WO2011037246A1 - 感放射線性樹脂組成物、レジストパターン形成方法、及び、重合体 - Google Patents

感放射線性樹脂組成物、レジストパターン形成方法、及び、重合体 Download PDF

Info

Publication number
WO2011037246A1
WO2011037246A1 PCT/JP2010/066758 JP2010066758W WO2011037246A1 WO 2011037246 A1 WO2011037246 A1 WO 2011037246A1 JP 2010066758 W JP2010066758 W JP 2010066758W WO 2011037246 A1 WO2011037246 A1 WO 2011037246A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
general formula
branched
linear
Prior art date
Application number
PCT/JP2010/066758
Other languages
English (en)
French (fr)
Inventor
光央 佐藤
友洋 柿澤
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to KR1020127005158A priority Critical patent/KR101399212B1/ko
Priority to JP2011533072A priority patent/JP5146606B2/ja
Publication of WO2011037246A1 publication Critical patent/WO2011037246A1/ja
Priority to US13/417,335 priority patent/US8758978B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers

Definitions

  • the present invention relates to a radiation-sensitive resin composition, a resist pattern forming method, and a polymer, and more specifically, a radiation-sensitive resin composition capable of forming a resist pattern having an excellent cross-sectional shape, a resist pattern forming method, and It relates to a polymer.
  • an acid diffusion control agent that controls the diffusion phenomenon of acid generated from a radiation-sensitive acid generator in the resist film and suppresses undesired chemical reactions in non-irradiated areas is included.
  • a resist composition is disclosed (see, for example, Patent Documents 1 and 2). This resist composition has improved storage stability, improved resolution as a resist film, and the line width of the resist pattern due to fluctuations in the holding time (PED) from irradiation to heat treatment after irradiation. Changes can be suppressed and process stability can be improved.
  • a finer resist pattern for example, a fine resist pattern having a line width of about 45 nm.
  • the light source wavelength of the exposure apparatus can be shortened and the numerical aperture (NA) of the lens can be increased.
  • NA numerical aperture
  • shortening the light source wavelength requires a new exposure apparatus, but such an apparatus is expensive.
  • the numerical aperture of the lens is increased, there is a problem that the depth of focus decreases even if the resolution can be improved because the resolution and the depth of focus are in a trade-off relationship.
  • liquid immersion lithography liquid immersion lithography
  • an immersion exposure liquid for example, pure water, a fluorine-based inert liquid, or the like
  • the exposure optical path space that has been conventionally filled with an inert gas such as air or nitrogen is filled with the immersion exposure liquid having a refractive index (n) larger than that of air or the like.
  • n refractive index
  • the cross-sectional shape of the line portion of the obtained line-and-space pattern may not be a square shape (rectangular shape), but may have a rounded corner. Therefore, development of a radiation-sensitive resin composition capable of forming a resist pattern having an excellent cross-sectional shape (that is, not rounded and rounded) has been desired.
  • the present invention has been made to solve the above-described problems of the prior art, and is a radiation-sensitive resin composition capable of forming a resist pattern having an excellent cross-sectional shape, a resist pattern forming method, and a polymer.
  • the purpose is to provide.
  • the present invention provides the following radiation-sensitive resin composition, resist pattern forming method, and polymer.
  • a radiation-sensitive resin composition comprising a soluble polymer (excluding the polymer having the repeating unit (I) represented by the general formula (1)) and (C) a radiation-sensitive acid generator object.
  • R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • X 1 represents a single bond, a group represented by the general formula “—O—R 5 —”, A group represented by the formula “—C ( ⁇ O) —O—R 5 —”, a group represented by the general formula “—C ( ⁇ O) —NH—R 5 —”, a group having 1 to 4 carbon atoms A linear or branched alkanediyl group, or a phenylene group, provided that R 5 has an ester group or an ether group, and is a linear, branched or cyclic group having 1 to 10 carbon atoms.
  • R 2 is a single bond or a linear, branched or cyclic alkanediyl group having 1 to 20 carbon atoms which may have a substituent; alkenylene group to 20, an arylene group or an aralkylene group, having 6 to 10 carbon atoms
  • R 3 is hydrogen Hara Or a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, which may have a substituent, or or an aralkyl group, or, R 2 and R 3 are joined to form a cyclic structure together with the nitrogen atom to which they are attached, .R 4 acid dissociable having the cyclic structure of 3 to 20 carbons in Group.)
  • R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • X 1 represents a single bond, a group represented by the general formula “—O—R 5 —”.
  • R 5 may have an ester group or an ether group, and may be a linear, branched or branched group having 1 to 10 carbon atoms.
  • R 2 is a single bond, or a linear, branched or cyclic alkanediyl group having 1 to 20 carbon atoms which may have a substituent, carbon 2-20 alkenylene group, an arylene group or an aralkylene group, having 6 to 10 carbon atoms
  • R 3 is water
  • a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 10 carbon atoms, which may have an atom or a substituent, Or an aralkyl group, or R 2 and R 3 are bonded to form a cyclic structure with the nitrogen atom to which they are bonded, and the cyclic structure has 3 to 20 carbons
  • R 6 , R 7 And R 8 each represents a linear or branched alkyl group having 1 to 4 carbon atoms, a monovalent alicyclic hydrocarbon group having 4 to 20 carbon
  • the polymer (A) further has at least one of a repeating unit represented by the following general formula (2-1) and a repeating unit represented by the following general formula (2-2) [1] Or the radiation sensitive resin composition as described in [2].
  • R 9 represents a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • E 1 represents a linking group, and R 10 has at least one fluorine atom.
  • R 11 represents a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • R 12 represents a single bond or a (n 1 +1) valence having 1 to 10 carbon atoms.
  • a linear, branched or cyclic, saturated or unsaturated hydrocarbon group of R 13 is a single bond or a divalent linear, branched or cyclic group having 1 to 20 carbon atoms, .R 14 showing a saturated or unsaturated hydrocarbon group is substituted methylene group by a fluorine atom or .R 15 of a linear or branched fluoroalkyl alkanediyl group having 2 to 20 carbon atoms, is a single Represents a bond or —CO—, R 16 represents a hydrogen atom or an acid-dissociable group, and n 1 represents an integer of 1 to 3.
  • the fluorine atom content in the polymer (A) is 5% by mass or more of the total amount of the polymer (A), and the fluorine atom content in the polymer (B) is (B )
  • the content of the (A) polymer is 0.1 to 20 parts by mass with respect to 100 parts by mass of the (B) polymer, according to any one of the above [1] to [4]. Radiation sensitive resin composition.
  • step [8] in the step [2], in the step (2), an immersion exposure liquid is disposed on the resist film formed in the step (1), and the resist film is exposed through the immersion exposure liquid.
  • the resist pattern formation method of description in the step (2), an immersion exposure liquid is disposed on the resist film formed in the step (1), and the resist film is exposed through the immersion exposure liquid.
  • R 17 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • X 2 represents a single bond, a group represented by the general formula “—O—R 21 —”, A group represented by the formula “—C ( ⁇ O) —O—R 21 —”, a group represented by the general formula “—C ( ⁇ O) —NH—R 21 —”, a group having 1 to 4 carbon atoms A linear or branched alkanediyl group or a phenylene group, provided that R 21 may have an ester group or an ether group, and may be a linear, branched or cyclic group having 1 to 10 carbon atoms.
  • a hydrocarbon group or a single bond is a single bond or a linear, branched or cyclic alkanediyl group having 1 to 20 carbon atoms which may have a substituent; alkenylene group to 20, an arylene group or an aralkylene group, having 6 to 10 carbon atoms, R 9 is a hydrogen atom or, may have a substituent, C 1-20 straight, branched or cyclic alkyl group, an alkenyl group, having 6 to 10 carbon atoms 2-20 An aryl group, or an aralkyl group, or R 18 and R 19 are combined to form a cyclic structure with the nitrogen atom to which they are bonded, and the cyclic structure has 3 to 20 carbons.
  • 20 is an acid dissociable group.
  • R 17 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • X 2 represents a single bond, a group represented by the general formula “—O—R 21 —”.
  • R 18 is a single bond or a linear, branched or cyclic alkanediyl group having 1 to 20 carbon atoms which may have a substituent, carbon
  • R 19 is a hydrogen atom or an optionally substituted linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or 6 to 6 carbon atoms.
  • R 22 , R 23 and R 24 are each a linear or branched alkyl group having 1 to 4 carbon atoms, a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group or an aralkyl group. Or R 22 and R 23 are bonded to each other to form an alicyclic hydrocarbon group having 4 to 20 carbon atoms together with the carbon atom to which these are bonded, and R 24 is a group having 1 to 4 carbon atoms.
  • Linear or branched alkyl group, 4 to 4 carbon atoms 20 represents a monovalent alicyclic hydrocarbon group, aryl group or aralkyl group.
  • R 25 represents a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • E 2 represents a linking group, and R 26 has at least one fluorine atom.
  • R 27 represents a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • R 28 represents a single bond or a (n 2 +1) valence having 1 to 10 carbon atoms.
  • a linear, branched or cyclic, saturated or unsaturated hydrocarbon group of R 29 is a single bond or a divalent linear, branched or cyclic group having 1 to 20 carbon atoms, .
  • R 30 showing a saturated or unsaturated hydrocarbon group include a methylene group substituted by a fluorine atom or .
  • R 31 of a linear or branched fluoroalkyl alkanediyl group having 2 to 20 carbon atoms, is a single Represents a bond or —CO—,
  • R 32 represents a hydrogen atom or an acid-dissociable group, and
  • n 2 represents an integer of 1 to 3.
  • the radiation-sensitive resin composition of the present invention has an effect that a resist pattern having an excellent cross-sectional shape can be formed.
  • the resist pattern forming method of the present invention it is possible to form a resist pattern having an excellent cross-sectional shape.
  • the polymer of the present invention has an effect that it can be used as a material for a radiation-sensitive resin composition capable of forming a resist pattern having an excellent cross-sectional shape.
  • the radiation sensitive resin composition of the present invention comprises (A) a polymer having a repeating unit (I) represented by the following general formula (1) and containing a fluorine atom in the molecule (hereinafter referred to as “(A) heavy And (B) an alkali-insoluble or alkali-insoluble polymer having an acid-dissociable group (however, a polymer having the repeating unit (I) represented by the general formula (1)) (Hereinafter sometimes referred to as “(B) polymer”) and (C) a radiation-sensitive acid generator (hereinafter sometimes referred to as “(C) acid generator”). It contains.
  • the (A) polymer has a fluorine moiety in the structure. Therefore, when the resist film is formed, the (A) polymer is caused by the oil repellency. The distribution of (A) polymer tends to be high on the surface of the resist film. Accordingly, (A) the polymer is unevenly distributed in the surface layer of the coating.
  • the exposed portion is desorbed from the amino group by exposure.
  • the amino group acts as a base.
  • the acid dissociable group is not eliminated in the non-exposed area, the polymer (A) does not act as a base.
  • a difference occurs in the base concentration between the exposed portion and the non-exposed portion, and the contrast of the base concentration between the exposed portion and the non-exposed portion increases. For this reason, the acid concentration in the resist film surface layer can be controlled, and a resist pattern having an excellent cross-sectional shape can be formed.
  • the radiation-sensitive resin composition of the present invention can suppress elution during immersion exposure due to the fact that (A) the polymer contains fluorine, has a good contact angle balance, and can perform high-speed scanning. Since it is possible, it is preferable to use it for immersion exposure applications.
  • (A) Polymer (A) The polymer has a repeating unit (I) represented by the general formula (1) (hereinafter sometimes referred to as “repeating unit (I)”), and contains a fluorine atom in the molecule.
  • repeating unit (I) represented by the general formula (1)
  • (A) polymer and (B) polymer combine and there exists an effect. Specifically, since the compatibility between the polymer (A) and the polymer (B) is poor, the polymer (A) is unevenly distributed in the surface layer of the film. Therefore, the acid concentration in the resist coating surface layer can be controlled. Moreover, since it has an amino group and an acid dissociable group, the contrast of the acid concentration is increased.
  • the content ratio of fluorine atoms in the polymer (A) is larger than the content ratio of fluorine atoms in the polymer (B).
  • the content ratio of fluorine atoms in the polymer is preferably in the relationship. Specifically, the fluorine atom content ratio in the polymer (A) is preferably 5% by mass or more of the total amount of the polymer (A) (that is, (A) all constituting the polymer.
  • the content of fluorine atoms contained in the polymer is preferably 5% by mass or more when the amount of the atoms is 100% by mass), and at this time, (B) the content of fluorine atoms in the polymer
  • the ratio is preferably less than 5% by mass of the total amount of (B) polymer.
  • the content ratio of fluorine atoms in the polymer can be calculated by 13 C-NMR.
  • repeating unit (I) As described above, the (A) polymer acts in combination with the (B) polymer, and in particular, by having the repeating unit (I), a nitrogen-containing compound having an acid dissociable group (that is, (A) polymer) functions as an acid diffusion controller for suppressing diffusion of the generated acid. That is, there is an advantage that the acid concentration can be controlled by the polymer (A) (specifically, the repeating unit (I) in the polymer (A)).
  • R 1 is preferably a hydrogen atom or a methyl group because the synthesis of the polymer (A) is simple.
  • X 1 is preferably a group represented by the general formula “—C ( ⁇ O) —O—R 5 —” or a group represented by the general formula “—C ( ⁇ O) —NH—R 5 —”.
  • R 5 is a linear, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms or a single bond, which may have an ester group or an ether group.
  • the linear or branched alkanediyl group having 1 to 20 carbon atoms which may have a substituent in R 2 is preferably an alkanediyl group having 2 or more carbon atoms, specifically, ethylene.
  • R 2 is preferably an alkanediyl group having 2 or more carbon atoms, specifically, ethylene.
  • Examples of the cyclic alkanediyl group include a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cyclooctylene group, a norbornylene group, a tricyclodecylene group, a tetracyclododecylene group, and an adamantylene group. It is done.
  • the aralkyl group in R 2 and R 3 means a lower alkyl group substituted with an aryl group, specifically, a benzyl group, a phenylethyl group, a phenylpropyl group, a naphthylmethyl group, a naphthylethyl group, etc. Is mentioned.
  • the linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent in R 3 is preferably an alkyl group having 2 or more carbon atoms, specifically an ethyl group, Examples thereof include n-propyl group, i-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group and n-decyl group.
  • Examples of the cyclic alkyl group include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, a norbornyl group, a tricyclodecyl group, a tetracyclododecyl group, an adamantyl group, and the like.
  • Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group and a naphthyl group.
  • R 2 and R 3 are bonded to form a cyclic structure together with the nitrogen atom to which they are bonded
  • examples of those in which R 2 and R 3 are bonded include pyrrole, imidazole, pyrazole, pyridine, pyridazine, pyrimidine, pyrazine, piperidine, pyrrolidine, piperazine, morpholine, etc.
  • Examples include groups having a structure.
  • R 4 in the general formula (1) examples include a group represented by the following general formula (5) (hereinafter sometimes referred to as “acid-dissociable group (I)”), and the following general formula (6). (Hereinafter, sometimes referred to as “acid-dissociable group (II)”).
  • R 33 represents a hydrogen atom, a linear or branched alkyl group having 1 to 19 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, or 6 to 19 carbon atoms.
  • R 34 represents a hydrogen atom, a linear or branched alkyl group having 1 to 19 carbon atoms, an alicyclic hydrocarbon group having 4 to 20 carbon atoms, or a carbon number of 6 19 to 19 aryl groups or aralkyl groups, or these groups are selected from the group consisting of hydroxyl group, carboxyl group, carbonyl group, nitro group, ether group, ester group, amino group, silyl group, halogen, and thiophene. Including at least one of them.
  • acid dissociable groups (I) those having an alkyl group or an aralkyl group at R 33 are preferred, and those having a methyl group, a tert-butyl group, a tert-amyl group, a benzyl group or a cinnamyl group are more preferred.
  • acid dissociable groups (II) those having a hydrogen atom, an alkyl group or an aryl group at R 34 are preferred, and those having a formyl group, acetyl group, trichloroacetyl group, trifluoroacetyl group or benzoyl group are more preferred. .
  • the repeating unit (I) represented by the general formula (1) is preferably a repeating unit represented by the above general formula (1-1) from the viewpoint that the acid dissociable group is sufficiently eliminated. .
  • Examples of the monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms represented by R 6 , R 7 and R 8 in the general formula (1-1) include, for example, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, A cyclooctyl group, a norbornyl group, a tricyclodecyl group, a tetracyclododecyl group, an adamantyl group, and the like can be given.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • Examples of the aralkyl group include a benzyl group, a phenylethyl group, a phenylpropyl group, a naphthylmethyl group, and a naphthylethyl group. Can do.
  • R 6 and R 7 are bonded to form an alicyclic hydrocarbon group having 4 to 20 carbon atoms together with the carbon atom to which these are bonded
  • examples of those in which R 6 and R 7 are bonded include, for example, cyclobutyl group, cyclopentyl group, cyclohexyl group, cyclohexane
  • examples include octyl group, norbornyl group, tricyclodecyl group, tetracyclododecyl group, adamantyl group and the like.
  • repeating unit (I) represented by the general formula (1) include repeating units represented by the following general formulas (1-1a) to (1-1i).
  • R 1 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • R 6 , R 7 and R 8 are each a linear or branched alkyl group having 1 to 4 carbon atoms, a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group or an aralkyl group. Or R 6 and R 7 are bonded together to form an alicyclic hydrocarbon group having 4 to 20 carbon atoms together with the carbon atom to which these are bonded, and R 8 is a group having 1 to 4 carbon atoms.
  • a linear or branched alkyl group a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group or an aralkyl group;
  • R 6 , R 7 and R 8 are each preferably a linear alkyl group having 1 to 4 carbon atoms because of the advantage of being easily dissociated by the action of an acid.
  • the content of the repeating unit (I) is preferably 0.01 to 50 mol%, preferably 0.1 to 30 mol%, based on 100 mol% of all repeating units in the polymer (A). Is more preferable, and 0.1 to 20 mol% is particularly preferable.
  • the content ratio is within the above range, there is an advantage that a resist pattern having an excellent cross-sectional shape can be formed by being unevenly distributed in the surface layer of the coating and appropriately controlling the acid concentration in the surface portion of the resist coating.
  • the polymer is not particularly limited as long as it has a repeating unit (I) and contains a fluorine atom in the molecule, but it is a repeating unit containing a fluorine atom (hereinafter referred to as “repeating unit (II)”). In some cases, it is preferable that the molecule contains a fluorine atom. Since the (A) polymer has a fluorine atom, the (A) polymer is unevenly distributed in the resist film surface layer portion, so that there is an advantage that the acid concentration in the resist film surface layer portion can be controlled.
  • repeating unit (II) specifically, a repeating unit represented by the following general formula (2-1) (hereinafter sometimes referred to as “repeating unit (2-1)”), a general formula ( 2-2) (hereinafter may be referred to as “repeating unit (2-2)”) and the like, and the acid concentration of the resist film surface layer portion can be well controlled.
  • the polymer (A) preferably further has at least one of the repeating unit (2-1) and the repeating unit (2-2).
  • R 9 represents a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • E 1 represents a linking group
  • R 10 represents a linear or branched alkyl group having 1 to 6 carbon atoms and a monovalent alicyclic carbon atom having 4 to 20 carbon atoms having at least one fluorine atom. A hydrogen group or a derivative thereof is shown.
  • R 11 represents a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • R 12 represents a single bond or a (n 1 +1) -valent linear, branched or cyclic, saturated or unsaturated hydrocarbon group having 1 to 10 carbon atoms.
  • R 13 represents a single bond or a divalent linear, branched or cyclic, saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms.
  • R 14 represents a methylene group substituted with a fluorine atom, or a linear or branched fluoroalkanediyl group having 2 to 20 carbon atoms.
  • R 15 represents a single bond or —CO—.
  • R 16 represents a hydrogen atom or an acid dissociable group.
  • n 1 represents an integer of 1 to 3.
  • examples of the linking group represented by E 1 include a single bond, an oxygen atom, a sulfur atom, a carbonyloxy group, an oxycarbonyl group, an amide group, a sulfonylamide group, and a urethane group. Can be mentioned.
  • examples of the linear or branched alkyl group having 1 to 6 carbon atoms and having at least one fluorine atom include, for example, a methyl group Ethyl group, 1-propyl group, 2-propyl group, 1-butyl group, 2-butyl group, 2- (2-methylpropyl) group, 1-pentyl group, 2-pentyl group, 3-pentyl group, 1 -(2-methylbutyl) group, 1- (3-methylbutyl) group, 2- (2-methylbutyl) group, 2- (3-methylbutyl) group, neopentyl group, 1-hexyl group, 2-hexyl group, 3- Hexyl group, 1- (2-methylpentyl) group, 1- (3-methylpentyl) group, 1- (4-methylpentyl) group, 2- (2-methylpentyl) group, 2- (3-methylpentyl) ) Group, 2- (4-methylpentyl)
  • Examples of the monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms having at least one fluorine atom or a derivative thereof include a cyclopentyl group, a cyclopentylmethyl group, and a 1- (1-cyclopentylethyl) group.
  • Examples of the monomer for constituting the repeating unit (2-1) include trifluoromethyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, perfluoroethyl ( (Meth) acrylic acid ester, perfluoro n-propyl (meth) acrylic acid ester, perfluoro i-propyl (meth) acrylic acid ester, perfluoro n-butyl (meth) acrylic acid ester, perfluoro i-butyl (meth) Acrylic acid ester, perfluoro t-butyl (meth) acrylic acid ester, 2- (1,1,1,3,3,3-hexafluoropropyl) (meth) acrylic acid ester, 1- (2,2,3 , 3,4,4,5,5-octafluoropentyl) (meth) acrylic acid ester, perfluorocyclohexyl Cyl (meth) acrylate, 1- (2,2,3,3,3-pentaflu
  • the (n 1 +1) -valent linear or branched, saturated or unsaturated hydrocarbon group having 1 to 10 carbon atoms is For example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, Examples thereof include a divalent hydrocarbon group derived from a linear or branched alkyl group having 1 to 10 carbon atoms such as a hexyl group, a heptyl group, an octyl group, a nonyl group, and a decyl group.
  • Examples of the (n 1 +1) -valent cyclic saturated or unsaturated hydrocarbon group include groups derived from alicyclic hydrocarbons or aromatic hydrocarbons having 3 to 10 carbon atoms.
  • Specific examples of the alicyclic hydrocarbon include cyclobutane, cyclopentane, cyclohexane, bicyclo [2.2.1] heptane, bicyclo [2.2.2] octane, tricyclo [5.2.1.0 2, 6 ] decane, and cycloalkanes such as tricyclo [3.3.1.1 3,7 ] decane.
  • Specific examples of aromatic hydrocarbons include benzene and naphthalene.
  • examples of the divalent linear or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms include, for example, a methyl group , Ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group, pentyl group, isopentyl group, neopentyl group, hexyl group, heptyl group
  • divalent hydrocarbon groups derived from a linear or branched alkyl group having 1 to 20 carbon atoms such as an octyl group, a nonyl group, and a decyl group.
  • Examples of the divalent cyclic saturated or unsaturated hydrocarbon group include groups derived from alicyclic hydrocarbons or aromatic hydrocarbons having 3 to 20 carbon atoms.
  • Specific examples of the alicyclic hydrocarbon include cyclobutane, cyclopentane, cyclohexane, bicyclo [2.2.1] heptane, bicyclo [2.2.2] octane, and tricyclo [5.2.1.0 2. , 6 ] decane, tricyclo [3.3.1.1 3,7 ] decane, tetracyclo [6.2.1.1 3,6 .
  • cycloalkanes such as 0 2,7 ] dodecane.
  • Specific examples of aromatic hydrocarbons include benzene and naphthalene.
  • At least one hydrogen atom is a methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group.
  • a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms such as 2-methylpropyl group, 1-methylpropyl group, t-butyl group, hydroxyl group, cyano group, hydroxy having 1 to 10 carbon atoms It may be substituted by one or more of an alkyl group, a carboxyl group, an oxygen atom and the like.
  • n 1 is 2 or 3
  • all of the plurality of R 13 may be the same group or a part or all of them may be different groups. .
  • the acid dissociable group is, for example, a group that substitutes a hydrogen atom in an acidic functional group such as a hydroxyl group, a carboxyl group, or a sulfonic acid group. And a group that dissociates in the presence of an acid. More specifically, t-butoxycarbonyl group, tetrahydropyranyl group, tetrahydrofuranyl group, (thiotetrahydropyranylsulfanyl) methyl group, (thiotetrahydrofuranylsulfanyl) methyl group, alkoxy substituted methyl group, alkylsulfanyl substituted methyl group Groups and the like.
  • examples of the alkoxyl group (substituent) in the alkoxy-substituted methyl group include an alkoxyl group having 1 to 4 carbon atoms.
  • examples of the alkyl group (substituent) in the alkylsulfanyl-substituted methyl group include alkyl groups having 1 to 4 carbon atoms.
  • the acid dissociable group may be a group represented by the general formula (7-1a) described later.
