WO2011041956A1 - 利用中低品位MnO2矿进行烟气脱硫制备MnSO4·H2O的方法 - Google Patents

利用中低品位MnO2矿进行烟气脱硫制备MnSO4·H2O的方法 Download PDF

Info

Publication number
WO2011041956A1
WO2011041956A1 PCT/CN2010/075314 CN2010075314W WO2011041956A1 WO 2011041956 A1 WO2011041956 A1 WO 2011041956A1 CN 2010075314 W CN2010075314 W CN 2010075314W WO 2011041956 A1 WO2011041956 A1 WO 2011041956A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
mns0
slurry
preparing
stage
Prior art date
Application number
PCT/CN2010/075314
Other languages
English (en)
French (fr)
Inventor
姜志光
华东
吴飞
Original Assignee
贵州红星发展股份有限公司
深圳市昊一通投资发展有限公司
北京万坤嘉宏科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贵州红星发展股份有限公司, 深圳市昊一通投资发展有限公司, 北京万坤嘉宏科技发展有限公司 filed Critical 贵州红星发展股份有限公司
Priority to US13/514,397 priority Critical patent/US9018119B2/en
Priority to EP10821565.8A priority patent/EP2487137B1/en
Priority to KR1020127012029A priority patent/KR101321317B1/ko
Priority to AU2010305218A priority patent/AU2010305218B2/en
Publication of WO2011041956A1 publication Critical patent/WO2011041956A1/zh
Priority to ZA2012/03392A priority patent/ZA201203392B/en
Priority to HK13100089.7A priority patent/HK1172883A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/10Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts

Definitions

  • the invention relates to a method for preparing MnS0 4 ⁇ H 2 0 by using flue gas desulfurization with medium and low grade Mn0 2 ore.
  • CN1824 372A mentions a microwave-catalyzed flue gas desulfurization technology, which has a high desulfurization efficiency for simulating flue gas, but requires special equipment, and the desulfurized gas still needs dilute acid absorption; the reaction catalyst bed needs to be continuously regenerated. It is not conducive to the smooth operation of continuous large industrial production equipment.
  • CN188 3764A uses its own high-value chemical manganese dioxide, electrolytic manganese dioxide for desulfurization treatment, high cost and complicated operation, which does not meet China's national conditions, and the subsequent treatment of manganese sulfate solution produced by desulfurization is not involved. .
  • the invention provides a method for preparing MnS0 4 ⁇ H 2 0 by using flue gas desulfurization with medium and low grade Mn0 2 ore, the method involving the following chemical reactions:
  • the invention relates to a method for preparing MnS0 4 ⁇ H 2 0 by flue gas desulfurization using medium and low grade Mn0 2 ore as follows:
  • a First select the treated Mn0 2 ore fines with a fineness of 80-1 00. Use wet ball milling or rod grinding, water or circulating mother liquor or washing slag to prepare the initial solid-liquid ratio (% by weight). 5% ⁇ The 5% by weight of the slurry, and the Mn0 2 content of the slurry reached 1.5% (% by weight) or more.
  • the sieve is sieved by a Taylor sieve, that is, a particle size range corresponding to 80 - 100 mesh It is 1 50- 18 0 ⁇ ⁇ .
  • a sulfur-containing flue gas is introduced into the absorption device, and the flue gas may be a coal-fired converter tail gas, a boiler exhaust gas or other S0 2- containing exhaust gas, and the gas velocity is generally controlled at Q. 5-4 m/s ec, and the gas-liquid ratio is generally Controlled at 10-40L/m 3 .
  • the slurry of Mn0 2 is added to the absorption device, and the reverse flow is controlled with respect to the sulfur-containing flue gas. After the action of the Mn0 2 is completed, the separation process is performed, and the flue gas after the desulfurization is discharged from the absorption device.
  • the singular solid-liquid ratio is 25-30%, and the superficial velocity is 1. 5 ⁇ 0. 2m/ s ec , if the mineral powder having a total manganese content of 15% by weight or less is used as the raw material.
  • the ratio of gas to liquid is 15-25 L/m 3 .
  • the gas outlet temperature is controlled to > 60 ° C to maintain a certain amount of solution evaporation to ensure a thickening effect.
  • step C The Mn0 2 slurry discharged from step B is subjected to pressure filtration separation, and the mother liquid separated by pressure filtration is returned to the absorption device, and the specific position is in the slurry circulation pool, and the evaporation is carried out by using the heat of the flue gas to continue the introduction.
  • the operation was carried out until the concentration of MnS0 4 in the mother liquor was > 200 g/L.
  • the absorption device in the steps B and C can select a tertiary absorption device.
  • the steps B and C are specifically:
  • the B firstly introduces flue gas in the first stage of the absorption device, the gas velocity is controlled at 0. 5-4 m / s ec, the gas-liquid ratio is controlled at 10-40 L/m 3 , and then in the absorption device
  • the Mn0 2 slurry is added to the third stage, and the counter-flow is controlled relative to the flue gas.
  • the three stages of the three-stage absorption device are simultaneously self-circulating, that is, the first-stage absorption slurry is continuously from the second stage.
  • the third stage continuously replenishes the slurry to the second stage, and the newly prepared Mn0 2 slurry is continuously replenished to the third stage.
  • the first stage enters the separation process, and the de-stone-filled smoke is removed.
  • the Mn0 2 slurry discharged from the step B is subjected to pressure filtration separation, and the mother liquid separated by the pressure filtration is returned to the circulating water tank of the first stage of the absorption device, and concentrated by the evaporation of the heat of the flue gas, and the operation is continued until the operation is continued.
  • the concentration of MnS0 4 in the mother liquor was > 200 g/L.
  • the third-stage absorption device is a conventional experimental device in the field, and is used in the present invention, which is intended to fully utilize the raw materials, save costs, improve reaction efficiency, and continuously carry out the reaction, and optimize the present invention, and it is emphasized that other The method of optimizing the absorption device can also serve to optimize the present invention, for example, a secondary or multi-stage absorption device can also implement the present invention.
  • step D adjust the pH of the clear solution according to the concentration requirement obtained by pressure filtration in step C to 2-4.
  • the pH is 3. 0-3. 5
  • lime milk or dilute gram acid can be used, and the temperature is controlled at room temperature (25 ° C) to 95 ° C, preferably 50-70 ° C, and manganese sulfide is added under stirring to carry out the reaction.
  • the industrial grade manganese sulphide produced by Guizhou Red Star Development Co., Ltd. can be used, and the impurities are removed by filtration.
  • the membrane is sprayed with 0.5 ⁇ m ⁇ , and continuously stirred for 1-1. 5 hours, and then separated by pressure filtration, and the obtained clarified filtrate is subjected to filtration.
  • Evaporation preferably multi-effect evaporation, after drying the gas stream, MnS0 4 . ⁇ 2 0 product can be obtained, and the obtained filter residue is mainly metal sulfide, and the valuable metal can be recovered by using the same.
  • the multi-effect evaporation is a conventional method for reducing steam consumption in the art, and the low-temperature solution is heated by the secondary steam generated by evaporation, thereby achieving the purpose of saving.
  • the step of preparing the filter cake obtained in the step C is stirred with water for 1 - 1. 5 hours, and the ratio of the control water to the water is 1: 4-1 : 5 range.
  • a method of washing a high concentration slag with a low concentration of water may be employed, which increases the number of washings, increases the washing efficiency, and reduces the volume of the solution.
  • Mn0 2 ore powder residue is obtained, which can be used for making building materials or directly for harmless landfill treatment, and the obtained mother liquor can be used as a preparation slurry.
  • the invention discloses a method for preparing MnS0 4 ⁇ ⁇ 2 0 by using flue gas desulfurization with medium and low grade Mn0 2 ore, directly utilizing medium and low grade manganese oxide ore powder slurry spraying and absorbing desulfurization treatment, without special equipment, and The resulting MnS0 4 solution is concentrated, decontaminated and valuable metal recovered, making full use of resources, and is operable and implementable.
  • the invention utilizes the redox reaction to perform multi-stage spraying of medium and low grade manganese oxide ore powder on the flue gas desulfurization under the wet condition, thereby solving the problem of desulfurization efficiency and stable operation.
  • the invention reduces the concentration of the MnS0 4 solution produced by the desulfurization by using the flue gas energy to solve the problem of the production cost of the manganese sulfate product.
  • the invention improves the total manganese recovery rate by multi-stage countercurrent treatment.
  • the invention utilizes a special impurity removing agent to obtain high-efficiency recovery of valuable metals while purifying and removing the MnS0 4 solution.
  • Example 1 Sulfur-containing flue gas is produced by the carbon reduction method to prepare industrial grade cesium carbonate kiln exhaust gas, the average gas volume
  • the average S0 2 content is 1 3400mg/m 3
  • the cyclone dust removal outlet temperature is about 170 °C.
  • the sulfur-containing flue gas is introduced into the first stage of the absorption device, and the gas velocity of the empty column is controlled at 1.5 m/sec.
  • the liquid-gas circulation spray ratio gas-liquid ratio
  • the Mn0 2 slurry prepared in the step A is added, and the reverse flow is controlled with respect to the sulfur-containing flue gas, and the three stages of the third-stage absorption device are simultaneously self-circulating, that is, the first-stage absorption.
  • the slurry is continuously replenished from the second stage, and the third stage continuously replenishes the slurry to the second stage, and the newly prepared Mn0 2 slurry is continuously replenished to the third stage, and is separated from the first stage after the Mn0 2 is completed.
  • the flue gas after desulfurization is discharged from the third stage of the absorption device, the third stage desulfurization flue gas outlet temperature is 65 ° C, and the S0 2 content is 21 3_402 mg/m 3 .
  • the discharged Mn0 2 slurry is subjected to pressure filtration separation, and the mother liquid separated by the pressure filtration is returned to the circulating water tank of the first stage of the absorption device, and concentrated by the evaporation of the flue gas, and the conduction operation is continued three times.
  • the concentration of MnS0 4 in the mother liquor reached 317 g/L.
  • the polysulfide filter cake obtained during the purification treatment of the manganese sulfate solution is dried to obtain the MS sample 1 # .
  • Example 2 was carried out in the same manner as in Example 1 to obtain MnS0 4 .
  • the mother liquor MnS0 4 concentration was determined to be 289 g/L, and the resulting clear solution was utilized.
  • the polysulfide filter cake obtained during the purification of the manganese sulfate solution is dried to obtain an MS sample 2*.
  • the sulfur-containing flue gas is prepared by the carbon reduction method to prepare industrial strontium kiln exhaust gas, the average gas volume is 17000NM7H, the average S0 2 content is 11500mg/m 3 , and the cyclone dust removal outlet temperature is 150°C.
  • the Mn0 2 content in the obtained Mn0 2 slurry is 4.92%
  • the liquid-gas circulation spray ratio is about 25L/m 3
  • the empty tower speed is 1.7m/sec
  • the third-stage outlet temperature is 60°C
  • the third-stage outlet The S0 2 content is in the range of 114-322 mg/m 3 .
  • the method of high concentration slag was washed for 1 hour, and the ratio of the feed water to the ratio of 1:4 was used, and the obtained mother liquid was used as a formulation slurry.
  • the polysulfide filter cake obtained during the purification of the manganese sulfate solution is dried to obtain an MS sample 3 # .
  • Example 4 was carried out in the same manner as in Example 1 to obtain MS sample 1 # :
  • the sulfur-containing flue gas adopts coal-fired boiler exhaust gas, the average gas volume is 31000 ⁇ 7H, the average S0 2 content is 4800 mg/m 3 , and the cyclone dust removal outlet temperature is about 170 °C.
  • the Mn0 2 wet base total manganese content is 9.10%
  • the slurry initial solid-liquid ratio is 25%
  • the Mn0 2 content in the obtained Mn0 2 slurry is 2.88%
  • the liquid-gas circulation spray ratio is about 20L/m 3
  • the empty tower speed It is 1.5 m/sec
  • the third stage outlet temperature is 75 °C
  • the tertiary outlet S0 2 content is 74_162 mg/m 3 .
  • the polysulfide filter cake obtained during the purification treatment of the manganese sulfate solution is dried to obtain an MS sample 4 # .
  • the main component contents (% by weight) of the MnS0 4 ⁇ H 2 0 samples obtained in the respective examples were measured as follows:
  • the main component content (% by weight) of the MS samples obtained in the respective examples was measured as follows.

Description

利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 · H20的方法
技术领域
本发明涉及一种利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 · H20的方 法。
背景技术 关于二氧化锰用于烟气脱硫的研究已有较多文献和专利申请涉及。 例如, CN1824 372A中提到微波催化烟气脱硫技术,其对模拟烟气具较高的脱硫效率, 但需专用设备, 并且脱硫后的气体尚需稀酸吸收; 反应催化剂床需不断再生 处理, 不利于连续化大工业生产装置的平稳运行。 CN188 3764A使用本身价值 极高的化学二氧化锰, 电解二氧化锰用于脱硫处理, 成本较高且操作复杂, 并不符合中国的国情, 同时对脱硫产生的硫酸锰溶液的后续处理也没有涉及。
发明内容
本发明提供一种利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 · H20的方 法, 该方法涉及如下化学反应:
S02 + H20→H2S03
H2S03 + Mn02→MnS04 + H20
M0 + H2S03→MS04 + H20 ( M = Fe , Co、 N i、 Cu、 Zn等)
MS04 + MnS→MS + MnS04
本发明涉及的一种利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 · H20的 方法的步骤如下:
A首先, 选取处理过的细度达到 80-1 00目的 Mn02矿粉, 可采用湿法球磨 或棒磨, 用水或循环母液或洗渣液配制成起始固液比 (重量百分比) 1 0-30% 的料浆, 并且使料浆中 Mn02含量达到 1. 5% (重量百分比) 以上。 其中, 本发 明在处理 Mn02矿粉时, 采用泰勒筛进行筛分, 即 80 - 1 00 目对应的粒径范围 为 1 50- 18 0 μ ηι。
Β先在吸收装置中通入含硫烟气, 该烟气可以是燃煤转炉尾气,锅炉尾气 或其他含 S02尾气, 气速一般控制在 Q. 5-4m/ s ec,气液比例一般控制在 1 0- 40L/m3
然后, 在吸收装置中加入 Mn02料浆, 并控制其相对于含硫烟气作逆向流 动, 待 Mn02作用完毕后进入分离工序, 而脱硫后的烟气自吸收装置排出。
其中, 若步骤 A中选用全锰含量 15% (重量百分比) 以下的矿粉作原料, 则起始固液比为 25-30% ,空塔速度为 1. 5 ± 0. 2m/ s ec ,气液比例为 15- 25L/m3
优选地, 控制气体出口温度 > 60 °C , 用以维持一定的溶液蒸发量, 以此 保证提浓效果。
C对步骤 B排出的 Mn02料浆进行压滤分离,将压滤分离得到的母液导回至 吸收装置, 具体位置为其料浆循环水池中, 利用烟气热量蒸发提浓, 持续此 导回操作直至该母液中 MnS04浓度 > 200g/L。
优选地, 所述步骤 B和 C中的吸收装置可以选择三级吸收装置, 此时, 所述步骤 B和 C具体为:
B先在吸收装置的第一级中通入含^ £烟气, 气速控制在 0. 5-4m/ s ec,气液 比例控制在 1 0-40L/m3 , 而后在吸收装置的第三级中加入 Mn02料浆, 并控制其 相对于含^ £烟气作逆向流动, 该三级吸收装置的三级分别同时进行自循环, 即第一级吸收料浆不断地从第二级补充, 第三级不断向第二级补充料浆, 新 配制的 Mn02料浆不断地向第三级补充, 待 Mn02作用完毕后自第一级进入分离 工序, 而脱石充后的烟气自吸收装置的第三级排出;
C对步骤 B排出的 Mn02料浆进行压滤分离,将压滤分离得到的母液导回至 吸收装置的第一级的循环水池中, 利用烟气热量蒸发提浓, 持续此导回操作 直至该母液中 MnS04浓度 > 200g/L。
其中三级吸收装置为本领域的常规实验装置, 将其用于本发明, 意在充 分利用原料, 节省成本, 提高反应效率, 并使反应连续进行, 优化了本发明, 需要强调的是, 其他的能够优化吸收装置的方法, 同样可以起到优化本发明 的作用, 例如二级或多级吸收装置也能实现本发明。
D将步骤 C中压滤分离所得的符合浓度要求的澄清溶液调节 PH值 =2-4 , 优选 PH=3. 0-3. 5 , 可用石灰乳或稀石克酸, 控制温度在室温 ( 25 °C )至 95 °C , 优选 50-70 °C , 在搅拌下加入硫化锰进行反应, 可以采用贵州红星发展股份有 限公司生产的工业一级硫化锰, 并过滤除杂, 一般采用 0. 5 μ ηι的滤膜进行, 持续搅拌 1-1. 5 小时后压滤分离, 所得澄清滤液进行蒸发, 优选多效蒸发, 气流烘干后可得 MnS04 . Η20产品, 所得滤渣主要为金属硫化物, 利用其可回 收有价金属。
所述的多效蒸发是本领域一种减少蒸汽消耗的常规方法, 使用蒸发产生 的次级蒸汽加热低温溶液, 从而达到节约的目的。
在所述步骤 C后, 还可以包括步骤 Ε , 即在 60-70 °C下, 将步骤 C所得滤 饼用水搅拌洗涤 1 -1. 5小时, 控制料水比在 1 : 4-1 : 5范围。 优选地, 可采用 低浓度水洗涤高浓度渣的方法, 该方法增加洗涤次数, 提高洗涤效率同时降 低溶液体积。 洗涤压滤后得到 Mn02矿粉残渣, 将其掺混可用于制作建材, 或 直接作无害化填埋处理, 而所得母液可用作配制料浆。
