WO2011040155A1 - 有機半導体膜の製造方法および有機半導体膜アレイ - Google Patents

有機半導体膜の製造方法および有機半導体膜アレイ Download PDF

Info

Publication number
WO2011040155A1
WO2011040155A1 PCT/JP2010/064488 JP2010064488W WO2011040155A1 WO 2011040155 A1 WO2011040155 A1 WO 2011040155A1 JP 2010064488 W JP2010064488 W JP 2010064488W WO 2011040155 A1 WO2011040155 A1 WO 2011040155A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
organic semiconductor
contact
semiconductor film
manufacturing
Prior art date
Application number
PCT/JP2010/064488
Other languages
English (en)
French (fr)
Inventor
竹谷純一
植村隆文
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to CN201080044409.3A priority Critical patent/CN102598232B/zh
Priority to KR1020127011122A priority patent/KR101323018B1/ko
Priority to JP2011534146A priority patent/JP5397921B2/ja
Priority to US13/499,743 priority patent/US8921152B2/en
Publication of WO2011040155A1 publication Critical patent/WO2011040155A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to a manufacturing method for producing an organic semiconductor film by an application method using an organic semiconductor material, and an organic semiconductor film array in which a plurality of regions of the organic semiconductor film are arranged.
  • organic semiconductor materials have superior electrical characteristics compared to inorganic semiconductor materials, and application development in various electronic device fields is being promoted.
  • An organic thin film transistor (TFT) using an organic semiconductor film as a semiconductor channel is easier to process than using an inorganic semiconductor, and a simple and inexpensive manufacturing process can be applied. Further, since it can be manufactured near room temperature, it enables semiconductor technology using a plastic substrate and is expected as a post-silicon semiconductor.
  • a method for producing a crystalline organic semiconductor thin film used for an organic TFT various methods such as a vapor deposition method, a molecular beam epitaxial method, a solvent evaporation method, a melt method, and a Langmuir-Blodgett method have been conventionally used. It is being considered.
  • Patent Document 1 discloses an example of an improved method for producing an organic single crystal film by a solvent evaporation method.
  • This method is an improvement over the conventional method in which a plurality of substrates such as quartz are stacked and an organic single crystal film is grown between the substrates by a solvent evaporation method. That is, the solvent evaporation method is performed by changing the form in which the substrate is disposed horizontally with respect to the liquid level in the container containing the organic substance solution, and tilting the substrate with respect to the liquid level. Accordingly, the object is to accelerate the progress of solvent evaporation to the range necessary for crystal growth between the substrates, thereby improving the efficiency of the process of generating and growing seed crystals.
  • a process using a coating method using a solution such as droplet forming, spin coating, or printing is highly effective. It is the most desired method for developing performance organic TFTs.
  • the coating method the organic semiconductor material solution is applied or dropped onto the substrate surface, and the solvent contained in the solution is dried, so that the solution is saturated by evaporation of the solvent to precipitate crystals, thereby forming an organic semiconductor thin film. Is the method.
  • Patent Document 1 is a method for producing an organic single crystal film for an optical element, and is not intended to obtain electrical characteristics desired as an organic semiconductor. Therefore, even if the method disclosed in Patent Document 1 is applied, it is difficult to produce an organic semiconductor film having satisfactory electrical characteristics, particularly sufficient charge mobility, as an organic semiconductor film used for an organic TFT. It is.
  • an object of the present invention is to provide a method for producing an organic semiconductor film that can be produced by a simple process using a coating method and that can produce an organic semiconductor film having high charge mobility.
  • Another object of the present invention is to provide an organic semiconductor film array in which a plurality of organic semiconductor film regions are arranged, obtained by using such a method for manufacturing an organic semiconductor film.
  • the method for producing an organic semiconductor film of the present invention is a method for forming an organic semiconductor film on the substrate by supplying a raw material solution containing an organic semiconductor material and a solvent onto the substrate and drying the raw material solution.
  • the manufacturing method of the present invention uses a contact member in which a plurality of contact surfaces to which the raw material solution is attached is arranged, and the contact surface has a fixed relationship with respect to the surface of the substrate.
  • the contact member is disposed, and a plurality of droplets of the raw material solution are formed on the substrate to form a droplet holding state in which the droplets are respectively held on the plurality of contact surfaces;
  • the organic semiconductor film is formed at each position on the surface of the substrate corresponding to the plurality of contact surfaces by evaporating the solvent in the droplet.
  • the organic semiconductor film array of the present invention includes a substrate and organic semiconductor films arranged separately in a plurality of regions on the surface of the substrate, and the organic semiconductor film is formed by a coating method and is crystalline. It is a film.
  • the growth direction of the region of the organic semiconductor film in the evaporation process is caused by the action through contact with the contact surface due to the state in which the droplets of the raw material solution adhere to the contact surface. It is prescribed.
  • the regularity of the arrangement of the organic semiconductor film molecules is improved, and an organic semiconductor film having high mobility can be obtained while being a simple process by a coating method.
  • an organic semiconductor film array including a plurality of regions of the organic semiconductor film which are separated from each other into a plurality of regions on the surface of the substrate and are formed corresponding to the positions of the contact members can be easily manufactured.
  • the organic semiconductor film array having the above configuration it can be easily manufactured while including an organic semiconductor film having high mobility.
  • the perspective view which shows the process of the manufacturing method of the organic-semiconductor film in Embodiment 1 of this invention The perspective view which shows the process following FIG. 1A of the manufacturing method Sectional drawing which shows the process of the manufacturing method Sectional drawing which shows the modification of the process of the manufacturing method It shows a C 8 molecular structure of -BTBT which is an example of an organic semiconductor material used in the manufacturing process
  • the perspective view for demonstrating the state of the organic-semiconductor film produced by the manufacturing method The figure which shows the cross-sectional profile of the organic semiconductor film
  • the figure which shows the transfer characteristic of the field effect transistor produced using the organic semiconductor film The figure which shows the output characteristic of the same field effect transistor Sectional drawing which shows the process of the manufacturing method of the organic-semiconductor film array in Embodiment 1 Sectional drawing which shows the process following FIG.
  • FIG. 6A of the manufacturing method Sectional drawing which shows the process following FIG. 6B of the manufacturing method Sectional drawing which shows the modification of the process of the manufacturing method
  • FIG. 8A of the manufacturing method Sectional drawing which shows the process of the manufacturing method
  • the figure which shows the transfer characteristic of the field effect transistor produced using the organic semiconductor film The figure which shows the output characteristic of the field effect transistor produced using the organic semiconductor film Sectional drawing which shows the process of the manufacturing method of the organic-semiconductor film array in Embodiment 2 Sectional drawing which shows the process following FIG. 11A of the manufacturing method Sectional drawing which shows the process following FIG.
  • the method for producing an organic semiconductor film of the present invention can take the following aspects based on the above configuration.
  • the contact member includes an auxiliary substrate and a plurality of contact protrusions formed on the auxiliary substrate, and the contact surface is formed by a part of an end surface of the contact protrusion that intersects the surface of the auxiliary substrate.
  • the contact member may be arranged such that the contact protrusion comes into contact with the surface of the substrate from above.
  • the contact member is placed on the substrate so that the substrate is inclined at a predetermined angle and the end surface forming the contact surface crosses the direction of inclination of the substrate. Is preferred.
  • the contact member includes an auxiliary substrate and a plurality of contact protrusions formed on the auxiliary substrate, and the upper surfaces of the contact protrusions each form the contact surface, and the liquid When forming the droplet holding state, the contact member is disposed so that the contact surfaces of the plurality of contact convex portions are at least partially opposed to the surface of the substrate, and the droplets of the raw material solution Are respectively held between the surface of the substrate and the plurality of contact surfaces.
  • each of the plurality of contact surfaces has an inclined portion inclined with respect to the surface of the auxiliary substrate.
  • the contact member is arranged so that a part of the contact surface comes into contact with the surface of the substrate.
  • the droplet holding state is formed by maintaining the auxiliary substrate and the substrate inclined at a predetermined angle. it can.
  • organic semiconductor material examples include [1] benzothieno [3,2-b] benzothiophene derivatives, 2,9-Dialkyldinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophene derivatives, dinaphth [2,3-b: 2,3-f] thiopheno [3,2-b] thiophene derivatives, TIPS-pentacene, TES-ADT, and derivatives thereof, perylene derivatives, TCNQ, F4-TCNQ, F4 Any material selected from TCNQ, rubrene, pentacene, p3HT, pBTTT, and pDA2T-C16 can be used.
  • the organic semiconductor film preferably has a charge mobility of 3.5 cm 2 / Vs or more.
  • FIGS. 1A, 1B, and 2A The basic steps of the method for manufacturing an organic semiconductor film in the first embodiment of the present invention will be described with reference to FIGS. 1A, 1B, and 2A.
  • This manufacturing method is based on a coating method, and uses the substrate 1 and the end surface contact member 2. That is, a raw material solution containing an organic semiconductor material and a solvent is supplied onto the substrate 1 so as to contact the end surface contact member 2 as shown in FIG.
  • the organic semiconductor film 4 is formed on the substrate 1 by drying the droplet 3 in this state.
  • the end surface contact member 2 is a contact surface 2a having a planar shape, that is, a linear or curved shape as viewed from above the substrate 1, as a part of an end surface intersecting the surface of the end surface contact member 2 placed on the surface of the substrate 1. including.
  • the droplet 3 is supplied so as to come into contact with the contact surface 2 a of the end surface contact member 2.
  • the end surface contact member 2 can be formed of resin, for example, but any material other than resin may be used as long as the function described below is appropriately performed.
  • the contact surface 2 a is preferably orthogonal to the A direction so that the contact surface 2 a crosses a predetermined A direction of the substrate 1.
  • the raw material solution is supplied onto the surface of the substrate 1 so as to contact the contact surface 2a.