  • examples of the methylene group substituted with a fluorine atom represented by R 14 or the linear or branched fluoroalkanediyl group having 2 to 20 carbon atoms include those represented by the formula: Examples include groups represented by (X-1) to (X-8).
  • repeating unit (2-2) examples include repeating units represented by general formulas (2-2-1) to (2-2-3).
  • R 11 represents a hydrogen atom, a methyl group, or a trifluoromethyl group
  • R 14 represents a methylene group substituted with a fluorine atom, Or a linear or branched fluoroalkanediyl group having 2 to 20 carbon atoms.
  • R 12 is a single bond or a divalent linear, branched or cyclic, saturated or saturated group having 1 to 20 carbon atoms.
  • R 16 represents an unsaturated hydrocarbon group, and R 16 represents a hydrogen atom or an acid dissociable group.
  • n 1 represents an integer of 1 to 3.
  • Examples of the monomer for constituting the repeating unit (2-2) include compounds represented by general formulas (T-1) to (T-6).
  • R 11 represents a hydrogen atom, a methyl group, or a trifluoromethyl group
  • R 16 represents a hydrogen atom or an acid dissociable group
  • the content of the repeating unit (II) is preferably 20 to 90 mol%, more preferably 20 to 80 mol%, based on 100 mol% of all repeating units in the polymer (A). It is particularly preferably 20 to 70 mol%. When the content ratio is within the above range, it is effective from the viewpoint of ensuring both water repellency after coating and ensuring developability.
  • the polymer (A) may have other repeating units in addition to the repeating unit (I) and the repeating unit (II).
  • Examples of other repeating units include a repeating unit having an acid dissociable group (hereinafter sometimes referred to as “repeating unit (III)”), a repeating unit having an alkali-reactive group (hereinafter referred to as “repeating unit (IV)”.
  • repeating unit (V) A repeating unit having an alkali-soluble group
  • repeating unit (III) a repeating unit having an alicyclic structure
  • repeating unit (VII) a repeating unit derived from an aromatic compound
  • repeating unit (VIII) the above repeating unit (I ) To (VII)
  • repeating unit (VIII) the above repeating unit (I ) To (VII)
  • Repeating unit (III) examples include a repeating unit represented by the following general formula (7-1).
  • R 35 represents a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • Y represents an acid-dissociable group.
  • Y in the general formula (7-1) is preferably a group represented by the following general formula (7-1a).
  • R 51 represents an alkyl group having 1 to 4 carbon atoms or a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms
  • R 52 and R 53 are independent of each other.
  • These are bivalent alicyclic hydrocarbon groups.
  • examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, an n-propyl group, and an i-propyl group. N-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group and the like.
  • a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, R 51 and R 52 are bonded to each other and formed together with the carbon atoms to which each is bonded to each other.
  • Examples of the alicyclic hydrocarbon group include bridged skeletons such as an adamantane skeleton, norbornane skeleton, tricyclodecane skeleton, and tetracyclododecane skeleton, and cycloalkanes such as cyclobutane, cyclopentane, cyclohexane, cycloheptane, and cyclooctane.
  • a group having a skeleton; these groups are, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group, 1-methylpropyl group, t-butyl group, etc.
  • a group having an alicyclic skeleton such as a group substituted with one or more of linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms.
  • the repeating unit (III) is a divalent fatty acid having 4 to 20 carbon atoms, which is formed together with the carbon atoms to which R 51 and R 52 are bonded to each other in the general formula (7-1a). It preferably has a cyclic hydrocarbon group. Of these alicyclic hydrocarbon groups, those having a monocyclic hydrocarbon group are preferred.
  • the formed resist film has a smaller difference between the advancing contact angle and the receding contact angle, and problems such as water breakage are less likely to occur. It can be employed in the step of exposing while scanning at high speed.
  • hept-2-yl) -2-methylethyl ester (meth) acrylic acid 2- (adamantan-2-yl) -2-methylethyl ester, (meth) acrylic acid 2-methyl-2-cyclopentyl ester, (Meth) acrylic acid 2-ethyl-2-cyclopentyl ester, (meth) acrylic acid 2-methyl-2-cyclohexyl ester, (meth) acrylic acid 2- Chill 2-cyclohexyl ester, (meth) 2-ethyl-2-cyclooctyl ester acrylic acid.
  • the polymer (A) may have the repeating unit (III) alone or in combination of two or more.
  • Repeating unit (IV) examples include a repeating unit represented by the following formula (7-2) (hereinafter sometimes referred to as “repeating unit (7-2)”).
  • R 36 represents a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • Z represents a group having a lactone skeleton or a cyclic carbonate structure.
  • repeating units (7-2) examples of the repeating unit having a group having a lactone skeleton include monomers represented by the following general formulas (7-2-1a) to (7-2-1f). Examples thereof include derived repeating units.
  • R 36 represents a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • R 37 represents a hydrogen atom or an alkyl group which may have a substituent having 1 to 4 carbon atoms, and l represents an integer of 1 to 3.
  • R 38 and R 39 each independently represent a hydrogen atom or a methoxy group.
  • A is independently of each other a single bond, an ether group, an ester group, a carbonyl group, or a divalent group having 1 to 30 carbon atoms.
  • B independently represents an oxygen atom or a methylene group.
  • Examples of the monomer for constituting the repeating unit having a group having a lactone skeleton include, for example, (meth) acrylic acid-5-oxo-4-oxa-tricyclo [4.2.1.0 3, 7 ] non-2-yl ester, (meth) acrylic acid-9-methoxycarbonyl-5-oxo-4-oxa-tricyclo [4.2.1.0 3,7 ] non-2-yl ester, (meth ) Acrylic acid-5-oxo-4-oxa-tricyclo [5.2.1.0 3,8 ] dec-2-yl ester, (meth) acrylic acid-10-methoxycarbonyl-5-oxo-4-oxa -Tricyclo [5.2.1.0 3,8 ] non-2-yl ester, (meth) acrylic acid-6-oxo-7-oxa-bicyclo [3.2.1] oct-2-yl ester, (Meth) acrylic acid 4-methoxycarbonyl-6-oxo-7-oxa-bicyclo
  • the group having a cyclic carbonate structure in the repeating unit (7-2) is an alkali-reactive group
  • examples of the repeating unit having a group having a cyclic carbonate structure include the following general formula (7-2-2) The repeating unit represented by these can be mentioned.
  • R 36 represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • D 1 represents a single bond
  • D 2 is represented by the following general formula (7-2-2-1) The group which has a structure represented is shown.
  • R 40 each independently represents a hydrogen atom or a chain hydrocarbon group having 1 to 5 carbon atoms.
  • P 1 is an integer of 2 to 4
  • P 2 represents an integer of 1 or 2.
  • Examples of the chain hydrocarbon group having 1 to 5 carbon atoms represented by R 40 in the general formula (7-2-2-1) include carbon numbers such as a methyl group, an ethyl group, a propyl group, and a butyl group.
  • the chain hydrocarbon group is a hydrocarbon group composed of only a chain structure without including a cyclic structure in the main chain.
  • an alicyclic hydrocarbon group means the hydrocarbon group which contains only the structure of an alicyclic hydrocarbon in a ring structure, and does not contain an aromatic ring structure.
  • the alicyclic hydrocarbon group does not need to be composed only of the structure of the alicyclic hydrocarbon, and a part thereof may include a chain structure.
  • the aromatic hydrocarbon group means a hydrocarbon group containing an aromatic ring structure in the ring structure.
  • this aromatic hydrocarbon group does not need to be composed only of an aromatic ring structure, and a part thereof may include a chain structure or an alicyclic hydrocarbon structure.
  • examples of the divalent chain hydrocarbon group having 1 to 30 carbon atoms include a methylene group, an ethylene group, and 1,2- Propylene group, 1,3-propylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, decamethylene group, undecamethylene group, dodecamethylene group, tridecamethylene group, Linear alkanediyl groups such as tetradecamethylene group, pentadecamethylene group, hexadecamethylene group, heptacamethylene group, octadecamethylene group, nonadecamethylene group, icosalen group; 1-methyl-1,3-propylene Group, 2-methyl-1,3-propylene group, 2-methyl-1,2-propylene group, 1-methyl-1,4-butylene group, 2-methyl- Examples thereof include branched alkanediyl groups such as
  • examples of the divalent alicyclic hydrocarbon group include a 1,3-cyclobutylene group and a 1,3-cyclopentylene group.
  • a monocyclic cycloalkanediyl group having 3 to 10 carbon atoms such as 1,4-cyclohexylene group, 1,5-cyclooctylene group, etc .; 1,4-norbornylene group, 2,5-norbornylene group, And polycyclic cycloalkanediyl groups such as 2,5-adamantylene group and 2,6-adamantylene group.
  • examples of the trivalent alicyclic hydrocarbon group include a group in which one hydrogen atom is eliminated from the monocyclic or polycyclic cycloalkanediyl group.
  • examples of the divalent aromatic hydrocarbon group include a phenylene group, a tolylene group, a naphthylene group, a phenanthrylene group, and an anthrylene group. And an arylene group.
  • examples of the trivalent aromatic hydrocarbon group include a group in which one hydrogen atom is eliminated from the arylene group.
  • the monovalent group having a structure represented by the general formula (7-2-2-1) is a monovalent group having at least a part of a cyclic carbonate structure.
  • the monovalent group having the structure represented by the general formula (7-2-2-1) may be a group directly bonded to D 1 or a polycyclic structure containing the cyclic carbonate structure.
  • the repeating unit represented by the following general formula (7-2-2i) includes a group having a polycyclic structure including a cyclic carbonate structure.
  • the monovalent group having the structure represented by the general formula (7-2-2-1) preferably has 3 to 30 carbon atoms, and preferably has 3 to 15 carbon atoms. Is more preferred, and it is particularly preferred to have 3 to 10 carbon atoms. When it has more than 30 carbon atoms, the adhesiveness of the resist film to be formed is lowered, and there is a risk of pattern collapse or pattern peeling. In addition, the solubility of the polymer component in the developer is lowered, which may cause development defects.
  • Monomers for constituting the repeating unit represented by the general formula (7-2-2) are, for example, Tetrahedron Letters, Vol. 27, no. 32 p. 3741 (1986), Organic Letters, Vol. 4, no. 15 p. 2561 (2002), etc., and can be synthesized by a conventionally known method.
  • repeating unit represented by the general formula (7-2-2) include repeating units represented by the following general formulas (7-2-2a) to (7-2-2v). be able to.
  • R 36 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • the (A) polymer may have repeating unit (IV) individually by 1 type or in combination of 2 or more types.
  • the alkali-soluble group in the repeating unit (V) is preferably a functional group having a hydrogen atom having a pKa of 4 to 11 from the viewpoint of improving solubility in a developer.
  • R 41 represents a hydrocarbon group having 1 to 10 carbon atoms substituted with a fluorine atom.
  • one or more hydrogen atoms in the hydrocarbon group having 1 to 10 carbon atoms are fluorine atoms. Although it will not specifically limit if it is substituted by the atom, A trifluoromethyl group is preferable.
  • the main chain skeleton of the repeating unit (V) is not particularly limited, but is preferably a methacrylic acid ester, acrylic acid ester, or ⁇ -trifluoroacrylic acid ester skeleton.
  • the compound for constituting the repeating unit (V) include a compound represented by the following general formula (8a-1), a compound represented by the following general formula (8b-1), and the like. Can do.
  • each R 42 represents a hydrogen atom, a methyl group, or a trifluoromethyl group
  • R 43 represents a single bond or a divalent group having 1 to 20 carbon atoms.
  • R 41 represents a hydrocarbon group having 1 to 10 carbon atoms substituted with a fluorine atom.
  • examples of the group represented by R 43 include the same groups as R 13 in the general formula (2-2).
  • examples of the hydrocarbon group having 1 to 10 carbon atoms substituted by the fluorine atom of R 41 include the same groups as those of R 41 in the general formula (8a). .
  • the (A) polymer may have the repeating unit (V) individually by 1 type or in combination of 2 or more types.
  • Repeating unit (VI) examples include a repeating unit represented by the following general formula (9).
  • R 44 represents a hydrogen atom, a methyl group, or a trifluoromethyl group
  • W is an alicyclic hydrocarbon group having 4 to 20 carbon atoms.
  • Examples of the alicyclic hydrocarbon group having 4 to 20 carbon atoms represented by W in the general formula (9) include cyclobutane, cyclopentane, cyclohexane, bicyclo [2.2.1] heptane, bicyclo [2 2.2] octane, tricyclo [5.2.1.0 2,6 ] decane, tetracyclo [6.2.1.1 3,6 .
  • hydrocarbon groups composed of alicyclic rings derived from cycloalkanes such as 0 2,7 ] dodecane and tricyclo [3.3.1.1 3,7 ] decane.
  • These cycloalkane-derived alicyclic rings may have a substituent, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, 2-methylpropyl group.
  • the alkyl group may be substituted with one or more linear, branched or cyclic alkyl groups having 1 to 4 carbon atoms such as 1-methylpropyl group and t-butyl group. These are not limited to those substituted with these alkyl groups, but may be those substituted with a hydroxyl group, a cyano group, a hydroxyalkyl group having 1 to 10 carbon atoms, a carboxyl group, or oxygen. .
  • Examples of the monomer for constituting the repeating unit (VI) include (meth) acrylic acid-bicyclo [2.2.1] hept-2-yl ester, (meth) acrylic acid-bicyclo [2.2]. .2] Oct-2-yl ester, (meth) acrylic acid-tricyclo [5.2.1.0 2,6 ] dec-7-yl ester, (meth) acrylic acid-tetracyclo [6.2.1. 1 3,6 . 0 2,7 ] dodec-9-yl ester, (meth) acrylic acid-tricyclo [3.3.1.1 3,7 ] dec-1-yl ester, (meth) acrylic acid-tricyclo [3.3. 1.1,7 ] dec-2-yl ester and the like.
  • the repeating unit (VII) is a repeating unit derived from an aromatic compound.
  • Examples of the monomer for constituting the repeating unit (VII) include styrene, ⁇ -methylstyrene, 2-methylstyrene, 3 -Methylstyrene, 4-methylstyrene, 2-methoxystyrene, 3-methoxystyrene, 4-methoxystyrene, 4- (2-t-butoxycarbonylethyloxy) styrene 2-hydroxystyrene, 3-hydroxystyrene, 4-hydroxy Styrene, 2-hydroxy- ⁇ -methylstyrene, 3-hydroxy- ⁇ -methylstyrene, 4-hydroxy- ⁇ -methylstyrene, 2-methyl-3-hydroxystyrene, 4-methyl-3-hydroxystyrene, 5-methyl -3-hydroxystyrene, 2-methyl-4-hydroxystyrene, -
  • Repeating unit (VIII) is a repeating unit other than the above repeating units (I) to (VII).
  • the monomer (polymerizable unsaturated monomer) constituting the repeating unit (VIII) specifically, are 5-fluorobicyclo [2.2.1] hept-2-ene, 5,5-difluorobicyclo [2.2.1] hept-2-ene, 5,6-difluorobicyclo [2.2.1].
  • Dicyclopentadiene tricyclo [5.2.1.0 2,6 ] dec-8-ene, tricyclo [5.2.1.0 2,6 ] dec-3-ene, tricyclo [4.4.0. 1 2,5 ] undec-3-ene, tricyclo [6.2.1.0 1,8 ] undec-9-ene, tricyclo [6.2.1.0 1,8 ] undec-4-ene, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-3-ene, 8-methyltetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodec-3-ene, 8-ethylidenetetracyclo [6.2.1.1 3,6 .
  • ⁇ -hydroxymethyl acrylate esters such as methyl ⁇ -hydroxymethyl acrylate, ethyl ⁇ -hydroxymethyl acrylate, n-propyl ⁇ -hydroxymethyl acrylate, n-butyl ⁇ -hydroxymethyl acrylate;
  • Vinyl esters such as vinyl acetate, vinyl propionate and vinyl butyrate; unsaturated nitrile compounds such as (meth) acrylonitrile, ⁇ -chloroacrylonitrile, crotonnitrile, maleinonitrile, fumaronitrile, mesaconnitrile, citracononitrile, itaconic nitrile; Unsaturated amide compounds such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide, crotonamide, maleinamide, fumaramide, mesaconamide, citraconamide, itaconamide; N-vinyl- ⁇ -caprolactam, N-vinylpyrrolidone, vinyl Other nitrogen-containing vinyl compounds such as pyridine and vinylimidazole; (meth) acrylic acid, crotonic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride Un
  • [1-1-3-7] Content ratio of other repeating units Here, the preferable content rate of each repeating unit when the sum total of all the repeating units in (A) polymer shall be 100 mol% is shown below.
  • the content of the repeating unit (III) is usually 80 mol% or less, preferably 20 to 80 mol%, more preferably 30 to 70 mol%. When the content ratio of the repeating unit (III) is within this range, it is particularly effective from the viewpoint that the difference between the advancing contact angle and the receding contact angle at the time of immersion exposure can be reduced.
  • the content ratio of the repeating unit (IV) and the repeating unit (V) is usually 50 mol% or less independently of each other, preferably 5 to 30 mol%, more preferably 5 to 20 mol%.
  • the content ratio of the repeating unit (IV) and the repeating unit (V) is within this range, it is possible to achieve both of ensuring water repellency after coating, particularly during immersion exposure, and compatibility with the developer. This is particularly effective from the viewpoint. Further, the content ratio of the repeating unit (VI) to the repeating unit (VIII) is usually 50 mol% or less independently of each other.
  • (A) Polymer content The content of (A) polymer is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of (B) polymer.
  • the content is within the above range, the polymer (A) can be favorably distributed on the resist coating surface.
  • (A) polymer cannot fully be unevenly distributed in the resist film surface as the said content is less than 0.1 mass part. On the other hand, if it exceeds 20 parts by mass, the developability of the resist film may be impaired.
  • the weight average molecular weight (hereinafter also referred to as “Mw”) in terms of polystyrene by gel permeation chromatography (GPC) method of the polymer is preferably 1,000 to 50,000, preferably 1,000 to It is more preferably 40,000, particularly preferably 1,000 to 30,000. If this Mw is less than 1,000, a resist film having a sufficient receding contact angle may not be obtained. On the other hand, if it exceeds 50,000, the developability of the resist film may be lowered (specifically, development defects may occur).
  • the ratio (Mw / Mn) between the polymer Mw and the polystyrene-equivalent number average molecular weight (hereinafter also referred to as “Mn”) by the GPC method is preferably 1 to 5, and preferably 1 to 4. More preferably. If the Mw / Mn is more than 5, a resist film having a sufficient receding contact angle may not be obtained. Further, the developability of the resist film may be lowered (specifically, development defects may occur).
  • a polymer can be prepared as follows, for example. That is, a monomer containing the monomer for constituting the repeating unit (I) represented by the general formula (1) and the monomer for constituting the repeating unit containing a fluorine atom (repeating unit (II)). Prepare a monomer composition, and use the monomer in the monomer composition using a radical polymerization initiator such as hydroperoxides, dialkyl peroxides, diacyl peroxides, and azo compounds. Accordingly, it can be prepared by polymerization in a suitable solvent in the presence of a chain transfer agent.
  • a radical polymerization initiator such as hydroperoxides, dialkyl peroxides, diacyl peroxides, and azo compounds. Accordingly, it can be prepared by polymerization in a suitable solvent in the presence of a chain transfer agent.
  • Examples of the solvent used for the polymerization include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane; cyclohexane, cycloheptane, cyclooctane, decalin, norbornane.
  • Cycloalkanes such as: aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; halogenated hydrocarbons such as chlorobutanes, bromohexanes, dichloroethanes, hexamethylene dibromide, chlorobenzene; ethyl acetate, Saturated carboxylic acid esters such as n-butyl acetate, i-butyl acetate and methyl propionate; ketones such as acetone, 2-butanone, 4-methyl-2-pentanone and 2-heptanone; tetrahydrofuran, dimethoxyethanes, di Such as ethoxyethanes Ether such; methanol, ethanol, 1-propanol, 2-propanol, and the like alcohols such as 4-methyl-2-pentanol.
  • these solvents may be used individually by 1 type, and may be used in combination of
  • the reaction temperature in the polymerization is preferably 40 to 150 ° C, more preferably 50 to 120 ° C.
  • the reaction time is preferably 1 to 48 hours, and more preferably 1 to 24 hours.
  • the (A) polymer and the (B) polymer are not the same.
  • the polymer (B) is not particularly limited as long as it is a resin that is insoluble in alkali or hardly soluble in alkali and becomes alkali-soluble by the action of an acid.
  • the polymer is represented by the general formula (7-1) already described above.
  • a polymer having a repeating unit represented by formula (7-2) and a repeating unit represented by formula (7-2) is preferred.
  • “alkali-insoluble or alkali-insoluble” is used when a resist pattern is formed from a resist film formed using a radiation-sensitive resin composition containing (B) a polymer.
  • a 100 nm-thick film using only the polymer (B) instead of the resist film is developed under alkaline development conditions, it means that 50% or more of the initial film thickness remains after development.
  • Repeating unit (7-1) The content ratio of the repeating unit (7-1) in the polymer (B) is preferably 15 to 85 mol%, preferably 25 to 75 mol%, based on all repeating units in the polymer (B). More preferred is 35 to 60 mol%. If it is less than 15 mol%, the contrast after dissolution is impaired, and the pattern shape may be lowered. On the other hand, if it exceeds 85 mol%, the adhesion to the substrate is insufficient and the pattern may be peeled off.
  • Repeating unit (7-2) The content ratio of the repeating unit (7-2) in the polymer (B) is preferably 5 to 75 mol%, more preferably 15 to 65 mol% with respect to all the repeating units in the polymer (B). More preferably, it is particularly preferably 25 to 55 mol%. If it is less than 5 mol%, the resist film may have insufficient adhesion to the substrate and the pattern may be peeled off. On the other hand, if it exceeds 75 mol%, the contrast after dissolution is impaired, and the pattern shape may be lowered.
  • the polymer (B) may have a repeating unit other than the above repeating units (7-1) and (7-2) (hereinafter sometimes referred to as “other repeating units”).
  • Examples of the monomer (polymerizable unsaturated monomer) for constituting another repeating unit include those similar to the above-mentioned repeating unit (V) or repeating unit (VI).
  • a polymer can be prepared as follows, for example. That is, a monomer composition containing a monomer for constituting the repeating unit (7-1) and a monomer for constituting the repeating unit (7-2) is prepared. Use a radical polymerization initiator such as hydroperoxides, dialkyl peroxides, diacyl peroxides, and azo compounds as monomers in the product, and in a suitable solvent in the presence of a chain transfer agent as necessary. It can be prepared by copolymerization with.
  • a radical polymerization initiator such as hydroperoxides, dialkyl peroxides, diacyl peroxides, and azo compounds
  • the solvent examples include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane; cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin and norbornane.
  • alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane and n-decane
  • cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, decalin and norbornane.
  • Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, cumene; halogenated hydrocarbons such as chlorobutane, bromohexane, dichloroethane, hexamethylene dibromide, chlorobenzene; ethyl acetate, n-butyl acetate, i-acetate Examples thereof include saturated carboxylic acid esters such as butyl and methyl propionate; ethers such as tetrahydrofuran, dimethoxyethane and diethoxyethane. These solvents can be used alone or in combination of two or more.
  • the reaction temperature is usually 40 to 120 ° C., preferably 50 to 90 ° C.
  • the reaction time is usually 1 to 48 hours, preferably 1 to 24 hours.
  • the weight average molecular weight (hereinafter sometimes referred to as “Mw”) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is usually 3,000 to 300,000, preferably 4,000. To 200,000, more preferably 4,000 to 100,000.
  • Mw is less than 3,000, the heat resistance as a resist film may be lowered.
  • it exceeds 300,000 developability as a resist film may be lowered.
  • the polymer is preferably as less as possible as impurities such as halogen and metal, whereby the sensitivity, resolution, process stability, pattern shape and the like as a resist film can be further improved.
  • Examples of polymer purification methods include chemical purification methods such as washing with water and liquid-liquid extraction, and combinations of these chemical purification methods with physical purification methods such as ultrafiltration and centrifugation. Can be mentioned.
  • polymer can be contained individually by 1 type or in combination of 2 or more types.
  • (C) Radiation sensitive acid generator (C) The radiation-sensitive acid generator ((C) acid generator) generates an acid upon irradiation with radiation (hereinafter sometimes referred to as “exposure”). (C) The acid generator dissociates the acid-dissociable group present in the polymer (B) by the action of the acid generated by exposure to render the polymer (B) alkali-soluble. As a result, the exposed portion of the resist film becomes readily soluble in an alkali developer, and a positive resist pattern can be formed. Examples of the (C) acid generator include compounds described in paragraphs [0080] to [0113] of JP-A-2009-134088.
  • the acid generator include diphenyliodonium trifluoromethanesulfonate, diphenyliodonium nonafluoro-n-butanesulfonate, diphenyliodonium perfluoro-n-octanesulfonate, and bis (4-t-butylphenyl) iodonium.
  • Trifluoromethanesulfonate bis (4-t-butylphenyl) iodonium nonafluoro-n-butanesulfonate, bis (4-t-butylphenyl) iodonium perfluoro-n-octanesulfonate, triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium Nonafluoro-n-butanesulfonate, triphenylsulfonium perfluoro-n-octanesulfonate, cyclohexyl 2-oxocyclohexane Sill methyl trifluoromethanesulfonate, dicyclohexyl-2-oxo-cyclohexyl trifluoromethane sulfonate, 2-oxo-cyclohexyl dimethyl sulfonium trifluoromethane sulfonate, 4-hydroxy-1-nap
  • (C) acid generator can be contained individually by 1 type or in combination of 2 or more types.
  • the content of the (C) acid generator is preferably 0.1 to 30 parts by weight, more preferably 2 to 27 parts by weight, with respect to 100 parts by weight of the polymer (B). Particularly preferred is 25 parts by mass. If it is less than 0.1 parts by mass, the sensitivity and resolution as a resist film may be lowered. On the other hand, if it exceeds 30 parts by mass, the coatability and pattern shape as a resist film may be deteriorated.
  • the radiation-sensitive resin composition of the present invention includes an acid diffusion controller, an alicyclic additive, a surfactant, a sensitizer, an antihalation agent, an adhesion aid, a storage stabilizer, Various additives such as foaming agents can be contained.
  • Acid diffusion controller examples include a compound represented by the general formula (10) (hereinafter referred to as “nitrogen-containing compound (I)”), a compound having two nitrogen atoms in the same molecule (hereinafter referred to as “nitrogen-containing compound”).