本发明的一种利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 · Η20的方法, 直接利用中低品位氧化锰矿粉制浆喷淋吸收脱硫处理, 无需专用设备, 并且 对脱^ £产生的 MnS04溶液进行提浓, 除杂及有价金属回收, 充分利用资源, 具 有可操作与实施性。 本发明利用氧化还原反应, 在湿法条件下将中低品位氧 化锰矿粉制浆多级喷淋进行烟气脱硫, 解决了脱硫效率及稳定运行问题。 本 发明对脱硫产生的较低浓度 MnS04溶液利用烟气能量进行了循环增浓,解决了 硫酸锰产品生产成本问题。 本发明通过多级逆流处理提高了全锰回收率。 本 发明利用专门的除杂剂在对 MnS04溶液进行净化除杂的同时获得了有价金属 的高效率回收。 附图说明 图 1为本发明主要的工艺流程图。 具体实施方式
实施例 1 含硫烟气采用以碳还原法制备工业级碳酸钡的转窑尾气, 平均气量
25000丽 7H ,平均 S02含量 1 3400mg/m3 ,旋风除尘出口温度 170 °C左右。
A选取湿基全锰含量 15% Mn02矿粉 1千克, 利用湿法球磨进行处理, 使其 细度达到 80 目, 用水配制成起始固液比为 25% (重量百分比) 的料浆, 所得 Mn02料浆中 Mn02含量达到了 4. 75%。
B先在吸收装置的第一级中通入前述含硫烟气,空塔气速控制在 1. 5m/ sec. 液气循环喷淋比例 (气液比例) 为 15L/m3左右, 而后在吸收装置的第三级中 加入步骤 A配制好的 Mn02料浆, 并控制其相对于含硫烟气作逆向流动, 该三 级吸收装置的三级分别同时进行自循环, 即第一级吸收料浆不断地从第二级 补充, 第三级不断地向第二级补充料浆, 新配制的 Mn02料浆不断地向第三级 补充, 待 Mn02作用完毕后自第一级进入分离工序, 而脱硫后的烟气自吸收装 置的第三级排出, 第三级脱硫烟气出口温度 65 °C , S02含量在 21 3_402mg/m3
C对排出的 Mn02料浆进行压滤分离,将压滤分离得到的母液导回至吸收装 置的第一级的循环水池中, 利用烟气热量蒸发提浓, 持续此导回操作三次后, 母液中的 MnS04浓度达到 317g/L。
D将步骤 C中压滤分离所得的澄清溶液, 利用石灰乳调节 PH值 =3. 5 , 控 制温度在 60 °C , 在搅拌下加入贵州红星发展股份有限公司生产的工业一级硫 化锰进行反应, 并采用 0. 5 μ ηι的滤膜过滤除杂, 持续搅拌 1. 5小时后压滤分 离, 所得澄清滤液进行多效蒸发, 结晶并气流烘干后可得 MnS04 · Η20样品 1#
硫酸锰溶液净化处理时获得的多硫化物滤饼经烘干后获得 MS样品 1#
实施例 2
除了以下参数和步骤的选取外, 实施例 2采用与实施例 1相同的步骤获 得 MnS04 . H20样品 2*:
Mn02湿基全锰含量 9. 10%,利用湿法球磨进行处理,使其细度达到 100目, 料浆起始固液比为 30%, 所得 Mn02料浆中 Mn02含量为 3. 33%, 液气循环喷淋比 例为 17L/m3左右, 空塔速度为 1. 3m/ sec ,第三级出口温度 70 °C ,三级出口 S02 含量在 271_640mg/m3
持续五次导回操作后, 测得母液 MnS04浓度为 289g/L,所得澄清溶液利用 稀硫酸调节 PH=4,控制溶液温度为 50°C;将所得滤饼在 60°C下,用水搅拌洗涤 1.5小时, 控制料水比在 1: 5, 所得母液用作配制料浆。
硫酸锰溶液净化处理时获得的多硫化物滤饼经烘干后获得 MS样品 2*。
实施例 3
除了以下参数和步骤的选取外, 实施例 3采用与实施例 1相同的步骤获 得 MnS04 . H20样品 3#:
含硫烟气采用以碳还原法制备工业碳酸锶的转窑尾气, 平均气量 17000NM7H ,平均 S02含量 11500mg/m3 ,旋风除尘出口温度 150°C。
Mn02湿基全锰含量 14.22%, 利用湿法棒磨进行处理, 料浆起始固液比为
28%, 所得 Mn02料浆中 Mn02含量为 4.92%, 液气循环喷淋比例为 25L/m3左右, 空塔速度为 1.7m/sec, 第三级出口温度 60°C , 三级出口 S02含量在 114- 322mg/m3
经过三次导回操作后, 测得母液 MnS04浓度为 304g/L,所得澄清溶液调节 PH=3.0, 控制溶液温度为 70°C;将所得滤饼在 70°C下洗涤, 用低浓度水洗涤 高浓度渣的方法洗涤 1小时, 控制料水比 1: 4, 所得母液用作配制料浆。
硫酸锰溶液净化处理时获得的多硫化物滤饼经烘干后获得 MS样品 3#
实施例 4
除了以下参数和步骤的选取外, 实施例 4采用与实施例 1相同的步骤获 得 MS样品 1#:
含硫烟气采用燃煤锅炉尾气, 平均气量 31000丽 7H ,平均 S02含量 4800mg/m3 ,旋风除尘出口温度 170 °C左右。
Mn02湿基全锰含量 9.10%, 料浆起始固液比为 25 % , 所得 Mn02料浆中 Mn02 含量为 2.88%, 液气循环喷淋比例为 20L/m3左右, 空塔速度为 1.5m/sec, 第 三级出口温度 75 °C, 三级出口 S02含量在 74_162mg/m3
经过五次导回操作后,测得母液 MnS04浓度为 372g/L,所得澄清溶液调节 PH=2.0。 硫酸锰溶液净化处理时获得的多硫化物滤饼经烘干后获得 MS样品 4#。 各个实施例所得 MnS04 · H20样品的主要成分含量(重量百分比)测得如 下表:
Figure imgf000008_0001
各个实施例所得 MS样品的主要成分含量(重量百分比)测得如下表
Figure imgf000008_0002