  • the supplied raw material solution droplets 3 are held by the contact surface 2a, and a certain force is applied.
  • the cross-sectional shape in this state is shown in FIG. 2A.
  • the drying process is performed in a state where the droplet 3 is held by the contact surface 2a, and the solvent in the droplet 3 is evaporated.
  • the raw material solution is saturated and the organic semiconductor material crystal is deposited by evaporation of the solvent sequentially at the far end edge portion from the contact surface 2 a in the A direction. start.
  • the movement of the far end edge of the droplet 3 accompanying the evaporation of the solvent is indicated by alternate long and short dash lines e1 and e2.
  • the solvent evaporates the crystallization of the organic semiconductor material advances, and the organic semiconductor film 4 grows as shown in FIG. 1B. That is, crystal growth proceeds toward the contact surface 2a along the A direction of the substrate 1, and the organic semiconductor film 4 is gradually formed.
  • the action of defining the crystal growth direction works through the contact with the contact surface 2a depending on the state in which the droplet 3 of the raw material solution adheres to the contact surface 2a.
  • the crystallinity control effect is obtained, the regularity of the arrangement of molecules of the organic semiconductor material is improved, and it is considered that it contributes to the improvement of the electron conductivity (mobility).
  • the formed organic semiconductor film 4 has good crystallinity even in a polycrystalline state, and sufficiently good semiconductor characteristics can be obtained.
  • the substrate 1 is maintained at a predetermined angle in the A direction, and the end surface contact member 2 is arranged so that the contact surface 2 a crosses the inclination direction of the substrate 1.
  • the substrate 1 is placed on the substrate 1 so that the contact surface 2a is orthogonal to the inclination direction.
  • the raw material solution is supplied onto the surface of the substrate 1 so as to come into contact with the contact surface 2a.
  • the supplied raw material solution droplets 3 are held by the contact surface 2 a and are suspended in the inclined direction of the substrate 1. By tilting the substrate 1, it becomes easy to control the size of the wetted surface by the droplet 3 and obtain an organic semiconductor film having desired characteristics.
  • the method of forming the droplet 3 is not limited to the above-described method.
  • the substrate 1 together with the end surface contact member 2 from a state of being immersed in the raw material solution, it is possible to form a droplet attached to the contact surface 2a.
  • C 8 -BTBT which is a derivative of [1] benzothieno [3,2-b] benzothiophene (BTBT), as an organic semiconductor material.
  • BTBT benzothieno [3,2-b] benzothiophene
  • a solvent heptane was used, and a 0.4 wt% solution of C 8 -BTBT was prepared as a raw material solution.
  • the substrate 1 a substrate in which an SiO 2 layer was formed on an impurity-added Si layer was used.
  • the end surface contact member 2 a small piece of silicon wafer was used.
  • BTBT derivatives exhibit excellent TFT performance both in vacuum deposition and spin coating.
  • the molecule contains an alkyl chain added to the BTBT backbone structure (see FIG. 3).
  • the alkyl chain improves the binding force between adjacent molecules by an attractive interaction between chains called a molecular fastener effect.
  • the intermolecular distance is small, and the effect of reducing the distance of the ⁇ skeleton responsible for electron conduction is a factor that increases the mobility.
  • the attractive interaction also has the effect of rapidly growing crystals, polycrystals are easily formed.
  • FIG. 4A shows the surface morphology of a C 8 -BTBT film formed in the same manner as described above, as observed with an atomic force microscope.
  • FIG. 4B shows a cross-sectional profile. It is flat at the molecular level over the micrometer-scale step region, and the step corresponds to one molecular layer at the height of the C 8 -BTBT molecule.
  • the stepped portion and stepped structure are typical similar to typical organic single crystals such as rubrene and pentacene. Good flatness and well-defined molecular steps indicate that a highly oriented crystalline film has grown on the SiO 2 dielectric surface of the substrate 1.
  • the source and drain electrodes were formed by vapor deposition on the C 8 -BTBT organic semiconductor film formed as described above so that the channel was parallel to the A direction, that is, the crystal growth direction.
  • the channel length and width were 0.1 mm and 1.5 mm, respectively.
  • the impurity-added Si layer in the substrate 1 was used as a gate electrode, thereby applying an electric field to 500 nm thick SiO 2 (dielectric constant about 3.9).
  • FIG. 5A shows the transfer characteristics in the saturation region of the TFT fabricated and operated in this manner.
  • the horizontal axis represents the gate voltage (V)
  • the left vertical axis represents the square root of the absolute value of the drain current
  • the right vertical axis represents the drain current (A) on a logarithmic scale.
  • the measured value indicated by a white circle indicates the square root of the absolute value of the drain current
  • the black circle indicates the drain current (A).
  • the slope of the plot in FIG. 5A shows a mobility of about 5 cm 2 / Vs.
  • the subthreshold characteristic is as good as 3 V / decade.
  • Most of the good devices made by similar methods showed values in the range of 3.5-5 cm 2 / Vs.
  • the on-off ratio generally exceeded 10 6 for all fabricated devices.
  • the highest mobility according to the conventional coating method is 2.3 cm 2 / Vs in the case of a C 13 -BTBT film, but the reproducibility is low.
  • C 8 -BTBT when used, a high mobility of about 1.8 cm 2 / Vs has been realized by a conventional coating method.
  • the mobility of 5 cm 2 / Vs was obtained with good reproducibility as described above. This mobility value is equivalent to five times that of a typical amorphous silicon TFT, which is about 1 cm 2 / Vs, and shows the superiority of the organic TFT according to the present embodiment. is there.
  • an organic semiconductor film capable of growing a crystalline film with good orientation and high mobility can be manufactured while being an easy manufacturing method based on a coating method. can do. Therefore, it can be a basic technique for mass-producing high-performance organic transistors that are simple and low-cost.
  • the material of the substrate 1 is not limited to the above-described one in which the SiO 2 layer is formed on the impurity-added Si layer, and a polymer insulating film such as parylene or polyvinylphenol is formed on the conductive metal surface such as copper or aluminum. Coated ones can also be used. Moreover, as the end surface contact member 2, any material other than a silicon wafer may be used as long as it is suitable for the above-described function.
  • the organic semiconductor film array manufacturing method of the present invention is basically characterized in that a droplet holding state is formed on a substrate by using a contact member on which a plurality of contact surfaces to which a raw material solution is attached is arranged. Defined as forming.
  • the contact member is arranged so that the contact surface has a fixed relation to the surface of the substrate, and a plurality of droplets of the raw material solution are formed on the substrate. It is the state hold
  • the solvent in the droplets is evaporated to form an organic semiconductor film at each position on the surface of the substrate corresponding to the plurality of contact surfaces.
  • the feature by such a definition is common to the manufacturing method of the organic-semiconductor film array of all embodiment of this invention.
  • the manufacturing process shown in FIGS. 6A to 6C is an example of a method for manufacturing an organic semiconductor film array corresponding to the embodiment shown in FIGS. 1A and 1B. Therefore, in this method, as shown in FIG. 6A, a contact member 7 having a configuration in which a plurality of contact protrusions 6 are arranged on the auxiliary substrate 5 is used.
  • the contact convex part 6 has a function similar to the end surface contact member 2 shown to FIG. 1A. That is, the contact surface 6 a is formed by a part of the end surface that intersects the surface of the auxiliary substrate 5 in the contact convex portion 6.
  • a contact member 7 is arranged above the substrate 1 with the contact protrusion 6 facing the substrate 1.
  • the contact convex portion 6 is brought into contact with the substrate 1.
  • the raw material solution is supplied so as to come into contact with each of the contact surfaces 6 a to form the droplet 3.
  • Each of the raw material solution droplets 3 is held by the contact surface 6a.
  • the method for forming the droplet 3 is not limited to the above-described method.
  • the contact surface is obtained by immersing the substrate 1 together with the contact member 7 in the raw material solution and then removing the substrate 1 from the state.
  • the droplet 3 can also be held by 6a.
  • the drying process is performed to evaporate the solvent in the droplets 3, the crystal of the organic semiconductor material is formed in each droplet 3 as the solvent is evaporated.
  • the organic semiconductor film 4a is formed at each position on the surface of the substrate 1 corresponding to the plurality of contact surfaces 6a. In this manner, an organic semiconductor film array in which the organic semiconductor film 4a is arranged separately in a plurality of regions on the surface of the substrate 1 can be manufactured.
  • the plurality of organic semiconductor films 4a exhibit high mobility as in the case described above.
  • (Embodiment 2) A basic process of the method for manufacturing an organic semiconductor film according to the second embodiment of the present invention will be described with reference to FIGS. 8A, 8B, and 9.
  • the surface of the flat contact member 8 facing the substrate 1 forms the contact surface 8a.
  • the planar contact member 8 is disposed so that the contact surface 8 a is inclined with respect to the substrate 1. Accordingly, a wedge-shaped gap is provided between the contact surface 8a and the surface of the substrate 1, and when the droplet holding state is formed, the droplet 3 of the raw material solution is held between the surface of the substrate 1 and the contact surface 8a. Is done.
  • the flat contact member 8 can be formed of, for example, a resin, like the end face contact member 2 of the first embodiment. However, any material other than the resin can be used as long as it appropriately performs the function described below. It may be used. Further, as will be described later, it is not essential to incline the contact surface 8a.
  • the flat contact member 8 is placed on the substrate 1 so that the inclination direction of the contact surface 8 a is along the predetermined B direction of the substrate 1.
  • the raw material solution is supplied so as to come into contact with the contact surface 8a, and is developed by capillary force in the gap between the contact surface 8a and the surface of the substrate 1.
  • the formed droplet 3 of the raw material solution is held by the contact surface 8a so that a certain force is applied.
  • the cross-sectional shape in this state is shown in FIG.
  • the drying process is performed in a state where the droplet 3 is held by the contact surface 8a, and the solvent in the droplet 3 is evaporated.
  • the raw material solution is saturated by evaporation of the solvent sequentially at the edge portion on the open side of the contact surface 2 a in the B direction of the substrate 1. Begins to precipitate.
  • the movement of the edge of the droplet 3 on the open side accompanying the evaporation of the solvent is indicated by alternate long and short dash lines e1 and e2.
  • the solvent evaporates the crystallization of the organic semiconductor material advances, and the organic semiconductor film 4 grows as shown in FIG. 8B. That is, crystal growth proceeds along the B direction of the substrate 1 toward the closed side of the contact surface 8a, and the organic semiconductor film 4 is gradually formed.