  • Compound (II) compounds having 3 or more nitrogen atoms (hereinafter referred to as“ nitrogen-containing compound (III) ”), amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like.
  • R 45 to R 47 each independently represents a hydrogen atom, an optionally substituted linear, branched or cyclic alkyl group, aryl group, or aralkyl group. Show.
  • nitrogen-containing compound (I) examples include monoalkylamines such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine; di-n-butylamine, di-n- Dialkylamines such as pentylamine, di-n-hexylamine, di-n-heptylamine, di-n-octylamine, di-n-nonylamine, di-n-decylamine; triethylamine, tri-n-propylamine, Trialkylamines such as tri-n-butylamine, tri-n-pentylamine, tri-n-hexylamine, tri-n-heptylamine, tri-n-octylamine, tri-n-nonylamine, tri-n-decylamine Aniline, N-methylaniline, N, N-dimethylaniline,
  • nitrogen-containing compound (II) examples include ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetrakis (2-hydroxypropyl) ethylenediamine, tetramethylenediamine, Hexamethylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylamine, 2,2′-bis (4-aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 1,4-bis [1- (4-aminophenyl) -1-methylethyl] benzene, 1,3-bis [1- ( 4-aminophenyl) -1-methylethyl] benzene and the like.
  • nitrogen-containing compound (III) examples include polymers of polyethyleneimine, polyallylamine, dimethylaminoethylacrylamide, and the like.
  • amide group-containing compounds include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide, pyrrolidone, N-methylpyrrolidone and the like. Can be mentioned.
  • urea compounds include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tributylthiourea and the like. Can do.
  • nitrogen-containing heterocyclic compound examples include pyridine, 2-methylpyridine, 4-methylpyridine, 2-ethylpyridine, 4-ethylpyridine, 2-phenylpyridine, 4-phenylpyridine, and N-methyl-4-phenylpyridine.
  • pyridines such as nicotine, nicotinic acid, nicotinic acid amide, quinoline, 8-oxyquinoline, acridine, pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, morpholine, 4-methylmorpholine, piperazine, 1, Examples include 4-dimethylpiperazine, 1,4-diazabicyclo [2.2.2] octane, and the like.
  • nitrogen-containing compounds (I), nitrogen-containing compounds (II), and nitrogen-containing heterocyclic compounds are preferable.
  • an acid diffusion control agent can be used individually by 1 type or in combination of 2 or more types.
  • the content of the acid diffusion controller is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, with respect to 100 parts by mass of the polymer (B).
  • the content of the acid diffusion control agent is excessive, the sensitivity of the formed resist film tends to be remarkably lowered.
  • Alicyclic additive is a component that exhibits an action of further improving dry etching resistance, pattern shape, adhesion to a substrate, and the like.
  • examples of such alicyclic additives include t-butyl 1-adamantanecarboxylate, t-butoxycarbonylmethyl 1-adamantanecarboxylate, di-t-butyl 1,3-adamantanedicarboxylate, and 1-adamantaneacetic acid.
  • adamantane derivatives such as t-butyl, 1-adamantane acetate t-butoxycarbonylmethyl, 1,3-adamantanediacetate di-t-butyl; deoxycholate t-butyl, deoxycholate t-butoxycarbonylmethyl, deoxychol Deoxycholic acid esters such as 2-ethoxyethyl acid, 2-cyclohexyloxyethyl deoxycholic acid, 3-oxocyclohexyl deoxycholic acid, tetrahydropyranyl deoxycholic acid, mevalonolactone ester deoxycholic acid; t-butyl lithocholic acid , Lithocholic acid esters such as t-butoxycarbonylmethyl cholic acid, 2-ethoxyethyl lithocholic acid, 2-cyclohexyloxyethyl lithocholic acid, 3-oxocyclohexyl lithocholic acid, tetrahydropyranyl lithocholic
  • alicyclic additives can be used individually by 1 type or in mixture of 2 or more types. Content of an alicyclic additive is 50 mass parts or less normally with respect to 100 mass parts of (B) polymers, Preferably it is 30 mass parts or less.
  • a surfactant is a component that exhibits an effect of improving coatability, developability, and the like.
  • examples of such surfactants include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene n-octylphenyl ether, polyoxyethylene n-nonylphenyl ether, polyethylene glycol dilaurate.
  • nonionic surfactants such as polyethylene glycol distearate, KP341 (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow No. 75, no.
  • composition solution In the radiation-sensitive resin composition (composition solution) of the present invention, the above-mentioned components are dissolved in a solvent so that the total solid content concentration is usually 1 to 50% by mass, preferably 3 to 25% by mass. Then, it can prepare by filtering with a filter with a pore diameter of about 0.02 ⁇ m, for example.
  • Solvent examples include linear or branched ketones; cyclic ketones; propylene glycol monoalkyl ether acetates; alkyl 2-hydroxypropionate; 3-alkoxypropion. In addition to alkyl acids,
  • n-propyl alcohol i-propyl alcohol, n-butyl alcohol, t-butyl alcohol, cyclohexanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether , Diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, propylene glycol monomethyl ether , Propylene glycol monoethyl Ether, propylene glycol mono-n-propyl ether, toluene, xylene, ethyl 2-hydroxy-2-methylpropionate, ethyl eth
  • linear or branched ketones cyclic ketones
  • propylene glycol monoalkyl ether acetates alkyl 2-hydroxypropionates
  • alkyl 3-alkoxypropions are preferred.
  • these solvents can be used individually by 1 type or in combination of 2 or more types.
  • Resist pattern forming method includes a step (1) of forming a resist film comprising the above-described radiation-sensitive resin composition of the present invention on a substrate, and a step (2) of exposing the formed resist film, And (3) a step of developing the exposed resist film to form a resist pattern.
  • a resist pattern having an excellent cross-sectional shape can be formed.
  • the resist film formed by this step has a large receding contact angle with respect to an immersion exposure liquid such as water, and hardly causes development defects.
  • the substrate for example, a silicon wafer, a wafer coated with aluminum, or the like can be used.
  • the resist film is formed by applying a resin composition solution comprising the radiation-sensitive resin composition of the present invention onto a substrate by an appropriate application means such as spin coating, cast coating, roll coating, and the like, and then performing pre-baking (PB ) To evaporate the solvent in the coating film.
  • a resin composition solution specifically, the radiation-sensitive resin composition of the present invention with the total solid content adjusted (usually 1 to 50% by mass) is filtered through a filter having a pore diameter of about 0.2 ⁇ m. Can be used.
  • the thickness of the resist film is not particularly limited, but is preferably 10 to 5000 nm, and more preferably 10 to 2000 nm.
  • the prebaking heating conditions vary depending on the composition of the radiation sensitive resin composition, but are preferably about 30 to 200 ° C, more preferably 50 to 150 ° C.
  • Step (2) (2) The step is a step of exposing the formed resist film.
  • the acid generated from the (C) acid generator by exposure, the acid dissociable group in the polymer (B) is dissociated, and the solubility of the exposed portion of the resist in the alkaline developer is increased, and the exposed portion is It can be dissolved by an alkaline developer.
  • the radiation used for the exposure can be appropriately selected according to the type of the (C) acid generator used. Examples thereof include visible light, ultraviolet light, far ultraviolet light, X-rays, and charged particle beams. Can do. Among these, far ultraviolet rays represented by ArF excimer laser (wavelength 193 nm) or KrF excimer laser (wavelength 248 nm) are preferable, and ArF excimer laser (wavelength 193 nm) is particularly preferable.
  • the exposure conditions such as the exposure amount can be appropriately selected according to the blending composition of the radiation sensitive resin composition and the kind of the additive.
  • PEB heat treatment
  • the heating condition of PEB can be appropriately adjusted depending on the composition of the radiation sensitive resin composition, but is preferably 30 to 200 ° C., more preferably 50 to 170 ° C.
  • a protective film can be provided on the resist film as disclosed in, for example, JP-A-5-188598. Moreover, these techniques can be used together.
  • an immersion exposure liquid on the resist film formed in the step (1) and expose the resist film through the immersion exposure liquid. That is, it is preferable to perform immersion exposure.
  • immersion exposure for example, as disclosed in Japanese Patent Application Laid-Open No. 2005-352384, etc., in order to prevent an acid generator or the like from the resist film from flowing out into the immersion exposure solution.
  • an immersion protective film may be disposed on the resist film.
  • immersion exposure liquid examples include pure water, hydrocarbons, and fluorinated hydrocarbons.
  • Examples of the developer used for development include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, aqueous ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, Triethylamine, methyldiethylamine, ethyldimethylamine, triethanolamine, tetramethylammonium hydroxide, pyrrole, piperidine, choline, 1,8-diazabicyclo- [5.4.0] -7-undecene, 1,5-diazabicyclo- [ 4.3.0] -5-nonene and an alkaline aqueous solution in which at least one alkaline compound is dissolved.
  • the concentration of the alkaline aqueous solution is preferably 10% by mass or less. If the concentration of the alkaline aqueous solution is more than 10% by mass, the unexposed area may be dissolved in the developer.
  • An organic solvent can be added to the developer composed of the alkaline aqueous solution.
  • the organic solvent include ketones such as acetone, methyl ethyl ketone, methyl i-butyl ketone, cyclopentanone, cyclohexanone, 3-methylcyclopentanone, and 2,6-dimethylcyclohexanone; methyl alcohol, ethyl alcohol, n-propyl alcohol Alcohols such as i-propyl alcohol, n-butyl alcohol, t-butyl alcohol, cyclopentanol, cyclohexanol, 1,4-hexanediol and 1,4-hexanedimethylol; ethers such as tetrahydrofuran and dioxane; Examples thereof include esters such as ethyl acetate, n-butyl acetate and i-amyl acetate; aromatic hydrocarbons such as toluene and xy
  • the amount of the organic solvent used is preferably 100 parts by volume or less with respect to 100 parts by volume of the alkaline aqueous solution. If the amount of the organic solvent used is more than 100 parts by volume, the developability is lowered, and there is a possibility that the remaining development in the exposed part increases.
  • an appropriate amount of a surfactant or the like can be added to the developer composed of the alkaline aqueous solution.
  • the polymer of the present invention has a repeating unit (3) represented by the following general formula (3), contains a fluorine atom in the molecule, and is contained in the above-described radiation-sensitive resin composition of the present invention.
  • A The same as the polymer.
  • Such a polymer can be suitably used as a material for a radiation-sensitive resin composition capable of forming a resist pattern having an excellent cross-sectional shape.
  • R 17 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • X 2 represents a single bond, a group represented by the general formula “—O—R 21 —”, A group represented by the formula “—C ( ⁇ O) —O—R 21 —”, a group represented by the general formula “—C ( ⁇ O) —NH—R 21 —”, a group having 1 to 4 carbon atoms A linear or branched alkanediyl group or a phenylene group, provided that R 21 may have an ester group or an ether group, and may be a linear, branched or cyclic group having 1 to 10 carbon atoms.
  • a hydrocarbon group or a single bond is a single bond or a linear, branched or cyclic alkanediyl group having 1 to 20 carbon atoms which may have a substituent; alkenylene group to 20, an arylene group or an aralkylene group, having 6 to 10 carbon atoms, R 9 is a hydrogen atom or, may have a substituent, C 1-20 straight, branched or cyclic alkyl group, an alkenyl group, having 6 to 10 carbon atoms 2-20 An aryl group, or an aralkyl group, or R 18 and R 19 are combined to form a cyclic structure with the nitrogen atom to which they are bonded, and the cyclic structure has 3 to 20 carbons.
  • 20 is an acid dissociable group.
  • the repeating unit (3) represented by the general formula (3) is preferably a repeating unit represented by the following general formula (3-1).
  • R 17 represents a hydrogen atom, a methyl group or a trifluoromethyl group.
  • X 2 represents a single bond, a group represented by the general formula “—O—R 21 —”.
  • R 18 is a single bond or a linear, branched or cyclic alkanediyl group having 1 to 20 carbon atoms which may have a substituent, carbon
  • R 19 is a hydrogen atom or an optionally substituted linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or 6 to 6 carbon atoms.
  • R 22 , R 23 and R 24 are each a linear or branched alkyl group having 1 to 4 carbon atoms, a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, an aryl group or an aralkyl group. Or R 22 and R 23 are bonded to each other to form an alicyclic hydrocarbon group having 4 to 20 carbon atoms together with the carbon atom to which these are bonded, and R 24 is a group having 1 to 4 carbon atoms.
  • Linear or branched alkyl group, 4 to 4 carbon atoms 20 represents a monovalent alicyclic hydrocarbon group, aryl group or aralkyl group.
  • the polymer of the present invention is not particularly limited as long as it has a repeating unit (3) and contains a fluorine atom in the molecule, but the repeating unit (4) having a fluorine atom (hereinafter referred to as “repeating unit (4) It is preferable that the repeating unit represented by the following general formula (4-1) (hereinafter sometimes referred to as “repeating unit (4-1)”) or the following general formula It is more preferable that the resin further has at least one of repeating units represented by the formula (4-2) (hereinafter sometimes referred to as “repeating unit (4-2)”).
  • a material having at least one of the repeating unit (4-1) and the repeating unit (4-2) is preferably used as a material for a radiation-sensitive resin composition capable of forming a resist pattern having a more excellent cross-sectional shape. be able to.
  • R 25 represents a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • E 2 represents a linking group, and R 26 has at least one fluorine atom.
  • R 27 represents a hydrogen atom, a methyl group, or a trifluoromethyl group.
  • R 28 represents a single bond or a (n 2 +1) valence having 1 to 10 carbon atoms.
  • a linear, branched or cyclic, saturated or unsaturated hydrocarbon group of R 29 is a single bond or a divalent linear, branched or cyclic group having 1 to 20 carbon atoms, .
  • R 30 showing a saturated or unsaturated hydrocarbon group include a methylene group substituted by a fluorine atom or .
  • R 31 of a linear or branched fluoroalkyl alkanediyl group having 2 to 20 carbon atoms, is a single Represents a bond or —CO—,
  • R 32 represents a hydrogen atom or an acid-dissociable group, and
  • n 2 represents an integer of 1 to 3.
  • the polymer of the present invention can be synthesized in the same manner as the polymer (A) described above.
  • ultrapure water comes into contact with the resist film (ie, after the ring is filled with ultrapure water), after 3 seconds, after 5 seconds, after 10 seconds, after 30 seconds, after 60 seconds.
  • ultrapure water was collected from an arbitrary ring sequentially with a glass syringe to obtain a sample for analysis (ie, after 5 seconds, ultrapure water was removed from the first ring.
  • the ultrapure water was recovered from the second ring, and thus the ultrapure water of the seventh ring was sequentially recovered to obtain a sample for analysis.
  • the average value (average value of the recovery rate of ultrapure water) of the ultrapure water recovered from each ring after the experiment was 95% or more.
  • LC-MS liquid chromatograph mass spectrometer, LC part: SERIES1100, MS part manufactured by AGILENT.
  • Perseptive Biosystems, Inc. (Mariner, Inc.) was used to measure all samples for analysis.
  • the measurement conditions were as follows: “CAPCELL PAK MG” manufactured by Shiseido Co., Ltd. was used as the column used, the flow rate was 0.2 ml / min, the measurement temperature was 35 ° C., and the effluent solvent was 0.1 in water / methanol (3/7). What added the mass% formic acid was used.
  • each peak intensity of the 1 ppb, 10 ppb, and 100 ppb aqueous solutions of the acid generator is measured under the above measurement conditions to create a calibration curve, and each analysis is performed from the peak intensity of all analytical samples using this calibration curve.
  • the elution amount (mole) of the acid generator in the sample for use was calculated. Thereafter, from the relationship between the elution amount (mole), the recovery time (seconds), and the area (cm 2 ) of the resist film surface in contact with ultrapure water, the elution amount per second (1 cm 2 ) of the resist film Mol) (that is, elution rate (mol / cm 2 / sec)), and then the average value of all analytical samples was determined.
  • the radiation-sensitive resin composition is spin-coated on a substrate using “CLEAN TRACK ACT8” (manufactured by Tokyo Electron), and pre-baked (PB) at 100 ° C. for 60 seconds to form a resist film having a thickness of 100 nm on the substrate. Formed. Thereafter, using the trade name “DSA-10” manufactured by KRUS, the receding contact angle (°) was measured by the following procedure in an environment of room temperature 23 ° C., humidity 45%, and normal pressure.
  • the wafer stage position of the product name “DSA-10” (manufactured by KRUS) is adjusted, and the substrate is set on the adjusted stage.
  • water is injected into the needle, and the position of the needle is finely adjusted so as to be a position (initial position) where water droplets can be formed on the set substrate.
  • water is discharged from the needle to form a 25 ⁇ L water droplet (with the tip of the needle inserted) on the substrate.
  • the needle is once withdrawn from the water droplet, and the needle is again pulled down to the initial position and placed in the water droplet (the tip of the needle is inserted).
  • the water droplet is sucked by the needle at a speed of 10 ⁇ L / min for 90 seconds, and at the same time, the contact angle between the liquid surface of the water droplet and the substrate is measured once per second (total 90 times, ie, 90 seconds in total).
  • the average value for the contact angle for 20 seconds from the time when the measured value of the contact angle was stabilized was calculated as the receding contact angle.
  • the advancing contact angle was measured by the following procedure. First, after forming a water droplet of 25 ⁇ L in the same manner as the measurement of the receding contact angle, the needle is once pulled out from the water droplet, and the needle is pulled down again to the initial position and placed in the water droplet (the tip of the needle is inserted). Subsequently, water is discharged (discharged) from the needle into the water droplet at a speed of 10 ⁇ L / min for 90 seconds, and at the same time, the contact angle between the liquid level of the water droplet and the substrate is measured once every second (total 90 times, that is, a total of 90 Seconds). Among these measured values, the average value for the contact angle for 20 seconds from the time when the measured value of the contact angle was stabilized was calculated as the advancing contact angle.
  • a resin composition (trade name “ARC29A” manufactured by Brewer Science Co., Ltd.) is spin-coated on a substrate using “CLEAN TRACK ACT8” (manufactured by Tokyo Electron), and pre-baked (PB) at 100 ° C. for 60 seconds. A lower layer film having a film thickness of 300 nm was formed. A radiation sensitive resin composition was spin-coated on this lower layer film by “CLEAN TRACK ACT8” and pre-baked (PB) at 90 ° C. for 60 seconds to form a resist film having a film thickness of 90 nm.
  • This resist film was exposed through a predetermined mask pattern using a full-field reduction projection exposure apparatus (trade name: S306C, Nikon Corporation, numerical aperture 0.78). Thereafter, PEB was performed at 100 ° C. for 60 seconds, and then developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution (hereinafter referred to as “TMAH aqueous solution”) at 25 ° C. for 30 seconds, washed with water, and dried. The remaining film thickness was measured.
  • the acid diffusion length was calculated from the value of the exposure amount and the remaining film thickness using Fick's first law, and evaluated according to the following criteria. This evaluation is an evaluation used as an index for acid concentration control. This evaluation is shown as “acid diffusion length” in Table 4.
  • B The absolute value of the acid diffusion length is 3 nm 2 / second or more.
  • a step ((1) step) of forming a resist film made of a radiation-sensitive resin composition on the substrate was performed.
  • the radiation-sensitive resin composition is spin-coated on the 12-inch silicon wafer with the above-mentioned “CLEAN TRACK ACT8” (manufactured by Tokyo Electron), and pre-baked (PB) at 100 ° C. for 60 seconds.
  • PB pre-baked
  • an immersion exposure liquid was placed on the formed resist film, and a step of exposing the resist film through the immersion exposure liquid (step (2)) was performed.
  • pure water is placed as an immersion exposure liquid on the formed resist film having a thickness of 205 nm, and ArF excimer laser exposure apparatus (“NSR S306C”, manufactured by Nikon, illumination condition; NA 0.78 sigma. 93 / 0.69), the resist film was exposed through pure water and a mask pattern. Thereafter, the exposed resist film was subjected to PEB at 120 ° C. for 60 seconds.
  • the exposed resist film was developed to form a resist pattern (step (3)). Specifically, after exposure, the resist film subjected to PEB was developed with a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ° C. for 30 seconds, washed with water, and dried to form a line having a line width of 90 nm. -An and space pattern (1L1S) was formed.
  • the cross-sectional shape (in the thickness direction) of the formed 90 nm line and space pattern was observed with “S-4800” manufactured by Hitachi High-Technologies Corporation, and the line portion in the middle portion of the resist film in the thickness direction was observed.
  • the line width Lb and the line width La on the resist coating surface were measured. Thereafter, the formula: La / Lb is calculated, and the case where the calculated value is within the range of 0.9 ⁇ La / Lb ⁇ 1.1 (satisfying the range) is determined as “good” and out of the range ( The case where the calculated value does not satisfy the above range was defined as “bad”. This evaluation is shown as “pattern shape” in Table 4.
  • the Mw of the polymer (A-1) obtained in this synthesis example was 6100, and Mw / Mn was 1.4. Further, the content of the repeating unit derived from the compound (M-1) with respect to 100 mol% of the total amount of all the repeating units derived from the compound (M-1), the compound (M-2), and (M-3) The content was 58 mol%, the content of repeating units derived from the compound (M-2) was 31 mol%, and the content of repeating units derived from the compound (M-3) was 11 mol%. . The measurement results are shown in Table 2.
  • “specific monomer” means repeating unit (I)
  • “fluorine atom-containing monomer” means repeating unit (II) (repeating unit (IV)).
  • the term “acid-dissociable group-containing monomer” means a monomer other than repeating unit (I) (repeating unit (III)) and repeating unit (II) (repeating unit (IV)). Among the units, it means a monomer containing an acid dissociable group, and “other monomer” means a monomer other than the monomer containing an acid dissociable group among other repeating units.
  • Monomer species “M-1” to “M-11” represent compounds represented by the above formulas (M-1) to (M-11), respectively.
  • the precipitated white substance was filtered off. Thereafter, the filtered white material was redissolved in 200 g of 2-butanone and charged into 1000 g of hexane to precipitate the white material again. The precipitated white substance was filtered off, and redissolved and filtered again. Then, the white substance obtained by filtration was dried at 50 ° C. for 17 hours to obtain a white powder copolymer (38 g, yield 75%). This copolymer was designated as (B-1) polymer.
  • the Mw of the polymer (B-1) obtained in this synthesis example was 6500, and Mw / Mn was 1.6.
  • the compound (M-A), the repeating unit derived from the compound (MB), and the total amount of repeating units derived from the compound (MC) are 100 mol%.
  • the content of the repeating unit derived from (MA) is 36 mol%, the content of the repeating unit derived from the compound (MB) is 15 mol%, and the repeating unit derived from the compound (MC)
  • the unit content was 49 mol%.
  • Table 2 The measurement results are shown in Table 2.
  • Example 1 2 parts of the polymer (A-1) in Synthesis Example 1, 100 parts of the polymer (B-1) in Synthesis Example 8, and a compound represented by the following formula (C-1) ((C) a radiation sensitive acid 10.8 parts of the generator (referred to as “(C) acid generator” in Table 3) is mixed and then dissolved in propylene glycol monomethyl ether acetate as a solvent and filtered through a filter having a pore size of 0.02 ⁇ m. Thus, a radiation sensitive resin composition (composition solution) having a solid content of 5% by mass was prepared. Each said evaluation was performed about the prepared radiation sensitive resin composition.
  • the measurement result of the elution amount is “good”
  • the difference between the advancing contact angle and the receding contact angle is “A”
  • the acid diffusion length is measured.
  • the result was “A”
  • the result of the cross-sectional shape of the pattern was “good”.
  • Examples 2 to 11, Comparative Examples 1 and 2 A radiation-sensitive resin composition was prepared in the same manner as in Example 1 except that the components shown in Table 3 were used in the amounts (parts by mass) shown in Table 3. Each evaluation mentioned above was performed about the prepared radiation sensitive resin composition. The evaluation results are shown in Table 4. “C-1” to “C-5” shown in Table 3 are compounds represented by the above formulas (C-1) to (C-5), respectively.
  • the radiation sensitive resin compositions of Examples 1 to 11 can form a resist pattern having an excellent cross-sectional shape as compared with the radiation sensitive resin compositions of Comparative Examples 1 and 2. I was able to confirm that it was possible.
  • the radiation-sensitive resin composition of the present invention is suitable as a resist film material used in lithography technology in the field of microfabrication represented by the manufacture of integrated circuit elements.
  • the resist pattern forming method of the present invention can be suitably employed in lithography technology in the field of microfabrication represented by the manufacture of integrated circuit elements.
  • the polymer of the present invention is suitable as a resist film material used in lithography technology in the field of microfabrication represented by the production of integrated circuit elements.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 断面形状に優れたレジストパターンを形成することができる感放射線性樹脂組成物を提供する。(A)下記一般式(1)で表される繰り返し単位(I)を有し、分子中にフッ素原子を含む重合体と、(B)酸解離性基を有するアルカリ不溶性またはアルカリ難溶性の重合体と、(C)感放射線性酸発生剤と、を含有する感放射線性樹脂組成物。(一般式(1)中、Rは水素原子など、X及びRは単結合など、Rは水素原子など、Rは酸解離性基である。)

Description

感放射線性樹脂組成物、レジストパターン形成方法、及び、重合体
 本発明は感放射線性樹脂組成物、レジストパターン形成方法、及び、重合体に関し、更に詳しくは、断面形状に優れたレジストパターンを形成可能な感放射線性樹脂組成物、レジストパターン形成方法、及び、重合体に関する。
 集積回路素子の製造に代表される微細加工の分野においては、より高い集積度を得るために、リソグラフィーにおける加工サイズの微細化が進んでおり、より短波長の放射線の利用が鋭意検討されている。このような短波長の放射線としては、例えば、水銀灯の輝線スペクトル(波長254nm)、KrFエキシマレーザー(波長248nm)或いはArFエキシマレーザー(波長193nm)等に代表される遠紫外線、シンクロトロン放射線等のX線、電子線等の荷電粒子線を挙げることができるが、これらの中でも、エキシマレーザーを使用するリソグラフィーが、その高出力、高効率特性等の理由から特に注目されている。
 リソグラフィーに用いられるレジストに関しても、エキシマレーザーにより微細パターンを高感度かつ高解像度で再現性よく形成できることが必要とされている。このようなエキシマレーザー等の遠紫外線に適したレジスト被膜として、放射線の照射により酸を発生する感放射線性酸発生剤を使用し、その酸の作用によりレジストの感度を向上させた「化学増幅型レジスト」が提案されている。
 化学増幅型レジストにおいて、感放射線性酸発生剤から発生した酸のレジスト被膜中における拡散現象を制御し、放射線の非照射領域での好ましくない化学反応を抑制する作用を有する酸拡散制御剤を配合したレジスト組成物が開示されている(例えば、特許文献1、2参照)。このレジスト組成物は、貯蔵安定性が改善されるとともに、レジスト被膜としての解像度も向上し、また放射線の照射から照射後の加熱処理までの引き置き時間(PED)の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性も改善することができる。
 しかしながら、微細加工の分野においては、更に微細なレジストパターン(例えば、線幅が45nm程度の微細なレジストパターン)を形成することが切望されている。そして、更に微細なレジストパターンを形成可能にするためには、例えば、露光装置の光源波長の短波長化や、レンズの開口数(NA)を増大させること等を挙げることができる。しかし、光源波長の短波長化には、新たな露光装置が必要になるが、このような装置は高額である。また、レンズの開口数を増大させる場合、解像度と焦点深度がトレードオフの関係にあるため、解像度を向上させることができても焦点深度が低下するという問題がある。
 そこで、近年、このような問題を解決するリソグラフィー技術として、液浸露光(リキッドイマージョンリソグラフィ)法という方法が報告されている。この方法は、露光時に、レンズとレジスト被膜との間(レジスト被膜上)に液浸露光液(例えば、純水、フッ素系不活性液体等)を介在させる方法である。この方法によると、従来、空気や窒素等の不活性ガスで満たされていた露光光路空間を、空気等よりも屈折率(n)の大きい液浸露光液で満たすことになるため、従来と同様の露光光を用いた場合であっても、露光波長を短波長化等した場合と同様の効果を得ることができる。即ち、高解像性が得られ、焦点深度の低下がない。
 従って、このような液浸露光によれば、既存の装置に実装されているレンズを用いても、低コストで、高解像性に優れ、焦点深度も優れるレジストパターンを形成することができる。そのため、液浸露光に用いる液浸露光用レジスト組成物が開示されている(例えば、特許文献1、2参照)。
特開2008-133312号公報 特開2009-031767号公報
 しかしながら、特許文献1及び2に記載された組成物を用いた場合であっても、断面形状に優れたレジストパターンを形成することは困難である。即ち、得られるライン・アンド・スペースパターンのライン部分の断面形状が四角形状(矩形状)にならず、角が取れて丸くなってしまうということがあった。そのため、断面形状に優れた(即ち、角が取れて丸くなっていない)レジストパターンを形成可能な感放射線性樹脂組成物の開発が切望されていた。
 本発明は、上述のような従来技術の課題を解決するためになされたものであり、断面形状に優れたレジストパターンを形成可能な感放射線性樹脂組成物、レジストパターン形成方法、及び、重合体を提供することを目的とする。
 本発明により、以下の感放射線性樹脂組成物、レジストパターン形成方法、及び、重合体が提供される。
[1](A)下記一般式(1)で表される繰り返し単位(I)を有し、分子中にフッ素原子を含む重合体と、(B)酸解離性基を有するアルカリ不溶性またはアルカリ難溶性の重合体(但し、前記一般式(1)で表される繰り返し単位(I)を有する重合体を除く)と、(C)感放射線性酸発生剤と、を含有する感放射線性樹脂組成物。
Figure JPOXMLDOC01-appb-C000009
(前記一般式(1)中、Rは、水素原子、メチル基またはトリフルオロメチル基を示す。Xは、単結合、一般式「-O-R-」で表される基、一般式「-C(=O)-O-R-」で表される基、一般式「-C(=O)-NH-R-」で表される基、炭素数1~4の直鎖状若しくは分岐状のアルカンジイル基、またはフェニレン基である。但し、Rは、エステル基またはエーテル基を有していてもよい、炭素数1~10の直鎖状、分岐状または環状の炭化水素基または単結合である。Rは、単結合、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状または環状のアルカンジイル基、炭素数2~20のアルケニレン基、炭素数6~10のアリーレン基、またはアラルキレン基であり、Rは、水素原子、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状若しくは環状のアルキル基、炭素数2~20のアルケニル基、炭素数6~10のアリール基、またはアラルキル基であるか、或いは、RとRが結合してこれらが結合する窒素原子と共に環状構造を形成し、前記環状構造中に3~20個の炭素を有する。Rは酸解離性基である。)
[2]前記一般式(1)で表される繰り返し単位(I)が、下記一般式(1-1)で表される繰り返し単位である前記[1]に記載の感放射線性樹脂組成物。
Figure JPOXMLDOC01-appb-C000010
(前記一般式(1-1)中、Rは、水素原子、メチル基またはトリフルオロメチル基を示す。Xは、単結合、一般式「-O-R-」で表される基、一般式「-C(=O)-O-R-」で表される基、一般式「-C(=O)-NH-R-」で表される基、炭素数1~4の直鎖状若しくは分岐状のアルカンジイル基、またはフェニレン基である。但し、Rは、エステル基またはエーテル基を有していてもよい、炭素数1~10の直鎖状、分岐状または環状の炭化水素基または単結合である。Rは、単結合、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状または環状のアルカンジイル基、炭素数2~20のアルケニレン基、炭素数6~10のアリーレン基、またはアラルキレン基であり、Rは、水素原子、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状若しくは環状のアルキル基、炭素数2~20のアルケニル基、炭素数6~10のアリール基、またはアラルキル基であるか、或いは、RとRが結合してこれらが結合する窒素原子と共に環状構造を形成し、前記環状構造中に3~20個の炭素を有する。R、R及びRは、それぞれ、炭素数1~4の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、アリール基またはアラルキル基を示すか、或いは、RとRとが結合してこれらが結合している炭素原子と共に炭素数4~20の脂環式炭化水素基を形成し、Rは、炭素数1~4の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、アリール基またはアラルキル基を示す。)
[3]前記重合体(A)が、下記一般式(2-1)で表される繰り返し単位及び下記一般式(2-2)で表される繰り返し単位の少なくとも一方を更に有する前記[1]または[2]に記載の感放射線性樹脂組成物。
Figure JPOXMLDOC01-appb-C000011
(前記一般式(2-1)中、Rは、水素原子、メチル基、またはトリフルオロメチル基を示す。Eは、連結基を示し、R10は、少なくとも一つのフッ素原子を有する、炭素数1~6の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、またはこれらの誘導体を示す。)
Figure JPOXMLDOC01-appb-C000012
(前記一般式(2-2)中、R11は、水素原子、メチル基、またはトリフルオロメチル基を示す。R12は、単結合、または、炭素数1~10の(n+1)価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示す。R13は、単結合、または、炭素数1~20の2価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示す。R14は、フッ素原子で置換されたメチレン基、または炭素数2~20の直鎖状若しくは分岐状のフルオロアルカンジイル基を示す。R15は、単結合、または、-CO-を示す。R16は、水素原子または酸解離性基を示す。nは、1~3の整数を示す。)
[4]前記(A)重合体のフッ素原子の含有割合が、前記(A)重合体の総量の5質量%以上であり、前記(B)重合体のフッ素原子の含有割合が、前記(B)重合体の総量の5質量%未満である前記[1]~[3]いずれかに記載の感放射線性樹脂組成物。
[5]前記(A)重合体の含有量は、前記(B)重合体100質量部に対して、0.1~20質量部である前記[1]~[4]のいずれかに記載の感放射線性樹脂組成物。
[6]液浸露光用である前記[1]~[5]のいずれかに記載の感放射線性樹脂組成物。
[7]基板上に、前記[1]~[6]のいずれかに記載の感放射線性樹脂組成物からなるレジスト被膜を形成する(1)工程と、形成した前記レジスト被膜を露光する(2)工程と、露光された前記レジスト被膜を現像してレジストパターンを形成する(3)工程と、を備えるレジストパターン形成方法。
[8]前記(2)工程において、前記(1)工程で形成した前記レジスト被膜上に液浸露光液を配置し、前記液浸露光液を介して前記レジスト被膜を露光する前記[7]に記載のレジストパターン形成方法。
[9]下記一般式(3)で表される繰り返し単位(3)を有し、分子中にフッ素原子を含む重合体。
Figure JPOXMLDOC01-appb-C000013
(前記一般式(3)中、R17は、水素原子、メチル基またはトリフルオロメチル基を示す。Xは、単結合、一般式「-O-R21-」で表される基、一般式「-C(=O)-O-R21-」で表される基、一般式「-C(=O)-NH-R21-」で表される基、炭素数1~4の直鎖状若しくは分岐状のアルカンジイル基、またはフェニレン基である。但し、R21は、エステル基またはエーテル基を有していてもよい、炭素数1~10の直鎖状、分岐状または環状の炭化水素基または単結合である。R18は、単結合、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状または環状のアルカンジイル基、炭素数2~20のアルケニレン基、炭素数6~10のアリーレン基、またはアラルキレン基であり、R19は、水素原子、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状若しくは環状のアルキル基、炭素数2~20のアルケニル基、炭素数6~10のアリール基、またはアラルキル基であるか、或いは、R18とR19が結合してこれらが結合する窒素原子と共に環状構造を形成し、前記環状構造中に3~20個の炭素を有する。R20は酸解離性基である。)
[10]前記一般式(3)で表される繰り返し単位(3)が、下記一般式(3-1)で表される繰り返し単位である前記[9]に記載の重合体。
Figure JPOXMLDOC01-appb-C000014
(前記一般式(3-1)中、R17は、水素原子、メチル基またはトリフルオロメチル基を示す。Xは、単結合、一般式「-O-R21-」で表される基、一般式「-C(=O)-O-R21-」で表される基、一般式「-C(=O)-NH-R21-」で表される基、炭素数1~4の直鎖状若しくは分岐状のアルカンジイル基、またはフェニレン基である。但し、R21は、エステル基またはエーテル基を有していてもよい、炭素数1~10の直鎖状、分岐状または環状の炭化水素基または単結合である。R18は、単結合、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状または環状のアルカンジイル基、炭素数2~20のアルケニレン基、炭素数6~10のアリーレン基、またはアラルキレン基であり、R19は、水素原子、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状若しくは環状のアルキル基、炭素数2~20のアルケニル基、炭素数6~10のアリール基、またはアラルキル基であるか、或いは、R18とR19が結合してこれらが結合する窒素原子と共に環状構造を形成し、前記環状構造中に3~20個の炭素を有する。R22、R23及びR24は、それぞれ、炭素数1~4の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、アリール基またはアラルキル基を示すか、或いは、R22とR23とが結合してこれらが結合している炭素原子と共に炭素数4~20の脂環式炭化水素基を形成し、R24は、炭素数1~4の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、アリール基またはアラルキル基を示す。)
[11]下記一般式(4-1)で表される繰り返し単位及び下記一般式(4-2)で表される繰り返し単位の少なくとも一方を更に有する前記[9]または[10]に記載の重合体。
Figure JPOXMLDOC01-appb-C000015
(前記一般式(4-1)中、R25は、水素原子、メチル基、またはトリフルオロメチル基を示す。Eは、連結基を示し、R26は、少なくとも一つのフッ素原子を有する、炭素数1~6の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、またはこれらの誘導体を示す。)
Figure JPOXMLDOC01-appb-C000016
(前記一般式(4-2)中、R27は、水素原子、メチル基、またはトリフルオロメチル基を示す。R28は、単結合、または、炭素数1~10の(n+1)価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示す。R29は、単結合、または、炭素数1~20の2価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示す。R30は、フッ素原子で置換されたメチレン基、または炭素数2~20の直鎖状若しくは分岐状のフルオロアルカンジイル基を示す。R31は、単結合、または、-CO-を示す。R32は、水素原子または酸解離性基を示す。nは、1~3の整数を示す。)
 本発明の感放射線性樹脂組成物は、断面形状に優れたレジストパターンを形成することができるという効果を奏するものである。
 本発明のレジストパターン形成方法によれば、断面形状に優れたレジストパターンを形成することができるという効果を奏するものである。
 本発明の重合体は、断面形状に優れたレジストパターンを形成可能な感放射線性樹脂組成物の材料として用いることができるという効果を奏するものである。
 以下、本発明を実施するための形態について説明するが、本発明は以下の実施の形態に限定されるものではない。即ち、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に属することが理解されるべきである。
[1]感放射線性樹脂組成物:
 本発明の感放射線性樹脂組成物は、(A)下記一般式(1)で表される繰り返し単位(I)を有し、分子中にフッ素原子を含む重合体(以下、「(A)重合体」と記す場合がある)と、(B)酸解離性基を有するアルカリ不溶性またはアルカリ難溶性の重合体(但し、前記一般式(1)で表される繰り返し単位(I)を有する重合体を除く)(以下、「(B)重合体」と記す場合がある)と、(C)感放射線性酸発生剤(以下、「(C)酸発生剤」と記す場合がある)と、を含有するものである。
 このような構成の感放射線性樹脂組成物であると、(A)重合体が構造中にフッ素部位を有するため、レジスト被膜を形成した際に、(A)重合体の撥油性に起因して、レジスト被膜の表面において(A)重合体の分布が高くなる傾向がある。従って、(A)重合体が、被膜表層に偏在化する。
 また、(A)重合体中のアミノ基が酸解離性基(一般式(1)中のR)を有しているため、露光によって露光部は、アミノ基から酸解離性基が脱離し、アミノ基が塩基として作用する。一方、非露光部では酸解離性基が脱離しないため(A)重合体は塩基として作用しない。その結果、露光部と非露光部とにおける塩基濃度に差異が生じ、露光部と非露光部との塩基濃度のコントラストが高くなる。このため、レジスト被膜表層部における酸の濃度をコントロールでき、断面形状に優れたレジストパターンを形成することができる。
 本発明の感放射線性樹脂組成物は、(A)重合体がフッ素を含むことに起因して、液浸露光時における溶出を抑えることができ、また、接触角のバランスが良く、高速スキャンが可能であることから、液浸露光用途に用いることが好ましい。
[1-1](A)重合体:
 (A)重合体は、一般式(1)で表される繰り返し単位(I)(以下、「繰り返し単位(I)」と記す場合がある)を有し、分子中にフッ素原子を含むものである。このような(A)重合体を含有することによって、(A)重合体と(B)重合体とが相俟って効果を奏する。具体的には、(A)重合体と(B)重合体との相溶性が悪いため、(A)重合体が被膜表層に偏在化する。そのため、レジスト被膜表層部における酸の濃度をコントロールできる。また、アミノ基及び酸解離性基を有しているため、酸の濃度のコントラストが高くなる。
 (A)重合体を効率よく被膜表面に偏在させるためには、(A)重合体中のフッ素原子の含有割合が、(B)重合体中のフッ素原子の含有割合よりも多い、即ち、(A)重合体中のフッ素原子の含有割合>(B)重合体中のフッ素原子の含有割合の関係にあることが好ましい。そして、具体的には、(A)重合体中のフッ素原子の含有割合は、(A)重合体の総量の5質量%以上であることが好ましく(即ち、(A)重合体を構成する全ての原子を100質量%としたときに、(A)重合体に含まれるフッ素原子の含有割合が5質量%以上であることが好ましく)、このとき、(B)重合体中のフッ素原子の含有割合は、(B)重合体の総量の5質量%未満であることが好ましい。なお、重合体中のフッ素原子の含有割合は、13C-NMRにより算出することができる。
[1-1-1]繰り返し単位(I):
 (A)重合体は、上述したように、(B)重合体と相俟って作用するが、特に、繰り返し単位(I)を有することによって、酸解離性基を有する含窒素化合物(即ち、(A)重合体)が、発生する酸の拡散を抑制するための酸拡散制御剤として機能する。即ち、(A)重合体(具体的には、(A)重合体中の繰り返し単位(I))によって、酸の濃度をコントロールすることができるという利点がある。
 一般式(1)中、Rとしては、(A)重合体の合成が簡便であるため、水素原子またはメチル基が好ましい。Xとしては、一般式「-C(=O)-O-R-」で表される基または一般式「-C(=O)-NH-R-」で表される基が好ましい。なお、Rは、上述したように、エステル基またはエーテル基を有していてもよい、炭素数1~10の直鎖状、分岐状または環状の炭化水素基または単結合である。
 R中の置換基を有していてもよい、炭素数1~20の直鎖状または分岐状のアルカンジイル基としては、炭素数2以上のアルカンジイル基が好ましく、具体的には、エチレン基、n-プロピレン基、i-プロピレン基、n-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基、n-ノニレン基、n-デシレン基等が挙げられる。また、環状のアルカンジイル基としては、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基、ノルボルニレン基、トリシクロデシレン基、テトラシクロドデシレン基、アダマンチレン基等が挙げられる。
 R及びR中のアラルキル基とは、アリール基で置換されている低級アルキル基を意味し、具体的には、ベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基、ナフチルエチル基等が挙げられる。
 R中の置換基を有していてもよい、炭素数1~20の直鎖状若しくは分岐状のアルキル基としては、炭素数2以上のアルキル基が好ましく、具体的には、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等が挙げられる。また、環状のアルキル基としては、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、ノルボルニル基、トリシクロデシル基、テトラシクロドデシル基、アダマンチル基等が挙げられる。炭素数6~10のアリール基としては、フェニル基、ナフチル基等が挙げられる。
 RとRが結合してこれらが結合する窒素原子と共に環状構造を形成したものとしては、例えば、ピロール、イミダゾール、ピラゾール、ピリジン、ピリダジン、ピリミジン、ピラジン、ピペリジン、ピロリジン、ピペラジン、モルホリン等の構造を有する基が挙げられる。
 一般式(1)中のRとしては、例えば、下記一般式(5)で表される基(以下、「酸解離性基(I)」と記す場合がある)、下記一般式(6)で表される基(以下、「酸解離性基(II)」と記す場合がある)などを挙げることができる。
Figure JPOXMLDOC01-appb-C000017
(上記一般式(5)中、R33は、水素原子、炭素数1~19の直鎖状若しくは分岐状のアルキル基、炭素数4~20の脂環式炭化水素基、炭素数6~19のアリール基若しくはアラルキル基、または、これらの基に、ヒドロキシル基、カルボキシル基、カルボニル基、ニトロ基、エーテル基、エステル基、アミノ基、シリル基、ハロゲン、及びチオフェンからなる群より選択される少なくとも一つを含んでいるものである。)
Figure JPOXMLDOC01-appb-C000018
(上記一般式(6)中、R34は、水素原子、または、炭素数1~19の直鎖状若しくは分岐状のアルキル基、炭素数4~20の脂環式炭化水素基、炭素数6~19のアリール基若しくはアラルキル基、または、これらの基に、ヒドロキシル基、カルボキシル基、カルボニル基、ニトロ基、エーテル基、エステル基、アミノ基、シリル基、ハロゲン、及びチオフェンからなる群より選択される少なくとも一つを含んでいるものである。)
 酸解離性基(I)の中でも、R33にアルキル基またはアラルキル基を有するものが好ましく、メチル基、tert-ブチル基、tert-アミル基、ベンジル基、シンナミル基を有するものが更に好ましい。酸解離性基(II)の中でも、R34に水素原子、アルキル基またはアリール基を有するものが好ましく、ホルミル基、アセチル基、トリクロロアセチル基、トリフルオロアセチル基、ベンゾイル基を有するものが更に好ましい。
 一般式(1)で表される繰り返し単位(I)としては、酸解離性基が十分に脱離するという観点から、上記一般式(1-1)で表される繰り返し単位であることが好ましい。
 一般式(1-1)中のR、R及びRで表される炭素数4~20の1価の脂環式炭化水素基としては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、ノルボルニル基、トリシクロデシル基、テトラシクロドデシル基、アダマンチル基などを挙げることができる。
 また、アリール基としては、例えば、フェニル基、ナフチル基などを挙げることができ、アラルキル基としては、例えば、ベンジル基、フェニルエチル基、フェニルプロピル基、ナフチルメチル基、ナフチルエチル基などを挙げることができる。
 RとRとが結合してこれらが結合している炭素原子と共に炭素数4~20の脂環式炭化水素基を形成したものとしては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基、ノルボルニル基、トリシクロデシル基、テトラシクロドデシル基、アダマンチル基などを挙げることができる。
 一般式(1)で表される繰り返し単位(I)としては、具体的には、下記一般式(1-1a)~(1-1i)で表される繰り返し単位などを挙げることができる。
Figure JPOXMLDOC01-appb-C000019
 一般式(1-1a)~(1-1i)中、Rは、水素原子、メチル基またはトリフルオロメチル基を示す。R、R及びRは、それぞれ、炭素数1~4の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、アリール基またはアラルキル基を示すか、或いは、RとRとが結合してこれらが結合している炭素原子と共に炭素数4~20の脂環式炭化水素基を形成し、Rは、炭素数1~4の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、アリール基またはアラルキル基を示す。酸の作用により解離し易いという利点があるため、R、R及びRとしては、それぞれ、炭素数1~4の直鎖状のアルキル基であることが好ましい。
 繰り返し単位(I)の含有割合は、(A)重合体中の全繰り返し単位100モル%に対して、0.01~50モル%であることが好ましく、0.1~30モル%であることが更に好ましく、0.1~20モル%であることが特に好ましい。上記含有割合が上記範囲内である場合には、被膜表層に偏在化してレジスト被膜表層部における酸の濃度を適度にコントロールし、断面形状に優れたレジストパターンを形成できるという利点がある。
[1-1-2]繰り返し単位(II):
 (A)重合体は、繰り返し単位(I)を有し、分子中にフッ素原子を含むものであれば特に限定されないが、フッ素原子を含む繰り返し単位(以下、「繰り返し単位(II)」と記す場合がある)を有することによって分子中にフッ素原子を含むことが好ましい。(A)重合体がフッ素原子を有することで、(A)重合体がレジスト被膜表層部に偏在するため、レジスト被膜表層部の酸の濃度をコントロールすることができるという利点がある。
 繰り返し単位(II)としては、具体的には、下記一般式(2-1)で表される繰り返し単位(以下、「繰り返し単位(2-1)」と記す場合がある)、下記一般式(2-2)で表される繰り返し単位(以下、「繰り返し単位(2-2)」記す場合がある)などを挙げることができ、レジスト被膜表層部の酸の濃度を良好にコントロールすることができるという観点から、(A)重合体は、繰り返し単位(2-1)及び繰り返し単位(2-2)の少なくとも一方を更に有することが好ましい。
Figure JPOXMLDOC01-appb-C000020
 一般式(2-1)中、Rは、水素原子、メチル基、またはトリフルオロメチル基を示す。Eは、連結基を示し、R10は、少なくとも一つのフッ素原子を有する、炭素数1~6の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、またはこれらの誘導体を示す。
Figure JPOXMLDOC01-appb-C000021
 一般式(2-2)中、R11は、水素原子、メチル基、またはトリフルオロメチル基を示す。R12は、単結合、または、炭素数1~10の(n+1)価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示す。R13は、単結合、または、炭素数1~20の2価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示す。R14は、フッ素原子で置換されたメチレン基、または炭素数2~20の直鎖状若しくは分岐状のフルオロアルカンジイル基を示す。R15は、単結合、または、-CO-を示す。R16は、水素原子または酸解離性基を示す。nは、1~3の整数を示す。
 一般式(2-1)中、Eで表される連結基としては、例えば、単結合、酸素原子、硫黄原子、カルボニルオキシ基、オキシカルボニル基、アミド基、スルホニルアミド基、ウレタン基等を挙げることができる。
 一般式(2-1)中、R10で表される基のうち、少なくとも一つ以上のフッ素原子を有する炭素数1~6の直鎖状または分岐状のアルキル基としては、例えば、メチル基、エチル基、1-プロピル基、2-プロピル基、1-ブチル基、2-ブチル基、2-(2-メチルプロピル)基、1-ペンチル基、2-ペンチル基、3-ペンチル基、1-(2-メチルブチル)基、1-(3-メチルブチル)基、2-(2-メチルブチル)基、2-(3-メチルブチル)基、ネオペンチル基、1-ヘキシル基、2-ヘキシル基、3-ヘキシル基、1-(2-メチルペンチル)基、1-(3-メチルペンチル)基、1-(4-メチルペンチル)基、2-(2-メチルペンチル)基、2-(3-メチルペンチル)基、2-(4-メチルペンチル)基、3-(2-メチルペンチル)基、3-(3-メチルペンチル)基等の直鎖状、分岐状のアルキル基の部分フッ素化された基やパーフルオロアルキル基等を挙げることができる。
 また、少なくとも一つ以上のフッ素原子を有する炭素数4~20の1価の脂環式炭化水素基またはその誘導体としては、例えば、シクロペンチル基、シクロペンチルメチル基、1-(1-シクロペンチルエチル)基、1-(2-シクロペンチルエチル)基、シクロヘキシル基、シクロヘキシルメチル基、1-(1-シクロヘキシルエチル)基、1-(2-シクロヘキシルエチル基)、シクロヘプチル基、シクロヘプチルメチル基、1-(1-シクロヘプチルエチル)基、1-(2-シクロヘプチルエチル)基、2-ノルボルニル基等の脂環式アルキル基の部分フッ素化された基やパーフルオロアルキル基等を挙げることができる。
 繰り返し単位(2-1)を構成するための単量体としては、例えば、トリフルオロメチル(メタ)アクリル酸エステル、2,2,2-トリフルオロエチル(メタ)アクリル酸エステル、パーフルオロエチル(メタ)アクリル酸エステル、パーフルオロn-プロピル(メタ)アクリル酸エステル、パーフルオロi-プロピル(メタ)アクリル酸エステル、パーフルオロn-ブチル(メタ)アクリル酸エステル、パーフルオロi-ブチル(メタ)アクリル酸エステル、パーフルオロt-ブチル(メタ)アクリル酸エステル、2-(1,1,1,3,3,3-ヘキサフルオロプロピル)(メタ)アクリル酸エステル、1-(2,2,3,3,4,4,5,5-オクタフルオロペンチル)(メタ)アクリル酸エステル、パーフルオロシクロヘキシルメチル(メタ)アクリル酸エステル、1-(2,2,3,3,3-ペンタフルオロプロピル)(メタ)アクリル酸エステル、1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロデシル)(メタ)アクリル酸エステル、1-(5-トリフルオロメチル-3,3,4,4,5,6,6,6-オクタフルオロヘキシル)(メタ)アクリル酸エステル等を挙げることができる。
 一般式(2-2)中、R12で表される基のうち、炭素数1~10の(n+1)価の直鎖状または分岐状の、飽和または不飽和の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素数1~10の直鎖状または分岐状のアルキル基に由来する2価の炭化水素基等を挙げることができる。
 また、(n+1)価の環状の飽和若しくは不飽和炭化水素基としては、例えば、炭素数3~10の脂環式炭化水素または芳香族炭化水素に由来する基等を挙げることができる。脂環式炭化水素として、具体的には、シクロブタン、シクロペンタン、シクロヘキサン、ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[3.3.1.13,7]デカン等のシクロアルカン類等を挙げることができる。また、芳香族炭化水素として、具体的には、ベンゼン、ナフタレン等を挙げることができる。
 一般式(2-2)中、R13で表される基のうち、炭素数1~20の2価の直鎖状または分岐状の飽和または不飽和の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素数1~20の直鎖状または分岐状のアルキル基に由来する2価の炭化水素基等を挙げることができる。
 また、2価の環状の飽和または不飽和の炭化水素基としては、例えば、炭素数3~20の脂環式炭化水素または芳香族炭化水素に由来する基等を挙げることができる。脂環式炭化水素としては、具体的には、シクロブタン、シクロペンタン、シクロヘキサン、ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、トリシクロ[3.3.1.13,7]デカン、テトラシクロ[6.2.1.13,6.02,7]ドデカン等のシクロアルカン類等を挙げることができる。また、芳香族炭化水素としては、具体的には、ベンゼン、ナフタレン等を挙げることができる。
 なお、一般式(2-2)中、R13で表される炭化水素基としては、少なくとも1つの水素原子を、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の炭素数1~12の直鎖状、分岐状または環状のアルキル基、ヒドロキシル基、シアノ基、炭素数1~10のヒドロキシアルキル基、カルボキシル基、酸素原子等の1種または2種以上により置換されたものであってもよい。
 また、一般式(2-2)中、nが、2または3である場合、複数のR13は全て同一の基であってもよく、一部または全てが異なった基であってもよい。
 一般式(2-2)中、R16で表される基のうち、酸解離性基とは、例えば、ヒドロキシル基、カルボキシル基、スルホン酸基等の酸性官能基中の水素原子を置換する基であって、酸の存在下で解離する基をいう。より具体的には、t-ブトキシカルボニル基、テトラヒドロピラニル基、テトラヒドロフラニル基、(チオテトラヒドロピラニルスルファニル)メチル基、(チオテトラヒドロフラニルスルファニル)メチル基や、アルコキシ置換メチル基、アルキルスルファニル置換メチル基等を挙げることができる。なお、アルコキシ置換メチル基におけるアルコキシル基(置換基)としては、例えば、炭素数1~4のアルコキシル基を挙げることができる。また、アルキルスルファニル置換メチル基におけるアルキル基(置換基)としては、例えば、炭素数1~4のアルキル基を挙げることができる。また、酸解離性基としては、後述する一般式(7-1a)で表される基であってもよい。
 一般式(2-2)中、R14で表される、フッ素原子で置換されたメチレン基、または、炭素数2~20の直鎖状若しくは分岐状のフルオロアルカンジイル基としては、例えば、式(X-1)~(X-8)等で表される基などを挙げることができる。
Figure JPOXMLDOC01-appb-C000022
 繰り返し単位(2-2)としては、例えば、一般式(2-2-1)~(2-2-3)で表される繰り返し単位などを挙げることができる。
Figure JPOXMLDOC01-appb-C000023
 一般式(2-2-1)~(2-2-3)中、R11は、水素原子、メチル基、またはトリフルオロメチル基を示し、R14は、フッ素原子で置換されたメチレン基、または炭素数2~20の直鎖状若しくは分岐状のフルオロアルカンジイル基を示す。また、一般式(2-2-1)及び(2-2-2)中、R12は、単結合、または炭素数1~20の2価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示し、R16は、水素原子または酸解離性基を示す。更に、一般式(2-2-3)中、nは、1~3の整数を示す。
 繰り返し単位(2-2)を構成するための単量体としては、例えば、一般式(T-1)~(T-6)で表される化合物などを挙げることができる。
Figure JPOXMLDOC01-appb-C000024
 一般式(T-1)~(T-6)中、R11は、水素原子、メチル基、またはトリフルオロメチル基を示し、R16は、水素原子または酸解離性基を示す。
 繰り返し単位(II)の含有割合は、(A)重合体中の全繰り返し単位100モル%に対して、20~90モル%であることが好ましく、20~80モル%であることが更に好ましく、20~70モル%であることが特に好ましい。上記含有割合が上記範囲内である場合には、塗布後の撥水性確保と、現像性の確保との両立という観点から有効である。
[1-1-3]その他の繰り返し単位:
 上記(A)重合体は、上記繰り返し単位(I)及び繰り返し単位(II)以外に、その他の繰り返し単位を有していてもよい。その他の繰り返し単位としては、例えば、酸解離性基を有する繰り返し単位(以下、「繰り返し単位(III)」と記す場合がある)、アルカリ反応性基を有する繰り返し単位(以下、「繰り返し単位(IV)」と記す場合がある)、アルカリ可溶性基を有する繰り返し単位(以下、「繰り返し単位(V)」と記す場合がある)、脂環式構造を有する繰り返し単位(繰り返し単位(III)に該当するものを除く。以下、「繰り返し単位(VI)」と記す場合がある)、芳香族化合物に由来する繰り返し単位(以下、「繰り返し単位(VII)」と記す場合がある)、上記繰り返し単位(I)~(VII)以外の繰り返し単位(以下、「繰り返し単位(VIII)」と記す場合がある)などを挙げることができる。
[1-1-3-1]繰り返し単位(III):
 繰り返し単位(III)としては、例えば、下記一般式(7-1)で表される繰り返し単位などを挙げることができる。
Figure JPOXMLDOC01-appb-C000025
(一般式(7-1)中、R35は、水素原子、メチル基、またはトリフルオロメチル基を示す。また、Yは、酸解離性基を示す。)
 一般式(7-1)中のYは、下記一般式(7-1a)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000026
 一般式(7-1a)中、R51は、炭素数1~4のアルキル基または炭素数4~20の1価の脂環式炭化水素基を示し、R52及びR53は、相互に独立に、炭素数1~4のアルキル基または炭素数4~20の脂環式炭化水素基を示すか、或いは相互に結合してそれぞれが結合している炭素原子と共に形成される炭素数4~20の2価の脂環式炭化水素基を示す。
 一般式(7-1a)中、R51~R53で表される基のうち、炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等を挙げることができる。また、炭素数4~20の1価の脂環式炭化水素基、R51及びR52が相互に結合してそれぞれが結合している炭素原子と共に形成される炭素数4~20の2価の脂環式炭化水素基としては、例えば、アダマンタン骨格、ノルボルナン骨格、トリシクロデカン骨格、テトラシクロドデカン骨格等の有橋式骨格や、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン等のシクロアルカン骨格を有する基;これらの基を、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の炭素数1~10の直鎖状、分岐状または環状のアルキル基の1種または1個以上で置換した基等の脂環式骨格を有する基がある。
 繰り返し単位(III)としては、一般式(7-1a)中、R51及びR52が相互に結合してそれぞれが結合している炭素原子と共に形成される炭素数4~20の2価の脂環式炭化水素基を有することが好ましい。そして、このような脂環式炭化水素基の中でも、単環式炭化水素基を有するものであることが好ましい。(A)重合体が、このような繰り返し単位(III)を有することで、形成されるレジスト被膜は、その前進接触角と後退接触角の差が小さくなり、水切れ等の問題が生じ難くなり、高速でスキャンしつつ露光する工程に採用することができる。
 繰り返し単位(III)を構成するための単量体として、具体的には、(メタ)アクリル酸2-メチルアダマンタン-2-イルエステル、(メタ)アクリル酸2-メチル-3-ヒドロキシアダマンタン-2-イルエステル、(メタ)アクリル酸2-エチルアダマンタン-2-イルエステル、(メタ)アクリル酸2-エチル-3-ヒドロキシアダマンタン-2-イルエステル、(メタ)アクリル酸2-n-プロピルアダマンタン-2-イルエステル、(メタ)アクリル酸2-イソプロピルアダマンタン-2-イルエステル、(メタ)アクリル酸-2-メチルビシクロ[2.2.1]ヘプト-2-イルエステル、(メタ)アクリル酸-2-エチルビシクロ[2.2.1]ヘプト-2-イルエステル、(メタ)アクリル酸-8-メチルトリシクロ[5.2.1.02,6]デカン-8-イルエステル、(メタ)アクリル酸-8-エチルトリシクロ[5.2.1.02,6]デカン-8-イルエステル、(メタ)アクリル酸-4-メチルテトラシクロ[6.2.1.13,6.02,7]ドデカン-4-イルエステル、(メタ)アクリル酸-4-エチルテトラシクロ[6.2.1.13,6.02,7]ドデカン-4-イルエステル、
 (メタ)アクリル酸2-(ビシクロ[2.2.1]ヘプト-2-イル)-2-メチルエチルエステル、(メタ)アクリル酸2-(トリシクロ[5.2.1.02,6]デカン-8-イル)-2-メチルエチルエステル、(メタ)アクリル酸2-(テトラシクロ[6.2.1.13,6.02,7]ドデカン-4-イル)-2-メチルエチルエステル、(メタ)アクリル酸2-(アダマンタン-2-イル)-2-メチルエチルエステル、(メタ)アクリル酸2-(3-ヒドロキシアダマンタン-2-イル)-2-メチルエチルエステル、(メタ)アクリル酸1,2-ジシクロヘキシルエチルエステイル、(メタ)アクリル酸1,2-ジ(ビシクロ[2.2.1]ヘプト-2-イル)エチルエステル、(メタ)アクリル酸1,2-ジ(トリシクロ[5.2.1.02,6]デカン-8-イル)エチルエステル、(メタ)アクリル酸1,2-ジ(テトラシクロ[6.2.1.13,6.02,7]ドデカン-4-イル)エチルエステル、(メタ)アクリル酸1,2-ジ(アダマンタン-2-イル)エチルエステル、(メタ)アクリル酸2-メチル-2-シクロペンチルエステル、(メタ)アクリル酸2-エチル-2-シクロペンチルエステル、(メタ)アクリル酸2-メチル-2-シクロヘキシルエステル、(メタ)アクリル酸2-エチル-2-シクロヘキシルエステル等を挙げることができる。
 これらの単量体の中でも、(メタ)アクリル酸2-メチルアダマンタン-2-イルエステル、(メタ)アクリル酸2-エチルアダマンタン-2-イルエステル、(メタ)アクリル酸-2-メチルビシクロ[2.2.1]ヘプト-2-イルエステル、(メタ)アクリル酸-2-エチルビシクロ[2.2.1]ヘプト-2-イルエステル、(メタ)アクリル酸2-(ビシクロ[2.2.1]ヘプト-2-イル)-2-メチルエチルエステル、(メタ)アクリル酸2-(アダマンタン-2-イル)-2-メチルエチルエステル、(メタ)アクリル酸2-メチル-2-シクロペンチルエステル、(メタ)アクリル酸2-エチル-2-シクロペンチルエステル、(メタ)アクリル酸2-メチル-2-シクロヘキシルエステル、(メタ)アクリル酸2-エチル-2-シクロヘキシルエステル、(メタ)アクリル酸2-エチル-2-シクロオクチルエステルが好ましい。
 なお、(A)重合体は、繰り返し単位(III)を、1種単独でまたは2種以上を組み合わせて有していてもよい。
[1-1-3-2]繰り返し単位(IV):
 繰り返し単位(IV)としては、例えば、下記式(7-2)で表される繰り返し単位(以下、「繰り返し単位(7-2)」と記す場合がある)などを挙げることができる。
Figure JPOXMLDOC01-appb-C000027
(一般式(7-2)中、R36は、水素原子、メチル基、またはトリフルオロメチル基を示す。また、Zは、ラクトン骨格または環状カーボネート構造を有する基を示す。)
 繰り返し単位(7-2)のうち、ラクトン骨格を有する基を有する繰り返し単位としては、例えば、下記一般式(7-2-1a)~(7-2-1f)で表される単量体に由来する繰り返し単位などを挙げることができる。
Figure JPOXMLDOC01-appb-C000028
 一般式(7-2-1a)~(7-2-1f)中、R36は、水素原子、メチル基、またはトリフルオロメチル基を示す。また、一般式(7-2-1a)中、R37は、水素原子または炭素数1~4の置換基を有してもよいアルキル基を示し、lは、1~3の整数を示す。更に、一般式(7-2-1d)及び(7-2-1e)中、R38及びR39は、相互に独立に、水素原子またはメトキシ基を示す。また、一般式(7-2-1b)及び(7-2-1c)中、Aは、相互に独立に、単結合、エーテル基、エステル基、カルボニル基、炭素数1~30の2価の鎖状炭化水素基、炭素数3~30の2価の脂環式炭化水素基、炭素数6~30の2価の芳香族炭化水素基、またはこれらを組み合わせた2価の基を示し、mは、0または1である。更に、一般式(7-2-1c)及び(7-2-1e)中、Bは、相互に独立に、酸素原子またはメチレン基を示す。
 このようなラクトン骨格を有する基を有する繰り返し単位を構成するための単量体としては、例えば、(メタ)アクリル酸-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナ-2-イルエステル、(メタ)アクリル酸-9-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[4.2.1.03,7]ノナ-2-イルエステル、(メタ)アクリル酸-5-オキソ-4-オキサ-トリシクロ[5.2.1.03,8]デカ-2-イルエステル、(メタ)アクリル酸-10-メトキシカルボニル-5-オキソ-4-オキサ-トリシクロ[5.2.1.03,8]ノナ-2-イルエステル、(メタ)アクリル酸-6-オキソ-7-オキサ-ビシクロ[3.2.1]オクタ-2-イルエステル、(メタ)アクリル酸-4-メトキシカルボニル-6-オキソ-7-オキサ-ビシクロ[3.2.1]オクタ-2-イルエステル、(メタ)アクリル酸-7-オキソ-8-オキサ-ビシクロ[3.3.1]オクタ-2-イルエステル、(メタ)アクリル酸-4-メトキシカルボニル-7-オキソ-8-オキサ-ビシクロ[3.3.1]ノナ-2-イルエステル、
 (メタ)アクリル酸-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-4-メチル-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-4-エチル-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-4-プロピル-2-オキソテトラヒドロピラン-4-イルエステル、(メタ)アクリル酸-5-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-2,2-ジメチル-5-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-4,4-ジメチル-5-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-4,4-ジメチル-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-5,5-ジメチル-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-2-オキソテトラヒドロフラン-3-イルエステル、(メタ)アクリル酸-5-オキソテトラヒドロフラン-2-イルメチルエステル、(メタ)アクリル酸-3,3-ジメチル-5-オキソテトラヒドロフラン-2-イルメチルエステル、(メタ)アクリル酸-4,4-ジメチル-5-オキソテトラヒドロフラン-2-イルメチルエステル等を挙げることができる。
 また、繰り返し単位(7-2)の環状カーボネート構造を有する基は、アルカリ反応性基であり、環状カーボネート構造を有する基を有する繰り返し単位としては、例えば、下記一般式(7-2-2)で表される繰り返し単位等を挙げることができる。
Figure JPOXMLDOC01-appb-C000029
 一般式(7-2-2)中、R36は、水素原子、メチル基またはトリフルオロメチル基を示し、Dは、単結合、炭素数1~30の2価の鎖状炭化水素基、炭素数3~30の2価の脂環式炭化水素基、または炭素数6~30の2価の芳香族炭化水素基を示し、Dは下記一般式(7-2-2-1)で表される構造を有する基を示す。
Figure JPOXMLDOC01-appb-C000030
(一般式(7-2-2-1)中、R40は、相互に独立に、水素原子、または炭素数1~5の鎖状炭化水素基を示す。pは、2~4の整数を示し、pは1または2の整数を示す。)
 一般式(7-2-2-1)中のR40で表される炭素数1~5の鎖状炭化水素基としては、例えば、メチル基、エチル基、プロピル基、ブチル基等の炭素数1~5の直鎖状アルキル基;イソプロピル基、イソブチル基、t-ブチル基等の炭素数3~5の分岐状アルキル基等を挙げることができる。
 なお、環状カーボネート構造は、p=2(エチレン基)の場合は5員環構造、p=3(プロピレン基)の場合は6員環構造、p=4(ブチレン基)の場合は7員環構造となる。
 また、一般式(7-2-2)中、Dが単結合を示す場合、重合体を構成する(メタ)アクリル酸の酸素原子と、環状カーボネート構造を形成する炭素原子と、が直接結合されることになる。
 一般式(7-2-2)中、Dで表される基のうち、鎖状炭化水素基とは、主鎖に環状構造を含まず、鎖状構造のみで構成された炭化水素基をいう。また、脂環式炭化水素基とは、環構造中に、脂環式炭化水素の構造のみを含み、芳香環構造を含まない炭化水素基をいう。但し、この脂環式炭化水素基は脂環式炭化水素の構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。更に、芳香族炭化水素基とは、環構造中に芳香環構造を含む炭化水素基をいう。但し、この芳香族炭化水素基は芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環式炭化水素の構造を含んでいてもよい。
 一般式(7-2-2)中、Dで表される基のうち、炭素数1~30の2価の鎖状炭化水素基としては、例えば、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、トリデカメチレン基、テトラデカメチレン基、ペンタデカメチレン基、ヘキサデカメチレン基、ヘプタデカメチレン基、オクタデカメチレン基、ノナデカメチレン基、イコサレン基等の直鎖状アルカンジイル基;1-メチル-1,3-プロピレン基、2-メチル-1,3-プロピレン基、2-メチル-1,2-プロピレン基、1-メチル-1,4-ブチレン基、2-メチル-1,4-ブチレン基、エチリデン基、プロピリデン基、2-プロピリデン基等の分岐状アルカンジイル基等を挙げることができる。また、炭素数1~30の3価の鎖状炭化水素基としては、例えば、前記の直鎖状または分岐状アルカンジイル基から水素原子を1個脱離した基等を挙げることができる。
 一般式(7-2-2)中、Dで表される基のうち、2価の脂環式炭化水素基としては、例えば、1,3-シクロブチレン基、1,3-シクロペンチレン基等、1,4-シクロヘキシレン基、1,5-シクロオクチレン基等の炭素数3~10の単環型シクロアルカンジイル基;1,4-ノルボルニレン基、2,5-ノルボルニレン基、1,5-アダマンチレン基、2,6-アダマンチレン基等の多環型シクロアルカンジイル基等を挙げることができる。また、3価の脂環式炭化水素基としては、前記の単環型または多環型シクロアルカンジイル基から水素原子を1個脱離した基等を挙げることができる。
 一般式(7-2-2)中、Dで表される基のうち、2価の芳香族炭化水素基としては、例えば、フェニレン基、トリレン基、ナフチレン基、フェナントリレン基、アントリレン基等のアリーレン基等を挙げることができる。また、3価の芳香族炭化水素基としては、前記のアリーレン基から水素原子を1個脱離した基等を挙げることができる。
 一般式(7-2-2-1)で表される構造を有する1価の基は、環状カーボネート構造を少なくとも一部に有する1価の基である。一般式(7-2-2-1)で表される構造を有する1価の基としては、Dに直接結合している基であってもよいし、上記環状カーボネート構造を含む多環構造などを有する基が挙げられる。例えば、下記一般式(7-2-2i)で表される繰り返し単位は、環状カーボネート構造を含む多環構造などを有する基を含んでいる。
 一般式(7-2-2-1)で表される構造を有する1価の基の中には、3~30個の炭素原子を有することが好ましく、3~15個の炭素原子を有することが更に好ましく、3~10個の炭素原子を有することが特に好ましい。30個より多数の炭素原子を有する場合には、形成されるレジスト被膜の密着性が低下し、パターン倒れやパターン剥れを起こすおそれがある。また、重合体成分の、現像液への溶解性が低下し、現像欠陥発生の原因となるおそれがある。
 一般式(7-2-2)で表される繰り返し単位を構成するための単量体は、例えば、Tetrahedron Letters,Vol.27,No.32 p.3741(1986)、Organic Letters,Vol.4,No.15 p.2561(2002)等に記載された、従来公知の方法により合成することができる。
 一般式(7-2-2)で表される繰り返し単位としては、具体的には、下記一般式(7-2-2a)~(7-2-2v)で表される繰り返し単位などを挙げることができる。なお、一般式(7-2-2a)~(7-2-2v)中、R36は、水素原子、メチル基またはトリフルオロメチル基を示す。
Figure JPOXMLDOC01-appb-C000031
 なお、(A)重合体は、繰り返し単位(IV)を、1種単独でまたは2種以上を組み合わせて有していてもよい。
[1-1-3-3]繰り返し単位(V):
 繰り返し単位(V)中のアルカリ可溶性基は、現像液に対する溶解性が向上するという観点から、pKaが4~11の水素原子を有する官能基であることが好ましい。このような官能基としては、具体的には、下記一般式(8a)で表される官能基、下記式(8b)で表される官能基などを挙げることができる。
Figure JPOXMLDOC01-appb-C000032
 一般式(8a)中、R41は、フッ素原子で置換された炭素数1~10の炭化水素基を示す。
 一般式(8a)中のR41で表されるフッ素原子で置換された炭素数1~10の炭化水素基としては、炭素数1~10の炭化水素基における1または2以上の水素原子がフッ素原子に置換されたものであれば特に限定されないが、トリフルオロメチル基が好ましい。
 なお、繰り返し単位(V)の主鎖骨格は、特に限定されるものではないが、メタクリル酸エステル、アクリル酸エステル、またはα-トリフルオロアクリル酸エステルの骨格であることが好ましい。
 繰り返し単位(V)を構成するための化合物としては、具体的には、下記一般式(8a-1)で表される化合物、下記一般式(8b-1)で表される化合物などを挙げることができる。
Figure JPOXMLDOC01-appb-C000033
 一般式(8a-1)及び(8b-1)中、各R42は、水素原子、メチル基、またはトリフルオロメチル基を示し、R43は、単結合、または炭素数1~20の2価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示す。一般式(8a-1)中、R41は、フッ素原子で置換された炭素数1~10の炭化水素基を示す。
 一般式(8a-1)及び(8b-1)中、R43で表される基としては、上記一般式(2-2)におけるR13と同様のものを挙げることができる。また、一般式(8a-1)中、R41のフッ素原子で置換された炭素数1~10の炭化水素基としては、上記一般式(8a)におけるR41と同様のものを挙げることができる。
 なお、(A)重合体は、繰り返し単位(V)を、1種単独でまたは2種以上を組み合わせて有していてもよい。
[1-1-3-4]繰り返し単位(VI):
 繰り返し単位(VI)としては、例えば、下記一般式(9)で表される繰り返し単位等などを挙げることができる。
Figure JPOXMLDOC01-appb-C000034
(一般式(9)中、R44は、水素原子、メチル基、またはトリフルオロメチル基を示し、Wは炭素数4~20の脂環式炭化水素基である。)
 前記一般式(9)中のWで表される炭素数4~20の脂環式炭化水素基としては、例えば、シクロブタン、シクロペンタン、シクロヘキサン、ビシクロ[2.2.1]ヘプタン、ビシクロ[2.2.2]オクタン、トリシクロ[5.2.1.02,6]デカン、テトラシクロ[6.2.1.13,6.02,7]ドデカン、トリシクロ[3.3.1.13,7]デカン等のシクロアルカン類に由来する脂環族環からなる炭化水素基などが挙げられる。
 これらのシクロアルカン由来の脂環族環は、置換基を有していてもよく、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、2-メチルプロピル基、1-メチルプロピル基、t-ブチル基等の炭素数1~4の直鎖状、分岐状または環状のアルキル基の1種以上或いは1個以上で置換してもよい。これらは、これらのアルキル基によって置換されたものに限定されるものではなく、ヒドロキシル基、シアノ基、炭素数1~10のヒドロキシアルキル基、カルボキシル基、酸素で置換されたものであってもよい。
 繰り返し単位(VI)を構成するための単量体としては、例えば、(メタ)アクリル酸-ビシクロ[2.2.1]ヘプト-2-イルエステル、(メタ)アクリル酸-ビシクロ[2.2.2]オクタ-2-イルエステル、(メタ)アクリル酸-トリシクロ[5.2.1.02,6]デカ-7-イルエステル、(メタ)アクリル酸-テトラシクロ[6.2.1.13,6.02,7]ドデカ-9-イルエステル、(メタ)アクリル酸-トリシクロ[3.3.1.13,7]デカ-1-イルエステル、(メタ)アクリル酸-トリシクロ[3.3.1.13,7]デカ-2-イルエステル等が挙げられる。
[1-1-3-5]繰り返し単位(VII):
 繰り返し単位(VII)は、芳香族化合物に由来する繰り返し単位であり、この繰り返し単位(VII)を構成するための単量体としては、例えば、スチレン、α-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、2-メトキシスチレン、3-メトキシスチレン、4-メトキシスチレン、4-(2-t-ブトキシカルボニルエチルオキシ)スチレン2-ヒドロキシスチレン、3-ヒドロキシスチレン、4-ヒドロキシスチレン、2-ヒドロキシ-α-メチルスチレン、3-ヒドロキシ-α-メチルスチレン、4-ヒドロキシ-α-メチルスチレン、2-メチル-3-ヒドロキシスチレン、4-メチル-3-ヒドロキシスチレン、5-メチル-3-ヒドロキシスチレン、2-メチル-4-ヒドロキシスチレン、3-メチル-4-ヒドロキシスチレン、3,4-ジヒドロキシスチレン、2,4,6-トリヒドロキシスチレン、4-t-ブトキシスチレン、4-t-ブトキシ-α-メチルスチレン、4-(2-エチル-2-プロポキシ)スチレン、4-(2-エチル-2-プロポキシ)-α-メチルスチレン、4-(1-エトキシエトキシ)スチレン、4-(1-エトキシエトキシ)-α-メチルスチレン、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、アセナフチレン、5-ヒドロキシアセナフチレン、1-ビニルナフタレン、2-ビニルナフタレン、2-ヒドロキシ-6-ビニルナフタレン、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、1-ナフチルメチル(メタ)アクリレート、1-アントリル(メタ)アクリレート、2-アントリル(メタ)アクリレート、9-アントリル(メタ)アクリレート、9-アントリルメチル(メタ)アクリレート、1-ビニルピレン等が挙げられる。
[1-1-3-6]繰り返し単位(VIII):
 繰り返し単位(VIII)は、上記繰り返し単位(I)~(VII)以外の繰り返し単位であり、繰り返し単位(VIII)を構成する単量体(重合性不飽和単量体)としては、具体的には、5-フルオロビシクロ[2.2.1]ヘプト-2-エン、5,5-ジフルオロビシクロ[2.2.1]ヘプト-2-エン、5,6-ジフルオロビシクロ[2.2.1]ヘプト-2-エン、5,5,6-トリフルオロビシクロ[2.2.1]ヘプト-2-エン、5,5,6,6-テトラフルオロビシクロ[2.2.1]ヘプト-2-エン、5,5-ジフルオロ-6,6-ジ(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジフルオロ-5,6-ジ(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン、5,5,6-トリフルオロ-6-トリフルオロメチルビシクロ[2.2.1]ヘプト-2-エン、5,5,6-トリフルオロ-6-トリフルオロメトキシビシクロ[2.2.1]ヘプト-2-エン、5,5,6-トリフルオロ-6-ペンタフルオロ-n-プロポキシビシクロ[2.2.1]ヘプト-2-エン、5-フルオロ-5-ペンタフルオロエチル-6,6-ジ(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジフルオロ-5-ヘプタフルオロ-i-プロピル-6-トリフルオロメチルビシクロ[2.2.1]ヘプト-2-エン、5-クロロ-5,6,6-トリフルオロビシクロ[2.2.1]ヘプト-2-エン、5,6-ジクロロ-5,6-ビス(トリフルオロメチル)ビシクロ[2.2.1]ヘプト-2-エン、5-(2,2,2-トリフルオロカルボエトキシ)ビシクロ[2.2.1]ヘプト-2-エン、5-メチル-5-(2,2,2-トリフルオロカルボエトキシ)ビシクロ[2.2.1]ヘプト-2-エン、
 8-フルオロテトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8,8-ジフルオロテトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8,9-ジフルオロテトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8,8,9-トリフルオロテトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8,8,9,9-テトラフルオロテトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8,8-ジフルオロ-9,9-ジ(トリフルオロメチル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8,9-ジフルオロ-8,9-ジ(トリフルオロメチル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8,8,9-トリフルオロ-9-トリフルオロメチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8,8,9-トリフルオロ-9-トリフルオロメトキシテトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8,8,9-トリフルオロ-9-ペンタフルオロ-n-プロポキシテトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8-フルオロ-8-ペンタフルオロエチル-9,9-ジ(トリフルオロメチル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8,9-ジフルオロ-8-ヘプタフルオロ-i-プロピル-9-トリフルオロメチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8-クロロ-8,9,9-トリフルオロテトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8,9-ジクロロ-8,9-ジ(トリフルオロメチル)テトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8-(2,2,2-トリフルオロカルボエトキシ)テトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8-メチル-8-(2,2,2-トリフルオロカルボエトキシ)テトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、
 ジシクロペンタジエン、トリシクロ[5.2.1.02,6]デカ-8-エン、トリシクロ[5.2.1.02,6]デカ-3-エン、トリシクロ[4.4.0.12,5]ウンデカ-3-エン、トリシクロ[6.2.1.01,8]ウンデカ-9-エン、トリシクロ[6.2.1.01,8]ウンデカ-4-エン、テトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8-メチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8-エチリデンテトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、8-エチリデンテトラシクロ[6.2.1.13,6.02,7]ドデカ-3-エン、ペンタシクロ[6.5.1.13,6.02,7.09,13]ペンタデカ-4-エン、ペンタシクロ[7.4.0.12,5.19,12.08,13]ペンタデカ-3-エン等の他の脂環式不飽和化合物;
 (メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-メチルプロピル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸シクロプロピル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸シクロヘキセニル、(メタ)アクリル酸4-メトキシシクロヘキシル、(メタ)アクリル酸2-シクロプロピルオキシカルボニルエチル、(メタ)アクリル酸2-シクロペンチルオキシカルボニルエチル、(メタ)アクリル酸2-シクロヘキシルオキシカルボニルエチル、(メタ)アクリル酸2-シクロヘキセニルオキシカルボニルエチル、(メタ)アクリル酸2-(4’-メトキシシクロヘキシル)オキシカルボニルエチル、(メタ)アクリル酸ノルボルニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸テトラシクロデカニル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸アダマンチルメチル、(メタ)アクリル酸1-メチルアダマンチル等の(メタ)アクリル酸エステル類;α-ヒドロキシメチルアクリル酸メチル、α-ヒドロキシメチルアクリル酸エチル、α-ヒドロキシメチルアクリル酸n-プロピル、α-ヒドロキシメチルアクリル酸n-ブチル等のα-ヒドロキシメチルアクリル酸エステル類;
 酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル類;(メタ)アクリロニトリル、α-クロロアクリロニトリル、クロトンニトリル、マレインニトリル、フマロニトリル、メサコンニトリル、シトラコンニトリル、イタコンニトリル等の不飽和ニトリル化合物;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、クロトンアミド、マレインアミド、フマルアミド、メサコンアミド、シトラコンアミド、イタコンアミド等の不飽和アミド化合物;N-ビニル-ε-カプロラクタム、N-ビニルピロリドン、ビニルピリジン、ビニルイミダゾール等の他の含窒素ビニル化合物;(メタ)アクリル酸、クロトン酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、メサコン酸等の不飽和カルボン酸(無水物)類;(メタ)アクリル酸2-カルボキシエチル、(メタ)アクリル酸2-カルボキシプロピル、(メタ)アクリル酸3-カルボキシプロピル、(メタ)アクリル酸4-カルボキシブチル、(メタ)アクリル酸4-カルボキシシクロヘキシル、(メタ)アクリル酸カルボキシトリシクロデカニル、(メタ)アクリル酸カルボキシテトラシクロデカニル等の不飽和カルボン酸のカルボキシル基含有エステル類;
 メチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2,5-ジメチル-2,5-ヘキサンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,4-ビス(2-ヒドロキシプロピル)ベンゼンジ(メタ)アクリレート、1,3-ビス(2-ヒドロキシプロピル)ベンゼンジ(メタ)アクリレート、1,2-アダマンタンジオールジ(メタ)アクリレート、1,3-アダマンタンジオールジ(メタ)アクリレート、1,4-アダマンタンジオールジ(メタ)アクリレート、トリシクロデカニルジメチロールジ(メタ)アクリレート等の多官能性単量体を挙げることができる。
[1-1-3-7]他の繰り返し単位の含有割合:
 ここで、(A)重合体中の全繰り返し単位の合計を100モル%とした場合の、各繰り返し単位の好ましい含有割合を以下に示す。繰り返し単位(III)の含有割合は、通常80モル%以下であり、好ましくは20~80モル%であり、更に好ましくは30~70モル%である。繰り返し単位(III)の含有割合がこの範囲内である場合には、特に液浸露光時における前進接触角と後退接触角との差を小さくすることができるという観点から特に有効である。繰り返し単位(IV)及び繰り返し単位(V)の含有割合は、相互に独立に通常50モル%以下であり、好ましくは5~30モル%であり、更に好ましくは5~20モル%である。繰り返し単位(IV)及び繰り返し単位(V)の含有割合がこの範囲内である場合には、特に液浸露光時における塗布後の撥水性確保と、現像液に対する親和性と、の両立ができるという観点から特に有効である。また、繰り返し単位(VI)~繰り返し単位(VIII)の含有割合は、それぞれ独立に通常50モル%以下である。
[1-1-4](A)重合体の含有量:
 (A)重合体の含有量は、(B)重合体100質量部に対して、0.1~20質量部であることが好ましい。上記含有量が上記範囲内にあると、レジスト被膜表面に(A)重合体を良好に偏在させることができる。また、レジスト被膜の現像性を損なわないという観点からも好ましい。上記含有量が0.1質量部未満であると、レジスト被膜表面に(A)重合体を十分に偏在させることができないおそれがある。一方、20質量部超であると、レジスト被膜の現像性が損なわれるおそれがある。
 (A)重合体のゲルパーミエーションクロマトグラフィ(GPC)法によるポリスチレン換算の重量平均分子量(以下、「Mw」ともいう。)は、1,000~50,000であることが好ましく、1,000~40,000であることが更に好ましく、1,000~30,000であることが特に好ましい。このMwが1,000未満であると、十分な後退接触角を有するレジスト被膜を得ることができないおそれがある。一方、50,000超であると、レジスト被膜の現像性が低下する(具体的には、現像欠陥が発生する)おそれがある。
 (A)重合体のMwとGPC法によるポリスチレン換算数平均分子量(以下、「Mn」ともいう。)との比(Mw/Mn)は、1~5であることが好ましく、1~4であることが更に好ましい。上記Mw/Mnが5超であると、十分な後退接触角を有するレジスト被膜を得ることができないおそれがある。また、レジスト被膜の現像性が低下する(具体的には、現像欠陥が発生する)おそれがある。
[1-1-5](A)重合体の調製:
 (A)重合体は、例えば、以下のように調製することができる。即ち、一般式(1)で表される繰り返し単位(I)を構成するための単量体とフッ素原子を含む繰り返し単位(繰り返し単位(II))を構成するための単量体を含有する単量体組成物を用意し、この単量体組成物中の単量体を、ヒドロパーオキシド類、ジアルキルパーオキシド類、ジアシルパーオキシド類、アゾ化合物などのラジカル重合開始剤を使用し、必要に応じて連鎖移動剤の存在下、適当な溶媒中で重合することにより調製することができる。
 重合に使用される溶媒としては、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカンなどのアルカン類;シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナンなどのシクロアルカン類;ベンゼン、トルエン、キシレン、エチルベンゼン、クメンなどの芳香族炭化水素類;クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼンなどのハロゲン化炭化水素類;酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチルなどの飽和カルボン酸エステル類;アセトン、2-ブタノン、4-メチル-2-ペンタノン、2-ヘプタノンなどのケトン類;テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類などのエーテル類;メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノールなどのアルコール類などを挙げることができる。なお、これらの溶媒は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 重合における反応温度は、40~150℃であることが好ましく、50~120℃であることが更に好ましい。また、反応時間は、1~48時間であることが好ましく、1~24時間であることが更に好ましい。
 なお、(A)重合体は、本発明の感放射線性樹脂組成物に、1種のみ含有されていてもよいし、2種以上含有されていてもよい。
[1-2](B)重合体:
 (B)重合体は、酸解離性基を有するアルカリ不溶性またはアルカリ難溶性のものである(但し、一般式(1)で表される繰り返し単位(I)を有する重合体を除く)。このような(B)重合体は、本発明の感放射線性樹脂組成物の基材となる成分である。なお、(A)重合体と(B)重合体は同一ではない。
 (B)重合体は、アルカリ不溶性またはアルカリ難溶性であり、酸の作用によりアルカリ可溶性となる樹脂であれば特に制限されるものではないが、既に上述した、一般式(7-1)で表される繰り返し単位及び一般式(7-2)で表される繰り返し単位を有する重合体であることが好ましい。なお、本明細書中、「アルカリ不溶性またはアルカリ難溶性」とは、(B)重合体を含有する感放射線性樹脂組成物を用いて形成したレジスト被膜からレジストパターンを形成する際に採用されるアルカリ現像条件下で、レジスト被膜の代わりに(B)重合体のみを用いた膜厚100nmの被膜を現像した場合に、被膜の初期膜厚の50%以上が現像後に残存する性質をいう。
[1-2-1]繰り返し単位(7-1):
 (B)重合体中の繰り返し単位(7-1)の含有割合は、(B)重合体中の全繰り返し単位に対して、15~85モル%であることが好ましく、25~75モル%であることが更に好ましく、35~60モル%であることが特に好ましい。15モル%未満であると、溶解した後のコントラストが損なわれ、パターン形状が低下するおそれがある。一方、85モル%超であると、基板との密着性が不十分となりパターンが剥がれてしまうおそれがある。
[1-2-2]繰り返し単位(7-2):
 (B)重合体中の繰り返し単位(7-2)の含有割合は、(B)重合体中の全繰り返し単位に対して、5~75モル%であることが好ましく、15~65モル%であることが更に好ましく、25~55モル%であることが特に好ましい。5モル%未満であると、レジスト被膜として基板との密着性が不十分となりパターンが剥がれてしまうおそれがある。一方、75モル%超であると、溶解した後のコントラストが損なわれ、パターン形状が低下するおそれがある。
[1-2-3]他の繰り返し単位:
 (B)重合体は、上記繰り返し単位(7-1)、(7-2)以外の繰り返し単位(以下、「他の繰り返し単位」と記す場合がある)を有するものであってもよい。他の繰り返し単位を構成するための単量体(重合性不飽和単量体)としては、例えば、上述した繰り返し単位(V)または繰り返し単位(VI)と同様のものなどを挙げることができる。
[1-2-4](B)重合体の調製:
 (B)重合体は、例えば、以下のように調製することができる。即ち、繰り返し単位(7-1)を構成するための単量体と繰り返し単位(7-2)を構成するための単量体を含有する単量体組成物を用意し、この単量体組成物中の単量体を、ヒドロパーオキシド類、ジアルキルパーオキシド類、ジアシルパーオキシド類、アゾ化合物等のラジカル重合開始剤を使用し、必要に応じて連鎖移動剤の存在下、適当な溶媒中で共重合することにより調製することができる。
 溶媒としては、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;クロロブタン、ブロモヘキサン、ジクロロエタン、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;テトラヒドロフラン、ジメトキシエタン、ジエトキシエタン等のエーテル類等を挙げることができる。これらの溶媒は、1種単独でまたは2種以上を組み合わせて使用することができる。
 また、反応温度は、通常、40~120℃であり、好ましくは50~90℃であり、反応時間は、通常、1~48時間であり、好ましくは1~24時間である。
 (B)重合体のゲルパーミエーションクロマトグラフィ(GPC)によるポリスチレン換算の重量平均分子量(以下、「Mw」という場合がある)は、通常、3,000~300,000であり、好ましくは4,000~200,000であり、更に好ましくは4,000~100,000である。Mwが3,000未満であると、レジスト被膜としての耐熱性が低下する場合がある。一方、300,000超であると、レジスト被膜としての現像性が低下する場合がある。
 (B)重合体は、ハロゲン、金属等の不純物が少ないほど好ましく、それにより、レジスト被膜としての感度、解像度、プロセス安定性、パターン形状等を更に改善することができる。(B)重合体の精製法としては、例えば、水洗、液々抽出等の化学的精製法や、これらの化学的精製法と限外ろ過、遠心分離等の物理的精製法との組み合わせ等を挙げることができる。なお、(B)重合体は、1種単独でまたは2種以上を組み合わせて含有することができる。
[1-3](C)感放射線性酸発生剤:
 (C)感放射線性酸発生剤((C)酸発生剤)は、放射線の照射(以下、「露光」という場合がある)により酸を発生するものである。(C)酸発生剤は、露光により発生した酸の作用によって、(B)重合体中に存在する酸解離性基を解離させて、(B)重合体をアルカリ可溶性にする。その結果、レジスト被膜の露光部がアルカリ現像液に易溶性となり、ポジ型のレジストパターンを形成することができる。このような(C)酸発生剤としては、例えば、特開2009-134088号公報の段落[0080]~[0113]に記載されている化合物などを挙げることができる。
 (C)酸発生剤としては、具体的には、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオロ-n-ブタンスルホネート、ジフェニルヨードニウムパーフルオロ-n-オクタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムノナフルオロ-n-ブタンスルホネート、ビス(4-t-ブチルフェニル)ヨードニウムパーフルオロ-n-オクタンスルホネート、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムパーフルオロ-n-オクタンスルホネート、シクロヘキシル・2-オキソシクロヘキシル・メチルスルホニウムトリフルオロメタンスルホネート、ジシクロヘキシル・2-オキソシクロヘキシルスルホニウムトリフルオロメタンスルホネート、2-オキソシクロヘキシルジメチルスルホニウムトリフルオロメタンスルホネート、4-ヒドロキシ-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、
 4-ヒドロキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-ヒドロキシ-1-ナフチルテトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、4-ヒドロキシ-1-ナフチルテトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(1-ナフチルアセトメチル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(1-ナフチルアセトメチル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(1-ナフチルアセトメチル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(3,5-ジメチル-4-ヒドロキシフェニル)テトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、
 トリフルオロメタンスルホニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボジイミド、ノナフルオロ-n-ブタンスルホニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボジイミド、パーフルオロ-n-オクタンスルホニルビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボジイミド、N-ヒドロキシスクシイミドトリフルオロメタンスルホネート、N-ヒドロキシスクシイミドノナフルオロ-n-ブタンスルホネート、N-ヒドロキシスクシイミドパーフルオロ-n-オクタンスルホネート、1,8-ナフタレンジカルボン酸イミドトリフルオロメタンスルホネートが好ましい。なお、(C)酸発生剤は、1種単独でまたは2種以上を組み合わせて含有させることができる。
 (C)酸発生剤の含有量は、(B)重合体100質量部に対して、0.1~30質量部であることが好ましく、2~27質量部であることが更に好ましく、5~25質量部であることが特に好ましい。0.1質量部未満であると、レジスト被膜としての感度や解像度が低下する場合がある。一方、30質量部超であると、レジスト被膜としての塗布性やパターン形状が低下する場合がある。
[1-4]その他の成分:
 本発明の感放射線性樹脂組成物には、必要に応じて、酸拡散制御剤、脂環族添加剤、界面活性剤、増感剤、ハレーション防止剤、接着助剤、保存安定化剤、消泡剤等の各種の添加剤を含有することができる。
[1-4-1]酸拡散制御剤:
 酸拡散制御剤としては、例えば、一般式(10)で表される化合物(以下、「含窒素化合物(I)」という)、同一分子内に窒素原子を2個有する化合物(以下、「含窒素化合物(II)」という)、窒素原子を3個以上有する化合物(以下、「含窒素化合物(III)」という)、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等を挙げることができる。酸拡散制御剤を含有すると、レジストとしてのパターン形状や寸法忠実度を向上させることができる。
Figure JPOXMLDOC01-appb-C000035
(上記一般式(10)中、R45~R47は、相互に独立に、水素原子、置換されていてもよい、直鎖状、分岐状若しくは環状のアルキル基、アリール基、またはアラルキル基を示す。)
 含窒素化合物(I)としては、例えば、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン等のモノアルキルアミン類;ジ-n-ブチルアミン、ジ-n-ペンチルアミン、ジ-n-ヘキシルアミン、ジ-n-ヘプチルアミン、ジ-n-オクチルアミン、ジ-n-ノニルアミン、ジ-n-デシルアミン等のジアルキルアミン類;トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン、トリ-n-ヘキシルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、トリ-n-ノニルアミン、トリ-n-デシルアミン等のトリアルキルアミン類;アニリン、N-メチルアニリン、N,N-ジメチルアニリン、2-メチルアニリン、3-メチルアニリン、4-メチルアニリン、4-ニトロアニリン、ジフェニルアミン、トリフェニルアミン、1-ナフチルアミン、2-(4-アミノフェニル)-2-(3-ヒドロキシフェニル)プロパン、2-(4-アミノフェニル)-2-(4-ヒドロキシフェニル)プロパン等の芳香族アミン類等を挙げることができる。
 含窒素化合物(II)としては、例えば、エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルアミン、2,2’-ビス(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、1,4-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン、1,3-ビス[1-(4-アミノフェニル)-1-メチルエチル]ベンゼン等を挙げることができる。
 含窒素化合物(III)としては、例えば、ポリエチレンイミン、ポリアリルアミン、ジメチルアミノエチルアクリルアミドの重合体等を挙げることができる。
 アミド基含有化合物としては、例えば、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン等を挙げることができる。
 ウレア化合物としては、例えば、尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリブチルチオウレア等を挙げることができる。
 含窒素複素環化合物としては、例えば、ピリジン、2-メチルピリジン、4-メチルピリジン、2-エチルピリジン、4-エチルピリジン、2-フェニルピリジン、4-フェニルピリジン、N-メチル-4-フェニルピリジン、ニコチン、ニコチン酸、ニコチン酸アミド、キノリン、8-オキシキノリン、アクリジン等のピリジン類の他、ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、モルホリン、4-メチルモルホリン、ピペラジン、1,4-ジメチルピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン等を挙げることができる。
 これらの酸拡散制御剤の中でも、含窒素化合物(I)、含窒素化合物(II)、含窒素複素環化合物が好ましい。なお、酸拡散制御剤は、1種単独でまたは2種以上を組み合わせて使用することができる。酸拡散制御剤の含有量は、(B)重合体100質量部に対して、10質量部以下が好ましく、5質量部以下が更に好ましい。酸拡散制御剤の含有量が過剰になると、形成したレジスト被膜の感度が著しく低下する傾向にある。
[1-4-2]脂環族添加剤:
 脂環族添加剤は、ドライエッチング耐性、パターン形状、基板との接着性等を更に改善する作用を示す成分である。このような脂環族添加剤としては、例えば、1-アダマンタンカルボン酸t-ブチル、1-アダマンタンカルボン酸t-ブトキシカルボニルメチル、1,3-アダマンタンジカルボン酸ジ-t-ブチル、1-アダマンタン酢酸t-ブチル、1-アダマンタン酢酸t-ブトキシカルボニルメチル、1,3-アダマンタンジ酢酸ジ-t-ブチル等のアダマンタン誘導体類;デオキシコール酸t-ブチル、デオキシコール酸t-ブトキシカルボニルメチル、デオキシコール酸2-エトキシエチル、デオキシコール酸2-シクロヘキシルオキシエチル、デオキシコール酸3-オキソシクロヘキシル、デオキシコール酸テトラヒドロピラニル、デオキシコール酸メバロノラクトンエステル等のデオキシコール酸エステル類;リトコール酸t-ブチル、リトコール酸t-ブトキシカルボニルメチル、リトコール酸2-エトキシエチル、リトコール酸2-シクロヘキシルオキシエチル、リトコール酸3-オキソシクロヘキシル、リトコール酸テトラヒドロピラニル、リトコール酸メバロノラクトンエステル等のリトコール酸エステル類等を挙げることができる。これらの脂環族添加剤は、1種単独でまたは2種以上を混合して使用することができる。脂環族添加剤の含有量は、(B)重合体100質量部に対して、通常、50質量部以下であり、好ましくは30質量部以下である。
[1-4-3]界面活性剤:
 界面活性剤は、塗布性、現像性等を改良する作用を示す成分である。このような界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンn-オクチルフェニルエーテル、ポリオキシエチレンn-ノニルフェニルエーテル、ポリエチレングリコールジラウレート、ポリエチレングリコールジステアレート等のノニオン系界面活性剤のほか、以下商品名で、KP341(信越化学工業社製)、ポリフローNo.75、同No.95(以上、共栄社化学社製)、エフトップEF301、同EF303、同EF352(以上、トーケムプロダクツ社製)、メガファックスF171、同F173(以上、大日本インキ化学工業社製)、フロラードFC430、同FC431(以上、住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(以上、旭硝子社製)等を挙げることができる。これらの界面活性剤は、1種単独でまたは2種以上を混合して使用することができる。界面活性剤の含有量は、(B)重合体100質量部に対して、通常、2質量部以下である。
[1-5]感放射線性樹脂組成物の製造方法:
 本発明の感放射線性樹脂組成物(組成物溶液)は、その全固形分濃度が、通常、1~50質量%、好ましくは3~25質量%となるように上記各成分を溶剤に溶解した後、例えば孔径0.02μm程度のフィルターでろ過することによって調製することができる。
[1-5-1]溶剤:
 組成物溶液の調製に使用される溶剤としては、例えば、直鎖状または分岐状のケトン類;環状のケトン類;プロピレングリコールモノアルキルエーテルアセテート類;2-ヒドロキシプロピオン酸アルキル類;3-アルコキシプロピオン酸アルキル類のほか、
 n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、t-ブチルアルコール、シクロヘキサノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、トルエン、キシレン、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチル酪酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3-メチル-3-メトキシブチルブチレート、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、アセト酢酸メチル、アセト酢酸エチル、ピルビン酸メチル、ピルビン酸エチル、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ベンジルエチルエーテル、ジ-n-ヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、カプロン酸、カプリル酸、1-オクタノール、1-ノナノール、ベンジルアルコール、酢酸ベンジル、安息香酸エチル、しゅう酸ジエチル、マレイン酸ジエチル、γ-ブチロラクトン、炭酸エチレン、炭酸プロピレン等を挙げることができる。
 これらの中でも、直鎖状または分岐状のケトン類、環状のケトン類、プロピレングリコールモノアルキルエーテルアセテート類、2-ヒドロキシプロピオン酸アルキル類、3-アルコキシプロピオン酸アルキル類が好ましい。なお、これらの溶剤は、1種単独でまたは2種以上を組み合わせて使用することができる。
[2]レジストパターン形成方法:
 本発明のレジストパターン形成方法は、基板上に、上述した本発明の感放射線性樹脂組成物からなるレジスト被膜を形成する(1)工程と、形成したレジスト被膜を露光する(2)工程と、露光された前記レジスト被膜を現像してレジストパターンを形成する(3)工程と、を備えるものである。このような工程を備えると、断面形状に優れたレジストパターンを形成することができる。
[2-1](1)工程:
 (1)工程は、基板上に、上述した本発明の感放射線性樹脂組成物からなるレジスト被膜を形成する工程である。本工程によって形成されるレジスト被膜は、水などの液浸露光液に対する後退接触角が大きく、現像欠陥を生じ難いものである。
 基板としては、例えば、シリコンウェハ、アルミニウムで被覆されたウェハなどを用いることができる。
 レジスト被膜は、例えば、本発明の感放射線性樹脂組成物からなる樹脂組成物溶液を、回転塗布、流延塗布、ロール塗布などの適宜の塗布手段によって、基板上に塗布した後、プレベーク(PB)することにより塗膜中の溶剤を揮発させることにより形成することができる。なお、樹脂組成物溶液としては、具体的には、全固形分濃度を調整(通常、1~50質量%)した本発明の感放射線性樹脂組成物を、孔径0.2μm程度のフィルターでろ過したものを用いることができる。
 レジスト被膜の厚みは、特に限定されないが、10~5000nmであることが好ましく、10~2000nmであることが更に好ましい。
 また、プレベークの加熱条件は、感放射線性樹脂組成物の配合組成によって変わるが、30~200℃程度であることが好ましく、50~150℃であることが更に好ましい。
[2-2](2)工程:
 (2)工程は、形成したレジスト被膜を露光する工程である。露光により(C)酸発生剤から発生した酸の作用によって、(B)重合体中の酸解離性基が解離して、レジストの露光部のアルカリ現像液に対する溶解性が高くなり、露光部がアルカリ現像液によって溶解可能になる。
 露光に使用する放射線としては、使用される(C)酸発生剤の種類に応じて適宜選定することができるが、例えば、可視光線、紫外線、遠紫外線、X線、荷電粒子線などを挙げることができる。これらの中でも、ArFエキシマレーザー(波長193nm)或いはKrFエキシマレーザー(波長248nm)で代表される遠紫外線が好ましく、特にArFエキシマレーザー(波長193nm)が好ましい。
 また、露光量などの露光条件は、感放射線性樹脂組成物の配合組成や添加剤の種類などに応じて適宜選定することができる。
 本発明のレジストパターンの形成方法においては、露光後に加熱処理(PEB)を行うことが好ましい。このPEBを行うことにより、酸解離性基の解離反応を円滑に進行させることができる。PEBの加熱条件は、感放射線性樹脂組成物の配合組成によって適宜調整することができるが、30~200℃であることが好ましく、50~170℃であることが更に好ましい。
 また、本発明のレジストパターンの形成方法においては、感放射線性樹脂組成物の潜在能力を最大限に引き出すため、例えば、特公平6-12452号公報(特開昭59-93448号公報)などに開示されているように、使用される基板上に有機系または無機系の反射防止膜を形成しておくこともできる。また、環境雰囲気中に含まれる塩基性不純物などの影響を防止するため、例えば、特開平5-188598号公報などに開示されているように、レジスト被膜上に保護膜を設けることもできる。また、これらの技術は併用することができる。
 なお、本工程において、(1)工程で形成したレジスト被膜上に液浸露光液を配置し、液浸露光液を介してレジスト被膜を露光することが好ましい。即ち、液浸露光を行うことが好ましい。このように液浸露光を行う場合には、レジスト被膜からの酸発生剤などが液浸露光液に流出することを防止するため、例えば、特開2005-352384号公報などに開示されているように、レジスト被膜上に液浸用保護膜を配置することもできる。
 液浸露光液としては、例えば、純水、炭化水素、含フッ素炭化水素などを挙げることができる。
[2-3](3)工程:
 (3)工程は、露光されたレジスト被膜を現像してレジストパターンを形成する工程である。
 現像に使用する現像液としては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネンなどのアルカリ性化合物の少なくとも1種を溶解したアルカリ性水溶液を挙げることができる。
 上記アルカリ性水溶液の濃度は、10質量%以下であることが好ましい。アルカリ性水溶液の濃度が10質量%超であると、非露光部も現像液に溶解するおそれがある。
 上記アルカリ性水溶液からなる現像液には、有機溶媒を添加することもできる。有機溶媒としては、例えば、アセトン、メチルエチルケトン、メチルi-ブチルケトン、シクロペンタノン、シクロヘキサノン、3-メチルシクロペンタノン、2,6-ジメチルシクロヘキサノンなどのケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、t-ブチルアルコール、シクロペンタノール、シクロヘキサノール、1,4-ヘキサンジオール、1,4-ヘキサンジメチロールなどのアルコール類;テトラヒドロフラン、ジオキサンなどのエーテル類;酢酸エチル、酢酸n-ブチル、酢酸i-アミルなどのエステル類;トルエン、キシレンなどの芳香族炭化水素類や、フェノール、アセトニルアセトン、ジメチルホルムアミドなどを挙げることができる。これらの有機溶媒は、1種単独でまたは2種以上を組み合わせて使用することができる。
 この有機溶媒の使用量は、アルカリ性水溶液100体積部に対して、100体積部以下であることが好ましい。有機溶媒の使用量が100体積部超であると、現像性が低下して、露光部の現像残りが多くなるおそれがある。
 また、前記アルカリ性水溶液からなる現像液には、界面活性剤などを適量添加することもできる。
 なお、アルカリ性水溶液からなる現像液で現像した後、水で洗浄して乾燥することが好ましい。
[3]重合体:
 本発明の重合体は、下記一般式(3)で表される繰り返し単位(3)を有し、分子中にフッ素原子を含むものであり、上述した本発明の感放射線性樹脂組成物中の(A)重合体と同様のものである。このような重合体は、断面形状に優れたレジストパターンを形成可能な感放射線性樹脂組成物の材料として好適に用いることができる。
Figure JPOXMLDOC01-appb-C000036
(前記一般式(3)中、R17は、水素原子、メチル基またはトリフルオロメチル基を示す。Xは、単結合、一般式「-O-R21-」で表される基、一般式「-C(=O)-O-R21-」で表される基、一般式「-C(=O)-NH-R21-」で表される基、炭素数1~4の直鎖状若しくは分岐状のアルカンジイル基、またはフェニレン基である。但し、R21は、エステル基またはエーテル基を有していてもよい、炭素数1~10の直鎖状、分岐状または環状の炭化水素基または単結合である。R18は、単結合、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状または環状のアルカンジイル基、炭素数2~20のアルケニレン基、炭素数6~10のアリーレン基、またはアラルキレン基であり、R19は、水素原子、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状若しくは環状のアルキル基、炭素数2~20のアルケニル基、炭素数6~10のアリール基、またはアラルキル基であるか、或いは、R18とR19が結合してこれらが結合する窒素原子と共に環状構造を形成し、前記環状構造中に3~20個の炭素を有する。R20は酸解離性基である。)
 本発明の重合体は、一般式(3)で表される繰り返し単位(3)が、下記一般式(3-1)で表される繰り返し単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000037
(前記一般式(3-1)中、R17は、水素原子、メチル基またはトリフルオロメチル基を示す。Xは、単結合、一般式「-O-R21-」で表される基、一般式「-C(=O)-O-R21-」で表される基、一般式「-C(=O)-NH-R21-」で表される基、炭素数1~4の直鎖状若しくは分岐状のアルカンジイル基、またはフェニレン基である。但し、R21は、エステル基またはエーテル基を有していてもよい、炭素数1~10の直鎖状、分岐状または環状の炭化水素基または単結合である。R18は、単結合、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状または環状のアルカンジイル基、炭素数2~20のアルケニレン基、炭素数6~10のアリーレン基、またはアラルキレン基であり、R19は、水素原子、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状若しくは環状のアルキル基、炭素数2~20のアルケニル基、炭素数6~10のアリール基、またはアラルキル基であるか、或いは、R18とR19が結合してこれらが結合する窒素原子と共に環状構造を形成し、前記環状構造中に3~20個の炭素を有する。R22、R23及びR24は、それぞれ、炭素数1~4の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、アリール基またはアラルキル基を示すか、或いは、R22とR23とが結合してこれらが結合している炭素原子と共に炭素数4~20の脂環式炭化水素基を形成し、R24は、炭素数1~4の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、アリール基またはアラルキル基を示す。)
 また、本発明の重合体は、繰り返し単位(3)を有し、分子中にフッ素原子を含むものである限り特に制限はないが、フッ素原子を有する繰り返し単位(4)(以下、「繰り返し単位(4)」と記す場合がある)を更に有することが好ましく、下記一般式(4-1)で表される繰り返し単位(以下、「繰り返し単位(4-1)」と記す場合がある)または下記一般式(4-2)で表される繰り返し単位(以下、「繰り返し単位(4-2)」と記す場合がある)の少なくとも一方を更に有するものであることが更に好ましい。繰り返し単位(4-1)及び繰り返し単位(4-2)の少なくとも一方を更に有するものであると、断面形状に更に優れたレジストパターンを形成可能な感放射線性樹脂組成物の材料として好適に用いることができる。
Figure JPOXMLDOC01-appb-C000038
(前記一般式(4-1)中、R25は、水素原子、メチル基、またはトリフルオロメチル基を示す。Eは、連結基を示し、R26は、少なくとも一つのフッ素原子を有する、炭素数1~6の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、またはこれらの誘導体を示す。)
Figure JPOXMLDOC01-appb-C000039
(前記一般式(4-2)中、R27は、水素原子、メチル基、またはトリフルオロメチル基を示す。R28は、単結合、または、炭素数1~10の(n+1)価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示す。R29は、単結合、または、炭素数1~20の2価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示す。R30は、フッ素原子で置換されたメチレン基、または炭素数2~20の直鎖状若しくは分岐状のフルオロアルカンジイル基を示す。R31は、単結合、または、-CO-を示す。R32は、水素原子または酸解離性基を示す。nは、1~3の整数を示す。)
 本発明の重合体は、上述した(A)重合体と同様にして合成することができる。
 以下、本発明を実施例及び比較例に基づいて具体的に説明するが、本発明はこれらの実施例及び比較例に限定されるものではない。なお、実施例の記載における「部」及び「%」は、特記しない限り質量基準である。また、各種物性値の測定方法、及び諸特性の評価方法を以下に示す。
[重量平均分子量(Mw)及び数平均分子量(Mn)]:
 東ソー社製のGPCカラム(G2000HXL2本、G3000HXL1本、G4000HXL1本)を用い、流量1.0mL/分、溶出溶媒としてテトラヒドロフランを用い、カラム温度を40℃とする分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィ(GPC)により測定した。
13C-NMR分析]:
 (A)重合体の13C-NMR分析は、核磁気共鳴装置(商品名:JNM-ECX400、日本電子社製)を使用し、測定した。
[溶出速度の測定]:
 CLEAN TRACK ACT8(東京エレクトロン社製)により、感放射線性樹脂組成物をシリコンウェハ上にスピンコートし、ベーク(100℃、60秒)することにより、シリコンウェハ上に膜厚150nmのレジスト被膜を形成した。このレジスト被膜上の任意の位置に、内径2cm、厚さ4mmのテフロン(登録商標)製のリングを7個置き、この各リングにそれぞれ超純水1mLを充填した。このようにして超純水とレジスト被膜を接触させた。そして、超純水とレジスト被膜とが接触してから(即ち、リングの内側に超純水を充填してから)、3秒後、5秒後、10秒後、30秒後、60秒後、120秒後、及び、300秒後に、それぞれ、ガラス注射器にて任意のリングから順次超純水を回収して分析用サンプルとした(即ち、5秒後には第1のリングから超純水を回収し、10秒後には第2のリングから超純水を回収する。このようにして、順次、第7のリングの超純水まで回収して分析用サンプルとした)。なお、実験終了後の各リングから回収できた超純水の割合の平均値(超純水の回収率の平均値)は95%以上であった。
 次に、得られた超純水(分析用サンプル)中に溶出した酸発生剤のアニオン部のピーク強度を、LC-MS(液体クロマトグラフ質量分析計、LC部:AGILENT社製 SERIES1100、MS部:Perseptive Biosystems,Inc.社製 Mariner)を用いて全ての分析用サンプルについて測定した。測定条件は、使用カラムとして資生堂社製の「CAPCELL PAK MG」を1本用い、流量0.2ml/分、測定温度35℃で、流出溶剤として、水/メタノール(3/7)に0.1質量%のギ酸を添加したものを用いた。
 このとき、酸発生剤の1ppb、10ppb、100ppb水溶液の各ピーク強度を、上記測定条件で測定して検量線を作成し、この検量線を用いて全ての分析用サンプルの上記ピーク強度から各分析用サンプルにおける酸発生剤の溶出量(モル)を算出した。その後、この溶出量(モル)、回収時間(秒)、及び、超純水と接触しているレジスト被膜表面の面積(cm)の関係から、レジスト被膜1cmにおける1秒当りの溶出量(モル)(即ち、溶出速度(モル/cm/秒))を算出し、その後、全ての分析用サンプルの平均値を求めた。この平均値に基づき本評価を行った。評価基準は、溶出速度が、2.0×10-12モル/cm/秒以上であった場合は「不良」とし、2.0×10-12モル/cm/秒未満であった場合は「良好」とした。なお、本評価を、表4中、「溶出速度」と示す。
[前進接触角及び後退接触角との差]:
 感放射線性樹脂組成物を基板上に、「CLEAN TRACK ACT8」(東京エレクトロン社製)にて、スピンコートし、100℃で60秒間プレベーク(PB)を行い、膜厚100nmのレジスト被膜を基板上に形成した。その後、速やかに、KRUS社製の商品名「DSA-10」を用いて、室温23℃、湿度45%、常圧の環境下で、以下の手順により後退接触角(°)を測定した。
 まず、商品名「DSA-10」(KRUS社製)のウェハステージ位置を調整し、この調整したステージ上に前記基板をセットする。次いで、針に水を注入し、前記セットした基板上に水滴を形成可能な位置(初期位置)となるように前記針の位置を微調整する。その後、この針から水を排出させて前記基板上に25μLの水滴を(針の先端が差し込まれた状態で)形成する。その後、一旦、この水滴から針を引き抜き、再び前記初期位置に針を引き下げて水滴内に配置する(針の先端を差し込む)。続いて、10μL/minの速度で90秒間、針によって水滴を吸引させると同時に水滴の液面と基板との接触角を毎秒1回測定する(合計90回、即ち計90秒間)。この測定値のうち、接触角の測定値が安定した時点から20秒間の接触角についての平均値を算出して後退接触角とした。
 次に、前進接触角は、以下の手順により測定した。まず、後退接触角の測定と同様にして25μLの水滴を形成した後、一旦、この水滴から針を引き抜き、再び前記初期位置に針を引き下げて水滴内に配置する(針の先端を差し込む)。続いて、10μL/minの速度で90秒間、水滴中に針から水を吐出(排出)させると同時に水滴の液面と基板との接触角を毎秒1回測定する(合計90回、即ち計90秒間)。この測定値のうち、接触角の測定値が安定した時点から20秒間の接触角についての平均値を算出して前進接触角とした。
 得られた前進接触角(°)及び後退接触角(°)の測定結果から、前進接触角と後退接触角との差(前進接触角-後退接触角)を算出し、下記基準によって評価した。なお、本評価を、表4中、「RCAとACAの差」と示す。
A:前進接触角と後退接触角との差の絶対値が20°未満、
B:前進接触角と後退接触角との差の絶対値が20°以上。
[酸拡散長の測定]:
 樹脂組成物(ブルワー・サイエンス社製の商品名「ARC29A」)を基板上に、「CLEAN TRACK ACT8」(東京エレクトロン社製)にて、スピンコートし、100℃で60秒間プレベーク(PB)を行い、膜厚300nmの下層被膜を形成した。この下層被膜上に感放射線性樹脂組成物を「CLEAN TRACK ACT8」にてスピンコートし、90℃で60秒間プレベーク(PB)を行い、膜厚90nmのレジスト被膜を形成した。このレジスト被膜を、フルフィールド縮小投影露光装置(商品名:S306C、ニコン社製、開口数0.78)を用い、所定のマスクパターンを介して露光した。その後、100℃で60秒間PEBを行った後、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液(以下、「TMAH水溶液」と記す)により、25℃で30秒間現像し、水洗し、乾燥して、残存膜厚を測定した。この露光量と残存膜厚の値から、フィックの第1法則を用いて酸拡散長を算出し、下記基準によって評価した。なお、本評価は、酸の濃度コントロールの指標となる評価である。本評価を、表4中、「酸拡散長」と示す。
A:酸拡散長の絶対値が3nm/秒未満、
B:酸拡散長の絶対値が3nm/秒以上。
[パターンの断面形状]:
 まず、基板として、表面に膜厚77nmの下層反射防止膜を形成した12インチシリコンウェハを用意した。なお、下層反射防止膜の材料には、ブルワー・サイエンス社製の商品名「ARC29A」を使用し、下層反射防止膜の形成には、「CLEAN TRACK ACT8」(東京エレクトロン社製)を用いた。
 次に、基板上に、感放射線性樹脂組成物からなるレジスト被膜を形成する工程((1)工程)を行った。具体的には、上記12インチシリコンウェハ上に感放射線性樹脂組成物を、上記「CLEAN TRACK ACT8」(東京エレクトロン社製)にて、スピンコートし、100℃で60秒間プレベーク(PB)を行い、膜厚205nmのレジスト被膜を形成した。
 次に、形成したレジスト被膜上に液浸露光液を配置し、液浸露光液を介してレジスト被膜を露光する工程((2)工程)を行った。具体的には、形成した膜厚205nmのレジスト被膜上に、液浸露光液として純水を配置し、ArFエキシマレーザー露光装置(「NSR S306C」、ニコン製、照明条件;NA0.78シグマ0.93/0.69)を用い、純水及びマスクパターンを介してレジスト被膜を露光した。その後、露光したレジスト被膜を120℃で60秒間PEBを行った。
 次に、露光されたレジスト被膜を現像してレジストパターンを形成する工程((3)工程)を行った。具体的には、露光後、PEBを行ったレジスト被膜を、2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液により、23℃で30秒間現像し、水洗し、乾燥して、線幅90nmのライン・アンド・スペースパターン(1L1S)を形成した。
 形成した90nmライン・アンド・スペースパターンの(厚さ方向の)断面形状を、日立ハイテクノロジーズ社製の「S-4800」にて観察し、ライン部の、レジスト被膜の厚さ方向の中間部における線幅Lbと、レジスト被膜表面における線幅Laを測定した。その後、式:La/Lbを算出し、算出された値が、0.9≦La/Lb≦1.1の範囲内である(範囲を満たす)場合を「良好」とし、範囲外である(算出された値が上記範囲を満たさない)場合を「不良」とした。なお、本評価を、表4中、「パターン形状」と示す。
(合成例1)
 下記式(M-3)で表される単量体(以下、「単量体(M-3)」と記す場合がある)14.42g(10モル%)、下記式(M-2)で表される単量体(以下、「単量体(M-2)」と記す場合がある)27.01g(30モル%)、及び、下記(M-1)で表される単量体(以下、「単量体(M-1)」と記す場合がある)58.57g(60モル%)を2-ブタノン150gに溶解し、更に開始剤としてジメチル2,2’-アゾビス(2-メチルプロピオネート)6.17g(5モル%)を投入した単量体溶液を準備した。次に、温度計及び滴下漏斗を備えた500mlの三つ口フラスコに50gの2-ブタノンを投入し、30分窒素パージした。窒素パージの後、フラスコ内をマグネティックスターラーで攪拌しながら80℃になるように加熱した。その後、滴下漏斗を用い、予め準備しておいた上記単量体溶液を上記2-ブタノンに3時間かけて滴下した。滴下開始時を重合開始時間とし、重合反応を6時間行った。重合終了後、重合溶液は水冷により30℃以下に冷却した。冷却後、1000gのヘキサンに投入し、白色物質を析出させた。その後、析出した白色物質をろ別した。ろ別された白色物質を、200gの2-ブタノンに再溶解し、1000gのヘキサンに投入し、再び白色物質を析出させた。析出した白色物質をろ別し、再溶解・ろ別の操作をもう一度行った。その後、ろ別して得られた白色物質を、50℃にて17時間乾燥し、白色粉末の共重合体を得た(38g、収率75%)。この共重合体を(A-1)重合体とした。
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 本合成例で得られた(A-1)重合体のMwは6100であり、Mw/Mnは1.4であった。また、化合物(M-1)、化合物(M-2)、及び(M-3)に由来する全繰り返し単位の総量100モル%に対して、化合物(M-1)に由来する繰り返し単位の含有率は58モル%であり、化合物(M-2)に由来する繰り返し単位の含有率は31モル%であり、化合物(M-3)に由来する繰り返し単位の含有率は11モル%であった。測定結果を表2に示す。
(合成例2~7、9)
 表1に示す化合物を、表1に示す配合率(モル%)で用いたこと以外は、合成例1と同様にして、(A-2)重合体~(A-8)重合体を合成した。各合成例で得られた重合体の重量平均分子量(Mw)、Mw/Mn、重合体中の各繰り返し単位の含有率を表2に示す。
 なお、表1中、「特定モノマー」とは、繰り返し単位(I)のことを意味し、「フッ素原子含有モノマー」とは、繰り返し単位(II)(繰り返し単位(IV))を構成するための単量体のことを意味し、「酸解離性基含有モノマー」とは、繰り返し単位(I)(繰り返し単位(III))及び繰り返し単位(II)(繰り返し単位(IV))以外のその他の繰り返し単位のうち、酸解離性基を含有する単量体のことを意味し、「その他のモノマー」とは、その他の繰り返し単位のうち、酸解離性基を含有する単量体以外の単量体のことを意味する。モノマー種「M-1」~「M-11」は、それぞれ、上記式(M-1)~(M-11)で表される化合物を示す。
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
(合成例8)
 (B)重合体は、以下のようにして合成した。まず、下記式(M-A)で表される単量体(以下、「単量体(M-A)」と記す場合がある)14.20g(35モル%)、下記式(M-B)で表される単量体(以下、「単量体(M-B)」と記す場合がある)8.99g(15モル%)、及び、下記式(M-C)で表される単量体(以下、「単量体(M-C)」と記す場合がある)26.81g(50モル%)を2-ブタノン100gに溶解し、更に開始剤としてジメチル2,2’-アゾビス(2-メチルプロピオネート)2.78g(5モル%)を投入した単量体溶液を準備した。
Figure JPOXMLDOC01-appb-C000044
 次に、温度計及び滴下漏斗を備えた500mlの三つ口フラスコに50gの2-ブタノンを投入し、30分窒素パージした。窒素パージの後、フラスコ内をマグネティックスターラーで攪拌しながら80℃になるように加熱した。滴下漏斗を用い、予め準備しておいた単量体溶液を3時間かけて上記2-ブタノンに滴下した。滴下開始時を重合開始時間とし、重合反応を6時間行った。重合終了後、重合溶液は水冷により30℃以下に冷却した。冷却後、1000gのヘキサンに投入し、白色物質を析出させた。析出した白色物質をろ別した。その後、ろ別された白色物質を、200gの2-ブタノンに再溶解し、1000gのヘキサンに投入し、再び白色物質を析出させた。析出した白色物質をろ別し、再溶解・ろ別の操作をもう一度行った。その後、ろ別して得られた白色物質を、50℃にて17時間乾燥し、白色粉末の共重合体を得た(38g、収率75%)。この共重合体を(B-1)重合体とした。
 本合成例で得られた(B-1)重合体のMwは6500であり、Mw/Mnは1.6であった。また、化合物(M-A)に由来する繰り返し単位、化合物(M-B)に由来する繰り返し単位、及び、化合物(M-C)に由来する繰り返し単位の総量100モル%に対して、化合物(M-A)に由来する繰り返し単位の含有率は36モル%であり、化合物(M-B)に由来する繰り返し単位の含有率は15モル%であり、化合物(M-C)に由来する繰り返し単位の含有率は49モル%であった。測定結果を表2に示す。
(実施例1)
 合成例1の(A-1)重合体2部、合成例8の(B-1)重合体100部、及び、下記式(C-1)で表される化合物((C)感放射線性酸発生剤、表3中、「(C)酸発生剤」と記す)10.8部を混合した後、溶剤であるプロピレングリコールモノメチルエーテルアセテートに溶解して、孔径0.02μmのフィルターでろ過することによって、固形分含量5質量%の感放射線性樹脂組成物(組成物溶液)を調製した。調製した感放射線性樹脂組成物について、上記各評価を行った。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
 本実施例の感放射線性樹脂組成物は、溶出量の測定の結果が「良好」であり、前進接触角及び後退接触角との差の結果が「A」であり、酸拡散長の測定の結果が「A」であり、パターンの断面形状の結果が「良好」であった。
(実施例2~11、比較例1,2)
 表3に示す各成分を表3に示す配合量(質量部)で用いたこと以外は、実施例1と同様の手法にて、感放射線性樹脂組成物を調製した。調製した感放射線性樹脂組成物について、上述した各評価を行った。評価結果を表4に示す。表3に示す「C-1」~「C-5」は、それぞれ、上記式(C-1)~(C-5)で表される化合物である。
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
 表4から明らかなように、実施例1~11の感放射線性樹脂組成物は、比較例1,2の感放射線性樹脂組成物に比べて、断面形状に優れたレジストパターンを形成することができることが確認できた。
 本発明の感放射線性樹脂組成物は、集積回路素子の製造に代表される微細加工の分野におけるリソグラフィー技術に使用されるレジスト被膜の材料として好適である。本発明のレジストパターン形成方法は、集積回路素子の製造に代表される微細加工の分野におけるリソグラフィー技術に好適に採用することができる。本発明の重合体は、集積回路素子の製造に代表される微細加工の分野におけるリソグラフィー技術に使用されるレジスト被膜の材料として好適である。

Claims (11)

  1.  (A)下記一般式(1)で表される繰り返し単位(I)を有し、分子中にフッ素原子を含む重合体と、
     (B)酸解離性基を有するアルカリ不溶性またはアルカリ難溶性の重合体(但し、前記一般式(1)で表される繰り返し単位(I)を有する重合体を除く)と、
     (C)感放射線性酸発生剤と、を含有する感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (前記一般式(1)中、Rは、水素原子、メチル基またはトリフルオロメチル基を示す。Xは、単結合、一般式「-O-R-」で表される基、一般式「-C(=O)-O-R-」で表される基、一般式「-C(=O)-NH-R-」で表される基、炭素数1~4の直鎖状若しくは分岐状のアルカンジイル基、またはフェニレン基である。但し、Rは、エステル基若しくはエーテル基を有していてもよい、炭素数1~10の直鎖状、分岐状または環状の炭化水素基または単結合である。Rは、単結合、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状若しくは環状のアルカンジイル基、炭素数2~20のアルケニレン基、炭素数6~10のアリーレン基、またはアラルキレン基であり、Rは、水素原子、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状若しくは環状のアルキル基、炭素数2~20のアルケニル基、炭素数6~10のアリール基、またはアラルキル基であるか、或いは、RとRが結合してこれらが結合する窒素原子と共に環状構造を形成し、前記環状構造中に3~20個の炭素を有する。Rは酸解離性基である。)
  2.  前記一般式(1)で表される繰り返し単位(I)が、下記一般式(1-1)で表される繰り返し単位である請求項1に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    (前記一般式(1-1)中、Rは、水素原子、メチル基またはトリフルオロメチル基を示す。Xは、単結合、一般式「-O-R-」で表される基、一般式「-C(=O)-O-R-」で表される基、一般式「-C(=O)-NH-R-」で表される基、炭素数1~4の直鎖状若しくは分岐状のアルカンジイル基、またはフェニレン基である。但し、Rは、エステル基またはエーテル基を有していてもよい、炭素数1~10の直鎖状、分岐状または環状の炭化水素基または単結合である。Rは、単結合、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状または環状のアルカンジイル基、炭素数2~20のアルケニレン基、炭素数6~10のアリーレン基、またはアラルキレン基であり、Rは、水素原子、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状若しくは環状のアルキル基、炭素数2~20のアルケニル基、炭素数6~10のアリール基、またはアラルキル基であるか、或いは、RとRが結合してこれらが結合する窒素原子と共に環状構造を形成し、前記環状構造中に3~20個の炭素を有する。R、R及びRは、それぞれ、炭素数1~4の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、アリール基またはアラルキル基を示すか、或いは、RとRとが結合してこれらが結合している炭素原子と共に炭素数4~20の脂環式炭化水素基を形成し、Rは、炭素数1~4の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、アリール基またはアラルキル基を示す。)
  3.  前記重合体(A)が、下記一般式(2-1)で表される繰り返し単位及び下記一般式(2-2)で表される繰り返し単位の少なくとも一方を更に有する請求項1または2に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (前記一般式(2-1)中、Rは、水素原子、メチル基、またはトリフルオロメチル基を示す。Eは、連結基を示し、R10は、少なくとも一つのフッ素原子を有する、炭素数1~6の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、またはこれらの誘導体を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (前記一般式(2-2)中、R11は、水素原子、メチル基、またはトリフルオロメチル基を示す。R12は、単結合、または、炭素数1~10の(n+1)価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示す。R13は、単結合、または、炭素数1~20の2価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示す。R14は、フッ素原子で置換されたメチレン基、または炭素数2~20の直鎖状若しくは分岐状のフルオロアルカンジイル基を示す。R15は、単結合、または、-CO-を示す。R16は、水素原子または酸解離性基を示す。nは、1~3の整数を示す。)
  4.  前記(A)重合体のフッ素原子の含有割合が、前記(A)重合体の総量の5質量%以上であり、前記(B)重合体のフッ素原子の含有割合が、前記(B)重合体の総量の5質量%未満である請求項1~3いずれか一項に記載の感放射線性樹脂組成物。
  5.  前記(A)重合体の含有量は、前記(B)重合体100質量部に対して、0.1~20質量部である請求項1~4のいずれか一項に記載の感放射線性樹脂組成物。
  6.  液浸露光用である請求項1~5のいずれか一項に記載の感放射線性樹脂組成物。
  7.  基板上に、請求項1~6のいずれか一項に記載の感放射線性樹脂組成物からなるレジスト被膜を形成する(1)工程と、
     形成した前記レジスト被膜を露光する(2)工程と、
     露光された前記レジスト被膜を現像してレジストパターンを形成する(3)工程と、を備えるレジストパターン形成方法。
  8.  前記(2)工程において、前記(1)工程で形成した前記レジスト被膜上に液浸露光液を配置し、前記液浸露光液を介して前記レジスト被膜を露光する請求項7に記載のレジストパターン形成方法。
  9.  下記一般式(3)で表される繰り返し単位(3)を有し、分子中にフッ素原子を含む重合体。
    Figure JPOXMLDOC01-appb-C000005
    (前記一般式(3)中、R17は、水素原子、メチル基またはトリフルオロメチル基を示す。Xは、単結合、一般式「-O-R21-」で表される基、一般式「-C(=O)-O-R21-」で表される基、一般式「-C(=O)-NH-R21-」で表される基、炭素数1~4の直鎖状若しくは分岐状のアルカンジイル基、またはフェニレン基である。但し、R21は、エステル基またはエーテル基を有していてもよい、炭素数1~10の直鎖状、分岐状または環状の炭化水素基または単結合である。R18は、単結合、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状または環状のアルカンジイル基、炭素数2~20のアルケニレン基、炭素数6~10のアリーレン基、またはアラルキレン基であり、R19は、水素原子、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状若しくは環状のアルキル基、炭素数2~20のアルケニル基、炭素数6~10のアリール基、またはアラルキル基であるか、或いは、R18とR19が結合してこれらが結合する窒素原子と共に環状構造を形成し、前記環状構造中に3~20個の炭素を有する。R20は酸解離性基である。)
  10.  前記一般式(3)で表される繰り返し単位(3)が、下記一般式(3-1)で表される繰り返し単位である請求項9に記載の重合体。
    Figure JPOXMLDOC01-appb-C000006
    (前記一般式(3-1)中、R17は、水素原子、メチル基またはトリフルオロメチル基を示す。Xは、単結合、一般式「-O-R21-」で表される基、一般式「-C(=O)-O-R21-」で表される基、一般式「-C(=O)-NH-R21-」で表される基、炭素数1~4の直鎖状若しくは分岐状のアルカンジイル基、またはフェニレン基である。但し、R21は、エステル基またはエーテル基を有していてもよい、炭素数1~10の直鎖状、分岐状または環状の炭化水素基または単結合である。R18は、単結合、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状または環状のアルカンジイル基、炭素数2~20のアルケニレン基、炭素数6~10のアリーレン基、またはアラルキレン基であり、R19は、水素原子、または、置換基を有していてもよい、炭素数1~20の直鎖状、分岐状若しくは環状のアルキル基、炭素数2~20のアルケニル基、炭素数6~10のアリール基、またはアラルキル基であるか、或いは、R18とR19が結合してこれらが結合する窒素原子と共に環状構造を形成し、前記環状構造中に3~20個の炭素を有する。R22、R23及びR24は、それぞれ、炭素数1~4の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、アリール基またはアラルキル基を示すか、或いは、R22とR23とが結合してこれらが結合している炭素原子と共に炭素数4~20の脂環式炭化水素基を形成し、R24は、炭素数1~4の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、アリール基またはアラルキル基を示す。)
  11.  下記一般式(4-1)で表される繰り返し単位及び下記一般式(4-2)で表される繰り返し単位の少なくとも一方を更に有する請求項9または10に記載の重合体。
    Figure JPOXMLDOC01-appb-C000007
    (前記一般式(4-1)中、R25は、水素原子、メチル基、またはトリフルオロメチル基を示す。Eは、連結基を示し、R26は、少なくとも一つのフッ素原子を有する、炭素数1~6の直鎖状若しくは分岐状のアルキル基、炭素数4~20の1価の脂環式炭化水素基、またはこれらの誘導体を示す。)
    Figure JPOXMLDOC01-appb-C000008
    (前記一般式(4-2)中、R27は、水素原子、メチル基、またはトリフルオロメチル基を示す。R28は、単結合、または、炭素数1~10の(n+1)価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示す。R29は、単結合、または、炭素数1~20の2価の直鎖状、分岐状若しくは環状の、飽和若しくは不飽和の炭化水素基を示す。R30は、フッ素原子で置換されたメチレン基、または炭素数2~20の直鎖状若しくは分岐状のフルオロアルカンジイル基を示す。R31は、単結合、または、-CO-を示す。R32は、水素原子または酸解離性基を示す。nは、1~3の整数を示す。)
PCT/JP2010/066758 2009-09-28 2010-09-28 感放射線性樹脂組成物、レジストパターン形成方法、及び、重合体 WO2011037246A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127005158A KR101399212B1 (ko) 2009-09-28 2010-09-28 감방사선성 수지 조성물, 레지스트 패턴 형성 방법, 및 중합체
JP2011533072A JP5146606B2 (ja) 2009-09-28 2010-09-28 感放射線性樹脂組成物、レジストパターン形成方法、及び、重合体
US13/417,335 US8758978B2 (en) 2009-09-28 2012-03-12 Radiation-sensitive resin composition, resist pattern formation method, and polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009222622 2009-09-28
JP2009-222622 2009-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/417,335 Continuation US8758978B2 (en) 2009-09-28 2012-03-12 Radiation-sensitive resin composition, resist pattern formation method, and polymer

Publications (1)

Publication Number Publication Date
WO2011037246A1 true WO2011037246A1 (ja) 2011-03-31

Family

ID=43795984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066758 WO2011037246A1 (ja) 2009-09-28 2010-09-28 感放射線性樹脂組成物、レジストパターン形成方法、及び、重合体

Country Status (5)

Country Link
US (1) US8758978B2 (ja)
JP (1) JP5146606B2 (ja)
KR (1) KR101399212B1 (ja)
TW (1) TWI489210B (ja)
WO (1) WO2011037246A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141494A (ja) * 2010-01-08 2011-07-21 Fujifilm Corp パターン形成方法、化学増幅型レジスト組成物及びレジスト膜
JP2011227454A (ja) * 2010-01-25 2011-11-10 Rohm & Haas Electronic Materials Llc 窒素含有化合物を含むフォトレジスト
WO2012018097A1 (ja) * 2010-08-06 2012-02-09 Jsr株式会社 感放射線性樹脂組成物
US20120183903A1 (en) * 2011-01-14 2012-07-19 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
JP2013014743A (ja) * 2011-05-27 2013-01-24 Rohm & Haas Electronic Materials Llc 表面活性添加剤およびこれを含むフォトレジスト組成物
US20130130177A1 (en) * 2011-11-17 2013-05-23 Shin-Etsu Chemical Co., Ltd. Negative pattern forming process and negative resist composition
JP2013218223A (ja) * 2012-04-11 2013-10-24 Fujifilm Corp パターン形成方法、それに用いられる感活性光線性又は感放射線性樹脂組成物、及び、レジスト膜、並びに、これらを用いる電子デバイスの製造方法、及び、電子デバイス
JP2014029490A (ja) * 2012-06-25 2014-02-13 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
US9223219B2 (en) 2010-01-08 2015-12-29 Fujifilm Corporation Pattern forming method, actinic ray-sensitive or radiation-sensitive resin composition and resist film
JP2016212401A (ja) * 2015-04-30 2016-12-15 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド フォトリソグラフィのためのオーバーコート組成物及び方法
JP2017068252A (ja) * 2015-09-30 2017-04-06 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド フォトレジスト組成物及び方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617339B2 (ja) * 2010-03-08 2014-11-05 Jsr株式会社 感放射線性樹脂組成物、重合体及び化合物
JP6123793B2 (ja) * 2012-03-19 2017-05-10 Jsr株式会社 レジストパターン形成方法及びフォトレジスト組成物
JP6283477B2 (ja) * 2012-06-25 2018-02-21 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC アミド成分を含むフォトレジスト
JP5910445B2 (ja) * 2012-09-28 2016-04-27 Jsr株式会社 液浸上層膜形成用組成物及びレジストパターン形成方法
EP3032333B1 (en) 2014-12-08 2017-05-24 Shin-Etsu Chemical Co., Ltd. Shrink material and pattern forming process
CN106094431B (zh) * 2015-04-30 2020-06-26 罗门哈斯电子材料韩国有限公司 光致抗蚀剂组合物和方法
CN106556972B (zh) * 2015-09-30 2021-07-27 罗门哈斯电子材料韩国有限公司 用于光刻的罩面层组合物和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307411A (ja) * 2003-04-08 2004-11-04 Eiweiss Kk tert−ブトキシカルボニル基含有(メタ)アクリル酸エステル誘導体、その重合体、これらの製造方法ならびにこれらの利用
JP2006291177A (ja) * 2005-02-23 2006-10-26 Promerus Llc ノルボルネン系ポリマー、その組成物、及び該組成物を使用するリソグラフィ法
JP2006321770A (ja) * 2005-05-20 2006-11-30 Eiweiss Kk 1,1−ジメチルプロピルオキシカルボニル基含有化合物およびこれらの利用
JP2008015422A (ja) * 2006-07-10 2008-01-24 Fujifilm Corp ポジ型感光性組成物、該ポジ型感光性組成物を用いたパターン形成方法、該ポジ型感光性組成物に用いられる樹脂及び該樹脂を合成するための化合物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647380B1 (ko) * 1999-07-30 2006-11-17 주식회사 하이닉스반도체 신규의 포토레지스트용 단량체, 그의 공중합체 및 이를 이용한포토레지스트 조성물
US20060235174A1 (en) 2005-02-22 2006-10-19 Promerus Llc Norbornene-type polymers, compositions thereof and lithographic processes using such compositions
KR20070021082A (ko) * 2005-08-17 2007-02-22 제이에스알 가부시끼가이샤 감방사선성 수지 조성물
JP2008133312A (ja) 2006-11-27 2008-06-12 Mitsubishi Rayon Co Ltd 重合体、レジスト組成物及びパターンが形成された基板の製造方法
JP5035560B2 (ja) * 2007-07-04 2012-09-26 信越化学工業株式会社 レジスト材料及びこれを用いたパターン形成方法
JP5381298B2 (ja) * 2008-05-12 2014-01-08 信越化学工業株式会社 レジスト保護膜材料及びパターン形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307411A (ja) * 2003-04-08 2004-11-04 Eiweiss Kk tert−ブトキシカルボニル基含有(メタ)アクリル酸エステル誘導体、その重合体、これらの製造方法ならびにこれらの利用
JP2006291177A (ja) * 2005-02-23 2006-10-26 Promerus Llc ノルボルネン系ポリマー、その組成物、及び該組成物を使用するリソグラフィ法
JP2006321770A (ja) * 2005-05-20 2006-11-30 Eiweiss Kk 1,1−ジメチルプロピルオキシカルボニル基含有化合物およびこれらの利用
JP2008015422A (ja) * 2006-07-10 2008-01-24 Fujifilm Corp ポジ型感光性組成物、該ポジ型感光性組成物を用いたパターン形成方法、該ポジ型感光性組成物に用いられる樹脂及び該樹脂を合成するための化合物

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141494A (ja) * 2010-01-08 2011-07-21 Fujifilm Corp パターン形成方法、化学増幅型レジスト組成物及びレジスト膜
US9223219B2 (en) 2010-01-08 2015-12-29 Fujifilm Corporation Pattern forming method, actinic ray-sensitive or radiation-sensitive resin composition and resist film
JP2011227454A (ja) * 2010-01-25 2011-11-10 Rohm & Haas Electronic Materials Llc 窒素含有化合物を含むフォトレジスト
WO2012018097A1 (ja) * 2010-08-06 2012-02-09 Jsr株式会社 感放射線性樹脂組成物
US9029064B2 (en) * 2011-01-14 2015-05-12 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US20120183903A1 (en) * 2011-01-14 2012-07-19 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
JP2013064971A (ja) * 2011-01-14 2013-04-11 Shin Etsu Chem Co Ltd パターン形成方法及びこれに用いるレジスト組成物
JP2013014743A (ja) * 2011-05-27 2013-01-24 Rohm & Haas Electronic Materials Llc 表面活性添加剤およびこれを含むフォトレジスト組成物
US20140065540A1 (en) * 2011-05-27 2014-03-06 Rohm and Haas Electronic Materials Photoresist and coated substrate comprising same
US9012128B2 (en) * 2011-05-27 2015-04-21 Rohm And Haas Electronic Materials Llc Photoresist and coated substrate comprising same
JP2017075323A (ja) * 2011-05-27 2017-04-20 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC 表面活性添加剤およびこれを含むフォトレジスト組成物
US20130130177A1 (en) * 2011-11-17 2013-05-23 Shin-Etsu Chemical Co., Ltd. Negative pattern forming process and negative resist composition
JP2013218223A (ja) * 2012-04-11 2013-10-24 Fujifilm Corp パターン形成方法、それに用いられる感活性光線性又は感放射線性樹脂組成物、及び、レジスト膜、並びに、これらを用いる電子デバイスの製造方法、及び、電子デバイス
JP2014029490A (ja) * 2012-06-25 2014-02-13 Sumitomo Chemical Co Ltd レジスト組成物及びレジストパターンの製造方法
JP2016212401A (ja) * 2015-04-30 2016-12-15 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド フォトリソグラフィのためのオーバーコート組成物及び方法
JP2017068252A (ja) * 2015-09-30 2017-04-06 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド フォトレジスト組成物及び方法
JP2018185533A (ja) * 2015-09-30 2018-11-22 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド フォトレジスト組成物及び方法

Also Published As

Publication number Publication date
KR20120051049A (ko) 2012-05-21
KR101399212B1 (ko) 2014-05-27
US20120171612A1 (en) 2012-07-05
US8758978B2 (en) 2014-06-24
JPWO2011037246A1 (ja) 2013-02-21
TW201128315A (en) 2011-08-16
TWI489210B (zh) 2015-06-21
JP5146606B2 (ja) 2013-02-20

Similar Documents

Publication Publication Date Title
JP5146606B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法、及び、重合体
JP5716774B2 (ja) フッ素含有重合体及び精製方法並びに感放射線性樹脂組成物
JP5445454B2 (ja) ポジ型感放射線性組成物及びレジストパターン形成方法
KR101487360B1 (ko) 고분자 화합물, 레지스트 재료 및 패턴 형성 방법
KR101701523B1 (ko) 감방사선성 수지 조성물 및 레지스트 패턴 형성 방법
WO2009142181A1 (ja) 液浸露光用感放射線性樹脂組成物、重合体及びレジストパターン形成方法
JP5481768B2 (ja) 感放射線性樹脂組成物及びそれを用いたレジストパターン形成方法
JP6048532B2 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP5716397B2 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及びフォトレジスト膜
TWI488004B (zh) Sensitive radiation linear resin composition
JP5487921B2 (ja) フォトレジスト組成物、液浸露光用フォトレジスト組成物及び重合体ならびにレジストパターン形成方法
JP5343535B2 (ja) 感放射線性樹脂組成物、それを用いたレジスト成膜方法及びレジストパターン形成方法
JPWO2008087840A1 (ja) 液浸露光用感放射線性樹脂組成物及びフォトレジストパターン形成方法
JP3975790B2 (ja) 感放射線性樹脂組成物
JP2007212797A (ja) 液浸露光用感放射線性樹脂組成物
JP5077354B2 (ja) 感放射線性組成物
JP2007212796A (ja) 液浸露光用感放射線性樹脂組成物
WO2011115217A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
JP2012150501A (ja) 感放射線性樹脂組成物及びそれを用いたレジストパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127005158

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011533072

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818916

Country of ref document: EP

Kind code of ref document: A1