WO2015015629A1 - 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素半導体装置および炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
WO2015015629A1
WO2015015629A1 PCT/JP2013/070959 JP2013070959W WO2015015629A1 WO 2015015629 A1 WO2015015629 A1 WO 2015015629A1 JP 2013070959 W JP2013070959 W JP 2013070959W WO 2015015629 A1 WO2015015629 A1 WO 2015015629A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
sic
semiconductor device
carbide semiconductor
mosfet
Prior art date
Application number
PCT/JP2013/070959
Other languages
English (en)
French (fr)
Inventor
三江子 松村
浩孝 濱村
慶亮 小林
三木 浩史
峰 利之
友紀 毛利
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/070959 priority Critical patent/WO2015015629A1/ja
Publication of WO2015015629A1 publication Critical patent/WO2015015629A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02301Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment in-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation

Definitions

  • the present invention relates to a silicon carbide semiconductor device and a method for manufacturing a silicon carbide semiconductor device, and more particularly to a metal-oxide film-semiconductor-field effect transistor (SiC-MOSFET) using silicon carbide.
  • SiC-MOSFET metal-oxide film-semiconductor-field effect transistor
  • MOSFETs metal-oxide-semiconductor field-effect transistor elements
  • SiC silicon carbide
  • Si silicon carbide
  • Non-Patent Document 1 reports that when a SiO 2 film is formed by oxidizing SiC in an oxygen atmosphere, a transition layer made of a SiC x O y component is formed at the interface.
  • Non-Patent Document 2 reports that an interface component composed of a SiC x O y component is a source of interface states.
  • Interface states cause mobility degradation. Since the interface state at the interface between SiC and SiO 2, which is a wide gap semiconductor, has a wide time constant distribution, the charge state at the interface changes with time for a long time. A change in the charge state of the interface with time causes a change in the threshold voltage of the MOSFET with time. Therefore, the SiC x O y component at the interface brings about a decrease in on-current and a threshold voltage with time due to mobility deterioration. This problem occurs in the active area.
  • a gate oxide film is formed not by an oxidation method but by a deposition method, and thereafter annealing is performed to bake the oxide film and introduce nitrogen into the interface Is described in Patent Document 1.
  • This method is effective in suppressing the problem of the active region because the interface SiC x O y component due to oxidation is smaller than when the entire thickness of the gate oxide film is oxidized.
  • Non-Patent Document 3 it has been reported that the change in the charge state at the interface with time causes a decrease in the breakdown voltage between the source and drain at the end of the element over time.
  • Patent Document 2 describes a method of performing damage annealing on the SiC surface by performing sacrificial oxidation and hydrofluoric acid cleaning in a dry O 2 or wet H 2 O atmosphere after performing activation annealing. Has been.
  • the inventors of the present application have experimentally confirmed that an interface SiC x O y component is formed by sacrificial oxidation in a damage layer removal process by ion implantation, and that this SiC x O y component cannot be removed by hydrofluoric acid cleaning. I found it.
  • the method disclosed in Patent Document 2 described above is an effective means for removing a damaged layer caused by ion implantation.
  • the gate oxide film formed will be formed SiC x O y components in front of the damaged layer removing step the step, the field oxide film and a gate oxide film without SiC x O y component be subjected to cleaning with hydrofluoric acid is removed Will be deposited.
  • Patent Document 1 Although the method disclosed in Patent Document 1 focused on only the interface between the gate oxide film and SiC, the inventors of the present application also focused on the interface between the field oxide film and SiC.
  • SiC-MOSFETs it is common to place an oxide film called a field oxide film thicker than a gate oxide film in a region other than the active region for the purpose of reducing parasitic capacitance and bonding damage.
  • the field oxide film is deposited and patterned before forming the gate oxide film. Therefore, at the boundary between the active region and the gate pad portion, at the end portion of the field oxide film, the interface between the field oxide film and SiC faces the gate electrode through the thin gate insulating film.
  • the inventors of the present application have also found a problem at the element termination portion.
  • a field oxide film is disposed at the element termination portion. If the SiC x O y component at the interface between the field oxide film and SiC at the element termination portion causes a change with time in the charge state at the interface, the breakdown voltage between the source and drain at the element termination portion decreases with time. As a result, the device life is limited.
  • the problem to be solved by the present invention is that SiC x O y at the interface between SiO 2 and SiC in the active region, the gate pad portion, and the element termination portion, which is generated during the SiC-MOSFET manufacturing process. It is suppression of the generation of components.
  • the damaged layer is removed by ion implantation by heat treatment and hydrofluoric acid cleaning in an atmosphere containing NO, N 2 O, or NH 3 to generate a SiC x O y component before the gate oxide film process. It is suppressed and the above-mentioned problem is solved.
  • the generation of the SiC x O y component at the SiO 2 and SiC interface in the active region, the gate pad portion, and the element termination portion is suppressed, and a SiC-MOSFET having excellent characteristics can be obtained.
  • FIG. 1A to 1C are cross-sectional views of the completed SiC-MOSFET of this example.
  • FIG. 2 is a schematic top view of the SiC-MOSFET of this example.
  • the SiC-MOSFET of this embodiment includes a unit cell assembly part (active region) 41, a gate pad part 42, and an element termination part 43 arranged so as to surround the unit cell assembly part.
  • 1A shows a half cross section of the unit cell in the active region 41
  • FIG. 1B shows a cross section of the gate pad portion 42
  • FIG. 1C shows a cross section of the element termination portion 43.
  • the SiC-MOSFET of this embodiment includes an SiC substrate 1 doped with an n-type impurity at a relatively high concentration and an n-type impurity at a relatively low concentration.
  • the concentration of the impurity doped in the SiC substrate 1 is, for example, 10 18 cm ⁇ 3
  • the concentration of the impurity doped in the n-type drift region 2 is, for example, 2 ⁇ 10 15 to 5 ⁇ 10 16 cm ⁇ 3. It is.
  • the n-type impurity in this example is nitrogen. Phosphorus can also be used as the n-type impurity.
  • the p-type impurity in this embodiment is aluminum. Boron can also be used as the p-type impurity.
  • each region will be described in the description of the method of manufacturing the SiC-MOSFET of this embodiment.
  • FIG. 12 shows a flowchart of the manufacturing process of the SiC-MOSFET of this example.
  • the manufacturing process will be described in association with each step of FIG. 3 to 10 (a) are cross sections showing the manufacturing process of the active region 41
  • FIGS. 3 to 10 (b) are cross sections showing the manufacturing process of the gate pad portion 42
  • FIGS. 3 to 10 (c) are element termination portions.
  • the cross section which shows the manufacturing process of 43 is shown.
  • 3A to 3C are cross-sectional views illustrating a manufacturing process corresponding to steps S1201 to S1202 in FIG.
  • n-type impurities doped with a relatively low concentration on an SiC substrate 1 doped with n-type impurities at a relatively high concentration.
  • the type drift region 2 is formed by epitaxial growth.
  • a mask is formed by photolithography, and by ion implantation, a p-type body region 3, a p-contact region 4 doped with a high concentration of p-type impurities, and an n-source region doped with a high concentration of n-type impurities. 5.
  • Doping impurities are implanted into each of the p-type junction termination region 21 and the n + electric field stop region 22.
  • activation annealing is performed at a high temperature of 1500 ° C. or higher.
  • FIGS. 4A to 4C and FIGS. 5A to 5C are cross-sectional views illustrating a manufacturing process corresponding to step S1203 in FIG.
  • heat treatment oxynitridation
  • a nitride film 32 is formed.
  • the heat treatment is performed at a temperature between 1000 ° C. and 1300 ° C., and SiC is oxynitrided to a depth of about 5 nm.
  • a layer having a thickness of about 2 nm into which 0.5% or more of nitrogen is introduced is formed on the SiC surface 106, and the generation of the SiC x O y component on the SiC surface 106 is suppressed.
  • FIGS. 6A to 6C are cross-sectional views illustrating the manufacturing process corresponding to step S1204 in FIG.
  • a field oxide film 6 is deposited to a thickness of 500 nm by a CVD method using TEOS and oxygen, silane and N 2 O, or dichlorosilane and N 2 O as raw materials.
  • the field oxide film 6 is patterned by a photolithography method and a hydrofluoric acid wet etching method.
  • the field oxide film 6 is left on the gate pad portion 42. This is to prevent damage to the SiC substrate 1 when a polysilicon gate and a metal gate electrode are formed later and further bonded.
  • the element termination portion 43 shown in FIG. 6C is about 2 nm from the interface between the field oxide film 6 and the SiC surface 106. More than 0.5% of nitrogen is present up to a depth of. Therefore, when the device is completed as shown in FIG. 1B, about 2 nm is formed on the n-type silicon carbide layer side near the interface between the silicon oxide layer (field oxide film 6) and the n-type silicon carbide layer below the gate pad. Nitrogen of 0.5% or more is present up to the depth of. When the element is completed as shown in FIG. 1C, the silicon carbide layer (p-type junction) in the vicinity of the interface between the silicon oxide layer (field oxide film 6) in the termination region and the silicon carbide layer (p-type junction termination region 21). On the end region 21) side, nitrogen of 0.5% or more exists to a depth of about 2 nm.
  • FIGS. 7A to 7C are cross-sectional views illustrating the manufacturing process corresponding to step S1205 in FIG.
  • a gate oxide film 7 is deposited to a thickness of 50 nm by a CVD method using silane and N 2 O as source gases at a temperature of 750 ° C., and the defects in the deposited film are annealed. Therefore, a heat treatment is performed after the deposition.
  • the heat treatment was performed under the condition for preventing the oxidation of SiC.
  • the heat treatment was performed in a NO atmosphere at a temperature of 1100 ° C. for 30 minutes.
  • the atmosphere of the heat treatment may be an atmosphere containing either N 2 O or NH 3 in addition to NO.
  • the density of the gate oxide film 7 becomes higher than the density of the field oxide film 6. Since the generation of the SiC x O y component is suppressed in step S1203 before the step of forming the gate oxide film 7 (step S1205), the SiC surface 107 under the gate oxide film 7 is obtained with a good interface. An SiC-MOSFET having excellent characteristics can be obtained.
  • FIGS. 8A to 8C are cross-sectional views illustrating the manufacturing process corresponding to step S1206 in FIG.
  • a polysilicon gate 8 is deposited as a gate electrode by CVD using silane gas and phosphine as raw materials, and patterned by photolithography and dry etching.
  • FIGS. 9A to 9C are cross-sectional views illustrating the manufacturing process corresponding to step S1207 in FIG. As shown in FIGS. 9A to 9C, an interlayer insulating film 9 is deposited by a CVD method.
  • FIGS. 10A to 10C are cross-sectional views illustrating the manufacturing process corresponding to step S1208 in FIG.
  • the interlayer insulating film 9, the gate insulating film 7 and the field oxide film 6 are patterned by photolithography and dry etching to open contact holes.
  • step S1209 in FIG. 12 the SiC-MOSFETs shown in FIGS. 1A to 1C are formed.
  • a metal film is deposited by a sputtering method and patterned by a photolithography method and a dry etching method to form a metal source electrode 11 and a metal gate electrode.
  • the metal drain electrode 12 is formed on the back surface to complete the SiC-MOSFET.
  • step S1203 shows the SiC surface in which the damage layer removing process is performed by dry O 2 atmosphere oxidation and hydrofluoric acid cleaning, and the damage layer removing process is performed by the NO atmosphere heat treatment and hydrofluoric acid cleaning in this embodiment. It is the result of having analyzed the SiC surface with X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • FIG. 13 shows the results of quantitative analysis of carbon, silicon, oxygen, and nitrogen obtained as a result of analysis by XPS.
  • FIG. 11A shows the C1s spectrum.
  • a main peak obtained from SiC and a sub peak due to the SiC x O y component were observed.
  • a main peak obtained from SiC and a sub peak due to the SiC x O y component were observed.
  • the SiC x O y component remains even after cleaning with hydrofluoric acid, and the SiC x O y component when the atmosphere is NO gas as indicated by the solid line with respect to the broken line. The generation of is suppressed.
  • FIG. 11C shows the N1s spectrum. In the result of the surface damage layer removal step by the oxygen atmosphere indicated by the broken line, nitrogen is below the detection lower limit as shown in FIG.
  • the lower limit of detection is 0.1%.
  • nitrogen other than the surface that has undergone the surface damage layer removal step (step S ⁇ b> 1203) of this embodiment is detected by XPS. (0.1%) or less.
  • nitrogen is introduced at a higher concentration on the surface that has undergone the surface damage layer removal step (step S1203) by the NO atmosphere of the present embodiment indicated by the solid line, and 1.1% of nitrogen is detected even after hydrofluoric acid cleaning.
  • the detection of 1.1% of nitrogen corresponds to the fact that nitrogen is contained at a concentration of about 10 20 cm ⁇ 3 .
  • the manufacturing method of the present embodiment it is possible to suppress the generation of the SiC x O y component at the interface by introducing nitrogen into the interface in the damaged layer removing step performed before forming the gate oxide film. Further, the advantage can be further obtained by forming the gate oxide film by the deposition method. Thus, the manufacturing method of this example has an advantage that an SiC-MOSFET having excellent characteristics can be obtained.
  • the SiC surface 107 under the gate oxide film 7 in the unit cell (active) region of FIG. 1A is doped with 0.5% or more of nitrogen, and has a low SiC x O y component. It is the surface. Further, the SiC surface 106 under the field oxide film 6 in the gate pad portion 42 in FIG. 1B and the SiC surface 106 under the field oxide film 6 in the element termination portion 43 in FIG. The above nitrogen is introduced, and the SiC surface has few SiC x O y components. Therefore, the generation of SiC x O y components is suppressed at the two types of interfaces, that is, the interface between the gate insulating film 7 and SiC and the interface between the field oxide film 6 and SiC. In FIGS.
  • the SiC surface 106 and the SiC surface 107 are shown slightly separated from each other, but this is shown separated for convenience of explanation. Actually, the SiC surface 106 and the SiC surface 107 are continuous. Further, the SiC surface 106 and the SiC surface 107 are described separately for convenience of explanation, but the SiC surface 106 and the SiC surface 107 are formed by a manufacturing process corresponding to step S1203 in FIG. A layer having a thickness of about 2 nm in which 0.5% or more of nitrogen is introduced is also formed in 107.
  • an SiC-MOSFET having an increase in interface state density and a small threshold fluctuation in the active region 41 can be obtained. Further, suppression of generation of the SiC x O y component on the SiC surface 106 under the field oxide film 6 of the gate pad portion 42 makes it difficult for the breakdown voltage to decrease with time in the vicinity of the gate pad portion 42, thereby extending the element lifetime. . Furthermore, the suppression of the generation of the SiC x O y component on the SiC surface 106 under the field oxide film 6 of the element termination portion 43 makes it difficult for the source / drain breakdown voltage to be lowered at the element termination portion, thereby extending the element lifetime. As described above, according to this embodiment, it is possible to obtain a long-life SiC-MOSFET having excellent characteristics and little fluctuation in characteristics.
  • the field oxide film 6 is left in the element termination portion 43.
  • the field oxide film on the element termination portion 43 may be removed and the gate oxide film 7 may be disposed in contact with the junction termination region 21. good.
  • the generation of the SiC x O y component is suppressed before the step of forming the gate oxide film, it is possible to obtain a SiC-MOSFET having a good interface and less characteristic fluctuation.
  • a method for manufacturing a MOSFET type silicon carbide semiconductor device of this embodiment includes a step of introducing a doping impurity into silicon carbide by an ion implantation method, an activation annealing step for activating the doping impurity, and a field oxide film forming step. And a gate oxide film forming step, and including any of NO, N 2 O, and NH 3 for removing a damage layer caused by ion implantation between the activation annealing step and the field oxide film forming step. It is characterized by performing heat treatment in an atmosphere and cleaning with hydrofluoric acid.
  • the heat treatment step is preferably performed at a temperature between 1000 ° C. and 1300 ° C.
  • the gate oxide film forming step is performed by a deposition method and a heat treatment after deposition.
  • the silicon carbide semiconductor device thus manufactured has the following characteristics.
  • a MOSFET type silicon carbide semiconductor device comprising a unit cell assembly (active region), a gate pad portion, and an element termination portion, fabricated on a first conductivity type silicon carbide, wherein the gate pad portion is
  • the silicon carbide has a stack of a field oxide film, a gate oxide film, a polysilicon gate, and a metal gate electrode in order from the bottom, and nitrogen is introduced into the surface of the silicon carbide under the metal gate electrode. It is characterized by.
  • the nitrogen concentration on the silicon carbide surface under the metal gate electrode is preferably 0.5% or more.
  • the element termination portion has a junction termination region of a second conductivity type, the junction termination region has an insulating film on the top, and nitrogen is introduced into the surface of the junction termination region.
  • the nitrogen concentration on the surface of the junction termination region is desirably 0.5% or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 本発明は、SiC-MOSFET作製プロセス中に生成される、アクティブ領域、ゲートパッド部、および素子終端部の、SiOとSiCの界面のSiC成分の生成を抑制し、特性の優れるSiC-MOSFETを得ることを課題とする。 本発明では、イオン注入によるダメージ層の除去を、NO、NO、またはNHを含む雰囲気中の熱処理と弗酸洗浄により行って、ゲート酸化膜工程より前にSiC成分が生成されることを抑制し、上述の課題を解決する。

Description

炭化珪素半導体装置および炭化珪素半導体装置の製造方法
 本発明は、炭化珪素半導体装置および炭化珪素半導体装置の製造方法に関し、特に、炭化珪素を用いた金属-酸化膜-半導体-電界効果トランジスタ(SiC-MOSFET)に関するものである。
 低炭素社会実現のため、電力変換における損失低減が求められている。電力変換装置内のスイッチング素子として、近年、炭化珪素(SiC)を用いた金属-酸化膜-半導体電界効果型トランジスタ素子(MOSFET)の開発が盛んである。SiCは従来用いられている珪素(Si)よりも絶縁破壊強度が高いことから、素子のドリフト層を薄くしても耐圧を保持することが出来、素子のオン抵抗の低減が可能である。従って、SiC-MOSFETを電力変換装置に適用することにより損失の低減が可能となる。また、Siを用いた場合では耐えることの出来なかった高電圧用途への応用も期待されている。
 SiにはなかったSiC特有の現象の一つに、酸化してSiO膜を形成する際、急峻な界面を得にくいということがある。非特許文献1には、SiCを酸素雰囲気中で酸化してSiO膜を形成すると、界面にSiC成分からなる遷移層が形成されることが報告されている。また、非特許文献2には、SiC成分からなる界面成分は界面準位の源となることが報告されている。
 界面準位は移動度劣化の原因となる。ワイドギャップ半導体であるSiCとSiOとの界面の界面準位は広範囲の時定数分布を持つため、界面準位があると界面の荷電状態は長時間にわたって経時変化する。界面の荷電状態の経時変化は、MOSFETのしきい電圧の経時変化をもたらす。従って界面のSiC成分は移動度劣化に伴うオン電流の低下としきい電圧の経時変化をもたらす。この問題はアクティブ領域で発生する。
 この酸化起因の界面SiC成分生成を抑制するため、ゲート酸化膜形成を、酸化法ではなく堆積法で行い、その後アニールを行って酸化膜の焼きしめと界面への窒素導入を行う方法が特許文献1に記載されている。この方法は、ゲート酸化膜の厚さ全体を酸化した場合に比べて、酸化起因の界面SiC成分が少ないため、アクティブ領域の問題を抑制するのに有効な方法である。
 一方で、界面の荷電状態の経時変化は素子終端部のソースドレイン間耐圧の経時的な低下をもたらすことが報告されている(非特許文献3)。
 また、SiCではドーピング不純物としてアルミや窒素などをイオン注入して用いるが、これらを活性化させるために1500℃以上の高温が必要である。このような高温アニールを行っても、表面にはイオン注入によるダメージ、組成の不均一や結晶欠陥が残っている。これを解決する方法として、特許文献2には、活性化アニールを行った後に、ドライOまたはウエットHO雰囲気での犠牲酸化と弗酸洗浄によってSiC表面のダメージ層除去を行う方法が記載されている。
特開2006-216918号公報 特開2009-4572号公報
B.Hornetz et al., "Oxidation and 6H‐SiC-SiO2 interfaces," Journal of Vacuum Science and Technology A, Volume 13 (1995) p.767-771 S.Wang et al., "Bonding at the SiC-SiO2 Interface and the Effects of Nitrogen and Hydrogen,"Physical Review Letter, Volume 98, p.026101-026104 T.Okayama et al., "Stability and 2-D Simulation Studies of Avalanche Breakdown in 4H-SiC DMOSFETs With JTE," IEEE Transaction on Electron Devices,Volume 55 p.489-494
 本願発明者らは、イオン注入によるダメージ層の除去工程の犠牲酸化によって界面SiC成分が形成されてしまうこと、さらにこのSiC成分は弗酸洗浄によって除去出来ないことを実験によって見出した。上述の特許文献2に開示されている方法はイオン注入によるダメージ層を除去するのに有効な手段である。しかし、ゲート酸化膜形成工程より前のダメージ層除去工程でSiC成分が形成されてしまい、弗酸洗浄を行ってもSiC成分が除去されずにフィールド酸化膜やゲート酸化膜が堆積されることになる。そのために、フィールド酸化膜が配置されたゲートパッド部と素子終端部では後述するSiC成分による問題が発生し、アクティブ領域においても堆積およびその後のアニールでSiC成分の生成を抑制した効果が小さくなってしまう。
 特許文献1に開示されている方法は、ゲート酸化膜とSiCとの界面のみに着目していたが、本願の発明者らはフィールド酸化膜とSiCの界面にも着目した。SiC-MOSFETでは、アクティブ領域以外の領域に寄生容量低減やボンディングダメージ低減などの目的で、フィールド酸化膜と呼ばれるゲート酸化膜より厚い酸化膜を置くことが一般的である。フィールド酸化膜はゲート酸化膜の形成前に堆積、パターニングされる。そのためアクティブ領域とゲートパッド部の境界では、フィールド酸化膜の端部で、フィールド酸化膜とSiCとの界面が、薄いゲート絶縁膜を介してゲート電極と向き合っている。もしフィールド酸化膜とSiCとの界面の界面準位密度が高く、この薄いゲート絶縁膜を介してゲート電極と向き合っているフィールド酸化膜の端部近傍の荷電状態が経時的に局所的に変化すると、電界が集中して経時的に素子の耐圧が低下するので、結果として素子寿命が制限される。
 さらに、本願発明者らは素子終端部での問題も見出した。素子終端部はフィールド酸化膜が配置されているのが一般的である。素子終端部のフィールド酸化膜とSiCとの界面のSiC成分により、該界面の荷電状態の経時変化が生じれば、素子終端部のソースドレイン間耐圧が経時的に低下するので、結果として素子寿命が制限される。
 以上のように、本発明が解決しようとする課題は、SiC-MOSFET作製プロセス中に生成される、アクティブ領域、ゲートパッド部、および素子終端部の、SiOとSiCの界面のSiC成分の生成の抑制である。
 本発明では、イオン注入によるダメージ層の除去を、NO、NO、またはNHを含む雰囲気中の熱処理と弗酸洗浄により行って、ゲート酸化膜工程より前にSiC成分が生成されることを抑制し、上述の課題を解決する。
 本発明により、アクティブ領域、ゲートパッド部、および素子終端部の、SiOとSiCの界面のSiC成分の生成が抑制され、特性の優れたSiC-MOSFETが得られる。
本発明の実施例であるSiC-MOSFETのアクティブ領域にある単位セルの半分の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのゲートパッド部の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETの素子終端部の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETの上面概略図である。 本発明の実施例であるSiC-MOSFETのアクティブ領域にある単位セルの半分の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのゲートパッド部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETの素子終端部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのアクティブ領域にある単位セルの半分の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのゲートパッド部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETの素子終端部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのアクティブ領域にある単位セルの半分の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのゲートパッド部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETの素子終端部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのアクティブ領域にある単位セルの半分の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのゲートパッド部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETの素子終端部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのアクティブ領域にある単位セルの半分の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのゲートパッド部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETの素子終端部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのアクティブ領域にある単位セルの半分の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのゲートパッド部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETの素子終端部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのアクティブ領域にある単位セルの半分の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのゲートパッド部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETの素子終端部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのアクティブ領域にある単位セルの半分の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETのゲートパッド部の製造中の断面を説明するための図である。 本発明の実施例であるSiC-MOSFETの素子終端部の製造中の断面を説明するための図である。 本発明の効果を説明するための図である。 本発明の効果を説明するための図である。 本発明の効果を説明するための図である。 本発明の実施例であるSiC-MOSFETの製造方法を説明するための図である。 本発明の効果を説明するための図である。
 本発明のSiC-MOSFETの実施例を、図面を用いて以下に説明する。
 図1(a)~(c)は、完成した本実施例のSiC-MOSFETの断面図である。図2は、本実施例のSiC-MOSFETの上面概略図である。図2に示したように、本実施例のSiC-MOSFETは、単位セルの集合部(アクティブ領域)41と、ゲートパッド部42と、単位セル集合部を囲むように配置された素子終端部43とを有している。図1(a)はアクティブ領域41にある単位セルの半分の断面を、図1(b)はゲートパッド部42の断面を、図1(c)は素子終端部43の断面を示す。
 図1(a)~(c)に示すように、本実施例のSiC-MOSFETは、比較的高濃度にn型の不純物がドープされているSiC基板1と、比較的低濃度にn型の不純物がドープされているn型ドリフト領域2と、p型ボディ領域3と、高濃度にp型の不純物がドープされているコンタクト領域4と、高濃度にn型の不純物がドープされているソース領域5と、フィールド酸化膜6と、ゲート酸化膜7と、ゲート電極であるポリシリコンゲート8と、層間絶縁膜9とを有する。SiC基板1にドープされている不純物の濃度は、例えば1018cm-3であり、n型ドリフト領域2にドープされている不純物の濃度は、例えば2×1015~5×1016cm-3である。本実施例のn型の不純物は窒素である。n型の不純物としては、リンを用いることもできる。本実施例のp型の不純物はアルミである。p型の不純物としては、ボロンを用いることもできる。以下、本実施例のSiC-MOSFETの製造方法の説明中で、各領域について説明する。
 図12に、本実施例のSiC-MOSFETの製造プロセスのフロー図を示す。以下、図12の各ステップと対応付けて製造プロセスを説明する。図3~10(a)はアクティブ領域41の製造プロセスを示す断面を、図3~10(b)はゲートパッド部42の製造プロセスを示す断面を、図3~10(c)は素子終端部43の製造プロセスを示す断面を示す。
 図3(a)~(c)は、図12のステップS1201~S1202に対応する製造プロセスを説明する断面図である。図3(a)~(c)に示すように、まず比較的高濃度にn型の不純物がドープされているSiC基板1上に、比較的低濃度にn型の不純物がドープされているn型ドリフト領域2をエピタキシャル成長により形成する。さらに、ホトリソグラフィーによりマスクを形成し、イオン注入により、p型ボディ領域3、高濃度にp型の不純物がドープされるpコンタクト領域4、高濃度にn型の不純物がドープされるnソース領域5、p型接合終端領域21、およびn電界停止領域22、の各領域にドーピング不純物を注入する。ドーピング不純物を活性化させるため、1500℃以上の高温で活性化アニールを行う。
 図4(a)~(c)および図5(a)~(c)は、図12のステップS1203に対応する製造プロセスを説明する断面図である。図4(a)~(c)に示すように、イオン注入による表面ダメージ層を除去するため、NO、NO、NHのいずれかを含む雰囲気で熱処理(酸窒化)を行って、酸窒化膜32を形成する。熱処理は1000℃から1300℃の間の温度で行い、5nm程度の深さまでSiCを酸窒化する。その結果、SiC表面106には、0.5%以上の窒素が導入された厚さ2nm程度の層が形成され、SiC表面106でのSiC成分の生成が抑制される。そして、図5に示すように、弗酸洗浄により酸窒化膜32を除去する。洗浄は弗酸:純水=1:20水溶液で5分間行う。弗酸洗浄後のSiC表面106には0.5%以上の窒素が残存している。
 図6(a)~(c)は、図12のステップS1204に対応する製造プロセスを説明する断面図である。図6(a)~(c)に示すように、フィールド酸化膜6を、TEOSと酸素や、シランとNO、またはジクロロシランとNOを原料とするCVD法により、500nm堆積する。次にフィールド酸化膜6をホトリソグラフィー法と弗酸ウエットエッチング法によりパターニングする。ゲートパッド部42には、フィールド酸化膜6を残す。後にポリシリコンゲートと金属ゲート電極の積層を形成し、さらにボンディングを行う際に、ダメージがSiC基板1に及ぶのを避ける為である。図6(b)に示すゲートパッド部42および図6(c)に示す素子終端部43のフィールド酸化膜6の下のSiC表面106には、フィールド酸化膜6とSiC表面106の界面から約2nmの深さまで0.5%以上の窒素が存在している。したがって、図1(b)のように素子が完成すると、ゲートパッド下方の酸化珪素層(フィールド酸化膜6)とn型の炭化珪素層の界面近傍のn型の炭化珪素層側に、約2nmの深さまで0.5%以上の窒素が存在することになる。また、図1(c)のように素子が完成すると、終端領域の酸化珪素層(フィールド酸化膜6)と炭化珪素層(p型接合終端領域21)の界面近傍の炭化珪素層(p型接合終端領域21)側に、約2nmの深さまで0.5%以上の窒素が存在することになる。
 図7(a)~(c)は、図12のステップS1205に対応する製造プロセスを説明する断面図である。図7(a)~(c)に示すように、ゲート酸化膜7を、シランとNOを原料ガスとし、温度750℃にてCVD法により50nm堆積し、堆積膜中の欠陥をアニールするため堆積後熱処理を行う。熱処理はSiCの酸化を防ぐ条件とし、ここではNO雰囲気中、温度1100℃で30分間行った。熱処理の雰囲気は、NOの他に、NO、NHのいずれかを含む雰囲気でも良い。堆積後の熱処理によって、ゲート酸化膜7の密度はフィールド酸化膜6の密度よりも高くなる。ゲート酸化膜7下のSiC表面107は、ゲート酸化膜7を形成する工程(ステップS1205)以前に、ステップS1203でSiC成分の生成が抑制されていることから、良好な界面が得られ、優れた特性のSiC-MOSFETを得ることが出来る。
 図8(a)~(c)は、図12のステップS1206に対応する製造プロセスを説明する断面図である。図8(a)~(c)に示すように、ゲート電極としてポリシリコンゲート8をシランガスとホスフィンを原料としてCVD法により堆積し、ホトリソグラフィー法とドライエッチングによりパターニングする。
 図9(a)~(c)は、図12のステップS1207に対応する製造プロセスを説明する断面図である。図9(a)~(c)に示すように、層間絶縁膜9をCVD法により堆積する。
 図10(a)~(c)は、図12のステップS1208に対応する製造プロセスを説明する断面図である。図10(a)~(c)に示すように、ホトリソグラフィー法とドライエッチング法で層間絶縁膜9、ゲート絶縁膜7、およびフィールド酸化膜6をパターニングしてコンタクト穴を開口する。
 最後に図12のステップS1209で、図1(a)~(c)に示すSiC-MOSFETができる。図1(a)~(c)に示すように、金属膜をスパッタ法により堆積し、ホトリソグラフィー法とドライエッチング法でパターニングして、金属ソース電極11、金属ゲート電極14を形成する。また、裏面に金属ドレイン電極12を形成し、SiC-MOSFETを完成する。
 ゲート酸化膜7を形成する工程(ステップS1205)以前に、ステップS1203でSiC成分の生成が抑制されていることを、図11(a)~(c)と図13を用いて説明する。図11(a)~(c)は、ダメージ層除去工程をドライO雰囲気酸化と弗酸洗浄で行ったSiC表面と、ダメージ層除去工程を本実施例のNO雰囲気熱処理と弗酸洗浄で行ったSiC表面とを、X線光電子分光(XPS)にて分析した結果である。ダメージ層除去工程をドライO雰囲気酸化と弗酸洗浄で行ったSiC表面のXPS分析の結果を破線で、ダメージ層除去工程を本実施例のNO雰囲気熱処理と弗酸洗浄で行ったSiC表面のXPS分析の結果を実線で、それぞれ示した。図13は、XPSにて分析した結果得られた、炭素、珪素、酸素、および窒素の定量分析の結果である。
 図11(a)にC1sスペクトルを示す。SiCから得られる主ピークと、SiC成分によるサブピークが観測された。図11(b)に示すSi2pスペクトルにおいても、SiCから得られる主ピークと、SiC成分によるサブピークが観測された。ここで注目すべきは、弗酸洗浄を行ってもSiC成分が残留していることと、破線に対して実線で示されるように、雰囲気がNOガスの場合、SiC成分の生成が抑制されていることである。図11(c)にN1sスペクトルを示す。破線で示された酸素雰囲気による表面ダメージ層除去工程の結果では、図13に示すように窒素は検出下限以下となっている。ここで、検出下限は0.1%である。このようにn型ドリフト層2のn型の不純物である窒素の濃度は小さいので、本実施例の表面ダメージ層除去工程(ステップS1203)を経た表面以外では、XPSでの分析で窒素が検出下限(0.1%)以下となる。それに対して、実線で示された本実施例のNO雰囲気による表面ダメージ層除去工程(ステップS1203)を経た表面では窒素がより高濃度に導入され、弗酸洗浄後も窒素が1.1%検出されている。この窒素が1.1%検出とは、窒素が約1020cm-3の濃度で含まれていることに対応する。以上のように、本実施例の製造方法ではゲート酸化膜形成前に行うダメージ層除去工程において窒素を界面に導入することにより、界面のSiC成分の生成を抑制することができる。また、堆積法でゲート酸化膜を形成することでさらにその利点を生かすことが出来る。このように、本実施例の製造方法は特性の優れたSiC-MOSFETが得られるという利点がある。
 以上に説明したように、図1(a)の単位セル(アクティブ)領域のゲート酸化膜7下のSiC表面107は、0.5%以上の窒素が導入され、SiC成分が少ないSiC表面となっている。さらに、図1(b)のゲートパッド部42のフィールド酸化膜6下のSiC表面106、および図1(c)の素子終端部43のフィールド酸化膜6下のSiC表面106も、0.5%以上の窒素が導入され、SiC成分が少ないSiC表面となっている。したがって、ゲート絶縁膜7とSiCの界面、およびフィールド酸化膜6とSiCの界面の、2種類の界面においてSiC成分の生成が抑制されている。なお、図1(b)、図7~10(b)で、SiC表面106とSiC表面107とを少し離間して示しているが、これは説明の便宜上離間して示しているものであり、実際にはSiC表面106とSiC表面107は連続している。また、SiC表面106とSiC表面107として説明の便宜上分けて説明しているが、SiC表面106とSiC表面107は、図12のステップS1203に対応する製造プロセスで形成されるものであり、SiC表面107にも0.5%以上の窒素が導入された厚さ2nm程度の層が形成されている。
 ゲート絶縁膜7とSiCの界面のSiC成分の生成の抑制によって、アクティブ領域41における界面準位密度の増加と閾値変動の少ないSiC-MOSFETを得ることができる。また、ゲートパッド部42のフィールド酸化膜6下のSiC表面106でのSiC成分の生成の抑制によって、ゲートパッド部42近傍における経時的な耐圧の低下が生じにくくなり、素子寿命が延びる。さらに、素子終端部43のフィールド酸化膜6下のSiC表面106でのSiC成分の生成の抑制によって、素子終端部におけるソースドレイン耐圧の低下が生じにくくなり、素子寿命が長くなる。以上のように本実施例によれば、特性に優れ、特性変動の少ない長寿命のSiC-MOSFETを得ることが出来る。
 本実施例では、素子終端部43にフィールド酸化膜6を残したが、素子終端部43上のフィールド酸化膜を除去し、接合終端領域21上にゲート酸化膜7を接するように配置しても良い。この場合にも、ゲート酸化膜形成の工程以前にSiC成分の生成が抑制されることから、良好な界面が得られ特性変動の少ないSiC-MOSFETを得ることが出来る。
 本実施例のMOSFET型の炭化珪素半導体装置の製造方法は、イオン注入法によりドーピング不純物を炭化珪素中に導入する工程と、該ドーピング不純物を活性化する活性化アニール工程と、フィールド酸化膜形成工程と、ゲート酸化膜形成工程を含み、該活性化アニール工程と該フィールド酸化膜形成工程の間に、イオン注入によるダメージ層を除去するための、NO、NO、NHのいずれかを含む雰囲気での熱処理と弗酸洗浄とを行うことを特徴とする。ここで、該熱処理工程は1000℃から1300℃の間の温度で行うことが望ましい。また、さらに該ゲート酸化膜形成工程を堆積法と堆積後の熱処理で行うのが望ましい。
 このようにして製造された炭化珪素半導体装置は次のような特徴を持つ。
 第一伝導型の炭化珪素上に作製された、単位セルの集合部(アクティブ領域)と、ゲートパッド部と、素子終端部からなるMOSFET型の炭化珪素半導体装置であって、該ゲートパッド部は、該炭化珪素上に下から順にフィールド酸化膜、ゲート酸化膜、ポリシリコンゲート、金属ゲート電極からなる積層を持ち、該金属ゲート電極の下の該炭化珪素の表面に窒素が導入されていることを特徴とする。該金属ゲート電極下の該炭化珪素表面の窒素濃度は0.5%以上であることが望ましい。該素子終端部は、第二伝導型の接合終端領域を持ち、該接合終端領域は上部に絶縁膜を持ち、該接合終端領域の表面に窒素が導入されていることを特徴とする。該接合終端領域の表面の窒素濃度は0.5%以上であることが望ましい。
 1:SiC基板、2:n型ドリフト領域、3:p型ボディ領域、4:高濃度pコンタクト領域、5:高濃度nソース領域、6:フィールド酸化膜、7:ゲート酸化膜、8:ポリシリコンゲート、9:層間絶縁膜、10:コンタクト穴、11:金属ソース電極、12:金属ドレイン電極、14:金属ゲート電極、21:p型接合終端領域、22:n+電界停止領域、32:酸窒化膜、41:単位セル集合部(アクティブ領域)、42:ゲートパッド部、43:素子終端部、106:フィールド酸化膜下のSiC表面、107:ゲート酸化膜下のSiC表面。

Claims (11)

  1.  ドーピング不純物を炭化珪素層中に導入する工程と、
     前記ドーピング不純物を活性化する活性化アニール工程と、
     ゲート絶縁膜を形成する工程とを含み、
     前記活性化アニール工程後でゲート酸化膜を形成する工程の前に、NO、NO、NHのいずれかを含む雰囲気での熱処理と該熱処理後の弗酸洗浄の工程を有することを特徴とする炭化珪素半導体装置の製造方法。
  2.  請求項1に記載の炭化珪素半導体装置の製造方法において、
     前記弗酸洗浄の工程の後で前記ゲート絶縁膜を形成する工程の前に、フィールド酸化膜の形成工程を有することを特徴とする炭化珪素半導体装置の製造方法。
  3.  請求項1に記載の炭化珪素半導体装置の製造方法において、
     前記熱処理を1000℃から1300℃の間の温度で行うことを特徴とする炭化珪素半導体装置の製造方法。
  4.  請求項1に記載の炭化珪素半導体装置の製造方法において、
     前記ゲート絶縁膜を形成する工程は、CVDと該CVD後の熱処理を含むことを特徴とする炭化珪素半導体装置の製造方法。
  5.  請求項1に記載の炭化珪素半導体装置の製造方法において、
     前記炭化珪素半導体装置はMOSFETであることを特徴とする炭化珪素半導体装置の製造方法。
  6.  アクティブ領域と、
     ゲートパッドとを有し、
     前記ゲートパッドの下方の酸化珪素層とn型の炭化珪素層の界面近傍の前記n型の炭化珪素層側に、前記n型の炭化珪素層の他の部分よりも高濃度の窒素が含まれていることを特徴とする炭化珪素半導体装置。
  7.  請求項6に記載の炭化珪素半導体装置において、
     前記酸化珪素層は、前記炭化珪素層に接する第1の酸化珪素層と、前記第1の酸化珪素層よりも密度の高い第2の酸化珪素層を有することを特徴とする炭化珪素半導体装置。
  8.  請求項7に記載の炭化珪素半導体装置において、
     前記第2の酸化珪素層はゲート絶縁膜と連続していることを特徴とする炭化珪素半導体装置。
  9.  アクティブ領域と、
     終端領域とを有し、
     前記終端領域の酸化珪素層と炭化珪素層の界面近傍の前記炭化珪素層側に、窒素が含まれていることを特徴とするMOSFET型の炭化珪素半導体装置。
  10.  請求項9に記載の炭化珪素半導体装置において、
     前記酸化珪素層は、前記炭化珪素層に接する第1の酸化珪素層と、前記第1の酸化珪素層よりも密度の高い第2の酸化珪素層を有することを特徴とする炭化珪素半導体装置。
  11.  請求項10に記載の炭化珪素半導体装置において、
     前記第2の酸化珪素層はゲート絶縁膜と連続していることを特徴とする炭化珪素半導体装置。
PCT/JP2013/070959 2013-08-02 2013-08-02 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 WO2015015629A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070959 WO2015015629A1 (ja) 2013-08-02 2013-08-02 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070959 WO2015015629A1 (ja) 2013-08-02 2013-08-02 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2015015629A1 true WO2015015629A1 (ja) 2015-02-05

Family

ID=52431201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070959 WO2015015629A1 (ja) 2013-08-02 2013-08-02 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Country Status (1)

Country Link
WO (1) WO2015015629A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11236154B2 (en) 2015-10-07 2022-02-01 Obi Pharma Inc. Carbohydrate antibodies, pharmaceutical compositions and uses thereof
US20220181479A1 (en) * 2020-12-08 2022-06-09 Globalfoundries Singapore Pte. Ltd. Wide bandgap semiconductor device with a self-aligned channel and integration schemes
CN115295407A (zh) * 2022-09-29 2022-11-04 浙江大学杭州国际科创中心 一种SiC功率器件的栅氧结构制备方法和栅氧结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012099A (ja) * 2003-06-20 2005-01-13 Nissan Motor Co Ltd 炭化珪素半導体装置の製造方法
JP2007066944A (ja) * 2005-08-29 2007-03-15 Nissan Motor Co Ltd 炭化珪素半導体装置及びその製造方法
JP2007201343A (ja) * 2006-01-30 2007-08-09 Central Res Inst Of Electric Power Ind 炭化珪素半導体素子の製造方法
JP2008117878A (ja) * 2006-11-02 2008-05-22 Mitsubishi Electric Corp 半導体装置の製造方法
JP2008182070A (ja) * 2007-01-25 2008-08-07 Toyota Motor Corp 酸化珪素層の形成方法
JP2011086746A (ja) * 2009-10-15 2011-04-28 Toyota Motor Corp 半導体装置
JP2011091186A (ja) * 2009-10-22 2011-05-06 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012099A (ja) * 2003-06-20 2005-01-13 Nissan Motor Co Ltd 炭化珪素半導体装置の製造方法
JP2007066944A (ja) * 2005-08-29 2007-03-15 Nissan Motor Co Ltd 炭化珪素半導体装置及びその製造方法
JP2007201343A (ja) * 2006-01-30 2007-08-09 Central Res Inst Of Electric Power Ind 炭化珪素半導体素子の製造方法
JP2008117878A (ja) * 2006-11-02 2008-05-22 Mitsubishi Electric Corp 半導体装置の製造方法
JP2008182070A (ja) * 2007-01-25 2008-08-07 Toyota Motor Corp 酸化珪素層の形成方法
JP2011086746A (ja) * 2009-10-15 2011-04-28 Toyota Motor Corp 半導体装置
JP2011091186A (ja) * 2009-10-22 2011-05-06 Mitsubishi Electric Corp 炭化珪素半導体装置の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11236154B2 (en) 2015-10-07 2022-02-01 Obi Pharma Inc. Carbohydrate antibodies, pharmaceutical compositions and uses thereof
US20220181479A1 (en) * 2020-12-08 2022-06-09 Globalfoundries Singapore Pte. Ltd. Wide bandgap semiconductor device with a self-aligned channel and integration schemes
CN115295407A (zh) * 2022-09-29 2022-11-04 浙江大学杭州国际科创中心 一种SiC功率器件的栅氧结构制备方法和栅氧结构

Similar Documents

Publication Publication Date Title
JP5639926B2 (ja) 炭化珪素半導体装置及びその製造方法
JP5452062B2 (ja) 炭化珪素半導体装置の製造方法
JP5584823B2 (ja) 炭化珪素半導体装置
JP4647211B2 (ja) 半導体装置及びその製造方法
JP6099733B2 (ja) 炭化珪素半導体装置
US9269781B2 (en) Semiconductor device and method for manufacturing the same
JP2007115875A (ja) 炭化珪素半導体装置およびその製造方法
WO2013145022A1 (ja) 炭化珪素半導体装置の製造方法
JP6432232B2 (ja) 炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法
JP6189261B2 (ja) 半導体装置およびその製造方法
JP2004071750A (ja) 半導体装置
US20200176580A1 (en) Silicon Carbide Devices, Semiconductor Devices and Methods for Forming Silicon Carbide Devices and Semiconductor Devices
JP6988140B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP7278914B2 (ja) 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
JPWO2015155828A1 (ja) 半導体装置及びその製造方法
WO2015015629A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2009043880A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
US8765617B2 (en) Method of manufacturing semiconductor device
JP2021082689A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2009049099A (ja) 炭化珪素半導体装置の製造方法
KR102330787B1 (ko) 트렌치 게이트형 SiC MOSFET 디바이스 및 그 제조 방법
JP5036399B2 (ja) 炭化珪素半導体装置の製造方法
JP2018056352A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
CN105140285A (zh) 一种垂直导电结构SiC MOSFET功率器件
JP6155553B2 (ja) 炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP