WO2011039852A1 - 映像表示装置および映像表示方法 - Google Patents

映像表示装置および映像表示方法 Download PDF

Info

Publication number
WO2011039852A1
WO2011039852A1 PCT/JP2009/067011 JP2009067011W WO2011039852A1 WO 2011039852 A1 WO2011039852 A1 WO 2011039852A1 JP 2009067011 W JP2009067011 W JP 2009067011W WO 2011039852 A1 WO2011039852 A1 WO 2011039852A1
Authority
WO
WIPO (PCT)
Prior art keywords
video signal
resolution
horizontal
dot clock
analog video
Prior art date
Application number
PCT/JP2009/067011
Other languages
English (en)
French (fr)
Inventor
木村 辰夫
Original Assignee
Necディスプレイソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necディスプレイソリューションズ株式会社 filed Critical Necディスプレイソリューションズ株式会社
Priority to JP2011533991A priority Critical patent/JPWO2011039852A1/ja
Priority to US13/498,896 priority patent/US8502919B2/en
Priority to CN200980161728.XA priority patent/CN102549642A/zh
Priority to PCT/JP2009/067011 priority patent/WO2011039852A1/ja
Publication of WO2011039852A1 publication Critical patent/WO2011039852A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • G09G5/006Details of the interface to the display terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0117Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal

Definitions

  • the present invention relates to a video display device and a video display method capable of displaying video signals having a plurality of types of resolutions.
  • PCs notebook personal computers and desktop personal computers
  • Each PC outputs video signals of various types of resolutions such as a resolution corresponding to a conventional display and a resolution corresponding to a wide display.
  • Fig. 1 shows an example of the combination of the resolution and aspect ratio of the video signal supported by the current typical PC. As shown in FIG. 1, there are various types of resolution of each video signal, and the horizontal resolution corresponding to the vertical resolution is not necessarily one.
  • the projector needs to determine the resolution of the input video signal. Since the video signal includes a vertical synchronization signal and a horizontal synchronization signal, the projector can detect the number of vertical lines from the vertical synchronization signal and the horizontal synchronization signal and determine the vertical resolution. However, since the horizontal resolution corresponding to each vertical resolution is not necessarily one, it is difficult to accurately determine the horizontal resolution.
  • the video display device generates a dot clock to sample the input video signal.
  • the video display device has a PLL (Phase Locked Loop) circuit, and by changing the frequency division ratio of the PLL circuit, the input video signal becomes an integral multiple of the horizontal synchronization signal.
  • the frequency of the dot clock can be adjusted.
  • the video display device can sample the input video signal with a dot clock having a frequency corresponding to the horizontal resolution, and thus can correctly sample the video.
  • the input video signal is sampled with a dot clock having a frequency corresponding to the wrong horizontal resolution, the video display device cannot correctly sample the video.
  • Patent Document 1 discloses a technique for determining horizontal resolution from an input video signal.
  • resolutions of all video signals are registered in advance as a signal information table.
  • the video signal processing apparatus narrows down the horizontal resolution of the input video signal from the number of vertical lines of the input video signal.
  • a / D (analog / digital) conversion sampling is not performed with a dot clock having a frequency corresponding to the horizontal resolution of the input video signal, a different digital video signal is output even if the same analog video signal is input. .
  • the video signal processing device generates digital data sampled with a dot clock having a frequency corresponding to the horizontal resolution for each narrowed horizontal resolution, and sampled with the same dot clock after a predetermined time has elapsed.
  • the difference from the digital data is measured, and the horizontal resolution that minimizes the difference is determined as the horizontal resolution of the input video signal.
  • Patent Document 2 discloses a technique for adjusting the phase of a dot clock.
  • FIG. 2A is a diagram for explaining a state disclosed in Patent Document 2 in which the phase relationship between the video signal and the dot clock is correctly adjusted.
  • FIG. 2B is a diagram for explaining a state in which the phase relationship between the video signal and the dot clock is shifted, which is disclosed in Patent Document 2.
  • the dot clock generated by the PLL circuit generates fluctuations (jitter) on the time axis.
  • the hatched portion of the dot clock shown in FIGS. 2A and 2B represents the fluctuation width (hereinafter referred to as a jitter region) due to the jitter at the rising edge of the dot clock.
  • a jitter region the fluctuation width due to the jitter at the rising edge of the dot clock.
  • FIG. 2A when the video signal and the dot clock are in phase, when sampling is performed at the rising edge of the dot clock, the output value is constant regardless of where the rising edge is in the jitter region. Become.
  • FIG. 2B when the phase of the video signal and the dot clock are shifted, the output value changes depending on where the rising edge of the dot clock is in the jitter region.
  • the video signal shown in FIGS. 2A and 2B is one in which black and white are inverted for each pixel, and the pixel value repeats 0 and 255 alternately.
  • the output value repeats 0 and 255 alternately, so the absolute value of the difference between the pixel values between adjacent pixels is always 255.
  • the output value is an indefinite value in the range of 0 to 255, and therefore the absolute value of the difference in pixel value between adjacent pixels is a value smaller than 255. It becomes.
  • Patent Document 2 adjusts the phase of the dot clock so that the difference between the pixel values between adjacent pixels is converted into an absolute value and the cumulative addition value is maximized.
  • JP 2009-3240 A Japanese Patent No. 418214
  • the A / D converter of the video signal processing apparatus uses a plurality of frames of digital for each narrowed horizontal resolution. Data must be output. For this reason, in the technique disclosed in Patent Document 1, it takes a long time to determine the horizontal resolution.
  • Patent Document 2 The technique disclosed in Patent Document 2 described above is a technique for adjusting the phase of the dot clock, and does not determine the horizontal resolution of the input video signal.
  • An object of the present invention is to provide a technique for determining the resolution of a video signal in a short time and displaying the video correctly in the video display device when a video signal of unknown resolution is input from the outside. is there.
  • the video display device of the present invention samples an input analog video signal using a dot clock that defines the timing for sampling the analog video signal, and converts it into a digital video signal A / D conversion means, clock generation means for generating a dot clock of a predetermined frequency based on a horizontal synchronization signal of the analog video signal, phase adjustment means for adjusting the phase of the dot clock generated by the clock generation means, A vertical resolution of the analog video signal is estimated from a vertical synchronization signal and a horizontal synchronization signal of the analog video signal, and a dot clock having a frequency corresponding to each horizontal resolution is generated for each horizontal resolution candidate registered in advance. The dot clock is adjusted while the phase adjustment means adjusts the phase of the dot clock.
  • the video display method of the present invention converts an input analog video signal into a digital video signal by sampling using a dot clock that defines a timing for sampling the analog video signal.
  • a control means for estimating a vertical resolution of the analog video signal from a vertical synchronization signal and a horizontal synchronization signal of the analog video signal, and preregistering horizontal resolution candidates
  • the clock generating means generates a dot clock having a frequency corresponding to each horizontal resolution, The sum of absolute values of pixel value differences between pixels adjacent in the horizontal direction within a predetermined range of an image based on a digital video signal converted based on the dot clock while adjusting the phase of the dot clock by the phase adjusting means Calculating the maximum difference sum
  • the resolution of the video signal can be determined in a short time, and the video can be displayed correctly.
  • FIG. 5 is a flowchart showing a process of determining a horizontal resolution of an input analog video signal by the CPU unit 35 shown in FIG. 4.
  • the video display device generates a dot clock to sample the input video signal.
  • the video display device has a PLL circuit, and adjusts the frequency of the dot clock so as to be an integral multiple of the horizontal synchronizing signal of the input video signal by changing the frequency division ratio of the PLL circuit.
  • FIG. 3A is a diagram for explaining a state in which the frequency and phase of the video signal and the dot clock match.
  • FIG. 3B is a diagram for explaining a state where there is no frequency or phase between the video signal and the dot clock. It is assumed that the video signals shown in FIGS. 3A and 3B are those in which black and white are inverted for each pixel. Further, it is assumed that the black pixel value is 0 and the white pixel value is 255.
  • the video display device samples the video signal at the rising edge of the dot clock. As shown in FIG. 3A, when the frequency and phase of the video signal and the dot clock match, the video display device can sample the black pixel and the white pixel at the correct timing. On the other hand, as shown in FIG. 3B, when there is no frequency or phase between the video signal and the dot clock, the video display device samples while the values of the black pixel and the white pixel change, and the peak value is sampled. There is a period that is not.
  • the difference value the absolute value of the pixel value difference between adjacent pixels (hereinafter referred to as the difference value) when the frequency and phase of the video signal and the dot clock match. Always 255.
  • the difference value is smaller than 255 because sampling is performed while the values of the black pixel and the white pixel change.
  • the video signal is sampled at 7 points, and the sum of the difference values (hereinafter referred to as the difference sum value) is 1785.
  • the difference sum value the sum of the difference values
  • the video signal is sampled at 9 points, but the total difference value is 1425.
  • the number of samplings is larger than in the example shown in FIG. 3A, but there is a period during which the peak value of the video signal is not sampled.
  • the difference value of the video signal in which black and white are inverted for each pixel becomes the maximum when the frequency and phase of the video signal and the dot clock match regardless of the number of samplings.
  • This is not limited to a video signal in which black and white are inverted for each pixel.
  • the difference value of the video signal is maximized when the frequency and phase of the video signal and the dot clock coincide with each other except in the case of monotonously decreasing.
  • candidates for the horizontal resolution of the input analog video signal are registered in advance in the video display device.
  • the video display device generates a dot clock having a frequency corresponding to each horizontal resolution candidate, and calculates the maximum difference sum value of digital video signals generated based on each dot clock while shifting the phase.
  • the video display apparatus calculates the maximum difference sum value for all horizontal resolution candidates, and determines the horizontal resolution when the maximum difference sum value is the largest value as the horizontal resolution of the input analog video signal. to decide.
  • the video display device samples the input analog video signal using a dot clock having the largest difference sum value and converts it to a digital video signal. Then, the video display device performs processing such as display using the digital video signal.
  • the horizontal resolution of the input video signal is determined based on the difference between pixels in the frame of the input video signal, thereby reducing the time for determining the horizontal resolution.
  • FIG. 4 is a block diagram showing the configuration of the video display device of this embodiment.
  • the video display apparatus includes an A / D conversion unit 10, a clock adjustment unit 20, a control unit 30, a video processing unit 40, a video display unit 50, and a frame memory 60.
  • the A / D converter 10 receives an analog video signal from an external device such as a PC, and receives a dot clock from the clock adjuster 20.
  • the A / D conversion unit 10 samples the analog video signal based on the dot clock input from the clock adjustment unit 20 and converts it into a digital video signal.
  • the clock adjustment unit 20 generates a dot clock from the horizontal synchronization signal of the input analog video signal and outputs the dot clock to the A / D conversion unit 10.
  • the clock adjustment unit 20 includes a clock generation unit 21 and a phase adjustment unit 22.
  • the clock generation unit 21 is a PLL circuit provided in a known video display device.
  • the clock generation unit 21 receives a horizontal synchronization signal of the input analog video signal.
  • the clock generation unit 21 multiplies the input horizontal synchronization signal to generate a dot clock.
  • the clock generator 21 has a frequency divider for dividing the frequency of the input horizontal synchronizing signal, and the frequency of the dot clock can be adjusted by changing the frequency dividing ratio.
  • the dot clock from the clock generation unit 21 is input to the phase adjustment unit 22.
  • the phase adjustment unit 22 adjusts the phase of the input dot clock, and outputs the dot clock whose phase has been adjusted to the A / D conversion unit 10.
  • the phase adjustment unit 22 includes a delay circuit that outputs an input signal after being delayed by a predetermined time. By changing the delay time, the phase of the dot clock can be adjusted.
  • the phase of the dot clock is shifted stepwise by a predetermined angle unit, for example.
  • the control unit 30 includes a synchronization detection unit 31, a video detection unit 32, a difference detection unit 33, a setting storage memory 34, and a CPU (Central Processing Unit) unit 35.
  • a synchronization detection unit 31 a video detection unit 32, a difference detection unit 33, a setting storage memory 34, and a CPU (Central Processing Unit) unit 35.
  • the synchronization detector 31 receives a horizontal synchronization signal and a vertical synchronization signal of the input analog video signal.
  • the synchronization detector 31 detects the horizontal synchronization frequency and the vertical synchronization frequency of the input analog video signal from the horizontal synchronization signal and the vertical synchronization signal. Then, the synchronization detection unit 31 notifies the CPU unit 35 of the detected horizontal synchronization frequency and vertical synchronization frequency.
  • the video detection unit 32 receives the digital video signal from the A / D conversion unit 10, the horizontal and vertical synchronization signals of the input analog video signal, and the dot clock from the clock adjustment unit 20.
  • the video detection unit 32 analyzes the presence / absence of a digital video signal to determine a range of effective pixels (hereinafter referred to as an effective region), and the horizontal video start position and vertical video start position of the digital video signal. Detect horizontal and vertical resolution. Then, the video detection unit 32 notifies the CPU unit 35 of the horizontal video start position, the vertical video start position, the horizontal resolution, and the vertical resolution of the detected digital video signal.
  • the difference detector 33 receives the digital video signal from the A / D converter 10 and the horizontal and vertical sync signals of the input analog video signal. In addition, an image range in which the difference sum value of the digital video signal is to be calculated is set in the difference detection unit 33 from the CPU unit 35. The difference detection unit 33 calculates a difference sum value for the image range set by the CPU unit 35 among the image data based on the input digital video signal. Then, the difference detection unit 33 notifies the CPU unit 35 of the calculated difference sum value.
  • the setting storage memory 34 is a memory for storing a resolution table in which horizontal resolution candidates of the input analog video signal are indicated for each vertical resolution.
  • FIG. 5 shows an example of the resolution table. As shown in FIG. 5, the resolution table indicates the horizontal resolution that can be taken by the video signal corresponding to the video display device for each vertical resolution.
  • the resolution table is set in the setting storage memory 34 in advance.
  • the CPU unit 35 receives the horizontal synchronization frequency and the vertical synchronization frequency of the input analog video signal from the synchronization detection unit 31, and estimates the vertical resolution of the input analog video signal from the received horizontal synchronization frequency and vertical synchronization frequency.
  • the CPU unit 35 extracts horizontal resolution candidates from the resolution table stored in the setting storage memory 34, and multiplies the horizontal synchronizing signal for generating a dot clock having a frequency corresponding to each horizontal resolution.
  • the circumference ratio is calculated and set in the clock generation unit 21.
  • the CPU unit 35 sets a delay time for adjusting the phase of the dot clock in the phase adjustment unit 22.
  • the CPU unit 35 acquires the horizontal image start position, the vertical image start position, the horizontal resolution, and the vertical resolution of the digital video signal from the video detection unit 32, and determines the effective area of the digital video signal from the acquired information. calculate. Then, the CPU unit 35 determines an image range in which the difference sum value is to be calculated from the effective area of the digital video signal, and sets the image range in the difference detection unit 33. The CPU unit 35 acquires the difference sum value of the digital video signal from the difference detection unit 33, and determines the horizontal resolution of the input analog video signal from the acquired difference sum value.
  • the CPU unit 35 sets the vertical resolution and horizontal resolution of the input analog video signal in the video processing unit 40.
  • the digital video signal is input from the A / D conversion unit 10 to the video processing unit 40 and the input digital video signal is taken into the frame memory 60. Further, the vertical resolution and horizontal resolution of the input analog video signal are set in the video processing unit 40 from the CPU unit 35.
  • the video processing unit 40 converts the resolution of the input digital video signal into a resolution for display as necessary, and outputs the resolution to the video display unit 50.
  • the video display unit 50 displays the video signal output from the video processing unit 40.
  • the frame memory 60 is a memory for storing digital video signals.
  • FIG. 6 is a flowchart showing a process of determining the horizontal resolution of the input analog video signal by the CPU unit 35 shown in FIG.
  • the CPU unit 35 When the analog video signal is input, the CPU unit 35 first receives the horizontal synchronization frequency and the vertical synchronization frequency of the input analog video signal from the synchronization detection unit 31 (step S1). When receiving the horizontal synchronization frequency and the vertical synchronization frequency of the input analog video signal from the synchronization detection unit 31, the CPU unit 35 estimates the vertical resolution of the input analog video signal from the received horizontal synchronization frequency and vertical synchronization frequency (step S2). . When the vertical resolution is estimated, the CPU 35 extracts a horizontal resolution candidate corresponding to the calculated vertical resolution from the resolution table stored in the setting storage memory 34 (step S3).
  • the CPU unit 35 reads one of the extracted horizontal resolution candidates from the resolution table stored in the setting storage memory 34 (step S4).
  • the CPU unit 35 sets a frequency division ratio for generating a dot clock having a frequency corresponding to the horizontal resolution in the clock generation unit 21 (step S5).
  • the frequency division ratio set here is a value assumed from the horizontal resolution as a candidate.
  • the CPU unit 35 sets a delay time for adjusting the phase of the dot clock in the phase adjusting unit 22 (step S6).
  • the CPU unit 35 sets the horizontal video start position and the vertical direction of the digital video signal sampled with the dot clock corresponding to the set frequency division ratio and delay time.
  • the video start position, horizontal resolution, and vertical resolution are acquired from the video detection unit 32 (step S7).
  • the CPU unit 35 calculates an effective area of the digital video signal from the acquired information (step S8). .
  • the CPU unit 35 determines an image range in which the difference sum value is to be calculated from the effective area of the digital video signal, and sets the image range in the difference detection unit 33 (step S9).
  • the image range for which the difference sum value is to be calculated is set in the video display device in advance.
  • the image range for which the difference sum value is to be calculated is, for example, the entire one frame of the digital video signal.
  • the CPU unit 35 acquires the difference sum value of the set image range from the difference detection unit 33 (step S10).
  • the CPU unit 35 changes the delay time set in the phase adjustment unit 22 within a range that can be taken by the dot clock of the frequency corresponding to the predetermined horizontal resolution extracted as a candidate while changing the delay time set in the phase adjustment unit 22. Get the difference sum. Therefore, the CPU unit 35 determines whether or not a difference sum value has been acquired for each delay time within a range that can be taken by a dot clock having a frequency corresponding to the horizontal resolution as the current candidate (step S11).
  • the CPU unit 35 proceeds to step S6 and sets a new delay time. The process of setting in the phase adjustment unit 22 and acquiring the difference sum value is repeated.
  • the CPU unit 35 calculates the maximum value of the acquired difference sum values. . Then, the CPU unit 35 stores the maximum value of the difference sum value and the delay time when the difference sum value becomes the maximum value (step S12).
  • the CPU 35 determines whether or not the maximum difference total value has been calculated for all horizontal resolutions extracted as candidates (Ste S13).
  • step S4 When the maximum difference total value has not been calculated for all horizontal resolutions extracted as candidates, the CPU 35 proceeds to step S4, and among the extracted horizontal resolution candidates, the maximum difference total value is still the maximum. The process of acquiring the difference sum value is repeated for the horizontal resolution for which no value is calculated. On the other hand, when the maximum difference sum value is calculated for all horizontal resolutions extracted as candidates, the horizontal resolution when the maximum difference sum value is the largest is the horizontal resolution of the input analog video signal. Is determined (step S14).
  • the CPU unit 35 When the horizontal resolution of the input analog video signal is determined, the CPU unit 35 generates the dot clock in order to cause the clock adjustment unit 20 to generate a dot clock having the largest difference sum value thereafter. Are set in the clock adjustment unit 20 (step S15).
  • the CPU unit 35 sets the vertical resolution estimated in step S2 and the horizontal resolution determined in step S14 in the video processing unit 40.
  • the video processing unit 40 converts the resolution of the input digital video signal into a resolution for display, if necessary, and outputs the converted signal to the video display unit 50.
  • step S2 when the vertical resolution calculated in step S2 is 768, four horizontal resolutions 1024, 1360, 1224, and 1280 are extracted as candidates from the resolution table shown in FIG. At this time, the CPU unit 35 performs the processes of steps S4 to S13 for the four horizontal resolutions 1024, 1360, 1224, and 1280.
  • the CPU unit 35 first calculates the maximum value of the difference sum value of the digital video signal generated based on each dot clock while shifting the phase of the dot clock having a frequency corresponding to the horizontal resolution 1024. Subsequently, the CPU unit 35 calculates the maximum difference sum value for each dot clock having a frequency corresponding to the horizontal resolutions 1360, 1224, and 1280. Then, the CPU unit 35 determines that the horizontal resolution when the maximum value of the calculated difference sum is the largest is the horizontal resolution of the input analog video signal.
  • the present invention is not limited to this.
  • the resolution table may be anything as long as a horizontal resolution candidate can be extracted. For example, only the horizontal resolution may be shown. In this case, the video display device extracts all the horizontal resolutions shown in the resolution table as candidates.
  • the resolution table may be one in which candidates for the aspect ratio of the input analog video signal are indicated for each vertical resolution.
  • the CPU unit 35 extracts aspect ratio candidates corresponding to the vertical resolution from the resolution table, and calculates a horizontal resolution candidate from each aspect ratio and the vertical resolution.
  • the video display apparatus estimates the vertical resolution from the horizontal synchronization signal and the vertical synchronization signal of the input analog video signal.
  • candidates for the horizontal resolution of the input analog video signal are registered in advance.
  • the video display device generates a dot clock having a frequency corresponding to each horizontal resolution candidate, and calculates the maximum difference sum value of digital video signals generated based on each dot clock while shifting the phase.
  • the video display apparatus calculates the maximum difference sum value for all horizontal resolution candidates, and determines the horizontal resolution when the maximum difference sum value is the largest value as the horizontal resolution of the input analog video signal. to decide.
  • the video display device determines the horizontal resolution of the video signal based on the difference between the pixels in the frame of the input analog video signal. Accordingly, when a video signal whose resolution is unknown is input from the outside, the video display device can determine the resolution of the video signal in a short time and display the video correctly.
  • the video display device of this embodiment narrows down the horizontal resolution candidates based on the vertical resolution calculated from the vertical sync signal of the input analog video signal and the horizontal sync signal. Thereby, the video display apparatus can shorten the processing time for determining the horizontal resolution.
  • the video display apparatus can determine the horizontal resolution of the input analog video signal by calculating the difference sum value of the digital video signal for one frame. Therefore, the process for determining the horizontal resolution of the input analog video signal can be performed in a short time.
  • a / D conversion unit 20 Clock adjustment unit 21 Clock generation unit 22 Phase adjustment unit 30 Control unit 31 Synchronization detection unit 32 Video detection unit 33 Difference detection unit 34 Memory for setting storage 35 CPU unit 40 Video processing unit 50 Video display unit 60 Frame memory

Abstract

映像表示装置において、外部から解像度が不明な映像信号が入力された場合、その映像信号の解像度を短時間で判断し、正しく映像を表示するための技術を提供する。 本発明の映像表示装置は、ドットクロックを用いてアナログ映像信号をデジタル映像信号に変換するA/D変換手段と、所定の周波数のドットクロックを生成するクロック生成手段と、ドットクロックの位相を調整する位相調整手段と、垂直同期信号と水平同期信号からアナログ映像信号の垂直解像度を推定し、予め登録された水平解像度の候補毎に、対応する周波数のドットクロックをクロック生成手段に生成させ、そのドットクロックの位相を位相調整手段に調整させながらデジタル映像信号の差分総和値の最大値を算出し、全ての水平解像度の候補の中で差分総和値の最大値が最も大きな値となるときの水平解像度をアナログ映像信号の水平解像度と判断する制御手段を有する。

Description

映像表示装置および映像表示方法
 本発明は、複数種類の解像度の映像信号が表示可能な映像表示装置および映像表示方法に関する。
 近年、従来のディスプレイより横長であるワイドディスプレイに対応したノート型パーソナルコンピュータやデスクトップ型パーソナルコンピュータ(以降、PCと称する)の普及が増加している。各PCは、従来のディスプレイに対応する解像度やワイドディスプレイに対応する解像度等、様々な種類の解像度の映像信号を出力する。
 図1に現在の代表的なPCが対応している映像信号の解像度とアスペクト比の組み合わせの例を示す。図1に示す通り、各映像信号の解像度には様々な種類が存在し、垂直解像度に対応する水平解像度も1つであるとは限られない。
 例えば、PCから出力される映像信号をプロジェクタに入力し、そのプロジェクタによって映像が表示される場合、プロジェクタは、入力された映像信号の解像度を判断する必要がある。映像信号には垂直同期信号と水平同期信号が含まれるため、プロジェクタは、垂直同期信号と水平同期信号から垂直ライン数を検出し、垂直解像度を判断することができる。しかしながら、各垂直解像度に対応する水平解像度は1つであるとは限られないため、水平解像度を正確に判断することは困難である。
 映像表示装置は、入力映像信号をサンプリングするためにドットクロックを生成する。一般に、映像表示装置は、PLL(Phase Locked Loop;位相同期)回路を有しており、このPLL回路の分周比を変更することによって、入力映像信号の水平同期信号の整数倍となるように、ドットクロックの周波数を調整することができる。
 入力映像信号の水平解像度が判明していると、映像表示装置は、その水平解像度に対応する周波数のドットクロックで入力映像信号をサンプリングすることができるため、正しく映像をサンプリングすることができる。しかしながら、誤った水平解像度に対応する周波数のドットクロックで入力映像信号をサンプリングすると、映像表示装置は、正しく映像をサンプリングすることができない。
 例えば、特許文献1に入力映像信号から水平解像度を判断するための技術が開示されている。特許文献1に開示された映像信号処理装置には、予めあらゆる映像信号の解像度が信号情報テーブルとして登録される。そして、映像信号処理装置は、入力映像信号の垂直ライン数からその入力映像信号の水平解像度を絞り込む。入力映像信号の水平解像度に対応する周波数のドットクロックでA/D(アナログ・デジタル)変換のサンプリングを実施していない場合、同じアナログ映像信号が入力されても、異なるデジタル映像信号が出力される。そこで、映像信号処理装置は、絞り込んだ水平解像度毎に、その水平解像度に対応する周波数のドットクロックでサンプリングして生成されるデジタルデータと、一定時間経過後に同じドットクロックでサンプリングして生成されるデジタルデータとの差分を測定し、その差分が最も小さくなる水平解像度を入力映像信号の水平解像度と判断する。
 尚、映像表示装置では、入力映像信号とドットクロックの位相が正しく調整されていない場合、表示画像にゆらぎやちらつきが生じる。特許文献2にはドットクロックの位相を調整するための技術が開示されている。図2Aは、特許文献2で開示されている、映像信号とドットクロックの位相関係が正しく調整されている状態を説明するための図である。また、図2Bは、特許文献2で開示されている、映像信号とドットクロックの位相関係にズレが生じている状態を説明するための図である。
 PLL回路で生成されるドットクロックには、時間軸上でゆらぎ(ジッタ)が発生する。図2A及び図2Bに示されたドットクロックの斜線部分は、ドットクロックの立ち上がりエッジのジッタの影響による揺れ幅(以降、ジッタ領域と称する)をあらわしている。図2Aに示される通り、映像信号とドットクロックの位相があっている場合、ドットクロックの立ち上がりエッジでサンプリングを行う際、立ち上がりエッジがジッタ領域のどこにあるかによらず、その出力値は一定となる。一方、図2Bに示される通り、映像信号とドットクロックの位相がずれている場合、ドットクロックの立ち上がりエッジがジッタ領域のどこにあるかによって、その出力値は変化する。
 例えば、図2A及び図2Bに示される映像信号が1画素毎に黒と白が反転するものであり、その画素値が0と255を交互に繰り返すものであるとする。ここで、映像信号とドットクロックの位相があっている場合、その出力値は0と255を交互に繰り返すため、隣接する画素間の画素値の差分の絶対値は、常に255となる。一方、映像信号とドットクロックの位相がずれている場合、その出力値は0から255の範囲の不定な値となるため、隣接する画素間の画素値の差分の絶対値は、255より小さい値となる。
 これを利用して、特許文献2に開示された技術では、隣接する画素間の画素値の差分を絶対値化して累積加算した値が最大となるように、ドットクロックの位相を調整する。
特開2009-3240号公報 特許第418214号公報
 しかしながら、上述した特許文献1に開示された技術を用いて入力映像信号の水平解像度を判断するためには、映像信号処理装置のA/Dコンバータは、絞り込んだ水平解像度毎に複数のフレームのデジタルデータを出力しなければならい。このため、特許文献1に開示された技術では、水平解像度を判断するまでの時間が長くなっていた。
 また、上述した特許文献2に開示された技術は、ドットクロックの位相を調整するための技術であり、入力映像信号の水平解像度を判断するものではない。
 本発明の目的は、映像表示装置において、外部から解像度が不明な映像信号が入力された場合、その映像信号の解像度を短時間で判断し、正しく映像を表示するための技術を提供することである。
 上記目的を達成するために、本発明の映像表示装置は、入力されるアナログ映像信号を、該アナログ映像信号をサンプリングするタイミングを規定するドットクロックを用いてサンプリングしてデジタル映像信号に変換するA/D変換手段と、前記アナログ映像信号の水平同期信号を基に所定の周波数のドットクロックを生成するクロック生成手段と、前記クロック生成手段が生成したドットクロックの位相を調整する位相調整手段と、前記アナログ映像信号の垂直同期信号と水平同期信号から該アナログ映像信号の垂直解像度を推定し、予め登録された水平解像度の候補毎に、各水平解像度に対応する周波数のドットクロックを前記クロック生成手段に生成させ、該ドットクロックの位相を前記位相調整手段に調整させながら該ドットクロックに基づいて変換されるデジタル映像信号に基づく画像の所定範囲内で水平方向に隣接する画素間の画素値の差分の絶対値の総和を示す差分総和値の最大値を算出し、全ての水平解像度の候補の中で該差分総和値の最大値が最も大きな値となるときの水平解像度を前記アナログ映像信号の水平解像度と判断し、該判断した水平解像度と前記垂直解像度に対応する映像を表示する制御手段を有する。
 また、上記目的を達成するために、本発明の映像表示方法は、入力されるアナログ映像信号を、該アナログ映像信号をサンプリングするタイミングを規定するドットクロックを用いてサンプリングしてデジタル映像信号に変換するA/D変換手段と、前記アナログ映像信号の水平同期信号を基に所定の周波数のドットクロックを生成するクロック生成手段と、前記クロック生成手段が生成したドットクロックの位相を調整する位相調整手段とを有する映像表示装置における映像表示方法であって、制御手段が、前記アナログ映像信号の垂直同期信号と水平同期信号から該アナログ映像信号の垂直解像度を推定し、予め登録された水平解像度の候補毎に、各水平解像度に対応する周波数のドットクロックを前記クロック生成手段に生成させ、該ドットクロックの位相を前記位相調整手段に調整させながら該ドットクロックに基づいて変換されるデジタル映像信号に基づく画像の所定範囲内で水平方向に隣接する画素間の画素値の差分の絶対値の総和を示す差分総和値の最大値を算出し、全ての水平解像度の候補の中で該差分総和値の最大値が最も大きな値となるときの水平解像度を前記アナログ映像信号の水平解像度と判断し、前記判断した水平解像度と前記垂直解像度に対応する映像を表示する。
 本発明によれば、映像表示装置において、外部から解像度が不明な映像信号が入力された場合、その映像信号の解像度を短時間で判断し、正しく映像を表示することができる。
現在の代表的なPCが対応している映像信号の解像度とアスペクト比の組み合わせの例を示す図である。 映像信号とドットクロックの位相関係が正しく調整されている状態を説明するための図である。 映像信号とドットクロックの位相関係にズレが生じている状態を説明するための図である。 映像信号とドットクロックの周波数及び位相があっている状態を説明するための図である。 映像信号とドットクロックの周波数あるいは位相があっていない状態を説明するための図である。 本実施形態の映像表示装置の構成を示すブロック図である。 解像度テーブルの例を示す図である。 図4に示したCPU部35が入力アナログ映像信号の水平解像度を判別する処理を示すフローチャートである。
 次に本発明について図面を参照して詳細に説明する。
 映像表示装置は、入力映像信号をサンプリングするためにドットクロックを生成する。映像表示装置は、PLL回路を有し、このPLL回路の分周比を変更することによって、入力映像信号の水平同期信号の整数倍となるように、ドットクロックの周波数を調整する。
 図3Aに映像信号とドットクロックの周波数及び位相があっている状態を説明するための図を示す。また、図3Bに映像信号とドットクロックの周波数あるいは位相があっていない状態を説明するための図を示す。尚、図3A及び図3Bに示される映像信号は、1画素毎に黒と白が反転するものであるとする。また、黒の画素値は0であり、白の画素値は255であるとする。
 映像表示装置は、ドットクロックの立ち上がりエッジで映像信号のサンプリングを行う。図3Aに示される通り、映像信号とドットクロックの周波数及び位相があっている場合、映像表示装置は、黒の画素と白の画素とを正しいタイミングでサンプリングすることができる。一方、図3Bに示される通り、映像信号とドットクロックの周波数あるいは位相があっていない場合、映像表示装置は、黒の画素と白の画素の値が変化する途中でサンプリングし、ピーク値がサンプリングされない期間が存在する。
 各画素の値は0と255を交互に繰り返すため、映像信号とドットクロックの周波数及び位相があっている場合、隣接する画素間の画素値の差分の絶対値(以降、差分値と称する)は常に255となる。一方、映像信号とドットクロックの周波数あるいは位相があっていない場合、黒の画素と白の画素の値が変化する途中でサンプリングされ、差分値が255より小さくなる期間が存在する。
 図3Aに示す例では、映像信号は7点でサンプリングされ、差分値の合計(以降、差分総和値と称する)は1785となる。一方、図3Bに示す例では、映像信号は9点でサンプリングされるが、差分総和値は1425となる。図3Bに示す例では、図3Aに示す例よりサンプリング数が多いが、映像信号のピーク値がサンプリングされない期間が存在するため、差分総和値は小さくなる。
 このように、1画素毎に黒と白が反転する映像信号の差分値は、サンプリング数に係わらず、映像信号とドットクロックの周波数及び位相が一致したときに最大となる。これは、1画素毎に黒と白が反転する映像信号に限られない。例えば、白のみや黒のみの映像信号のように水平方向の画素値が全て同一である場合や、黒から白、あるいは白から黒に変化する映像信号のように水平方向の画素値が単調増加あるいは単調減少する場合を除いて、映像信号の差分値は、映像信号とドットクロックの周波数及び位相が一致したときに最大となる。
 そこで、本実施の形態では、まず、映像表示装置に予め入力アナログ映像信号の水平解像度の候補を登録しておく。映像表示装置は、水平解像度の候補毎に対応する周波数のドットクロックを生成し、その位相をずらしながら、各ドットクロックに基づいて生成されるデジタル映像信号の差分総和値の最大値を算出する。映像表示装置は、全ての水平解像度の候補に対して、差分総和値の最大値を算出し、差分総和値の最大値が最も大きな値となるときの水平解像度を入力アナログ映像信号の水平解像度と判断する。
 入力アナログ映像信号の水平解像度を判断すると、映像表示装置は、差分総和値の最大値が最も大きな値となるドットクロックを用いて入力アナログ映像信号をサンプリングしてデジタル映像信号に変換する。そして、映像表示装置は、そのデジタル映像信号を用いて表示等の処理を実施する。
 本実施の形態の映像表示装置では、入力映像信号のフレーム内の画素間の差分に基づいて入力映像信号の水平解像度を判断することにより、水平解像度を判断する時間の短縮を図る。
 図4は本実施形態の映像表示装置の構成を示すブロック図である。
 図4に示すように、本実施形態の映像表示装置は、A/D変換部10、クロック調整部20、制御部30、映像処理部40、映像表示部50及びフレームメモリ60を有する。
 A/D変換部10には、PC等の外部機器からアナログ映像信号が入力され、クロック調整部20からドットクロックが入力される。A/D変換部10は、クロック調整部20から入力されるドットクロックに基づいてアナログ映像信号をサンプリングし、デジタル映像信号に変換する。
 クロック調整部20は、入力アナログ映像信号の水平同期信号からドットクロックを生成し、A/D変換部10に出力する。クロック調整部20は、クロック生成部21及び位相調整部22を有する。
 クロック生成部21は、周知の映像表示装置が備えるPLL回路である。クロック生成部21には、入力アナログ映像信号の水平同期信号が入力される。クロック生成部21は、入力された水平同期信号を逓倍し、ドットクロックを生成する。クロック生成部21は、入力された水平同期信号の周波数を分周するための分周器を有しており、この分周比を変更することによって、ドットクロックの周波数を調整することができる。
 位相調整部22には、クロック生成部21からのドットクロックが入力される。位相調整部22は、入力されたドットクロックの位相を調整し、位相を調整したドットクロックをA/D変換部10に出力する。位相調整部22は、入力信号を一定の時間遅延させて出力する遅延回路を有しており、この遅延時間を変更することによって、ドットクロックの位相を調整することができる。ドットクロックの位相は、例えば、所定の角度単位で段階的にずらせるようになっている。
 制御部30は、同期検出部31、映像検出部32、差分検出部33、設定格納用メモリ34及びCPU(Central Processing Unit)部35を有する。
 同期検出部31には、入力アナログ映像信号の水平同期信号及び垂直同期信号が入力される。同期検出部31は、水平同期信号及び垂直同期信号から入力アナログ映像信号の水平同期周波数及び垂直同期周波数を検出する。そして、同期検出部31は、検出した水平同期周波数及び垂直同期周波数をCPU部35に通知する。
 映像検出部32には、A/D変換部10からのデジタル映像信号と、入力アナログ映像信号の水平同期信号及び垂直同期信号と、クロック調整部20からのドットクロックが入力される。映像検出部32は、デジタル映像信号の有無を解析することにより、有効画素の範囲(以降、有効領域と称する)を判別し、デジタル映像信号の水平方向の映像開始位置、垂直方向の映像開始位置、水平解像度及び垂直解像度を検出する。そして、映像検出部32は、検出したデジタル映像信号の水平方向の映像開始位置、垂直方向の映像開始位置、水平解像度、垂直解像度をCPU部35に通知する。
 差分検出部33には、A/D変換部10からのデジタル映像信号と、入力アナログ映像信号の水平同期信号及び垂直同期信号が入力される。また、差分検出部33には、CPU部35から、デジタル映像信号の差分総和値を算出すべき画像範囲が設定される。差分検出部33は、入力されたデジタル映像信号に基づく画像データのうち、CPU部35から設定された画像範囲についての差分総和値を算出する。そして、差分検出部33は、算出した差分総和値をCPU部35に通知する。
 設定格納用メモリ34は、入力アナログ映像信号の水平解像度の候補が垂直解像度毎に示される解像度テーブルを格納するためのメモリである。図5に解像度テーブルの例を示す。図5に示す通り、解像度テーブルには、映像表示装置が対応する映像信号が取り得る水平解像度が垂直解像度毎に示される。尚、解像度テーブルは、予め設定格納用メモリ34に設定される。
 CPU部35は、同期検出部31から入力アナログ映像信号の水平同期周波数及び垂直同期周波数を受信し、受信した水平同期周波数及び垂直同期周波数から入力アナログ映像信号の垂直解像度を推定する。
 また、CPU部35は、設定格納用メモリ34に格納された解像度テーブルから水平解像度の候補を抽出し、各水平解像度に対応する周波数のドットクロックを生成するための、水平同期信号を逓倍する分周比を算出し、クロック生成部21に設定する。さらに、CPU部35は、ドットクロックの位相を調整するための遅延時間を位相調整部22に設定する。
 また、CPU部35は、映像検出部32からデジタル映像信号の水平方向の映像開始位置、垂直方向の映像開始位置、水平解像度、垂直解像度を取得し、取得した情報からデジタル映像信号の有効領域を算出する。そして、CPU部35は、デジタル映像信号の有効領域のうち、差分総和値を算出すべき画像範囲を決定し、差分検出部33に設定する。CPU部35は、デジタル映像信号の差分総和値を差分検出部33から取得し、取得した差分総和値から入力アナログ映像信号の水平解像度を判断する。
 また、CPU部35は、入力アナログ映像信号の垂直解像度及び水平解像度を映像処理部40に設定する。
 映像処理部40には、A/D変換部10からデジタル映像信号が入力され、入力されたデジタル映像信号をフレームメモリ60に取り込む。また、映像処理部40には、CPU部35から入力アナログ映像信号の垂直解像度及び水平解像度が設定される。映像処理部40は、必要に応じて、入力されたデジタル映像信号の解像度を表示するための解像度に変換し、映像表示部50に出力する。
 映像表示部50は、映像処理部40が出力する映像信号を表示する。
 フレームメモリ60は、デジタル映像信号を格納するメモリである。
 次に図4に示したCPU部35が入力アナログ映像信号の水平解像度を判別する処理について説明する。
 図6は図4に示したCPU部35が入力アナログ映像信号の水平解像度を判別する処理を示すフローチャートである。
 アナログ映像信号が入力されると、CPU部35は、まず、同期検出部31から入力アナログ映像信号の水平同期周波数及び垂直同期周波数を受信する(ステップS1)。同期検出部31から入力アナログ映像信号の水平同期周波数及び垂直同期周波数を受信すると、CPU部35は、受信した水平同期周波数及び垂直同期周波数から入力アナログ映像信号の垂直解像度を推定する(ステップS2)。垂直解像度を推定すると、CPU部35は、設定格納用メモリ34に格納された解像度テーブルから、算出した垂直解像度に対応する水平解像度の候補を抽出する(ステップS3)。
 次に、CPU部35は、設定格納用メモリ34に格納された解像度テーブルから、抽出した水平解像度の候補のうちの1つを読み出す(ステップS4)。水平解像度の候補のうちの1つを読み出すと、CPU部35は、その水平解像度に対応する周波数のドットクロックを生成するための分周比をクロック生成部21に設定する(ステップS5)。尚、ここで設定する分周比は候補としている水平解像度から想定される値である。次に、CPU部35は、ドットクロックの位相を調整するための遅延時間を位相調整部22に設定する(ステップS6)。
 ドットクロックの分周比及び遅延時間を設定すると、CPU部35は、設定した分周比及び遅延時間に対応したドットクロックでサンプリングされたデジタル映像信号の、水平方向の映像開始位置、垂直方向の映像開始位置、水平解像度、垂直解像度を映像検出部32から取得する(ステップS7)。デジタル映像信号の、水平方向の映像開始位置、垂直方向の映像開始位置、水平解像度、垂直解像度を取得すると、CPU部35は、取得した情報からデジタル映像信号の有効領域を算出する(ステップS8)。デジタル映像信号の有効領域を算出すると、CPU部35は、デジタル映像信号の有効領域のうち、差分総和値を算出すべき画像範囲を決定し、差分検出部33に設定する(ステップS9)。
 尚、差分総和値を算出すべき画像範囲は、予め映像表示装置に設定される。差分総和値を算出すべき画像範囲は、例えば、デジタル映像信号の1フレーム分全体となる。
 差分総和値を算出すべき画像範囲を差分検出部33に設定すると、CPU部35は、設定した画像範囲の差分総和値を差分検出部33から取得する(ステップS10)。
 CPU部35は、候補として抽出した所定の水平解像度に対応する周波数のドットクロックに対して、そのドットクロックが取り得る範囲内で位相調整部22に設定する遅延時間を変えながら、デジタル映像信号の差分総和値を取得する。そのため、CPU部35は、現在の候補としている水平解像度に対応する周波数のドットクロックが取り得る範囲内の各遅延時間について差分総和値を取得したか否かを判別する(ステップS11)。
 現在の候補としている水平解像度に対応する周波数のドットクロックが取り得る範囲内の各遅延時間について差分総和値を取得していない場合、CPU部35は、ステップS6へ移行し、新たな遅延時間を位相調整部22に設定し、差分総和値を取得する処理を繰り返す。一方、現在の候補としている水平解像度に対応する周波数のドットクロックが取り得る範囲内の各遅延時間について差分総和値を取得した場合、CPU部35は、取得した差分総和値の最大値を算出する。そして、CPU部35は、差分総和値の最大値と差分総和値が最大値となるときの遅延時間を記憶しておく(ステップS12)。
 現在の候補としている水平解像度に対して差分総和値の最大値を算出すると、CPU35は、候補として抽出した全ての水平解像度に対して差分総和値の最大値を算出したか否かを判別する(ステップS13)。
 候補として抽出した全ての水平解像度に対して差分総和値の最大値を算出していない場合、CPU部35は、ステップS4へ移行し、抽出した水平解像度の候補のうち、まだ差分総和値の最大値を算出していない水平解像度に対して差分総和値を取得する処理を繰り返す。一方、候補として抽出した全ての水平解像度に対して差分総和値の最大値を算出した場合、算出した差分総和値の最大値が最も大きな値となるときの水平解像度を入力アナログ映像信号の水平解像度と判断する(ステップS14)。
 入力アナログ映像信号の水平解像度を判断すると、CPU部35は、以降、差分総和値の最大値が最も大きな値となるドットクロックをクロック調整部20に生成させるために、そのドットクロックを生成するための分周比と遅延時間をクロック調整部20に設定する(ステップS15)。
 また、CPU部35は、ステップS2で推定した垂直解像度とステップS14で判断した水平解像度を映像処理部40に設定する。映像処理部40は、必要に応じて、入力されたデジタル映像信号の解像度を表示するための解像度に変換してから、映像表示部50に出力する。
 例えば、ステップS2で算出した垂直解像度が768である場合、図5に示した解像度テーブルから、1024、1360、1224、1280の4つの水平解像度が候補として抽出される。このとき、CPU部35は、1024、1360、1224、1280の4つの水平解像度に対して、ステップS4~ステップS13の処理を実施する。
 CPU部35は、まず、水平解像度1024に対応する周波数のドットクロックに対して、その位相をずらしながら、各ドットクロックに基づいて生成されるデジタル映像信号の差分総和値の最大値を算出する。続いて、CPU部35は、水平解像度1360、1224、1280に対応する周波数の各ドットクロックに対して、差分総和値の最大値を算出する。そして、CPU部35は、算出した差分総和値の最大値が最も大きな値となるときの水平解像度を入力アナログ映像信号の水平解像度と判断する。
 尚、本実施の形態では、解像度テーブルには、入力アナログ映像信号の水平解像度の候補が垂直解像度毎に示される例を示したが、本発明は、これに限定されるものではない。解像度テーブルは、水平解像度の候補を抽出できるものであれば、どのようなものであってもよく、例えば、水平解像度のみが示されているものであってもよい。この場合、映像表示装置は、解像度テーブルに示される全ての水平解像度を候補として抽出する。
 また、例えば、解像度テーブルは、入力アナログ映像信号のアスペクト比の候補が垂直解像度毎に示されるものであってもよい。この場合、CPU部35は、解像度テーブルから、垂直解像度に対応するアスペクト比の候補を抽出し、各アスペクト比と垂直解像度から水平解像度の候補を算出する。
 以上説明したように、本実施形態によれば、映像表示装置は、入力アナログ映像信号の水平同期信号及び垂直同期信号から垂直解像度を推定する。また、映像表示装置には、予め入力アナログ映像信号の水平解像度の候補が登録されている。映像表示装置は、水平解像度の候補毎に対応する周波数のドットクロックを生成し、その位相をずらしながら、各ドットクロックに基づいて生成されるデジタル映像信号の差分総和値の最大値を算出する。映像表示装置は、全ての水平解像度の候補に対して、差分総和値の最大値を算出し、差分総和値の最大値が最も大きな値となるときの水平解像度を入力アナログ映像信号の水平解像度と判断する。
 映像表示装置は、入力アナログ映像信号のフレーム内の画素間の差分に基づいてその映像信号の水平解像度を判断する。これにより、映像表示装置は、外部から解像度が不明な映像信号が入力された場合、その映像信号の解像度を短時間で判断し、正しく映像を表示することができる。
 また、本実施形態の映像表示装置は、入力アナログ映像信号の垂直同期信号と前記水平同期信号から算出した垂直解像度によって水平解像度の候補を絞り込む。これにより、映像表示装置は、水平解像度を判断するための処理時間を短縮できる。
 また、本実施形態の映像表示装置は、1フレーム分のデジタル映像信号の差分総和値を算出することにより、入力アナログ映像信号の水平解像度を判断することができる。このため、入力アナログ映像信号の水平解像度を判断する処理を短時間で実施することができる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細は本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。
10 A/D変換部
20 クロック調整部
21 クロック生成部
22 位相調整部
30 制御部
31 同期検出部
32 映像検出部
33 差分検出部
34 設定格納用メモリ
35 CPU部
40 映像処理部
50 映像表示部
60 フレームメモリ

Claims (6)

  1.  入力されるアナログ映像信号を、該アナログ映像信号をサンプリングするタイミングを規定するドットクロックを用いてサンプリングしてデジタル映像信号に変換するA/D変換手段と、
     前記アナログ映像信号の水平同期信号を基に所定の周波数のドットクロックを生成するクロック生成手段と、
     前記クロック生成手段が生成したドットクロックの位相を調整する位相調整手段と、
     前記アナログ映像信号の垂直同期信号と水平同期信号から該アナログ映像信号の垂直解像度を推定し、予め登録された水平解像度の候補毎に、各水平解像度に対応する周波数のドットクロックを前記クロック生成手段に生成させ、該ドットクロックの位相を前記位相調整手段に調整させながら該ドットクロックに基づいて変換されるデジタル映像信号に基づく画像の所定範囲内で水平方向に隣接する画素間の画素値の差分の絶対値の総和を示す差分総和値の最大値を算出し、全ての水平解像度の候補の中で該差分総和値の最大値が最も大きな値となるときの水平解像度を前記アナログ映像信号の水平解像度と判断し、該判断した水平解像度と前記垂直解像度に対応する映像を表示する制御手段と、
    を有する映像表示装置。
  2.  前記制御手段は、前記垂直同期信号と前記水平同期信号から前記アナログ映像信号の垂直解像度を推定し、該垂直解像度に基づいて該アナログ映像信号の水平解像度の候補を絞り込む、
    請求項1に記載の映像表示装置。
  3.  前記所定範囲は、前記デジタル映像信号に基づく画像の1フレームである、請求項1または2に記載の映像表示装置。
  4.  入力されるアナログ映像信号を、該アナログ映像信号をサンプリングするタイミングを規定するドットクロックを用いてサンプリングしてデジタル映像信号に変換するA/D変換手段と、前記アナログ映像信号の水平同期信号を基に所定の周波数のドットクロックを生成するクロック生成手段と、前記クロック生成手段が生成したドットクロックの位相を調整する位相調整手段とを有する映像表示装置における映像表示方法であって、
     制御手段が、
     前記アナログ映像信号の垂直同期信号と水平同期信号から該アナログ映像信号の垂直解像度を推定し、
     予め登録された水平解像度の候補毎に、各水平解像度に対応する周波数のドットクロックを前記クロック生成手段に生成させ、該ドットクロックの位相を前記位相調整手段に調整させながら該ドットクロックに基づいて変換されるデジタル映像信号に基づく画像の所定範囲内で水平方向に隣接する画素間の画素値の差分の絶対値の総和を示す差分総和値の最大値を算出し、
     全ての水平解像度の候補の中で該差分総和値の最大値が最も大きな値となるときの水平解像度を前記アナログ映像信号の水平解像度と判断し、
     前記判断した水平解像度と前記垂直解像度に対応する映像を表示する、
    映像表示方法。
  5.  前記制御手段が、前記垂直同期信号と前記水平同期信号から前記アナログ映像信号の垂直解像度を推定し、該垂直解像度に基づいて該アナログ映像信号の水平解像度の候補を絞り込む、
    請求項4に記載の映像表示方法。
  6.  前記所定範囲は、前記デジタル映像信号に基づく画像の1フレームである、請求項4または5に記載の映像表示方法。
PCT/JP2009/067011 2009-09-30 2009-09-30 映像表示装置および映像表示方法 WO2011039852A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011533991A JPWO2011039852A1 (ja) 2009-09-30 2009-09-30 映像表示装置および映像表示方法
US13/498,896 US8502919B2 (en) 2009-09-30 2009-09-30 Video display device and video display method
CN200980161728.XA CN102549642A (zh) 2009-09-30 2009-09-30 视频显示设备和视频显示方法
PCT/JP2009/067011 WO2011039852A1 (ja) 2009-09-30 2009-09-30 映像表示装置および映像表示方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/067011 WO2011039852A1 (ja) 2009-09-30 2009-09-30 映像表示装置および映像表示方法

Publications (1)

Publication Number Publication Date
WO2011039852A1 true WO2011039852A1 (ja) 2011-04-07

Family

ID=43825708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067011 WO2011039852A1 (ja) 2009-09-30 2009-09-30 映像表示装置および映像表示方法

Country Status (4)

Country Link
US (1) US8502919B2 (ja)
JP (1) JPWO2011039852A1 (ja)
CN (1) CN102549642A (ja)
WO (1) WO2011039852A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030914A1 (ja) * 2011-08-29 2013-03-07 Necディスプレイソリューションズ株式会社 3d映像信号処理装置
CN112954432A (zh) * 2021-01-28 2021-06-11 合肥宏晶微电子科技股份有限公司 视频数据处理方法、装置、系统及可读存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6034703B2 (ja) * 2013-01-21 2016-11-30 サターン ライセンシング エルエルシーSaturn Licensing LLC 変換回路、画像処理装置および変換方法
JP6366280B2 (ja) 2014-01-16 2018-08-01 キヤノン株式会社 映像信号判定装置、映像信号判定方法およびプログラム
TWI547938B (zh) * 2014-04-22 2016-09-01 緯創資通股份有限公司 顯示裝置及其圖像顯示方法
CN104202551A (zh) * 2014-08-26 2014-12-10 中安消技术有限公司 一种视频数据采集方法及装置
WO2016063408A1 (ja) * 2014-10-24 2016-04-28 Necディスプレイソリューションズ株式会社 表示制御装置およびその制御方法
KR101573916B1 (ko) * 2014-12-16 2015-12-02 (주)넥스트칩 영상 수신 방법 및 장치
CN107241529B (zh) * 2017-07-13 2020-04-07 上海帆声图像科技有限公司 一种ttl视频输出系统及其方法
CN109348276B (zh) * 2018-11-08 2019-12-17 北京微播视界科技有限公司 视频画面调整方法、装置、计算机设备和存储介质
JP6992769B2 (ja) * 2019-01-17 2022-01-13 セイコーエプソン株式会社 表示装置の制御方法、表示装置および表示システム
CN111954070A (zh) * 2020-07-16 2020-11-17 深圳市洲明科技股份有限公司 一种基于fpga的视频分辨率转换方法及终端
CN116052578B (zh) * 2023-03-31 2023-08-04 深圳曦华科技有限公司 一种显示芯片系统中码片输入输出同步控制方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000276092A (ja) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd ドットクロック再生装置
JP2007163848A (ja) * 2005-12-14 2007-06-28 Nec Viewtechnology Ltd 映像機器および映像処理方法
JP2008009259A (ja) * 2006-06-30 2008-01-17 Necディスプレイソリューションズ株式会社 画像表示装置及びクロック位相調整方法
JP2009003240A (ja) * 2007-06-22 2009-01-08 Sony Corp 映像信号処理装置および映像信号処理方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000122594A (ja) 1998-10-15 2000-04-28 Matsushita Electric Ind Co Ltd 画像表示方法と画像表示装置
JP4154820B2 (ja) * 1999-12-09 2008-09-24 三菱電機株式会社 画像表示装置のドットクロック調整方法およびドットクロック調整装置
JP3652583B2 (ja) 2000-06-06 2005-05-25 パイオニアプラズマディスプレイ株式会社 アスペクト比変換用サンプリングクロック発生回路及び方法
JP2007086614A (ja) 2005-09-26 2007-04-05 Sony Corp 画像表示装置および方法、プログラム並びに記録媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000276092A (ja) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd ドットクロック再生装置
JP2007163848A (ja) * 2005-12-14 2007-06-28 Nec Viewtechnology Ltd 映像機器および映像処理方法
JP2008009259A (ja) * 2006-06-30 2008-01-17 Necディスプレイソリューションズ株式会社 画像表示装置及びクロック位相調整方法
JP2009003240A (ja) * 2007-06-22 2009-01-08 Sony Corp 映像信号処理装置および映像信号処理方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030914A1 (ja) * 2011-08-29 2013-03-07 Necディスプレイソリューションズ株式会社 3d映像信号処理装置
CN103718548A (zh) * 2011-08-29 2014-04-09 Nec显示器解决方案株式会社 3d图像信号处理设备
US9247231B2 (en) 2011-08-29 2016-01-26 Nec Display Solutions, Ltd. 3D image signal processing apparatus
CN103718548B (zh) * 2011-08-29 2016-04-20 Nec显示器解决方案株式会社 3d图像信号处理设备
CN112954432A (zh) * 2021-01-28 2021-06-11 合肥宏晶微电子科技股份有限公司 视频数据处理方法、装置、系统及可读存储介质
CN112954432B (zh) * 2021-01-28 2022-08-16 宏晶微电子科技股份有限公司 视频数据处理方法、装置、系统及可读存储介质

Also Published As

Publication number Publication date
CN102549642A (zh) 2012-07-04
US20120188448A1 (en) 2012-07-26
JPWO2011039852A1 (ja) 2013-02-21
US8502919B2 (en) 2013-08-06

Similar Documents

Publication Publication Date Title
WO2011039852A1 (ja) 映像表示装置および映像表示方法
JP4154820B2 (ja) 画像表示装置のドットクロック調整方法およびドットクロック調整装置
US8310431B2 (en) Image display apparatus and frequency adjustment method thereof
CN112562597B (zh) 具有动态背光调整机制的显示器控制装置及方法
JP4956483B2 (ja) 同期信号制御回路
JP2003202828A (ja) 表示装置
JP5473007B2 (ja) 映像表示装置および映像表示方法
JP4744212B2 (ja) 画像表示装置の制御方法及び画像表示装置
JP5027047B2 (ja) 映像信号処理装置
TW201145840A (en) Method of sampling phase calibration and device thereof
KR100705835B1 (ko) 해상도 판단 장치 및 해상도 판단 방법
CN111277725B (zh) 视讯自动侦测相位同步系统及方法
KR100531382B1 (ko) Adc 샘플링 위상 결정 장치 및 방법
JPH11219157A (ja) サンプリングクロック制御装置
JP4114630B2 (ja) 映像信号処理装置
JP3683889B2 (ja) 表示制御方法、表示制御装置及び表示装置
US8184202B2 (en) Display apparatus and phase detection method thereof
JP2011164356A (ja) 表示装置および表示方法
JP2006208492A (ja) 映像処理装置
JP2010271451A (ja) 画像表示装置
JP4967922B2 (ja) 垂直表示タイミング調整回路
JP2005278086A (ja) ラッチおよびこれを使用した位相同期化回路
JP2001188503A (ja) 画像表示装置、水平有効画素数検出装置および画像表示方法
JP2012199787A (ja) 画像フォーマット判定装置及び画像フォーマット判定方法
JP2013105056A (ja) 映像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161728.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011533991

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13498896

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850043

Country of ref document: EP

Kind code of ref document: A1