及び第2の水―冷媒熱交換器55Cには、破線矢印の向きに冷媒が流れる。また、第1の熱源機側接続配管15Aが低圧、第2の熱源機側接続配管16Aが高圧、熱源側熱交換器3の切替弁4への接続端が低圧、四方弁2の切替弁4への接続端が高圧であるため、冷媒は必然的に第2の逆止弁4b、第3の逆止弁4cへ流通する。
 次に、室内機71側の利用側冷媒回路を流れる水の流れについて説明する。図13に示す破線矢印の方向が、全暖房運転時における水の流れ方向である。
 第1の水―冷媒熱交換器55B及び第2の水―冷媒熱交換器55Cで加熱された水は、それぞれポンプ60B,60Cによって昇圧され、第1の水配管61B,61Cを通り、第1の水切替弁72a,72b,72cで合流する。第1の水切替弁72a,72b,72cで合流した水は、第3の水配管65a,65b,65cを通り、室内機71a,71b,71cに流入する。室内機71a,71b,71cに流入した水は、室内側熱交換器70a,70b,70cで室内の空気を加熱しながら温度低下する。室内側熱交換器70a,70b,70cで温度低下した水は、第4の水配管66a,66b,66cを通り、第2の水切替弁73a,73b,73cに流入する。第2の水切替弁73a,73b,73cに流入した水は、第2の水配管62Bと第2の水配管62Cとに分岐し、第1の水―冷媒熱交換器55B及び第2の水―冷媒熱交換器55Cのそれぞれに戻る。
(暖房主体運転時の冷媒流れ)
 図14は、本発明の実施の形態3による冷凍サイクル装置の一例として、空気調和装置の冷媒回路の暖房主体運転時の冷媒の流れを示す図である。なお、図14では、室内機71a,71bが暖房運転、室内機71cが冷房運転を行う場合を示している。また、暖房主体運転時、熱源側熱交換器3が蒸発器として作用し、第1の水―冷媒熱交換器55Bが凝縮器として作用し、第2の水―冷媒熱交換器55Cが蒸発器として作用する。
 まず、熱源機A側の熱源側冷媒回路を流れる冷媒流れについて説明する。図14に示す破線矢印の方向が、暖房主体運転時における冷媒の流れ方向である。
 圧縮機1から吐出された高温高圧のガス冷媒は四方弁2に流入する。四方弁2を出た冷媒は、第3の逆止弁4c、第2の熱源機側接続配管16Aを通り、中継器E’の第1の分岐部5へ流入する。第1の分岐部5へ流入した高温高圧のガス冷媒は、電磁弁14B、第1の水-冷媒熱交換器接続配管63Bの順に通り、第1の水―冷媒熱交換器55Bに流入する。そして、第1の水―冷媒熱交換器55Bに流入した高温高圧のガス冷媒は、水と熱交換して凝縮液化し、水を加熱する。この液状態となった冷媒は、第1の水―冷媒熱交換器55Bの出口のサブクール量により制御されてほぼ全開状態の流量制御弁11Bを通り少し減圧されて、第2の水―冷媒熱交換器接続配管64Bを介して第2の分岐部6へ流入する。
 第2の分岐部6に流入した冷媒の一部は、第2の水―冷媒熱交換器接続配管64Cを通って、水を冷却しようとする第2の水―冷媒熱交換器55Cに入る。そして、この冷媒は、第2の水―冷媒熱交換器55C出口のスーパーヒート量により制御される流量制御弁11Cに入って減圧される。減圧された冷媒は、第2の水―冷媒熱交換器55Cで熱交換して蒸発しガス状態となって水を冷却する。このガス状態となった冷媒は、電磁弁13Cを経て、第1の熱源機側接続配管15Aに流入する。
 一方、第2の分岐部6における残りの冷媒は、高圧(例えば第2の熱源機側接続配管16Aの圧力)と中間圧(例えば第2の水―冷媒熱交換器接続配管64B,64Cの圧力)との差圧が所定範囲となるように制御される第3の流量制御弁9を通る。その後、この冷媒は、第2の水―冷媒熱交換器55Cを通った冷媒と第1の熱源機側接続配管15Aで合流する。
 第1の熱源機側接続配管15Aで合流した冷媒は、熱源機Aに流入し、第2の逆止弁4bを通って熱源側熱交換器3へ流入する。ここで送風量可変の送風機18によって送風される空気と熱交換して蒸発しガス状態となった冷媒は、熱源機の四方弁2を経て圧縮機1に吸入される。
 暖房主体運転時、電磁弁68が閉弁し、電磁弁14Bが開弁し、電磁弁13Bが閉弁しているので、第1の水―冷媒熱交換器接続配管63B、第1の水―冷媒熱交換器55B、第2の水―冷媒熱交換器接続配管64Bには破線矢印の向きに冷媒が流れ、水を加熱する。また、電磁弁14Cが閉弁し、電磁弁13Cが開弁しているので、第1の水―冷媒熱交換器接続配管63C、第2の水―冷媒熱交換器55C、第2の水―冷媒熱交換器接続配管64Cには破線矢印の向きに冷媒が流れ、水を冷却する。また、第1の熱源機側接続配管15Aが低圧、第2の熱源機側接続配管16Aが高圧、熱源側熱交換器3の切替弁4への接続端が低圧、四方弁2の切替弁4への接続端が高圧であるため、冷媒は必然的に第2の逆止弁4b、第3の逆止弁4cへ流通する。
 次に、室内機71側の利用側冷媒回路を流れる水の流れについて説明する。図14に示す破線矢印の方向が、暖房運転に利用される水の流れ方向である。図14に示す実線矢印の方向が、冷房運転に利用される水の流れ方向である。
 第1の水―冷媒熱交換器55Bで加熱された水は、ポンプ60Bによって昇圧され、第1の水配管61Bを通り、第1の水切替弁72a,72bに流入する。第1の水切替弁72a,72bに流入した水は、第3の水配管65a,65bを通り、室内機71a,71bに流入する。室内機71a,71bに流入した水は、室内側熱交換器70a,70bで室内の空気を加熱しながら温度低下する。室内側熱交換器70a,70bで温度低下した水は、第4の水配管66a,66bを通り、第2の水切替弁73a,73bに流入する。第2の水切替弁73a,73bに流入した水は、第1の水―冷媒熱交換器55Bに戻る。
 一方、第2の水―冷媒熱交換器55Cで冷却された水は、ポンプ60Cによって昇圧され、第1の水配管61Cを通り、第1の水切替弁72cに流入する。第1の水切替弁72cに流入した水は、第3の水配管65cを通り、室内機71cに流入する。室内機71cに流入した水は、室内側熱交換器70cで室内の空気を冷却しながら温度上昇する。室内側熱交換器70cで加熱された水は、第4の水配管66cを通り、第2の水切替弁73cに流入する。第2の水切替弁73cに流入した水は、第2の水―冷媒熱交換器55Cに戻る。
(冷房主体運転時の冷媒流れ)
 図15は、本発明の実施の形態3による冷凍サイクル装置の一例として、空気調和装置の冷媒回路の冷房主体運転時の冷媒の流れを示す図である。なお、図15では、室内機71aが暖房運転、室内機71b,71cが冷房運転を行う場合を示している。また、冷房主体運転時、熱源側熱交換器3が凝縮器として作用し、第1の水―冷媒熱交換器55Bが凝縮器として作用し、第2の水―冷媒熱交換器55Cが蒸発器として作用する。
 まず、熱源機A側の熱源側冷媒回路を流れる冷媒流れについて説明する。図15に示す実線矢印の方向が、冷房主体運転時における冷媒の流れ方向である。
 圧縮機1から吐出された高温高圧のガス冷媒が四方弁2に流入する。四方弁2を出た冷媒は、熱源側熱交換器3へ流入する。熱源側熱交換器3へ流入した冷媒は、ここで送風機18から送られる空気と熱交換し半ば凝縮・液化して、高温・高圧の二相状態となる。この高温・高圧の二相冷媒は、第4の逆止弁4d、第2の熱源機側接続配管16Aを通り、中継器E’の第1の分岐部5へ流入する。第1の分岐部5へ流入した高温・高圧の二相冷媒は、電磁弁13B、第1の水-冷媒熱交換器接続配管63Bの順に通り、第1の水―冷媒熱交換器55Bに流入する。そして、第1の水―冷媒熱交換器55Bに流入した高温・高圧の二相冷媒は、水と熱交換して凝縮液化し、水を加熱する。この液状態となった冷媒は、第1の水―冷媒熱交換器55Bの出口のサブクール量により制御されてほぼ全開状態の流量制御弁11Bを通り少し減圧されて、第2の水―冷媒熱交換器接続配管64Bを介して第2の分岐部6へ流入する。
 第2の分岐部6に流入した冷媒は、第2の水―冷媒熱交換器接続配管64Cを通って、水を冷却しようとする第2の水―冷媒熱交換器55Cに入る。そして、この冷媒は、第2の水―冷媒熱交換器55C出口のスーパーヒート量により制御される流量制御弁11Cに入って低圧まで減圧される。減圧された冷媒は、第2の水―冷媒熱交換器55Cで熱交換して蒸発しガス状態となって水を冷却する。このガス状態となった冷媒は、第1の水―冷媒熱交換器接続配管63C、電磁弁13C、第1の分岐部5、第1の熱源機側接続配管15A、第1の逆止弁4a、四方弁2を経て圧縮機1に吸入される。
 冷房主体運転時、電磁弁68が閉弁し、電磁弁14Bが開弁し、電磁弁13Bが閉弁しているので、第1の水―冷媒熱交換器接続配管63B、第1の水―冷媒熱交換器55B、第2の水―冷媒熱交換器接続配管64Bには実線矢印の向きに冷媒が流れ、水を加熱する。また、電磁弁14Cが閉弁し、電磁弁13Cが開弁しているので、第1の水―冷媒熱交換器接続配管63C、第2の水―冷媒熱交換器55C、第2の水―冷媒熱交換器接続配管64Cには実線矢印の向きに冷媒が流れ、水を冷却する。また、第1の熱源機側接続配管15Aが低圧、第2の熱源機側接続配管16Aが高圧、熱源側熱交換器3の切替弁4への接続端が高圧、四方弁2の切替弁4への接続端が低圧であるため、冷媒は必然的に第1の逆止弁4a、第4の逆止弁4dへ流通する。
 次に、室内機71側の利用側冷媒回路を流れる水の流れについて説明する。図15に示す破線矢印の方向が、暖房運転に利用される水の流れ方向である。図15に示す実線矢印の方向が、冷房運転に利用される水の流れ方向である。
 第1の水―冷媒熱交換器55Bで加熱された水は、ポンプ60Bによって昇圧され、第1の水配管61Bを通り、第1の水切替弁72aに流入する。第1の水切替弁72aに流入した水は、第3の水配管65aを通り、室内機71aに流入する。室内機71aに流入した水は、室内側熱交換器70aで室内の空気を加熱しながら温度低下する。室内側熱交換器70aで温度低下した水は、第4の水配管66aを通り、第2の水切替弁73aに流入する。第2の水切替弁73aに流入した水は、第1の水―冷媒熱交換器55Bに戻る。
 一方、第2の水―冷媒熱交換器55Cで冷却された水は、ポンプ60Cによって昇圧され、第1の水配管61Cを通り、第1の水切替弁72b,72cに流入する。第1の水切替弁72b,72cに流入した水は、第3の水配管65b,65cを通り、室内機71b,71cに流入する。室内機71b,71cに流入した水は、室内側熱交換器70b,70cで室内の空気を冷却しながら温度上昇する。室内側熱交換器70b,70cで加熱された水は、第4の水配管66b,66cを通り、第2の水切替弁73b,73cに流入する。第2の水切替弁73cに流入した水は、第2の水―冷媒熱交換器55Cに戻る。
 なお、熱源側熱交換器3の熱交換容量の制御方法については、実施の形態1と同様につき説明を省略する。
 このように構成した空気調和装置によれば、実施の形態1と同様の効果に加えて、室内へ熱源側冷媒回路内の冷媒が漏洩しないという効果も得られる。このため、可燃性、毒性を有する自然冷媒や地球温暖化の抑制効果が高い冷媒を熱源側冷媒回路で用いることができる。したがって、地球温暖化抑制効果と室内での安全性の双方を確保できる空気調和装置を得ることができる。さらに、圧縮機1を一時的に停止させることがある運転モード切替時やデフロスト運転時等においても、水の潜熱を利用できるため、室内の暖房又は冷房を短時間ながら継続して行うことができ、快適性を向上できる効果が得られる。
 A 熱源機、B,C,D 室内機、E 中継器、1 圧縮機、2 四方弁、3 熱源側熱交換器、3a~3d 電磁弁、4 切替弁、4a 第1の逆止弁、4c 第3の逆止弁、4d 第4の逆止弁、5 第1の分岐部、6 第2の分岐部、7 気液分離器、8 流量制御弁、9 流量制御弁、10B,10C,10D 室内機側熱交換器、11B,11C,11D 流量制御弁、13B,13C,13D 電磁弁、14B,14C,14D 電磁弁、15A 第1の熱源機側接続配管、15B,15C,15D 第1の室内機側接続配管、16A 第2の熱源機側接続配管、16B,16C,16D 第2の室内機側接続配管、18 送風機、19 凝縮温度検出装置、20 蒸発温度検出装置、21 第1の冷媒回路、22 第2の冷媒回路、23 第3の冷媒回路、24 第1の熱交換器、25 第2の熱交換器、30 分配器、40 流量制御弁、50 バイパス配管、51 電磁弁、55B 第1の水―冷媒熱交換器、55C 第2の水―冷媒熱交換器、60 ポンプ、61B,61C 第1の水配管、62B,62C 第2の水配管、63B,63C 第1の水―冷媒熱交換器接続配管、64B,64C 第2の水―冷媒熱交換器接続配管、65 第3の水配管、66 第4の水配管、68 電磁弁、70 室内側熱交換器、71 室内機、72 第1の水切替弁、73 第2の水切替弁、152 熱交換容量調整装置。

Claims (5)

  1.  複数の熱交換器が並列接続された熱源側熱交換器と、
     前記熱交換器を流れる冷媒と熱交換を行う熱交換対象を、供給量可変に前記熱源側熱交換器へ供給する供給装置と、
    を有する冷凍サイクル装置において、
     前記熱交換器のそれぞれの冷媒流路を開閉する流路開閉装置と、
     前記熱交換器と並列接続されたバイパス配管と、
     該バイパス配管に設けられ、前記バイパス配管を流れる冷媒の流量を制御する流量調整装置と、
     を備えたことを特徴とする冷凍サイクル装置。
  2.  前記熱交換器のそれぞれに接続された配管及び前記バイパス配管の接続部であって、前記熱交換器が蒸発器となる際に前記熱交換器の冷媒入口側となる接続部に、
     気液二相冷媒の気液比を所定の比率にして下流側へ流出する分配器を設けたことを特徴とする請求項1に記載の冷凍サイクル装置。
  3.  複数の前記熱交換器のうちの少なくとも一部の前記熱交換器を直列接続する接続配管と、
     該接続配管の流路を開閉する開閉装置と、
     を備えたことを特徴とする請求項1に記載の冷凍サイクル装置。
  4.  前記接続配管によって直列接続された前記熱交換器は、
     冷媒流れ方向の下流側となる前記熱交換器と熱交換した熱交換対象が、冷媒流れ方向の上流側となる前記熱交換器に供給されるように配置されていることを特徴とする請求項3に記載の冷凍サイクル装置。
  5.  前記熱交換器を流れる冷媒は、
     熱交換対象に放熱する際、凝縮することなく超臨界状態で熱交換対象に放熱する冷媒であることを特徴とする請求項1~請求項4のいずれか一項に記載の冷凍サイクル装置。
PCT/JP2009/068456 2009-10-28 2009-10-28 冷凍サイクル装置 WO2011052047A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011538148A JP5518089B2 (ja) 2009-10-28 2009-10-28 空気調和装置
US13/504,162 US20120216989A1 (en) 2009-10-28 2009-10-28 Refrigeration cycle apparatus
PCT/JP2009/068456 WO2011052047A1 (ja) 2009-10-28 2009-10-28 冷凍サイクル装置
CN200980162212.7A CN102667366B (zh) 2009-10-28 2009-10-28 空调装置
EP09850827.8A EP2495512B1 (en) 2009-10-28 2009-10-28 Refrigeration cycle device
US14/622,067 US9822995B2 (en) 2009-10-28 2015-02-13 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068456 WO2011052047A1 (ja) 2009-10-28 2009-10-28 冷凍サイクル装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/504,162 A-371-Of-International US20120216989A1 (en) 2009-10-28 2009-10-28 Refrigeration cycle apparatus
US14/622,067 Division US9822995B2 (en) 2009-10-28 2015-02-13 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2011052047A1 true WO2011052047A1 (ja) 2011-05-05

Family

ID=43921488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068456 WO2011052047A1 (ja) 2009-10-28 2009-10-28 冷凍サイクル装置

Country Status (5)

Country Link
US (2) US20120216989A1 (ja)
EP (1) EP2495512B1 (ja)
JP (1) JP5518089B2 (ja)
CN (1) CN102667366B (ja)
WO (1) WO2011052047A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247122A (ja) * 2011-05-27 2012-12-13 Mitsubishi Electric Corp 冷凍サイクル装置
JP2013019602A (ja) * 2011-07-12 2013-01-31 Mitsubishi Heavy Ind Ltd ヒートポンプ給湯機
JPWO2017022076A1 (ja) * 2015-08-04 2018-02-22 三菱電機株式会社 冷凍装置および冷凍装置の運転方法
WO2018055739A1 (ja) * 2016-09-23 2018-03-29 三菱電機株式会社 空気調和装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048849B2 (en) 2006-02-03 2011-11-01 Modigene, Inc. Long-acting polypeptides and methods of producing same
JP5611353B2 (ja) 2010-07-29 2014-10-22 三菱電機株式会社 ヒートポンプ
WO2014083867A1 (ja) * 2012-11-29 2014-06-05 三菱電機株式会社 空気調和装置
US9625184B2 (en) * 2013-01-31 2017-04-18 Trane International Inc. Multi-split HVAC system
WO2014128831A1 (ja) * 2013-02-19 2014-08-28 三菱電機株式会社 空気調和装置
CN105659039B (zh) * 2013-10-25 2017-09-12 三菱电机株式会社 换热器和使用该换热器的制冷循环装置
CN103574953B (zh) * 2013-11-12 2016-01-13 无锡溥汇机械科技有限公司 一种单一压缩机冷媒控制的多温度热交换系统
KR102344058B1 (ko) * 2013-12-24 2021-12-28 엘지전자 주식회사 공기조화 시스템 및 그 제어방법
CN103759455B (zh) * 2014-01-27 2015-08-19 青岛海信日立空调系统有限公司 热回收变频多联式热泵系统及其控制方法
JPWO2015162679A1 (ja) * 2014-04-21 2017-04-13 三菱電機株式会社 冷凍サイクル装置
KR102264725B1 (ko) * 2014-05-22 2021-06-11 엘지전자 주식회사 히트 펌프
CN105509261B (zh) * 2014-09-26 2019-11-26 美的集团武汉制冷设备有限公司 空调器和空调器的控制方法
AU2015367294A1 (en) * 2014-12-17 2017-08-10 Nixon, Brendan Joseph A hide-away air-conditioning system
US10415861B2 (en) * 2015-07-06 2019-09-17 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN106016682B (zh) * 2016-06-02 2019-01-15 青岛海尔空调器有限总公司 自然风空调换热装置及其控制方法、自然风空调
ES2884203T3 (es) * 2016-08-03 2021-12-10 Daikin Ind Ltd Unidad de fuente de calor para dispositivo de refrigeración
CN106895593A (zh) * 2017-01-19 2017-06-27 清华大学 一种改良型电动汽车热泵空调系统
CN112460854B (zh) * 2020-11-11 2022-03-04 珠海格力电器股份有限公司 换热器及其控制方法
US11761687B2 (en) 2020-11-19 2023-09-19 Rolls-Royce North American Technologies Inc. Refrigeration or two phase pump loop cooling system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103352A (ja) * 1988-10-12 1990-04-16 Mitsubishi Electric Corp 空気調和装置
JPH046372A (ja) * 1990-04-23 1992-01-10 Mitsubishi Electric Corp 空気調和装置
JPH05149648A (ja) * 1991-11-29 1993-06-15 Mitsubishi Heavy Ind Ltd 空気調和機
JPH05332630A (ja) * 1992-05-29 1993-12-14 Hitachi Ltd 空気調和機
JPH06109332A (ja) * 1992-09-24 1994-04-19 Matsushita Seiko Co Ltd 多室形空気調和装置
JP2000205673A (ja) * 1999-01-20 2000-07-28 Fujitsu General Ltd 空気調和機の冷凍サイクル
JP2000227261A (ja) * 1999-02-02 2000-08-15 Matsushita Electric Ind Co Ltd 空気調和装置
JP2004162945A (ja) * 2002-11-11 2004-06-10 Mitsubishi Electric Corp 空気調和装置
JP2005049073A (ja) * 2003-07-31 2005-02-24 Ckd Corp 流体冷却装置
JP2005106360A (ja) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd 冷媒回路及びヒートポンプ給湯機
JP2006097978A (ja) * 2004-09-29 2006-04-13 Denso Corp 冷凍サイクル
JP2008076001A (ja) * 2006-09-22 2008-04-03 Daikin Ind Ltd 空気調和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2984458A (en) * 1956-03-13 1961-05-16 Alden I Mcfarlan Air conditioning
US2907178A (en) * 1957-10-04 1959-10-06 Borg Warner Air conditioning systems
US5045272A (en) 1990-02-16 1991-09-03 Westinghouse Electric Corp. Fluid temperature balancing system
AU636726B2 (en) * 1990-03-19 1993-05-06 Mitsubishi Denki Kabushiki Kaisha Air conditioning system
JP3140333B2 (ja) * 1995-07-14 2001-03-05 株式会社クボタ ヒートポンプ装置
JP4277373B2 (ja) * 1998-08-24 2009-06-10 株式会社日本自動車部品総合研究所 ヒートポンプサイクル
JP4211094B2 (ja) 1998-09-29 2009-01-21 三菱電機株式会社 冷凍サイクル装置
US6298677B1 (en) * 1999-12-27 2001-10-09 Carrier Corporation Reversible heat pump system
JP2001289465A (ja) 2000-04-11 2001-10-19 Daikin Ind Ltd 空気調和装置
KR100473823B1 (ko) * 2002-08-06 2005-03-08 삼성전자주식회사 냉수 및 온수 제조 장치를 구비한 공기 조화기
CN1695034B (zh) 2002-10-30 2010-11-17 三菱电机株式会社 空调装置
JP2006275435A (ja) * 2005-03-30 2006-10-12 Fujitsu General Ltd 気液分離装置および空気調和装置
KR20090022119A (ko) * 2007-08-29 2009-03-04 엘지전자 주식회사 서비스밸브 결합체를 구비한 분리형 멀티에어컨

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02103352A (ja) * 1988-10-12 1990-04-16 Mitsubishi Electric Corp 空気調和装置
JPH046372A (ja) * 1990-04-23 1992-01-10 Mitsubishi Electric Corp 空気調和装置
JPH05149648A (ja) * 1991-11-29 1993-06-15 Mitsubishi Heavy Ind Ltd 空気調和機
JPH05332630A (ja) * 1992-05-29 1993-12-14 Hitachi Ltd 空気調和機
JPH06109332A (ja) * 1992-09-24 1994-04-19 Matsushita Seiko Co Ltd 多室形空気調和装置
JP2000205673A (ja) * 1999-01-20 2000-07-28 Fujitsu General Ltd 空気調和機の冷凍サイクル
JP2000227261A (ja) * 1999-02-02 2000-08-15 Matsushita Electric Ind Co Ltd 空気調和装置
JP2004162945A (ja) * 2002-11-11 2004-06-10 Mitsubishi Electric Corp 空気調和装置
JP2005049073A (ja) * 2003-07-31 2005-02-24 Ckd Corp 流体冷却装置
JP2005106360A (ja) * 2003-09-30 2005-04-21 Sanyo Electric Co Ltd 冷媒回路及びヒートポンプ給湯機
JP2006097978A (ja) * 2004-09-29 2006-04-13 Denso Corp 冷凍サイクル
JP2008076001A (ja) * 2006-09-22 2008-04-03 Daikin Ind Ltd 空気調和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012247122A (ja) * 2011-05-27 2012-12-13 Mitsubishi Electric Corp 冷凍サイクル装置
JP2013019602A (ja) * 2011-07-12 2013-01-31 Mitsubishi Heavy Ind Ltd ヒートポンプ給湯機
JPWO2017022076A1 (ja) * 2015-08-04 2018-02-22 三菱電機株式会社 冷凍装置および冷凍装置の運転方法
WO2018055739A1 (ja) * 2016-09-23 2018-03-29 三菱電機株式会社 空気調和装置

Also Published As

Publication number Publication date
EP2495512A1 (en) 2012-09-05
US9822995B2 (en) 2017-11-21
CN102667366B (zh) 2015-10-07
JP5518089B2 (ja) 2014-06-11
US20150198360A1 (en) 2015-07-16
US20120216989A1 (en) 2012-08-30
CN102667366A (zh) 2012-09-12
EP2495512A4 (en) 2013-08-28
JPWO2011052047A1 (ja) 2013-03-14
EP2495512B1 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
JP5518089B2 (ja) 空気調和装置
JP5984914B2 (ja) 空気調和装置
JP5318099B2 (ja) 冷凍サイクル装置、並びにその制御方法
JP5855312B2 (ja) 空気調和装置
JP5383816B2 (ja) 空気調和装置
JP6005255B2 (ja) 空気調和装置
CN108139120B (zh) 空调装置
US20120006050A1 (en) Air-conditioning apparatus
WO2013144996A1 (ja) 空気調和装置
JP5183804B2 (ja) 冷凍サイクル装置、空気調和装置
JP5968519B2 (ja) 空気調和装置
JP6067025B2 (ja) 空気調和装置
JP5992088B2 (ja) 空気調和装置
CN103733005B (zh) 空调装置
WO2017138059A1 (ja) 空気調和装置
JP6019837B2 (ja) ヒートポンプシステム
JP2009228979A (ja) 空気調和装置
WO2014049673A1 (ja) 空調給湯複合システム
CN113454408B (zh) 空气调节装置
JP2018173197A (ja) 冷凍装置
JP2006003023A (ja) 冷凍装置
JP4372247B2 (ja) 空気調和装置
JP2723380B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162212.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538148

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009850827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13504162

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE