WO2011037044A1 - 歯科用x線撮影装置 - Google Patents

歯科用x線撮影装置 Download PDF

Info

Publication number
WO2011037044A1
WO2011037044A1 PCT/JP2010/065831 JP2010065831W WO2011037044A1 WO 2011037044 A1 WO2011037044 A1 WO 2011037044A1 JP 2010065831 W JP2010065831 W JP 2010065831W WO 2011037044 A1 WO2011037044 A1 WO 2011037044A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray imaging
ray
projection image
detecting
dental
Prior art date
Application number
PCT/JP2010/065831
Other languages
English (en)
French (fr)
Inventor
剛 友江
Original Assignee
株式会社吉田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社吉田製作所 filed Critical 株式会社吉田製作所
Priority to DE112010003822.8T priority Critical patent/DE112010003822B4/de
Priority to US13/497,211 priority patent/US8396186B2/en
Publication of WO2011037044A1 publication Critical patent/WO2011037044A1/ja

Links

Images

Classifications

    • A61B6/51
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • A61B6/5241Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/547Control of apparatus or devices for radiation diagnosis involving tracking of position of the device or parts of the device

Definitions

  • the present invention relates to a dental X-ray imaging apparatus, and more particularly to a dental X-ray imaging apparatus that paste-combines projection images obtained at each position by linearly moving an X-ray imaging means in a direction along a light receiving surface.
  • CT imaging computer tomography
  • FOV field of view
  • X-ray source center of rotation
  • Patent Document 1 a technique for obtaining a large FOV (field of view) by pasting projection images together is known in an X-ray fluoroscopic apparatus.
  • the X-ray imaging means required for CT imaging is more expensive as the size of the light receiving surface is larger, and there is a problem that if the light receiving surface is enlarged in order to increase the FOV, the cost is increased.
  • the size of the image data processing apparatus is increased, and the apparatus is expensive as a whole. Therefore, there has been a problem that CT imaging apparatuses having a large FOV are difficult to be widely used in dental treatment.
  • the present invention provides dental X-ray imaging capable of acquiring a high-precision image while obtaining a large FOV using an inexpensive X-ray imaging means having a narrow light receiving surface. It is an object to provide an apparatus.
  • the present invention provides an X-ray source that irradiates a subject with an X-ray flux, an X-ray imaging unit that detects the X-ray flux irradiated from the X-ray source and transmitted through the subject, and the X-ray
  • a support means for supporting the source and the X-ray imaging means, and a turning means for rotating the support means around a vertical axis to turn the X-ray source and the X-ray imaging means horizontally around the subject;
  • a dental X-ray imaging apparatus comprising: a slide moving means for linearly moving the X-ray imaging means in a direction along a light receiving surface; a control device for controlling operations of the turning means and the slide moving means; Image processing means for processing a projection image acquired by the X-ray imaging means, and the control device transmits the X-ray imaging means through the first region of the subject by the slide moving means.
  • a paste combining step is performed for combining the image groups with the projection images having the same phase angle of the support means, and the slide moving means includes an origin position detecting means for detecting the origin position of the X-ray imaging means.
  • the linear movement of the X-ray imaging means is performed by the first detection position and the second detection respectively from the preset origin position.
  • the origin position detecting means includes a light shielding plate that moves linearly together with the X-ray imaging means by the slide moving means, and an optical sensor that detects the position of the end of the light shielding plate, and the light shielding A point in time when the end of the plate is removed from the optical sensor in the forward direction is detected as the origin position.
  • the “phase angle” of the support means is used to mean the rotation state of the support means as viewed from the subject as a rotation angle from an arbitrary reference position.
  • the movement accuracy of the X-ray imaging unit in the first slide moving step and the second slide moving step is improved by linearly moving the X-ray imaging unit in the direction along the light receiving surface by the slide moving unit. It can be ensured with high accuracy.
  • the first projection image group obtained at the first detection position and the second detection position can be obtained.
  • the second projection image group can be bonded with high accuracy.
  • the first detection position and the second detection of the X-ray imaging unit are reconstructed by reconstructing a high-precision projection image obtained by pasting the first projection image group and the second projection image group, respectively. Images with a wide range of FOVs covered by location can be acquired.
  • the present invention provides a dental X-ray imaging apparatus capable of acquiring a high-accuracy image while obtaining a large FOV using an inexpensive X-ray imaging means having a narrow light receiving surface. it can.
  • the present invention by moving from the preset origin position to the first detection position and the second detection position, respectively, from the origin position to the first detection position with reference to the origin position. And the distance from the origin position to the second detection position can be managed to further improve the position accuracy of the detection position.
  • the rotation direction of the X-ray imaging unit in the second imaging step is opposite to the rotation direction of the X-ray imaging unit in the first imaging step. desirable.
  • the operation time of the turning means can be shortened by reciprocal shooting by setting the rotation directions of the first imaging step and the second imaging step in opposite directions.
  • the phase angle shift between the rotation direction of the X-ray imaging unit in the second imaging step and the rotation direction of the X-ray imaging unit in the first imaging step by visually recognizing the degree of mutual overlap. It is desirable to have a set of aiming members for detection.
  • the present invention includes a photographing device that visually recognizes the degree of overlap.
  • the photographing apparatus since the photographing apparatus is provided, it is possible to objectively detect a phase angle shift, improve detection accuracy, and perform reliable correction.
  • the dental X-ray imaging apparatus can acquire a high-accuracy image while obtaining a large FOV using an inexpensive X-ray imaging means having a narrow light receiving surface.
  • FIG. 6 is a schematic diagram (part 1) for explaining an operation when the first imaging step and the second imaging step are in the same direction, and (a) and (b) are plan views showing the relationship between the subject and the arm.
  • C is a conceptual diagram showing a projection image group. It is a figure (the 2) similar to FIG. 3A, (a) and (b) are top views. It is the figure (the 3) similar to FIG.
  • FIG. 6 is a schematic diagram (part 1) for explaining an operation when the first imaging step and the second imaging step are in opposite directions, and (a) and (b) are plan views showing the relationship between the subject and the arm.
  • C is a conceptual diagram showing a projection image group. It is a figure (the 2) similar to FIG. 4A, (a) and (b) are top views.
  • FIGS. 4A and 4B are views (No. 3) similar to FIG. 4A, in which FIG. 4A is a plan view, FIG.
  • FIG. 4B is a conceptual view showing a captured image group
  • FIG. 4A is a conceptual diagram which shows the concept of paste synthesis
  • FIG. 4A is a figure which shows the mounting state of the angle offset adjustment apparatus in case a 1st imaging step and a 2nd imaging step are reverse directions
  • (a) is a side view
  • (b) is an enlarged plan view of an adjustment tool.
  • a dental X-ray imaging apparatus 1 includes a support column 10 and a main body 20 that is movably disposed on the support 10.
  • the arm 2 is disposed so as to be rotatable around a vertical axis.
  • the subject K is an affected area of a patient (not shown), and the patient is placed with the head fixed inside the arm 2. Then, with the subject K fixed, the arm 2 is rotated around the subject K to perform X-ray imaging.
  • the present invention can also be applied to a cephalometric imaging device or a panoramic imaging device.
  • the arm 2 can be configured to be movable in a two-dimensional plane in the front-rear direction and the left-right direction via a moving table or the like as appropriate in order to adapt to positioning with the subject K and various imaging modes.
  • the dental X-ray imaging apparatus 1 includes an X-ray source 11 that irradiates a subject K with an X-ray bundle L, an X-ray imaging unit 12 that detects an X-ray bundle L that has passed through the subject K, Arm 2 as a support means for supporting the radiation source 11 and the X-ray imaging means 12, a turning means 3 for rotating the arm 2 around the arm rotation center axis C1, and a direction along the light receiving surface 12a for the X-ray imaging means 12 A slide moving means 4 for linear movement, a control device 8 for controlling the operation of the turning means 3 and the slide moving means 4, and an image processing means 81 for processing the projection image acquired by the X-ray imaging means 12. Yes.
  • the X-ray source 11 and the X-ray imaging means 12 are disposed on the arm 2 so as to face each other with the subject K interposed therebetween. Then, the arm 2 is swung by the swiveling means 3 composed of a servo motor or the like, the X-ray source 11 and the X-ray imaging means 12 are rotated around the subject K, and the X-ray bundle L irradiated from the X-ray source 11 becomes the subject K. And is detected by the X-ray imaging means 12.
  • the X-ray imaging means 12 is composed of a flat surface sensor having a light receiving surface 12a, and is composed of, for example, a CMOS sensor, a CCD sensor, a CdTe sensor, and other image sensors.
  • the slide moving means 4 includes a ball screw 41, a drive motor 42 that rotates the ball screw 41, a nut 43 that is screwed into the ball screw 41, and a holder 44 that is fixed to the nut 43.
  • the X-ray imaging means 12 fixed to the holder 44, the linear movement guide 45 that supports the X-ray imaging means 12 so as to be reciprocally movable in the direction along the light receiving surface 12a, and the X-ray imaging means 12 (light receiving surface 12a).
  • origin position detection means 5 for detecting the origin position P0 (FIG. 3A (a)).
  • the origin position detecting means 5 includes a light shielding plate 51 fixed to the nut 43 and an optical sensor 52 that detects the position of the end portion 51 a of the light shielding plate 51.
  • the origin position detecting means 5 detects the time when the end portion 51a of the light shielding plate 51 is removed from the optical sensor 52 in the forward direction A when the nut 43 moves forward in the forward direction A, the light receiving surface 12a of the X-ray imaging means 12. Is detected as an origin position P0 (FIG. 3A (a)).
  • control means 8 uses the slide moving means 4 until the light receiving surface 12a comes from the origin position P0 (FIG. 3A (a)) to the first detection position P1 (FIG. 3 A (a)), and The X-ray imaging means 12 is linearly moved in the horizontal direction in the arm 2 from the origin position P0 to the second detection position P2 (FIG. 3B (b)).
  • the operation of the dental X-ray imaging apparatus 1 configured as described above will be described in the first embodiment (FIGS. 3A to 3D) and the second embodiment (FIGS. 4A to 4D). 3 and 4, for the convenience of explanation, the light receiving surface 12a of the X-ray imaging unit 12 is expressed as conceptually moving.
  • FIG. 4D is different in that the rotation direction of the arm 2 in the first imaging step is opposite to the rotation direction in the second imaging step.
  • a projection image group is acquired for each of the case where the X-ray imaging unit 12 is located at the first detection position P1 and the case where the X-ray imaging unit 12 is located at the second detection position P2.
  • the imaging area of the subject K is conceptually divided into two areas, and a projection image group is acquired in a state where the X-ray imaging unit 12 is disposed at a position corresponding to each area.
  • CT reconstruction is performed after synthesizing them in correspondence.
  • the control device 8 performs the first slide movement step of moving the X-ray imaging means from the origin position (P0) to the first detection position (P1) (FIG. 3A (a)), and turns.
  • 3A (c)) the X-ray imaging means 12 and the X-ray source are rotated by rotating the arm 2 clockwise while returning the X-ray imaging means 12 from the first detection position P1 to the origin position P0 by the slide moving means 4. 11 to the original position shown in FIG.
  • FIG. 3A image pickup start position in the first image pickup step, reference position
  • FIG. 3B (a) the second detection position from the origin position (P0) X-rays up to (P2)
  • a second slide moving step for moving the means 12 (FIG. 3B (b))
  • a second means for transmitting the second region of the subject K by rotating the arm 2 190 degrees counterclockwise by the turning means 3.
  • a second imaging step (FIGS. 3A (a) to 3A (c)) for acquiring the projection image groups L1 to L190 is executed.
  • the image processing means 81 executes a paste composition step for combining the first projection image groups R1 to R190 and the second projection image groups L1 to L190 by combining the projection images having the same phase angle of the arm 2 with each other. To do.
  • the light receiving surface 12a of the X-ray imaging means 12 is moved from the origin position P0 to the first detection position P1 by the slide movement means 4 (FIG. 2). It is a step to move to.
  • the arm 2 In the first slide movement step, it is not necessary to rotate the arm 2, but since the arm 2 is not affected by the rotation, the arm 2 can be slid while being rotated.
  • the first projection image group R1 to R190 is 1 while rotating the arm 2 190 degrees from the reference position (starting point) shown in FIG. 3A (a). It is a group of 190 projection images photographed every time.
  • the rotation angle of the arm 2 is set to 190 degrees from 180 degrees to 180 degrees or more in consideration of the X-ray irradiation angle in the case of the half recon, but the X-ray irradiation angle is not considered. May be 180 degrees, and in the case of full recon, it may be 360 degrees or 360 degrees or more.
  • the first area of the subject K is the area of the subject K corresponding to the range in which the X-ray bundle L moves from FIG. 3A (a) to FIG. 3A (b).
  • the X-ray imaging means 12 The light receiving surface 12a exists at the first detection position P1.
  • the region of the subject K is a region of the subject K through which the X-ray bundle L irradiated from the X-ray source 11 transmits while rotating, and is conceptual and means a specific range of the subject K. Not what you want.
  • the slide moving unit 4 and the arm 2 are used.
  • the present invention is not limited to this, and the slide movement of the slide moving means 4 and the rotation of the arm 2 can be performed separately.
  • the light receiving surface 12a of the X-ray imaging means 12 is moved from the origin position P0 to the second detection position P2 by the slide movement means 4 (FIG. 2). It is a step to move to.
  • the second slide movement step is executed after the step of returning to the original position.
  • the second slide movement step may be executed while returning to the original position.
  • a step of returning to the original position may be executed after the slide movement step. In short, it is sufficient that the step of returning to the original position and the second slide movement step are completed before the second imaging step is executed.
  • the arm 2 is first imaged by the turning means 3 while the X-ray imaging means 12 is located at the second detection position P2.
  • the image is rotated in the same direction by 190 degrees counterclockwise, and this time, second projection image groups L1 to L190 transmitted through the second area of the subject K are acquired.
  • the second region of the subject K is the region of the subject K corresponding to the range in which the X-ray bundle L moves from FIG. 3C (a) to FIG. 3C (b).
  • the X-ray imaging means 12 The light receiving surface 12a is located at the second detection position P2 (FIG. 3C (a)).
  • the first projection image group R1 to R190 and the second projection image group L1 to L190 are made the same in the counterclockwise direction from the same reference position shown in FIG. Since this is a group of images shot in the direction of rotation, the projection images R1 and L1 have the same phase angle, and similarly, the phase angles are the same up to the projection images R190 and L190, respectively, in the order of shooting.
  • first projection image group R1 to R190 and the second projection image group L1 to L190 are combined with the high-accuracy projection images obtained by combining the first projection image group R1 to R190 and the second projection image group L1 to L190, respectively.
  • CT tomographic images having a wide range of FOVs covered by the detection position P1 and the second detection position P2 can be acquired.
  • the control device 8 includes a first slide movement step for moving the X-ray imaging means 12 from the origin position (P0) to the first detection position (P1) (FIG. 4A (a)), A first imaging step of obtaining the first projection image groups R1 to R190 transmitted through the first region of the subject K by rotating the arm 2 counterclockwise by the turning means 3 by 190 degrees (FIG. 4A (b) ) To (c)), the step of returning the X-ray imaging means 12 from the first detection position P1 to the origin position P0 by the slide movement means 4 (FIG.
  • Second project ® acquires the down images L1 ⁇ L190 (FIG. 4C (a) ⁇ (b)) sort the second imaging step (FIG. 4C (c)), to run.
  • the first slide moving step (FIG. 4A (a)) and the first imaging step (FIGS. 4A (b) to 4A (c)) are performed. Since this is the same as that of the first embodiment, description thereof is omitted.
  • the rotation direction (clockwise) of the X-ray imaging unit 12 in the second imaging step is opposite to the rotation direction (counterclockwise) in the first imaging step.
  • the first projection image groups R1 to R190 are images taken while being rotated 190 degrees counterclockwise from the reference position shown in FIG. 4A (a), whereas the second projection image groups L1 to L190 are taken.
  • L190 is an image taken while rotating counterclockwise from the reference position shown in FIG. 4A (a) 190 degrees counterclockwise to the reference position shown in FIG. 4C (a) in the reverse direction. . Therefore, the second projection image groups L1 to L190 have the same phase angle as the first projection image groups R1 to R190 when the imaging order is reversed from L190 to L1 (FIG. 4C (b) to FIG. 4). 4C (c)).
  • the projection images R1, L190 to the projection images R190, L1 having the same phase angle are synthesized corresponding to each other. .
  • the angle offset adjusting device 6 visually recognizes the degree of mutual overlap, and the rotation direction of the X-ray imaging unit 12 in the second imaging step and the rotation of the X-ray imaging unit 12 in the first imaging step.
  • An adjustment tool 61 for detecting a phase angle deviation from the direction is provided.
  • the adjustment tool 61 has a cylindrical needle-like member 61a disposed at the center of rotation of the arm 2 that is a set of aiming members, and a weight-like or conical shape that allows the degree of overlap with the needle-like member 61a to be visually recognized.
  • a convex member 61b and a base member 61c capable of mounting the needle-like member 61a and the convex member 61b on the bite block portion 20a are provided.
  • the adjuster 61 is detachably attached to the bite block portion 20a of the main body portion 20.
  • the angle offset adjusting device 6 performs X-ray irradiation from the X-ray source 11 and visually confirms the same phase angle, for example, the 95th projection image on the forward path and the 95th projection image on the return path.
  • the shift of the arm 2 in the rotation direction of the forward path (FIG. 6B) and the return path (FIG. 6D) can be visually recognized and corrected.
  • the needle-like member 61a and the convex member 61b are adopted as a set of aiming members.
  • the present invention is not limited to this.
  • a shape member or simply a flat plate with a mark as a mark may be used.
  • the second embodiment is a weight-like or conical convex member 61 b in which the cylindrical needle-like member 61 a and the overlap between the needle-like member 61 a can be visually recognized.
  • a camera 62 (see FIG. 6A) that is a photographing device for visually recognizing the degree of overlap.
  • the camera 62 is mounted at a predetermined position of the arm 2 (behind the X-ray imaging unit 12), but when shooting 190 projection images, for example, in the middle of a group of projection images having the same phase angle. It is preferable to dispose the 95th projection image at a position where it can be viewed.
  • the angle offset adjusting device 6 can overlap the needle-like member 61a and the convex member 61b in each of the reverse rotation directions of the forward path (FIG. 6B) and the backward path (FIG. 6D) (
  • the deviation ⁇ , FIG. 6E) is visually recognized by the camera 62 from the same position (position where the needle-like member 61a and the convex member 61b overlap), thereby detecting the deviation of the arm 2 in the forward and backward rotation directions. To correct.
  • the camera 62 moves from the position 62 (A) shown in FIG. It moves to the position 62 (C) through the position 62 (B) where the overlapping state (deviation ⁇ ) of the convex member 61 a and the convex member 61 b is visually recognized.
  • the camera 62 has a needle-like member 61a and a convex member 61b. It moves to the position 62 (e) through the position 62 (d) where the degree of overlap (deviation ⁇ ) is visually recognized. In this way, the overlapping state (deviation ⁇ ) of the needle-like member 61a and the convex member 61b with the camera 62 from the same position, that is, 62 (b) in FIG. 6 (b) and 62 (d) in FIG. 6 (d). ) Can be detected and corrected for a shift in the phase angle of the arm 2 in the forward path and the backward path.
  • the angle offset can be adjusted by recognizing the captured image. For example, the horizontal position of the needle-like member 61a and the convex member 61b is recognized and adjusted by pattern matching.
  • the slide moving unit 4 according to the present embodiment is moved in the horizontal direction, but if moved in the vertical direction, the FOV of the X-ray imaging unit 12 can be expanded in the vertical direction.
  • the area of the subject K is divided into two, and the X-ray imaging unit 12 is moved to the first detection position P1 and the second detection position P2 corresponding to the two areas.
  • the area of the subject K may be divided into three or more, and the X-ray imaging unit 12 may be moved corresponding to each area.
  • the first projection image group R1 to R190 and the second projection image group L1 to L190 are superimposed and synthesized, but the movement accuracy of the X-ray imaging unit 12 in the linear movement unit is improved. If secured, it is possible to create a composite image simply by arranging the end portions of the projection image so as to join without overlapping.
  • the first detection position P1 is set to be farther from the origin position P0 than the second detection position P2 in consideration of the movement time.
  • the first detection position P1 is more It can also be set to be closer to the origin position P0 than the second detection position P2.
  • the rotation direction of the arm 2 in the imaging step of the present embodiment is taken while rotating counterclockwise in the first embodiment, but if it is the same direction, the image may be taken clockwise.
  • the rotation direction of the forward path and the backward path may be reversed, and imaging may be performed while rotating clockwise in the forward path and rotating counterclockwise in the backward path.

Abstract

X線源(11)およびX線撮像手段(12)を支持するアーム(2)を回転させる旋回手段(3)と、X線撮像手段(12)を直線移動させるスライド移動手段(4)と、を有する歯科用X線撮影装置(1)であって、X線撮像手段(12)を第1の検出位置に移動させ第1の領域を透過した第1のプロジェクション画像群を取得し、第2の検出位置に移動させ第2の領域を透過した第2のプロジェクション画像群を取得し、第1のプロジェクション画像群と第2のプロジェクション画像群を張り合わせる。X線撮像手段(12)の原点位置を検出する原点位置検出手段(5)は、X線撮像手段(12)とともに直線移動する遮光板の端部(51a)の位置を検出する光センサ(52)を備え、遮光板の端部(51a)が光センサ(52)から前進方向に抜けた時点を原点位置として検出する。この構成により、受光面の狭いX線撮像手段を使用して精度の高い大きなFOVを取得する。

Description

歯科用X線撮影装置
 本発明は、歯科用X線撮影装置に関し、特に、X線撮像手段を受光面に沿う方向に直線移動させて各位置で得たプロジェクション画像同士をペースト合成する歯科用X線撮影装置に関する。
 従来、歯科治療におけるCT撮影(コンピュータ断層撮影)装置は、受光面のサイズと機械的ジオメトリ(X線源、回転中心、受光面の幾何学的配置)により決定されるFOV(field of view)を得ていた。
 また、X線透視撮影装置ではプロジェクション画像を張り合わせて大きなFOV(視野)を得る技術が知られている(特許文献1)。
特開2002-263094号公報(図5,7)
 しかしながら、CT撮影に必要とされるX線撮像手段は、受光面のサイズが大きいほど高価であり、FOVを大きくとるために受光面を大きくすると、高コストになってしまうという問題があった。また、画像データの処理装置も大型化し、装置が全体として高額になることから、歯科治療において大きなFOVを持つCT撮影装置が広く普及されにくいという問題があった。
 一方、歯科用X線撮影装置では、精度の高い断層画像を取得することが求められるため、プロジェクション画像を張り合わせて大きなFOVを得ようとすると、張り合わせの精度が問題となる場合がある。例えば、特許文献1に記載の技術では、円弧状のガイドレールに沿って移動させるため、X線撮像手段における移動精度を確保しにくく、データ処理も煩雑化する。
 そこで、本発明は、前記した問題点を解決すべく、受光面の狭い安価なX線撮像手段を使用して大きなFOVを得ながら、高精度の画像を取得することができる歯科用X線撮影装置を提供することを課題とする。
 前記課題を解決するため、本発明は、X線束を被写体に照射するX線源と、このX線源から照射され前記被写体を透過した前記X線束を検出するX線撮像手段と、前記X線源および前記X線撮像手段を支持する支持手段と、この支持手段を垂直軸回りに回転させて前記X線源および前記X線撮像手段を前記被写体の周りで水平方向に旋回させる旋回手段と、を有する歯科用X線撮影装置であって、前記X線撮像手段を受光面に沿う方向に直線移動させるスライド移動手段と、前記旋回手段および前記スライド移動手段の動作を制御する制御装置と、前記X線撮像手段が取得したプロジェクション画像を処理する画像処理手段と、を備え、前記制御装置は、前記スライド移動手段により、前記X線撮像手段を前記被写体の第1の領域を透過した前記X線束を検出する第1の検出位置に移動させる第1のスライド移動ステップと、前記旋回手段により前記X線源および前記X線撮像手段を回転させながら、前記X線撮像手段により前記第1の領域を透過した第1のプロジェクション画像群を取得する第1の撮像ステップと、前記スライド移動手段により、前記X線撮像手段を前記被写体の第2の領域を透過した前記X線束を検出する第2の検出位置に移動させる第2のスライド移動ステップと、前記旋回手段により前記X線源および前記X線撮像手段を回転させながら、前記X線撮像手段により前記第2の領域を透過した第2のプロジェクション画像群を取得する第2の撮像ステップと、を実行し、前記画像処理手段は、前記第1のプロジェクション画像と前記第2のプロジェクション画像群とをそれぞれ前記支持手段の位相角度が同じプロジェクション画像同士を張り合わせて合成するペースト合成ステップを実行し、前記スライド移動手段は、前記X線撮像手段の原点位置を検出する原点位置検出手段を備え、前記第1のスライド移動ステップ、および前記第2のスライド移動ステップにおいて、前記X線撮像手段の直線移動は、予め設定された前記原点位置からそれぞれ前記第1の検出位置および第2の検出位置まで移動させ、前記原点位置検出手段は、前記スライド移動手段により前記X線撮像手段とともに直線移動する遮光板と、この遮光板の端部の位置を検出する光センサと、を備え、前記遮光板の端部が前記光センサから前進方向に抜けた時点を前記原点位置として検出することを特徴とする。
 ここで、支持手段の「位相角度」とは、被写体から見た支持手段の回転状態を任意の基準位置からの回転角度で表す意味として使用する。
 本発明は、前記スライド移動手段により、前記X線撮像手段を受光面に沿う方向に直線移動させることで、第1のスライド移動ステップおよび第2のスライド移動ステップにおけるX線撮像手段の移動精度を高精度で確保することが可能となる。
 このため、X線撮像手段を直線移動させた移動量だけオフセットさせてデータ処理をすればよいので、第1の検出位置で得られた第1のプロジェクション画像群と第2の検出位置で得られた第2のプロジェクション画像群とをそれぞれ高精度で張り合わせることができる。
 そして、第1のプロジェクション画像群と第2のプロジェクション画像群とをそれぞれ張り合わせて得られた高精度のプロジェクション画像を再構成することで、X線撮像手段の第1の検出位置と第2の検出位置とでカバーされる広範囲のFOVを有する画像を取得することができる。
 このようにして、本発明は、受光面の狭い安価なX線撮像手段を使用して大きなFOVを得ながら、高精度の画像を取得することができる歯科用X線撮影装置を提供することができる。
 また、本発明によれば、予め設定された前記原点位置からそれぞれ前記第1の検出位置および第2の検出位置まで移動することで、原点位置を基準として、原点位置から第1の検出位置までの距離、および原点位置から第2の検出位置までの距離を管理して、検出位置の位置精度をより向上させることができる。
 本発明において、前記X線撮影装置は、前記第2の撮像ステップにおける前記X線撮像手段の回転方向は、前記第1の撮像ステップにおける前記X線撮像手段の回転方向と逆方向であることが望ましい。
 かかる構成によれば、第1の撮像ステップと第2の撮像ステップの回転方向とを逆方向にすることで、往復撮影により旋回手段の動作時間を短縮することができる。
 本発明は、相互の重なり具合を視認して前記第2の撮像ステップにおける前記X線撮像手段の回転方向と前記第1の撮像ステップにおける前記X線撮像手段の回転方向との位相角度のずれを検出するための一組の照準部材を備えることが望ましい。
 かかる構成によれば、相互の重なり具合を視認することで、往路撮影と復路撮影との支持手段の位相角度のずれを検出して修正することができる。
 本発明は、前記重なり具合を視認する撮影装置を備えることが望ましい。
 かかる構成によれば、撮影装置を備えたことで、位相角度のずれを客観的に検出して検出精度を向上させ、確実な修正ができる。
 本発明に係る歯科用X線撮影装置は、受光面の狭い安価なX線撮像手段を使用して大きなFOVを得ながら、高精度の画像を取得することができる。
本発明の実施形態に係る歯科用X線撮影装置の構成を示す側面図である。 本発明の実施形態に係るスライド移動手段の構成を説明するための図であり、(a)は正面図、(b)は側面図である。 第1の撮像ステップと第2の撮像ステップとが同方向の場合の動作を説明するための模式図(その1)であり、(a)と(b)は被写体とアームの関係を示す平面図、(c)はプロジェクション画像群を示す概念図である。 図3Aと同様の図(その2)であり、(a)と(b)は平面図である。 図3Aと同様の図(その3)であり、(a)と(b)は平面図、(c)は概念図である。 図3Aと同様の図(その4)であり、ペースト合成の概念を示す概念図である。 第1の撮像ステップと第2の撮像ステップとが逆方向の場合の動作を説明するための模式図(その1)であり、(a)と(b)は被写体とアームの関係を示す平面図、(c)はプロジェクション画像群を示す概念図である。 図4Aと同様の図(その2)であり、(a)と(b)は平面図である。 図4Aと同様の図(その3)であり、(a)は平面図、(b)は撮影したプロジェクション画像群、(c)は撮影順を入れ替えたプロジェクション画像群を示す概念図である。 図4Aと同様の図(その4)であり、ペースト合成の概念を示す概念図である。 第1の撮像ステップと第2の撮像ステップとが逆方向の場合における角度オフセット調整装置の装着状態を示す図であり、(a)は側面図、(b)は調整具の拡大平面図である。 第1の撮像ステップと第2の撮像ステップとが逆方向の場合における角度オフセットの調整方法を説明するための図であり、(a)と(b)と(d)は平面図、(c)と(e)はカメラから調整具を見た状態を示す正面図である。
 本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
 本発明の実施形態に係る歯科用X線撮影装置1は、図1に示すように、支柱部10と、支柱部10に移動自在に配設された本体部20とからなり、本体部20には、アーム2が垂直軸周りに回転自在に配設されている。
 歯科用X線撮影装置1において、被写体Kは図示しない患者の患部であり、患者はアーム2の内側に頭部を固定して配置される。そして、被写体Kを固定した状態で、アーム2を被写体Kの回りに回転してX線撮影する。
 なお、本実施形態においてはX線撮像手段12によりCТ断層画像を取得する場合について説明するが、セファロ撮影装置やパノラマ撮影装置に適用することも可能である。また、アーム2は、被写体Kとの位置決めや種々の撮影形態に適応するために、適宜移動テーブル等を介して前後方向や左右方向の2次元平面内で移動自在に構成することもできる。
 歯科用X線撮影装置1は、図1に示すように、被写体KにX線束Lを照射するX線源11と、被写体Kを透過したX線束Lを検出するX線撮像手段12と、X線源11およびX線撮像手段12を支持する支持手段であるアーム2と、アーム2をアーム回転中心軸C1の周りに回転させる旋回手段3と、X線撮像手段12を受光面12aに沿う方向に直線移動させるスライド移動手段4と、旋回手段3およびスライド移動手段4の動作を制御する制御装置8と、X線撮像手段12が取得したプロジェクション画像を処理する画像処理手段81と、を備えている。
 X線源11およびX線撮像手段12は、被写体Kを挟んで、互いに対峙するようにアーム2に配設されている。そして、サーボモータ等からなる旋回手段3によりアーム2を旋回させて、X線源11およびX線撮像手段12を被写体Kの周りに回転させX線源11から照射されたX線束Lが被写体Kを透過してX線撮像手段12で検出される。
 X線撮像手段12は、図2(a)に示すように、受光面12aが矩形の平面センサからなり、例えばCMOSセンサ、CCDセンサ、CdTeセンサ、その他のイメージセンサで構成されている。
 スライド移動手段4は、図2に示すように、ボールねじ41と、ボールねじ41を回転させる駆動モータ42と、ボールねじ41に螺入されたナット43と、ナット43に固定されたホルダ44と、ホルダ44に固定されたX線撮像手段12と、X線撮像手段12を受光面12aに沿う方向に往復移動自在に支持する直線移動ガイド45と、X線撮像手段12(受光面12a)の原点位置P0(図3A(a))を検出するための原点位置検出手段5と、を備えて構成されている。
 原点位置検出手段5は、図2に示すように、ナット43に固定された遮光板51と、遮光板51の端部51aの位置を検出する光センサ52と、を備えている。そして、原点位置検出手段5は、前進方向Aにナット43が前進する際において、遮光板51の端部51aが光センサ52から前進方向Aに抜けた時点をX線撮像手段12の受光面12aの原点位置P0(図3A(a))として検出する。
 そして、制御手段8(図1)は、スライド移動手段4により、受光面12aが原点位置P0(図3A(a))から第1の検出位置P1(図3A(a))にくるまで、および原点位置P0から第2の検出位置P2(図3B(b))にくるまでX線撮像手段12をアーム2内において水平方向に直線移動させる。
 かかる構成により、第1の検出位置P1における受光面12aから得られるFOVと第2の検出位置P2における受光面12aから得られるFOVとでカバーされる広範囲のFOVを取得することができる。
 以上のように構成された歯科用X線撮影装置1の動作について、第1の実施形態(図3A~D)、および第2の実施形態(図4A~図4D)について説明する。
 なお、図3と図4では、説明の便宜上、X線撮像手段12の受光面12aが概念的に移動するように表現する。
 第1の実施形態(図3A~図3D)は、アーム2を同じ方向に回転させて第1の撮像ステップと第2の撮像ステップを実行するのに対し、第2の実施形態(図4A~図4D)は、第1の撮像ステップにおけるアーム2の回転方向と第2の撮像ステップにおける回転方向が、逆方向である点で相違する。
 第1の実施形態と第2の実施形態とは、X線撮像手段12が第1の検出位置P1に位置する場合と第2の検出位置P2に位置する場合のそれぞれについてプロジェクション画像群を取得する点で共通する。
 つまり、被写体Kの撮影領域を概念的に2つの領域に分けて、それぞれの領域に対応する位置にX線撮像手段12を配設した状態でプロジェクション画像群を取得し、このプロジェクション画像群をそれぞれ対応させて合成してからCT再構成する。
 第1の実施形態では、制御装置8は、原点位置(P0)から第1の検出位置(P1)までX線撮像手段を移動させる第1のスライド移動ステップと(図3A(a))、旋回手段3によりアーム2を190度反時計回りに回転させて、被写体の第1の領域を透過した第1のプロジェクション画像群R1~R190を取得する第1の撮像ステップと(図3A(b)~図3A(c))、スライド移動手段4によりX線撮像手段12を第1の検出位置P1から原点位置P0まで戻しながらアーム2を時計回りに回転させて、X線撮像手段12およびX線源11を図3A(a)に示す元の位置(第1の撮像ステップにおける撮像開始の位置、基準位置)まで戻すステップと(図3B(a))、原点位置(P0)から第2の検出位置(P2)までX線撮像手段12を移動させる第2のスライド移動ステップと(図3B(b))、旋回手段3によりアーム2を190度反時計回りに回転させて、被写体Kの第2の領域を透過した第2のプロジェクション画像群L1~L190を取得する第2の撮像ステップと(図3A(a)~図3A(c))、を実行する。
 そして、画像処理手段81は、第1のプロジェクション画像群R1~R190と第2のプロジェクション画像群L1~L190とをそれぞれアーム2の位相角度が同じプロジェクション画像同士を張り合わせて合成するペースト合成ステップを実行する。
 第1のスライド移動ステップは、図3A(a)に示すように、スライド移動手段4(図2)により、X線撮像手段12の受光面12aが原点位置P0から第1の検出位置P1にくるまで移動するステップである。
 なお、第1のスライド移動ステップでは、アーム2を回転させる必要はないが、アーム2の回転の影響は受けないのでアーム2を回転させながらスライド移動することもできる。
 第1の撮像ステップにおいて、第1のプロジェクション画像群R1~R190は、図3A(c)に示すように、図3A(a)に示す基準位置(起点)からアーム2を190度回転させながら1度ごとに撮影した190枚のプロジェクション画像群である。
 なお、本実施形態においては、アーム2の回転角度は、ハーフリコンの場合には180度からX線照射角を考慮して180度以上の190度としたが、X線照射角を考慮しない場合は180度でもよいし、同様にフルリコンの場合には360度でもよいし、360度以上でもよい。
 被写体Kの第1の領域は、図3A(a)から図3A(b)までX線束Lが移動する範囲に対応する被写体Kの領域であり、この第1の領域ではX線撮像手段12の受光面12aは、第1の検出位置P1に存在する。
 ここで、被写体Kの領域とは、X線源11から照射されたX線束Lが回転しながら透過する被写体Kの領域をいうが、概念的なものであり具体的な被写体Kの範囲を意味するものではない。
 X線撮像手段12を原点位置P0まで戻しながら、X線撮像手段12およびX線源11を図3A(a)に示す元の位置(基準位置)まで戻すステップでは、スライド移動手段4とアーム2を同時に動作するようにしたが、これに限定されるものではなく、スライド移動手段4のスライド移動とアーム2の回転を別々に実行することもできる。
 第2のスライド移動ステップは、図3B(b)に示すように、スライド移動手段4(図2)により、X線撮像手段12の受光面12aが原点位置P0から第2の検出位置P2にくるまで移動するステップである。
 なお、本実施形態においては、元の位置まで戻すステップの後に、第2のスライド移動ステップを実行したが、元の位置まで戻しながら第2のスライド移動ステップを実行してもよいし、第2のスライド移動ステップの後に元の位置に戻すステップを実行してもよい。
 要するに、第2の撮像ステップを実行する前に、元の位置に戻すステップと第2のスライド移動ステップが完了していればよい。
 第2の撮像ステップでは、図3C(a)~(c)に示すように、X線撮像手段12が第2の検出位置P2に位置する状態において、旋回手段3によりアーム2を第1の撮像ステップと同じように190度反時計回りに同方向に回転させて、今度は被写体Kの第2の領域を透過した第2のプロジェクション画像群L1~L190を取得する。
 被写体Kの第2の領域は、図3C(a)から図3C(b)までX線束Lが移動する範囲に対応する被写体Kの領域であり、この第2の領域ではX線撮像手段12の受光面12aは、第2の検出位置P2(図3C(a))に位置する。
 ペースト合成ステップでは、第1のプロジェクション画像群R1~R190も第2のプロジェクション画像群L1~L190も同じように、図3(a)に示す同じ基準位置から190度アーム2を反時計回りに同方向に回転させて撮影した画像群であるから、プロジェクション画像R1,L1は位相角度が同じであり、同様に撮影の順番どおりにそれぞれプロジェクション画像R190,L190まで位相角度が同じである。
 このため、本実施形態に係るペースト合成ステップでは、図3Dに示すように、位相角度が同じプロジェクション画像R1,L1~プロジェクション画像R190,L190までをそれぞれ対応させて既知の量だけオフセットさせ重ね合わせて合成する。
 そして、第1のプロジェクション画像群R1~R190と第2のプロジェクション画像群L1~L190とをそれぞれ張り合わせて得られた高精度のプロジェクション画像をCT再構成することで、X線撮像手段12の第1の検出位置P1と第2の検出位置P2とでカバーされる広範囲のFOVを有するCT断層画像を取得することができる。
 続いて、第1の撮像ステップにおけるアーム2の回転方向と第2の撮像ステップにおける回転方向が逆方向である第2の実施形態について、図4A~図4Dを参照しながら説明する。
 第2の実施形態では、制御装置8は、原点位置(P0)から第1の検出位置(P1)までX線撮像手段12を移動させる第1のスライド移動ステップと(図4A(a))、旋回手段3によりアーム2を190度反時計回りに回転させて、被写体Kの第1の領域を透過した第1のプロジェクション画像群R1~R190を取得する第1の撮像ステップと(図4A(b)~(c))、スライド移動手段4によりX線撮像手段12を第1の検出位置P1から原点位置P0まで戻すステップと(図4B(a))、原点位置P0から第2の検出位置P2までX線撮像手段12を移動させる第2のスライド移動ステップと(図4B(b))、旋回手段3によりアーム2を190度時計回りに回転させて、被写体Kの第2の領域を透過した第2のプロジェクション画像群L1~L190を取得して(図4C(a)~(b))並べ替える第2の撮像ステップと(図4C(c))、を実行する。
 ここで、第2の実施形態は、図4Aに示すように、第1のスライド移動ステップ(図4A(a))と第1の撮像ステップ(図4A(b)~図4A(c))については、第1の実施形態と同じであるので説明は省略する。
 第2の実施形態では、第2の撮像ステップにおけるX線撮像手段12の回転方向(時計回り)は、第1の撮像ステップにおける回転方向(反時計回り)と逆方向であるから、第1の撮像ステップの実行後に、アーム2が同じ軌跡を辿って図4C(a)に示す元の位置まで戻りながら被写体Kの第2の領域を透過した第2のプロジェクション画像群L1~L190を取得する。
 ここで、第1のプロジェクション画像群R1~R190は、図4A(a)に示す基準位置から反時計回りに190度回転させながら撮影した画像であるのに対し、第2のプロジェクション画像群L1~L190は、図4A(a)に示す基準位置から反時計回りに190度回転させた状態を起点として時計回りに図4C(a)に示す基準位置まで逆方向に回転させながら撮影した画像である。
 このため、第2のプロジェクション画像群L1~L190は、撮影順をL190~L1まで逆に並べ替えると第1のプロジェクション画像群R1~R190と位相角度が同じになる(図4C(b)~図4C(c))。
 このように並べ替えることで、第2の実施形態に係るペースト合成ステップでは、図4Dに示すように、位相角度が同じプロジェクション画像R1,L190~プロジェクション画像R190,L1までをそれぞれ対応させて合成する。
 続いて、第1の撮像ステップと第2の撮像ステップとが逆方向の場合における角度オフセット調整装置について、図5と図6を参照しながら説明する。なお、角度オフセット調整装置以外の構成については前記した実施形態と同様であるので、同様の構成については同一の符号を付してその説明を省略する。
[実施例1]
 角度オフセット調整装置6は、図5に示すように、相互の重なり具合を視認して第2の撮像ステップにおけるX線撮像手段12の回転方向と第1の撮像ステップにおけるX線撮像手段12の回転方向との位相角度のずれを検出するための調整具61を備えて構成されている。
 調整具61は、一組の照準部材であるアーム2の回転中心に配設される円柱形状の針状部材61a、およびこの針状部材61aとの重なり具合が視認可能な錘状もしくは円錐形状の凸状部材61bと、針状部材61aおよび凸状部材61bをバイトブロック部20aに装着可能なベース部材61cと、を備えている。そして、調整具61は、本体部20のバイトブロック部20aに着脱自在に装着される。
 かかる構成により、角度オフセット調整装置6は、X線源11からX線照射を行なって、同じ位相角度、例えば往路の95枚目のプロジェクション画像と復路の95枚目のプロジェクション画像を目視確認することで往路(図6(b))と復路(図6(d))の回転方向におけるアーム2のずれを視認して修正することができる。
 なお、本実施形態においては、一組の照準部材として、針状部材61aおよび凸状部材61bを採用したが、これに限定されるものではなく相互に重なり具合を視認できるものであれば、凹形状部材や単に平板に目印となる図柄を付したもの等でもよい。
[実施例2]
 実施例2は、図5に示すように、実施例1において、さらに、円柱形状の針状部材61aとこの針状部材61aとの重なり具合が視認可能な錘状もしくは円錐形状の凸状部材61bとの重なり具合を視認する撮影装置であるカメラ62(図6(a)参照)を備えて構成したものである。
 カメラ62は、アーム2の所定の位置(X線撮像手段12の後方)に装着されるが、190枚のプロジェクション画像を撮影する場合には、同じ位相角度となる例えばプロジェクション画像群の真中である95枚目のプロジェクション画像を視認する位置に配設するのが好適である。
 かかる構成により、角度オフセット調整装置6は往路(図6(b))と復路(図6(d))の逆の回転方向におけるそれぞれにおいて、針状部材61aと凸状部材61bとの重なり具合(ずれδ、図6(e))を同じ位置(針状部材61aと凸状部材61bとが重なる位置)からカメラ62で視認することで、往路と復路の回転方向におけるアーム2のずれを検出して補正する。
 具体的には、図6(a)に示す基準位置からアーム2を時計回りに190度回転させると(往路)、カメラ62は、図6(b)に示す62(イ)の位置から、針状部材61aと凸状部材61bとの重なり具合(ずれδ)を視認する62(ロ)の位置を通って、62(ハ)の位置まで移動する。
 同様にして、図6(d)に示す62(ハ)の位置から、今度はアーム2を反時計回りに190度回転させると(復路)、カメラ62は、針状部材61aと凸状部材61bとの重なり具合(ずれδ)を視認する62(ニ)の位置を通って、62(ホ)の位置まで移動する。
 このようにして、同じ位置、すなわち図6(b)の62(ロ)と図6(d)の62(ニ)からカメラ62で針状部材61aと凸状部材61bとの重なり具合(ずれδ)を視認することで、往路と復路におけるアーム2の位相角度のずれを検出して補正することができる。
 なお、本実施形態においては、単純な視認しやすい形状からなる針状部材61aと凸状部材61bを用いているので、撮影画像を画像認識することで、角度オフセットを調整することもできる。例えば、パターンマッチングで針状部材61aと凸状部材61bの水平方向位置を認識して調整する。
 以上、本発明の実施形態について説明したが、本発明は前記した実施形態に限定されず、適宜変更して実施することが可能である。
 例えば、本実施形態に係るスライド移動手段4は、水平方向に移動させたが、垂直方向に移動させると、X線撮像手段12のFOVを垂直方向に拡大できる。また、本実施形態に置いては、被写体Kの領域を2つに分割して、2つの領域に対応してX線撮像手段12を第1の検出位置P1と第2の検出位置P2に移動させたが、被写体Kの領域を3つ以上に分割してそれぞれの領域に対応させてX線撮像手段12を移動させてもよい。
 また、本実施形態においては、第1のプロジェクション画像群R1~R190と第2のプロジェクション画像群L1~L190とをそれぞれ重ね合わせて合成したが、直線移動手段におけるX線撮像手段12の移動精度を確保すれば、重ね合わせずにプロジェクション画像の端部が接合するように並べるだけで合成画像を作成することもできる。
 本実施形態においては、移動時間を考慮して第1の検出位置P1の方が第2の検出位置P2よりも原点位置P0から遠くなるように設定したが、第1の検出位置P1の方が第2の検出位置P2よりも原点位置P0から近くなるように設定することもできる。
 また、本実施形態の撮像ステップにおけるアーム2の回転方向は、第1の実施形態では反時計回りに回転させながら撮影したが、同方向であれば時計回りに撮影してもよく、第2の実施形態でも往路と復路の回転方向を逆にして、往路では時計回りに回転させ復路では反時計回りに回転させながら撮影してもよい。
 1   歯科用X線撮影装置
 2   アーム(支持手段)
 3   旋回手段
 4   スライド移動手段
 5   原点位置検出手段
 6   角度オフセット調整装置
 12  X線撮像手段
 12a 受光面
 61  調整具
 61a 針状部材(照準部材)
 61b 凸状部材(照準部材)
 62  カメラ(撮影手段)
 K   被写体
 L   X線束
 P0  原点位置
 P1  第1の検出位置
 P2  第2の検出位置
 R1~R190  プロジェクション画像群
 L1~L190  プロジェクション画像群

Claims (4)

  1.  X線束を被写体に照射するX線源と、
     このX線源から照射され前記被写体を透過した前記X線束を検出するX線撮像手段と、
     前記X線源および前記X線撮像手段を支持する支持手段と、
     この支持手段を垂直軸回りに回転させて前記X線源および前記X線撮像手段を前記被写体の周りで水平方向に旋回させる旋回手段と、を有する歯科用X線撮影装置であって、
     前記X線撮像手段を受光面に沿う方向に直線移動させるスライド移動手段と、
     前記旋回手段および前記スライド移動手段の動作を制御する制御装置と、
     前記X線撮像手段が取得したプロジェクション画像を処理する画像処理手段と、を備え、
     前記制御装置は、
     前記スライド移動手段により、前記X線撮像手段を前記被写体の第1の領域を透過した前記X線束を検出する第1の検出位置に移動させる第1のスライド移動ステップと、
     前記旋回手段により前記X線源および前記X線撮像手段を回転させながら、前記X線撮像手段により前記第1の領域を透過した第1のプロジェクション画像群を取得する第1の撮像ステップと、
     前記スライド移動手段により、前記X線撮像手段を前記被写体の第2の領域を透過した前記X線束を検出する第2の検出位置に移動させる第2のスライド移動ステップと、
     前記旋回手段により前記X線源および前記X線撮像手段を回転させながら、前記X線撮像手段により前記第2の領域を透過した第2のプロジェクション画像群を取得する第2の撮像ステップと、を実行し、
     前記画像処理手段は、
     前記第1のプロジェクション画像群と前記第2のプロジェクション画像群とをそれぞれ前記支持手段の位相角度が同じプロジェクション画像同士を張り合わせて合成するペースト合成ステップを実行し、
     前記スライド移動手段は、前記X線撮像手段の原点位置を検出する原点位置検出手段を備え、
     前記第1のスライド移動ステップ、および前記第2のスライド移動ステップにおいて、前記X線撮像手段の直線移動は、予め設定された前記原点位置からそれぞれ前記第1の検出位置および第2の検出位置まで移動させ、
     前記原点位置検出手段は、前記スライド移動手段により前記X線撮像手段とともに直線移動する遮光板と、
     この遮光板の端部の位置を検出する光センサと、を備え、
     前記遮光板の端部が前記光センサから前進方向に抜けた時点を前記原点位置として検出することを特徴とする歯科用X線撮影装置。
  2.  前記第2の撮像ステップにおける前記X線撮像手段の回転方向は、前記第1の撮像ステップにおける前記X線撮像手段の回転方向と逆方向であること、
     を特徴とする請求の範囲第1項に記載の歯科用X線撮影装置。
  3.  相互の重なり具合を視認して前記第2の撮像ステップにおける前記X線撮像手段の回転方向と前記第1の撮像ステップにおける前記X線撮像手段の回転方向との位相角度のずれを検出するための一組の照準部材を備えたこと、
     を特徴とする請求の範囲第2項に記載の歯科用X線撮影装置。
  4.  前記重なり具合を視認する撮影装置を備えたことを特徴とする請求の範囲第3項に記載の歯科用X線撮影装置。
PCT/JP2010/065831 2009-09-28 2010-09-14 歯科用x線撮影装置 WO2011037044A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112010003822.8T DE112010003822B4 (de) 2009-09-28 2010-09-14 Vorrichtung und Verfahren zur Bildaufnahmne im Dentalbereich mittels Röntgenstrahlen
US13/497,211 US8396186B2 (en) 2009-09-28 2010-09-14 Dental x-ray photographing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-223269 2009-09-28
JP2009223269A JP4516626B1 (ja) 2009-09-28 2009-09-28 歯科用x線撮影装置

Publications (1)

Publication Number Publication Date
WO2011037044A1 true WO2011037044A1 (ja) 2011-03-31

Family

ID=42709007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065831 WO2011037044A1 (ja) 2009-09-28 2010-09-14 歯科用x線撮影装置

Country Status (4)

Country Link
US (1) US8396186B2 (ja)
JP (1) JP4516626B1 (ja)
DE (1) DE112010003822B4 (ja)
WO (1) WO2011037044A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009038588A1 (de) * 2009-08-26 2011-03-24 Degudent Gmbh Verfahren zur Ermittlung eines Gesamtdatensatzes eines zu messenden Objektes
JP5742734B2 (ja) * 2012-01-17 2015-07-01 株式会社島津製作所 X線撮影装置
JP6076822B2 (ja) 2012-05-02 2017-02-08 株式会社モリタ製作所 X線ct撮影装置
KR102124669B1 (ko) * 2012-09-07 2020-06-18 트로피 부분적인 ct 이미징을 위한 장치
CN104717923B (zh) * 2012-10-02 2017-07-25 株式会社岛津制作所 X射线摄影装置
JP6195441B2 (ja) * 2012-12-26 2017-09-13 株式会社吉田製作所 回転アーム型歯科用x線ct診断装置の撮影視野確認プレート、回転アーム型歯科用x線ct診断装置、及び、回転アーム型歯科用x線ct診断装置の撮影視野確認方法
US9888891B2 (en) * 2014-06-26 2018-02-13 Palodex Group Oy X-ray imaging unit for medical imaging
WO2016018002A1 (ko) * 2014-07-28 2016-02-04 주식회사바텍 엑스선 영상 촬영장치 및 엑스선 영상 촬영방법
JP6707542B2 (ja) * 2014-12-18 2020-06-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 物体の細長い関心領域を撮像するための撮像システム
KR20170119676A (ko) * 2015-02-27 2017-10-27 트로피 Cbct 이미징 디바이스를 위한 교합 블록
CN105266841B (zh) * 2015-03-19 2018-03-27 上海汉缔医疗设备有限公司 连接环以及x射线自动控制器
KR101892144B1 (ko) 2015-10-26 2018-08-28 주식회사 바텍 엑스선 영상 촬영장치
KR101824238B1 (ko) * 2016-03-25 2018-01-31 (주)바텍이우홀딩스 소형 엑스선 디텍터를 이용하여 획득된 프로젝션 영상을 재구성하는 엑스선 영상 처리 장치 및 방법
JP6307639B1 (ja) * 2017-01-31 2018-04-04 株式会社吉田製作所 X線撮影装置およびx線撮影方法
KR102203630B1 (ko) * 2018-09-20 2021-01-18 오스템임플란트 주식회사 엑스선 영상 생성 방법, 엑스선 영상 생성 장치 및 컴퓨터 판독 가능한 기록 매체

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502399A (ja) * 1990-07-02 1993-04-28 バリアン・メディカル・システムズ・インコーポレイテッド 画像増強検出器を使用するコンピュータx線断層撮影装置
JPH09327453A (ja) * 1996-06-12 1997-12-22 Hitachi Medical Corp X線撮影装置
JPH119583A (ja) * 1997-06-26 1999-01-19 Hitachi Medical Corp 3次元x線ct装置
JP2000005154A (ja) * 1998-06-24 2000-01-11 Hitachi Medical Corp X線を用いた計測装置
JP2005006772A (ja) * 2003-06-17 2005-01-13 Ge Medical Systems Global Technology Co Llc X線診断装置及びct画像の生成方法
JP2005037158A (ja) * 2003-07-15 2005-02-10 Sony Corp コンピュータ断層撮像方法及び装置
JP2005527800A (ja) * 2002-03-19 2005-09-15 ブレークアウェイ・イメージング・エルエルシー 大視野の対象物を画像化するシステムおよび方法
JP2006320347A (ja) * 2005-05-17 2006-11-30 Asahi Roentgen Kogyo Kk 歯科用パノラマx線撮影装置または、歯科用パノラマ/セファロx線撮影装置の断層像撮影方法及び装置
WO2007046372A1 (ja) * 2005-10-17 2007-04-26 J. Morita Manufacturing Corporation 医療用デジタルx線撮影装置及び医療用デジタルx線センサ
JP2007144137A (ja) * 2005-10-26 2007-06-14 Morita Mfg Co Ltd スカウトビュー機能を備えた医療用x線撮影装置
JP2007159987A (ja) * 2005-12-16 2007-06-28 Morita Mfg Co Ltd X線撮影装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59813247D1 (de) 1997-02-17 2006-01-05 Sirona Dental Systems Gmbh Verfahren und Einrichtung zur Erstellung von Röntgenaufnahmen von Körperteilen eines Menschen
EP0904734A3 (en) * 1997-09-30 2000-03-29 Kabushikikaisha Morita Seisakusho Panoramic radiographic apparatus and digital sensor cassette used for same apparatus
US6118171A (en) * 1998-12-21 2000-09-12 Motorola, Inc. Semiconductor device having a pedestal structure and method of making
JP3643745B2 (ja) * 2000-02-21 2005-04-27 株式会社モリタ製作所 X線撮影用検出器及びx線撮影装置
JP2002263094A (ja) 2001-03-06 2002-09-17 Shimadzu Corp X線透視撮影装置
DE10313109A1 (de) 2003-03-24 2004-10-21 Sirona Dental Systems Gmbh Röntgenstrahlenempfindliche Kamera und Röntgeneinrichtung
JP2006061501A (ja) * 2004-08-27 2006-03-09 Morita Mfg Co Ltd X線撮影装置
JP4488948B2 (ja) * 2005-04-11 2010-06-23 株式会社モリタ製作所 X線ct撮影用ユニットおよびx線撮影装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05502399A (ja) * 1990-07-02 1993-04-28 バリアン・メディカル・システムズ・インコーポレイテッド 画像増強検出器を使用するコンピュータx線断層撮影装置
JPH09327453A (ja) * 1996-06-12 1997-12-22 Hitachi Medical Corp X線撮影装置
JPH119583A (ja) * 1997-06-26 1999-01-19 Hitachi Medical Corp 3次元x線ct装置
JP2000005154A (ja) * 1998-06-24 2000-01-11 Hitachi Medical Corp X線を用いた計測装置
JP2005527800A (ja) * 2002-03-19 2005-09-15 ブレークアウェイ・イメージング・エルエルシー 大視野の対象物を画像化するシステムおよび方法
JP2005006772A (ja) * 2003-06-17 2005-01-13 Ge Medical Systems Global Technology Co Llc X線診断装置及びct画像の生成方法
JP2005037158A (ja) * 2003-07-15 2005-02-10 Sony Corp コンピュータ断層撮像方法及び装置
JP2006320347A (ja) * 2005-05-17 2006-11-30 Asahi Roentgen Kogyo Kk 歯科用パノラマx線撮影装置または、歯科用パノラマ/セファロx線撮影装置の断層像撮影方法及び装置
WO2007046372A1 (ja) * 2005-10-17 2007-04-26 J. Morita Manufacturing Corporation 医療用デジタルx線撮影装置及び医療用デジタルx線センサ
JP2007144137A (ja) * 2005-10-26 2007-06-14 Morita Mfg Co Ltd スカウトビュー機能を備えた医療用x線撮影装置
JP2007159987A (ja) * 2005-12-16 2007-06-28 Morita Mfg Co Ltd X線撮影装置

Also Published As

Publication number Publication date
US20120183120A1 (en) 2012-07-19
US8396186B2 (en) 2013-03-12
DE112010003822T5 (de) 2012-09-13
DE112010003822B4 (de) 2015-07-30
JP4516626B1 (ja) 2010-08-04
JP2011067550A (ja) 2011-04-07

Similar Documents

Publication Publication Date Title
JP4516626B1 (ja) 歯科用x線撮影装置
JP5204899B2 (ja) X線撮影装置
JP6546173B2 (ja) X線画像撮影装置及びx線画像撮影方法
JP5702236B2 (ja) X線撮影装置およびそのキャリブレーション方法
US20100329534A1 (en) Method and device for the acquisition of x-ray images for a three-dimensional image reconstruction
JP5436301B2 (ja) 放射線撮影装置、及び放射線撮影システム
JP6801962B2 (ja) 医療画像診断のためのx線撮影装置
JP2010502334A (ja) 医療用x線イメージング装置
EP3654022B1 (en) X-ray tomography device having additional scanner function
JP4561990B2 (ja) X線撮影装置
KR20090130719A (ko) 토모그래피 영상획득방법
KR20140044158A (ko) 치아 모형 x-선 촬영 시스템 및 이를 위한 지그 장치
JP2012112790A (ja) X線ct装置
JP2004242928A (ja) X線撮影装置
KR101661055B1 (ko) 영상 촬영 방법 및 장치
JP2008148964A (ja) 放射線治療用複合装置およびアライメント補正用データ作成方法
CN104173068B (zh) 用于拼接的x射线成像装置和所属的方法
KR20100070822A (ko) 3차원 영상획득 장치
KR102180602B1 (ko) 삼차원 안면 광학 영상과 세팔로 x선 영상을 획득할 수 있는 세팔로 x선 영상 획득 장치
JP5676883B2 (ja) X線ct装置
JP2005000372A (ja) 放射線撮影装置
KR20160048275A (ko) X선 촬영장치
JP4609643B2 (ja) X線ct装置
KR102203644B1 (ko) 엑스선 영상 생성 방법, 엑스선 영상 생성 장치 및 컴퓨터 판독 가능한 기록 매체
JP6901752B2 (ja) 歯科用x線撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818719

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13497211

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010003822

Country of ref document: DE

Ref document number: 1120100038228

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10818719

Country of ref document: EP

Kind code of ref document: A1