Claims

权 利 要 求 书
1、 一种利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 · Η20的方法, 其步 骤包括:
Α选取处理过的细度达到 8 0-1 00目的 Mn02矿粉, 用水或循环母液或洗渣 液配制成起始固液比 1 0-30%的料浆,使料浆中 Mn02含量达到 1. 5% (重量百分 比) 以上;
B先在吸收装置中通入含硫烟气,气速控制在 0. 5-4m/ s ec,气液比例控制 在 1 0-40L/m3, 而后在吸收装置中加入 Mn02料浆, 并控制其相对于含硫烟气作 逆向流动, 待 Mn02矿粉作用完毕后进入分离工序, 而脱硫后的烟气自吸收装 置排出;
C对步骤 B排出的 Mn02料浆进行压滤分离, 将压滤分离得到的母液导回 至吸收装置, 利用烟气热量蒸发提浓, 持续此导回操作直至该母液中 [MnS04] > 200g/L;
D将步骤 C 中压滤分离所得的澄清溶液调节 PH值 =2-4 , 控制温度在 25 °C -95 °C , 在搅拌下加入硫化锰进行反应, 并过滤除杂, 持续搅拌 1-1. 5小时 后压滤分离, 所得澄清滤液进行蒸发, 气流烘干后可得 MnS04 · H20产品。
2、如权利要求 1所述的利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 ·Η20 的方法, 其特征在于, 所述步骤 Β和 C中的吸收装置为三级吸收装置, 此时, 所述步骤 Β和 C具体为:
Β先在吸收装置的第一级中通入含石充烟气,气速控制在 0. 5-4m/ s ec,气液 比例控制在 1 0-40L/m3, 而后在吸收装置的第三级中加入 Mn02料浆, 并控制其 相对于含^ £烟气作逆向流动, 该三级吸收装置的三级分别同时进行自循环, 即第一级吸收料浆不断地从第二级补充, 第三级不断地向第二级补充料浆, 新配制的 Mn02料浆不断地向第三级补充, 待 Mn02作用完毕后自第一级进入分 离工序, 而脱硫后的烟气自吸收装置的第三级排出;
C对步骤 B排出的 Mn02料浆进行压滤分离, 将压滤分离得到的母液导回 至吸收装置的第一级, 利用烟气热量蒸发提浓, 持续此导回操作直至该母液 中 [MnS04] > 200g/L。
3、 如权利要求 1 或 2 所述的利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 . H20的方法, 其特征在于, 所述步骤 A中的 Mn02矿粉采用湿法球磨或 棒磨处理。
4、 如权利要求 1 或 2 所述的利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 · H20的方法, 其特征在于, 所述步骤 A中若选用全锰含量 15%以下的矿 粉作原料, 则起始固液比为 25-30%, 空塔速度为 1. 5 ± 0. 2m/ sec , 气液比例 为 15- 25L/m3
5、 如权利要求 1 或 2 所述的利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 . H20 的方法, 其特征在于, 所述步骤 B 中通入吸收装置的含石克烟气为 燃煤转炉尾气, 锅炉尾气或其他含 S02尾气。
6、 如权利要求 1 或 2 所述的利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 · H20的方法, 其特征在于, 所述步骤 B中气体出口温度> 60 ° 。
7、 如权利要求 1 或 2 所述的利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 . H20的方法, 其特征在于, 所述步骤 D中的调节澄清溶液 PH操作使用 石灰乳或稀^ £酸。
8、 如权利要求 1 或 2 所述的利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 ·Η20的方法,其特征在于,所述步骤 D中的澄清溶液调节至 ΡΗ=3. 0-3. 5。
9、 如权利要求 1 或 2 所述的利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 · H20的方法, 其特征在于, 所述步骤 D中的澄清溶液温度为 50-70 °C。
10、 如权利要求 1 或 2 所述的利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 . H20的方法, 其特征在于, 在所述步骤 C后, 还包括步骤 E:将步骤 C 压滤分离所得滤饼, 在 60-70 °C下, 用水搅拌洗涤 1-1. 5 小时, 控制料水比 在 1 : 4-1 : 5范围,所得母液用作步骤 A配制料浆。
11、 如权利要求 10 所述的利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 . H20 的方法, 其特征在于, 所述步骤 E 中的洗涤滤饼操作采用低浓度 水洗涤高浓度渣的方法。
12、 如权利要求 1 或 2 所述的利用中低品位 Mn02矿进行烟气脱硫制备 MnS04 . H20的方法, 其特征在于, 所述步骤 D中的过滤除杂步骤采用 0. 5 μ ηι 的滤膜进行。
PCT/CN2010/075314 2009-10-10 2010-07-20 利用中低品位MnO2矿进行烟气脱硫制备MnSO4·H2O的方法 WO2011041956A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/514,397 US9018119B2 (en) 2009-10-10 2010-07-20 Method for preparing manganese sulfate monohydrate by desulfurizing fume with middle-low grade manganese dioxide ore
EP10821565.8A EP2487137B1 (en) 2009-10-10 2010-07-20 Method for preparing manganese sulfate monohydrate by desulfurizing fume with middle-low grade manganese dioxide ore
KR1020127012029A KR101321317B1 (ko) 2009-10-10 2010-07-20 중저품질의 NnO2 광석을 사용한 배연탈황으로 MnSO4ㆍH2O를 제조하는 방법
AU2010305218A AU2010305218B2 (en) 2009-10-10 2010-07-20 Method for preparing manganese sulfate monohydrate by desulfurizing fume with middle-low grade manganese dioxide ore
ZA2012/03392A ZA201203392B (en) 2009-10-10 2012-05-09 Method for preparing manganese sulfate monohydrate by desulfurizing fume with middle-low grade manganese dioxide ore
HK13100089.7A HK1172883A1 (zh) 2009-10-10 2013-01-03 利用中低品位 礦進行烟氣脫硫製備 的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910179944.9 2009-10-10
CN2009101799449A CN101723466B (zh) 2009-10-10 2009-10-10 利用中低品位MnO2矿进行烟气脱硫制备MnSO4·H2O的方法

Publications (1)

Publication Number Publication Date
WO2011041956A1 true WO2011041956A1 (zh) 2011-04-14

Family

ID=42445122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075314 WO2011041956A1 (zh) 2009-10-10 2010-07-20 利用中低品位MnO2矿进行烟气脱硫制备MnSO4·H2O的方法

Country Status (8)

Country Link
US (1) US9018119B2 (zh)
EP (1) EP2487137B1 (zh)
KR (1) KR101321317B1 (zh)
CN (1) CN101723466B (zh)
AU (1) AU2010305218B2 (zh)
HK (1) HK1172883A1 (zh)
WO (1) WO2011041956A1 (zh)
ZA (1) ZA201203392B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165071A1 (ko) * 2012-04-30 2013-11-07 전남대학교산학협력단 고순도 황산망간일수화물의 제조방법 및 그 제조방법에 의하여 제조된 고순도 황산망간일수화물
JP2013245159A (ja) * 2012-05-28 2013-12-09 Guizhou Redstar Developing Co Ltd クラウス法テールガスを包括的に処理するとともに硫酸マンガンを製造する方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723466B (zh) * 2009-10-10 2011-11-30 贵州红星发展股份有限公司 利用中低品位MnO2矿进行烟气脱硫制备MnSO4·H2O的方法
CN102492956B (zh) * 2011-11-10 2014-10-29 贵州红星发展股份有限公司 电解二氧化锰及其制备方法
CN103191631A (zh) * 2012-01-06 2013-07-10 倪明旺 烟气多级吸收二次排放环保方法
CN102674467B (zh) * 2012-05-23 2014-02-12 贵州红星发展股份有限公司 一种硫酸锰的制备方法及其制得的硫酸锰产品
CN102815750B (zh) * 2012-09-04 2014-09-17 湖南汇通科技有限责任公司 用二氧化锰矿浆吸收烟气中二氧化硫制取硫酸锰的方法
KR101395581B1 (ko) * 2012-12-24 2014-05-16 전남대학교산학협력단 저순도 망간 및 칼륨 함유물로부터 망간화합물, 황산칼륨 및 비료의 제조방법
CN103204544B (zh) * 2013-04-28 2016-02-24 深圳市新昊青科技有限公司 利用液体二氧化硫与低品位二氧化锰制备硫酸锰的方法
CN103276228A (zh) * 2013-06-19 2013-09-04 重庆大学 一种对高硫菱锰矿进行脱硫的方法
CN104740982A (zh) * 2013-12-25 2015-07-01 贵州大学 一种用贫锰矿和菱锰矿对含硫烟气的处理方法及装置
CN104190193B (zh) * 2014-08-22 2015-11-18 合肥工业大学 一种袋式除尘器内同步脱硫脱硝除尘的方法
CN104906927A (zh) * 2015-05-27 2015-09-16 福建洋屿环保科技股份有限公司 一种脱硫剂及其制备方法
CN106377993B (zh) * 2016-10-31 2023-05-12 昆明理工大学 一种软锰矿浆脱除烟气中so2及其资源化利用的方法及装置
CN110482612A (zh) * 2018-05-15 2019-11-22 襄阳先天下环保设备有限公司 电解锰渣高温煅烧制硫酸锰循环利用新工艺
CN110102170B (zh) * 2019-04-16 2021-01-05 四川大学 基于微旋流分离的短流程氧化锰矿浆脱硫方法、脱硫吸收塔及锰硫资源回收系统
CN110357164B (zh) * 2019-07-08 2022-03-15 四川大学 氧化锰矿浆循环高效烟气脱硫耦合硫酸锰绿色纯化的方法
CN112387106A (zh) * 2020-11-27 2021-02-23 昆明理工大学 一种提高电解锰矿/渣浆脱硫效率的方法
CN112777642B (zh) * 2021-01-26 2023-03-14 广西埃索凯新材料科技有限公司 利用回转窑渣还原浸出软锰矿制备高纯硫酸锰的方法
CN115418476A (zh) * 2022-07-26 2022-12-02 株洲精卓科技有限公司 一种含锡低度锰矿的处理方法及其产品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052260A (zh) * 1989-12-09 1991-06-19 成都环保建设工程技术设备公司 含硫烟气或尾气的脱硫方法
JPH03207427A (ja) * 1989-03-20 1991-09-10 Chuo Denki Kogyo Kk SOx含有ガスの脱硫方法
CN2688366Y (zh) * 2004-03-17 2005-03-30 四川大学 烟气脱硫资源化设备
CN1772345A (zh) * 2005-10-25 2006-05-17 四川大学 以软锰矿和pH缓冲剂为复合吸收剂进行废气脱硫的方法
CN1824372A (zh) 2006-01-23 2006-08-30 华东理工大学 一种微波催化烟气同时脱硫脱硝净化方法
CN1883764A (zh) 2006-05-23 2006-12-27 北京科技大学 一种烟气除二氧化硫的方法
CN101723466A (zh) * 2009-10-10 2010-06-09 贵州红星发展股份有限公司 利用中低品位MnO2矿进行烟气脱硫制备MnSO4·H2O的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB511877A (en) * 1938-03-29 1939-08-25 Alfred Augustus Thornton A process for producing approximately pure manganese compounds from initial substances of a manganese nature
US3101303A (en) * 1960-04-29 1963-08-20 Consolidation Coal Co Process for regenerating manganese oxide acceptors for hydrogen sulfide
US4180549A (en) * 1976-08-27 1979-12-25 United States Steel Corporation Desulfurization of hot reducing gas
KR950007521B1 (ko) * 1992-08-14 1995-07-11 엘지전자주식회사 시로코우 팬
CN1147027A (zh) * 1995-06-18 1997-04-09 陈德根 用废烟道气中的so2生产电解金属锰的工艺方法
GB0511877D0 (en) 2005-06-10 2005-07-20 Boc Group Plc Vacuum pump
CN101456597B (zh) * 2009-01-08 2010-12-01 四川大学 用二氧化硫气体浸出软锰矿制备硫酸锰溶液的方法
CN105226000A (zh) * 2015-10-14 2016-01-06 上海华力微电子有限公司 一种利用真空吸盘固定晶圆的系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207427A (ja) * 1989-03-20 1991-09-10 Chuo Denki Kogyo Kk SOx含有ガスの脱硫方法
CN1052260A (zh) * 1989-12-09 1991-06-19 成都环保建设工程技术设备公司 含硫烟气或尾气的脱硫方法
CN2688366Y (zh) * 2004-03-17 2005-03-30 四川大学 烟气脱硫资源化设备
CN1772345A (zh) * 2005-10-25 2006-05-17 四川大学 以软锰矿和pH缓冲剂为复合吸收剂进行废气脱硫的方法
CN1824372A (zh) 2006-01-23 2006-08-30 华东理工大学 一种微波催化烟气同时脱硫脱硝净化方法
CN1883764A (zh) 2006-05-23 2006-12-27 北京科技大学 一种烟气除二氧化硫的方法
CN101723466A (zh) * 2009-10-10 2010-06-09 贵州红星发展股份有限公司 利用中低品位MnO2矿进行烟气脱硫制备MnSO4·H2O的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2487137A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165071A1 (ko) * 2012-04-30 2013-11-07 전남대학교산학협력단 고순도 황산망간일수화물의 제조방법 및 그 제조방법에 의하여 제조된 고순도 황산망간일수화물
US9365912B2 (en) 2012-04-30 2016-06-14 Industry Foundation Of Chonnam National University Method for producing high-purity manganese sulfate monohydrate and high-purity manganese sulfate monohydrate produced by the method
JP2013245159A (ja) * 2012-05-28 2013-12-09 Guizhou Redstar Developing Co Ltd クラウス法テールガスを包括的に処理するとともに硫酸マンガンを製造する方法

Also Published As

Publication number Publication date
KR20120093948A (ko) 2012-08-23
EP2487137A4 (en) 2013-05-22
AU2010305218B2 (en) 2014-02-06
CN101723466A (zh) 2010-06-09
KR101321317B1 (ko) 2013-10-30
CN101723466B (zh) 2011-11-30
US9018119B2 (en) 2015-04-28
ZA201203392B (en) 2013-01-30
US20120328495A1 (en) 2012-12-27
EP2487137B1 (en) 2015-03-25
EP2487137A1 (en) 2012-08-15
HK1172883A1 (zh) 2013-05-03
AU2010305218A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
WO2011041956A1 (zh) 利用中低品位MnO2矿进行烟气脱硫制备MnSO4·H2O的方法
CN100469697C (zh) 硫酸锂溶液生产低镁电池级碳酸锂的方法
CN102070198A (zh) 铁屑还原浸出软锰矿制备高纯硫酸锰和高纯碳酸锰的方法
CN106435197A (zh) 一种scr脱硝废催化剂有价金属碱性萃取回收装置及工艺
CN102755829B (zh) 一种脱硫剂及其应用
CN103011272A (zh) 一种利用配酸浓缩净化钛白粉废酸的方法
CN104120271A (zh) 一种钒渣碳碱浸取氢气还原法清洁生产钒氧化物的工艺方法
CN105695733B (zh) 湿法炼锌工艺
CN109399712A (zh) 一种用双氧水清洁生产高纯五氧化二钒的方法
CN109336177A (zh) 一种用双氧水和氨水清洁生产高纯五氧化二钒的方法
CN1273389C (zh) 用软锰矿和菱锰矿吸收二氧化硫废气制取硫酸锰的方法
CN105983707B (zh) 一种从含铼高砷铜硫化物中制备高纯铼粉的方法
CN110357164B (zh) 氧化锰矿浆循环高效烟气脱硫耦合硫酸锰绿色纯化的方法
CN102755828A (zh) 一种脱硫剂组合物及其用途
CN103073125B (zh) 一种酸解红土镍矿废水的利用方法
CN110102170B (zh) 基于微旋流分离的短流程氧化锰矿浆脱硫方法、脱硫吸收塔及锰硫资源回收系统
CN110563009A (zh) 一种碳化分解法从粉煤灰制备电池级碳酸锂的方法
CN102092753B (zh) 一种硫酸铝溶液中杂质铁的醇化去除方法
CN104628033A (zh) 一种偏钒酸盐的制备方法
CN110724831A (zh) 一种工业化回收锌生产氧化锌中的碳循环系统及方法
CN218596477U (zh) 一种利用硫化砷渣制备三氧化二砷的系统
CN112079366B (zh) 从低温烟气氧化法脱硝吸收液分离回收硝酸钠和硫酸钠的方法
CN114369725B (zh) 一种处理低浓度电解锰废水并制备四氧化三锰和磷酸铵镁的方法
CN112708785B (zh) 一种有机络合钒渣中钒的回收与有机沉淀剂再利用的方法
CN117509728A (zh) 一种利用废scr脱硝催化剂制备钒酸铝的方法、钒酸铝及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1128/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010305218

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20127012029

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010821565

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010305218

Country of ref document: AU

Date of ref document: 20100720

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13514397

Country of ref document: US