  • the action of defining the crystal growth direction works through contact with the contact surface 8a depending on the state in which the droplet 3 of the raw material solution adheres to the contact surface 8a.
  • the crystallinity control effect is obtained, the regularity of the arrangement of molecules of the organic semiconductor material is improved, and it is considered that it contributes to the improvement of the electron conductivity (mobility).
  • the method of forming the droplet 3 is not limited to the above-described method.
  • the substrate 1 together with the planar contact member 8 from a state of being immersed in the raw material solution, it is possible to form droplets attached to the contact surface 8a.
  • the method for producing an organic semiconductor film in the present embodiment is, for example, 2,9-Dialkyldinaphtho [2,3-b: 2 ′, 3′-f] thieno [3,2-b] thiophenes (Cn-DNTT). It is suitable for forming a crystalline film of a material having low solubility in an organic solvent. Such a material is often produced by a vapor deposition method, and an example in which a high mobility film is formed by a coating method is not known. On the other hand, an organic semiconductor film having a high mobility characteristic indicating a mobility of 6 cm 2 / Vs can be formed by applying the manufacturing method of the present embodiment to form a film from C 10 -DNTT. did it.
  • the substrate 1 was kept at about 120 ° C., C 10 -DNTT was dissolved in o-dichlorobenzene heated to 120 ° C., and developed in the gap between the contact surface 8 a and the surface of the substrate 1. According to this method, since the raw material solution is firmly held in the gap and the drying direction of the solution is fixed, a coating film having high crystallinity with uniform orientation can be obtained.
  • source and drain electrodes were formed by vapor deposition so that the channel was parallel to the B direction, that is, the crystal growth direction.
  • the channel length and width were 0.1 mm and 1.5 mm, respectively.
  • the impurity-added Si layer in the substrate 1 was used as a gate electrode, thereby applying an electric field to 500 nm thick SiO 2 (dielectric constant about 3.9).
  • FIG. 10A shows the transfer characteristics in the saturation region of the TFT manufactured and operated in this manner.
  • the horizontal axis represents the gate voltage (V)
  • the left vertical axis represents the square root of the absolute value of the drain current
  • the right vertical axis represents the drain current (A) on a logarithmic scale. From the slope of the plot in FIG. 10A, it can be seen that the mobility in the saturation region shows 6 cm 2 / Vs.
  • the materials described in Embodiment 1 can be used.
  • the materials described in Embodiment Mode 1 can be used.
  • FIG. 11A a contact member 11 having a configuration in which a plurality of contact convex portions 9 having the same function as the planar contact member 8 shown in FIG. 8A is provided on the auxiliary substrate 10 is used. .
  • the upper surfaces of the contact protrusions 9 each form a contact surface 9a.
  • each of the plurality of contact surfaces 9 a is inclined with respect to the surface of the auxiliary substrate 10.
  • a hot plate 12 for heating can be brought into contact with the back surface of the substrate 1. Accordingly, it becomes easy to use a material having low solubility in an organic solvent in a state where the temperature is raised.
  • a plurality of contact surfaces 9a which are the upper surfaces (lower surfaces in the figure) of the contact convex portions 9, and the substrate 1 are made to face each other.
  • the contact member 11 is arranged so that the tip of the contact convex portion 9 comes into contact with the surface of the substrate 1 as shown in FIG. 11B. That is, since the edge of the contact surface 9a on the side of the auxiliary substrate 10 having a larger height from the surface contacts the surface of the substrate 1, a gap is formed between the inclined portion of the contact surface 9a and the surface of the substrate 1.
  • the raw material solution droplet 3 is held between the surface of the substrate 1 and the plurality of contact surfaces 9a.
  • other methods can be used to supply the material solution for forming the droplet 3 as in the case of the first embodiment.
  • the organic semiconductor material in each droplet 3 is evaporated together with the evaporation of the solvent under a state where the crystal growth direction is controlled. Crystallization progresses. As a result, as shown in FIG. 11D, the organic semiconductor film 4a grows at each position on the surface of the substrate 1 corresponding to the contact surfaces 9a of the plurality of contact protrusions 9.
  • the planar shape of the organic semiconductor film array thus formed is as shown in FIG.
  • An array of organic semiconductor films 4a corresponding to the contact surfaces 9a of the contact protrusions 9 can be manufactured by separating them into a plurality of regions on the surface of the substrate 1.
  • Each of the contact protrusions 9 for forming the array of the organic semiconductor film 4a can have a different shape, and their arrangement need not be regular and can be freely set. is there.
  • each of the plurality of contact protrusions 14 has a contact surface 14 a formed by an inclined portion inclined with respect to the surface of the auxiliary substrate 10, and a part thereof is on the surface of the auxiliary substrate 10.
  • a flat abutting surface 14b parallel to the surface is formed.
  • the contact member 13 When the droplet holding state is formed, the contact member 13 is placed on the substrate 1 so that the flat contact surface 14b contacts the surface of the substrate 1 as shown in FIG. 13B. Thereby, a gap is formed between the contact surface 14 a and the surface of the substrate 1. If the raw material solution is supplied in this state, the droplet 3 can be formed and held by the contact surface 14a. Further, since the flat contact surface 14b is in close contact with the surface of the substrate 1, an effect of suppressing drying of the droplet 3 on the closed side of the contact surface 14a is obtained.
  • FIGS. 14A to 14D Second Modification Example of the Present Embodiment
  • a contact member 11 similar to that shown in FIG. 11A is used.
  • the contact member 11 is disposed with the contact surface 9a of the contact convex portion 9 facing upward.
  • the raw material solution is supplied onto the auxiliary substrate 10 so as to cover the plurality of contact surfaces 9a to form the droplets 3.
  • the substrate 1 is disposed above the contact member 11, and the surface of the substrate 1 is brought into contact with the tip of the contact convex portion 9. That is, the surface of the substrate 1 comes into contact with the edge of the contact surface 9a on the side having a large height from the surface of the auxiliary substrate 10, and a gap is formed between the inclined portions of the plurality of contact surfaces 9a and the surface of the substrate 1. It is formed.
  • the raw material solution may be supplied after the substrate 1 is opposed.
  • the droplet 3 becomes a droplet 3a on the auxiliary substrate 10 side and a droplet on the substrate 1 side as the solvent evaporates. Separated into 3b. The droplet 3b on the substrate 1 side is further separated corresponding to each of the plurality of contact surfaces 9a and is held by the contact surface 9a on the substrate 1.
  • the same action as in the case of FIG. 11B described above is obtained, and the crystallization of the organic semiconductor material proceeds under a state where the crystal growth direction in the drying process is defined.
  • the organic semiconductor film 4a grows at each position on the surface of the substrate 1 corresponding to the plurality of contact surfaces 9a.
  • the organic semiconductor film 4 a adheres to the SiO 2 substrate 1 that has better adhesion than the contact surface 9 a of the contact projection 9.
  • FIGS. 15A to 15D A third modified example of the manufacturing method of the present embodiment will be described with reference to FIGS. 15A to 15D.
  • This modification is roughly the same as the second modification, and each component is described with the same reference number.
  • the difference from the second modification is that when the substrate 1 is disposed above the contact member 11, the surface of the substrate 1 is not brought into contact with the tip of the contact convex portion 9 as shown in FIG. 15B. Thereby, the space
  • a raw material solution is supplied on the auxiliary substrate 10 so as to cover a plurality of contact surfaces 9a in the state shown in FIG.
  • substrate 1 is arrange
  • the droplet 3 becomes a droplet 3c on the auxiliary substrate 10 side and a droplet on the substrate 1 side as the solvent evaporates. Separate into 3d.
  • the droplet 3d on the substrate 1 side is further separated corresponding to each of the plurality of contact surfaces 9a and is held on the substrate 1 by the contact surfaces 9a.
  • the droplet 3d separated corresponding to each of the contact surfaces 9a has a substrate on the contact surface 9a as compared to the case shown in FIG. 14C because the substrate 1 is not in contact with the tip of the contact convex portion 9. A length having a large ratio to the length in one direction is formed.
  • the same action as in the case of FIG. 11B described above is obtained, and the crystallization of the organic semiconductor material proceeds under a state where the crystal growth direction in the drying process is defined.
  • the organic semiconductor film 4a grows at each position on the surface of the substrate 1 corresponding to the plurality of contact surfaces 9a.
  • FIGS. 16A to 16D A third modification of the manufacturing method of the present embodiment will be described with reference to FIGS. 16A to 16D.
  • the contact member 11 in the second modification shown in FIGS. 14A to 14D is changed to a contact member 15 as shown in FIG. 16A. That is, a plurality of contact protrusions 16 are provided on the surface of the auxiliary substrate 10, and each of the contact protrusions 16 forms a contact surface 16 a with a flat upper end surface parallel to the surface of the auxiliary substrate 10.
  • a raw material solution is supplied on the auxiliary substrate 10 so as to cover the contact surfaces 16a of the plurality of contact projections 16 to form droplets 3.
  • the substrate 1 is opposed from above with a predetermined interval between the contact surfaces 16a of the plurality of contact projections 16.
  • a state in which the raw material solution is filled between the substrate 1 and the auxiliary substrate 10 is formed.
  • the auxiliary substrate 10 and the substrate 1 are maintained in a state of being inclined at a predetermined angle. However, it is not essential to incline the auxiliary substrate 10 and the substrate 1.
  • the droplet 3 becomes a droplet 3e on the auxiliary substrate 10 side and a droplet on the substrate 1 side as the solvent evaporates. Separated into 3f. The droplet 3f on the substrate 1 side is further separated corresponding to each of the plurality of contact protrusions 16, and is held on the substrate 1 by the contact surface 16a.
  • the crystal of the organic semiconductor material grows in a state where the crystal growth direction is defined.
  • the organic semiconductor film 4a is formed at each position on the surface of the substrate 1 corresponding to the contact surfaces 16a of the plurality of contact protrusions 16.
  • the organic semiconductor material used for the method of the present embodiment as described above is desirably a material having a high self-aggregation function.
  • the self-aggregation function means a tendency to spontaneously aggregate and crystallize when molecules are precipitated from a solvent.
  • organic semiconductor materials include dinaphth [2,3-b: 2,3-f] thiopheno [3,2-b] thiophene derivatives, TIPS-pentacene, TES-ADT, and derivatives thereof, perylene derivatives, Low molecular semiconductor materials such as TCNQ, F4-TCNQ, rubrene, and pentacene, p3HT, pBTTT, pDA2T-C16, and the like can be used.
  • the method for producing an organic semiconductor film of the present invention can be carried out by a simple process and can produce an organic semiconductor film having high charge mobility, and is useful for producing an organic transistor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thin Film Transistor (AREA)

Abstract

 有機半導体材料及び溶媒を含む原料溶液を基板1上に供給し、原料溶液を乾燥させることにより有機半導体膜4を前記基板上に形成する。原料溶液を各々付着させる複数の接触面6aが配置された接触部材7を用いる。基板の表面に対して接触面が一定の関係となるように接触部材が配置され、基板上に原料溶液の液滴3が複数個形成されて、それらの液滴が複数の接触面に各々保持された液滴保持状態を形成する。液滴中の溶媒を蒸発させて複数の接触面に対応する基板の表面の各々の位置に有機半導体膜を形成する。塗布法による簡易な工程により実施でき、しかも高い電荷の移動度を有する有機半導体膜を作製することが可能である。

Description

有機半導体膜の製造方法および有機半導体膜アレイ
 本発明は、有機半導体材料を用い塗布法により有機半導体膜を作製するための製造方法、および有機半導体膜の複数の領域が配置された有機半導体膜アレイに関する。
 近年、有機半導体材料は、無機半導体材料と比較しても、優れた電気的特性を有することが明らかとなり、種々の電子デバイス分野への応用開発が進められている。有機半導体膜を半導体チャネルに用いた有機薄膜トランジスタ(TFT)は、無機半導体を用いる場合に比べて加工が容易であり、簡易で安価な製造プロセスを適用可能である。また、室温近傍での製造が可能であるため、プラスチック基板を用いた半導体技術を可能にし、ポストシリコン半導体として期待されている。
 有機TFTに用いる結晶性の有機半導体薄膜を作製する方法としては、従来、蒸着法、分子線エピタキシャル法、溶媒蒸発法、融液法、ラングミュア-ブロジェット法など、材料の特性により種々の方法が検討されている。
 特許文献1には、溶媒蒸発法により有機単結晶膜を作製する改良された方法の例が開示されている。同方法は、石英などの基板を複数枚重ねて、その基板間に溶媒蒸発法により有機単結晶膜を成長させていた従来の方法を改良したものである。すなわち、有機物質の溶液を含む容器内に、基板を液面に対して水平に配置していた形態に変更を加え、基板を液面に対して傾斜させて溶媒蒸発法を行なう。それにより、基板間での結晶成長に必要な範囲までの溶媒蒸発の進行を早めて、種結晶の発生、成長のプロセスの効率を向上させることを目的としている。
 溶媒蒸発法の原理を用いた方法のうち、簡易で安価、室温近傍での製造が可能という観点からは、液滴成形、スピンコーティング、印刷のような溶液を用いた塗布法によるプロセスが、高性能の有機TFT開発のために最も望まれる方法である。塗布法は、有機半導体材料溶液を基板面に塗布あるいは滴下して、溶液に含まれる溶媒を乾燥させることで、溶媒の蒸発により溶液を飽和状態にして結晶を析出させ、有機半導体薄膜を形成する方法である。
特開平03-59036号公報
 特許文献1に開示された技術は、光学素子用の有機単結晶膜を作製するための方法であり、有機半導体として望まれる電気的特性を得ることを意図したものではない。そのため、特許文献1に開示された方法を適用しても、有機TFTに用いる有機半導体膜として、満足できる電気的特性、特に、十分な電荷の移動度を有する有機半導体膜を作製することは困難である。
 また、塗布法により十分な電荷の移動度を有する有機半導体膜を作製するために、低分子から高分子に至る多くの材料を用いた種々の技術が報告されているが、これらの塗布法による有機半導体膜及びそれを用いた有機TFTの性能は、未だ工業的にアモルファスシリコンTFTに置き換わる程十分ではない。すなわち、塗布法により、単に溶媒を乾燥させるというだけでは、十分な移動度を持った有機半導体膜を得ることは困難であった。
 従って、本発明は、塗布法による簡易な工程により実施され、しかも高い電荷の移動度を有する有機半導体膜を作製することが可能な有機半導体膜の製造方法を提供することを目的とする。
 また、そのような有機半導体膜の製造方法を利用して得られる、複数の有機半導体膜領域が配置された有機半導体膜アレイを提供することを目的とする。
 本発明の有機半導体膜の製造方法は、有機半導体材料及び溶媒を含む原料溶液を基板上に供給し、前記原料溶液を乾燥させることにより有機半導体膜を前記基板上に形成する方法である。
 上記課題を解決するために、本発明の製造方法は、前記原料溶液を各々付着させる複数の接触面が配置された接触部材を用い、前記基板の表面に対して前記接触面が一定の関係となるように前記接触部材が配置され、前記基板上に前記原料溶液の液滴が複数個形成されて、前記液滴が前記複数の接触面に各々保持された液滴保持状態を形成し、前記液滴中の前記溶媒を蒸発させて前記複数の接触面に対応する前記基板の表面の各々の位置に前記有機半導体膜を形成することを特徴とする。
 本発明の有機半導体膜アレイは、基板と、前記基板の表面上の複数の領域に互いに分離して配置された有機半導体膜とを備え、前記有機半導体膜は、塗布法により形成され結晶性の膜であることを特徴とする。
 上記構成の有機半導体膜の製造方法によれば、原料溶液の液滴が接触面に付着した状態により、接触面との接触を介した作用により、蒸発プロセスにおいて有機半導体膜の領域の成長方向が規定される。その結果、有機半導体膜分子の配列の規則性が良好になり、塗布法による簡易な工程でありながら、高い移動度を有する有機半導体膜を得ることが可能となる。しかも、基板の表面上の複数の領域に互いに分離され、接触部材の位置に対応して形成された複数領域の有機半導体膜を含む有機半導体膜アレイを、容易に作製することができる。
 上記構成の有機半導体膜アレイの構成によれば、高い移動度を有する有機半導体膜を備えながら、容易に製造可能である。
本発明の実施の形態1における有機半導体膜の製造方法の工程を示す斜視図 同製造方法の図1Aに続く工程を示す斜視図 同製造方法の工程を示す断面図 同製造方法の工程の変形例を示す断面図 同製造方法に用いられる有機半導体材料の一例であるC-BTBTの分子構造を示す図 同製造方法により作製された有機半導体膜の状態を説明するための斜視図 同有機半導体膜の断面プロファイルを示す図 同有機半導体膜を用いて作製した電界効果トランジスタの伝達特性を示す図 同電界効果トランジスタの出力特性を示す図 実施の形態1における有機半導体膜アレイの製造方法の工程を示す断面図 同製造方法の図6Aに続く工程を示す断面図 同製造方法の図6Bに続く工程を示す断面図 同製造方法の工程の変形例を示す断面図 本発明の実施の形態2における有機半導体膜の製造方法の工程を示す斜視図 同製造方法の図8Aに続く工程を示す斜視図 同製造方法の工程を示す断面図 同有機半導体膜を用いて作製した電界効果トランジスタの伝達特性を示す図 同有機半導体膜を用いて作製した電界効果トランジスタの出力特性を示す図 実施の形態2における有機半導体膜アレイの製造方法の工程を示す断面図 同製造方法の図11Aに続く工程を示す断面図 同製造方法の図11Bに続く工程を示す断面図 同製造方法の図11Cに続く工程を示す断面図 同製造方法により作製された有機半導体膜アレイの平面図 同製造方法の第1変形例の工程を示す断面図 同製造方法の第1変形例の図13Aに続く工程を示す断面図 同製造方法の第2変形例の工程を示す断面図 同製造方法の図14Aに続く工程を示す断面図 同製造方法の図14Bに続く工程を示す断面図 同製造方法の図14Cに続く工程を示す断面図 同製造方法の第3変形例の工程を示す断面図 同製造方法の図15Aに続く工程を示す断面図 同製造方法の図15Bに続く工程を示す断面図 同製造方法の図15Cに続く工程を示す断面図 同製造方法の第4変形例の工程を示す断面図 同製造方法の図16Aに続く工程を示す断面図 同製造方法の図16Bに続く工程を示す断面図 同製造方法の図16Cに続く工程を示す断面図
 本発明の有機半導体膜の製造方法は、上記構成を基本として、以下のような態様をとることができる。
 すなわち、前記接触部材は、補助基板とその補助基板上に形成された複数個の接触凸部により構成され、前記接触凸部の前記補助基板の表面に交差する端面の一部により前記接触面が各々形成され、前記液滴保持状態を形成するときには、前記基板の表面に対して上方から前記接触凸部が当接するように前記接触部材を配置する態様とすることができる。
 この態様の場合、前記基板を所定角度に傾斜させた状態に維持し、前記接触面を形成する端面が前記基板の傾斜の方向を横切るように、前記接触部材を前記基板上に戴置することが好ましい。
 また、他の態様では、前記接触部材は、補助基板とその補助基板上に形成された複数個の接触凸部により構成され、前記接触凸部の上面が各々前記接触面を形成し、前記液滴保持状態を形成するときには、前記複数個の接触凸部の前記接触面が少なくとも一部に間隙を設けて前記基板の表面に対向するように前記接触部材を配置し、前記原料溶液の液滴が各々、前記基板の表面と前記複数の接触面の間に保持される。
 この態様の場合、前記複数個の接触面は各々、前記補助基板の表面に対して傾斜した傾斜部を有することが好ましい。
 また、前記液滴保持状態を形成するときには、前記接触面の一部が前記基板の表面に当接するように前記接触部材を配置することが好ましい。
 また、前記液滴を形成するために前記原料溶液を供給した後は、前記補助基板及び前記基板を所定角度に傾斜させた状態に維持して前記液滴保持状態を形成する態様とすることができる。
 また、前記有機半導体材料として、[1]benzothieno[3,2-b]benzothiophene誘導体、2,9-Dialkyldinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene誘導体、dinaphth[2,3-b:2,3-f]thiopheno[3,2-b]thiophene誘導体、TIPS-ペンタセン、TES-ADT、及びその誘導体、ペリレン誘導体、TCNQ、F4-TCNQ、F4-TCNQ、ルブレン、ペンタセン、p3HT、pBTTT、及びpDA2T-C16から選択したいずれかの材料を用いることができる。
 上記構成の有機半導体膜アレイにおいて、好ましくは、前記有機半導体膜の電荷移動度は、3.5cm/Vs以上である。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 (実施の形態1)
 A.実施の形態1の基本工程
 本発明の実施の形態1における有機半導体膜の製造方法の基本工程について、図1A、1B、及び図2Aを参照して説明する。この製造方法は塗布法に基づくものであり、基板1、及び端面接触部材2を用いる。すなわち、有機半導体材料及び溶媒を含む原料溶液を、図1Aに示すように、端面接触部材2に接触するように基板1上に供給して、液滴3を形成する。この状態で液滴3を乾燥させることにより、基板1上に有機半導体膜4を形成する。
 端面接触部材2は、基板1の表面に戴置された状態でその表面に交差する端面の一部として、平面形状、すなわち基板1の上方から見た形状が直線状または曲線状の接触面2aを含む。液滴3は、端面接触部材2の接触面2aに接触するように供給される。端面接触部材2は、例えば樹脂により形成することができるが、以下に説明する機能を適切に果たすものであれば、樹脂以外のどのような材質を用いてもよい。
 有機半導体膜の製造工程としてはまず、図1Aに示すように、端面接触部材2を、接触面2aが基板1の所定のA方向を横切るように、望ましくは接触面2aがA方向と直交するように基板1上に戴置する。この状態で、原料溶液を、接触面2aに接触するように基板1の表面上に供給する。供給された原料溶液の液滴3は、接触面2aにより保持されて、一定の力が作用する状態になる。この状態の断面形状を、図2Aに示す。
 接触面2aにより液滴3が保持された状態で乾燥プロセスを行って、液滴3中の溶媒を蒸発させる。それにより、液滴3中では図2Aに示すように、A方向における接触面2aからの遠端縁の部分で順次、溶媒の蒸発により原料溶液が飽和状態になり有機半導体材料の結晶が析出し始める。溶媒の蒸発に伴う液滴3の遠端縁の移動を、一点鎖線e1、e2で示す。溶媒の蒸発とともに有機半導体材料の結晶化が進展し、図1Bに示すように、有機半導体膜4が成長する。すなわち、基板1のA方向に沿って接触面2aに向かって結晶の成長が進み、有機半導体膜4が漸次形成されてゆく。
 この乾燥プロセスにおいては、原料溶液の液滴3が接触面2aに付着した状態によって、接触面2aとの接触を介して結晶成長方向を規定する作用が働く。これにより、結晶性の制御効果が得られ、有機半導体材料の分子の配列の規則性が良好になり、電子伝導性(移動度)の向上に寄与するものと考えられる。なお、形成される有機半導体膜4は、多結晶状態であっても結晶性が良好で、十分に良好な半導体特性が得られる。
 以上の製造方法の変形例として、図2Bに示すように、基板1をA方向に所定角度に傾斜させて維持し、端面接触部材2を、接触面2aが基板1の傾斜方向を横切るように、望ましくは接触面2aが傾斜方向と直交するように基板1上に戴置する。この状態で、接触面2aに接触するように、原料溶液を基板1の表面上に供給する。供給された原料溶液の液滴3は、接触面2aにより保持されて、基板1の傾斜方向に懸架された状態になる。基板1を傾斜させることにより、液滴3による濡れ面の大きさを制御し、所望の特性の有機半導体膜を得ることが容易になる。
 なお、液滴3を形成する方法は、上述の方法に限られない。例えば、端面接触部材2とともに基板1を原料溶液に浸した状態から取り出すことにより、接触面2aに付着した液滴を形成することもできる。
 本実施の形態による方法による効果を調べるために、有機半導体材料として、[1]benzothieno[3,2-b]benzothiophene(BTBT)の誘導体であるC-BTBTを用いた実験を行なった。溶媒としては、ヘプタン(heptane)を用い、原料溶液としてC-BTBTの0.4wt%溶液を用意した。基板1として、不純物添加Si層上にSiO層を形成したものを用いた。端面接触部材2としては、シリコンウェハーの小片を用いた。
 BTBT誘導体は、真空蒸着でも、スピンコートでも優れたTFT性能を示す。その分子は、BTBT骨格構造に加えられたアルキル鎖を含む(図3参照)。アルキル鎖は、分子ファスナー効果と呼ばれる鎖どうしの引力的相互作用により、隣接する分子間の結合力を向上させる。その結果、結晶構造解析によれば、分子間距離が小さく、電子伝導を担うπ骨格の距離を近づける効果もあって、より移動度が高くなる要因となっている。一方、引力的相互作用は急速に結晶成長させる効果もあるため、容易に多結晶が形成される。
 まず、decyltriethoxysilane(デシルトリトリエトキシシラン;DTS)の真空蒸着により、基板1の表面処理を行なった後、傾けた基板1上に原料溶液の液滴3を形成し、端面接触部材2の接触面2aにより保持した。溶媒の蒸発とともに、傾斜の方向に結晶領域が成長した。結晶性膜の成長後、端面接触部材2を除去し、溶媒を完全に除去するために、真空中、50℃で5時間の乾燥を行なった。
 図4Aに、上記と同様にして形成されたC-BTBTの膜の、原子間力顕微鏡により観察される表面形態を示す。図4Bに断面プロファイルを示す。マイクロメータスケールの段部領域に亘って、分子レベルで平坦であり、段差は、C-BTBT分子の高さの一分子層に相当するものとなっている。段部及び段差構造は、ルブレンやペンタセンのような代表的な有機単結晶と同様の典型的なものである。良好な平坦性と明確に規定された分子段差は、高度に配向した結晶膜が基板1のSiO誘電体表面に成長していることを示す。
 次に、上述のようにして形成されたC-BTBTの有機半導体膜に対して、チャネルがA方向すなわち結晶成長の方向に平行になるように、ソース及びドレイン電極を蒸着により形成した。チャネルの長さ及び幅はそれぞれ、0.1mm及び1.5mmとした。基板1における不純物添加Si層を、ゲート電極として用い、それにより500nm厚のSiO(誘電率は約3.9)に電界を印加した。
 このように作製し動作させたTFTの、飽和領域における伝達特性を、図5Aに示す。図5Aにおいて、横軸はゲート電圧(V)、左側の縦軸はドレイン電流の絶対値の平方根、右側の縦軸はドレイン電流(A)を対数スケールで示す。白丸で示す測定値は、ドレイン電流の絶対値の平方根、黒丸は、ドレイン電流(A)を示す。
 図5Aのプロットの傾斜は、5cm/Vs程の移動度を示している。サブスレショルド特性は、3V/decadeと良好である。同様の方法で作製された良好なデバイスの殆どは、3.5~5cm/Vsの範囲の値を示した。一方、光学顕微鏡で観察可能な明らかな結晶欠陥があるデバイスでは、2cm/Vsであった。デバイスの寸法を小さくして、半導体膜の乾燥をよりゆっくり行なえば、歩留まりを、より改善することが可能である。オン-オフ比は、作製した全てのデバイスについて、概ね10を超えた。
 図5Bは、上記の作製されたデバイスの出力特性を示す。ゲート電圧V=0、-20、-30、-40、-50Vの各々の場合が示される。
 従来の塗布方による最も高い移動度としては、C13-BTBTの膜の場合に2.3cm/Vsが得られているが、再現性は低い。本実施の形態と同様、C-BTBTを使用した場合は、従来の塗布法によって1.8cm/Vs程度の高い移動度が実現していた。これに対して、本実施の形態の場合は、上述のとおり、再現性良く5cm/Vsもの移動度が得られた。この移動度の値は、典型的なアモルファスシリコンTFTの移動度が1cm/Vs程度であるのに対して、その5倍に匹敵し、本実施の形態による有機TFTの優位性を示すものである。
 以上のように、本実施の形態によれば、塗布法に基づく容易な製造法でありながら、配向の良好な結晶性膜を成長させることができ、高い移動度が得られる有機半導体膜を作製することができる。従って、簡便・低コストで高性能な有機トランジスタを量産するための基本的な技術となり得る。
 基板1の材料としては、上述の、不純物添加Si層上にSiO層が形成されたものに限らず、銅やアルミニウムなどの導電性金属表面に、パリレンやポリビニルフェノールなどの高分子絶縁膜をコートしたもの等を用いることもできる。また、端面接触部材2としては、例えば、シリコンウェハー以外でも、上述の機能に適切であれば、どのような材質をもちいてもよい。
 また、有機半導体材料、あるいは作製しようとする有機半導体膜の特性や形態等に対応させて、基板1の傾斜角度、乾燥プロセスの速度、溶媒等を適宜調整することが望ましい。
 B.有機半導体膜アレイの製造工程
 次に、上述の工程に基づく、有機薄膜トランジスタ(TFT)の作製にとって実用価値の高い、有機半導体膜アレイを製造するための方法について、図6A~6Cを参照して説明する。
 ここで、本発明の有機半導体膜アレイの製造方法の特徴は、基本的には、原料溶液を各々付着させる複数の接触面が配置された接触部材を用いて、基板上に液滴保持状態を形成するものとして定義される。液滴保持状態は、基板の表面に対して接触面が一定の関係となるように接触部材が配置され、基板上に原料溶液の液滴が複数個形成され、それらの液滴が各々複数の接触面に保持された状態である。この状態で、液滴中の溶媒を蒸発させて複数の接触面に対応する基板の表面の各々の位置に有機半導体膜を形成する。このような定義による特徴は、本発明の全ての実施の形態の有機半導体膜アレイの製造方法に共通である。
 一方、図6A~6Cに示す製造工程は、図1A、1Bに示した形態に対応する有機半導体膜アレイの製造方法の一例である。従って、この方法では、図6Aに示すように、補助基板5上に接触凸部6が複数個配置された構成の接触部材7を用いる。接触凸部6は、図1Aに示した端面接触部材2と同様の機能を有するものである。すなわち、接触凸部6における補助基板5の表面に交差する端面の一部により、接触面6aが各々形成される。
 有機半導体膜の製造工程としては、まず液滴保持状態を形成するために、図6Aに示すように、基板1の上方に、接触凸部6を基板1と対向させて接触部材7を配置し、図6Bに示すように、接触凸部6を基板1に当接させる。この状態で接触面6aの各々に対して接触するように原料溶液を供給して、液滴3を形成する。原料溶液の液滴3は各々、接触面6aにより保持された状態になる。
 なお、本実施の形態においても、液滴3を形成する方法は、上述の方法に限られず、例えば、接触部材7とともに基板1を原料溶液に浸した後、その状態から取り出すことにより、接触面6aに液滴3を保持させることもできる。
 この状態で図6Cに示すように、乾燥プロセスを行って液滴3中の溶媒を蒸発させると、上述の場合と同様、各々の液滴3中では、溶媒の蒸発とともに有機半導体材料の結晶が成長し、複数の接触面6aに対応する基板1面の各々の位置に、有機半導体膜4aが形成される。このようにして、基板1の表面上の複数の領域に互いに分離して有機半導体膜4aが配置された、有機半導体膜アレイを作製することができる。複数の有機半導体膜4aは、上述の場合と同様に、高い移動度を示す。
 C.本実施の形態の変形例
 なお、図2Bに示した形態と同様、図7に示すように、基板1を所定角度に傾斜させて維持する方法を採ることもできる。接触部材7は、接触面6aが基板1の傾斜方向を横切るように、望ましくは接触面6aが傾斜方向と直交するように、基板1上に戴置する。この状態で、原料溶液の液滴3を形成し、乾燥工程を行なう。
 (実施の形態2)
 A.実施の形態2の基本工程
 本発明の実施の形態2における有機半導体膜の製造方法の基本的な工程について、図8A、8B、及び図9を参照して説明する。この製造方法では、平面接触部材8における基板1に対向する面が接触面8aを形成する。平面接触部材8は、接触面8aが基板1に対して傾斜するように配置される。従って、接触面8aと基板1の表面の間にくさび状の間隙が設けられ、液滴保持状態を形成するときには、原料溶液の液滴3が、基板1の表面と接触面8aの間に保持される。
 平面接触部材8は、実施の形態1の端面接触部材2と同様、例えば樹脂により形成することができるが、以下に説明する機能を適切に果たすものであれば、樹脂以外のどのような材質を用いてもよい。また、後述するように、接触面8aを傾斜させることは必須ではない。
 製造工程としてはまず、図8Aに示すように、平面接触部材8を、接触面8aの傾斜方向が基板1の所定のB方向に沿うように基板1上に戴置する。この状態で、原料溶液を接触面8aに接触するように供給し、接触面8aと基板1の表面の間隙中にキャピラリーフォースによって展開させる。形成された原料溶液の液滴3は、接触面8aにより保持されて、一定の力が作用する状態になる。この状態の断面形状が、図9に示される。
 接触面8aにより液滴3が保持された状態で乾燥プロセスを行って、液滴3中の溶媒を蒸発させる。それにより、液滴3中では図8Aに示すように、基板1のB方向における接触面2aの開放側の端縁部分で順次、溶媒の蒸発により原料溶液が飽和状態になり有機半導体材料の結晶が析出し始める。溶媒の蒸発に伴う液滴3の開放側の端縁の移動を、一点鎖線e1、e2で示す。溶媒の蒸発とともに有機半導体材料の結晶化が進展し、図8Bに示すように、有機半導体膜4が成長する。すなわち、基板1のB方向に沿って接触面8aの閉鎖側に向かって結晶の成長が進み、有機半導体膜4が漸次形成されてゆく。
 この乾燥プロセスにおいては、実施の形態1の場合と同様、原料溶液の液滴3が接触面8aに付着した状態により、接触面8aとの接触を介して結晶成長方向を規定する作用が働く。これにより、結晶性の制御効果が得られ、有機半導体材料の分子の配列の規則性が良好になり、電子伝導性(移動度)の向上に寄与するものと考えられる。
 なお、液滴3を形成する方法は、上述の方法に限られない。例えば、平面接触部材8とともに基板1を原料溶液に浸した状態から取り出すことにより、接触面8aに付着した液滴を形成することもできる。
 本実施の形態における有機半導体膜の製造方法は、例えば2,9-Dialkyldinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophenes(Cn-DNTT)のような、有機溶媒への溶解度の低い材料の結晶性膜を形成するのに適している。このような材料は気相成長法よって作製される場合が多く、塗布法により高移動度の膜を形成した例は知られていない。これに対して、本実施の形態の製造方法を適用してC10-DNTTから成膜することにより、移動度6cm/Vsを示す高移動度特性を持った有機半導体膜を形成することができた。
 成膜に際しては、基板1を約120℃に保ち、C10-DNTTを120℃に加熱したo-ジクロロベンゼンに溶解させ、接触面8aと基板1の表面の間隙中に展開した。この方法によれば、原料溶液が間隙中にしっかりと保持され、また溶液の乾燥方向が一定に定められるため、配向性の揃った高い結晶性を有する塗布膜が得られる。
 上述のようにして形成されたC10-DNTTの有機半導体膜に対して、チャネルがB方向すなわち結晶成長の方向に平行になるように、ソース及びドレイン電極を蒸着により形成した。チャネルの長さ及び幅はそれぞれ、0.1mm及び1.5mmとした。基板1における不純物添加Si層を、ゲート電極として用い、それにより500nm厚のSiO(誘電率は約3.9)に電界を印加した。
 このように作製し動作させたTFTの、飽和領域における伝達特性を、図10Aに示す。図10Aにおいて、横軸はゲート電圧(V)、左側の縦軸はドレイン電流の絶対値の平方根、右側の縦軸はドレイン電流(A)を対数スケールで示す。図10Aのプロットの傾斜から、飽和領域における移動度は6cm/Vsを示していることが判る。図10Bは、上記の作製されたデバイスの出力特性を示す。ゲート電圧V=0、-20、-30、-40Vの各々の場合が示される。
 本実施の形態の方法に用いる有機半導体材料としては、実施の形態1に述べたような材料を用いることができる。基板1の材料としても、実施の形態1に述べたような材料を用いることができる。
 B.有機半導体膜アレイの製造工程
 次に、本実施の形態の上述の基本工程に基づく、有機半導体膜アレイの実用的な製造方法について、図11A~11Dを参照して説明する。この製造方法では、図11Aに示すように、図8Aに示した平面接触部材8と同様の機能を有する接触凸部9が複数個、補助基板10上に設けられた構成の接触部材11を用いる。接触凸部9における上面が各々接触面9aを形成する。この例では、複数個の接触面9aは各々、補助基板10の表面に対して傾斜している。また、基板1の裏面には、加熱用のホットプレート12を当接させることができる。それにより、有機溶媒への溶解度の低い材料を昇温させた状態で用いることが容易になる。
 製造工程としては、まず、図8Aの場合と同様、図11Aに示すように、接触凸部9の上面(図では下面)である複数個の接触面9aと基板1とを対向させる。そして、液滴保持状態を形成するために、図11Bに示すように、接触凸部9の先端が基板1の表面に当接するように接触部材11を配置する。すなわち、補助基板10の表面からの高さが大きい側の接触面9aの端縁が基板1の表面に当接するので、接触面9aの傾斜部分と基板1の表面との間に間隙が形成される。この状態で原料溶液を供給すれば、基板1の表面と複数の接触面9aの間に各々、原料溶液の液滴3が保持される。但し、液滴3を形成するための料溶液を供給には、実施の形態1の場合と同様、他の方法を用いることもできる。
 この状態で乾燥プロセスを行って液滴3中の溶媒を蒸発させると、図11Cに示すように、結晶成長方向が制御された状態の下で、溶媒の蒸発とともに各液滴3における有機半導体材料の結晶化が進展する。その結果、図11Dに示すように、複数の接触凸部9の接触面9aに対応する基板1面の各々の位置に、有機半導体膜4aが成長する。
 このようにして形成される有機半導体膜アレイの平面形状は、図12に示すとおりである。基板1の表面上の複数の領域に互いに分離して、接触凸部9の接触面9aに対応する有機半導体膜4aのアレイを作製することができる。有機半導体膜4aのアレイを形成するための接触凸部9の各々は、それぞれ異なる形状とすることも可能であり、また、それらの配列も、規則的である必要はなく、自由に設定可能である。
 C.本実施の形態の第1変形例
 本実施の形態の製造方法の第1変形例について、図13A、13Bを参照して説明する。この変形例では、図11Aに示した接触部材11を、図13Aに示すような接触部材13に変更する。同図の接触部材13では、複数個の接触凸部14が各々、補助基板10の表面に対して傾斜した傾斜部により形成された接触面14aを有するとともに、一部が補助基板10の表面に対して平行な平坦当接面14bを形成している。
 液滴保持状態を形成する際には、図13Bに示すように、平坦当接面14bが基板1の表面に当接するように、基板1上に接触部材13を載置する。それにより、接触面14aと基板1の表面との間に間隙が形成される。この状態で原料溶液を供給すれば、液滴3を形成し接触面14aにより保持することができる。また、平坦当接面14bが基板1の表面に密着するので、接触面14aの閉鎖側での液滴3の乾燥を抑制する効果が得られる。
 D.本実施の形態の第2変形例
 本実施の形態の製造方法の第2変形例について、図14A~14Dを参照して説明する。この変形例では、図14Aに示すように、図11Aに示したものと同様の接触部材11を用いる。但し、接触部材11は、接触凸部9の接触面9aを上方に向けて配置する。この状態で補助基板10上に、複数個の接触面9aを覆うように原料溶液を供給して液滴3を形成する。
 次に、図14Bに示すように、接触部材11の上方に基板1を配置して、接触凸部9の先端に基板1の表面を当接させる。すなわち、補助基板10の表面からの高さが大きい側の接触面9aの端縁に基板1の表面が当接し、複数個の接触面9aの傾斜部分と基板1の表面との間に間隙が形成される。なお、液滴3を形成するためには、基板1を対向させてから原料溶液を供給してもよい。
 この状態で乾燥プロセスを行って液滴3中の溶媒を蒸発させると、図14Cに示すように、溶媒の蒸発とともに液滴3が、補助基板10側の液滴3aと基板1側の液滴3bに分離する。基板1側の液滴3bは更に、複数の接触面9aの各々に対応して分離し、基板1上で接触面9aにより保持された状態になる。
 この状態で乾燥プロセスが進むことにより、上述の図11Bの場合と同様の作用が得られ、乾燥プロセスにおける結晶成長方向が規定された状態の下で、有機半導体材料の結晶化が進展する。その結果、図14Dに示すように、複数の接触面9aに対応する基板1面の各々の位置に、有機半導体膜4aが成長する。この過程で、有機半導体膜4aは、接触凸部9の接触面9aよりは接着性の良好なSiO基板1に付着する。
 E.本実施の形態の第3変形例
 本実施の形態の製造方法の第3変形例について、図15A~15Dを参照して説明する。この変形例は、第2変形例と概略同様であり、各構成要素には同一の参照番号を付して説明する。第2変形例との相違点は、図15Bに示すように、接触部材11の上方に基板1を配置する際に、接触凸部9の先端に基板1の表面を当接させないことである。それにより、複数個の接触面9aと基板1の間隔は、図14Bに示す状態よりも大きくなる。
 製造工程としては、まず、第2変形例と同様、図15Aに示す状態で補助基板10上に、複数個の接触面9aを覆うように原料溶液を供給して液滴3を形成する。そして図15Bに示すように、基板1を、接触凸部9の先端に当接しないように上方に配置して、複数個の接触面9aとの間に一定の間隔を持って対向させる。
 この状態で乾燥プロセスを行って液滴3中の溶媒を蒸発させると、図15Cに示すように、溶媒の蒸発とともに液滴3が、補助基板10側の液滴3cと基板1側の液滴3dに分離する。基板1側の液滴3dは更に、複数の接触面9aの各々に対応して分離し、基板1上で接触面9aにより保持された状態になる。なお、接触面9aの各々に対応して分離する液滴3dは、基板1が接触凸部9の先端に当接していないことにより、図14Cに示した場合に比べて、接触面9aの基板1方向の長さに対する比率の大きい長さに形成される。
 この状態で乾燥プロセスが進むことにより、上述の図11Bの場合と同様の作用が得られ、乾燥プロセスにおける結晶成長方向が規定された状態の下で、有機半導体材料の結晶化が進展する。その結果、図15Dに示すように、複数の接触面9aに対応する基板1面の各々の位置に、有機半導体膜4aが成長する。
 F.本実施の形態の第3変形例
 本実施の形態の製造方法の第3変形例について、図16A~16Dを参照して説明する。この変形例では、図14A~14Dに示した第2変形例における接触部材11を、図16Aに示すような接触部材15に変更する。すなわち、補助基板10の表面には、複数個の接触凸部16が設けられ、接触凸部16は各々、補助基板10の表面に平行な平坦な上端面により接触面16aを形成する。
 製造工程としては、まず、図16Aに示すように、補助基板10上に、複数個の接触凸部16の接触面16aを覆うように原料溶液を供給して液滴3を形成する。そして図16Bに示すように、複数個の接触凸部16の接触面16aとの間に所定の間隔を持って、上方から基板1を対向させる。それにより、基板1と補助基板10の間に原料溶液が充填された状態が形成される。更に、図16Cに示すように、補助基板10及び基板1を所定角度に傾斜させた状態で維持する。但し、補助基板10及び基板1を傾斜させることは必須ではない。
 この状態で乾燥プロセスを行って液滴3中の溶媒を蒸発させると、図16Cに示すように、溶媒の蒸発とともに液滴3が、補助基板10側の液滴3eと基板1側の液滴3fに分離する。基板1側の液滴3fは更に、複数の接触凸部16の各々に対応して分離し、基板1上で接触面16aにより保持された状態になる。
 この状態で乾燥プロセスが進むことにより、結晶成長方向が規定された状態の下で、有機半導体材料の結晶が成長する。その結果、図16Dに示すように、複数の接触凸部16の接触面16aに対応する基板1面の各々の位置に、有機半導体膜4aが形成される。
 以上のような本実施の形態の方法に用いる有機半導体材料は、自己凝集機能の高い材料であることが望ましい。自己凝集機能とは、分子が溶媒から析出する際に、自発的に凝集して、結晶化しやすい傾向を意味する。有機半導体材料としては、上記以外に、dinaphth[2,3-b:2,3-f]thiopheno[3,2-b]thiophene誘導体、TIPS-ペンタセン、TES-ADT、及びその誘導体、ペリレン誘導体、TCNQ、F4-TCNQ、ルブレン、ペンタセンなどの低分子半導体材料、p3HT、pBTTT、pDA2T-C16などを用いることができる。
 本発明の有機半導体膜の製造方法は、簡易な工程により実施され、しかも高い電荷の移動度を有する有機半導体膜を作製することが可能であって、有機トランジスタの作製等に有用である。
1 基板
2 端面接触部材
2a、6a、8a、9a、14a、16a 接触面
3、3a、3b、3c、3d、3e、3f 液滴
4、4a 有機半導体膜
5、10 補助基板
6、9、14、16 接触凸部
7、11、13、15 接触部材
8 平面接触部材
12 ホットプレート
14b 平坦当接面

Claims (10)

  1.  有機半導体材料及び溶媒を含む原料溶液を基板上に供給し、前記原料溶液を乾燥させることにより有機半導体膜を前記基板上に形成する有機半導体膜の製造方法において、
     前記原料溶液を各々付着させる複数の接触面が配置された接触部材を用い、
     前記基板の表面に対して前記接触面が一定の関係となるように前記接触部材が配置され、前記基板上に前記原料溶液の液滴が複数個形成されて、前記液滴が前記複数の接触面に各々保持された液滴保持状態を形成し、
     前記液滴中の前記溶媒を蒸発させて前記複数の接触面に対応する前記基板の表面の各々の位置に前記有機半導体膜を形成することを特徴とする有機半導体膜の製造方法。
  2.  前記接触部材は、補助基板とその補助基板上に形成された複数個の接触凸部により構成され、前記接触凸部の前記補助基板の表面に交差する端面の一部により前記接触面が各々形成され、
     前記液滴保持状態を形成するときには、前記基板の表面に対して上方から前記接触凸部が当接するように前記接触部材を配置する請求項1に記載の有機半導体膜の製造方法。
  3.  前記基板を所定角度に傾斜させた状態に維持し、
     前記接触面を形成する端面が前記基板の傾斜の方向を横切るように、前記接触部材を前記基板上に戴置する請求項2に記載の有機半導体膜の製造方法。
  4.  前記接触部材は、補助基板とその補助基板上に形成された複数個の接触凸部により構成され、前記接触凸部の上面が各々前記接触面を形成し、
     前記液滴保持状態を形成するときには、前記複数個の接触凸部の前記接触面が少なくとも一部に間隙を設けて前記基板の表面に対向するように前記接触部材を配置し、前記原料溶液の液滴が各々、前記基板の表面と前記複数の接触面の間に保持される請求項1に記載の有機半導体膜の製造方法。
  5.  前記複数個の接触面は各々、前記補助基板の表面に対して傾斜した傾斜部を有する請求項4に記載の有機半導体膜の製造方法。
  6.  前記液滴保持状態を形成するときには、前記接触面の一部が前記基板の表面に当接するように前記接触部材を配置する請求項5に記載の有機半導体膜の製造方法。
  7.  前記液滴を形成するために前記原料溶液を供給した後は、前記補助基板及び前記基板を所定角度に傾斜させた状態に維持して前記液滴保持状態を形成する請求項4に記載の有機半導体膜の製造方法。
  8.  前記有機半導体材料として、[1]benzothieno[3,2-b]benzothiophene誘導体、2,9-Dialkyldinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene誘導体、dinaphth[2,3-b:2,3-f]thiopheno[3,2-b]thiophene誘導体、TIPS-ペンタセン、TES-ADT、及びその誘導体、ペリレン誘導体、TCNQ、F4-TCNQ、F4-TCNQ、ルブレン、ペンタセン、p3HT、pBTTT、及びpDA2T-C16から選択したいずれかの材料を用いる請求項1~6のいずれか1項に記載の有機半導体膜の製造方法。
  9.  基板と、
     前記基板の表面上の複数の領域に互いに分離して配置された有機半導体膜とを備え、
     前記有機半導体膜は、請求項1~8のいずれか1項に記載の有機半導体膜の製造方法により形成され結晶性の膜であることを特徴とする有機半導体膜アレイ。
  10.  前記有機半導体膜の電荷移動度は、3.5cm/Vs以上である請求項9に記載の有機半導体膜アレイ。
PCT/JP2010/064488 2009-10-02 2010-08-26 有機半導体膜の製造方法および有機半導体膜アレイ WO2011040155A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080044409.3A CN102598232B (zh) 2009-10-02 2010-08-26 有机半导体膜的制造方法及有机半导体膜阵列
KR1020127011122A KR101323018B1 (ko) 2009-10-02 2010-08-26 유기 반도체막의 제조 방법 및 유기 반도체막 어레이
JP2011534146A JP5397921B2 (ja) 2009-10-02 2010-08-26 有機半導体膜の製造方法
US13/499,743 US8921152B2 (en) 2009-10-02 2010-08-26 Method for manufacturing organic semiconductor film, and organic semiconductor film array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-230451 2009-10-02
JP2009230451 2009-10-02

Publications (1)

Publication Number Publication Date
WO2011040155A1 true WO2011040155A1 (ja) 2011-04-07

Family

ID=43825988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064488 WO2011040155A1 (ja) 2009-10-02 2010-08-26 有機半導体膜の製造方法および有機半導体膜アレイ

Country Status (6)

Country Link
US (1) US8921152B2 (ja)
JP (1) JP5397921B2 (ja)
KR (1) KR101323018B1 (ja)
CN (1) CN102598232B (ja)
TW (1) TWI433369B (ja)
WO (1) WO2011040155A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658805B2 (en) 2011-11-07 2014-02-25 Samsung Electronics Co., Ltd. Fused polyheteroaromatic compound, organic thin film including the compound, and electronic device including the organic thin film
WO2014061451A1 (ja) * 2012-10-19 2014-04-24 株式会社ニコン 薄膜形成装置及び薄膜形成方法
JP2014146665A (ja) * 2013-01-28 2014-08-14 Sijtechnology Inc 有機半導体膜の製造方法、その製造装置および有機半導体基板
WO2014136953A1 (ja) 2013-03-08 2014-09-12 国立大学法人神戸大学 有機半導体薄膜の作製方法
WO2014141838A1 (ja) 2013-03-15 2014-09-18 富士フイルム株式会社 有機半導体膜の形成方法
WO2014175351A1 (ja) 2013-04-25 2014-10-30 国立大学法人大阪大学 有機半導体薄膜の製造方法
JP2014216568A (ja) * 2013-04-26 2014-11-17 独立行政法人物質・材料研究機構 大面積ドメイン有機半導体結晶膜の作成方法及び大面積ドメイン有機半導体結晶膜
WO2015133312A1 (ja) * 2014-03-03 2015-09-11 富士フイルム株式会社 有機半導体膜の形成方法および有機半導体膜の形成装置
JP2015185620A (ja) * 2014-03-20 2015-10-22 パイクリスタル株式会社 有機半導体膜及びその製造方法
KR20170030639A (ko) 2014-07-17 2017-03-17 닛뽄 가야쿠 가부시키가이샤 유기 반도체 박막의 형성 방법, 그리고 그것을 이용한 유기 반도체 디바이스 및 그의 제조 방법
WO2017134990A1 (ja) 2016-02-03 2017-08-10 富士フイルム株式会社 有機半導体膜の製造方法
WO2018061691A1 (ja) * 2016-09-27 2018-04-05 富士フイルム株式会社 膜の製造方法
JP2018064101A (ja) * 2014-03-26 2018-04-19 富士フイルム株式会社 非発光性有機半導体デバイス用塗布液、有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、有機トランジスタの製造方法および有機半導体膜の製造方法の提供
US10074818B2 (en) 2013-07-23 2018-09-11 Toppan Forms Co., Ltd. Transistor
US10270044B2 (en) 2014-03-26 2019-04-23 Fujifilm Corporation Coating solution for non-light-emitting organic semiconductor device, organic transistor, compound, organic semiconductor material for non-light-emitting organic semiconductor device, material for organic transistor, method for manufacturing organic transistor, and method for manufacturing organic semiconductor film
WO2020045597A1 (ja) 2018-08-31 2020-03-05 国立大学法人 東京大学 カルコゲン含有有機化合物、有機半導体材料、有機半導体膜、及び有機電界効果トランジスタ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2923083B1 (fr) * 2007-10-24 2015-04-17 Centre Nat Rech Scient Realisation d'une couche mince en materiau semiconducteur organique moleculaire.
US9336921B2 (en) 2013-12-17 2016-05-10 Dow Global Technologies Llc Electrically conducting composites, methods of manufacture thereof and articles comprising the same
US9330809B2 (en) * 2013-12-17 2016-05-03 Dow Global Technologies Llc Electrically conducting composites, methods of manufacture thereof and articles comprising the same
EP3439055A4 (en) * 2016-03-30 2019-02-20 FUJIFILM Corporation FILM PRODUCTION PROCESS

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294704A (ja) * 2006-04-26 2007-11-08 Hitachi Ltd 電界効果トランジスタ及びその製造方法
WO2007142238A1 (ja) * 2006-06-07 2007-12-13 Panasonic Corporation 半導体素子およびその製造方法ならびに電子デバイスおよびその製造方法
JP2008227141A (ja) * 2007-03-13 2008-09-25 Konica Minolta Holdings Inc 薄膜結晶の製造方法、有機薄膜トランジスタの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359036A (ja) 1989-07-27 1991-03-14 Fujitsu Ltd 有機単結晶膜の作製方法
US6842657B1 (en) * 1999-04-09 2005-01-11 E Ink Corporation Reactive formation of dielectric layers and protection of organic layers in organic semiconductor device fabrication
JP2001183666A (ja) * 1999-12-24 2001-07-06 Nec Corp 液晶表示装置
JP2003059036A (ja) 2001-08-20 2003-02-28 Hitachi Maxell Ltd 磁気テープ
JP3922177B2 (ja) * 2002-02-12 2007-05-30 セイコーエプソン株式会社 成膜方法、成膜装置、液滴吐出装置、カラーフィルタの製造方法、表示装置の製造方法
KR100995451B1 (ko) * 2003-07-03 2010-11-18 삼성전자주식회사 다층 구조의 게이트 절연막을 포함하는 유기 박막 트랜지스터
JP4616596B2 (ja) * 2004-08-27 2011-01-19 株式会社 日立ディスプレイズ 電子装置の製造方法
JP5105877B2 (ja) * 2004-10-13 2012-12-26 シャープ株式会社 機能基板
JP2007294709A (ja) * 2006-04-26 2007-11-08 Epson Imaging Devices Corp 電気光学装置、電子機器、および電気光学装置の製造方法
US7638356B2 (en) * 2006-07-11 2009-12-29 The Trustees Of Princeton University Controlled growth of larger heterojunction interface area for organic photosensitive devices
US8329504B2 (en) * 2008-02-12 2012-12-11 Konica Minolta Holdings, Inc. Method of forming organic semiconductor layer and method of manufacturing organic thin film transistor
JP5401831B2 (ja) * 2008-04-15 2014-01-29 株式会社リコー 表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007294704A (ja) * 2006-04-26 2007-11-08 Hitachi Ltd 電界効果トランジスタ及びその製造方法
WO2007142238A1 (ja) * 2006-06-07 2007-12-13 Panasonic Corporation 半導体素子およびその製造方法ならびに電子デバイスおよびその製造方法
JP2008227141A (ja) * 2007-03-13 2008-09-25 Konica Minolta Holdings Inc 薄膜結晶の製造方法、有機薄膜トランジスタの製造方法

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658805B2 (en) 2011-11-07 2014-02-25 Samsung Electronics Co., Ltd. Fused polyheteroaromatic compound, organic thin film including the compound, and electronic device including the organic thin film
JPWO2014061451A1 (ja) * 2012-10-19 2016-09-05 株式会社ニコン 薄膜形成装置及び薄膜形成方法
WO2014061451A1 (ja) * 2012-10-19 2014-04-24 株式会社ニコン 薄膜形成装置及び薄膜形成方法
CN104737279A (zh) * 2012-10-19 2015-06-24 株式会社尼康 薄膜形成装置及薄膜形成方法
JP2014146665A (ja) * 2013-01-28 2014-08-14 Sijtechnology Inc 有機半導体膜の製造方法、その製造装置および有機半導体基板
WO2014136953A1 (ja) 2013-03-08 2014-09-12 国立大学法人神戸大学 有機半導体薄膜の作製方法
WO2014141838A1 (ja) 2013-03-15 2014-09-18 富士フイルム株式会社 有機半導体膜の形成方法
US9472760B2 (en) 2013-03-15 2016-10-18 Fujifilm Corporation Process for forming organic semiconductor film
US10205094B2 (en) 2013-04-25 2019-02-12 Pi-Crystal Inc. Organic semiconductor thin film production method
JP2017147456A (ja) * 2013-04-25 2017-08-24 パイクリスタル株式会社 有機半導体薄膜の製造装置
WO2014175351A1 (ja) 2013-04-25 2014-10-30 国立大学法人大阪大学 有機半導体薄膜の製造方法
KR20160002746A (ko) 2013-04-25 2016-01-08 오사카 유니버시티 유기 반도체 박막의 제조 방법
JP2014216568A (ja) * 2013-04-26 2014-11-17 独立行政法人物質・材料研究機構 大面積ドメイン有機半導体結晶膜の作成方法及び大面積ドメイン有機半導体結晶膜
US10074818B2 (en) 2013-07-23 2018-09-11 Toppan Forms Co., Ltd. Transistor
WO2015133312A1 (ja) * 2014-03-03 2015-09-11 富士フイルム株式会社 有機半導体膜の形成方法および有機半導体膜の形成装置
JP2015165538A (ja) * 2014-03-03 2015-09-17 富士フイルム株式会社 有機半導体膜の形成方法および有機半導体膜の形成装置
JP2015185620A (ja) * 2014-03-20 2015-10-22 パイクリスタル株式会社 有機半導体膜及びその製造方法
JP2018064101A (ja) * 2014-03-26 2018-04-19 富士フイルム株式会社 非発光性有機半導体デバイス用塗布液、有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、有機トランジスタの製造方法および有機半導体膜の製造方法の提供
US10270044B2 (en) 2014-03-26 2019-04-23 Fujifilm Corporation Coating solution for non-light-emitting organic semiconductor device, organic transistor, compound, organic semiconductor material for non-light-emitting organic semiconductor device, material for organic transistor, method for manufacturing organic transistor, and method for manufacturing organic semiconductor film
US10276806B2 (en) 2014-03-26 2019-04-30 Fujifilm Corporation Coating solution for non-light-emitting organic semiconductor device, organic transistor, compound, organic semiconductor material for non-light-emitting organic semiconductor device, material for organic transistor, method for manufacturing organic transistor, and method for manufacturing organic semiconductor film
KR20170030639A (ko) 2014-07-17 2017-03-17 닛뽄 가야쿠 가부시키가이샤 유기 반도체 박막의 형성 방법, 그리고 그것을 이용한 유기 반도체 디바이스 및 그의 제조 방법
WO2017134990A1 (ja) 2016-02-03 2017-08-10 富士フイルム株式会社 有機半導体膜の製造方法
JPWO2017134990A1 (ja) * 2016-02-03 2018-11-08 富士フイルム株式会社 有機半導体膜の製造方法
US10468597B2 (en) 2016-02-03 2019-11-05 Fujifilm Corporation Method of manufacturing organic semiconductor film
WO2018061691A1 (ja) * 2016-09-27 2018-04-05 富士フイルム株式会社 膜の製造方法
CN109789440A (zh) * 2016-09-27 2019-05-21 富士胶片株式会社 膜的制造方法
JPWO2018061691A1 (ja) * 2016-09-27 2019-07-04 富士フイルム株式会社 膜の製造方法
WO2020045597A1 (ja) 2018-08-31 2020-03-05 国立大学法人 東京大学 カルコゲン含有有機化合物、有機半導体材料、有機半導体膜、及び有機電界効果トランジスタ

Also Published As

Publication number Publication date
KR101323018B1 (ko) 2013-10-29
US20120193618A1 (en) 2012-08-02
CN102598232A (zh) 2012-07-18
TW201126782A (en) 2011-08-01
CN102598232B (zh) 2015-06-24
KR20120068954A (ko) 2012-06-27
JP5397921B2 (ja) 2014-01-22
TWI433369B (zh) 2014-04-01
US8921152B2 (en) 2014-12-30
JPWO2011040155A1 (ja) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5397921B2 (ja) 有機半導体膜の製造方法
JP6346339B2 (ja) 有機半導体薄膜の製造装置
JP4700162B2 (ja) 有機回路の作製プロセス
EP2190007B1 (en) Single crystal thin film of organic semiconductor compound and method for producing the same
JP6590361B2 (ja) 有機半導体膜及びその製造方法
KR20100070652A (ko) 유기반도체/절연성 고분자 블렌드의 상분리를 이용한 다층 박막 제조방법 및 이를 이용한 유기박막 트랜지스터
US8502356B2 (en) Organic thin film transistors
Richard et al. Large-scale patterning of π-conjugated materials by meniscus guided coating methods
US10256164B2 (en) Semiconductor film and field effect transistor having semiconductor and polymer portions stacked adjacent each other
JP7399499B2 (ja) 有機半導体デバイス、有機半導体単結晶膜の製造方法、及び有機半導体デバイスの製造方法
KR20140088104A (ko) 유기 단결정 막, 유기 단결정 막 어레이 및 유기 단결정 막을 포함하는 반도체 디바이스
US10600962B2 (en) Method of manufacturing organic semiconductor thin film using bar-coating process and method of fabricating flexible organic semiconductor transistor comprising the same
US20100248421A1 (en) Method of forming organic thin film and method of manufacturing semiconductor device using the same
KR101788207B1 (ko) 전하 이동도가 향상된 유기 반도체 결정 박막의 제조방법
JP2014216568A (ja) 大面積ドメイン有機半導体結晶膜の作成方法及び大面積ドメイン有機半導体結晶膜
JP6934130B2 (ja) チエノアセンの単結晶性有機半導体膜
JP2020167439A (ja) 有機半導体膜及びその製造方法
JP2008053659A (ja) 高品位分子性結晶製造方法及び有機半導体デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080044409.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534146

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13499743

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127011122

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10820275

Country of ref document: EP

Kind code of ref document: A1