WO2011043116A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2011043116A1
WO2011043116A1 PCT/JP2010/061613 JP2010061613W WO2011043116A1 WO 2011043116 A1 WO2011043116 A1 WO 2011043116A1 JP 2010061613 W JP2010061613 W JP 2010061613W WO 2011043116 A1 WO2011043116 A1 WO 2011043116A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
insulating film
mosfet
interlayer insulating
layer
Prior art date
Application number
PCT/JP2010/061613
Other languages
English (en)
French (fr)
Inventor
和田 圭司
秀人 玉祖
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2011518619A priority Critical patent/JP5682556B2/ja
Priority to CN2010800033467A priority patent/CN102227812A/zh
Priority to EP10821787.8A priority patent/EP2487720A4/en
Priority to US13/131,163 priority patent/US8963163B2/en
Publication of WO2011043116A1 publication Critical patent/WO2011043116A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/045Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide passivating silicon carbide surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes

Definitions

  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device capable of maintaining insulation between layers.
  • a semiconductor device for handling high power is generally called a power device.
  • a power device In order to handle a large amount of power, it is desired that the semiconductor device can be used with a high breakdown voltage, a low loss, and use in a high temperature environment. Therefore, in recent years, adoption of silicon carbide (SiC) is being promoted as a material constituting the semiconductor device.
  • SiC is a wide bandgap semiconductor having a larger bandgap than silicon (Si), which has been widely used as a material constituting a semiconductor device. Therefore, by adopting SiC as a material constituting the semiconductor device, it is possible to achieve high breakdown voltage of the semiconductor device, reduction of on-resistance, and the like.
  • a semiconductor device that employs SiC as a material has an advantage that a decrease in characteristics when used in a high-temperature environment is smaller than a semiconductor device that employs Si as a material.
  • vertical SiC-MOSFETs with high switching speed and high conversion efficiency in the low-voltage region are semiconductors for large machines that require particularly high switching characteristics such as power conversion equipment used in hybrid cars. Use as a device is effective.
  • the n-type region and the p-type region are formed so as to be in contact with the n-type region and the p-type region as compared with the case where Si is used as the material for the semiconductor device.
  • Si is employed as a material for the semiconductor device
  • heat treatment may be performed at a relatively low temperature using, for example, Al (aluminum) in forming the electrode. In this way, Si and Al are favorably ohmic-bonded.
  • SiC is employed as a material for a semiconductor device, it is difficult to form an ohmic junction as compared to the case where Si is employed as a material for a semiconductor device.
  • Ni (nickel) and p-type impurities (impurities whose conductivity type is p-type) are used as the material of the electrode in contact with the n-type SiC region containing n-type impurities (impurities whose conductivity type is n-type).
  • the contact resistance can be reduced by adopting Ti (titanium) / Al (aluminum) as the material of the electrode in contact with the p-type SiC region (for example, Satoshi Tanimoto, 4 others) , "SiC device ohmic contact formation technology", Journal of the Institute of Electronics, Information and Communication Engineers, The Institute of Electronics, Information and Communication Engineers, April 2003, Vol. J86-C, No. 4, p359-367 (Non-patent Document 1). ).
  • SiC is used as the material of the semiconductor device by appropriately selecting the material constituting the electrode depending on whether the region in contact with the electrode is an n-type SiC region or a p-type SiC region. Even in this case, the contact resistance between the n-type region and the p-type region and the electrode can be reduced.
  • the material that constitutes the electrode that contacts the n-type region and the material that constitutes the electrode that contacts the p-type region are different, a plurality of steps for forming these electrodes are required, increasing the number of manufacturing steps. To do. As a result, there arises a problem that the manufacturing cost of the semiconductor device increases.
  • the difference between the material constituting the electrode in contact with the n-type region and the material constituting the electrode in contact with the p-type region is a factor that hinders the improvement in the degree of integration of the semiconductor device.
  • an ohmic contact electrode containing Ti, Al, and Si that is, alloyed with Ti, Al, and Si
  • the ohmic contact electrode in which Ti, Al, and Si are alloyed can be in contact with both the n-type SiC region and the p-type SiC region while sufficiently suppressing contact resistance.
  • FIG. 47 is a schematic sectional view showing an example of the structure of a conventionally used vertical SiC-MOSFET.
  • conventional MOSFET 1000 is made of, for example, silicon carbide (SiC), and is made of n + SiC substrate 11 which is an n-type (first conductivity type) substrate, SiC, and has a conductivity type.
  • MOSFET 1000 includes a gate oxide film 15 as a gate insulating film, a gate electrode 17, a drain electrode 55, and a pair of source contact electrodes 16.
  • the source internal wiring is connected so as to connect from one source contact electrode 16 of the pair of source contact electrodes 16 to the other source contact electrode 16 arranged adjacent to the source contact electrode 16.
  • 27 is arranged.
  • An interlayer insulating film 21 is disposed so as to cover the outer periphery of the gate electrode 17 and to fill the space between the gate electrode 17 and the source internal wiring 27.
  • the interlayer insulating film 21 has a function of, for example, electrically insulating the source internal wiring 27 and the source contact electrode 16 and the gate electrode 17 of FIG. 47 from the outside and protecting the MOSFET 1000.
  • This interlayer insulating film 21 is made of, for example, SiO 2 (silicon oxide). Under such a configuration, an electric signal input to the source internal wiring 27, the source contact electrode 16 and the gate electrode 17 is controlled to control a current flowing from the source contact electrode 16 to the drain electrode 55.
  • the source contact electrode 16 is disposed so as to be in contact with both the n + source region 14 and the p + region 18.
  • the source contact electrode 16 is satisfactorily ohmic-bonded with both the n + source region 14 and the p + region 18.
  • source contact electrode 16 in which Al is alloyed and gate oxide film 15 made of, for example, SiO 2 are connected. Further, the source contact electrode 16 and the interlayer insulating film 21 made of, for example, SiO 2 are arranged at locations very close to each other.
  • MOSFET 1000 having such a structure if heat treatment is performed at a high temperature of about 1000 ° C. to alloy the source contact electrode 16, Al in the source contact electrode 16 and SiO 2 undergo eutectic reaction. Wake up. When a general Al and SiO 2 alloyed is heated above about 500 ° C.
  • SiO 2 is Si Reduced to Therefore, members using SiO 2 as an insulator such as the gate oxide film 15 and the interlayer insulating film 21 are reduced to Si by the action of Al of the source contact electrode 16. As a result, the electrical characteristics such as insulation and capacity stability of the gate oxide film 15 and the interlayer insulating film 21 may be deteriorated.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device having a configuration capable of suppressing deterioration of electrical characteristics in an insulating member.
  • the semiconductor device includes an SiC layer, an ohmic electrode formed on the main surface of the SiC layer, and another electrode arranged at a distance from the ohmic electrode on the main surface of the SiC layer. And an insulating layer positioned between the ohmic electrode and the other electrode.
  • the ohmic electrode and the insulating layer are adjacent to each other and heated at 1200 ° C. or lower, the reduction rate of the electric resistance in the insulating film is 5% or lower. From a different point of view, the ohmic electrode and the insulating layer do not react by heating at 1200 ° C. or lower.
  • the ohmic electrode is, for example, the source contact electrode 16 in which Al is alloyed as shown in FIG.
  • the other electrode is, for example, the gate electrode 17 in FIG.
  • the insulating layer located between the source contact electrode 16 and the gate electrode 17 is the interlayer insulating film 21 and the gate oxide film 15.
  • the semiconductor device according to the present invention also has the same configuration as MOSFET 1000 shown in FIG.
  • the ohmic electrode corresponding to the source contact electrode 16 in FIG. 47 and the insulating layer corresponding to the interlayer insulating film 21 or the gate oxide film 15 in FIG. It has a configuration.
  • the ohmic electrode is an alloy containing Al, and when the ohmic electrode is formed (alloyed), a process of heating to 1200 ° C. or less (about 1000 ° C.) is performed.
  • the insulating layer does not contain SiO 2 (the insulating layer is formed of a material other than SiO 2 ). For this reason, when the ohmic electrode is formed (alloyed), a reduction reaction between the alloyed Al and SiO 2 does not occur. Therefore, when the step of forming (alloying) the ohmic electrode is performed by heating at 1200 ° C. or lower, there is no change in the composition of the insulating layer before and after that.
  • the decrease rate of the electrical resistance of the insulating layer before and after the alloying step for forming the ohmic electrode is 5% or less.
  • the reduction rate is desirably 1% or less. That is, it is possible to suppress deterioration of electrical characteristics such as insulation and capacitance stability of the gate oxide film 15 and the interlayer insulating film 21 in FIG.
  • the rate of decrease in the electrical resistance of the insulating layer before and after the alloying process is the ratio of the electrical resistance of the insulating layer before and after the alloying process to the electrical resistance of the insulating layer before the alloying process. It means the ratio of the amount of change (the absolute value of the amount of change in the electrical resistance value reduced by the alloying process).
  • the decrease rate of the electrical resistance of the insulating layer is (a It can be calculated by the formula -b) / a.
  • the insulating layer is an interlayer insulating film for electrically insulating the ohmic electrode and the other electrode, and at least a surface of the interlayer insulating film facing the ohmic electrode is silicon nitride Alternatively, it is preferably made of silicon oxynitride.
  • the surface of the interlayer insulating film, which is an insulating layer, facing the ohmic electrode is made of silicon nitride (Si x N y ) or silicon oxynitride (SiO x N y )
  • alloying is performed to form the ohmic electrode.
  • the alloy constituting the ohmic electrode and the interlayer insulating film do not undergo a reduction reaction. For this reason, in the process of heating to form the ohmic electrode, it is possible to suppress deterioration of electrical characteristics such as insulation properties and capacitance stability of the interlayer insulating film.
  • the interlayer insulating film facing the ohmic electrode When the surface of the interlayer insulating film facing the ohmic electrode is made of SiO x N y , the interlayer insulating film contains some SiO 2 . That is, there is a possibility that Al in the alloy constituting the ohmic electrode and SiO 2 of the interlayer insulating film undergo a reduction reaction. However, the proportion of SiO 2 contained in the interlayer insulating film is smaller than when the interlayer insulating film is pure SiO 2 . For this reason, even when the surface of the interlayer insulating film facing the ohmic electrode is made of SiO x N y , the electrical characteristics such as the insulating property and capacity stability of the interlayer insulating film are compared with the case where the surface is made of SiO 2. Can be prevented.
  • the semiconductor device includes an SiC layer, an ohmic electrode formed on the main surface of the SiC layer, and the ohmic electrode arranged on the main surface of the SiC layer with a space therebetween And an insulating layer positioned between the ohmic electrode and the other electrode.
  • the insulating layer includes an interlayer insulating film for electrically insulating the ohmic electrode and the other electrode, and a barrier layer disposed so as to cover the outer periphery of the interlayer insulating film.
  • the barrier layer is preferably formed from tungsten, tantalum, or an oxide or carbide thereof.
  • the barrier layer disposed so as to cover the outer periphery of the interlayer insulating film is disposed between the interlayer insulating film and the ohmic electrode or source internal wiring. Therefore, the contact between the interlayer insulating film and the ohmic electrode is blocked by the presence of the barrier layer formed of tungsten (W), tantalum (Ta), or an oxide or carbide thereof. For this reason, if a barrier layer is disposed, even in the case where the interlayer insulating film is made of SiO 2 , in the step of alloying (heating) to form the ohmic electrode, Al in the alloy constituting the ohmic electrode And the SiO 2 of the interlayer insulating film does not undergo a reduction reaction.
  • the barrier layer formed of, for example, W or Ta has a function of improving the adhesion between the source internal wiring and the interlayer insulating film, or etching when forming the source internal wiring in a desired pattern when the MOSFET is mounted. It can have a role as a base layer for stopping the process.
  • any heating other than the above-described tungsten, tantalum, oxides or carbides thereof can be used as long as the reaction between the interlayer insulating film and the ohmic electrode can be inhibited when heating at 1200 ° C. or lower. Materials can be used.
  • the semiconductor device of the present invention described above further includes an ultrathin insulating film having a thickness of 30 nm or more and 100 nm or less between the SiC layer and the other electrode, and includes the ultrathin insulating film and the insulating layer and the ohmic electrode. It is preferable that a gap is disposed between them.
  • the ultrathin insulating film is, for example, the gate oxide film 15 in FIG. 47 described above.
  • the gate oxide film 15 is made of SiO 2
  • the ohmic electrode is formed in the alloying (heating) step to form the ohmic electrode.
  • Al in the alloy and SiO 2 in the interlayer insulating film undergo a reduction reaction. That is, there is a possibility that electrical characteristics such as insulation of the gate oxide film are deteriorated.
  • the above-described reduction reaction can be suppressed. That is, it is possible to suppress deterioration of electrical characteristics such as insulation and capacity stability of the gate insulating film and the insulating layer.
  • the semiconductor device of the present invention can suppress deterioration of electrical characteristics in an insulating member.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a MOSFET as a semiconductor device in a first embodiment.
  • 3 is a flowchart showing an outline of a method for manufacturing a MOSFET in the first embodiment.
  • FIG. 6 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the first embodiment.
  • FIG. 6 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the first embodiment.
  • FIG. 6 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the first embodiment.
  • FIG. 6 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the first embodiment.
  • FIG. 6 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the first embodiment.
  • FIG. 6 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the first embodiment.
  • FIG. 6 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the first embodiment.
  • FIG. 6 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the first embodiment.
  • FIG. 6 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing a configuration including a thin layer that connects a source contact electrode and a source internal wiring in the MOSFET as the semiconductor device in the first embodiment.
  • 5 is a schematic cross-sectional view showing a configuration of a MOSFET as a semiconductor device in a second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a configuration of a MOSFET as a semiconductor device in a third embodiment.
  • FIG. FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the third embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the third embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the third embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the third embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the third embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the third embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the third embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a configuration of a MOSFET as a semiconductor device in a fourth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the fourth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the fourth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the fourth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the fourth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the fourth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the fourth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the fourth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a configuration of a MOSFET as a semiconductor device in a fifth embodiment.
  • 10 is a flowchart showing an outline of a method for manufacturing a MOSFET in a fifth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the fifth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the fifth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the fifth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the fifth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the fifth embodiment.
  • FIG. 10 is a schematic cross-sectional view showing a configuration of a MOSFET as a semiconductor device in a sixth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the sixth embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the sixth embodiment.
  • FIG. 10 is a schematic cross sectional view showing a configuration of one MOSFET as a semiconductor device in a seventh embodiment.
  • FIG. 10 is a schematic cross sectional view showing a configuration of one MOSFET as a semiconductor device in a seventh embodiment.
  • FIG. 24 is a schematic cross sectional view showing the configuration of another MOSFET as the semiconductor device in the seventh embodiment.
  • FIG. 24 is a schematic cross sectional view showing the configuration of still another MOSFET as the semiconductor device in the seventh embodiment. It is a schematic sectional drawing which shows the structure of the vertical SiC-MOSFET conventionally used.
  • MOSFET 100 is made of silicon carbide (SiC), and is made of n + SiC substrate 11, which is an n-type (first conductivity type) substrate, and SiC.
  • N ⁇ SiC layer 12 as a semiconductor layer of n type (first conductivity type)
  • a pair of p bodies 13 as second conductivity type regions of p type (second conductivity type)
  • conductivity type N + source region 14 as a high-concentration first conductivity type region of n type (first conductivity type) and p + region as a high concentration second conductivity type region of conductivity type p type (second conductivity type) 18.
  • the n + SiC substrate 11 contains high-concentration n-type impurities (impurities whose conductivity type is n-type), for example, N (nitrogen).
  • N ⁇ SiC layer 12 is formed on one main surface 11A of n + SiC substrate 11 with a thickness of about 10 ⁇ m, for example, and has an n-type conductivity by including an n-type impurity.
  • the n-type impurity contained in the n ⁇ SiC layer 12 is, for example, N (nitrogen) or P (phosphorus), and has a lower concentration than the n-type impurity contained in the n + SiC substrate 11, for example, 1 ⁇ 10 16 cm ⁇ 3. Contained at a concentration of
  • a main surface means the main surface with the largest area among surfaces here.
  • the pair of p bodies 13 includes a second main surface 12B that is a main surface opposite to the first main surface 12A that is the main surface on the n + SiC substrate 11 side in the n ⁇ SiC layer 12.
  • the conductivity type is p-type (second conductivity type).
  • the p-type impurity contained in the p body 13 is, for example, Al, B (boron) or the like, and has a lower concentration than the n-type impurity contained in the n + SiC substrate 11, for example, 1 ⁇ 10 16 cm ⁇ 3 to 5 ⁇ 10. It is contained at a concentration of 18 cm ⁇ 3 .
  • N + source region 14 includes second main surface 12 ⁇ / b > B and is formed inside each of the pair of p bodies 13 so as to be surrounded by p body 13.
  • the n + source region 14 contains an n-type impurity such as P (phosphorus) at a higher concentration than the n-type impurity contained in the n ⁇ SiC layer 12, for example, a concentration of 1 ⁇ 10 20 cm ⁇ 3 .
  • p + region 18 when viewed from n + source region 14 formed in the interior of one of the p body 13 of the pair of p bodies 13, the n + source region 14 formed within the other p body 13 Is formed so as to include the second main surface 12B on the opposite side.
  • the p + region 18 contains p-type impurities such as Al and B at a higher concentration than the p-type impurities contained in the p body 13, for example, 1 ⁇ 10 20 cm ⁇ 3 .
  • MOSFET 1 includes a gate oxide film 15 as a gate insulating film (ultra-thin insulating film), a gate electrode 17, a pair of source contact electrodes 16, a source internal wiring 27, and a drain electrode. 55 and an interlayer insulating film 210.
  • a gate oxide film 15 is in contact with second main surface 12B, n so as to extend from the upper surface of one n + source region 14 to the top surface of the other n + source regions 14 - SiC layer 12 It is formed on second main surface 12B and is made of, for example, silicon dioxide (SiO 2 ).
  • Gate electrode 17 is arranged in contact with gate oxide film 15 so as to extend from one n + source region 14 to the other n + source region 14.
  • the gate electrode 17 is made of a conductor such as polysilicon.
  • Source contact electrode 16 extends from each of the pair of n + source regions 14 to p + region 18 in a direction away from gate oxide film 15 and is in contact with second main surface 12B. ing.
  • the source contact electrode 16 is an alloy containing Ti, Al, and Si. More specifically, the source contact electrode 16 is an alloy containing Ti, Al, Si, and C (carbon) and made of impurities such as the balance O (oxygen).
  • the source contact electrode 16 is an ohmic contact electrode that is in good ohmic contact with the n ⁇ SiC layer 12, the n + source region 14, and the p + region 18.
  • the source contact electrode 16 is disposed so as to extend in contact with both the n + source region 14 and the p + region 18.
  • MOSFET 100 in this embodiment is a semiconductor device that can reduce the number of manufacturing steps and improve the degree of integration.
  • the source internal wiring 27 is disposed so as to connect from one source contact electrode 16 to the other source contact electrode 16 disposed adjacent to the source contact electrode 16 of the pair of source contact electrodes 16.
  • the source internal wiring 27 is formed as a metal wiring made of, for example, Al.
  • the drain electrode 55 is formed in contact with the other main surface 11B, which is the main surface opposite to the one main surface 11A, which is the main surface on the side where the n ⁇ SiC layer 12 is formed in the n + SiC substrate 11.
  • the drain electrode 55 may be made of, for example, the same material containing Ti, Al, and Si as the source contact electrode 16, or other materials capable of ohmic contact with the n + SiC substrate 11, such as Ni and NiSi. It may be. Thereby, the drain electrode 55 is electrically connected to the n + SiC substrate 11.
  • a drain contact electrode 56 is formed on the main surface of the drain electrode 55 opposite to the n + SiC substrate 11 (below the drain electrode 55 in FIG. 1).
  • the drain contact electrode 56 is a thin film electrode made of, for example, Al or Au.
  • the interlayer insulating film 210 electrically insulates the source internal wiring 27 and the gate electrode 17 arranged so as to connect, for example, one source contact electrode 16 and the other source contact electrode 16 of FIG. And has a function of protecting the MOSFET 100.
  • This interlayer insulating film 210 is made of, for example, Si x N y (silicon nitride).
  • the interlayer insulating film 210 is disposed so as to fill between the gate electrode 17 and the source internal wiring 27 so as to cover the outer peripheral portion of the gate electrode 17. As shown in FIG. 1, the interlayer insulating film 210 is in contact with the outer peripheral portion of the gate electrode 17 and is in contact with the inner peripheral portion of the source internal wiring 27. Further, the interlayer insulating film 210 in FIG. 1 is also disposed in a region sandwiched between the source contact electrode 16 and the gate oxide film 15 in the direction in which the main surface of the source contact electrode 16 extends (left and right direction in FIG. 1). Yes. With such a configuration, for example, the interlayer insulating film 210 can suppress a current from flowing from the source internal wiring 27 to the gate electrode 17.
  • the interlayer insulating film 210 does not contain oxygen atoms (O). Therefore, for example, as in the above-described MOSFET 1000 of FIG. 47, Al in the source contact electrode 16 is heated to about 1000 ° C. in order to alloy the source contact electrode 16 so that the gate oxide film 15 and the interlayer insulating film 21 are formed. It can suppress reacting with the oxygen atom in it. Specifically, for example, an interlayer insulating film 210 made of Si x N y is sandwiched between the source contact electrode 16 and the gate oxide film 15. Therefore, a heat treatment (alloying process) is performed at 1200 ° C.
  • the reduction reaction of the interlayer insulating film 210 due to the metal material constituting the source contact electrode 16 does not occur. This is because the source contact electrode 16 is not in contact with a member containing oxygen atoms.
  • the gate oxide film 15 made of SiO 2 containing oxygen atoms is discontinuous with the source contact electrode 16 because the interlayer insulating film 210 made of Si x N y is sandwiched. For this reason, reaction of Al of the source contact electrode 16 and the gate oxide film 15 is suppressed by the heat treatment.
  • the provision of the interlayer insulating film 210 made of Si x N y suppresses the gate oxide film 15 from reacting with Al when the source contact electrode 16 is heated to 1200 ° C. or lower in order to be alloyed. be able to. That is, it is possible to suppress deterioration of electrical characteristics such as insulation and capacity stability due to the reaction of the gate oxide film 15. For this reason, a high-quality and stable semiconductor device can be provided.
  • the interlayer insulating film 210 and the source internal wiring 27 have a remarkably larger thickness in the vertical direction at the left and right end portions than the thickness at the central portion.
  • the corners of the interlayer insulating film 210 and the source internal wiring 27 are square. However, these are for facilitating understanding of the figure, and in fact, the thickness of the interlayer insulating film 210 and the source internal wiring is substantially uniform over the entire horizontal direction in the cross-sectional view of FIG. Further, the corners of the interlayer insulating film 210 and the source internal wiring 27 are rounded. The same applies to the following drawings.
  • a plurality of MOSFETs 100 shown in FIG. 1 are arranged in the extending direction of the main surface of the n + SiC substrate 11 and the n ⁇ SiC layer 12 to constitute a semiconductor device.
  • FIG. 1 only the minimum structural unit of one MOSFET 100 is depicted. Therefore, the left end and the right end in FIG. 1 are omitted, and actually, a plurality of MOSFETs 100 in FIG. 1 are arranged in four directions. The same applies to the following drawings.
  • MOSFET 100 in a state where a voltage equal to or lower than a threshold value is applied to gate electrode 17, that is, in an off state, a reverse bias is applied between p body 13 and n ⁇ SiC layer 12 located immediately below gate oxide film 15. It becomes a non-conductive state.
  • a positive voltage is applied to the gate electrode 17
  • an inversion layer is formed in the channel region in the vicinity of the p body 13 in contact with the gate oxide film 15.
  • n + source region 14 and n ⁇ SiC layer 12 are electrically connected, and a current flows between source contact electrode 16 (or source internal wiring 27) and drain electrode 55.
  • a method for manufacturing a MOSFET as a semiconductor device according to the first embodiment which is an embodiment of a method for manufacturing a semiconductor device according to the present invention, will be described.
  • a step (S10) of preparing an SiC substrate is performed.
  • a first conductivity type SiC substrate is prepared.
  • an n + SiC substrate 11 made of, for example, hexagonal SiC and having an n-type conductivity by including an n-type impurity is prepared.
  • a step (S20) of forming an n-type layer is performed.
  • a first conductivity type semiconductor layer is formed on n + SiC substrate 11.
  • n ⁇ SiC layer 12 is formed on one main surface 11A of n + SiC substrate 11 by epitaxial growth.
  • Epitaxial growth can be performed, for example, by a CVD method using a mixed gas of SiH 4 (silane) and C 3 H 8 (propane) as a source gas and using H 2 (hydrogen) gas as a carrier gas.
  • N or P is preferably introduced as the n-type impurity.
  • the n ⁇ SiC layer 12 containing an n-type impurity having a lower concentration than the n-type impurity contained in the n + SiC substrate 11 can be formed.
  • the concentration of the n-type impurity in the n ⁇ SiC layer 12 is preferably 5 ⁇ 10 15 cm ⁇ 3 or more and 5 ⁇ 10 16 cm ⁇ 3 or less.
  • a step of forming a p body is performed.
  • this step (S21) referring to FIG. 4, in the n ⁇ SiC layer 12, the second main surface opposite to the first main surface 12A, which is the main surface on the n + SiC substrate 11 side.
  • a second conductivity type second conductivity type region is formed to include main surface 12B.
  • an oxide film made of SiO 2 is formed on second main surface 12B by, for example, CVD (Chemical Vapor Deposition).
  • CVD Chemical Vapor Deposition
  • exposure and development are performed to form a resist film having an opening in a region corresponding to the shape of p body 13 as a desired second conductivity type region.
  • the oxide film is partially removed by, for example, RIE (Reactive Ion Etching), so that the oxide film having an opening pattern on the n ⁇ SiC layer 12 is removed.
  • a mask layer is formed.
  • a p-type impurity such as Al is ion-implanted into the n ⁇ SiC layer 12 using the mask layer as a mask, thereby forming a p body 13 in the n ⁇ SiC layer 12. Is done.
  • a mask made of SiO 2 is preferably used for the resist exposure and development described above.
  • a step (S22) of forming an n + region is performed.
  • a high concentration first conductivity type region containing a first conductivity type impurity having a concentration higher than that of n ⁇ SiC layer 12 is formed in a region including second main surface 12B in p body 13. Is done.
  • a desired n + source region is obtained in the same procedure as in step (S21).
  • a mask layer having an opening in a region corresponding to the shape of 14 is formed.
  • an n-type impurity such as P is introduced into the n ⁇ SiC layer 12 by ion implantation, whereby the n + source region 14 is formed.
  • a step of forming a p + region is performed.
  • the n + source region 14 formed in one p body 13 of the pair of p bodies 13 is formed in the other p body 13.
  • a high concentration second conductivity type region (p + region 18) is formed on the opposite side to the n + source region 14 so as to include the second main surface 12B.
  • a mask layer having an opening in a region corresponding to the shape of desired p + region 18 is formed by the same procedure as in steps (S21) and (S22).
  • P + region 18 is formed by introducing p-type impurities such as Al and B into the n ⁇ SiC layer 12 by ion implantation.
  • an activation annealing step (S31) is performed.
  • the n ⁇ SiC layer 12 subjected to the ion implantation is heated to, for example, 1700 ° C. or more and 1800 ° C. or less in an Ar (argon) atmosphere and held for about 30 minutes.
  • Activation annealing which is a heat treatment for activating the introduced impurities and restoring crystallinity, is performed.
  • a step (S32) of cleaning the surface is performed.
  • this step (S32) as shown in FIG. 4, the second main surface 12B of the n ⁇ SiC layer 12 in which the p body 13, the n + source region 14 and the p + region 18 are formed and the n + SiC substrate 11 are formed.
  • the heating temperature is set to 1100 ° C. to 1300 ° C. in a dry oxygen atmosphere, and the holding time is set to about 10 minutes.
  • a thermal oxide film is formed by performing heat treatment. Thereafter, the thermal oxide film is removed using buffered hydrofluoric acid to clean the second main surface 12B and the other main surface 11B. Thereafter, it is preferable to perform surface cleaning by performing organic cleaning using an organic solvent, acid cleaning using an acid, RCA cleaning, or the like.
  • a step of forming an ultrathin insulating film (S33) is performed.
  • steps (S10) to (S32) are performed, and n + SiC substrate 11 on which n ⁇ SiC layer 12 including a desired ion implantation region is formed is heated. Oxidized.
  • the thermal oxidation can be performed, for example, by heating the n + SiC substrate 11 to 1100 ° C. or higher and 1300 ° C. or lower in a dry oxygen atmosphere and holding it for about 30 to 60 minutes.
  • an ultrathin insulating film 15A (for example, a thickness of about 30 nm to 100 nm) to be a gate oxide film 15 (see FIG. 1), which is a thermal oxide film of silicon dioxide (SiO 2 ), is formed on the second main surface 12B. It is formed.
  • the thickness of the ultrathin insulating film 15A also corresponds to the dielectric constant of the ultrathin insulating film 15A, but generally the above-mentioned range corresponds to the gate voltage operating range including spikes in the insulated gate transistor.
  • the step of forming the ultrathin insulating film (S33) dry oxidation performed in an oxygen atmosphere as described above may be used.
  • dry oxidation heated in an oxygen atmosphere containing water vapor may be used.
  • pyrogenic oxidation in which hydrogen atoms in water vapor generated during the oxidation of SiC as compared with dry oxidation effectively terminate hydrogen at dangling bonds (unbonded hands in the atoms) at the interface may be used.
  • a step of forming a gate electrode is performed.
  • a gate electrode 17 made of polysilicon is conductor, the other of the n + source region 14 over one n + source region 14
  • the gate oxide film 15 is formed so as to extend to the top and to be in contact with the gate oxide film 15.
  • the polysilicon may contain P or B at a high concentration of about 1 ⁇ 10 20 cm ⁇ 3 .
  • the thickness of the gate electrode 17 is preferably about 300 to 500 nm.
  • the gate electrode 17 so as to extend from one n + source region 14 to the other n + source region 14, it is preferable to use a photolithography technique. Specifically, first, after a resist is applied on the gate electrode 17 formed so as to be in contact with almost the entire surface of the ultrathin insulating film 15A shown in FIG. 5, exposure and development are performed to obtain a desired gate electrode. A resist film is formed in a region corresponding to the shape of 17. Then, using the resist film as a mask, gate electrode 17 and ultrathin insulating film 15A are partially removed by, for example, RIE (Reactive Ion Etching). In this way, the gate electrode 17 and the gate oxide film 15 are formed as shown in FIG. In the region where the gate electrode 17 and the ultrathin insulating film 15A are partially removed, the main surfaces of the n + source region 14 and the p + region 18 are exposed as shown in FIG.
  • RIE Reactive Ion Etching
  • a step (S50) of forming an interlayer insulating film is performed.
  • this step (S50) referring to FIG. 7, for example, an interlayer insulation made of a silicon nitride film (Si x N y ) or a silicon oxynitride film (SiO x N y ) by CVD (Chemical Vapor Deposition).
  • a film 210 is formed.
  • plasma CVD is used to form interlayer insulating film 210 having a thickness of 0.5 ⁇ m to 1.5 ⁇ m, preferably 0.7 ⁇ m to 1.3 ⁇ m, for example, 1.0 ⁇ m.
  • interlayer insulating film 210 shown in FIG. 7 is formed so as to be in contact with the surfaces of p + region 18, n + source region 14 and gate electrode 17.
  • the interlayer insulating film 210 made of either silicon oxyfluoride (SiOF) or silicon oxycarbide (SiOC) instead of the above-described Si x N y or SiO x N y. Play.
  • a step (S60) of opening the source electrode portion is performed.
  • a part of the interlayer insulating film 210 formed in the step (S50) is removed. That is, in the step (S60), the interlayer insulating film 21 formed in the region where the source contact electrode 16 is formed in the subsequent step is removed.
  • FIG. 8 it is preferable to remove interlayer insulating film 210 in contact with each n + source region 14 and p + region 18 formed in a pair of p bodies 13. This is because the source contact electrode 16 is formed so as to extend from the n + source region 14 so as to be in contact with the p + region 18 disposed so as to be in contact therewith, as shown in FIG.
  • the step (S60) is performed according to the following procedure.
  • a resist is applied on interlayer insulating film 210 formed so as to be in contact with the surfaces of p + region 18, n + source region 14 and gate electrode 17 shown in FIG. 7, and then exposure and development are performed.
  • a resist film having an opening in a region corresponding to a desired shape of interlayer insulating film 210 is formed.
  • interlayer insulating film 210 is partially removed by, for example, RIE (Reactive Ion Etching). In this way, an opening pattern of the interlayer insulating film 210 is formed in a desired region. Referring to FIG. 8, pattern of mask layer 5 is formed so as to be in contact with remaining interlayer insulating film 210.
  • a step of forming a source ohmic electrode is performed.
  • a Ti film made of Ti, an Al film made of Al and an Si film made of Si for forming a source ohmic electrode are formed in this order.
  • the above-described Ti film, Al film, and Si film are formed on the mask layer 5 formed so as to be in contact with each other by, for example, sputtering.
  • the above-described Ti film, Al film and Si film on the mask layer 5 are also removed. Therefore, as shown in FIG. 9, only the Si film on the main surface of p + region 18 and the main surface of n + source region 14 remains. In this way, as shown in the source contact electrode 16 of FIG. 10, the Ti film, the Al film, and the Si film are formed only on the main surface of the p + region 18 and the main surface of the n + source region 14.
  • FIG. 9 a laminated structure composed of a Ti film made of Ti, an Al film made of Al, and a Si film made of Si for constituting a source ohmic electrode is depicted as a source contact electrode 16.
  • a step (S80) of forming a back surface drain electrode is performed.
  • the Ni layer or NiSi layer as the back electrode pad is formed on the main surface of the n + SiC substrate 11 opposite to the side on which the n ⁇ SiC layer 12 is formed as the drain electrode 55. Is done.
  • n + SiC substrate 11 has a main surface on the side where n ⁇ SiC layer 12 is formed and the other main surface opposite to main surface 11A.
  • the above-described Ni layer or NiSi layer is deposited by sputtering, for example, to form a back electrode pad (drain electrode 55).
  • the drain electrode 55 made of these materials is satisfactorily ohmic-bonded to the n + SiC substrate 11.
  • the thickness of the Ni layer is preferably 30 nm or more and 200 nm or less, and more preferably 50 nm or more and 150 nm or less, for example, 100 nm.
  • the thickness of the NiSi layer is preferably 30 nm or more and 200 nm or less, and more preferably 50 nm or more and 150 nm or less, for example, 100 nm.
  • drain contact electrode 56 is formed on the lower main surface of the drain electrode 55 as shown in FIG.
  • the drain contact electrode 56 is preferably a thin film made of, for example, Al or Au and having a thickness of about 1 ⁇ m.
  • the drain contact electrode 56 is preferably formed by, for example, vapor deposition by sputtering.
  • the drain electrode 55 can be stably formed into a low-resistance ohmic drain electrode. Note that the order of performing the step (S70) and the step (S80) may be reversed.
  • the process (S90) which performs an alloying process is implemented.
  • the n + SiC substrate 11 in which the above procedure is completed is 550 ° C. or higher and 1200 ° C. or lower, preferably 900 ° C. or higher, in an inert gas atmosphere such as Ar. It is heated to a temperature of 1100 ° C. or lower, for example 1000 ° C., and held for 10 minutes or shorter, for example 1 minute.
  • Ti, Al and Si contained in the Ti film, Al film and Si film, and C contained in the n ⁇ SiC layer 12 or the n + SiC substrate 11 are alloyed.
  • the source contact electrode 16 is formed. Simultaneously with the heating, the n + SiC substrate 11 contacts the other main surface 11B, which is the main surface opposite to the main surface 11A, which is the main surface on the side where the n ⁇ SiC layer 12 is formed. A drain electrode 55 to be disposed is formed.
  • the n + SiC substrate 11 is preferably heated in a mixed gas of an inert gas, particularly Ar or / and N 2 and hydrogen. Thereby, it is possible to manufacture source contact electrode 16 in which the contact resistance with n + source region 14 and p body 13 (p + region 18) is more reliably reduced while suppressing the manufacturing cost.
  • the reaction between Al in the source contact electrode 16 and the interlayer insulating film 210 is performed.
  • the composition change of the interlayer insulating film 210 due to the above, and the composition change of the gate oxide film 15 due to the reaction between the Al and the oxygen atoms in the gate oxide film 15 are suppressed.
  • source internal wiring 27 which is a metal layer for electrically connecting one source contact electrode 16 and the other source contact electrode 16 of the pair, is formed.
  • source internal wiring 27 as a thin film layer made of Al is formed by sputtering, for example, on almost the entire surface of source contact electrode 16 and interlayer insulating film 210.
  • a Ti thin film layer is formed on almost the entire surface of source contact electrode 16 and interlayer insulating film 210. May be. In this way, the thin Ti layer 6 improves the adhesion of the source internal wiring 27 to the source contact electrode 16.
  • the material of the thin layer 6 for example, Ta (tantalum) or W (tungsten) may be used instead of Ti.
  • Ta and W improve the adhesion of the source internal wiring 27 to the source contact electrode 16 in the same manner as Ti.
  • the MOSFET 100 when the MOSFET 100 is mounted, it can serve as a base layer for stopping etching when the source internal wiring 27 is formed in a desired pattern.
  • the above-described thin layer 6 may be composed of any one selected from the group consisting of Cr (chromium), Mo (molybdenum), Nb (niobium), and V (vanadium). Whichever material is used, the thin layer 6 improves the adhesion between the source contact electrode 16 and the source internal wiring 27 described above, and at the same time sufficiently lowers the electric resistance in the source region, or resists electromigration. Can be high.
  • MOSFET 200 of FIG. 12 described above is different from the MOSFET 100 only in that the thin layer 6 is provided, and the other configurations are all the same as those of the MOSFET 100.
  • the thickness of the Ti thin film layer is preferably 30 nm or more and 70 nm or less, and more preferably 40 nm or more and 60 nm or less, for example, 50 nm. Is particularly preferred.
  • the Al thin film layer preferably has a thickness of 2 ⁇ m or more.
  • MOSFET 100 shown in FIG. 11 (FIG. 1) is formed.
  • a passivation film is formed and a mounting process is performed as a post process.
  • the passivation film is formed as a protective film that finally protects the MOSFET 100 from the outside when one component of the MOSFET 100 is formed.
  • MOSFET 300 in the second embodiment has basically the same configuration as MOSFET 100.
  • the gate oxide film 15 in the MOSFET 100 is a gate insulating film 150 formed of Si x N y .
  • the gate insulating film 150 does not contain oxygen atoms, for example, even when the gate insulating film 150 is in contact with the source contact electrode 16 in a part of the region, the gate insulating film 150 reacts with the source contact electrode 16 during heat treatment. Will not change. For this reason, the interlayer insulating film 210 of the MOSFET 300 is not disposed in a region sandwiched between the gate oxide film 15 and the source contact electrode 16 like the interlayer insulating film 210 of the MOSFET 100. Therefore, the gate insulating film 150 of the MOSFET 300 is longer in the left-right direction in FIG.
  • MOSFET 300 having the above configuration also has the same effect as the MOSFET 100 and the MOSFET 200. A method for manufacturing MOSFET 300 in the second embodiment will be described below.
  • MOSFET 300 in the second embodiment can be described with reference to the flowchart of FIG. However, there are some differences in the detailed procedure in each process.
  • Steps (S10) to (S32) in the flowchart of FIG. 2 are the same as those in the first embodiment.
  • Si x N ultrathin insulating in place of the SiO2 in the first embodiment in the step (S33) of forming an ultrathin insulating film, Si x N ultrathin insulating consists y film 15A (ultrathin insulating film 5 15A). A part of the ultrathin insulating film 15A is removed by a later process to form the gate insulating film 150.
  • the gate electrode 17 is formed as in the first embodiment.
  • the gate insulating film 150 is subjected to a photolithography technique or the like, and the length of the gate insulating film 150 in the direction along the second main surface 12B (the left-right direction in FIG. 15) is set to a desired value.
  • the above processing is not necessarily performed, and the state shown in FIG. This is because in the case of the MOSFET 300, the length in the left-right direction is equal to an interlayer insulating film to be formed later.
  • the step of forming the interlayer insulating film (S50) referring to FIG. 16, after the interlayer insulating film 210 is formed as in the first embodiment, the step of opening the source electrode portion (S60) is performed. Processing similar to that in the first mode is performed. In this way, referring to FIG. 17, the interlayer insulating film 210 and the gate insulating film 150 can be processed so that the lengths in the left-right direction are equal.
  • Step (S70) can be described with reference to FIG. 18, and is the same mode as FIG. 9 of the first embodiment.
  • Step (S80) can be described with reference to FIG. 19, and is the same mode as FIG. 10 of the first embodiment.
  • the step (S90) can be described with reference to FIG. 18 and FIG. 19, and is the same mode as FIG. 9 and FIG. 10 of the first embodiment.
  • Step (S100) can be described with reference to FIG. 20, and is the same mode as FIG. 11 of the first embodiment.
  • the second embodiment is different from the first embodiment only in each point described above.
  • the configuration, conditions, procedures, effects, and the like not described above for the second embodiment are all in accordance with the first embodiment.
  • MOSFET 400 in the third embodiment has basically the same configuration as MOSFET 100.
  • the interlayer insulating film has a double structure of the interlayer insulating film 21 made of SiO 2 and the interlayer insulating film 210 made of Si x N y .
  • the interlayer insulating film 21 made of SiO 2 is disposed inside the interlayer insulating film having a double structure so as to cover the outer peripheral portion of the gate electrode 17, and the interlayer insulating film An interlayer insulating film 210 made of Si x N y is disposed so as to cover the outer peripheral portion of 21.
  • the gate oxide film 15 of the MOSFET 400 is made of SiO 2 .
  • the length of the gate oxide film 15 in the left-right direction is equal to the length of the gate electrode 17 in the left-right direction.
  • An end portion of the gate oxide film 15 in the left-right direction is surrounded by an interlayer insulating film 21, and a region where the interlayer insulating film 21 surrounds the gate oxide film 15 is surrounded by an interlayer insulating film 210.
  • the interlayer insulating film 21 and the gate oxide film 15 made of SiO 2 are not in contact with the source contact electrode 16 in which Al is alloyed. That is, since the interlayer insulating film 210 made of Si x N y is disposed, the interlayer insulating film 21 (gate oxide film 15) and the source contact electrode 16 are discontinuous. For this reason, the MOSFET 400 having the above-described configuration also has the same effect as the MOSFET 100 and the like. Hereinafter, a method for manufacturing MOSFET 400 in the third embodiment will be described.
  • a method of manufacturing MOSFET 400 in the third embodiment can be described with reference to the flowchart of FIG. However, there are some differences in the detailed procedure in each process.
  • the steps (S10) to (S40) in the flowchart of FIG. 2 are the same as those in the first embodiment. In this way, the gate oxide film 15 and the gate electrode 17 can be processed so that the lengths in the left-right direction are equal.
  • interlayer insulating film 21 made of SiO 2 is formed by, for example, CVD (Chemical Vapor Deposition), in particular, plasma CVD.
  • CVD Chemical Vapor Deposition
  • the This thickness is 0.5 ⁇ m or more and 1.5 ⁇ m or less, preferably 0.8 ⁇ m or more and 1.2 ⁇ m or less, for example, 1.0 ⁇ m.
  • a step of opening the source electrode portion (S60) is performed.
  • a part of the interlayer insulating film 21 formed in the step (S50) is removed.
  • the mode shown in FIG. 23 is obtained.
  • interlayer insulating film 210 made of Si x N y is formed in contact with the surfaces of p + region 18, n + source region 14 and interlayer insulating film 21.
  • interlayer insulating film 210 formed here an interlayer insulating film 210 made of any of the above-described SiO x N y , SiOF, or SiOC may be formed instead of Si x N y .
  • This thickness is 0.1 ⁇ m or more and 1.0 ⁇ m or less, preferably 0.2 ⁇ m or more and 0.6 ⁇ m or less, for example 0.3 ⁇ m.
  • the step of opening the source electrode part again (S60) is performed.
  • a part of the interlayer insulating film 210 is removed using the pattern of the mask layer 5 as a mask.
  • the pattern of mask layer 5 is left so as to be in contact with remaining interlayer insulating film 210.
  • Step (S70) can be described with reference to FIG. 25, and is the same mode as FIG. 9 of the first embodiment.
  • Step (S80) can be described with reference to FIG. 26, and is the same mode as FIG. 10 of the first embodiment.
  • the step (S90) can be described with reference to FIG. 25 and FIG. 26, and is the same mode as FIG. 9 and FIG. 10 of the first embodiment.
  • Step (S100) can be described with reference to FIG. 27, and is the same mode as FIG. 11 of the first embodiment.
  • the third embodiment is different from the first embodiment only in each point described above. That is, the configuration, conditions, procedures, effects, and the like that have not been described above for the third embodiment are all in accordance with the first embodiment.
  • MOSFET 500 in the fourth embodiment has basically the same configuration as MOSFET 400.
  • the length of gate oxide film 15 in the left-right direction is longer than that of gate electrode 17, and is equal to the length of interlayer insulating film 21 made of SiO 2 in the left-right direction. Yes.
  • the left and right ends of the gate oxide film 15 are in contact with the interlayer insulating film 210 made of Si x N y .
  • MOSFET 500 differs from MOSFET 400 only in the length in the left-right direction of gate oxide film 15 described above. That is, in the MOSFET 500, the interlayer insulating film 21 and the gate oxide film 15 made of SiO 2 are not in contact with the source contact electrode 16 in which Al is alloyed. That is, since the interlayer insulating film 210 made of Si x N y is disposed, the interlayer insulating film 21 (gate oxide film 15) and the source contact electrode 16 are discontinuous. For this reason, the MOSFET 500 having the above-described configuration also has the same effect as the MOSFET 100 and the like.
  • a method of manufacturing MOSFET 500 in the fourth embodiment can be described with reference to the flowchart of FIG. Steps (S10) to (S40) in the flowchart of FIG. 2 are the same as those in the second embodiment. That is, it is not necessary to process the gate oxide film 15 to a desired length in the step (S40). However, the gate insulating film 150 made of Si x N y is formed in the second embodiment, but differs in that the gate oxide film 15 made of SiO 2 is formed in the fourth embodiment.
  • interlayer insulating film 21 made of SiO 2 is formed as in the third embodiment.
  • a step of opening the source electrode portion (S60) is performed.
  • ultrathin insulating film 15A and interlayer insulating film 21 formed so as to be in contact with n + source region 14 and p + region 18 are referred to.
  • the ultrathin insulating film 15A becomes the gate oxide film 15.
  • the interlayer insulating film 21 and the gate oxide film 15 can be processed so that the lengths in the left-right direction are equal.
  • step (S50) and step (S60) again mask layer 5 is brought into contact with remaining interlayer insulating film 210 with reference to FIG. Pattern is formed.
  • Step (S70) can be described with reference to FIG. 32, and is the same mode as FIG. 9 of the first embodiment.
  • Step (S80) can be described with reference to FIG. 33, and is the same mode as FIG. 10 of the first embodiment.
  • the step (S90) can be described with reference to FIG. 32 and FIG. 33, and is the same mode as FIG. 9 and FIG. 10 of the first embodiment.
  • Step (S100) can be described with reference to FIG. 34, and is the same mode as FIG. 11 of the first embodiment.
  • the fourth embodiment is different from the first embodiment only in each point described above.
  • the configuration, conditions, procedures, effects, and the like that have not been described above for the fourth embodiment are all in accordance with the first embodiment.
  • MOSFET 600 in the fifth embodiment has basically the same configuration as the MOSFET in each of the embodiments described above.
  • the barrier layer 60 is disposed so as to cover the outer periphery of the interlayer insulating film 210 made of Si x N y .
  • the barrier layer 60 is also disposed between the source contact electrode 16 and the gate oxide film 15.
  • the MOSFET 600 is different from the other MOSFETs described above.
  • Barrier layer 60 is similar to interlayer insulating film 210 (interlayer insulating film 21), for example, source internal wiring 27 and gate arranged to connect one source contact electrode 16 and the other source contact electrode 16 in FIG. It has a function of electrically insulating the electrode 17 and protecting the MOSFET 600.
  • the barrier layer 60 has a function of improving the adhesion between the source internal wiring 27 and the interlayer insulating film 210 as in the thin layer 6 of FIG. It can have a role as a base layer for stopping etching in forming a pattern.
  • the barrier layer 60 is preferably made of, for example, Ta (tantalum), W (tungsten), or an oxide or carbide thereof.
  • the MOSFET 600 having the above configuration also has a configuration in which SiO 2 and the alloyed source contact electrode 16 are not in contact with each other. For this reason, the same effects as those of the MOSFETs of the respective embodiments described above are obtained. In addition to the effect, the effect due to the presence of the barrier layer 60 described above is added.
  • the method for manufacturing MOSFET 600 in the fifth embodiment can be described with reference to the flowchart of FIG.
  • the flowchart of FIG. 36 is basically the same as the flowchart of FIG. However, the flowchart of FIG. 36 includes a step of forming a barrier layer (S65) between the step of opening the source electrode portion (S60) and the step of forming the source ohmic electrode (S70).
  • gate oxide film 15 is an oxide film made of SiO 2 , and the length of gate oxide film 15 in the left-right direction is longer than the length of gate electrode 17 in the left-right direction. Equal to the horizontal length of For this reason, for example, in the step of opening the source electrode portion (S60) as in the second embodiment, it is preferable to remove part of the gate oxide film 15 at the same time when removing part of the interlayer insulating film 210. .
  • the resist for example, mask layer 5 in FIG. 8 used for removing a part of interlayer insulating film 210 and gate oxide film 15 in the step (S60) is used in a later step. It is preferably removed before proceeding.
  • the end portions of the gate oxide film 15 are surrounded so as to be in contact with the main surfaces of the p + region 18 and the n + source region 14, and the interlayer A barrier layer 60 is formed so as to cover the outer periphery of the insulating film 210.
  • the thickness of the barrier layer 60 is preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less, and more preferably 0.05 ⁇ m or more and 0.2 ⁇ m or less, for example, 0.1 ⁇ m.
  • barrier layer 60 is partially removed by, for example, RIE. Specifically, referring to FIG. 38, barrier layer 60 formed so as to be in contact with p + region 18 and n + source region 14 is removed. Then, the pattern of the mask layer 5 is left so as to contact the remaining barrier layer 60.
  • a step of forming a source ohmic electrode is performed.
  • the source contact electrode 16 similar to that in each of the above-described embodiments is formed.
  • the source contact electrode 16 similar to that in each of the above-described embodiments is formed.
  • the Ti film, Al film, and Si film described above are formed on the mask layer 5 formed so as to be in contact with each other by, for example, sputtering. Thereafter, if the mask layer 5 is removed, the above-described Ti film, Al film and Si film on the mask layer 5 are also removed.
  • the Ti film, the Al film, and the Si film are formed only on the main surface of the p + region 18 and the main surface of the n + source region 14.
  • a laminated structure composed of a Ti film made of Ti, an Al film made of Al, and an Si film made of Si for forming a source ohmic electrode is used as the source contact electrode 16. Describes.
  • the fifth embodiment is different from the first embodiment only in each point described above.
  • the configurations, conditions, procedures, effects, and the like that have not been described above for the fifth embodiment are all in accordance with the first embodiment.
  • MOSFET 700 in the sixth embodiment has basically the same configuration as MOSFET 600. However, in the MOSFET 700, the source contact electrode 16 and the barrier layer 60 are discontinuous, and a gap 32 exists between them. MOSFET 700 differs from MOSFET 600 only in this respect.
  • the width of the gap 32 (the width of the gap 32 in the direction along the main surface of the n + SiC substrate) is preferably 0.1 ⁇ m or more and 1 ⁇ m or less, for example. This is due to the following reasons. That is, normally, since the insulated gate transistor as described above is arranged in a cell structure having a lateral width of about 10 ⁇ m, for example, the proportion occupied by the gap 32 which is not the operation region is desirably 1 ⁇ m or less. In consideration of the processing accuracy in the etching process for forming the gate oxide film 15 and the like, the width of the gap 32 is desirably 0.1 ⁇ m or more.
  • MOSFET 700 in the sixth embodiment can be described with reference to the flowchart of FIG.
  • the manufacturing method of the MOSFET 700 is different from that of the MOSFET 600 in the step of forming a source ohmic electrode (S70).
  • a source ohmic electrode As described above, in the method of manufacturing MOSFET 600, it is preferable to perform lift-off in step (S70) using mask layer 5 formed in order to contact barrier layer 60 in step (S65).
  • mask layer 5 remaining on barrier layer 60 is removed in step (S65), and barrier layer 60 and a part of the main surface of n + source region 14 are removed in step (S70).
  • the source contact electrode 16 is preferably formed using a new mask layer 7 formed so as to cover the surface.
  • n + source region 14 Exposure and development are performed so that a resist film is formed at a certain distance from the outer frame of the barrier layer 60 on the surface.
  • This resist film is the mask layer 7 shown in FIG.
  • a Ti film, an Al film, and an Si film are formed on the upper surface of the mask layer 7 in FIG. 42 and on the exposed surfaces of the n + source region 14 and the p + region 18 in the same manner as the above-described embodiments. For example, it is formed by sputtering.
  • the sixth embodiment is different from the fifth embodiment only in each point described above. That is, the configuration, conditions, procedures, effects, and the like not described above for the sixth embodiment are all in accordance with the fifth embodiment.
  • MOSFET 800 according to the seventh embodiment basically has the same mode as MOSFET 600 with reference to FIG. However, in MOSFET 800, for example, interlayer insulating film 21 made of SiO 2 is used instead of interlayer insulating film 210 made of Si x N y . MOSFET 800 differs from MOSFET 600 only in the above points. Similarly, with reference to FIG. 45, MOSFET 900 according to the seventh embodiment basically has the same mode as MOSFET 700. However, in MOSFET 800, for example, interlayer insulating film 21 made of SiO 2 is used instead of interlayer insulating film 210 made of Si x N y . MOSFET 900 differs from MOSFET 700 only in the above points.
  • the MOSFETs 800 and 900 also include the interlayer insulating film 21 and the gate oxide film 15 made of SiO 2 because the barrier layer 60 is sandwiched between the source contact electrode 16 and the interlayer insulating film 21 and the gate oxide film 15. Even in this case, the reduction reaction between Al and oxygen atoms in the source contact electrode 16 can be suppressed.
  • the barrier layer is not provided, and the interlayer insulating film 21 and the gate oxide film 15 made of SiO 2 are used.
  • the source contact electrode 16 and the gate oxide film 15 are the same as the MOSFET 700 described above.
  • a configuration in which a gap 32 is provided between the two is also conceivable. Even in this case, the presence of the gap 32 can suppress the reduction reaction between oxygen atoms and Al in the gate oxide film 15 and the interlayer insulating film 21 due to heating when the source contact electrode 16 is alloyed.
  • the MOSFET manufacturing method of the seventh embodiment is formed by appropriately combining the MOSFET manufacturing methods of the above-described embodiments.
  • the seventh embodiment is different from the above-described embodiments only in the points described above.
  • the present invention is particularly excellent as a technique for suppressing a reaction between an alloyed electrode capable of contacting both an n-type SiC region and a p-type SiC region and an oxide film.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 絶縁性の部材における電気特性の劣化を抑制することができる構成を有する半導体装置を提供する。nSiC層(12)と、nSiC層(12)の主表面上に形成されたソースコンタクト電極(16)と、nSiC層(12)の主表面上においてソースコンタクト電極(16)と間隔を隔てて配置されたゲート電極(17)と、ソースコンタクト電極(16)とゲート電極(17)との間に位置する層間絶縁膜(210)とを備える。ソースコンタクト電極(16)と層間絶縁膜(210)とが隣接した状態で1200℃以下の加熱を行った場合での、層間絶縁膜(210)における電気抵抗の低下率が5%以下である。

Description

半導体装置
 本発明は、半導体装置に関するものであり、より特定的には、層間の絶縁性を保持することが可能な半導体装置に関するものである。
 大電力を取り扱うための半導体装置は、一般にパワーデバイスと呼ばれている。大電力を取り扱うためには、半導体装置には高耐圧化、低損失化、高温環境下での使用などを可能とすることが望まれる。このため近年、半導体装置を構成する材料として炭化珪素(SiC)の採用が進められつつある。SiCは、従来から半導体装置を構成する材料として広く使用されている珪素(Si)に比べてバンドギャップが大きいワイドバンドギャップ半導体である。そのため、半導体装置を構成する材料としてSiCを採用することにより、半導体装置の高耐圧化、オン抵抗の低減などを達成することができる。また、SiCを材料として採用した半導体装置は、Siを材料として採用した半導体装置に比べて、高温環境下で使用された場合の特性の低下が小さいという利点も有している。
 パワーデバイスのなかでも特に、スイッチング速度が速く、低電圧領域での変換効率が高い縦型SiC-MOSFETは、たとえばハイブリッドカーなどに用いられる電力変換機器など特に高いスイッチング特性を要する大型機械用の半導体装置としての利用が効果的である。
 しかし、SiCを半導体装置の素材として採用した場合、Siを半導体装置の素材として採用した場合に比べて、n型領域およびp型領域と、当該n型領域やp型領域と接触するように形成される電極との間に接触抵抗の低いオーミック接合を形成することは容易ではないという問題があった。具体的には、たとえばSiを半導体装置の素材として採用した場合には、電極を形成するにあたりたとえばAl(アルミニウム)を用いて比較的低温で熱処理すればよい。このようにすれば、SiとAlとは良好にオーミック接合される。しかしSiCを半導体装置の素材として採用した場合、上述したSiを半導体装置の素材として採用した場合に比べてオーミック接合を形成することが難しい。
 このため従来から、SiCを半導体装置の素材として採用する場合にはたとえばNi(ニッケル)と当該SiCとを接触させた状態で比較的高温(たとえば約1000℃)で熱処理することによる接合方法が用いられている。つまり上記のように熱処理することにより、NiとSiCのSi原子とが合金化する。この合金化によりNiとSiCとが良好にオーミック接合される。このように、n型不純物(導電型がn型である不純物)を含むn型SiC領域と接触する電極の材料としてはNi(ニッケル)、p型不純物(導電型がp型である不純物)を含むp型SiC領域と接触する電極の材料としてはTi(チタン)/Al(アルミニウム)を採用することにより、接触抵抗を低減可能であることが知られている(たとえば、谷本 智、外4名、「SiCデバイスのオーミックコンタクト形成技術」、電子情報通信学会論文誌、社団法人電子情報通信学会、2003年4月、Vol.J86-C、No.4、p359-367(非特許文献1)参照)。
谷本 智、外4名、「SiCデバイスのオーミックコンタクト形成技術」、電子情報通信学会論文誌、社団法人電子情報通信学会、2003年4月、Vol.J86-C、No.4、p359-367
 上述のように、電極と接触する領域がn型SiC領域であるかp型SiC領域であるかに応じて、電極を構成する材料を適切に選択することにより、半導体装置の素材としてSiCを採用した場合でも、n型領域およびp型領域と電極との接触抵抗を低減することができる。しかし、n型領域に接触する電極を構成する材料とp型領域に接触する電極を構成する材料とが異なる場合、これらの電極を形成する複数の工程が必要となり、製造工程の工程数が増加する。その結果、半導体装置の製造コストが上昇するという問題を生じる。また、n型領域に接触する電極を構成する材料とp型領域に接触する電極を構成する材料とが異なることは、半導体装置の集積度の向上を阻害する要因ともなる。
 そこで上述した問題を解決する手段として、近年、電極を構成する材料としてTi、AlおよびSiを含有する(つまりTi、AlおよびSiが合金化された)オーミックコンタクト電極を用いることが検討されている。Ti、AlおよびSiが合金化されたオーミックコンタクト電極は、n型SiC領域およびp型SiC領域のいずれとも接触抵抗を十分に抑制しつつ接触可能である。
 図47は、従来から用いられる縦型SiC-MOSFETの構造の一例を示す概略断面図である。従来のMOSFET1000は、図47に示すように、たとえば炭化珪素(SiC)からなり、導電型がn型(第1導電型)の基板であるnSiC基板11と、SiCからなり、導電型がn型(第1導電型)の半導体層としてのnSiC層12と、導電型がp型(第2導電型)の第2導電型領域としての一対のpボディ13と、導電型がn型(第1導電型)の高濃度第1導電型領域としてのnソース領域14と、導電型がp型(第2導電型)の高濃度第2導電型領域としてのp領域18とを備えている。さらに図47を参照して、MOSFET1000は、ゲート絶縁膜としてのゲート酸化膜15と、ゲート電極17とドレイン電極55と、1対のソースコンタクト電極16とを備えている。
 さらに図47を参照して、1対のソースコンタクト電極16のうち、一方のソースコンタクト電極16から、これと隣り合う位置に配置された他方のソースコンタクト電極16まで接続するように、ソース内部配線27が配置されている。そしてゲート電極17の外周部を覆うとともに、ゲート電極17とソース内部配線27との間を埋めるように、層間絶縁膜21が配置されている。ここで層間絶縁膜21は、たとえば図47のソース内部配線27やソースコンタクト電極16とゲート電極17とを外部と電気的に絶縁するとともに、MOSFET1000を保護する機能を有するものである。この層間絶縁膜21は、たとえばSiO(酸化珪素)からなっている。このような構成のもとに、ソース内部配線27やソースコンタクト電極16とゲート電極17とに入力する電気信号を制御することにより、ソースコンタクト電極16からドレイン電極55に流れる電流を制御する。
 ここで、ソースコンタクト電極16は、nソース領域14とp領域18との両方に接触するように配置されている。ソースコンタクト電極16としてTi、AlおよびSiを含有する合金を用いることにより、当該ソースコンタクト電極16は、nソース領域14とp領域18との両方と良好にオーミック接合される。
 しかし、上述したソースコンタクト電極16を、nソース領域14とp領域18との両方と良好にオーミック接合させるためには、両者を接合した状態で1000℃程度の高温にて熱処理を行なう必要がある。このようにすれば、ソースコンタクト電極16を形成するTi、AlおよびSiを合金化することができ、ソースコンタクト電極16をnソース領域14などと良好にオーミック接合させることができる。
 ここで、図47のMOSFET1000においてはAlが合金化されたソースコンタクト電極16とたとえばSiOからなるゲート酸化膜15とが接続されている。またソースコンタクト電極16とたとえばSiOからなる層間絶縁膜21とが互いに極めて近い場所に配置されている。このような構造を有するMOSFET1000を形成する際に、ソースコンタクト電極16を合金化するため1000℃程度の高温にて熱処理を行なえば、ソースコンタクト電極16中のAlとSiOとが共融反応を起こす。一般的に合金化されたAlとSiOとが接合された状態で約500℃以上に加熱されると、合金化されたAlがSiOに対して還元作用を及ぼすことにより、SiOがSiに還元される。このため、ゲート酸化膜15や層間絶縁膜21など絶縁体としてSiOを用いている部材が、ソースコンタクト電極16のAlの作用でSiに還元されることになる。すると、ゲート酸化膜15や層間絶縁膜21の絶縁性や容量安定性などの電気特性が劣化することがある。
 本発明は、上記の問題に鑑みなされたものであり、その目的は、絶縁性の部材における電気特性の劣化を抑制することができる構成を有する半導体装置を提供することである。
 本発明に係る半導体装置は、SiC層と、上記SiC層の主表面上に形成されたオーミック電極と、上記SiC層の上記主表面上において上記オーミック電極と間隔を隔てて配置された他の電極と、上記オーミック電極と上記他の電極との間に位置する絶縁層とを備えている。オーミック電極と絶縁層とが隣接した状態で1200℃以下の加熱を行った場合での、絶縁膜における電気抵抗の低下率は5%以下である。また、異なる観点から言えば、上記オーミック電極と上記絶縁層とは1200℃以下の加熱により反応しない。
 ここでオーミック電極とは、たとえば図47に示すAlが合金化されたソースコンタクト電極16である。またここで他の電極とは、たとえば図47におけるゲート電極17である。図47においてソースコンタクト電極16とゲート電極17との間に位置する絶縁層とは、層間絶縁膜21やゲート酸化膜15である。本発明に係る半導体装置においても、図47に示すMOSFET1000と同様の構成を備えている。ただし本発明に係る半導体装置は、図47のソースコンタクト電極16に相当するオーミック電極と、図47の層間絶縁膜21ないしゲート酸化膜15に相当する絶縁層とが、形成時の加熱により反応しない構成となっている。
 具体的には、たとえばオーミック電極はAlを含む合金であり、オーミック電極を形成(合金化)する際に1200℃以下(1000℃程度)に加熱する工程を行なう。一方、たとえば絶縁層中にはSiOが含まれない(絶縁層がSiO以外の材質から形成される)。このため、オーミック電極を形成(合金化)する際に合金化されたAlとSiOとの還元反応が起こらない。したがって、オーミック電極を形成(合金化)する工程を1200℃以下の加熱にて行なう場合は、その前後において絶縁層の組成の変化はない。ここで絶縁層の組成の変化がないとは、オーミック電極を形成するための合金化する工程の前後における絶縁層の電気抵抗の低下率が5%以下であることをいう。また、当該低下率は望ましくは1%以下である。つまり、図47におけるゲート酸化膜15や層間絶縁膜21の絶縁性や容量安定性などの電気特性の劣化を抑制することができる。
 上記電気抵抗の低下率が5%を超える場合(つまり絶縁性が5%を超えて劣化した場合)、主にはゲート酸化膜15の長期信頼性の指標となる、絶縁破壊までの通過電荷量Qbd(C/cm)の低下が無視できなくなる。なお、ここで合金化する工程の前後における絶縁層の電気抵抗の低下率とは、上記合金化する工程前の絶縁層の電気抵抗に対する、上記合金化する工程前後での絶縁層の電気抵抗の変化量(合金化する工程により低下した電気抵抗値の変化量の絶対値)の割合を意味する。より具体的には、合金化する工程前の絶縁層の電気抵抗値をa、合金化する工程後の絶縁層の電気抵抗値をbと表示すると、絶縁層の電気抵抗の低下率は(a-b)/aという計算式で算出することができる。
 本発明の半導体装置において、絶縁層は上記オーミック電極と上記他の電極とを電気的に絶縁するための層間絶縁膜であり、上記層間絶縁膜の少なくとも上記オーミック電極に対向する表面は、窒化珪素または酸窒化珪素からなることが好ましい。
 絶縁層である層間絶縁膜の少なくともオーミック電極に対向する表面が、窒化珪素(Si)または酸窒化珪素(SiO)からなる場合、オーミック電極を形成するために合金化(加熱)する工程において、オーミック電極を構成する合金中のAlと、層間絶縁膜とが還元反応しない。このためオーミック電極を形成するために加熱する工程において、層間絶縁膜の絶縁性や容量安定性などの電気特性の劣化を抑制することができる。
 なお、層間絶縁膜のオーミック電極に対向する表面がSiOからなる場合、当該層間絶縁膜にはSiOが若干含まれることになる。すなわち、オーミック電極を構成する合金中のAlと、層間絶縁膜のSiOとが還元反応する可能性がある。しかし層間絶縁膜が純粋なSiOである場合に比べて、当該層間絶縁膜中に含まれるSiOの割合が小さい。このため、層間絶縁膜のオーミック電極に対向する表面がSiOからなる場合についても、当該表面がSiOからなる場合に比べて、層間絶縁膜の絶縁性や容量安定性などの電気特性の劣化を抑制することができる。
 また、本発明に係る半導体装置は、SiC層と、上記SiC層の主表面上に形成されたオーミック電極と、上記SiC層の上記主表面上において上記オーミック電極と間隔を隔てて配置された他の電極と、上記オーミック電極と上記他の電極との間に位置する絶縁層とを備えている。絶縁層は、オーミック電極と他の電極とを電気的に絶縁するための層間絶縁膜と、当該層間絶縁膜の外周を覆うように配置されたバリア層とを含む。また、バリア層はタングステン、タンタルまたはそれらの酸化物もしくは炭化物から形成されることが好ましい。
 本発明の半導体装置において、層間絶縁膜の外周を覆うように配置されたバリア層は、層間絶縁膜と、オーミック電極やソース内部配線との間に配置される。したがって、タングステン(W)、タンタル(Ta)またはそれらの酸化物もしくは炭化物から形成されたバリア層の存在により、層間絶縁膜とオーミック電極との接触が遮断される。このため、バリア層が配置されていれば、たとえ層間絶縁膜がSiOからなる場合においても、オーミック電極を形成するために合金化(加熱)する工程において、オーミック電極を構成する合金中のAlと、層間絶縁膜のSiOとが還元反応しない。また、たとえばWやTaにて形成されたバリア層は、ソース内部配線と層間絶縁膜との密着性を向上させる機能や、当該MOSFETの実装時にソース内部配線を所望のパターンに形成する際のエッチングをストップするための下地の層としての役割を持たせることができる。なお、バリア層としては、1200℃以下の加熱を行なった場合に、層間絶縁膜とオーミック電極との反応を阻害することができれば、上述したタングステン、タンタルまたはそれらの酸化物もしくは炭化物以外の任意の材料を用いることができる。
 以上に述べた本発明の半導体装置は、SiC層と他の電極との間に厚みが30nm以上100nm以下の極薄絶縁膜をさらに備えており、極薄絶縁膜および絶縁層とオーミック電極との間に間隙が配置されていることが好ましい。
 極薄絶縁膜とは、たとえば上述した図47でいうゲート酸化膜15である。ゲート酸化膜15がSiOからなる場合、当該ゲート酸化膜がオーミック電極と接触するように配置されていれば、オーミック電極を形成するために合金化(加熱)する工程において、オーミック電極を構成する合金中のAlと、層間絶縁膜のSiOとが還元反応する。つまりゲート酸化膜の絶縁性などの電気特性が劣化する可能性がある。しかし当該極薄絶縁膜および絶縁層とオーミック電極との間に間隙を設け、両者が直接接触しないようにすれば、上述したような還元反応の発生を抑制することができる。つまりゲート絶縁膜および絶縁層の絶縁性や容量安定性などの電気特性の劣化を抑制することができる。
 本発明の半導体装置は、絶縁性の部材における電気特性の劣化を抑制することができる。
実施の形態1における半導体装置としてのMOSFETの構成を示す概略断面図である。 実施の形態1におけるMOSFETの製造方法の概略を示すフローチャートである。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態1における半導体装置としてのMOSFETのうち、ソースコンタクト電極とソース内部配線とを接続する薄層を備えた構成を示す概略断面図である。 実施の形態2における半導体装置としてのMOSFETの構成を示す概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態3における半導体装置としてのMOSFETの構成を示す概略断面図である。 実施の形態3におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態3におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態3におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態3におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態3におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態3におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態4における半導体装置としてのMOSFETの構成を示す概略断面図である。 実施の形態4におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態4におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態4におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態4におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態4におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態4におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態5における半導体装置としてのMOSFETの構成を示す概略断面図である。 実施の形態5におけるMOSFETの製造方法の概略を示すフローチャートである。 実施の形態5におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態5におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態5におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態5におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態6における半導体装置としてのMOSFETの構成を示す概略断面図である。 実施の形態6におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態6におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態7における半導体装置としての一のMOSFETの構成を示す概略断面図である。 実施の形態7における半導体装置としての他のMOSFETの構成を示す概略断面図である。 実施の形態7における半導体装置としてのさらに他のMOSFETの構成を示す概略断面図である。 従来から用いられる縦型SiC-MOSFETの構造を示す概略断面図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
 (実施の形態1)
 まず、実施の形態1におけるMOSFETについて説明する。図1を参照して、実施の形態1におけるMOSFET100は、炭化珪素(SiC)からなり、導電型がn型(第1導電型)の基板であるnSiC基板11と、SiCからなり、導電型がn型(第1導電型)の半導体層としてのnSiC層12と、導電型がp型(第2導電型)の第2導電型領域としての一対のpボディ13と、導電型がn型(第1導電型)の高濃度第1導電型領域としてのnソース領域14と、導電型がp型(第2導電型)の高濃度第2導電型領域としてのp領域18とを備えている。nSiC基板11は、高濃度のn型不純物(導電型がn型である不純物)、たとえばN(窒素)を含んでいる。
 nSiC層12は、nSiC基板11の一方の主面11A上に、たとえば10μm程度の厚みで形成され、n型不純物を含むことにより導電型がn型となっている。nSiC層12に含まれるn型不純物は、たとえばN(窒素)やP(リン)であり、nSiC基板11に含まれるn型不純物よりも低い濃度、たとえば1×1016cm-3の濃度で含まれている。なお、ここで主面とは、表面のうち最も面積の大きい主要な面をいう。
 一対のpボディ13は、nSiC層12において、nSiC基板11側の主面である第1の主面12Aとは反対側の主面である第2の主面12Bを含むように互いに分離して形成され、p型不純物(導電型がp型である不純物)を含むことにより、導電型がp型(第2導電型)となっている。pボディ13に含まれるp型不純物は、たとえばAl、B(硼素)などであり、nSiC基板11に含まれるn型不純物よりも低い濃度、たとえば1×1016cm-3~5×1018cm-3の濃度で含まれている。
 nソース領域14は、第2の主面12Bを含み、かつpボディ13に取り囲まれるように、一対のpボディ13のそれぞれの内部に形成されている。nソース領域14は、n型不純物、たとえばP(リン)などをnSiC層12に含まれるn型不純物よりも高い濃度、たとえば1×1020cm-3の濃度で含んでいる。
 p領域18は、一対のpボディ13のうち一方のpボディ13の内部に形成されたnソース領域14から見て、他方のpボディ13の内部に形成されたnソース領域14とは反対側に、第2の主面12Bを含むように形成されている。p領域18は、p型不純物、たとえばAl、Bなどをpボディ13に含まれるp型不純物よりも高い濃度、たとえば1×1020cm-3の濃度で含んでいる。
 さらに図1を参照して、MOSFET1は、ゲート絶縁膜(極薄絶縁膜)としてのゲート酸化膜15と、ゲート電極17と、1対のソースコンタクト電極16と、ソース内部配線27と、ドレイン電極55と、層間絶縁膜210とを備えている。
 ゲート酸化膜15は、第2の主面12Bに接触し、一方のnソース領域14の上部表面から他方のnソース領域14の上部表面にまで延在するようにnSiC層12の第2の主面12B上に形成され、たとえば二酸化珪素(SiO)からなっている。
 ゲート電極17は、一方のnソース領域14上から他方のnソース領域14上にまで延在するように、ゲート酸化膜15に接触して配置されている。また、ゲート電極17は、ポリシリコンなどの導電体からなっている。
 ソースコンタクト電極16は、一対のnソース領域14上のそれぞれから、ゲート酸化膜15から離れる向きにp領域18上にまで延在するとともに、第2の主面12Bに接触して配置されている。そして、ソースコンタクト電極16は、Ti、AlおよびSiを含有している合金である。より具体的には、ソースコンタクト電極16は、Ti、Al、SiおよびC(炭素)を含有し、残部O(酸素)などの不純物からなる合金である。上述した材質にて構成することにより、ソースコンタクト電極16は、nSiC層12や、nソース領域14やp領域18と良好にオーミック接合されたオーミックコンタクト電極である。また、ソースコンタクト電極16はnソース領域14とp領域18との両方に接触するよう延在するように配置されている。nソース領域14とオーミック接合するための電極と、p領域18とオーミック接合するための電極とが一体となっているため、MOSFET100を形成する際には本来2台形成すべきオーミック接合するための電極を1台のみ形成すればよい。このため、本実施の形態におけるMOSFET100は、製造工程の工程数の低減や集積度の向上を可能とする半導体装置となっている。
 ソース内部配線27は、1対のソースコンタクト電極16のうち、一方のソースコンタクト電極16から、これと隣り合う位置に配置された他方のソースコンタクト電極16まで接続するように配置されている。このソース内部配線27は、たとえばAlからなるメタル配線として形成されている。
 ドレイン電極55は、nSiC基板11においてnSiC層12が形成される側の主面である一方の主面11Aとは反対側の主面である他方の主面11Bに接触して形成されている。このドレイン電極55は、たとえば上記ソースコンタクト電極16と同じTi、AlおよびSiを含有する材料からなっていてもよいし、NiやNiSiなど、nSiC基板11とオーミックコンタクト可能な他の材料からなっていてもよい。これにより、ドレイン電極55はnSiC基板11と電気的に接続されている。
 さらにドレイン電極55の、nSiC基板11とは反対側の主面上(図1におけるドレイン電極55の下側)にはドレインコンタクト電極56が形成されている。ドレインコンタクト電極56はたとえばAl、Auからなる薄膜電極である。
 層間絶縁膜210は、たとえば図1の一方のソースコンタクト電極16と他方のソースコンタクト電極16とを接続するように配置されたソース内部配線27とゲート電極17とを外部と電気的に絶縁するとともに、MOSFET100を保護する機能を有するものである。この層間絶縁膜210は、たとえばSi(窒化珪素)からなっている。
 層間絶縁膜210は、ゲート電極17の外周部を覆うように、ゲート電極17とソース内部配線27との間を埋めるように配置されている。図1に示すように、層間絶縁膜210はゲート電極17の外周部と接触しており、またソース内部配線27の内周部と接触している。さらに図1の層間絶縁膜210は、ソースコンタクト電極16の主面が延在する方向(図1の左右方向)に関してソースコンタクト電極16とゲート酸化膜15とに挟まれた領域にも配置されている。このような構成であることにより、たとえばソース内部配線27からゲート電極17に電流が流れることを、層間絶縁膜210が抑制することができる。
 ここで、層間絶縁膜210としてSiを用いているため、層間絶縁膜210中に酸素原子(O)が含まれていない。このため、たとえば上述した図47のMOSFET1000のように、ソースコンタクト電極16を合金化するために1000℃程度に加熱することによる、ソースコンタクト電極16中のAlがゲート酸化膜15や層間絶縁膜21中の酸素原子と反応することを抑制することができる。具体的には、たとえばソースコンタクト電極16とゲート酸化膜15との間に、Siからなる層間絶縁膜210が挟まれた構成となっている。このため、ソースコンタクト電極16を構成する金属材料を、これと接触するnソース領域14やp領域18と良好に接触させるために1200℃以下(1000℃程度)で熱処理(合金化処理)を行なっても、ソースコンタクト電極16を構成する金属材料による、層間絶縁膜210の還元反応が起こらない。これはソースコンタクト電極16が酸素原子を含有する部材と接触していないためである。酸素原子を含有するSiOからなるゲート酸化膜15は、Siからなる層間絶縁膜210が挟まれていることによりソースコンタクト電極16と不連続となっている。このため上記熱処理によりソースコンタクト電極16のAlとゲート酸化膜15とが反応することが抑制される。
 したがって、Siからなる層間絶縁膜210を備えることにより、ソースコンタクト電極16が合金化するために1200℃以下に加熱される際に、ゲート酸化膜15がAlと反応することを抑制することができる。つまり、ゲート酸化膜15が反応することによる絶縁性や容量安定性などの電気特性の劣化を抑制することができる。このため、高品質で安定な半導体装置を提供することができる。
 なお、図1において層間絶縁膜210やソース内部配線27は、特に左右の端部における上下方向の厚みが中央部分における厚みに比べて著しく大きくなっている。また層間絶縁膜210やソース内部配線27の隅部が角型となっている。しかしこれらは図の理解を容易にするためであり、実際は図1の断面図中の左右方向の全体にわたって、層間絶縁膜210やソース内部配線の厚みはほぼ一様である。また層間絶縁膜210やソース内部配線27の隅部は丸みを帯びている。以下の各図についても同様である。
 また、図1に示すMOSFET100がnSiC基板11やnSiC層12の主面の延在方向に複数配置されることにより、半導体装置が構成される。図1には1台のMOSFET100の最小構成単位のみを描写している。したがって図1の左端および右端は省略されているのであり、実際は図1のMOSFET100が四方に複数並んでいる。以下の各図についても同様である。
 次に、MOSFET100の動作について説明する。図1を参照して、ゲート電極17に閾値以下の電圧を与えた状態、すなわちオフ状態では、ゲート酸化膜15の直下に位置するpボディ13とnSiC層12との間が逆バイアスとなり、非導通状態となる。一方、ゲート電極17に正の電圧を印加していくと、pボディ13のゲート酸化膜15と接触する付近であるチャネル領域において、反転層が形成される。その結果、nソース領域14とnSiC層12とが電気的に接続され、ソースコンタクト電極16(またはソース内部配線27)とドレイン電極55との間に電流が流れる。
 次に、本発明に従った半導体装置の製造方法の一実施の形態である実施の形態1における半導体装置としてのMOSFETの製造方法について説明する。図2を参照して、実施の形態1におけるMOSFETの製造方法においては、まず、SiC基板を準備する工程(S10)が実施される。この工程(S10)では、第1導電型のSiC基板が準備される。具体的には、図3を参照して、たとえば六方晶SiCからなり、n型不純物を含むことにより導電型がn型であるnSiC基板11が準備される。
 次に、図2を参照して、n型層を形成する工程(S20)が実施される。この工程(S20)では、nSiC基板11上に第1導電型の半導体層が形成される。具体的には、図3を参照して、エピタキシャル成長によりnSiC基板11の一方の主面11A上にnSiC層12が形成される。エピタキシャル成長は、たとえば原料ガスとしてSiH(シラン)とC(プロパン)との混合ガスを用い、キャリアガスとしてH(水素)ガスを用いたCVD法により実施することができる。このとき、n型不純物として、たとえばNやPを導入することが好ましい。これにより、nSiC基板11に含まれるn型不純物よりも低い濃度のn型不純物を含むnSiC層12を形成することができる。具体的にはたとえばnSiC層12中のn型不純物の濃度は5×1015cm-3以上5×1016cm-3以下とすることが好ましい。
 次に、図2を参照して、pボディを形成する工程(S21)が実施される。この工程(S21)では、図4を参照して、nSiC層12において、nSiC基板11側の主面である第1の主面12Aとは反対側の主面である第2の主面12Bを含むように、第2導電型の第2導電型領域が形成される。具体的には、まず、第2の主面12B上に、たとえばCVD(Chemical Vapor Deposition;化学蒸着法)によりSiOからなる酸化膜が形成される。そして、酸化膜の上にレジストが塗布された後、露光および現像が行なわれ、所望の第2導電型領域としてのpボディ13の形状に応じた領域に開口を有するレジスト膜が形成される。そして、当該レジスト膜をマスクとして用いて、たとえばRIE(Reactive Ion Etching;反応性イオンエッチング)により酸化膜が部分的に除去されることにより、nSiC層12上に開口パターンを有する酸化膜からなるマスク層が形成される。その後、上記レジスト膜を除去した上で、このマスク層をマスクとして用いて、Alなどのp型不純物をnSiC層12にイオン注入することにより、nSiC層12にpボディ13が形成される。なお、上述したレジストの露光および現像のためには、たとえばSiOからなるマスクが使用されることが好ましい。
 次に、図2を参照して、n領域を形成する工程(S22)が実施される。この工程(S22)では、pボディ13内の第2の主面12Bを含む領域に、nSiC層12よりも高濃度の第1導電型の不純物を含む高濃度第1導電型領域が形成される。具体的には、図4を参照して、まず、工程(S21)においてマスクとして使用された上記酸化膜が除去された上で、工程(S21)と同様の手順で、所望のnソース領域14の形状に応じた領域に開口を有するマスク層が形成される。そして、このマスク層をマスクとして用いて、Pなどのn型不純物がnSiC層12にイオン注入により導入されることによりnソース領域14が形成される。
 次に、図2を参照して、p領域を形成する工程(S23)が実施される。この工程(S23)では、図4を参照して、一対のpボディ13のうち一方のpボディ13の内部に形成されたnソース領域14から見て、他方のpボディ13の内部に形成されたnソース領域14とは反対側に、第2の主面12Bを含むように、高濃度第2導電型領域(p領域18)が形成される。具体的には、図4を参照して、工程(S21)および(S22)と同様の手順で所望のp領域18の形状に応じた領域に開口を有するマスク層が形成され、これをマスクとして用いて、Al、Bなどのp型不純物がnSiC層12にイオン注入により導入されることによりp領域18が形成される。
 次に、図2を参照して、活性化アニール工程(S31)が実施される。この工程(S31)では、イオン注入が実施されたnSiC層12を、たとえばAr(アルゴン)雰囲気中において1700℃以上1800℃以下に加熱し、30分間程度保持することにより、上記イオン注入によって導入された不純物を活性化させるとともに結晶性の回復を行なう熱処理である活性化アニールが実施される。
 次に、図2を参照して、表面を清浄化する工程(S32)が実施される。この工程(S32)では、図4に示すようにpボディ13、nソース領域14およびp領域18が形成されたnSiC層12の第2の主面12BやnSiC基板11の他方の主面11Bを洗浄する工程である。
 具体的には、たとえば図4に示す第2の主面12Bや他方の主面11B上に、たとえばドライ酸素雰囲気中で加熱温度を1100℃以上1300℃以下とし、保持時間を10分間程度とした熱処理を実施することにより熱酸化膜を形成する。その後、バッファードフッ酸を用いて上記熱酸化膜を除去することにより、当該第2の主面12B上や他方の主面11B上が清浄化される。その後、有機溶剤を用いた有機洗浄、酸を用いた酸洗浄、RCA洗浄などを行ない、表面洗浄化を行なうことが好ましい。
 次に、図2を参照して、極薄絶縁膜を形成する工程(S33)が実施される。この工程(S32)では、図5を参照して、工程(S10)~(S32)までが実施されて所望のイオン注入領域を含むnSiC層12が形成されたnSiC基板11が熱酸化される。具体的には熱酸化は、たとえばドライ酸素雰囲気中で1100℃以上1300℃以下にnSiC基板11を加熱し、30分~60分間程度保持することにより実施することができる。これにより、二酸化珪素(SiO)の熱酸化膜であるゲート酸化膜15(図1参照)となるべき極薄絶縁膜15A(たとえば厚み30nm~100nm程度)が、第2の主面12B上に形成される。極薄絶縁膜15Aの厚みは、当該極薄絶縁膜15Aの誘電率にも対応するが、概ね、絶縁ゲートトランジスタにおけるスパイクも含むゲート電圧動作範囲から上述の範囲が相当である。
 なお極薄絶縁膜を形成する工程(S33)において、上述したように酸素雰囲気中で行なうドライ酸化を用いてもよいが、たとえば水蒸気を含む酸素雰囲気中で加熱するウェット酸化を用いてもよいし、ドライ酸化に比べてSiCの酸化時に発生する水蒸気中の水素原子が界面のダングリングボンド(原子における未結合手)を効果的に水素終端するパイロジェニック酸化を用いてもよい。また、工程(S33)により形成される極薄絶縁膜15Aに対して、追加処理として上述した工程(S31)のようなアニールを行なってもよい。このときのアニールとしてはたとえばNO(一酸化窒素)雰囲気中やNO(二窒化酸素)雰囲気中で1100℃以上1300℃以下で30分~90分間程度加熱し、続いてAr雰囲気中にて1100℃以上1300℃以下で30分~90分間程度加熱することが好ましい。
 次に、図2を参照して、ゲート電極を形成する工程(S40)が実施される。この工程(S40)では、図6を参照して、たとえば導電体であるポリシリコンなどからなるゲート電極17(図1参照)が、一方のnソース領域14上から他方のnソース領域14上にまで延在するとともに、ゲート酸化膜15に接触するように形成される。ゲート電極の素材としてポリシリコンを採用する場合、当該ポリシリコンは、PあるいはBが1×1020cm-3程度の高い濃度で含まれるものとすることができる。なお、ゲート電極17の厚みは300~500nm程度とすることが好ましい。
 なおゲート電極17を、一方のnソース領域14上から他方のnソース領域14上にまで延在するように形成するために、フォトリソグラフィ技術を用いることが好ましい。具体的には、まず図5に示す極薄絶縁膜15Aのほぼ全面に接触するように形成されたゲート電極17の上にレジストが塗布された後、露光および現像が行なわれ、所望のゲート電極17の形状に応じた領域にレジスト膜が形成される。そして当該レジスト膜をマスクとして用いて、たとえばRIE(Reactive Ion Etching)によりゲート電極17および極薄絶縁膜15Aが部分的に除去される。このようにして、図6に示すようにゲート電極17およびゲート酸化膜15が形成される。ゲート電極17および極薄絶縁膜15Aが部分的に除去された領域は、図6に示すようにnソース領域14およびp領域18の主面が露出した状態となる。
 次に、図2を参照して、層間絶縁膜を形成する工程(S50)が実施される。この工程(S50)では、図7を参照して、たとえばCVD(Chemical Vapor Deposition;化学蒸着法)により窒化珪素膜(Si)や酸窒化珪素膜(SiO)からなる層間絶縁膜210が形成される。ここでは特にプラズマCVD法を用いて、厚みが0.5μm以上1.5μm以下、好ましくは0.7μm以上1.3μm以下、たとえば1.0μmの層間絶縁膜210が形成される。このようにして、図7に示す層間絶縁膜210が、p領域18、nソース領域14およびゲート電極17の表面上に接触するように形成される。
 なお、層間絶縁膜210としてSiの代わりに、酸素を含む酸窒化珪素膜(SiO)を用いた場合には、層間絶縁膜210中に酸素原子が含まれることになる。しかしSiOは、たとえば図47の層間絶縁膜21のSiOに比べれば酸素原子が含有される割合が小さい。このため、層間絶縁膜210として酸窒化珪素膜(SiO)を用いた場合においても、Siを用いた場合と同様に、熱処理の際の層間絶縁膜と、ソースコンタクト電極16(オーミック電極)の合金中のAlとの反応を抑制する効果を奏する。なお、上述したSiやSiOの代わりに、酸フッ化珪素(SiOF)、酸炭化珪素(SiOC)のいずれかからなる層間絶縁膜210を形成しても、同様の効果を奏する。
 次に、図2を参照して、ソース電極部を開口する工程(S60)が実施される。この工程(S60)では、工程(S50)において形成された層間絶縁膜210の一部を除去する。すなわち工程(S60)では後工程においてソースコンタクト電極16を形成する領域に形成された層間絶縁膜21を除去する。具体的には、図8を参照して、一対のpボディ13の内部に形成された各nソース領域14およびp領域18に接触する層間絶縁膜210を除去することが好ましい。図1に示すように、ソースコンタクト電極16は、nソース領域14から、これに接触するように配置されるp領域18に接触するように延在するように形成されるためである。
 工程(S60)は具体的には以下の手順により行なわれる。図7に示すp領域18、nソース領域14およびゲート電極17の表面上に接触するように形成された層間絶縁膜210の上にレジストが塗布された後、露光および現像が行なわれ、所望の層間絶縁膜210の形状に応じた領域に開口を有するレジスト膜が形成される。そして当該レジスト膜をマスクとして用いて、たとえばRIE(Reactive Ion Etching)により層間絶縁膜210が部分的に除去される。このようにして、所望の領域に層間絶縁膜210の開口パターンが形成される。図8を参照して、残存する層間絶縁膜210に接触するように、マスク層5のパターンが形成される。
 次に、図2を参照して、ソースオーミック電極を形成する工程(S70)が実施される。この工程(S70)では、ソースオーミック電極(図1のソースコンタクト電極16)を構成するためのTiからなるTi膜、AlからなるAl膜およびSiからなるSi膜がこの順で形成される。具体的には、図9を参照して、まず第2の主面12B上のうち特に露出されたp領域18の主面上およびnソース領域14の主面上、および層間絶縁膜210に接するように形成されたマスク層5上に上述したTi膜、Al膜、Si膜が、たとえばスパッタリングにより形成される。その後、マスク層5を除去すれば、マスク層5上の上述したTi膜、Al膜およびSi膜も併せて除去される。このため図9に示すように、p領域18の主面上およびnソース領域14の主面上のSi膜のみ残存する。このようにして図10のソースコンタクト電極16に示すように、p領域18の主面上およびnソース領域14の主面上にのみTi膜、Al膜およびSi膜が形成される。このように工程(S60)にて形成したマスク層5上に所望の膜を形成し、その後マスク層5を除去することにより所望の領域のみに膜を形成する、リフトオフを行なうことが好ましい。
 なお図9中においては、ソースオーミック電極を構成するためのTiからなるTi膜、AlからなるAl膜およびSiからなるSi膜からなる積層構造を、ソースコンタクト電極16として描写している。
 次に、図2を参照して、裏面ドレイン電極を形成する工程(S80)が実施される。この工程(S80)では、ドレイン電極55としてnSiC基板11の、nSiC層12が形成される側とは反対側の主面上に、裏面電極パッドとしてのNi層やNiSi層が形成される。
 具体的には、図10を参照して、nSiC基板11の、nSiC層12が形成される側の主面である一方の主面11Aとは反対側の主面である他方の主面11B上に、たとえばスパッタリングにより、上述したNi層やNiSi層を蒸着することにより裏面電極パッド(ドレイン電極55)とする。これらの材質からなるドレイン電極55は、nSiC基板11と良好にオーミック接合される。
 なお、Ni層の厚みは30nm以上200nm以下であることが好ましく、なかでも50nm以上150nm以下、たとえば100nmであることがより好ましい。NiSi層の厚みは30nm以上200nm以下であることが好ましく、なかでも50nm以上150nm以下、たとえば100nmであることがより好ましい。
 またドレイン電極55の形成後に、図10に示すように、ドレイン電極55の下側の主面上にドレインコンタクト電極56を形成することが好ましい。ドレインコンタクト電極56はたとえばAl、Auからなる厚みが1μm程度の薄膜であることが好ましい。ドレインコンタクト電極56はドレイン電極55と同様にたとえばスパッタリングによる蒸着により形成されることが好ましい。
 厚みの条件を上記のようにすれば、上記ドレイン電極55を、安定的に低抵抗のオーミックドレイン電極とすることができる。なお、工程(S70)と工程(S80)とは、実施する順序を逆にしてもよい。
 次に、図2を参照して、合金化処理を行なう工程(S90)が実施される。これは具体的には、図10を参照して、上記手順が完了したnSiC基板11が、Arなどの不活性ガス雰囲気中において、550℃以上1200℃以下の温度、好ましくは900℃以上1100℃以下の温度、たとえば1000℃に加熱され、10分間以下の時間、たとえば1分間保持される。これにより、Ti膜、Al膜およびSi膜に含まれるTi、AlおよびSi、およびnSiC層12またはnSiC基板11に含まれるCが合金化される。その結果、図10に示すように、一対のnソース領域14上のそれぞれから、ゲート酸化膜15から離れる向きにp領域18上にまで延在するとともに、第2の主面12Bに接触して配置されるソースコンタクト電極16が形成される。また上記加熱により同時に、nSiC基板11においてnSiC層12が形成される側の主面である一方の主面11Aとは反対側の主面である他方の主面11Bに接触して配置されるドレイン電極55が形成される。ここで、工程(S90)においては、不活性ガス、特にArまたは/およびNと、水素との混合ガス中においてnSiC基板11が加熱されることが好ましい。これにより、製造コストを抑制しつつ、nソース領域14およびpボディ13(p領域18)との接触抵抗を一層確実に低減したソースコンタクト電極16を作製することができる。
 この合金化のための熱処理に際して、たとえnSiC基板11が1000℃程度の高温に曝されても、本実施の形態1においては、ソースコンタクト電極16中のAlと層間絶縁膜210との反応による層間絶縁膜210の組成変化、さらには当該Alとゲート酸化膜15中の酸素原子との反応によるゲート酸化膜15の組成変化が抑制される。これは、SiOと比べてAlとの反応性が低いSiからなる層間絶縁膜210がソースコンタクト電極16中のAlとゲート酸化膜15中の酸素原子との間に挟まれた構成となっていることにより、層間絶縁膜210がソースコンタクト電極16中のAlとゲート酸化膜15中の酸素原子とが反応することを抑制するためである。
 次に、図2を参照して、ソース内部配線を形成する工程(S100)が実施される。この工程(S100)では、1対のうち一方のソースコンタクト電極16と他方のソースコンタクト電極16とを電気的に接続するための金属層であるソース内部配線27が形成される。
 具体的には図11を参照して、ソースコンタクト電極16や層間絶縁膜210上のほぼ全面に、Alからなる薄膜層としてのソース内部配線27が、たとえばスパッタリングにより形成される。ただし、図12のMOSFET200を参照して、たとえばAlの薄膜層を形成する前に、ソースコンタクト電極16や層間絶縁膜210上のほぼ全面に、Tiからなる薄膜層(薄層6)を形成してもよい。このようにすれば、Tiの薄層6が当該ソース内部配線27の、ソースコンタクト電極16との密着性を向上させる。また薄層6の材質として、Tiの代わりにたとえばTa(タンタル)やW(タングステン)を用いてもよい。このようにすれば、TaやWは、Tiと同様にソース内部配線27のソースコンタクト電極16との密着性を向上させる。また、当該MOSFET100の実装においてソース内部配線27を所望のパターンに形成する際のエッチングをストップするための下地の層としての役割を持たせることができる。
 さらに上述した薄層6は、Cr(クロム)やMo(モリブデン)、Nb(ニオブ)やV(バナジウム)からなる群から選択されるいずれか1種からなる構成としてもよい。いずれの材質を用いても、薄層6により、上述したソースコンタクト電極16とソース内部配線27との密着性を良好にすると同時に、当該ソース領域における電気抵抗を十分に低くしたり、エレクトロマイグレーション耐性を高くすることができる。
 なお上述した図12のMOSFET200は、薄層6を備える点においてのみMOSFET100と異なっており、その他の構成はすべてMOSFET100と同様である。
 工程(S100)において、たとえばTiとAlとの薄膜層を形成する場合には、Tiの薄膜層は厚みが30nm以上70nm以下であることが好ましく、なかでも40nm以上60nm以下、たとえば50nmであることが特に好ましい。同様にAlの薄膜層は厚みが2μm以上であることが好ましい。
 以上の各工程を行なうことにより、図11(図1)に示すMOSFET100が形成される。当該MOSFET100を複数台電気的に接続して1台の集積回路として用いるために、後工程としてパシベーション膜の形成や実装工程が行なわれる。パシベーション膜とは、MOSFET100の構成要素が一通り形成されたところで、最終的に当該MOSFET100を外側から保護する保護膜として形成されるものである。
 (実施の形態2)
 図13を参照して、実施の形態2におけるMOSFET300は、MOSFET100と基本的に同様の構成を備えている。しかしMOSFET300においては、MOSFET100におけるゲート酸化膜15が、Siから形成されるゲート絶縁膜150となっている。
 ゲート絶縁膜150は酸素原子を含まないため、たとえばゲート絶縁膜150がソースコンタクト電極16と一部の領域において接触する構成であっても、熱処理時にゲート絶縁膜150がソースコンタクト電極16との反応により変質することはない。このためMOSFET300の層間絶縁膜210は、MOSFET100の層間絶縁膜210のように、ゲート酸化膜15とソースコンタクト電極16との間に挟まれた領域には配置されていない。したがってMOSFET300のゲート絶縁膜150は、MOSFET100のゲート酸化膜15に比べて、図13の左右方向に関する長さが長く、当該ゲート絶縁膜150の左右方向の端部はソースコンタクト電極16と接触している。以上のような構成を有するMOSFET300においても、MOSFET100やMOSFET200と同様の効果を奏する。以下、本実施の形態2におけるMOSFET300の製造方法について説明する。
 実施の形態2におけるMOSFET300の製造方法は、図2のフローチャートを用いて説明することができる。しかし各工程における詳細な手順において若干の相違がある。
 図2のフローチャートにおける工程(S10)から工程(S32)までは、実施の形態1と同様である。図14を参照して、極薄絶縁膜を形成する工程(S33)においては実施の形態1でのSiO2の代わりに、Siからなる極薄絶縁膜15A(図5の極薄絶縁膜15Aに相当)が形成される。この極薄絶縁膜15Aは、後工程により一部が除去され、ゲート絶縁膜150となる。
 ゲート電極を形成する工程(S40)においては、図15を参照して、実施の形態1と同様にゲート電極17が形成される。この工程(S40)にて、ゲート絶縁膜150に対してフォトリソグラフィ技術などを施し、第2の主面12Bに沿った方向(図15の左右方向)に関するゲート絶縁膜150の長さを所望の長さに加工してもよいが、必ずしも上記加工を行なわず、図15に示す状態としてもよい。MOSFET300の場合、後に形成する層間絶縁膜と上記左右方向の長さが等しいためである。
 層間絶縁膜を形成する工程(S50)において、図16を参照して、実施の形態1と同様に層間絶縁膜210が形成された後、ソース電極部を開口する工程(S60)において、実施の形態1と同様の処理を行なう。このようにすれば、図17を参照して、層間絶縁膜210とゲート絶縁膜150との左右方向の長さが等しくなるように加工することができる。
 以下の工程(S70)から工程(S100)については、実施の形態1と同様の処理である。工程(S70)は図18を参照して説明でき、実施の形態1の図9と同様の態様である。工程(S80)は図19を参照して説明でき、実施の形態1の図10と同様の態様である。工程(S90)は図18および図19を参照して説明でき、実施の形態1の図9、図10と同様の態様である。工程(S100)は図20を参照して説明でき、実施の形態1の図11と同様の態様である。
 本実施の形態2は、以上に述べた各点についてのみ、本実施の形態1と異なる。すなわち実施の形態2について、上述しなかった構成や条件、手順や効果などは、全て実施の形態1に順ずる。
 (実施の形態3)
 図21を参照して、実施の形態3におけるMOSFET400は、MOSFET100と基本的に同様の構成を備えている。しかしMOSFET400においては、層間絶縁膜がSiOからなる層間絶縁膜21と、Siからなる層間絶縁膜210との二重構造となっている。
 具体的には、二重構造となっている層間絶縁膜のうち内側に、ゲート電極17の外周部を覆うように配置されているのがSiOからなる層間絶縁膜21であり、層間絶縁膜21の外周部を覆うように配置されているのがSiからなる層間絶縁膜210である。また、MOSFET400のゲート酸化膜15はSiOからなる。当該ゲート酸化膜15の左右方向に関する長さはゲート電極17の左右方向に関する長さに等しい。そして当該ゲート酸化膜15の左右方向の端部は層間絶縁膜21で囲まれており、層間絶縁膜21がゲート酸化膜15を囲む領域は層間絶縁膜210で囲まれている。
 このような構成とした場合においても、SiOからなる層間絶縁膜21やゲート酸化膜15は、Alが合金化されたソースコンタクト電極16と接触しない。つまりSiからなる層間絶縁膜210が配置されているため、層間絶縁膜21(ゲート酸化膜15)とソースコンタクト電極16とは不連続となっている。このため以上のような構成を有するMOSFET400においても、MOSFET100などと同様の効果を奏する。以下、本実施の形態3におけるMOSFET400の製造方法について説明する。
 実施の形態3におけるMOSFET400の製造方法は、図2のフローチャートを用いて説明することができる。しかし各工程における詳細な手順において若干の相違がある。
 図2のフローチャートにおける工程(S10)から工程(S40)までは、実施の形態1と同様である。このようにすれば、ゲート酸化膜15とゲート電極17との左右方向の長さが等しくなるように加工することができる。
 層間絶縁膜を形成する工程(S50)では、図22を参照して、まずたとえばCVD(Chemical Vapor Deposition;化学蒸着法)、ここでは特にプラズマCVD法によりSiOからなる層間絶縁膜21が形成される。この厚みは0.5μm以上1.5μm以下、好ましくは0.8μm以上1.2μm以下、たとえば1.0μmとする。
 次に一旦ソース電極部を開口する工程(S60)を行なう。ここでは実施の形態1と同様に、工程(S50)において形成された層間絶縁膜21の一部を除去する。一対のpボディ13の内部に形成された各nソース領域14およびp領域18に接触する層間絶縁膜21を除去することにより、図23に示す態様となる。
 次に再度層間絶縁膜を形成する工程(S50)が実施される。ここではSiからなる層間絶縁膜210が、p領域18、nソース領域14および層間絶縁膜21の表面上に接触するように形成される。なお、ここで形成する層間絶縁膜210としてSiの代わりに上述したSiOやSiOF、SiOCのいずれかからなる層間絶縁膜210を形成してもよい。この厚みは0.1μm以上1.0μm以下、好ましくは0.2μm以上0.6μm以下、たとえば0.3μmとする。
 そして再度ソース電極部を開口する工程(S60)が実施される。この工程では実施の形態1と同様に、マスク層5のパターンをマスクとして利用して層間絶縁膜210の一部が除去される。このようにして、図24を参照して、残存する層間絶縁膜210に接触するように、マスク層5のパターンが残される。
 以下の工程(S70)から工程(S100)については、実施の形態1と同様の処理である。工程(S70)は図25を参照して説明でき、実施の形態1の図9と同様の態様である。工程(S80)は図26を参照して説明でき、実施の形態1の図10と同様の態様である。工程(S90)は図25および図26を参照して説明でき、実施の形態1の図9、図10と同様の態様である。工程(S100)は図27を参照して説明でき、実施の形態1の図11と同様の態様である。
 本実施の形態3は、以上に述べた各点についてのみ、本実施の形態1と異なる。すなわち実施の形態3について、上述しなかった構成や条件、手順や効果などは、全て実施の形態1に順ずる。
 (実施の形態4)
 図28を参照して、実施の形態4におけるMOSFET500は、MOSFET400と基本的に同様の構成を備えている。しかしMOSFET500においては、たとえば上述したMOSFET300と同様に、ゲート酸化膜15の左右方向に関する長さが、ゲート電極17よりも長く、SiOからなる層間絶縁膜21の左右方向に関する長さに等しくなっている。そして当該ゲート酸化膜15の左右方向の端部はSiからなる層間絶縁膜210と接触している。
 MOSFET500は、上述したゲート酸化膜15の左右方向に関する長さについてのみ、MOSFET400と異なる。つまりMOSFET500においても、SiOからなる層間絶縁膜21やゲート酸化膜15は、Alが合金化されたソースコンタクト電極16と接触しない。つまりSiからなる層間絶縁膜210が配置されているため、層間絶縁膜21(ゲート酸化膜15)とソースコンタクト電極16とは不連続となっている。このため以上のような構成を有するMOSFET500においても、MOSFET100などと同様の効果を奏する。
 実施の形態4におけるMOSFET500の製造方法は、図2のフローチャートを用いて説明することができる。図2のフローチャートにおける工程(S10)から工程(S40)までは、実施の形態2と同様である。つまり工程(S40)においてゲート酸化膜15の長さを所望の長さに加工する必要はない。ただし実施の形態2においてはSiからなるゲート絶縁膜150を形成しているが、本実施の形態4においてはSiOからなるゲート酸化膜15を形成している点において異なる。
 層間絶縁膜を形成する工程(S50)では、図29を参照して、実施の形態3と同様にSiOからなる層間絶縁膜21が形成される。次に一旦ソース電極部を開口する工程(S60)を行なう。ここでは図30を参照して、実施の形態2の工程(S60)と同様に、nソース領域14およびp領域18に接触するように形成された極薄絶縁膜15Aおよび層間絶縁膜21が除去され、極薄絶縁膜15Aがゲート酸化膜15となる。このようにすれば、層間絶縁膜21とゲート酸化膜15との左右方向の長さが等しくなるように加工することができる。
 次に、実施の形態3と同様に、再度工程(S50)および工程(S60)が実施されることにより、図31を参照して、残存する層間絶縁膜210に接触するように、マスク層5のパターンが形成されている。
 以下の工程(S70)から工程(S100)については、実施の形態1と同様の処理である。工程(S70)は図32を参照して説明でき、実施の形態1の図9と同様の態様である。工程(S80)は図33を参照して説明でき、実施の形態1の図10と同様の態様である。工程(S90)は図32および図33を参照して説明でき、実施の形態1の図9、図10と同様の態様である。工程(S100)は図34を参照して説明でき、実施の形態1の図11と同様の態様である。
 本実施の形態4は、以上に述べた各点についてのみ、本実施の形態1と異なる。すなわち実施の形態4について、上述しなかった構成や条件、手順や効果などは、全て実施の形態1に順ずる。
 (実施の形態5)
 図35を参照して、実施の形態5におけるMOSFET600は、上述した各実施の形態のMOSFETと基本的に同様の構成を備えている。しかしMOSFET600においては、Siからなる層間絶縁膜210の外周を覆うようにバリア層60が配置されている。当該バリア層60は、ソースコンタクト電極16とゲート酸化膜15との間にも配置されている。この点において、MOSFET600は上述した他のMOSFETと異なる。
 バリア層60は層間絶縁膜210(層間絶縁膜21)と同様に、たとえば図35の一方のソースコンタクト電極16と他方のソースコンタクト電極16とを接続するように配置されたソース内部配線27とゲート電極17とを電気的に絶縁するとともに、MOSFET600を保護する機能を有するものである。またバリア層60は、たとえば上述した図12の薄層6と同様に、ソース内部配線27と層間絶縁膜210との密着性を向上させる機能や、当該MOSFET600の実装時にソース内部配線27を所望のパターンに形成する際のエッチングをストップするための下地の層としての役割を持たせることができる。以上のような役割を有するために、バリア層60は、たとえばTa(タンタル)やW(タングステン)またはそれらの酸化物もしくは炭化物からなることが好ましい。
 以上のような構成を有するMOSFET600においても、SiOと合金化されたソースコンタクト電極16のAlとが接触しない構成を有する。このため上述した各実施の形態のMOSFETと同様の効果を奏する。当該効果に加えて、上述したバリア層60の存在による効果が加わる。
 実施の形態5におけるMOSFET600の製造方法は、図36のフローチャートを用いて説明することができる。図36のフローチャートは、図2のフローチャートと基本的に同様である。しかし図36のフローチャートには、ソース電極部を開口する工程(S60)とソースオーミック電極を形成する工程(S70)との間にバリア層を形成する工程(S65)が含まれる。
 MOSFET600の製造方法は、工程(S10)から工程(S60)までは、上述した各実施の形態に係るMOSFETとほぼ同様である。たとえば図37を参照して、ゲート酸化膜15はSiOからなる酸化膜であり、ゲート酸化膜15の左右方向の長さは、ゲート電極17の左右方向の長さよりも長く、層間絶縁膜210の左右方向の長さに等しい。このため、たとえば実施の形態2と同様にソース電極部を開口する工程(S60)において、一部の層間絶縁膜210を除去する際に、同時に一部のゲート酸化膜15を除去することが好ましい。
 ただし、本実施の形態5においては、工程(S60)にて一部の層間絶縁膜210やゲート酸化膜15を除去するために用いたレジスト(たとえば図8のマスク層5)は、後工程に進む前に除去することが好ましい。
 そしてバリア層を形成する工程(S65)において、図37に示すように、p領域18、nソース領域14の主面に接触するように、またゲート酸化膜15の端部を囲み、層間絶縁膜210の外周部を覆うように、バリア層60が形成される。バリア層60の厚みは0.1μm以上0.5μm以下であることが好ましく、なかでも0.05μm以上0.2μm以下、たとえば0.1μmであることがより好ましい。
 そして上記バリア層60の表面上にレジストが塗布された後、露光および現像が行なわれ、所望のバリア層60が除去されるべき部分の形状に応じた領域に開口を有するレジスト膜が形成される。そして当該レジスト膜をマスクとして用いて、たとえばRIEによりバリア層60が部分的に除去される。具体的には図38を参照して、p領域18やnソース領域14に接触するように形成されたバリア層60が除去される。そして残存するバリア層60に接触するように、マスク層5のパターンが残される。
 次に、図36を参照して、ソースオーミック電極を形成する工程(S70)が実施される。この工程(S70)では、上述した各実施の形態と同様のソースコンタクト電極16が形成される。具体的には、図39を参照して、まず第2の主面12B上のうち特に露出されたp領域18の主面上およびnソース領域14の主面上、およびバリア層60に接するように形成されたマスク層5上に上述したTi膜、Al膜、Si膜が、たとえばスパッタリングにより形成される。その後、マスク層5を除去すれば、マスク層5上の上述したTi膜、Al膜およびSi膜も併せて除去される。このようにしてp領域18の主面上およびnソース領域14の主面上にのみTi膜、Al膜およびSi膜が形成される。このように工程(S65)にて形成したマスク層5上に所望の膜を形成し、その後マスク層5を除去することにより所望の領域のみに膜を形成する、リフトオフを行なうことが好ましい。
 なお図39中においても、たとえば図9と同様に、ソースオーミック電極を構成するためのTiからなるTi膜、AlからなるAl膜およびSiからなるSi膜からなる積層構造を、ソースコンタクト電極16として描写している。
 以下の工程(S80)から(S100)については、上述した各実施の形態に順ずる。このようにして図40(図35)に示す態様のMOSFET600が形成される。
 本実施の形態5は、以上に述べた各点についてのみ、本実施の形態1と異なる。すなわち実施の形態5について、上述しなかった構成や条件、手順や効果などは、全て実施の形態1に順ずる。
 (実施の形態6)
 図41を参照して、実施の形態6におけるMOSFET700は、MOSFET600と基本的に同様の構成を備えている。しかしMOSFET700においては、ソースコンタクト電極16とバリア層60とが不連続となっており、両者の間に間隙32が存在する。この点においてのみ、MOSFET700はMOSFET600と異なる。
 このように、ソースコンタクト電極16とゲート酸化膜15との間に間隙32を配置することにより、さらに確実に、ソースコンタクト電極16中のAlとゲート酸化膜15の酸素原子との反応を抑制することができる。なお、間隙32の幅(nSiC基板の主面に沿った方向における間隙32の幅)はたとえば0.1μm以上1μm以下であることが好ましい。これは以下のような理由による。すなわち、通常上述のような絶縁ゲートトランジスタは、たとえば横幅が10μm程度のセル構造内に配置されるため、動作領域ではない間隙32の占める割合としては1μm以下であることが望ましい。また、ゲート酸化膜15などを形成するためのエッチング工程での加工精度を考慮すると、上記間隙32の幅は0.1μm以上であることが望ましい。
 実施の形態6におけるMOSFET700の製造方法は、図36のフローチャートを用いて説明することができる。
 MOSFET700の製造方法がMOSFET600と異なるのは、ソースオーミック電極を形成する工程(S70)である。上述したように、MOSFET600の製造方法においては、工程(S65)にてバリア層60に接触するために形成したマスク層5を利用して工程(S70)にてリフトオフを行なうことが好ましい。しかしMOSFET700の製造方法においては、工程(S65)にてバリア層60上に残存するマスク層5は除去し、工程(S70)にてバリア層60および、nソース領域14の主面の一部を覆うように形成された新たなマスク層7を用いてソースコンタクト電極16を形成することが好ましい。
 具体的には、図42を参照して、p領域18やnソース領域14の主面上、およびバリア層60の外周面上にレジストが塗布された後、nソース領域14の主面上のうち、バリア層60の外枠から一定の距離分にレジスト膜が形成されるよう、露光および現像が行なわれる。このレジスト膜が図42に示すマスク層7である。その後、図42におけるマスク層7の上側の表面上および露出されたnソース領域14およびp領域18の表面上に、上述した各実施の形態と同様にTi膜、Al膜、Si膜が、たとえばスパッタリングにより形成される。
 その後マスク層7(およびマスク層7の上側の表面上に形成されたTi膜など)を除去することにより、バリア層60との間に間隙32を設けてTi膜などが形成される。このTi膜などを工程(S80)にて合金化することにより、ゲート酸化膜15と反応することなく良好に処理することができる。
 以下の工程(S80)から(S100)については、上述した各実施の形態に順ずる。このようにして図43(図40)に示す態様のMOSFET700が形成される。
 本実施の形態6は、以上に述べた各点についてのみ、本実施の形態5と異なる。すなわ
ち実施の形態6について、上述しなかった構成や条件、手順や効果などは、全て実施の形態5に順ずる。
 (実施の形態7)
 実施の形態7におけるMOSFET800は、図44を参照して、基本的にはMOSFET600と同様の態様を備えている。しかしMOSFET800においては、たとえばSiからなる層間絶縁膜210の代わりに、SiOからなる層間絶縁膜21が用いられている。MOSFET800は、以上の点についてのみMOSFET600と異なる。同様に、当実施の形態7におけるMOSFET900は、図45を参照して、基本的にはMOSFET700と同様の態様を備えている。しかしMOSFET800においては、たとえばSiからなる層間絶縁膜210の代わりに、SiOからなる層間絶縁膜21が用いられている。MOSFET900は、以上の点についてのみMOSFET700と異なる。
 以上のMOSFET800、900についても、ソースコンタクト電極16と層間絶縁膜21やゲート酸化膜15との間にバリア層60を挟んでいるため、SiOからなる層間絶縁膜21やゲート酸化膜15を備えていても、ソースコンタクト電極16中のAlと酸素原子との還元反応を抑制することができる。
 また図46のMOSFET999のように、バリア層を設けず、SiOからなる層間絶縁膜21やゲート酸化膜15を用いた上で、たとえば上述したMOSFET700と同様にソースコンタクト電極16とゲート酸化膜15との間に間隙32を設けた構成も考えられる。この場合においても、間隙32の存在により、ソースコンタクト電極16が合金化する際の加熱によるゲート酸化膜15や層間絶縁膜21の酸素原子とAlとの還元反応を抑制することができる。
 以上の実施の形態7の各MOSFETの製造方法は、上述した各実施の形態のMOSFETの製造方法を適宜組みあわせることにより形成される。本実施の形態7は、以上に述べた点についてのみ、上述した各実施の形態と異なる。
 以上のように本発明の各実施の形態について説明を行なったが、今回開示した各実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、n型SiC領域とp型SiC領域との両方と接触可能とする合金化された電極と、酸化膜との反応を抑制する技術として、特に優れている。
 5,7 マスク層、6 薄層、11 nSiC基板、11A 一方の主面、11B 他方の主面、12 nSiC層、12A 第1の主面、12B 第2の主面、13 pボディ、14 nソース領域、15 ゲート酸化膜、15A 極薄絶縁膜、16 ソースコンタクト電極、17 ゲート電極、18 p領域、21,210 層間絶縁膜、27 ソース内部配線、32 間隙、55 ドレイン電極、56 ドレインコンタクト電極、60 バリア層、100,200,300,400,500,600,700,800,900,999,1000 MOSFET、150 ゲート絶縁膜。

Claims (6)

  1.  SiC層(12)と、
     前記SiC層(12)の主表面上に形成されたオーミック電極(16)と、
     前記SiC層(12)の前記主表面上において前記オーミック電極(16)と間隔を隔てて配置された他の電極(17)と、
     前記オーミック電極(16)と前記他の電極(17)との間に位置する絶縁層(210)とを備え、
     前記オーミック電極(16)と前記絶縁層(210)とが隣接した状態で1200℃以下の加熱を行った場合での、前記絶縁層(210)における電気抵抗の低下率が5%以下である、半導体装置。
  2.  前記絶縁層(210)は前記オーミック電極(16)と前記他の電極(17)とを電気的に絶縁するための層間絶縁膜(210)であり、前記層間絶縁膜(210)の少なくとも前記オーミック電極に対向する表面は、窒化珪素または酸窒化珪素からなる、請求の範囲第1項に記載の半導体装置。
  3.  前記半導体装置は前記SiC層(12)と前記他の電極(17)との間に厚みが30nm以上100nm以下の極薄絶縁膜(15)をさらに備えており、
     前記極薄絶縁膜(15)および前記絶縁層(210)と前記オーミック電極(16)との間に間隙(32)が配置されている、請求の範囲第1項に記載の半導体装置。
  4.  SiC層(12)と、
     前記SiC層(12)の主表面上に形成されたオーミック電極(16)と、
     前記SiC層(12)の前記主表面上において前記オーミック電極(16)と間隔を隔てて配置された他の電極(17)と、
     前記オーミック電極(16)と前記他の電極(17)との間に位置する絶縁層(21、210,60)とを備え、
     前記絶縁層(21、210、60)は、
     前記オーミック電極と前記他の電極とを電気的に絶縁するための層間絶縁膜(21、210)と、
     前記層間絶縁膜(21、210)の外周を覆うように配置されたバリア層(60)とを含む、半導体装置。
  5.  前記バリア層(60)はタングステン、タンタルまたはそれらの酸化物もしくは炭化物から形成される、請求の範囲第4項に記載の半導体装置。
  6.  前記半導体装置は前記SiC層(12)と前記他の電極(17)との間に厚みが30nm以上100nm以下の極薄絶縁膜(15)をさらに備えており、
     前記極薄絶縁膜(15)および前記絶縁層(21、210、60)と前記オーミック電極(16)との間に間隙(32)が配置されている、請求の範囲第4項に記載の半導体装置。
PCT/JP2010/061613 2009-10-05 2010-07-08 半導体装置 WO2011043116A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011518619A JP5682556B2 (ja) 2009-10-05 2010-07-08 半導体装置
CN2010800033467A CN102227812A (zh) 2009-10-05 2010-07-08 半导体器件
EP10821787.8A EP2487720A4 (en) 2009-10-05 2010-07-08 SEMICONDUCTOR COMPONENT
US13/131,163 US8963163B2 (en) 2009-10-05 2010-07-08 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009231647 2009-10-05
JP2009-231647 2009-10-05

Publications (1)

Publication Number Publication Date
WO2011043116A1 true WO2011043116A1 (ja) 2011-04-14

Family

ID=43856596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061613 WO2011043116A1 (ja) 2009-10-05 2010-07-08 半導体装置

Country Status (7)

Country Link
US (1) US8963163B2 (ja)
EP (1) EP2487720A4 (ja)
JP (1) JP5682556B2 (ja)
KR (1) KR20120065962A (ja)
CN (1) CN102227812A (ja)
TW (1) TW201133835A (ja)
WO (1) WO2011043116A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061373A1 (ja) * 2012-10-15 2014-04-24 住友電気工業株式会社 半導体装置およびその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858791B2 (ja) * 2009-05-22 2012-01-18 住友電気工業株式会社 半導体装置およびその製造方法
JP5728954B2 (ja) * 2011-01-13 2015-06-03 住友電気工業株式会社 炭化珪素半導体装置の製造方法
JP2013122982A (ja) * 2011-12-12 2013-06-20 Sumitomo Electric Ind Ltd 半導体装置の製造方法
JP6261155B2 (ja) * 2012-02-20 2018-01-17 富士電機株式会社 SiC半導体デバイスの製造方法
KR101386119B1 (ko) * 2012-07-26 2014-04-21 한국전기연구원 SiC MOSFET의 오믹 접합 형성방법
JP2014038899A (ja) * 2012-08-13 2014-02-27 Sumitomo Electric Ind Ltd 炭化珪素半導体装置およびその製造方法
CN104704611B (zh) * 2013-10-08 2017-04-05 新电元工业株式会社 碳化硅半导体装置的制造方法
JP2016081995A (ja) * 2014-10-14 2016-05-16 住友電気工業株式会社 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP6690985B2 (ja) * 2016-02-24 2020-04-28 株式会社神戸製鋼所 オーミック電極
CN109524456A (zh) * 2018-11-19 2019-03-26 中国电子科技集团公司第十三研究所 适用于高温的碳化硅欧姆接触制作方法及碳化硅功率器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173169A (ja) * 1996-12-16 1998-06-26 Toshiba Corp 半導体装置及びその製造方法
JP2002093742A (ja) * 2000-09-18 2002-03-29 National Institute Of Advanced Industrial & Technology オーミック電極構造体、その製造方法、半導体装置及び半導体装置の製造方法
JP2008192691A (ja) * 2007-02-01 2008-08-21 Denso Corp 炭化珪素半導体装置およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE504916C2 (sv) * 1995-01-18 1997-05-26 Ericsson Telefon Ab L M Förfarande för att åstadkomma en ohmsk kontakt jämte halvledarkomponent försedd med dylik ohmsk kontakt
JP4003296B2 (ja) 1998-06-22 2007-11-07 株式会社デンソー 炭化珪素半導体装置及びその製造方法
US6686616B1 (en) 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
JP3952978B2 (ja) * 2003-03-24 2007-08-01 日産自動車株式会社 炭化珪素半導体素子
JP2005276978A (ja) * 2004-03-24 2005-10-06 Nissan Motor Co Ltd オーミック電極構造体の製造方法、オーミック電極構造体、半導体装置の製造方法および半導体装置
US7829374B2 (en) 2007-07-20 2010-11-09 Panasonic Corporation Silicon carbide semiconductor device and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173169A (ja) * 1996-12-16 1998-06-26 Toshiba Corp 半導体装置及びその製造方法
JP2002093742A (ja) * 2000-09-18 2002-03-29 National Institute Of Advanced Industrial & Technology オーミック電極構造体、その製造方法、半導体装置及び半導体装置の製造方法
JP2008192691A (ja) * 2007-02-01 2008-08-21 Denso Corp 炭化珪素半導体装置およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATOSHI TANIMOTO ET AL.: "Practical Device-Directed Ohmic Contacts on 4H-SiC", IEICE TRANSACTIONS C, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. J86-C, no. 4, April 2003 (2003-04-01), pages 359 - 367, XP008166960
SATOSHI TANIMOTO, APRIL 2003 ET AL.: "Practical Device-Directed Ohmic Contacts on 4H-SiC", IEICE TRANSACTIONS C, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. J86-C, no. 4, pages 359 - 367, XP008166960

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014061373A1 (ja) * 2012-10-15 2014-04-24 住友電気工業株式会社 半導体装置およびその製造方法
JP2014082246A (ja) * 2012-10-15 2014-05-08 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
CN104603915A (zh) * 2012-10-15 2015-05-06 住友电气工业株式会社 半导体器件及其制造方法

Also Published As

Publication number Publication date
EP2487720A1 (en) 2012-08-15
CN102227812A (zh) 2011-10-26
US8963163B2 (en) 2015-02-24
KR20120065962A (ko) 2012-06-21
JP5682556B2 (ja) 2015-03-11
US20110227096A1 (en) 2011-09-22
EP2487720A4 (en) 2014-01-01
TW201133835A (en) 2011-10-01
JPWO2011043116A1 (ja) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5682556B2 (ja) 半導体装置
JP5581642B2 (ja) 半導体装置の製造方法
JP4858791B2 (ja) 半導体装置およびその製造方法
JP4291875B2 (ja) 炭化珪素半導体装置およびその製造方法
JP4965576B2 (ja) 半導体装置及びその製造方法
JP5745974B2 (ja) 半導体装置およびその製造方法
JP2007066944A (ja) 炭化珪素半導体装置及びその製造方法
JP5860580B2 (ja) 半導体装置及びその製造方法
JP5171363B2 (ja) 半導体装置の製造方法
JP2009043880A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP4501488B2 (ja) 炭化珪素半導体のオーミック電極及びその製造方法
JP6295797B2 (ja) 炭化珪素半導体装置およびその製造方法
JP3759145B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6500912B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
WO2015015629A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US8866156B2 (en) Silicon carbide semiconductor device and method for manufacturing same
JP5460768B2 (ja) 炭化珪素半導体装置の製造方法
JP2024039821A (ja) 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JP2013232563A (ja) 炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003346.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011518619

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010821787

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010821787

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117011670

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13131163

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE