WO2011049020A1 - センサ付軸受 - Google Patents

センサ付軸受 Download PDF

Info

Publication number
WO2011049020A1
WO2011049020A1 PCT/JP2010/068163 JP2010068163W WO2011049020A1 WO 2011049020 A1 WO2011049020 A1 WO 2011049020A1 JP 2010068163 W JP2010068163 W JP 2010068163W WO 2011049020 A1 WO2011049020 A1 WO 2011049020A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor holder
sensor
spring member
axial direction
outer ring
Prior art date
Application number
PCT/JP2010/068163
Other languages
English (en)
French (fr)
Inventor
伊藤 浩義
高田 声一
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US13/502,534 priority Critical patent/US8734020B2/en
Priority to CN201080047555.1A priority patent/CN102597558B/zh
Priority to EP10824869.1A priority patent/EP2492529B1/en
Publication of WO2011049020A1 publication Critical patent/WO2011049020A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7886Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted outside the gap between the inner and outer races, e.g. sealing rings mounted to an end face or outer surface of a race
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/80Labyrinth sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/025Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by having a particular shape
    • F16F1/027Planar, e.g. in sheet form; leaf springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2226/00Joining parts; Fastening; Assembling or mounting parts
    • F16C2226/50Positive connections
    • F16C2226/70Positive connections with complementary interlocking parts
    • F16C2226/74Positive connections with complementary interlocking parts with snap-fit, e.g. by clips

Definitions

  • the present invention relates to a sensor-equipped bearing including a rolling bearing and appropriate sensors such as rotation angle detection, temperature detection, and vibration detection.
  • a typical example of this type of bearing with sensor is a bearing with a rotation sensor that is used for rotational speed control, rotational direction control, rotational angle control, and the like of motor shafts and automobile axles.
  • a bearing with a sensor one of the bearing rings constituting the rolling bearing is a stationary bearing ring that is fitted to a stationary member such as a motor housing or an automobile suspension, and the other bearing ring is disposed on the rotating shaft side. It is a rotating raceway to be mounted. Since the stationary side race is convenient for wiring and sensor positioning, it is used as a base for supporting the sensor holder (for example, Patent Document 1).
  • the sensor holder can be easily molded and insulated, a resin holder made by injection molding with a thermoplastic resin or the like is used.
  • a positioning part is formed in the sensor holder so as to be fitted to the inner diameter surface of the outer ring from one side in the axial direction, and the circumferential groove formed on the inner diameter surface of the outer ring is formed in the positioning part.
  • a protrusion is formed, the sensor holder is radially positioned with respect to the outer ring by fitting the positioning portion, and the sensor holder is prevented from coming off by engagement between the protrusion and the groove wall of the circumferential groove. Can be supported by the outer ring. (For example, patent document 2).
  • the sensor holder disclosed in the above-mentioned Patent Document 2 is composed of a ring-shaped body with an end and can elastically move both ends thereof. When the positioning portion is fitted, both end portions of the sensor holder are brought close to make it easy to insert the protrusion into the circumferential groove of the outer ring. Furthermore, by mounting the spring member in a compressed state with the sensor holder supported by the outer ring, the spring force is exerted to move both ends away from the sensor holder due to the elastic repulsion of the spring member, thereby strengthening the fixing of the sensor holder. Like to do.
  • a C-shaped concentric ring-shaped spring member that can be fitted into an end-like annular groove extending between both ends of the sensor holder is employed.
  • the fitted spring member pushes the sensor holder to the outer diameter side due to elastic repulsion, and to the sensor holder of the spring member Can be fixed.
  • a spring member is pushed between both ends of the sensor holder while the ridge is fitted in the circumferential groove to be attached to the sensor holder.
  • the spring member is composed of a free piece at both ends that is bent by being pushed between both ends of the sensor holder, and an intermediate portion that is continuous between the two free pieces. Due to the elastic repulsion accompanying the bending of both free pieces, both ends of the sensor holder can be pushed away, and the spring member can be fixed to the sensor holder.
  • the spring member in order to facilitate the mounting of the above-described spring member to the sensor holder, the spring member has a circumferentially split structure such as a retaining ring shape or a split groove shape by both free pieces.
  • the elastic repulsion part is formed.
  • the spring member disclosed in Patent Document 2 reinforces the fixing of the sensor holder by relying on the elastic repulsion of both split pieces of the elastic repulsion part having a split structure. Since there is a limit to increasing the resilience of the split piece itself, when the diameter of the sensor holder is increased in accordance with the increase in the diameter of the outer ring, the fixing strength of the sensor holder may be insufficient. For example, in a C-shaped concentric ring-shaped spring member formed with a circumferentially divided elastic repulsion part, the bending radius is increased, so that the spring force applied to both ends of the sensor holder tends to decrease.
  • the spring member formed with both free piece portions as the elastic repulsion portion divided into two in the circumferential direction is an injection-molded part, the elastic repulsion property of both free piece portions is poor and the elastic repulsion property is increased within the selection of the injection resin. I can only do that.
  • an object of the present invention is to provide a spring holder in which a sensor holder made of an end ring made of resin is supported by an outer ring using a circumferential groove of an outer ring of a rolling bearing, and an elastic repulsion portion divided in two circumferential directions is formed.
  • the purpose of the present invention is to further enhance the fixing of the sensor holder in the sensor-equipped bearing in which the fixing of the sensor holder is enhanced.
  • the present invention that achieves the above object includes a rolling bearing that mounts an outer ring on a stationary member, and a resin sensor holder that holds a sensor, and the sensor holder is formed on an inner diameter surface of the outer ring from one axial side.
  • a positioning portion to be fitted, and a protrusion that enters a circumferential groove formed on an inner diameter surface of the outer ring is formed in the positioning portion, and the sensor holder is supported by the outer ring by fitting the positioning portion.
  • a sensor comprising a possible end ring, wherein the sensor holder is supported by the outer ring, and the spring member is mounted in a compressed state to thereby reinforce the fixation of the sensor holder by elastic repulsion of the spring member Assumed bearings.
  • a sensor-equipped bearing comprising a ring-shaped end member that can be fitted into a ring-shaped end groove that extends between both ends of the sensor holder
  • the spring member is fitted in the ring-shaped end groove.
  • the both end portions of the spring member are abutted and bent while the main portion is fitted in the end annular groove. It is possible to adopt a configuration in which a spring force that strengthens the fixing of the sensor holder is increased by elastic repulsion of the bent both ends.
  • the fixing of the sensor holder is strengthened by the elastic repulsion of the main part of the spring member fitted in the end annular groove of the sensor holder, and the sensor holder is fixed by the bending of both ends of the spring member.
  • the spring force for strengthening can be increased.
  • both ends of the spring member are overlapped in the axial direction in a state where the main portion is fitted in the end annular groove, one end thereof is shifted to make both ends the same axial position.
  • the structure which will be in the state which bends and bends can be employ
  • both ends overlapped in the axial direction with the main part of the spring member fitted, and one end is shifted to the same axial position, an elastic repulsive force is accumulated at the shifted one end.
  • the remaining one end receiving the elastic repulsion of the shifted end is bent to the opposite side.
  • the spring force for strengthening the fixing of the sensor holder can be increased by utilizing the elastic repulsion accompanying the bending of both ends.
  • an open recess in which both end portions of the spring member are exposed is formed on the side surface on one side in the axial direction of the sensor holder, and both end portions of the spring member are brought into abutting state.
  • a configuration in which both end portions are supported in the axial direction on the bottom surface of the open recess can be employed.
  • the spring member is a wire work spring
  • the end of the spring member overlapping in the axial direction can be easily shifted.
  • the spring member is pushed into the end annular groove of the sensor holder from one side in the axial direction.
  • Both end portions of the spring can be positioned in the open concave portion, and both end portions of the spring in abutted state can be supported in the axial direction on the bottom surface of the open concave portion.
  • the material of the spring member is a square wire having a surface along the axial direction, and the surface is an abutting surface of both ends of the spring member, compared to a wire-working spring of a round wire, It is difficult for both ends of the spring member to slide in the axial direction from the abutting state and to be staggered.
  • the first means uses the bending due to the abutting state of the end of the spring member, it is preferable to adopt means for ensuring this abutting state.
  • the sensor holder limits the axial displacement of at least one of the two end portions of the spring member to a range in which the butt is maintained in a state where the spring member is mounted and fixed to the outer ring. If it has the end stop structure which performs, it can prevent that each edge part of the spring member of an end ring body collides with the bending
  • the end of the end of the spring member may be the end of the spring member or the sensor holder. Therefore, an appropriate end stop structure is adopted according to the end structure to be used. can do.
  • the end stop structure when adopting the end-to-end end of the spring member, is formed with an open recess formed to be able to support both end portions of the spring member in the axial direction on one end portion side of the sensor holder,
  • the axial gap can be constituted by an opposing wall portion that is formed so as to extend from the open recess to the circumferential direction between both end portions of the sensor holder and to the other end side of the sensor holder.
  • both ends of the spring member are inserted into the open recess from one side in the axial direction in a state where the main portion is fitted in the end-like annular groove, and both ends of the spring member overlapped in the axial direction.
  • both ends of the spring member are moved to the same axial position by shifting one of the portions, the ends of the spring member supported in the axial direction by the open recess and the end annular groove are abutted and bent. From this state, when the entire spring member is rotated in the circumferential direction in such a direction that both end portions of the spring member approach the opposing wall portion, both end portions of the spring member are accommodated in the axial gap. can do.
  • the entire spring member By bringing the ends of the spring members into contact with each other and maintaining this state with the support of the open recesses or the end annular grooves, the entire spring member can be rotated in the circumferential direction. Therefore, if an axial gap continuous in the circumferential direction is formed in the open recess by the opposing wall portion, the entire spring member can be rotated and both ends can be inserted into the axial gap.
  • the axial displacement of both ends of the spring member can be limited by the opposing wall portion only by stopping the rotation operation of the spring member.
  • the end stopper structure is provided in addition to the sensor holder in which the length of the end annular groove is shorter than the one end side of the sensor holder.
  • a support wall protruding on the end side to the circumferential extension of the end annular groove, a first opening recess for supporting one end of the spring member in the axial direction on one end of the sensor holder, and the sensor holder And a second opening formed so as to be continuous with the axial gap at a circumferential intermediate portion between the opposing wall and the support wall. It can comprise from a recessed part.
  • one end of the spring member is inserted into the first open recess from one side in the axial direction in a state where the main portion is fitted into the end annular groove, and the axial direction is inserted into the first open recess.
  • One end portion of the spring member supported by the head is brought into a state of abutting with the opposing wall portion, and from this state, the other end portion of the spring member is bent toward one side in the axial direction and the outer diameter side, and over the support wall.
  • the other end of the spring member can be brought into contact with the opposing wall in the axial gap.
  • the operation of abutting the one end of the spring member to the opposing wall first can be easily performed in the first open recess. If the length of the end annular groove is shortened on the other end side of the sensor holder, the other end of the spring member is inserted even if the main part of the spring member is fitted and the one end is abutted. It becomes easy to bend toward the outer diameter side to cause the opposing wall portion to be hidden from the second open recess, to be inserted into the axial gap from the outer diameter side, and to be abutted against the opposing wall portion. If the end-ended annular groove is simply shortened, there is a concern that it will come off due to the bending of the spring member after the abutting state.
  • the other end of the spring member is pivoted by adopting a second open recess connected to the axial clearance at the support wall protruding to the circumferential extension of the end-ended annular groove, the opposing wall and the circumferential middle portion of the support wall.
  • the above-mentioned concern can be prevented by the support wall in the abutting state while making it easy to bend toward the one side in the direction and the outer diameter side and easily enter the axial gap through the support wall.
  • the other end of the spring member bends much more toward the outer diameter side than the support wall, in order to allow the opposing wall to be hidden, compared to the degree of axial deflection that only requires an axial depth of the end annular groove. There is a need to do.
  • the other end portion of the spring member be easily bent toward the outer diameter side even if a support wall is added.
  • both end portions of the spring member can be pressed against the opposing wall portion in the circumferential direction, and can be brought into a butt-deflection state.
  • the spring member includes a free piece portion at both ends which is bent by being pushed between both end portions of the sensor holder, and an intermediate portion which is continuous between the free piece portions. It is possible to adopt a configuration in which the portion is a bending spring portion that is compressed in accordance with the pushing, and the spring force that reinforces the fixing of the sensor holder is increased by the elastic repulsive force of the intermediate portion.
  • the intermediate portion is a bending spring portion that is compressed in accordance with the pushing, the elastic repulsion force of the intermediate portion is transmitted to both free piece portions. It is possible to further strengthen the force that pushes in the direction of moving away, thereby increasing the spring force that strengthens the fixation of the sensor holder.
  • the intermediate part can be a bent spring part.
  • both ends of the sensor holder When the force with which both free piece portions of the spring member are bent presses both ends of the sensor holder is strengthened, the spring member is likely to move in the radial direction with respect to the sensor holder due to the reaction. Although this reaction can be received at both ends of the sensor holder, it is preferable to stabilize the spring member.
  • the sensor holder is formed with an open recess for pushing the spring member from one side in the axial direction, and the tip of the free piece protrudes in the circumferential direction from the contact area with the end of the sensor holder in a side view. It is possible to adopt a configuration in which the spring member is positioned in the radial direction by engagement between the tip of the free piece and the inner wall of the open recess.
  • both free pieces can be pressed between the inner wall portions of the open recess of both ends of the sensor holder. Further, the tip of the free piece is protruded in the circumferential direction from the contact area with the end of the sensor holder in a side view, and the spring member is positioned in the radial direction by engagement between the tip and the inner wall of the open recess. can do. Thereby, a spring member can be stabilized more.
  • the spring member in which the spring member is formed with an elastic repulsion portion that is divided into two in the circumferential direction, the spring member has a shape wound from both ends toward the center, and both winding portions are accompanied by the pushing. Strengthens the fixing of the sensor holder by elastic repulsion that is bent so as to be closer to the center between both ends of the sensor holder. A configuration in which the spring force for strengthening the fixation is increased can be employed.
  • both the winding portions are compressed between both end portions of the sensor holder as the spring member is pushed between both end portions of the sensor holder. it can.
  • fixation of the said sensor holder can be strengthened by the elastic repulsion which both winding parts bend so that it may approach the center side between the both ends of the said sensor holder.
  • the center sides of both winding portions are abutted and bent, the force of pushing the anti-center side of both winding portions away from both ends of the sensor holder is strengthened by the elastic repulsive force accompanying the bending of the center side.
  • the spring member in the bearing with a sensor, includes a free piece portion at both ends that is bent by being pushed between both ends of the sensor holder, and an intermediate portion that is continuous between the free piece portions. It is possible to employ a configuration in which the member is a leaf spring using a plate-shaped steel material.
  • the intermediate portion is made thin by utilizing the high rigidity of the steel plate, and both free pieces are lengthened accordingly, resulting in elastic repulsion. Therefore, it is possible to increase the force with which the two free piece portions push away both ends of the sensor holder, that is, to increase the spring force that strengthens the fixation of the sensor holder.
  • the present invention includes an inner ring fitted with a magnetic encoder of a rotation angle sensor, wherein the sensor is a magnetic sensor of the rotation angle sensor, and the outer ring is a race ring having seal grooves formed on both sides of an inner diameter surface.
  • the circumferential groove may be the seal groove on one axial side, and may be applied to a sensor-equipped bearing in which a labyrinth seal that opens to the inner diameter side is formed by the sensor holder and the magnetic encoder. Since the seal groove of the outer ring is used for fixing the sensor holder, a standard outer ring can be used.
  • the inside can be protected by forming a labyrinth seal with the magnetic encoder fitted to the inner ring and the sensor holder. Since the labyrinth seal is formed so as to open to the inner diameter side, the radial width of the side surface of the sensor holder extends from the seal groove of the outer ring to one side in the axial direction of the magnetic encoder. Using this radial width, it is possible to secure a space for forming a recess for pushing the spring member.
  • the sensor holder may receive forces such as expansion and contraction due to temperature changes, vibration, and impact.
  • the spring member is pulled out from the normal position to the one axial direction. Then, even if the sensor holder does not fall off or does not come off, the sensor holder fixing assistance is weakened, so that the sensor holder fixing becomes unstable, which may affect the detection of the sensor. For this reason, it is preferable to reliably prevent the spring member from coming off from the sensor holder and to ensure the fixing of the sensor holder and the outer ring.
  • a retaining portion facing the sensor holder from the one side in the axial direction can be provided on the spring member.
  • the mounting structure of the spring member that abuts against the sensor holder from one side in the axial direction is adopted, it can be prevented from coming off from the sensor holder toward the other side in the axial direction. If it is a side surface on one side in the axial direction of the sensor holder, the retaining portion facing the abutting spring member from one side in the axial direction is not limited to the structure inside the sensor holder, the sensor arrangement, and the form of the spring member, It can be provided in an appropriate arrangement and form. Therefore, the spring member can be reliably positioned in the axial direction with respect to the sensor holder.
  • one axial direction of the spring member abuts against the side wall of the sensor holder on the one axial side of the grooved groove on the other axial side of the end annular groove from the one axial side.
  • a retaining portion facing from the side can be provided.
  • the retaining portion is axially continuous between the both end portions of the sensor holder of the end annular groove in the circumferential direction.
  • the retaining part can be provided only at a plurality of locations in the circumferential direction. Can be provided.
  • each of the sensor holders is provided with a circumferential clearance between one end of the sensor holder in the circumferential direction between the end of the sensor holder that is closest to the circumferential direction and the next closest stopper.
  • the spring member can be inserted into the end annular groove through a circumferential clearance on both sides of the sensor holder in the circumferential direction.
  • the end-side annular groove is provided with the groove side wall on one side in the axial direction. Therefore, it is necessary to pass the retaining portion from the inner diameter side, and there is no groove side wall on the one side in the axial direction. Compared with the case where the spring member is fitted into the end-like annular groove opened on one side in the axial direction, it is necessary to further reduce the diameter of the spring member. As described above, a circumferential clearance is formed on each circumferential one side of the sensor holder between the retaining portion closest to the circumferential direction from the end on the same side and the retaining portion closest to the next, and the spring member.
  • the diameter of the spring member is reduced as compared with the case where the nearest retaining portion is continuous across both sides in the circumferential direction. Since the degree becomes lighter, the spring member can be easily fitted while the retaining portion is added.
  • the retaining portion may be provided at the center and at one place advanced 120 ° from the center on one side in each circumferential direction.
  • the retaining portion is integrally formed with the sensor holder.
  • the retaining part is integrally formed with the sensor holder, there is no need to prepare the retaining part separately and assemble the sensor holder.
  • the material of the retaining portion is made of a material other than resin, a sensor holder in which a separate retaining portion is fixed can be used.
  • the sensor holder can be injection molded using a polyamide-imide resin as a main material.
  • Polyamideimide resin has a small temperature creep among injection molding resins, and is suitable for preventing the spring member from falling off due to temperature creep of the sensor holder.
  • the senor composed of an integrated circuit including a plurality of magnetic sensors of rotation sensors can be employed.
  • the magnetic sensor can be disposed so as to face the magnetic encoder attached to the inner ring of the rolling bearing in the radial direction.
  • the magnetic sensor can be made less susceptible to the influence of the rotational shake of the magnetic encoder in the magnetic detection.
  • the spring member can be prevented from coming off from the sensor holder in the axial direction, it is possible to prevent the sensor holder from being displaced in the axial direction and the normal arrangement relationship between the magnetic sensor and the magnetic encoder from being distorted.
  • a circuit board on which the sensor and the connector are surface-mounted is provided, and the circuit board can be positioned with respect to the sensor holder by inserting the circuit board into a recess of the sensor holder. it can.
  • the connector can be provided to be wired from the radial direction.
  • a sensor holder made of an end ring made of resin is supported on an outer ring by using a circumferential groove of an outer ring of a rolling bearing, and the sensor holder is fixed by a spring member formed with an elastic repulsion portion divided in two circumferential directions.
  • the spring force that reinforces the fixing of the sensor holder can be increased as described above, so that the sensor holder can be further fixed and strengthened.
  • Sectional drawing which shows the bearing with a sensor which concerns on 1st Embodiment in the cut surface of the plane containing the bearing center axis
  • Side view of one axial side of bearing with sensor of FIG. (A) is a side view of the natural state of the spring member according to the first embodiment, and (b) is a spring in a state in which the main part of the spring member of (a) is fitted in the end annular groove of the sensor holder.
  • Sectional view of the AA line on the plane including the bisection position in the direction length (A) is a side view of one axial side of the sensor-equipped bearing according to the ninth embodiment, and (b) is a line of sight B facing the open recess of the sensor-equipped bearing according to the ninth embodiment from the outer diameter side.
  • Plan view shown by Sectional drawing which shows the bearing with a sensor which concerns on 10th Embodiment in the cut surface of the plane containing the bearing center axis
  • FIG. 12 is a side view of one side in the axial direction of the sensor-equipped bearing.
  • (A) is a side view of the other side in the axial direction of the sensor holder of the tenth embodiment
  • (b) is a cross-sectional view shown by the same cut surface as FIG. 12, and (c) is a view of the sensor holder of the tenth embodiment.
  • Side view of one axial side (A) is the side view which shows the stage in the middle of mounting
  • (b) is the state of complete
  • Side view showing the sensor holder from one side in the axial direction (A) is an enlarged view of the end stop structure of FIG.
  • the sensor-equipped bearing according to the first embodiment is provided with a rotation sensor in the rolling bearing 1.
  • the rolling bearing 1 includes an outer ring 2 attached to a stationary member (not shown) and an inner ring 3 attached to a rotating shaft (not shown).
  • the outer ring 2 is composed of a race ring in which seal grooves 4 and 4 are formed on both sides of the inner diameter surface.
  • a seal 5 can be fitted in the seal groove 4.
  • a resin sensor holder 7 that holds the sensor 6 is attached to the outer ring 2.
  • the sensor 6 is a magnetic sensor of a magnetic rotation sensor.
  • the “rotation sensor” refers to a sensor that can output at least one detection signal of a rotation angle, a rotation speed, and a rotation direction as an electrical signal.
  • the magnetic encoder 8 of the magnetic rotation sensor is mounted on the outer diameter surface of the inner ring 3 from one side in the axial direction.
  • the magnetic encoder 8 has an endless annular shape, and is composed of a rubber magnet encoder portion in which N poles and S poles are alternately arranged in the circumferential direction, and a cored bar.
  • NBR, HNBR, fluorine-based, and silicone-based materials can be used as the rubber material.
  • the “axial direction” refers to the direction along the bearing central axis of the rolling bearing 1
  • the “radial direction” refers to the direction orthogonal to the bearing central axis
  • the “circumferential direction” refers to the bearing.
  • the sensor holder 7 has a positioning portion 9 that is fitted into the inner diameter surface of the outer ring 2 from one side in the axial direction.
  • the positioning portion 9 is formed with a protrusion 10 that enters the seal groove 4 that is a circumferential groove formed on the inner diameter surface of the outer ring 2.
  • the sensor holder 7 that holds the sensor 6 is composed of an end-like annular body that can be supported by the outer ring 2 by fitting the positioning portion 9.
  • the sensor holder 7 is formed into one part by injection molding in order to reduce the number of parts.
  • the sensor holder 7 has a side wall 11 that faces the magnetic encoder 8 from one side in the axial direction.
  • the sensor holder 7 and the magnetic encoder 8 form a labyrinth seal that opens from the radially opposed magnetic gap to the inner diameter side.
  • the circuit board 12 is inserted into the recess of the sensor holder 7 with the sensor 6 and the connector 13 for connecting the input / output lines mounted on the circuit board 12, the sensor 6 can be disposed at a predetermined position. It has become.
  • the sensor holder 7 is in a state of holding the sensor 6. The positioning of the sensor 6 with respect to the sensor holder 7 is determined so that when the sensor holder 7 is attached to the outer ring 2, it opposes the encoder portion of the magnetic encoder 8 attached to the inner ring 3 in the radial direction.
  • the type of sensor 6 is not particularly limited as long as it can be held by the sensor holder 7.
  • the sensor 6 and the like are not limited to the surface mounted on the circuit board 12, and the wiring and each element can be directly soldered to the circuit board.
  • the magnetic rotation sensor may be one in which a plurality of magnetic sensors are mounted separately. However, as in the embodiment, it is easier to assemble if an arrayed circuit including a plurality of magnetic sensors is employed. Less. Since the resolution of the sensor 6 is higher when the multiplier circuit is built in the integrated circuit, the application range of the bearing with the sensor is widened.
  • a thermosetting resin, silicone rubber, hot melt or the like can be used as appropriate.
  • Ended annular grooves 14 that extend between both end portions 19 and 19 of the sensor holder 7 are formed in the side wall 11 of the sensor holder 7 in the circumferential direction.
  • the end annular groove 14 is opened to one side in the axial direction.
  • the spring member 15 is composed of an end ring that can be fitted into the end ring groove 14.
  • the spring member 15 includes a C-shaped concentric ring-shaped main portion 16 that is fitted into the end annular groove 14, and both end portions 17 that project in the circumferential direction from the end annular groove 14.
  • the main portion 16 is formed in the circumferential direction, and both end portions 17, 17 have portions located on the outer diameter side of the main portion 16. This portion is bent in an arc shape in a side view in a natural state.
  • the spring member 15 in the natural state shown in FIG. 3A is deformed so that the arc-shaped portions of both end portions 17 and 17 overlap in the axial direction as shown in FIG.
  • the main portion 16 that remains compressed is elastically repelled and pushes the groove wall on the outer diameter side of the end annular groove 14 toward the outer diameter side.
  • the spring member is attached to the end annular groove 14 by the frictional engagement of the main portion 16 with the groove wall.
  • the elastic repulsive force of the main portion 16 that remains compressed pushes the sensor holder 7 toward the outer diameter side, a force in a direction to move the both ends 19 and 19 away from the sensor holder 7 is applied to the sensor holder 7. Therefore, the fixing of the sensor holder 7 can be strengthened by the elastic repulsion of the main portion 16.
  • the arc-shaped portions of both end portions 17 and 17 of the spring member are overlapped in the axial direction in a state where the main portion 16 is fitted in the end-like annular groove 14.
  • the arcuate portions of the both ends 17 and 17 abut and bend as shown in FIG. Due to the elastic repulsion of the bent ends 17 and 17, spring forces F and F are generated in the direction of the string connecting the ends 17 and 17. Since the spring forces F and F are forces that move both end portions 17 and 17 away from each other, the force that the main portion 16 pushes toward the outer diameter side increases. Therefore, the spring force that strengthens the fixing of the sensor holder 7 is increased.
  • the first embodiment not only reinforces the fixing of the sensor holder 7 with the C-shaped concentric ring-shaped main portion 16 as in the prior art, but also with the elastic repulsion caused by the bending of the end portions 17 and 17 of the spring member. Since the spring force for strengthening the fixation of the sensor 7 increases, the sensor holder 7 can be further strengthened.
  • the spring member 15 is formed of a wire work spring.
  • the material of the spring member 15 is a square wire having a surface along the axial direction. Since both ends 17 and 17 of the spring member 15 are bent to the outer diameter side, the surface can be used as the abutting surface of the both ends 17 and 17. Since the abutting surfaces of both end portions 17 and 17 are along the axial direction, it is unlikely to be alternated from the abutting state in the axial direction as compared with a round wire.
  • the abutting position is preferably set on a plane including the bearing central axis and the circumferential length of the sensor holder 7 that is equally divided in order to press both end portions 19 of the sensor holder 7 evenly.
  • both ends 17 and 17 of the spring member When the both ends 17 and 17 of the spring member are brought into contact with each other as described above, the both ends 17 and 17 are supported in the axial direction by the flat bottom surface orthogonal to the axial direction of the open recess 18. Since it is located in the open recessed part 18 dented with the level
  • the spring member 15 can be made of a round wire material or a leaf spring.
  • the both end portions 17 and 17 are not limited to a mode bent to the outer diameter side, and force is generated in a direction in which the force of pushing the one end side and the other end side of the main portion 16 to the outer diameter side is increased due to elastic repulsion due to bending. As long as it does, it can be made into an appropriate form. If the abutting surfaces of the both end portions 17 and 17 are formed in an arc shape having reversal symmetry in a side view in a natural state, it is possible to allow a radial misalignment between the both end portions 17 and 17 in the abutting state. If both ends 17 and 17 of the spring member 15 of the wire work spring are protruded toward the outer diameter side or the inner diameter side as in the first embodiment and bent into an arc shape, the snap ring pliers can be easily held.
  • a sensor-equipped bearing according to a second embodiment of the present invention will be described with reference to FIG. In the following, differences from the first embodiment will be mainly described, and description of the same conceivable configuration will be omitted.
  • the elastic repulsion of the spring member 23 is performed by mounting the spring member 23 in the open recess 22 of the sensor holder 21 in a compressed state with the sensor holder 21 supported by the outer ring. Then, the both ends 24, 24 of the sensor holder 21 are pushed away from each other so that the fixing of the sensor holder 21 can be strengthened.
  • the spring member 23 is composed of free pieces 25 and 25 at both ends that are bent by being pushed between both ends 24 and 24 of the sensor holder 21, and an intermediate portion 26 that is continuous between the free pieces 25 and 25.
  • the free piece portion 25 includes a portion that can freely bend toward the side where the free piece portions 25, 25 approach each other without coming into contact with other portions of the spring member 23 from the beginning of pushing.
  • the spring member 23 is pushed between the end portions 24 and 24 of the sensor holder 21 between the end portions in the circumferential direction of the inner wall of the open recess 22.
  • the intermediate portion 26 is a bending spring portion that is compressed in accordance with the pushing. Since the bent portion of the intermediate portion 26 is one, the spring member 23 is M-shaped in a side view.
  • the outline of the outer shape of the spring member 23 in a natural side view is shown by a two-dot chain line in the figure.
  • the free piece portions 25 at both ends are provided.
  • 25 bends toward the approaching side, and the elastic repulsion generates a force that pushes the end portions 24, 24 away from each other, thereby strengthening the fixing of the sensor holder 21.
  • the spring member 23 is mounted by frictional engagement between both free piece portions 25 and 25 and both end portions 24 and 24 of the sensor holder 21.
  • the intermediate portion 26 which is a bending spring portion is also in a compressed state in which the V-shaped two pieces are bent closer to each other, and the elastic repulsion causes both free pieces 25 and 25 to move away both end portions 24 and 24.
  • the pushing force is strengthened.
  • the spring forces F and F that strengthen the fixation of the sensor holder 21 are increased.
  • the intermediate part 26 which is a bending spring part is further provided.
  • the spring force that reinforces the fixing of the sensor holder 21 is increased even by elastic repulsion due to the bending of the sensor holder 21, so that the sensor holder 21 can be further strengthened.
  • the “M-shape” means that one bent portion is formed in the intermediate portion 26 connected between the free piece portions 25 and 25 at both ends, and the distal ends of both free piece portions 25 and 25 are on the inner diameter side.
  • the meaning includes a mode in which the free piece portion 25 is inclined in the circumferential direction toward the tip, or the tip region or the intermediate region in the length direction of the free piece portion 25 is bent. It is.
  • FIG. 5 shows a third embodiment as a modified example in which the M-shaped spring member 23 is pushed in the opposite direction to the second embodiment in which the free ends 25 and 25 are pushed so that the tips of the free pieces 25 and 25 face the inner diameter side.
  • the M-shaped spring member 31 can be pushed into the open recess 22 of the sensor holder 21 so that the distal ends of both free pieces 32 and 32 face the outer diameter side.
  • the interval in the circumferential direction of the intermediate portion 33 is narrower than that in the second embodiment, and the intermediate portion 33 is made closer to the inner diameter side to be easily arranged.
  • the circumferential interval between the end portions 24 and 24 of the sensor holder 21 gradually increases as it advances toward the outer diameter side.
  • the free piece portion 32 has a circumferential interval between the free piece portions 25, 25 as it proceeds toward the tip in a side view in the natural state. It is tilted to spread.
  • the interval in the circumferential direction of the both end portions 24, 24 of the sensor holder 21 can be formed so as to gradually narrow as it advances toward the outer diameter side.
  • both end portions 44 of the sensor holder 41 gradually narrow as the outer diameter side is advanced. 44 is pushed in between.
  • the spring member 43 has an M shape similar to that of the second embodiment in a natural state.
  • the both ends 44 and 44 of the sensor holder 41 gradually narrow as the free end portions 45 and 45 are pushed toward the outer diameter side because the free ends 45 and 45 are pushed toward the outer diameter side. Both free piece portions 45, 45 are greatly bent and the compression of the intermediate portion 46 is loosened, and generally the same spring force F, F can be secured.
  • the spring member 51 can be pushed between the both end portions 44 and 44 of the sensor holder 41 so that the distal ends of both the free piece portions 52 and 52 face the inner diameter side. .
  • the free piece portion 52 is formed more inclined than the fourth embodiment in response to the circumferential change in the both end portions 44 and 44.
  • the intermediate portion 53 is formed narrower in the circumferential direction than in the fourth embodiment, corresponding to the change in the circumferential interval between the end portions 44 and 44.
  • FIG. 8 shows the sixth embodiment.
  • the sixth embodiment is common to the second to fifth embodiments in that an M-shaped spring member 63 is mounted in the open recess 62 of the sensor holder 61.
  • the distal ends of the free piece portions 65, 65 pushed into the portion between the both end portions 64, 64 of the sensor holder 61 are bent in the direction in which the circumferential interval is widened, whereby the distal end of the free piece portion 65 is It is different in that it protrudes in the circumferential direction from the end portion 64 in the open recess 62 which is a contact area with the end portion of the sensor holder 61 in view.
  • the circumferential interval is widened on the position facing the tip of the free piece 65 and the one axial side of the inner wall of the open recess 62.
  • Receiving groove portions 66, 66 extending in the circumferential direction are formed.
  • FIG. 9 shows the seventh embodiment.
  • a spring member 71 is mounted in the open recess 42 of the sensor holder 41, and a circumferentially divided elastic repulsion portion is formed in the spring member 71.
  • the difference is that the spring member 71 has a shape wound from both ends toward the center.
  • the elastic repulsion part of the spring member 71 consists of both winding parts 72 and 72.
  • the two winding portions 72, 72 are pushed together between the two end portions 44, 44 of the sensor holder 41.
  • both winding portions 72, 72 are bent toward the center.
  • the elastic repulsive force accumulated by the bending of the two winding portions 72, 72 toward the center between the two end portions 44, 44 of the sensor holder 41 is such that the anti-center side of the two winding portions 72, 72 moves the two end portions 44, 44 away from each other. Therefore, the fixing of the sensor holder 41 can be strengthened.
  • the seventh embodiment can increase the spring forces F and F that reinforce the fixation of the sensor holder 41, as compared with a spring member having only both free piece portions as elastic repulsion portions.
  • the winding shape of the spring member 71 is an arc shape in a side view, it is difficult to be received by the both end portions 44 and 44 of the sensor holder 41. Therefore, it is preferable to strengthen the positioning of the spring member 71 in the radial direction as shown in the figure by an inclination that narrows the circumferential interval between the both end portions 44 and 44 of the sensor holder 41.
  • Both winding parts 72, 72 are not limited to those wound in an arc shape in a side view, and a deflection toward the center side as a whole and a deflection due to the abutment of the center sides 73, 73 are generated, respectively. As long as the elastic repulsion due to the bending is effective for fixing and strengthening the sensor holder 41, it can be formed in an appropriate winding shape.
  • a wire member, a plate member, or the like can be appropriately used as the spring member material.
  • the material is not limited to standard steel, and an appropriate alloy can also be used.
  • FIG. 10 shows the eighth embodiment.
  • the eighth embodiment is provided with a spring member 84 formed with both free pieces 83 and 83 that are pushed between both end portions in the open recess 82 with the sensor holder 81 supported by the outer ring.
  • the spring member 84 is a plate spring using a plate-shaped steel material.
  • the spring member 84 is formed in a U-shape that is opened in the pushing direction in a side view.
  • the open recess 82 is also opened on the outer diameter side.
  • the spring member 84 is pushed into the open recess 82 in the radial direction with the tip toward the inner diameter side.
  • Both free piece parts 83 and 83 have a region where the circumferential interval gradually decreases from the intermediate part 85 toward the tip.
  • both end portions that receive spring forces F and F from both free piece portions 83 and 83 are also inclined to the same side as the corresponding free piece portion 83, and both free piece portions 83 and 83 are provided. It is easy to push in from the tip while ensuring compression.
  • step portions 86, 86 having a wider circumferential interval than both end portions receiving the spring forces F, F are formed.
  • the ends 87, 87 of both free pieces 83, 83 can be engaged with the stepped portions 86, 86 in the anti-pushing direction by bending them in a direction in which the circumferential interval increases.
  • the spring member 84 can be positioned in the radial direction while forming an inclination that facilitates pushing as described above.
  • the plate-shaped steel material forming the spring member 84 standard stainless steel, spring steel plate material, cold rolled steel strip for springs, or the like can be used.
  • the resin spring in order to ensure the rigidity of the intermediate portion that receives both free pieces, the intermediate portion is thick in the pushing direction, and considering the mounting in the same open recess 82, the length of both free pieces is shortened.
  • the spring member 84 since the spring member 84 is made of a leaf spring using a steel material, the intermediate portion 85 is thinned in the pushing direction by utilizing the high rigidity of the steel plate, and the free pieces 83 and 83 are correspondingly reduced.
  • both end portions 93 and 93 that receive the spring forces F and F of the open recess 92 of the sensor holder 91 are formed from one axial direction to the other, Further, the step portions 94, 94 may be formed on the other side in the axial direction.
  • the tenth embodiment is shown in FIGS.
  • the sensor holder 101 is exposed to the side surface on one side in the axial direction on the spring member 15 that abuts the sensor holder 101 from one side in the axial direction.
  • stop portions 103, 103, 103 are provided.
  • the circumferential position located on the opposite side of the diametrical direction from the opposing gap between the two end portions 19 and 19 of the sensor holder 101 fixed to the outer ring 2 is the center (one point in the vertical direction in FIG. 13).
  • a retaining portion 103 is provided on each side of the sensor holder 101 in the circumferential direction, and a retaining portion 103 is also provided at the center.
  • These three retaining portions 103, 103, 103 are provided in a circumferentially equidistant relationship between the center and one location advanced 120 ° from the center on one circumferential direction side.
  • Ended annular groove 102 has a shape that opens to the side surface on one side in the axial direction of sensor holder 101 at the other circumferential position excluding three retaining portions 103, 103, 103 and also opens to the inner diameter side. Has been. As a result, there is a circumferential clearance between each end of the sensor holder 101 in the circumferential direction between the end portion 19 on the same side and the retaining portion 103 that is closest to the circumferential direction, and the central retaining portion 103 that is next closest to the center. Is formed. For this reason, the minimum diameter reduction necessary for fitting the spring member 15 into the end-like annular groove 102 is a state where a part of the spring member 15 is extracted by a two-dot chain line in FIG.
  • the spring member 15 is slanted as shown by a one-dot chain line in FIG. 12, and the central retaining portion 103 is passed from one side in the axial direction of the sensor holder 101 from the inner diameter side.
  • the center portion in the direction is inserted into the central portion of the end annular groove 102 as a guide.
  • the insertion remaining portion of the spring member 15 is pushed to bring both end portions 17 and 17 of the spring member 15 closer to reduce the diameter.
  • the remaining insertion portion can be inserted into the end annular groove 102 by passing the nearest retaining portion 103 from the inner diameter side.
  • the insertion remaining portion is put into the end-like annular groove 102 in a state where the substantially central portion in the circumferential direction of the spring member 15 is positioned in the axial direction, and abuts against the groove side wall on the other axial side from one axial side. It can be supported by this butting in the direction along the radial direction, and the fitting can be finished.
  • the spring member 15 when this fitting is finished is shown by a solid line in FIG.
  • the spring member 15 can be inserted into the end annular groove 102 through the circumferential clearance on both sides of the sensor holder 101, so that the retaining portion 103 is added. Meanwhile, the spring member 15 can be easily fitted.
  • the both end portions 17 and 17 of the spring member 15 generally pass through a position where they are abutted in the circumferential direction. Therefore, in the tenth embodiment, the spring member 15 can be retained in a balanced manner in the entire circumferential direction by the three retaining portions 103, 103, 103 while facilitating the fitting of the spring member 15.
  • Each retaining portion 103 is integrally formed with the sensor holder 101. For this reason, as shown in FIG. 14, holes 105, 105, 105 are axially formed in the groove side wall 102 a on the other side in the axial direction of the end annular groove 102 in order to remove the slide mold for forming the retaining portion 103. Has penetrated. This is because when the mold is divided in the axial direction, it is difficult to mold the retaining portion 103 with a mold that is forcibly removed on one side in the axial direction.
  • the holes 105, 105, 105 correspond to the circumferential arrangement of the retaining portions 103, the holes 105, 105, 105 do not have such a number and size as to hinder the support of the spring member 15 in the radial direction by the groove side wall 102 a. .
  • 104 is opened from the sensor holder 101 to the outer diameter side.
  • the resin mold m inserted into the concave portion 104 secures the necessary fixing and filling portion.
  • a thermosetting resin such as an epoxy resin or a urethane resin can be used.
  • a hot melt can be used.
  • the tenth embodiment is an example of adopting the retaining portion on the premise of the first embodiment.
  • the other embodiments can be appropriately detached.
  • a stop can be provided.
  • the free pieces of the spring members 23, 31, 43, 51, 63 are provided on the end portions 24, 44, 64 of the sensor holders 21, 41, 61 of FIGS. 4, 5, 6, 7, 8.
  • 25, 32, 45, 52, and 65 can be made to project a retaining portion facing from one side in the axial direction.
  • 9 can be protruded from each end 44 of the sensor holder 41 so as to protrude from the one side in the axial direction to the winding 72 of the spring member 71.
  • FIG. 15 and FIG. 16 show the eleventh embodiment as a modification of the tenth embodiment.
  • the sensor holder 201 of the eleventh embodiment is an end that limits the axial displacement of both end portions 17 and 17 of the spring member 15 to a range in which the abutting is maintained in a state where the spring member 15 is attached and fixed to the outer ring. It differs in having a stop structure.
  • the end stopper structure is a state in which the end portions 17 are in contact with each other and bent, and in order to prevent the both end portions 17 and 17 from being staggered in the axial direction due to an impact or the like, the end contact structure butt against each other. You can prevent it from coming off.
  • the end stopper structure has an open recess 202 formed so as to be able to support both end portions 17 and 17 of the spring member 15 in the axial direction on one end portion side of the sensor holder 201, and an end of the end annular groove 203 on the outer diameter side.
  • the axial gap w is composed of an opposing wall portion 204 that is formed so as to extend from the open recess 202 to the other end side of the sensor holder 201 across both ends of the sensor holder 201 in the circumferential direction.
  • the one end side of the sensor holder 201 corresponds to one circumferential side of the sensor holder 201 in the tenth embodiment.
  • the open recess 202 is a position where both ends 17 and 17 of the spring member 15 can be inserted from one side in the axial direction so that the spring member 15 can be fitted into the end annular groove 203 as in the tenth embodiment. It has become. Both ends 17 and 17 of the spring member 15 are supported in the axial direction on the bottom surface of the open recess 202 when the axial overlap between the ends 17 is eliminated.
  • the open recess 202 and the opposing wall portion 204 allow the entire spring member 15 fitted in the end annular groove 203 to be rotated in the circumferential direction while supporting the whole spring member 15 in the axial direction. It is formed to have a supporting wall surface that is flush with the groove side wall on the other side in the direction.
  • the opposing wall portion 204 includes the support wall surface formed on one end portion side and the other end portion side of the sensor holder 201, and the other end portion of the sensor holder 201 so as to form a gap w in the axial direction therebetween. And a projecting wall surface projecting from the side to one end side. For this reason, the opposing wall portion 204 is formed so as to continue from the open recess 202 to the other end portion side of the sensor holder 201 across both ends of the sensor holder 201 in the circumferential direction.
  • the axial gap w can be set larger in the axial direction than the axial groove depth of the end annular groove 203 as long as the ends 17 of the spring members 15 do not alternate in the axial direction.
  • This setting can absorb the inclination of the protruding wall surface portion of the opposing wall portion 204 due to a molding error, and when the entire spring member 15 is rotated, the inclined end portion 17 may protrude from the protruding wall surface of the opposing wall portion 204 depending on the product. It is possible to prevent hitting the part.
  • Both ends 17 and 17 of the spring member 15 are inserted into the open recess 202 from one side in the axial direction in a state where the main portion 16 of the spring member 15 is fitted in the end annular groove 203, and both ends 17 overlapped in the axial direction.
  • the entire spring member 15 is axially supported by the open recess 202 and the end annular groove 203 as shown in FIG.
  • the end portions 17 face each other and bend. From this state, when the entire spring member 15 is rotated in the circumferential direction in a direction in which both end portions 17, 17 approach the opposing wall portion 204, both end portions 17, 17 are moved as shown in FIGS. 15 (b) and 16.
  • both end portions 17 and 17 can be limited by the support wall surface and the projecting wall surface of the opposing wall surface 204.
  • the other end part of the sensor holder 201 is formed with a detent wall surface closer to the one end part side than the tenth embodiment.
  • the twelfth embodiment is shown in FIGS.
  • the twelfth embodiment is different in that each end 17 of the spring member 15 is abutted against the sensor holder 210 and an end stopper structure is added.
  • a support wall 212 is formed on the other end portion of the sensor holder 210 in which the length of the end annular groove 211 is shorter than that of the one end portion of the sensor holder 210. ing.
  • the retaining portion 213 on the other end portion side is provided with the retaining portion 103 at the center in the circumferential direction with respect to the equidistant position in the tenth embodiment.
  • An escape portion 214 is formed close to the side and recessed in the axial direction and the outer diameter side with the support wall 212.
  • the end stop structure includes a support wall 212, a first open recess 215a that axially supports one end 17 of the spring member 15 on one end of the sensor holder 210, and an axial clearance on the other end of the sensor holder 210. And a second open recess 215b formed in a circumferential intermediate portion between the opposing wall 216 and the support wall 212 so as to be continuous with the axial gap of the opposing wall 216. Become.
  • the axial gap is the same size as the axial gap of the eleventh embodiment.
  • the relationship between the support wall surfaces of the open recesses 215a and 215b and the groove sidewall of the end annular groove 211 is the same as in the eleventh embodiment.
  • the opposing wall portion 216 includes a support wall surface portion formed so as to be flush with the support walls of the both open recesses 215a and 215b, and one end side of the sensor holder 210 on the one side in the axial direction from the first open recess 215a.
  • the protruding wall surface portion includes a protruding wall surface portion protruding from the supporting wall surface portion on the other end side of the sensor holder 210 so as to form an axial clearance.
  • the first open recess 215a has one end from one side in the axial direction.
  • Part 17 can be inserted.
  • the one end portion 17 supported in the axial direction by the first opening recess 215a is brought into a state of abutting with the opposing wall portion 216, and from this state, as shown by a solid line in FIGS. 19, 18 (b), and 17 (a)
  • the other end portion 17 is bent to one side and the outer diameter side in the axial direction so as to pass through the support wall 212.
  • the solid line in FIG. In the axial gap.
  • the escape portion 214 facilitates bending to the outer diameter side in this operation. Further, the bending is restored as shown in FIG. 19 by the alternate long and short dash line, and the other end 17 of the spring member 15 placed on the support wall 212 is shown in FIG.
  • the other end 17 is supported in the radial direction by the support wall 212, and the other end 17 is within the axial clearance of the opposing wall 216.
  • the two end portions 17 and 17 are pressed against the opposing wall portion 216 and bent in the same axial position as the one end portion 17 that faces the opposing wall portion 216.
  • the axial displacement of the other end portion 17 can be limited by the opposing wall portion 216.
  • the sensor holder 7 and the like can be injection-molded using a polyamideimide resin as a main material. It is possible to prevent a portion that receives the spring member 15 or the like such as the sensor holder 7 from being deformed by temperature creep and to prevent the spring member 15 or the like from falling off.
  • a polyamide-imide resin the product series name: AI polymer MS manufactured by Mitsubishi Gas Chemical Co., Ltd. can be used.
  • the technical scope of the present invention is not limited to the above-described embodiment, but includes all modifications within the scope of the technical idea based on the description of the scope of claims.
  • the intermediate part can be bent at two or more places (for example, two places as M-shaped).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

 樹脂製の有端環状体からなるセンサホルダを転がり軸受の外輪の周溝を利用して外輪に支持させ、周方向二分割の弾性反発部を形成したばね部材によりセンサホルダの固定強化を図ったセンサ付軸受において、上述のようにセンサホルダの固定を強化するばね力を増すことが可能なので、センサホルダのさらなる固定強化を図る。ばね部材(15)を、センサホルダ(7)の有端環状溝(14)に嵌着する主部(16)と、有端環状溝(14)から周方向に突き出てセンサホルダ(7)の開放凹部(18)内に位置する両端部(17,17)とからなる角線材製の線細工ばねとし、ばね部材(15)の両端部(17,17)を、有端環状溝(14)に主部(16)を嵌着した状態で軸方向に重なり、片方の端部(17)をずらして重なりを解消すると突き合って撓む部分とし、撓んだ両端部(17,17)の弾性反発による力(F)で主部(16)がセンサホルダ(7)を外径側に押す力が増し、これにより、センサホルダ(7)の固定を強化するばね力が増すようにした。

Description

センサ付軸受
 この発明は、転がり軸受と、回転角度検出、温度検出、振動検出等の適宜のセンサとを備えたセンサ付軸受に関する。
 この種のセンサ付軸受の代表的なものとして、モータ軸、自動車の車軸の回転速度制御、回転方向制御、回転角度制御等に利用される回転センサ付軸受がある。センサ付軸受は、転がり軸受を構成する一方の軌道輪を、モータハウジングや自動車の懸架装置のような静止部材側に嵌合される静止側軌道輪とし、他方の軌道輪を、回転軸側に装着される回転側軌道輪としている。静止側軌道輪は、配線やセンサ位置決めに好都合なことから、センサホルダを支持させるベースとして利用されている(例えば、特許文献1)。
 センサホルダとしては、成形、絶縁が容易に得られることから、熱可塑性樹脂等で射出成形された樹脂製のものが利用されている。転がり軸受の外輪を静止側軌道輪とした場合、センサホルダに、外輪の内径面に軸方向一方側から嵌め込む位置決め部を形成し、その位置決め部に、外輪の内径面に形成された周溝に入る突条を形成し、位置決め部の嵌め込みによりセンサホルダを外輪に対して径方向に位置決めし、突条と周溝の溝壁の係合によりセンサホルダを抜け止めし、これにより、センサホルダを外輪に支持させることが可能である。(例えば、特許文献2)。
 前掲の特許文献2に開示されたセンサホルダは、有端環状体からなり、その両端部を弾性的に遠近させることができる。位置決め部の嵌め込みの際にセンサホルダの両端部を接近させ、突条を外輪の周溝に入れ易くしている。さらに、センサホルダを外輪に支持させた状態でばね部材を圧縮状態に装着することにより、ばね部材の弾性反発でセンサホルダに両端部を遠ざける作用を成すばね力を与え、センサホルダの固定を強化するようにしている。
 例えば、ばね部材として、センサホルダの両端部間に巡る有端環状溝に嵌着可能なC形同心止め輪状のばね部材が採用されている。ばね部材の両端部を接近させた状態でセンサホルダの有端環状溝に嵌着すると、その嵌着されたばね部材が弾性反発でセンサホルダを外径側に押し、また、ばね部材のセンサホルダへの固定を図ることができる。
 また、突条を周溝に嵌め込んだ状態でセンサホルダの両端部間にばね部材を押し込んでセンサホルダに装着するようにしたものがある。このばね部材は、センサホルダの両端部間への押し込みで撓む両端の自由片部と、両自由片部間に連なる中間部とからなる。両自由片部の撓みに伴う弾性反発により、センサホルダの両端部を遠ざかる向きに押し、また、ばね部材のセンサホルダへの固定を図ることができる。
 前掲の特許文献2では、上述のばね部材のセンサホルダへの装着を容易にするため、ばね部材には、止め輪状や両自由片部による割り溝状のように、周方向二分割の割り構造の弾性反発部を形成している。
特開2005-249545号公報 特開2009-74687号公報
 しかしながら、特許文献2に開示されたばね部材では、割り構造とした弾性反発部の両割り片の弾性反発性に頼ってセンサホルダの固定を強化している。割り片自体の弾性反発性を増すことに限界があるので、外輪の大径化に伴ってセンサホルダを大径化すると、センサホルダの固定強化性が不十分になる恐れがある。例えば、周方向二分割の弾性反発部を形成したC形同心止め輪状のばね部材では、その曲げ半径が大きくなるため、センサホルダの両端部側に与えられるばね力が低下する傾向がある。また、周方向二分割の弾性反発部として両自由片部を形成したばね部材は、射出成形部品なので、両自由片部の弾性反発性に乏しく、射出樹脂の選択内で弾性反発性を増すことしかできない。
 そこで、この発明の課題は、樹脂製の有端環状体からなるセンサホルダを転がり軸受の外輪の周溝を利用して外輪に支持させ、周方向二分割の弾性反発部を形成したばね部材によりセンサホルダの固定強化を図ったセンサ付軸受において、センサホルダのさらなる固定強化を図ることにある。
 上記の課題を達成するこの発明は、外輪を静止部材に装着する転がり軸受と、センサを保持する樹脂製のセンサホルダとを備え、前記センサホルダは、前記外輪の内径面に軸方向一方側から嵌め込む位置決め部を有し、前記位置決め部に、前記外輪の内径面に形成された周溝に入る突条を形成し、かつ前記位置決め部の嵌め込みにより前記センサホルダを前記外輪に支持させることが可能な有端環状体からなり、前記センサホルダを前記外輪に支持させた状態でばね部材を圧縮状態に装着することにより当該ばね部材の弾性反発で当該センサホルダの固定を強化するようにしたセンサ付軸受を前提とする。
 第1の手段として、ばね部材が前記センサホルダの両端部間に巡る有端環状溝に嵌着可能な有端環状体からなるセンサ付軸受において、前記ばね部材は、前記有端環状溝に嵌着する主部と、当該有端環状溝から周方向に突き出る両端部とからなり、前記ばね部材の両端部を、前記有端環状溝に前記主部を嵌着した状態で突き合って撓む部分とし、当該撓んだ両端部の弾性反発により前記センサホルダの固定を強化するばね力が増す構成を採用することができる。
 第1の手段によれば、センサホルダの有端環状溝に嵌着したばね部材の主部の弾性反発でセンサホルダの固定を強化し、さらに、ばね部材の両端部の撓みでセンサホルダの固定を強化するばね力を増すことができる。
 より具体的には、前記有端環状溝に前記主部を嵌着した状態で前記ばね部材の両端部が軸方向に重なり合い、その片方の端部をずらして両端部を同一軸方向位置にすると前記突き合って撓む状態になる構成を採用することができる。
 ばね部材の主部を嵌着した状態で軸方向に重なり合う両端部のうち、その片方の端部をずらして両端部を同一軸方向位置にすると、ずらす片方の端部に弾性反発力を蓄積しつつ、突き合い状態とすることができ、その突き合い状態では、ずらした端部の弾性反発を受ける残りの片方の端部が反対側に撓む。これら両端部の撓みに伴う弾性反発を利用してセンサホルダの固定を強化するばね力を増すことができる。
 前記ばね部材が線細工ばねからなり、前記センサホルダの軸方向一方側の側面に、前記ばね部材の両端部が露出する開放凹部を形成し、前記ばね部材の両端部を突き合い状態にすると前記開放凹部の底面で当該両端部が軸方向に支持される構成を採用することができる。
 前記ばね部材を線細工ばねとすれば、軸方向に重なるばね部材の端部をずらし易い。センサホルダの軸方向一方側の側面に、ばね部材の両端部が露出する開放凹部を形成すれば、ばね部材の主部をセンサホルダの有端環状溝に軸方向一方側から押し込みつつ、ばね部材の両端部を、開放凹部内に位置させ、開放凹部の底面で突き合い状態のばねの両端部を軸方向に支持することができる。この支持により、突き合い状態の両端部が軸方向に互い違いになることを防止することができる。また、突き合い状態の両端部が開放凹部内に位置するため、他の部分との接触を防止することができる。したがって、線細工ばねを採用しても、両端部の突き合いが不意に解除されることを防止できる。
 特に、前記ばね部材の材料が軸方向に沿った表面を有する角線材からなり、前記表面を、前記ばね部材の両端部の突き合い面とすれば、丸線材の線細工ばねと比して、ばね部材の両端部が突き合い状態から軸方向に滑って互い違いになり難い。
 第1の手段では、ばね部材の端部の突き合い状態による撓みを利用するので、この突き合い状態を確保する手段を採用することが好ましい。
 すなわち、前記センサホルダは、前記ばね部材を装着して前記外輪に固定した状態で当該ばね部材の両端部のうち、少なくとも一方の端部の軸方向変位を前記突き合いが維持される範囲に制限する端止め構造を有すると、有端環状体のばね部材の各端部が、端部近傍の撓りで突き合い相手先から外れることを防止できる。
 ここで、第1の手段において、ばね部材の端部の突き合い相手先は、ばね部材の端部同士でも、センサホルダでもよいから、採用する突き合い構造に応じて適宜の端止め構造を採用することができる。
 例えば、ばね部材の端部同士の突き合いを採用する場合、前記端止め構造は、前記センサホルダの一端部側で前記ばね部材の両端部を軸方向に支持可能に形成された開放凹部と、軸方向隙間を前記開放凹部から周方向に前記センサホルダの両端部間を亘って当該センサホルダの他端部側まで連なるように形成する対向壁部とから構成することができる。
 より具体的には、前記有端環状溝に前記主部を嵌着した状態で前記開放凹部に軸方向一方側から前記ばね部材の両端部を挿入し、軸方向に重なり合った当該ばね部材の両端部の片方をずらして当該ばね部材の両端部を同一軸方向位置にすると、当該開放凹部及び当該有端環状溝に軸方向に支持された当該ばね部材の端部同士が前記突き合って撓む状態になり、この状態から当該ばね部材の全体を周方向に当該ばね部材の両端部が前記対向壁部へ近づく向きで回転させると、当該ばね部材の両端部が前記軸方向隙間に収まるようにすることができる。
 ばね部材の端部同士を突き合う状態にし、この状態を開放凹部や有端環状溝の支持で維持することにより、ばね部材の全体を周方向に回転させることができる。したがって、開放凹部に周方向に連なる軸方向隙間を対向壁部で形成しておけば、ばね部材の全体を回転させて両端部を軸方向隙間内に入れ込むことができる。ここで、ばね部材の回転操作を止めるだけで、対向壁部により、ばね部材の両端部の軸方向変位を制限することができる。
 例えば、ばね部材の端部とセンサホルダとの突き合いを採用する場合、前記端止め構造は、前記センサホルダの一端部側よりも前記有端環状溝の長さを短くした当該センサホルダの他端部側で当該有端環状溝の周方向延長上まで突き出た支持壁と、前記センサホルダの一端部側で前記ばね部材の一端部を軸方向に支持する第一開放凹部と、前記センサホルダの他端部側で軸方向隙間を形成するように突き出た対向壁部と、この対向壁部及び前記支持壁間の周方向中間部分に前記軸方向隙間と連なるように形成された第二開放凹部とから構成することができる。
 より具体的には、前記有端環状溝に前記主部を嵌着した状態で前記第一開放凹部に軸方向一方側から前記ばね部材の一端部を挿入し、当該第一開放凹部に軸方向に支持された当該ばね部材の一端部を前記対向壁部と突き合う状態とし、この状態から当該ばね部材の他端部を軸方向一方側及び外径側へ撓らせて前記支持壁越しに前記軸方向隙間に入れ込み、さらに当該撓りを戻すと、当該ばね部材の他端部が当該軸方向隙間内で当該対向壁部と突き合うようにすることができる。
 先に対向壁部にばね部材の一端部を突き当てる作業は、第一開放凹部内で容易に行うことができる。有端環状溝の長さをセンサホルダの他端部側で短くしておけば、ばね部材の主部を嵌着し、かつ一端部を突き合い状態にしても、ばね部材の他端部を外径側へ撓らせて第二開放凹部から対向壁部を潜らせ、軸方向隙間内に外径側から入れ込み、対向壁部に突き合わせることが容易になる。単に有端環状溝を短くするだけだと、突き合い状態にした後、ばね部材の撓みで外れる懸念が生じる。有端環状溝の周方向延長上まで突き出た支持壁、対向壁部及び支持壁の周方向中間部分に軸方向隙間と連なる第二開放凹部を採用することにより、ばね部材の他端部を軸方向一方側及び外径側へ撓らせて支持壁越しに軸方向隙間に入れ込むことを容易にしつつ、突き合い状態では上記懸念を支持壁で防止することができる。ばね部材の他端部は、支持壁越しに有端環状溝の軸方向深さ程度で済む軸方向の撓ませ具合と比して、対向壁部を潜らせるために外径側へずっと大きく撓ませる必要がある。したがって、支持壁を追加してでも、ばね部材の他端部を外径側に撓らせ易くすることが好ましい。前記の支持壁越しの状態を解消する撓り戻しにより、ばね部材の両端部を対向壁部に周方向に押し付け、さらに突き合った撓み状態にすることができ、同時に、対向壁部による制限をすることもできる。
 第2の手段として、前記ばね部材は、前記センサホルダの両端部間への押し込みで撓む両端の自由片部と、両自由片部間に連なる中間部とからなるセンサ付軸受において、前記中間部を前記押し込みに伴って圧縮される屈曲ばね部とし、前記中間部の弾性反発力により前記センサホルダの固定を強化するばね力が増す構成を採用することができる。
 前記中間部を前記押し込みに伴って圧縮される屈曲ばね部とすれば、その中間部の弾性反発力が両自由片部に伝わるので、これを利用して両自由片部がセンサホルダの両端部を遠ざける向きに押す力をさらに強化し、これにより、センサホルダの固定を強化するばね力を増すことができる。
 例えば、ばね部材を側面視でM字状とすれば、中間部を屈曲ばね部とすることができる。
 ばね部材の撓んだ両自由片部がセンサホルダの両端部を押す力を強化すると、反作用でばね部材がセンサホルダに対して径方向にずり動き易くなる。この反作用はセンサホルダの両端部で受け止めることが可能だが、さらにばね部材を安定させることが好ましい。
 例えば、前記センサホルダに、前記ばね部材を軸方向一方側から押し込む開放凹部を形成し、前記自由片部の先端を、側面視で前記センサホルダの端部との接触域よりも周方向に突出させ、前記自由片部の先端と前記開放凹部の内壁との掛り合いで当該ばね部材を径方向に位置決めした構成を採用することができる。
 センサホルダにばね部材を軸方向一方側から押し込む開放凹部を形成すれば、センサホルダの両端部のうち開放凹部の内壁部分間に両自由片部を押し込むことができる。さらに、自由片部の先端を、側面視で前記センサホルダの端部との接触域よりも周方向に突出させ、その先端と開放凹部の内壁との掛り合いで当該ばね部材を径方向に位置決めすることができる。これにより、ばね部材をより安定させることができる。
 第3の手段として、前記ばね部材に、周方向二分割の弾性反発部を形成したセンサ付軸受において、前記ばね部材を両端から中央に向かって巻いた形状とし、前記押し込みに伴って両巻き部が前記センサホルダの両端部間で中央側に寄るように撓む弾性反発で前記センサホルダの固定を強化し、また、当該両巻き部の中央側が突き合って撓む弾性反発により前記センサホルダの固定を強化するばね力が増す構成を採用することができる。
 ばね部材を両端から中央に向って巻いた形状とすれば、ばね部材をセンサホルダの両端部間に押し込むことに伴って両巻き部がセンサホルダの両端部間で圧縮されるようにすることができる。これにより、両巻き部が前記センサホルダの両端部間で中央側に寄るように撓む弾性反発で前記センサホルダの固定を強化することができる。さらに両巻き部の中央側が突き合って撓むようにすれば、その中央側の撓みに伴う弾性反発力により両巻き部の反中央側が前記センサホルダの両端部を遠ざける向きに押す力を強化し、これにより、センサホルダの固定を強化するばね力を増すことができる。
 第4の手段として、前記ばね部材は、前記センサホルダの両端部間への押し込みで撓む両端の自由片部と、両自由片部間に連なる中間部とからなるセンサ付軸受において、前記ばね部材が板状の鋼製材料を用いた板ばねからなる構成を採用することができる。
 ばね部材が樹脂ばねからなる場合と比して、鋼製材料を用いた板ばねでは、鋼板の高剛性を利用して中間部を薄くし、その分、両自由片部を長くして弾性反発性を高めることができるので、両自由片部がセンサホルダの両端部を遠ざける向きに押す力を強化すること、すなわち、センサホルダの固定を強化するばね力を増すことができる。
 この発明は、回転角度センサの磁気エンコーダが嵌着された内輪を備え、前記センサを、前記回転角度センサの磁気センサとし、前記外輪を、内径面の両側にシール溝を形成された軌道輪とし、前記周溝を、軸方向一方側の前記シール溝とし、前記センサホルダと前記磁気エンコーダとで内径側に開放するラビリンスシールを形成したセンサ付軸受に適用することができる。外輪のシール溝をセンサホルダの固定に利用するため、標準的な外輪を流用することができる。軸方向一方側のシール部材を装着する代わりに、内輪に嵌着された磁気エンコーダとセンサホルダとでラビリンスシールを形成することで内部の保護を図ることができる。ラビリンスシールを内径側に開放するように形成するため、センサホルダの側面の径方向幅は、外輪のシール溝から磁気エンコーダの軸方向一方側までに至る。この径方向幅を利用して、ばね部材を押し込むための凹部の形成スペースを確保することができる。
 センサ付軸受を装置に組み込む際や軸受運転中に、温度変化による膨張と収縮や、振動、衝撃といった力をセンサホルダが受けることが起こり得る。上記第1~第4の手段のいずれを採用するにしても、ばね部材を軸方向一方側からセンサホルダに挿入する構造においては、センサホルダからばね部材が正規の位置から軸方向一方側へ抜け出ると、脱落し、又は脱落に至らずともセンサホルダの固定補助が弱まるので、センサホルダの固定が不安定になり、センサの検出に影響し得る。このため、ばね部材がセンサホルダから抜けることを確実に防止し、センサホルダと外輪の固定を確実にすることが好ましい。
 例えば、前記センサホルダの軸方向一方側の側面に、当該センサホルダに軸方向一方側から突き当てた前記ばね部材に軸方向一方側から臨む抜け止め部を設けることができる。
 センサホルダに軸方向一方側から突き当てるばね部材の装着構造にすれば、軸方向他方側に向ってセンサホルダから抜けないようにすることができる。センサホルダの軸方向一方側の側面であれば、その突き当てたばね部材に軸方向一方側から臨む抜け止め部を、センサホルダ内側の構造、センサ配置、ばね部材の形態に制限されることなく、適宜の配置、形態で設けることができる。したがって、ばね部材をセンサホルダに対して確実に軸方向に位置決めすることができる。
 第1の手段を採用する場合、前記センサホルダの軸方向一方側の側面に、前記有端環状溝の軸方向他方側の溝側壁に軸方向一方側から突き当てた前記ばね部材に軸方向一方側から臨む抜け止め部を設けることができる。
 他の手段と比してばね部材が比較的に周方向に長くなる第1の手段においては、抜け止め部を有端環状溝のセンサホルダの両端部間に周方向に亘って連続する軸方向一方側の溝側壁として設けることもできるが、ばね部材の両端部が軸方向に互い違いにならないようにばね部材を軸方向に抜け止めすることができる限り、周方向の複数個所にのみ抜け止め部を設けることができる。
 ここで、前記ばね部材を装着した状態で前記外輪に固定された前記センサホルダの両端部間の対向隙間と直径方向反対側に位置する周方向一箇所を中央としたセンサホルダの周方向両側に、それぞれ前記抜け止め部を設け、前記センサホルダの各周方向片側に、同側の端部から周方向に最も近い前記抜け止め部と、次に近い抜け止め部との間に周方向隙間を形成し、前記ばね部材を前記センサホルダの周方向両側の周方向隙間を通して前記有端環状溝に挿入可能としたことが好ましい。
 抜け止め部を設けると、有端環状溝に軸方向一方側の溝側壁を設けることになるので、抜け止め部を内径側からくぐらせる必要があり、軸方向一方側の溝側壁のない完全に軸方向一方側に開放された有端環状溝にばね部材を嵌着する場合と比して、余分にばね部材を縮径させることを要する。上述のように、センサホルダの各周方向片側に、同側の端部から周方向に最も近い前記抜け止め部と、次に近い抜け止め部との間に周方向隙間を形成し、ばね部材をセンサホルダの周方向両側の周方向隙間を通して有端環状溝に挿入するようにすれば、最も近い抜け止め部が周方向両側に亘って連続する場合と比して、ばね部材を縮径させる程度が軽くなるので、抜け止め部を追加しつつ、ばね部材の嵌着を容易に行うことができる。
 より具体的には、前記抜け止め部を、前記中央と、各周方向片側の前記中央から120°進んだ一箇所とに設けるとよい。
 ばね部材の嵌着を容易にしつつ、3箇所の抜け止め部でばね部材を周方向全域でバランスよく抜け止めすることができる。
 前記抜け止め部を前記センサホルダに一体成形することが好ましい。
 抜け止め部をセンサホルダに一体成形すれば、抜け止め部を別途に用意してセンサホルダを組み立てる手間がない。なお、抜け止め部の材料を樹脂以外にするため、別体の抜け止め部を固定したセンサホルダとすることもできる。
 前記センサホルダをポリアミドイミド樹脂を主材料に用いて射出成形することができる。
 ポリアミドイミド樹脂は、射出成形用の樹脂の中でも温度クリープが小さい部類なので、センサホルダの温度クリープによるばね部材の脱落防止を図るのに好適である。
 上記第1~第4の手段においては、回転センサの複数の磁気センサを含む集積回路からなる前記センサを採用することができる。
 回転センサを採用する場合、例えば、前記磁気センサが、前記転がり軸受の内輪に取り付けた磁気エンコーダと径方向に対向するように配置することができる。
 磁気ギャップが径方向に設定されるので、磁気センサが磁気エンコーダの回転振れの影響を磁気検出において受け難くすることができる。
 ばね部材のセンサホルダからの軸方向への抜け出しを防止できるので、センサホルダが軸方向に変位して磁気センサと磁気エンコーダ間の正規の配置関係が狂うことも防止できる。
 集積回路からなるセンサを採用する場合、前記センサ及びコネクタを表面実装した回路基板を備え、前記回路基板を前記センサホルダの凹部に挿入することにより、回路基板をセンサホルダに対して位置決めすることができる。
 前記コネクタを径方向から配線するように設けることができる。
 配線をセンサホルダから径方向に取り出すので、ばね部材をセンサホルダの軸方向一方側から挿入する際に配線が邪魔になることを防止できる。
 この発明は、樹脂製の有端環状体からなるセンサホルダを転がり軸受の外輪の周溝を利用して外輪に支持させ、周方向二分割の弾性反発部を形成したばね部材によりセンサホルダの固定強化を図ったセンサ付軸受において、上述のようにセンサホルダの固定を強化するばね力を増すことが可能なので、センサホルダのさらなる固定強化を図ることができる。
第1実施形態に係るセンサ付軸受を、軸受中心軸及びセンサホルダの周方向長さ二等分位置を含む平面の切断面で示す断面図 図1のセンサ付軸受の軸方向一方側の側面図 (a)は、第1実施形態に係るばね部材の自然状態の側面図、(b)は、前記(a)のばね部材の主部をセンサホルダの有端環状溝に嵌着した状態におけるばね部材の両端部付近の拡大側面図 第2実施形態に係るセンサ付軸受の軸方向一方側の側面図 第3実施形態に係るセンサ付軸受の軸方向一方側の側面図 第4実施形態に係るセンサ付軸受の軸方向一方側の側面図 第5実施形態に係るセンサ付軸受の軸方向一方側の側面図 第6実施形態に係るセンサ付軸受の軸方向一方側の側面図 第7実施形態に係るセンサ付軸受の軸方向一方側の側面図 (a)は、第8実施形態に係るセンサ付軸受の軸方向一方側の側面図、(b)は、第8実施形態に係るセンサ付軸受の要部を、軸受中心軸及びセンサホルダの周方向長さ二等分位置を含む平面上のA-A線の断面図 (a)は、第9実施形態に係るセンサ付軸受の軸方向一方側の側面図、(b)は、第9実施形態に係るセンサ付軸受の開放凹部を、外径側から正対する視線Bで示す平面図 第10実施形態に係るセンサ付軸受を、軸受中心軸及びセンサホルダの周方向長さ二等分位置を含む平面の切断面で示す断面図 図12のセンサ付軸受の軸方向一方側の側面図 (a)は、第10実施形態のセンサホルダの軸方向他方側の側面図、(b)は、図12と同じ切断面で示す断面図、(c)は、第10実施形態のセンサホルダの軸方向一方側の側面図 (a)は、第11実施形態のセンサホルダにばね部材を装着する途中の段階を軸方向一方側から示す側面図、(b)は、第11実施形態のばね部材の装着を終えた状態のセンサホルダを軸方向一方側から示す側面図 (a)は、図15(b)の端止め構造の拡大図、(b)は(a)の下面図、(c)は(b)中のc-c線の断面図 (a)は、第12実施形態のセンサホルダにばね部材を装着する途中の段階を軸方向一方側から示す側面図、(b)は、第12実施形態のばね部材の装着を終えた状態のセンサホルダを軸方向一方側から示す側面図 (a)は、図17(b)の端止め構造の部分拡大図、(b)は、図17(a)の端止め構造の拡大下面図、(c)は図16(b)中のc-c線に相当する切断面の断面図 図17(a)の端止め構造の拡大斜視図
 以下、この発明の実施形態を添付図面に基づいて説明する。
 第1実施形態に係るセンサ付軸受は、図1、図2に示すように、転がり軸受1に回転センサを備えたものである。転がり軸受1は、静止部材(図示省略)に装着する外輪2と、回転軸(図示省略)に装着する内輪3とを備える。外輪2は、内径面の両側にシール溝4,4を形成した軌道輪からなる。シール溝4には、シール5が嵌着可能となっている。センサ6を保持する樹脂製のセンサホルダ7は、外輪2に装着されている。センサ6は、磁気式回転センサの磁気センサからなる。ここで、「回転センサ」とは、回転角度、回転速度、回転方向の少なくとも1種の検出信号を電気信号として出力できるものをいう。磁気式回転センサの磁気エンコーダ8は、内輪3の外径面に軸方向一方側から装着されている。磁気エンコーダ8は、無端円環状であって、その周方向にN極とS極が交互に並ぶゴム磁石のエンコーダ部と、芯金とからなるものが利用されている。ゴム磁石を芯金に加硫接着させる場合、ゴム材としてNBR、HNBR、フッ素系、シリコーン系の材料を使用することができる。なお、「軸方向」とは、転がり軸受1の軸受中心軸に沿った方向をいい、「径方向」とは、当該軸受中心軸に直交する方向をいい、「周方向」とは、当該軸受中心軸回りの円周方向をいう。
 センサホルダ7は、外輪2の内径面に軸方向一方側から嵌め込む位置決め部9を有する。位置決め部9には、外輪2の内径面に形成された周溝であるシール溝4に入る突条10が形成されている。センサ6を保持するセンサホルダ7は、位置決め部9の嵌め込みにより外輪2に支持させることが可能な有端環状体からなる。センサホルダ7は、部品点数を少なくするため、射出成形により一部品に形成されている。
 センサホルダ7は、磁気エンコーダ8に軸方向一方側から臨む側面壁11を有する。センサホルダ7と磁気エンコーダ8とで径方向に対向する磁気ギャップから内径側に開放するラビリンスシールを形成するようになっている。回路基板12にセンサ6、入出力線を接続するためのコネクタ13を実装した状態で、センサホルダ7の凹部に回路基板12を挿入すると、センサ6を所定の位置に配置することができるようになっている。センサ6を樹脂封止すると、センサホルダ7がセンサ6を保持する状態になる。センサ6のセンサホルダ7に対する位置決めは、センサホルダ7を外輪2に取り付けると、内輪3に取り付けた磁気エンコーダ8のエンコーダ部と径方向に対向するように定められている。
 なお、センサ6の種類はセンサホルダ7に保持させることができる限り、特に限定されない。センサ6等を回路基板12に表面実装した例に限らず、配線や各素子は回路基板に直接半田付けすることもできる。また、磁気式回転センサは、複数の磁気センサを別個に装着するものでもよいが、実施形態のように複数の磁気センサ等を含む集積回路にアレイ化したものを採用する方が組み立ての手間が少なくなる。集積回路に逓倍回路を内蔵している方がセンサ6の分解能が高くなるため、センサ付軸受の適用範囲が広くなる。センサ6、回路基板12等の保持や封止には、熱硬化性樹脂、シリコーンゴム、ホットメルト等を適宜に用いることができる。
 センサホルダ7の側面壁11には、センサホルダ7の両端部19,19間に巡る有端環状溝14が周方向に形成されている。有端環状溝14は、軸方向一方側に開放されている。センサホルダ7を外輪2に支持させた状態で、図3(a)に示すばね部材15を図2に示すように圧縮状態に装着することができる。
 図2、図3(a)に示すように、ばね部材15は、有端環状溝14に嵌着可能な有端環状体からなる。ばね部材15は、有端環状溝14に嵌着するC形同心止め輪状の主部16と、有端環状溝14から周方向に突き出る両端部17,17とからなる。主部16は、周方向に形成されており、両端部17,17は、主部16よりも外径側に位置する部分を有する。この部分は、自然状態の側面視で円弧状に曲がっている。
 センサホルダ7の軸方向一方側の側面には、ばね部材15の両端部17,17が露出する開放凹部18が形成されている。
 図3(a)に示す自然状態のばね部材15を、図3(b)に示すように両端部17,17の円弧状部分が軸方向に重なるように変形させて主部16を圧縮状態にし、有端環状溝14に軸方向一方側から嵌め込むと、圧縮の残る主部16が弾性反発し、有端環状溝14の外径側の溝壁を外径側に押す。この状態では、図2に示すように、主部16が溝壁との摩擦係合によりばね部材が有端環状溝14に装着される。また、圧縮の残る主部16の弾性反発力がセンサホルダ7を外径側に押すため、センサホルダ7の両端部19,19を遠ざける向きの力がセンサホルダ7に与えられる。したがって、主部16の弾性反発でセンサホルダ7の固定を強化することができる。
 図3(b)に示すように、有端環状溝14に主部16を嵌着した状態でばね部材の両端部17,17の円弧状部分は、なお軸方向に重なり合う。その片方の端部17をずらして両端部17,17を同一軸方向位置にすると、図2に示すように、両端部17,17の円弧状部分が突き合って撓む状態になる。撓んだ両端部17,17の弾性反発により、両端部17,17を結ぶ弦方向にばね力F,Fが発生する。このばね力F,Fは、両端部17,17を遠ざける向きの力なので、主部16が外径側に押す力が強まる。したがって、センサホルダ7の固定を強化するばね力が増す。
 第1実施形態は、従来と同じくC形同心止め輪状の主部16でセンサホルダ7の固定を強化するだけでなく、さらに、ばね部材の両端部17,17の撓みに伴う弾性反発でもセンサホルダ7の固定を強化するばね力が増すため、さらなるセンサホルダ7の固定強化を図ることができる。
 図2、図3(a)に示すように、ばね部材15は、線細工ばねからなる。ばね部材15の材料は、主部16の断面形状から明らかなように、軸方向に沿った表面を有する角線材からなる。ばね部材15の両端部17,17を外径側に曲げているので、前記表面を、両端部17,17の突き合い面とすることができる。両端部17,17の突き合い面が軸方向に沿うため、丸線材製と比して突き合い状態から軸方向に互い違いになり難い。突き合い位置は、センサホルダ7の両端部19,19を均等に押すため、軸受中心軸及びセンサホルダ7の周方向長さ二等分位置を含む平面上に設定することが好ましい。
 上述のようにばね部材の両端部17,17を突き合い状態にすると、開放凹部18の軸方向に直交する平面状の底面で両端部17,17が軸方向に支持される。軸方向に段差をもって凹んだ開放凹部18内に位置するため、突き合い状態の両端部17,17が軸方向に互い違いになることを防止することができる。また、突き合い状態の両端部17,17が開放凹部18内に位置するため、他の部分との接触を防止することができる。
 なお、ばね部材15は、丸線材製としたり、板ばねにしたりすることができる。両端部17,17は、外径側に曲げた態様に限定されず、撓みによる弾性反発で主部16の一端側と他端側とが外径側に押す力が強くなる向きに力が発生する限り、適宜の形態にすることができる。両端部17,17の突き合い面を、自然状態の側面視で反転対称性をもった円弧状とすれば、突き合い状態の両端部17,17の径方向ずれ合いを許容することができる。線細工ばねのばね部材15の両端部17,17を第1実施形態のように外径側又は内径側に突出させて円弧状に曲げれば、スナップリングプライヤを用いた挟持も行い易い。
 この発明の第2実施形態に係るセンサ付軸受を図4に基づいて説明する。なお、以下では、上記第1実施形態との相違点を中心に述べ、同一に考えられる構成の説明を省略する。図示のように、第2実施形態は、センサホルダ21を外輪に支持させた状態で、センサホルダ21の開放凹部22内にばね部材23を圧縮状態に装着することにより、ばね部材23の弾性反発でセンサホルダ21の両端部24,24を遠ざける向きに押し、センサホルダ21の固定を強化することができるようにしたものである。
 ばね部材23は、センサホルダ21の両端部24,24間への押し込みで撓む両端の自由片部25,25と、両自由片部25,25間に連なる中間部26とからなる。自由片部25は、押し込み当初からばね部材23の他の部分と接触せずに両自由片部25,25が接近する側へ自由に撓むことが可能な部分からなる。ばね部材23は、センサホルダ21の両端部24,24のうち、開放凹部22の内壁の周方向端部分の間に押し込まれる。中間部26は、前記押し込みに伴って圧縮される屈曲ばね部とされている。中間部26の屈曲箇所が一箇所のため、ばね部材23は、側面視でM字状とされている。
 図中に二点鎖線でばね部材23の自然状態の側面視における外形の概要を示す。実線の押し込み状態のばね部材23と二点鎖線の自然状態との対比から明らかなように、ばね部材23を開放凹部22内の両端部24、24の部分に押し込むと、両端の自由片部25,25が接近する側へ撓むので、その弾性反発により両端部24,24を遠ざける向きに押す力が発生し、センサホルダ21の固定を強化することができる。ばね部材23は、両自由片部25,25とセンサホルダ21の両端部24,24との摩擦係合により装着される。さらに、屈曲ばね部である中間部26もV字両片部が接近する側に撓んだ圧縮状態になり、その弾性反発で両自由片部25,25が両端部24,24部分を遠ざける向きに押す力が強化される。その結果、センサホルダ21の固定を強化するばね力F,Fが増す。
 第2実施形態は、従来の周方向二分割の弾性反発部に相当するばね部材23の両自由片部25,25によるセンサホルダ21の固定強化に加え、さらに、屈曲ばね部である中間部26の撓みに伴う弾性反発でもセンサホルダ21の固定を強化するばね力が増すため、さらなるセンサホルダ21の固定強化を図ることができる。
 なお、上記「M字状」とは、両端の自由片部25,25間に連なる中間部26に一箇所の屈曲部を形成したことをいい、両自由片部25,25の先端が内径側又は外径側のいずれを向くかは問わず、自由片部25が先端に向って周方向に傾いたり、自由片部25の先端域や長さ方向中間域が曲がったりした態様をも含む意味である。
 例えば、M字状のばね部材23を両自由片部25,25の先端が内径側を向くように押し込む第2実施形態とは逆向きにした変更例として、第3実施形態を図5に示す。図示のように、第3実施形態は、センサホルダ21の開放凹部22内に、M字状のばね部材31を両自由片部32,32の先端が外径側を向くように押し込むことができる。中間部33の周方向間隔を第2実施形態よりも狭め、中間部33を内径側に寄せて配置し易くしている。センサホルダ21の両端部24,24部分の周方向間隔は、外径側に進むに連れて次第に広がる。第2実施形態と同程度のばね力F,Fを確保するため、自由片部32は、自然状態の側面視で先端に向って進むに連れて両自由片部25,25間の周方向間隔が広がるように傾けて形成されている。
 センサホルダ21の両端部24,24の周方向間隔は、外径側に進むに連れて次第に狭まるように形成することもできる。
 例えば、第4実施形態を図6に示すように、センサホルダ41の開放凹部42内に、ばね部材43を装着するに際し、外径側に進むに連れて次第に狭まるセンサホルダ41の両端部44,44間に押し込むようになっている。ばね部材43は、自然状態で第2実施形態と同様のM字状である。両自由片部45,45の先端が外径側を向くように押し込むため、センサホルダ41の両端部44,44が外径側に進むに連れて次第に狭まる分、第2実施形態と比して、両自由片部45,45が大きく撓み、中間部46の圧縮は緩くなり、総じて同程度のばね力F,Fを確保することができる。
 なお、第5実施形態を図7に示すように、センサホルダ41の両端部44,44間にばね部材51を、両自由片部52,52の先端が内径側を向くように押し込むこともできる。自由片部52は、両端部44,44の周方向間隔変化に対応して第4実施形態よりも傾けて形成されている。中間部53は、両端部44,44の周方向間隔変化に対応して第4実施形態よりも周方向に狭く形成されている。総じて得られるばね力F,Fは、同程度に確保されている。
 第6実施形態を図8に示す。図示のように、第6実施形態は、センサホルダ61の開放凹部62内にM字状のばね部材63を装着する点で上記第2~第5実施形態と共通する。第6実施形態は、センサホルダ61の両端部64,64間の部分に押し込む両自由片部65,65の先端を周方向間隔が広がる向きに曲げることにより、自由片部65の先端を、側面視でセンサホルダ61の端部との接触域である開放凹部62内の端部64よりも周方向に突出させている点で相違する。自由片部65の先端の突出に対応して、開放凹部62の内壁の周方向端部のうち、自由片部65の先端と軸方向一方側に臨む位置上には、周方向間隔が広がる向きに周方向に延びた受け溝部66,66が形成されている。ばね部材63を開放凹部62内に装着すると、両自由片部65,65の先端と開放凹部62の内壁の受け溝部66,66との径方向の掛り合いでばね部材63を径方向に位置決めすることができる。これにより、ばね力Fを強化したばね部材63をセンサホルダ61の両端部64,64のみで受ける場合よりも安定させることができる。
 第7実施形態を図9に示す。図示のように、第7実施形態は、第4実施形態において、センサホルダ41の開放凹部42内にばね部材71を装着し、そのばね部材71に、周方向二分割の弾性反発部を形成した点で共通し、ばね部材71を両端から中央に向かって巻いた形状とした点で相違するものである。ばね部材71の弾性反発部は、両巻き部72,72からなる。図中二点鎖線で示したばね部材71の自然状態の側面視形状との対比から明らかなように、両巻き部72,72は、センサホルダ41の両端部44,44間への押し込みに伴って両端部44,44間で中央側に寄るように撓み、両巻き部72,72の中央側73,73が突き合って撓む。第7実施形態は、両巻き部72,72が中央側に撓む。両巻き部72,72がセンサホルダ41の両端部44,44間で中央側に寄る撓みで蓄積された弾性反発力は、両巻き部72,72の反中央側が両端部44,44を遠ざける向きに押す力となるので、センサホルダ41の固定を強化することができる。さらに、両巻き部72,72の中央側73,73が突き合う撓みで蓄積された弾性反発力は、両巻き部72,72の反中央側が両端部44,44を遠ざける向きに押す力を強化する。したがって、第7実施形態は、弾性反発部として両自由片部のみを有するばね部材と比して、センサホルダ41の固定を強化するばね力F,Fを増すことができる。
 なお、ばね部材71の巻き形状を、側面視で円弧状にしたため、センサホルダ41の両端部44,44で受け止め難くなる。したがって、センサホルダ41の両端部44,44の周方向間隔を狭める傾きにより、図示のようにばね部材71の径方向への位置決めを強化することが好ましい。両巻き部72,72は、側面視で円弧状に巻いたものに限定されず、押し込みに伴って全体として中央側に寄る撓みと、中央側73,73の突き合いによる撓みとが生じ、それぞれの撓みによる弾性反発がセンサホルダ41の固定強化に有効である限り、適宜の巻き形状にすることができる。
 上記第1実施形態~第7実施形態において、ばね部材の材料は、線材、板材等を適宜に採用することができる。材料は、標準的な鋼に限られず、適宜の合金を用いることもできる。
 第8実施形態を図10に示す。図示のように、第8実施形態は、センサホルダ81を外輪に支持させた状態で開放凹部82内の両端部間に押し込む両自由片部83,83を形成したばね部材84を備える点で第2実施形態と共通する。第8実施形態は、ばね部材84が板状の鋼製材料を用いた板ばねからなる点で相違する。ばね部材84は、側面視で押し込み方向に向けて開放されたコ字状に形成されている。開放凹部82は、外径側にも開放されている。ばね部材84の開放凹部82への押し込みは、先端を内径側に向けて径方向に押し込むようになっている。両自由片部83,83は、中間部85から先端に向って次第に周方向間隔が狭まる領域を有する。開放凹部82内のうち両自由片部83,83からばね力F,Fを受ける両端部分にも、対応する自由片部83と同側に傾きが与えられており、両自由片部83,83の圧縮を確保しながら先端から押し込み易くしている。センサホルダ81の両端部には、ばね力F,Fを受ける両端部分よりも周方向間隔の広い段差部86,86が形成されている。両自由片部83,83の先端87、87は、周方向間隔が広がる向きに曲げることにより、段差部86,86と反押し込み方向に掛り合うことが可能になっている。この掛り合いにより、前記のように押し込みを容易にする傾きを形成しながら、ばね部材84の径方向に位置決めすることができるようにしている。
 ばね部材84を形成する板状の鋼製材料としては、標準的なステンレス鋼、ばね鋼鋼材の板材、ばね用冷間圧延鋼帯等を用いることができる。樹脂ばねでは、両自由片部を受ける中間部の剛性を確保するため、中間部が押し込み方向に厚く、同じ開放凹部82内への装着を考えると、両自由片部の長さが短くなる。第8実施形態は、ばね部材84が鋼製材料を用いた板ばねからなるため、鋼板の高剛性を利用して中間部85を押し込み方向に薄くし、その分、両自由片部83,83を押し込み方向に長くして弾性反発性を高め、両自由片部83,83がセンサホルダ81の両端部を遠ざける向きに押す力F,Fを強化すること、すなわち、センサホルダ81の固定を強化するばね力F,Fを増すことができる。
 なお、コ字状のばね部材84を採用する場合でも、押し込み方向を軸方向一方側から軸方向に設定することは可能である。例えば、第9実施形態を図11に示すように、センサホルダ91の開放凹部92のばね力F,Fを受ける両端部分93,93を、軸方向一方側から他方側に向って形成し、そのさらに軸方向他方側に段差部94,94を形成すればよい。
 第1実施形態の変更例として、第10実施形態を図12~図14に示す。図12、図13に示すように、第10実施形態は、センサホルダ101の軸方向一方側の側面に、センサホルダ101に軸方向一方側から突き当てたばね部材15に軸方向一方側から臨む抜け止め部103,103,103を設けた点で相違している。
 ばね部材15を装着した状態で外輪2に固定されたセンサホルダ101の両端部19、19間の対向隙間と直径方向反対側に位置する周方向一箇所を中央(図13中の上下方向の一点鎖線で示す)として、センサホルダ101の周方向両側に、それぞれ抜け止め部103が設けられると共に、前記中央にも抜け止め部103が設けられている。これら3箇所の抜け止め部103,103,103は、前記中央と、各周方向片側の前記中央から120°進んだ一箇所とに周方向等配された関係に設けられている。有端環状溝102は、三箇所の抜け止め部103,103,103を除いた他の周方向箇所でセンサホルダ101の軸方向一方側の側面に開放し、かつ内径側にも開放した形状とされている。結果的に、センサホルダ101の各周方向片側に、同側の端部19から周方向に最も近い抜け止め部103と、次に近い前記中央の抜け止め部103との間に周方向隙間が形成されている。このため、ばね部材15を有端環状溝102に嵌着するのに必要な最低限の縮径は、図13中にばね部材15の一部を二点鎖線で抜粋して示す状態となる。
 具体的には、ばね部材15を図12に一点鎖線で示すように斜めにしてセンサホルダ101の軸方向一方側から前記中央の抜け止め部103を内径側からくぐらせ、ばね部材15の概ね周方向中央部を目安に有端環状溝102の前記中央部分に挿入することになる。その結果、ばね部材15の概ね周方向中央部を軸方向に位置決めした状態で、ばね部材15の挿入残部を押してばね部材15の両端部17、17を接近させて縮径させ、ばね部材15の挿入残部を、最も近い抜け止め部103を内径側からくぐらせて有端環状溝102に挿入することができる。このように、ばね部材15の概ね周方向中央部を軸方向に位置決めした状態で挿入残部を有端環状溝102に入れ、この軸方向他方側の溝側壁に軸方向一方側から突き当てることができ、この突き当てで径方向に沿った向きに支持され、嵌着を終えることができる。この嵌着を終えたときのばね部材15を図12中に実線で示している。
 仮に、最も近い抜け止め部103が中央の抜け止め部103に周方向により近いところまで存在するとしたら、ばね部材15を図13に示す二点鎖線よりも一層内径側に曲げることを要する。このことから明らかなように、第10実施形態は、ばね部材15をセンサホルダ101の周方向両側の周方向隙間を通して有端環状溝102に挿入することができるので、抜け止め部103を追加しつつ、ばね部材15の嵌着を容易にすることができる。
 また、前記の中央を決める直径線上は、概ねばね部材15の両端部17、17が周方向に突き合う位置を通ることになる。したがって、第10実施形態は、ばね部材15の嵌着を容易にしつつ、3箇所の抜け止め部103,103,103でばね部材15を周方向全域でバランスよく抜け止めすることができる。
 各抜け止め部103は、センサホルダ101に一体成形されている。このため、図14に示すように、有端環状溝102の軸方向他方側の溝側壁102aには、抜け止め部103成形用のスライド金型を抜くため、孔105,105,105が軸方向に貫通している。軸方向に分割された金型で成形するとき、軸方向一方側に無理抜きする金型で抜け止め部103を成形することが困難なためである。なお、孔105,105,105は抜け止め部103の周方向配置に対応するため、ばね部材15を溝側壁102aで径方向に沿った向きに支持する支障になる程の数、大きさにならない。
 第10実施形態では、図12、図13に示すように、コネクタ13を外径側に向けた変更に伴い、センサ6及びコネクタ13を表面実装した回路基板12を挿入して位置決めするための凹部104がセンサホルダ101から外径側に開放されている。凹部104に挿入された樹脂モールドmで固定及び充填部の必要な保護が図られている。樹脂モールドmには、エポキシ樹脂やウレタン樹脂といった熱硬化性樹脂を用いることができ、これに代えて、ホットメルトを採用することもできる。
 第10実施形態は、第1実施形態を前提とした抜け止め部の採用例としたが、ばね部材の軸方向一方側への抜け防止に意義がある限り、他の実施形態においても適宜に抜け止めを設けることができる。例えば、図4、図5、図6、図7、図8のセンサホルダ21,41,61の各端部24,44,64に、ばね部材23、31,43,51,63の自由片部25,32,45,52,65に軸方向一方側から臨む抜け止め部を突出させることができる。図9のセンサホルダ41の各端部44に、ばね部材71の巻き部72に軸方向一方側から臨む抜け止め部を突出させることができる。
 第10実施形態の変更例として、第11実施形態を図15、図16に示す。第11実施形態のセンサホルダ201は、ばね部材15を装着して外輪に固定した状態で、ばね部材15の両端部17、17の軸方向変位を前記突き合いが維持される範囲に制限する端止め構造を有する点で相違する。端止め構造は、端部17同士が突き合って撓む状態で、衝撃等により両端部17、17が軸方向に互い違いになることを防ぐため、端部17近傍の撓りで互いに突き合い相手先から外れないようにすることができる。
 端止め構造は、センサホルダ201の一端部側でばね部材15の両端部17、17を軸方向に支持可能に形成された開放凹部202と、有端環状溝203から外径側に寄ったところで軸方向隙間wを開放凹部202から周方向にセンサホルダ201の両端部間を亘ってセンサホルダ201の他端部側まで連なるように形成する対向壁部204とからなる。センサホルダ201の一端部側は、第10実施形態でいうとセンサホルダ201の周方向片側に相当する。
 開放凹部202は、ばね部材15の両端部17、17を軸方向一方側から挿入できる位置で、第10実施形態のように有端環状溝203にばね部材15を嵌着することができるようになっている。ばね部材15の両端部17、17は、端部17同士の軸方向重なり合いを解消すると、開放凹部202の底面で軸方向に支持される。
 開放凹部202及び対向壁部204は、有端環状溝203に嵌着したばね部材15の全体を軸方向に支持しながら周方向に回転させることを可能にするため、有端環状溝203の軸方向他方側の溝側壁と同一面をなす支持壁面をもつように形成されている。
 また、対向壁部204は、センサホルダ201の一端部側と他端部側とにそれぞれ形成された上記支持壁面と、これらと軸方向に隙間wを形成するようにセンサホルダ201の他端部側から一端部側まで突き出た突壁面部とからなる。このため、対向壁部204は、開放凹部202から周方向にセンサホルダ201の両端部間を亘ってセンサホルダ201の他端部側まで連なるように形成する。軸方向隙間wは、ばね部材15の端部17同士が軸方向に互い違いにならない限り、有端環状溝203の軸方向溝深さよりも軸方向に大きく設定することができる。この設定の方が、成形誤差で対向壁部204の突壁面部が傾くことを吸収でき、ばね部材15の全体を回転させる際に、製品によっては傾端部17が対向壁部204の突壁面部に当ることを防止することができる。
 有端環状溝203にばね部材15の主部16を嵌着した状態で開放凹部202に軸方向一方側からばね部材15の両端部17、17を挿入し、軸方向に重なり合った両端部17、17の片方をずらして両端部17、17を同一軸方向位置にすると、図15(a)に示すように、ばね部材15の全体が開放凹部202及び有端環状溝203に軸方向に支持され、端部17同士が突き合って撓む状態になる。この状態から、ばね部材15の全体を周方向に両端部17、17が対向壁部204へ近づく向きで回転させると、図15(b)、図16に示すように、両端部17、17が軸方向隙間wに収まる。この状態では、対向壁面204の支持壁面と突壁面とで、両端部17、17の軸方向変位を制限することができる。なお、回転させ過ぎないようにするため、センサホルダ201の他端部には、第10実施形態よりも一端部側に近付けた回り止め壁面が形成されている。
 第10実施形態の変更例として、第12実施形態を図17~図19に示す。第12実施形態は、ばね部材15の各端部17の突き合い相手先をセンサホルダ210に形成し、端止め構造を追加した点で相違する。
 センサホルダ210の一端部側よりも有端環状溝211の長さを短くしたセンサホルダ210の他端部側には、有端環状溝211の周方向延長上まで突き出た支持壁212が形成されている。センサホルダ210の他端部側で有端環状溝211の長さを短くするため、その他端部側の抜け止め部213を第10実施形態の等配位置よりも周方向中央の抜け止め部103側に近付け、支持壁212との間で軸方向及び外径側に凹んだ逃げ部214が形成されている。
 端止め構造は、支持壁212と、センサホルダ210の一端部側でばね部材15の一端部17を軸方向に支持する第一開放凹部215aと、センサホルダ210の他端部側で軸方向隙間を形成するように突き出た対向壁部216と、対向壁部216及び支持壁212間の周方向中間部分に対向壁部216の軸方向隙間と連なるように形成された第二開放凹部215bとからなる。軸方向隙間は第11実施形態の軸方向隙間と同様の大きさになっている。また、両開放凹部215a、215bの支持壁面と有端環状溝211の溝側壁との関係も第11実施形態と同様である。
 対向壁部216は、両開放凹部215a、215bの支持壁と同一面を成すように形成された支持壁面部と、センサホルダ210の一端部側で第一開放凹部215aよりも軸方向一方側に突き出た突壁面部と、ここからセンサホルダ210の他端部側の支持壁面部と軸方向隙間を形成するように突き出た突壁面部とからなる。
 第10実施形態のように、有端環状溝211にばね部材15の主部16を嵌着した状態で、図17(a)に示すように、第一開放凹部215aに軸方向一方側から一端部17を挿入することができる。第一開放凹部215aに軸方向に支持された一端部17を対向壁部216と突き合う状態とし、この状態から、図19、図18(b)、図17(a)に実線で示すように他端部17を軸方向一方側及び外径側へ撓らせて支持壁212越しの状態とし、特に図18(b)に実線で示すように、先に他端部17を対向壁部216の前記軸方向隙間に入れ込むことができる。逃げ部214は、この作業で外径側に撓らせることを容易にする。さらに図19に一点鎖線で他端部17を示すように、当該撓りを戻し、図18(b)に一点鎖線で他端部17を示すように、支持壁212に載っていたばね部材15の部分が落ちると、図18(a)に示すように、他端部17が、支持壁212で径方向に支持されると共に、他端部17が、対向壁部216の軸方向隙間内で、対向壁部216に突き合う一端部17と同じ軸方向位置で突き合い、両端部17、17がそれぞれ対向壁部216に押し付けられて撓んだ状態になる。同時に、対向壁部216により他端部17の軸方向変位を制限をすることもできる。
 上述の各実施形態においては、センサホルダ7等をポリアミドイミド樹脂を主材料に用いて射出成形することができる。センサホルダ7等のばね部材15等を受ける部分が温度クリープで変形することを防ぎ、ばね部材15等の脱落を防止することができる。なお、ポリアミドイミド樹脂としては、三菱ガス化学製の製品シリーズ名:エーアイポリマーMSを採用することができる。
 この発明の技術的範囲は、上述の実施形態に限定されず、特許請求の範囲の記載に基く技術的思想の範囲内での全ての変更を含むものである。例えば、第1実施形態においては、ばね部材の両端部を内径側に曲げても、ばね力を増すことは可能である。第2実施形態~第6実施形態においては、中間部を屈曲箇所を2箇所以上(例えば、M字状として2箇所)にすることもできる。
1 転がり軸受
2 外輪
3 内輪
4 シール溝(周溝)
6 センサ
7,21,41,61,81,91,101,201,210 センサホルダ
8 磁気エンコーダ
9 位置決め部
10 突条
11 側面壁
14,102,203,211 有端環状溝
15,23,31,43,51,63,71,84 ばね部材
16 主部
17 ばね部材の端部
18,22,42,62,82,92,202 開放凹部
19,24,44,64,93 センサホルダの端部
25,32,45,52,65,83 自由片部
26,33,46,53,85 中間部
66 受け溝部
72 巻き部
73 巻き部の中央側
86,94 段差部
87 自由片部の先端
102a 溝側壁
103,213 抜け止め部
104 凹部
204,216 対向壁部
212 支持壁
214 逃げ部
215a 第一開放凹部
215b 第二開放凹部
w 軸方向隙間

Claims (23)

  1.  外輪を静止部材に装着する転がり軸受と、センサを保持する樹脂製のセンサホルダとを備え、
     前記センサホルダは、前記外輪の内径面に軸方向一方側から嵌め込む位置決め部を有し、前記位置決め部に、前記外輪の内径面に形成された周溝に入る突条を形成し、かつ前記位置決め部の嵌め込みにより前記センサホルダを前記外輪に支持させることが可能な有端環状体からなり、
     前記センサホルダを前記外輪に支持させた状態でばね部材を圧縮状態に装着することにより当該ばね部材の弾性反発で当該センサホルダの固定を強化するようにし、
     前記ばね部材は、前記センサホルダの両端部間に巡る有端環状溝に嵌着可能な有端環状体からなるセンサ付軸受において、
     前記ばね部材は、前記有端環状溝に嵌着する主部と、当該有端環状溝から周方向に突き出る両端部とからなり、前記ばね部材の両端部を、前記有端環状溝に前記主部を嵌着した状態で突き合って撓む部分とし、当該撓んだ両端部の弾性反発により前記センサホルダの固定を強化するばね力が増すことを特徴とするセンサ付軸受。
  2.  前記有端環状溝に前記主部を嵌着した状態で前記ばね部材の両端部が軸方向に重なり合い、その片方の端部をずらして両端部を同一軸方向位置にすると前記突き合って撓む状態になる請求項1に記載のセンサ付軸受。
  3.  前記ばね部材が線細工ばねからなり、前記センサホルダの軸方向一方側の側面に、前記ばね部材の両端部が露出する開放凹部を形成し、前記ばね部材の両端部を突き合い状態にすると前記開放凹部の底面で当該両端部が軸方向に支持される請求項1又は2に記載のセンサ付軸受。
  4.  前記ばね部材の材料が軸方向に沿った表面を有する角線材からなり、前記表面を、前記ばね部材の両端部の突き合い面とした請求項3に記載のセンサ付軸受。
  5.  前記センサホルダは、前記ばね部材を装着して前記外輪に固定した状態で当該ばね部材の両端部のうち、少なくとも一方の端部の軸方向変位を前記突き合いが維持される範囲に制限する端止め構造を有する請求項1から4のいずれか1項に記載のセンサ付軸受。
  6.  前記端止め構造は、前記センサホルダの一端部側で前記ばね部材の両端部を軸方向に支持可能に形成された開放凹部と、軸方向隙間を前記開放凹部から周方向に前記センサホルダの両端部間を亘って当該センサホルダの他端部側まで連なるように形成する対向壁部とからなり、
     前記有端環状溝に前記主部を嵌着した状態で前記開放凹部に軸方向一方側から前記ばね部材の両端部を挿入し、軸方向に重なり合った当該ばね部材の両端部の片方をずらして当該ばね部材の両端部を同一軸方向位置にすると、当該開放凹部及び当該有端環状溝に軸方向に支持された当該ばね部材の端部同士が前記突き合って撓む状態になり、この状態から当該ばね部材の全体を周方向に当該ばね部材の両端部が前記対向壁部へ近づく向きで回転させると、当該ばね部材の両端部が前記軸方向隙間に収まる請求項5に記載のセンサ付軸受。
  7.  前記端止め構造は、前記センサホルダの一端部側よりも前記有端環状溝の長さを短くした当該センサホルダの他端部側で当該有端環状溝の周方向延長上まで突き出た支持壁と、前記センサホルダの一端部側で前記ばね部材の一端部を軸方向に支持する第一開放凹部と、前記センサホルダの他端部側で軸方向隙間を形成するように突き出た対向壁部と、この対向壁部及び前記支持壁間の周方向中間部分に当該軸方向隙間と連なるように形成された第二開放凹部とからなり、
     前記有端環状溝に前記主部を嵌着した状態で前記第一開放凹部に軸方向一方側から前記ばね部材の一端部を挿入し、当該第一開放凹部に軸方向に支持された当該ばね部材の一端部を前記対向壁部と突き合う状態とし、この状態から当該ばね部材の他端部を軸方向一方側及び外径側へ撓らせて前記支持壁越しに前記軸方向隙間に入れ込み、さらに当該撓りを戻すと、当該ばね部材の他端部が当該軸方向隙間内で当該対向壁部と突き合う請求項5に記載のセンサ付軸受。
  8.  外輪を静止部材に装着する転がり軸受と、センサを保持する樹脂製のセンサホルダとを備え、
     前記センサホルダは、前記外輪の内径面に軸方向一方側から嵌め込む位置決め部を有し、前記位置決め部に、前記外輪の内径面に形成された周溝に入る突条を形成し、かつ前記位置決め部の嵌め込みにより前記センサホルダを前記外輪に支持させることが可能な有端環状体からなり、
     前記センサホルダを前記外輪に支持させた状態でばね部材を圧縮状態に装着することにより当該ばね部材の弾性反発で当該センサホルダの固定を強化するようにし、
     前記ばね部材は、前記センサホルダの両端部間への押し込みで撓む両端の自由片部と、両自由片部間に連なる中間部とからなるセンサ付軸受において、
     前記中間部を前記押し込みに伴って圧縮される屈曲ばね部とし、前記中間部の弾性反発力により前記センサホルダの固定を強化するばね力が増すことを特徴とするセンサ付軸受。
  9.  前記ばね部材を側面視でM字状とした請求項8に記載のセンサ付軸受。
  10.  前記センサホルダに、前記ばね部材を軸方向一方側から押し込む開放凹部を形成し、前記自由片部の先端を、側面視で前記センサホルダの端部との接触域よりも周方向に突出させ、前記自由片部の先端と前記開放凹部の内壁との掛り合いで当該ばね部材を径方向に位置決めした請求項8又は9に記載のセンサ付軸受。
  11.  外輪を静止部材に装着する転がり軸受と、センサを保持する樹脂製のセンサホルダとを備え、
     前記センサホルダは、前記外輪の内径面に軸方向一方側から嵌め込む位置決め部を有し、前記位置決め部に、前記外輪の内径面に形成された周溝に入る突条を形成し、かつ前記位置決め部の嵌め込みにより前記センサホルダを前記外輪に支持させることが可能な有端環状体からなり、
     前記センサホルダを前記外輪に支持させた状態でばね部材を圧縮状態に装着することにより当該ばね部材の弾性反発で当該センサホルダの固定を強化するようにし、
     前記ばね部材に、周方向二分割の弾性反発部を形成したセンサ付軸受において、
     前記ばね部材を両端から中央に向かって巻いた形状とし、前記押し込みに伴って両巻き部が前記センサホルダの両端部間で中央側に寄るように撓む弾性反発で前記センサホルダの固定を強化し、また、当該両巻き部の中央側が突き合って撓む弾性反発により前記センサホルダの固定を強化するばね力が増すことを特徴とするセンサ付軸受。
  12.  外輪を静止部材に装着する転がり軸受と、センサを保持する樹脂製のセンサホルダとを備え、
     前記センサホルダは、前記外輪の内径面に軸方向一方側から嵌め込む位置決め部を有し、前記位置決め部に、前記外輪の内径面に形成された周溝に入る突条を形成し、かつ前記位置決め部の嵌め込みにより前記センサホルダを前記外輪に支持させることが可能な有端環状体からなり、
     前記センサホルダを前記外輪に支持させた状態でばね部材を圧縮状態に装着することにより当該ばね部材の弾性反発で当該センサホルダの固定を強化するようにし、
     前記ばね部材は、周方向二分割の弾性反発部を形成した前記センサホルダの両端部間への押し込みで撓む両端の自由片部と、両自由片部間に連なる中間部とからなるセンサ付軸受において、
     前記ばね部材が板状の鋼製材料を用いた板ばねからなることを特徴とするセンサ付軸受。
  13.  回転センサの磁気エンコーダが嵌着された内輪を備え、前記センサを、前記回転センサの磁気センサとし、前記外輪を、内径面の両側にシール溝を形成された軌道輪とし、前記周溝を、軸方向一方側の前記シール溝とし、前記センサホルダと前記磁気エンコーダとで内径側に開放するラビリンスシールを形成した請求項1から12のいずれか1項に記載のセンサ付軸受。
  14.  前記センサホルダの軸方向一方側の側面に、当該センサホルダに軸方向一方側から突き当てた前記ばね部材に軸方向一方側から臨む抜け止め部を設けた請求項1から13のいずれか1項に記載のセンサ付軸受。
  15.  前記センサホルダの軸方向一方側の側面に、前記有端環状溝の軸方向他方側の溝側壁に軸方向一方側から突き当てた前記ばね部材に軸方向一方側から臨む抜け止め部を設けた請求項1から7のいずれか1項に記載のセンサ付軸受。
  16.  前記ばね部材を装着した状態で前記外輪に固定された前記センサホルダの両端部間の対向隙間と直径方向反対側に位置する周方向一箇所を中央としたセンサホルダの周方向両側に、それぞれ前記抜け止め部を設け、前記センサホルダの各周方向片側に、同側の端部から周方向に最も近い前記抜け止め部と、次に近い抜け止め部との間に周方向隙間を形成し、前記ばね部材を前記センサホルダの周方向両側の周方向隙間を通して前記有端環状溝に挿入可能とした請求項15に記載のセンサ付軸受。
  17.  前記抜け止め部を、前記中央と、各周方向片側の前記中央から120°進んだ一箇所とに設けた請求項16に記載のセンサ付軸受。
  18.  前記抜け止め部を前記センサホルダに一体成形した請求項14から17のいずれか1項に記載のセンサ付軸受。
  19.  前記センサホルダをポリアミドイミド樹脂を主材料に用いて射出成形した請求項1から18のいずれか1項に記載のセンサ付軸受。
  20.  前記センサは、回転センサの複数の磁気センサを含む集積回路からなる請求項1から19のいずれか1項に記載のセンサ付軸受。
  21.  前記磁気センサが、前記転がり軸受の内輪に取り付けた磁気エンコーダと径方向に対向する請求項20に記載のセンサ付軸受。
  22.  前記センサ及びコネクタを表面実装した回路基板を備え、前記回路基板を前記センサホルダの凹部に挿入する請求項20又は21に記載のセンサ付軸受。
  23.  前記コネクタを径方向から配線するように設けた請求項22に記載のセンサ付軸受。
PCT/JP2010/068163 2009-10-22 2010-10-15 センサ付軸受 WO2011049020A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/502,534 US8734020B2 (en) 2009-10-22 2010-10-15 Bearing with sensor
CN201080047555.1A CN102597558B (zh) 2009-10-22 2010-10-15 带有传感器的轴承
EP10824869.1A EP2492529B1 (en) 2009-10-22 2010-10-15 Bearing with sensor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009243205 2009-10-22
JP2009-243205 2009-10-22
JP2010086849 2010-04-05
JP2010-086849 2010-04-05
JP2010-149383 2010-06-30
JP2010149383A JP5451544B2 (ja) 2009-10-22 2010-06-30 センサ付軸受

Publications (1)

Publication Number Publication Date
WO2011049020A1 true WO2011049020A1 (ja) 2011-04-28

Family

ID=43900246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068163 WO2011049020A1 (ja) 2009-10-22 2010-10-15 センサ付軸受

Country Status (5)

Country Link
US (1) US8734020B2 (ja)
EP (1) EP2492529B1 (ja)
JP (1) JP5451544B2 (ja)
CN (1) CN102597558B (ja)
WO (1) WO2011049020A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160061268A1 (en) * 2013-05-20 2016-03-03 Nsk Ltd. Roller Bearing Having Sensor, Motor, and Actuator
US20220212513A1 (en) * 2019-04-09 2022-07-07 Vibracoustic Se Circlip, arrangement and method for installing the circlip

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011102924T5 (de) * 2010-09-03 2013-07-18 Ntn Corporation Lagerbaugruppe mit Rotationssensor
JP6241290B2 (ja) * 2014-01-22 2017-12-06 日本精工株式会社 トルク測定装置付回転伝達装置
CN106662289B (zh) * 2014-06-27 2019-03-12 Ntn株式会社 润滑油供应单元和轴承装置
US10502080B2 (en) 2015-04-10 2019-12-10 United Technologies Corporation Rotating labyrinth M-seal
DE102015218993B3 (de) * 2015-10-01 2016-12-22 Schaeffler Technologies AG & Co. KG Lageranordnung mit einer Dehnungssensoreinrichtung
FR3051858B1 (fr) * 2016-05-30 2018-12-07 Visteon Global Technologies Inc Dispositif de montage d'un axe dans un palier et afficheur comprenant un tel dispositif
DE102017207814A1 (de) * 2016-06-06 2017-12-07 Aktiebolaget Skf Schwenklager mit Dichtungsanordnung
DE102017213231A1 (de) * 2016-08-26 2018-03-01 Aktiebolaget Skf Sensoreinheit für ein Lager
CN106481656B (zh) * 2016-12-13 2021-07-23 施国荣 一种具有自动保护及检测功能的智能轴承
JP6508603B2 (ja) * 2017-06-20 2019-05-08 本田技研工業株式会社 センサブラケット
DE102019200146A1 (de) * 2019-01-08 2020-07-09 Aktiebolaget Skf Wälzlagereinheit und Montageverfahren
CN110145543B (zh) * 2019-05-31 2024-07-23 无锡泓旭智能装备有限公司 具有径向保护结构的复式磁悬浮轴承组件
JP7427961B2 (ja) * 2019-12-25 2024-02-06 株式会社リコー 止め輪、回転体装置、定着装置、画像形成装置、及び、製造方法
DE102020204525A1 (de) 2020-04-08 2021-10-14 Aktiebolaget Skf Wälzlager
CN111981045B (zh) * 2020-07-25 2022-03-29 平湖市成功机械有限公司 一种高速精密数控机床用防尘轴承

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144216A (ja) * 1991-11-19 1993-06-11 Konica Corp デイスク収納ケース
JP2001135196A (ja) * 1999-11-02 2001-05-18 Hosiden Corp スライド操作式スイッチ
JP2005249545A (ja) 2004-03-03 2005-09-15 Ntn Corp 回転センサ付き軸受
JP2009074687A (ja) 2007-08-24 2009-04-09 Ntn Corp センサ付軸受

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3345723A (en) * 1965-07-28 1967-10-10 Stellar Ind Products Co Dummy pin means and method for assembling needle bearings
GB1137436A (en) * 1966-08-23 1968-12-18 Int Harvester Great Britain Improvements relating to spring-ring or circlip locating means
ZA82756B (en) * 1981-02-26 1982-12-29 Dowty Meco Ltd Locking devices
DE69214498T2 (de) * 1991-04-25 1997-02-20 Ngk Spark Plug Co Vorrichtung zur provisorischen Befestigung eines Drucksensors in die Zündkerzenbohrung des Zylinderkopfes
US5490694A (en) * 1995-03-03 1996-02-13 American Fence Corp Threadless pipe coupler
JP2003065341A (ja) * 2001-08-23 2003-03-05 Koyo Seiko Co Ltd 転がり軸受
JP2004117318A (ja) * 2002-09-30 2004-04-15 Ntn Corp 回転センサ付軸受およびこれを用いたモータ
DE102005042655A1 (de) * 2005-09-08 2007-03-15 Robert Bosch Gmbh Vorrichtung zur Messung von Drehbewegungen eines Radlagers
JP5214869B2 (ja) * 2006-10-30 2013-06-19 Ntn株式会社 回転センサ付き転がり軸受
JP2008128365A (ja) * 2006-11-21 2008-06-05 Toyota Motor Corp スナップリングの取り付け構造および摩擦係合装置の支持構造
JP5018113B2 (ja) * 2007-02-07 2012-09-05 日本精工株式会社 センサ付き軸受

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05144216A (ja) * 1991-11-19 1993-06-11 Konica Corp デイスク収納ケース
JP2001135196A (ja) * 1999-11-02 2001-05-18 Hosiden Corp スライド操作式スイッチ
JP2005249545A (ja) 2004-03-03 2005-09-15 Ntn Corp 回転センサ付き軸受
JP2009074687A (ja) 2007-08-24 2009-04-09 Ntn Corp センサ付軸受

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160061268A1 (en) * 2013-05-20 2016-03-03 Nsk Ltd. Roller Bearing Having Sensor, Motor, and Actuator
US9574611B2 (en) * 2013-05-20 2017-02-21 Nsk Ltd. Roller bearing having sensor, motor, and actuator
US20220212513A1 (en) * 2019-04-09 2022-07-07 Vibracoustic Se Circlip, arrangement and method for installing the circlip

Also Published As

Publication number Publication date
CN102597558B (zh) 2015-04-01
EP2492529A4 (en) 2016-04-20
US20120201486A1 (en) 2012-08-09
CN102597558A (zh) 2012-07-18
EP2492529A1 (en) 2012-08-29
JP2011232319A (ja) 2011-11-17
EP2492529B1 (en) 2018-05-23
JP5451544B2 (ja) 2014-03-26
US8734020B2 (en) 2014-05-27

Similar Documents

Publication Publication Date Title
JP5451544B2 (ja) センサ付軸受
EP2184611B1 (en) Rolling bearing with rotation sensor
JP2013032842A (ja) 軸受け保持器セグメント、軸受け保持器および該軸受け保持器を製造するための方法
CN108138968B (zh) 机械密封件
JP2006519964A (ja) オーバーラニングクラッチ
JP5376141B2 (ja) モータ及びモータの磁石固定用バネ
JP2003247597A (ja) ダイナミックダンパ及びプロペラシャフト
JP3998430B2 (ja) 回転センサ付き転がり軸受
WO2007091355A1 (ja) 等速自在継手用ブーツ
JP2008151216A (ja) スラストころ軸受
WO2016152667A1 (ja) 摺動式等速自在継手
JP2007010091A (ja) 軸受取付用アダプタおよびこれを用いた軸受取付構造
JP2011094727A (ja) 転がり軸受のクリープ防止装置
JP2009014119A (ja) 樹脂プーリ付軸受
KR100738474B1 (ko) 유니버셜 조인트의 슬립조인트
US12126231B2 (en) Fixing ring, rotary electric machine, and resolver rotor
JP2004308767A (ja) トルクリミッター
JP7479261B2 (ja) モータ
JP2005240838A (ja) センサ付き転がり軸受
US20230119104A1 (en) Fixing ring, rotary electric machine, and resolver rotor
JP2008298256A (ja) 玉軸受
JP2008111456A (ja) ラジアル玉軸受用合成樹脂製冠型保持器及びラジアル玉軸受
JP2007318884A (ja) 組立式整流子および組立式整流子の製造方法
JP4238521B2 (ja) クラッチレリーズ軸受装置
JP2005233391A (ja) センサ付き転がり軸受およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047555.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13502534

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010824869

Country of ref document: EP