WO2016018002A1 - 엑스선 영상 촬영장치 및 엑스선 영상 촬영방법 - Google Patents

엑스선 영상 촬영장치 및 엑스선 영상 촬영방법 Download PDF

Info

Publication number
WO2016018002A1
WO2016018002A1 PCT/KR2015/007722 KR2015007722W WO2016018002A1 WO 2016018002 A1 WO2016018002 A1 WO 2016018002A1 KR 2015007722 W KR2015007722 W KR 2015007722W WO 2016018002 A1 WO2016018002 A1 WO 2016018002A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
ray
unit
generator
ray imaging
Prior art date
Application number
PCT/KR2015/007722
Other languages
English (en)
French (fr)
Inventor
최성일
Original Assignee
주식회사바텍
(주)바텍이우홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사바텍, (주)바텍이우홀딩스 filed Critical 주식회사바텍
Priority to EP15827868.9A priority Critical patent/EP3175787B1/en
Priority to CN201580048140.9A priority patent/CN107072610A/zh
Priority to US15/500,017 priority patent/US10405815B2/en
Publication of WO2016018002A1 publication Critical patent/WO2016018002A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/51Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for dentistry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms

Definitions

  • the present invention relates to X-ray imaging, and more particularly, X-ray imaging apparatus and X-ray that can provide a three-dimensional X-ray image of the target region of the desired size and shape with a relatively narrow width of the sensor and a low dose X-ray
  • the present invention relates to an image capturing method.
  • X-rays are attenuated according to the X-ray attenuation coefficient of a material placed on a path of X-rays, such as a photoelectric effect and compton scattering.
  • the X-ray imaging apparatus for this purpose includes an X-ray emission source for radiating X-rays toward an object to be photographed, an X-ray sensor for detecting X-rays passing through the object by being disposed opposite to the X-ray emission source with an object to be interposed therebetween. It includes an image processing apparatus for implementing an X-ray image of the field of view (FOV) through.
  • FOV field of view
  • X-ray imaging has been rapidly replaced by DR (Digital Radiography) using digital sensors due to the development of semiconductor and information processing technology.
  • DR Digital Radiography
  • an X-ray panoramic image of a dental field is an X-ray photographed by moving an X-ray emission source and an X-ray sensor along a target of the subject, that is, the patient's arch.
  • the relationship between the placement of teeth and surrounding tissues for) is displayed as a transmission image.
  • the X-ray emission source and the X-ray sensor rotate in a predetermined angular range along a rotation axis therebetween, and at the same time, linearly move in a predetermined length range in the front-rear direction of the subject.
  • X-ray panoramic images are used as standard images most familiar to dentists because they can easily grasp the overall placement of teeth and surrounding tissues.
  • a multi-axis driving system is required for interlocking the rotational motion and the linear motion of the X-ray emission source and the X-ray sensor.
  • an X-ray CT image of a dental field includes an imaging object, that is, an X-ray photographed while rotating the X-ray radiating source and the X-ray sensor with the head of the subject interposed therebetween, and reconstructing the results of the imaging to include the head.
  • a 3D X-ray image of the area is displayed.
  • the X-ray emission source and the X-ray sensor rotate oppositely in a predetermined angle range along a rotation axis passing through the photographing object.
  • X-ray CT images can accurately and clearly display tomographic images according to a desired position and direction, as well as three-dimensional X-ray images of a photographic object, and are used in fields requiring high precision such as implantation procedures.
  • a general X-ray CT image shows a disadvantage that a relatively large amount of radiation is irradiated to a subject and an expensive large area X-ray sensor is required.
  • the senor in general X-ray CT imaging, the sensor must receive the entire area of the X-rays passing through the target area in all directions of the X-ray imaging. Therefore, a large area sensor that is much larger than a sensor for panoramic X-ray imaging is required.
  • an X-ray CT image is obtained when a X-ray CT image of a target area having a first height t1 and a first width w1 is obtained using a cone beam type X-ray mainly used in the dental field.
  • the second height t2 of the sensor is defined as the magnification *, which is defined as the ratio of the distance between the X-ray source and the axis of rotation to the distance between the X-ray source and the X-ray sensor.
  • the second width w2 of the sensor must be at least magnification * 1 width w1 (w2 ⁇ magnification * w1) before the entire area has passed through the subject area. X-rays can be received. At this time, if necessary, a so-called half beam method of reducing the second width of the sensor to a maximum magnification * (w1) / 2 using an asymmetric X-ray beam covering at least 1/2 of the photographing target area may be used. It may be.
  • the area of the sensor for X-ray CT imaging is relatively large.
  • the price of a general sensor increases dramatically according to its area, and the X-ray CT imaging apparatus exhibits a disadvantage that large-area sensors and the expensive equipment thereof are inevitable.
  • the present invention has been made to solve the above drawbacks, and compared to the conventional X-ray CT imaging apparatus including a half-beam method, a relatively narrow width of the sensor and a low dose of X-rays to the target area of the desired size and shape
  • An object of the present invention is to provide an X-ray imaging apparatus and an X-ray imaging method capable of providing a 3D X-ray image.
  • the present invention can extend the shooting target area to a single rotation axis whose position is fixed without a mechanical configuration for adding or moving a physical rotation axis between the X-ray emission source and the X-ray sensor, freely select, and even provides a panoramic image
  • An object of the present invention is to provide an X-ray imaging apparatus capable of doing so.
  • the X-ray imaging apparatus the generator unit and the sensor unit facing each other with the shooting target area therebetween;
  • a gantry for opposingly rotating the generator and the sensor unit about a rotation axis between the generator unit and the sensor unit;
  • At least one sensor provided in the sensor unit to detect X-rays;
  • a sensor driver provided in the sensor unit and moving the sensor in a tangential direction of the rotational trajectory or the rotational trajectory during rotation of the generator unit and the sensor center about the rotational axis;
  • an image processing apparatus for implementing a 3D X-ray image of the entire area of the photographing target region as a result of the detection of the sensor.
  • the width w2 of the sensor is less than an enlargement ratio * first width w1 / 2/2 (w2 ⁇ magnification ratio * w1 / 2), and the enlargement ratio is between the generator and the rotation axis. It can be defined as the ratio of the distance of the distance between the generator and the sensor.
  • the sensor driver may move the sensor at a constant velocity or acceleration.
  • the generator unit may emit an X-ray beam toward the sensor.
  • the generator unit X-ray emission source for emitting the X-rays; And a collimator for adjusting the X-ray to correspond to the sensor.
  • the generator may further include a generator driver for moving or rotating the generator to emit the X-ray toward the sensor.
  • the X-ray imaging method the generator unit and the sensor unit facing each other with a shooting target area therebetween to rotate the generator and the sensor unit facing the rotation axis between the generator unit and the sensor unit
  • the width w2 of the sensor is less than an enlargement ratio * first width w1 / 2 (w2 ⁇ magnification ratio * w1 / 2), and the enlargement ratio is a distance between the generator unit and the rotation axis. It can be defined as the ratio of the distance between the generator and the sensor.
  • a sensor having a relatively narrow width and a low dose of X-rays compared to a conventional X-ray CT imaging apparatus including a half beam method, an image having a desired size and shape, for example, a width exceeding twice the width of a sensor It is effective to provide an X-ray imaging apparatus and X-ray imaging method that can provide a more accurate three-dimensional X-ray image for the target area.
  • the present invention can extend the shooting target area to a single rotation axis whose position is fixed without a mechanical configuration for adding or moving a physical rotation axis between the X-ray emission source and the X-ray sensor, freely select, and even provides a panoramic image It is effective to provide an X-ray imaging apparatus that can be.
  • FIG. 1 is a perspective view showing an X-ray imaging apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of an X-ray imaging apparatus according to an exemplary embodiment of the present invention and the expansion of a photographing target area according to movement of a sensor.
  • FIG. 3 is a schematic diagram illustrating a position selection of a photographing target region using movement of a sensor in the X-ray imaging apparatus according to the embodiment of FIG. 2.
  • FIG. 4 illustrates a free form photographing target region implemented by the X-ray imaging apparatus of the present invention.
  • FIG. 5 is a schematic diagram illustrating an image of photographing an X-ray panoramic image using an X-ray imaging apparatus according to an exemplary embodiment.
  • FIG. 1 is a perspective view showing an X-ray imaging apparatus according to an embodiment of the present invention.
  • the X-ray imaging apparatus has a base supported by a floor, a column vertically oriented from the base, and a lifting unit 10 that moves up and down along the column according to the height of the photographing object.
  • Rotating arm support 20 is connected to one side of the lifting unit 10.
  • the rotary arm support 20 is connected to the rotary arm 30 to rotate.
  • the rotary arm 30 has a generator portion 32 disposed on one side of the rotary shaft 25C and a sensor portion 31 disposed on the other side of the rotary shaft 25C opposite to the generator portion 32.
  • the X-ray imaging apparatus is an additional X-ray sensor connected to the lifting unit 10 directly from the lifting unit 10 or through the rotating arm support unit 20 separately from the rotating arm 30.
  • the unit 40 may further include, for example, an X-ray sensor unit 40 for photographing a head shape image (cephalo.).
  • the X-ray imaging apparatus includes an image processing apparatus for implementing an X-ray image through the detection result of the sensor unit 31, and the image processing apparatus is built in the X-ray imaging apparatus. Alternatively, it may be separately provided and connected to the X-ray imaging apparatus by wire or wireless.
  • the generator 32 includes, for example, an X-ray emission source for generating X-rays by colliding electrons having high kinetic energy with a metal target, and a collimator for controlling the irradiation direction or the irradiation range of the X-rays. And the like.
  • the X-ray emission source may be a field emission method using a field emission effect of a nanostructure material such as a filament method or a carbon nanotube (CNT, carbon nanotube) to emit hot electrons at a high current according to the electron emission method.
  • the sensor unit 31 is an apparatus for receiving an X-ray passing through a photographing object to generate an electrical signal according to the intensity of each position, according to an exemplary embodiment of the present invention.
  • General technical contents such as a direct conversion method for acquiring an electric signal or an indirect conversion method for obtaining an electric signal indirectly by visible light by converting X-rays into visible light can be widely applied.
  • the rotary arm 30 and / or the rotary arm support portion 20 are provided with a rotation driving device 25 connecting them and rotating the rotary arm 30 around the rotary shaft 25C by using power.
  • the rotation driving device 25 relatively rotates the rotation arm 30 by a desired angle when X-ray imaging of a photographing target area FOV of a photographing target is performed.
  • the X-ray imaging apparatus of the present embodiment includes a gantry as a mechanism for rotating the sensor unit 31 and the generator unit 32 with the photographing object interposed therebetween, and the gantry includes the rotary arm 30 and the rotation.
  • the drive device 25 is comprised. An embodiment of a specific configuration of the sensor unit 31 and the generator unit 32 will be described in detail below.
  • FIG. 2 is a schematic diagram showing the configuration of an X-ray imaging apparatus according to an exemplary embodiment of the present invention and the expansion of a photographing target area according to movement of a sensor.
  • the sensor unit 31 is provided with at least one sensor 311 toward the generator unit 32.
  • the height t2 of the sensor 311 is greater than the magnification ratio * first height t1 (t2 ⁇ magnification ratio * t1), and the width w2 of the sensor 311 is obtained. Is an enlargement ratio * less than the first width w1 / 2 (w2 ⁇ magnification ratio w1 / 2).
  • the sensor 311 is a rotational trajectory of the sensor unit 31, for example, a circular trajectory, during X-ray imaging, that is, during rotation of the generator unit 32 and the sensor unit 31 around the rotation axis 25C. It is installed to move in the tangential direction of the circular trajectory, the generator 32 emits the X-ray beam (XC) aimed toward the sensor 311 in conjunction with the movement of the sensor 311.
  • XC X-ray beam
  • the concentric circles F, FA, FB, and FC around the rotational axis 25C represent a photographing target area according to the moving range of the sensor 311.
  • the generator 32 and the sensor 31 are rotated by a predetermined angle while the sensor 311 is fixed at the initial position indicated by the solid line, the X-ray imaging is performed on the smallest first photographing target area F.
  • FIG. 3D X-ray image can be obtained. This is the same as the conventional half-beam type X-ray CT imaging apparatus.
  • the second photographing area ( FA) extends its radius by the width of the sensor 311.
  • the third and fourth photographing areas FB and FC are also extended accordingly. do.
  • the senor 311 is described as being moved stepwise by its width during rotation of the generator 32 and the sensor 31, that is, X-ray imaging.
  • the sensor 311 may move at a constant velocity or acceleration in conjunction with rotation of the generator 32 and the sensor 31 during X-ray imaging.
  • the photographing target area is substantially expanded in a spiral or similar form, and the generator unit 32 and If the rotational speed of the sensor unit 31 and the moving speed of the sensor 311 are adjusted to obtain an X-ray photographing result of a sufficient angular range with respect to the entire area of the photographing region, a three-dimensional X-ray image of the entire photographing region is eventually obtained. Can be implemented.
  • the sensor unit 31 includes a sensor driver 312 that allows the sensor 311 to move in a tangential direction of the rotational trajectory or rotational trajectory within a limited range.
  • the sensor driver 312 may include, for example, a motor 315 for generating power, a drive shaft 314 for transmitting the power, and a connection part 313 for connecting the sensor 311 and the drive shaft 314. And, preferably, may include a guide unit for guiding the movement of the sensor 311.
  • this mechanical configuration is just one example and may be implemented in various forms.
  • the generator 32 irradiates the X-ray beam (XC) aimed in conjunction with the positional movement of the sensor 311 in a width corresponding to the width of the sensor (311).
  • the generator 32 is an X-ray emission source 321 for emitting a wide X-ray beam (XT) to cover the movement range of the sensor, and the wide X-ray beam (XT) By adjusting the, it may include a collimator 322 having a narrow width corresponding to the width of the sensor 311 and emits an X-ray beam (XC) aimed at the position movement of the sensor 311.
  • the collimator 322 may be configured to, for example, generate a motor 324 and its power to move the at least one blade 323 capable of partially shielding the X-ray beam and the at least one blade 323. It may be composed of a drive shaft 325 for transmitting and a connecting portion 326 for connecting a portion of the blade 323 and the drive shaft 325.
  • the collimator 322 may drive one blade having a slit of a predetermined width that transmits the aimed X-ray beam XC by one motor, or may be driven by a motor provided separately on two or more blades. .
  • the configuration of the generator 32 described above is just one example, and may be implemented in various forms.
  • the generator including an X-ray emission source and a collimator for emitting a narrow X-ray beam corresponding to the width of the sensor 311, the generator unit to link the irradiation direction of the X-ray beam to the positional movement of the sensor 311 It is also possible to physically move and / or rotate 32.
  • the generator unit 32 may include a separate generator driver for movement and / or rotation.
  • various forms of configuration are possible.
  • the X-ray imaging apparatus is connected to the generator 32 and the sensor unit 31, the generator 32 is aimed in conjunction with the movement of the position of the sensor 311 It may include a control unit 60 for controlling them to emit the X-ray beam (XC).
  • XC X-ray beam
  • the controller 60 may be connected to the sensor driver 312 to control the motor 315, for example, by using the control signal or a signal fed back from the position information of the sensor 311. 32, it is possible to control the direction of the X-ray beam emitted from.
  • the direction control of the X-ray beam may be performed through the control of the motor 324 driving the collimator 322 as in the embodiment of the figure.
  • a specific object receiving the control signal of the controller 60 may vary.
  • the controller 60 may control the driving of the gantry together with the generator 32 and the sensor 31. That is, the controller 60 may control the rotation of the gantry, the movement of the sensor, and the X-ray beam direction of the generator 32 to interoperate with each other.
  • FIG. 3 is a schematic diagram illustrating a position selection of a photographing target region using movement of a sensor in the X-ray imaging apparatus according to the embodiment of FIG. 2.
  • the sensor unit including the generator unit 32 and the sensor 311 is rotated about the rotational axis 25C, and when the X-ray imaging is performed, some points 32D and 32E on the trajectory through which the generator unit 32 passes.
  • the generator unit 32 is located at some of the aforementioned points 32D and 32E
  • the sensor 311 moves to a position 311D and 311E within the irradiation range of the wide X-ray beams XT, XTD and XTE.
  • the light source may move to receive the aimed X-ray beams XC, XCD, and XCE.
  • FIG. 4 illustrates a free form photographing target area FT implemented by the X-ray imaging apparatus of the present invention.
  • the position of the photographing target area FT can be freely selected in a state where the photographing target, for example, the head H of the examinee is fixed, and with reference to FIG. 2.
  • the size of the photographing target area FT can be freely expanded by combining with the driving method described above. Through this, three-dimensional X-ray imaging of a free-form photographing target area FT suitable for the shape of the part requiring examination in the head of the examinee is possible.
  • FIG. 5 is a schematic diagram illustrating an image of photographing an X-ray panoramic image using an X-ray imaging apparatus according to an exemplary embodiment.
  • the sensor unit including the generator 32 and the sensor 311 is rotated about a single fixed axis of rotation (25C), the position of the sensor 311 in the tangential direction of the rotational trajectory or rotational trajectory
  • 25C fixed axis of rotation
  • the X-ray imaging apparatus according to the present invention may provide an X-ray panoramic image of a focus layer corresponding to the arch 50 by using such characteristics. have.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

좁은 폭의 센서 및 저 선량의 엑스선 피폭으로 촬영대상의 원하는 부분에 대해 정확하고 직관적인 엑스선 영상을 제공할 수 있는 엑스선 영상 촬영장치가 개시된다. 본 발명에 따른 엑스선 영상 촬영장치는, 촬영대상영역을 사이에 두고 서로 대향하는 제너레이터부와 센서부; 상기 제너레이터부와 상기 센서부 사이의 회전축을 중심으로 상기 제너레이터와 상기 센서부를 대향 회전시키는 겐트리; 상기 센서부에 구비되어 엑스선을 검출하는 적어도 하나의 센서; 상기 센서부에 구비되고, 상기 회전축을 중심으로 하는 상기 제너레이터부와 상기 센서부의 회전 중에 상기 센서를 상기 센서부의 회전 궤적 또는 상기 회전 궤적의 접선 방향으로 이동시키는 센서 구동부; 및 상기 센서의 검출결과로 상기 촬영대상영역의 전 면적에 대한 3차원 엑스선 영상을 구현하는 영상처리장치를 포함한다.

Description

엑스선 영상 촬영장치 및 엑스선 영상 촬영방법
본 발명은 엑스선 촬영에 관한 것으로서, 좀 더 구체적으로는 상대적으로 좁은 폭의 센서와 저선량의 엑스선으로 원하는 사이즈 및 형태의 촬영대상영역에 대한 3차원 엑스선 영상을 제공할 수 있는 엑스선 영상 촬영장치 및 엑스선 영상 촬영방법에 관한 것이다.
엑스선은 광전효과(photoelectric effect), 콤프턴산란(compton scattering) 등 엑스선의 진행경로 상에 놓인 물질의 엑스선 감쇄 계수에 따라 감쇄된다.
엑스선 촬영은 이 같은 엑스선의 투과특성을 이용한 방사선사진법으로서, 촬영대상을 투과하는 과정 중에 누적된 감쇄량에 근거해서 촬영대상의 내부구조에 대한 엑스선 영상을 획득한다. 그리고 이를 위한 엑스선 영상 촬영장치는 촬영대상을 향해 엑스선을 조사하는 엑스선 방출원, 촬영대상을 사이에 두고 엑스선 방출원과 대향 배치되어 촬영대상을 투과한 엑스선을 검출하는 엑스선 센서, 엑스선 센서의 검출결과를 통해 촬영대상영역(FOV, Field Of View)의 엑스선 영상을 구현하는 영상처리장치를 포함한다.
한편, 최근 들어 엑스선 촬영은 반도체 및 정보처리기술의 발전에 힘입어 디지털 센서를 이용한 DR(Digital Radiography)로 빠르게 대체되는 가운데 촬영방법 또한 목적 등에 따라 다양하게 진보하고 있다.
일례로, 치과 분야의 엑스선 파노라마 영상은 촬영대상, 즉 피검자의 악궁을 따라 엑스선 방출원과 엑스선 센서를 대향 이동시키면서 엑스선 촬영을 하고, 이들 촬영 결과를 적절히 이어 붙여 악궁 궤적 내 원하는 포커스 레이어(focus layer)에 대한 치아 및 주변조직의 배치관계를 투과영상으로 펼쳐 표시한다. 이를 위해 엑스선 방출원과 엑스선 센서는 그 사이의 회전축을 따라 소정의 각도범위에서 회전운동하는 동시에 피검자의 전후 방향으로 소정의 길이범위에서 직선운동을 한다.
엑스선 파노라마 영상은 치아 및 주변조직의 전체적인 배치관계를 쉽게 파악할 수 있어 치과 전문의에게 가장 익숙한 표준영상으로 활용되고 있다. 하지만, 엑스선 파노라마 영상을 얻기 위해서는 엑스선 방출원과 엑스선 센서의 회전운동과 직선운동의 연동을 위한 다축 구동계가 필요하다는 단점을 나타낸다.
또 다른 일례로, 치과 분야의 엑스선 CT 영상은 촬영대상, 즉 피검자의 두부를 사이에 두고 엑스선 방출원과 엑스선 센서를 대향 회전시키면서 엑스선 촬영을 하고, 이들 촬영 결과를 재구성하여 두부를 포함하는 촬영대상영역에 대한 3차원 엑스선 영상을 표시한다. 이를 위해 엑스선 방출원과 엑스선 센서는 촬영대상을 지나는 회전축을 따라 소정의 각도범위에서 대향 회전한다.
엑스선 CT 영상은 촬영대상에 대한 3차원 엑스선 영상은 물론 사용자가 원하는 위치 및 방향에 따른 단층 영상을 정확하고 선명하게 표시할 수 있어 임플란트 시술 등 고도의 정밀성이 요구되는 분야에 활용되고 있다. 하지만, 일반적인 엑스선 CT 영상은 피검자에게 조사되는 방사선량이 상대적으로 많고 고가의 대면적 엑스선 센서가 필요하다는 단점을 나타낸다.
후자에 대해 좀더 자세히 살펴보면, 일반적인 엑스선 CT 촬영 시 센서는 X선 촬영의 전 방향에서 촬영대상영역를 투과한 전 면적의 엑스선을 수광해야 한다. 따라서 파노라마 엑스선 영상 촬영용 센서 대비 월등히 큰 대면적 센서를 필요로 한다.
일례로, 치과분야에서 주로 사용되는 콘빔(cone beam) 형태의 엑스선을 이용해서 제 1 높이(t1) 및 제 1 폭(w1)의 촬영대상영역에 대해 엑스선 CT 영상을 얻는 경우를 살펴보면, 엑스선 방출원과 엑스선 센서 사이의 회전축이 촬영대상영역의 중심을 지난다는 가정하에 센서의 제 2 높이(t2)는 엑스선 방출원과 회전축 사이의 거리 대 엑스선 방출원과 엑스선 센서 사이의 거리 비로 정의되는 확대율*제 1 높이(t1) 이상이어야 하고 (t2≥ 확대율* t1), 센서의 제 2 폭(w2)는 확대율*제 1 폭(w1) 이상이어야(w2≥ 확대율*w1) 비로소 촬영대상영역를 투과한 전 면적의 엑스선을 수광할 수 있다. 이때, 필요하다면 촬영대상영역의 1/2 이상을 커버하는 비대칭의 X선 빔을 이용하여 센서의 제 2 폭을 최대확대율*(w1)/2까지 축소하는 이른바 하프빔(half beam) 방식이 사용될 수도 있다.
하지만 어떠한 방식이든 엑스선 CT 촬영을 위한 센서의 면적은 상대적으로 대면적을 나타낸다. 그리고 일반적인 센서는 그 면적에 따라 가격이 비약적으로 상승하는바, 엑스선 CT 영상 촬영장치는 대면적 센서 및 이로 인한 장비의 고가화를 피할 수 없는 단점을 나타낸다.
본 발명은 상기와 같은 단점을 해소하기 위해 안출된 것으로서, 하프빔 방식을 포함하는 기존의 엑스선 CT 영상 촬영장치 대비 상대적으로 좁은 폭의 센서 및 저 선량의 엑스선으로 원하는 사이즈 및 형태의 촬영대상영역에 대한 3차원 엑스선 영상을 제공할 수 있는 엑스선 영상 촬영장치 및 엑스선 영상 촬영방법을 제공하는 데에 그 목적이 있다.
또한, 본 발명은 엑스선 방출원과 엑스선 센서 사이의 물리적인 회전축을 추가 또는 이동시키는 기구적 구성 없이 그 위치가 고정된 단일 회전축으로 촬영대상영역을 확장하거나 자유로운 형태로 선택할 수 있고, 파노라마 영상까지 제공할 수 있는 엑스선 영상 촬영장치를 제공하는 데에 그 목적이 있다.
전술한 과제의 해결을 위하여 본 발명에 따른 엑스선 영상 촬영장치는, 촬영대상영역을 사이에 두고 서로 대향하는 제너레이터부와 센서부; 상기 제너레이터부와 상기 센서부 사이의 회전축을 중심으로 상기 제너레이터와 상기 센서부를 대향 회전시키는 겐트리; 상기 센서부에 구비되어 엑스선을 검출하는 적어도 하나의 센서; 상기 센서부에 구비되고, 상기 회전축을 중심으로 하는 상기 제너레이터부와 상기 센서부의 회전 중에 상기 센서를 상기 센서부의 회전 궤적 또는 상기 회전 궤적의 접선 방향으로 이동시키는 센서 구동부; 및 상기 센서의 검출결과로 상기 촬영대상영역의 전 면적에 대한 3차원 엑스선 영상을 구현하는 영상처리장치를 포함한다.
여기서, 상기 촬영대상영역의 폭이 w1인 경우, 상기 센서의 폭 w2는 확대율*제 1 폭(w1)/2 미만(w2<확대율*w1/2)이고, 상기 확대율은 제너레이터부와 상기 회전축 사이의 거리 대 상기 제너레이터부와 상기 센서 사이의 거리 비로 정의될 수 있다.
상기 센서 구동부는 상기 센서를 등속도 또는 가속도 이동시키는 것일 수 있다.
상기 제너레이터부는 상기 센서를 향해 엑스선 빔을 방출하는 것일 수 있다. 이 경우, 상기 제너레이터부는, 상기 엑스선을 방출하는 엑스선 방출원; 및 상기 센서에 대응되게 상기 엑스선을 조절하는 콜리메이터를 포함할 수 있다. 또한, 상기 제너레이터부가 상기 센서를 향해 상기 엑스선을 방출하도록 상기 제너레이터부를 이동 또는 회전시키는 제너레이터 구동부를 더 포함할 수 있다.
한편, 본 발명에 따른 엑스선 영상 촬영방법은, 촬영대상영역을 사이에 두고 서로 대향하는 제너레이터부와 센서부, 상기 제너레이터부와 상기 센서부 사이의 회전축을 중심으로 상기 제너레이터와 상기 센서부를 대향 회전시키는 겐트리, 상기 센서부에 구비되어 엑스선을 검출하는 적어도 하나의 센서를 이용한 엑스선 촬영 방법으로서, 상기 회전축을 중심으로 상기 제너레이터부와 상기 센서부의 회전시키는 동시에 상기 센서를 상기 센서부의 회전 궤적 또는 상기 회전 궤적의 접선 방향으로 이동시키는 단계; 및 상기 센서의 검출결과로 상기 촬영대상영역의 전 면적에 대한 3차원 엑스선 영상을 구현하는 단계를 포함한다.
상기 촬영대상영역의 폭이 w1인 경우, 상기 센서의 폭 w2는 확대율*제 1 폭(w1)/2 미만(w2<확대율*w1/2)이고, 상기 확대율은 제너레이터부와 상기 회전축 사이의 거리 대 상기 제너레이터부와 상기 센서 사이의 거리 비로 정의될 수 있다.
본 발명에 따르면, 하프빔 방식을 포함하는 기존의 엑스선 CT 영상 촬영장치 대비 상대적으로 좁은 폭의 센서 및 저 선량의 엑스선으로 원하는 사이즈와 형태, 일례로 그 폭이 센서 폭의 2배를 초과하는 촬영대상영역에 대해 보다 정확한 3차원 엑스선 영상을 제공할 수 있는 엑스선 영상 촬영장치 및 엑스선 영상촬영방법을 제공하는 효과가 있다.
또한, 본 발명은 엑스선 방출원과 엑스선 센서 사이의 물리적인 회전축을 추가 또는 이동시키는 기구적 구성 없이 그 위치가 고정된 단일 회전축으로 촬영대상영역을 확장하거나 자유로운 형태로 선택할 수 있고, 파노라마 영상까지 제공할 수 있는 엑스선 영상 촬영장치를 제공하는 효과가 있다.
도 1은 본 발명의 한 실시예에 따른 엑스선 영상 촬영장치를 보이는 사시도이다.
도 2는 본 발명의 한 실시예에 따른 엑스선 영상 촬영장치의 구성 및 센서의 이동에 따른 촬영대상영역의 확장을 표현한 모식도이다.
도 3은 상기 도 2의 실시예에 따른 엑스선 영상 촬영장치에서 센서의 이동을 이용한 촬영대상영역의 위치 선택을 표현한 모식도이다.
도 4는 본 발명의 엑스선 영상 촬영장치에 의해 구현되는 자유로운 형태의 촬영대상영역를 예시한다.
도 5는 본 발명의 한 실시예에 따른 엑스선 영상 촬영장치를 이용하여 엑스선 파노라마 영상을 촬영하는 모습을 표현한 모식도이다.
이하, 도면을 참조하여 본 발명의 실시예를 상세히 살펴본다. 참고로, 아래에서는 치과용 엑스선 영상 촬영장치를 일례로 설명하지만 본 발명의 기술사상은 이에 한정되지 않는다. 이하의 설명을 참조할 경우에 본 발명의 기술사상은 관련된 모든 엑스선 영상 촬영장치에 응용 가능함을 당업자라면 쉽게 알 수 있을 것이다.
도 1은 본 발명의 한 실시예에 따른 엑스선 영상 촬영장치를 보이는 사시도이다.
본 실시예에 따른 엑스선 촬영장치는 바닥에 의해 지지되는 베이스와 상기 베이스로부터 수직으로 세워진 칼럼(column), 그리고 촬영대상의 높이에 맞게 상기 칼럼을 따라 승강하는 승강부(10)를 갖는다. 상기 승강부(10)의 일측에는 회전암 지지부(20)가 연결된다. 상기 회전암 지지부(20)에는 회전암(30)이 회전할 수 있도록 연결된다. 상기 회전암(30)은 회전축(25C)을 중심으로 한쪽에 배치되는 제너레이터부(32)와 상기 제너레이터부(32)에 대향하여 상기 회전축(25C)의 다른 한쪽에 배치되는 센서부(31)를 갖는다. 엑스선 영상 촬영 시에 상기 회전축(25C)의 길이방향을 향한 연장선은 촬영대상의 일 예로 치열궁(50)을 포함하는 피검자의 두부를 지나며, 그 위치는 검진이 필요한 부위에 따라 조정될 수 있다.
또한, 본 실시예에 따른 엑스선 영상 촬영장치는 상기 회전암(30)과 별개로 상기 승강부(10)에 직접 또는 상기 회전암 지지부(20)를 통해 상기 승강부(10)에 연결된 추가적인 엑스선 센서부(40), 예컨대 두부 형상 영상(cephalo.) 촬영용 엑스선 센서부(40)를 더 구비할 수 있다.
그리고 비록 도면에 나타나지는 않았지만, 본 실시예에 따른 엑스선 영상 촬영장치는 센서부(31)의 검출결과를 통해 엑스선 영상을 구현하는 영상처리장치를 포함하며, 영상처리장치는 엑스선 영상 촬영장치에 내장되거나 별도로 구비되어 엑스선 영상 촬영장치와 유무선으로 연결될 수 있다.
상기 제너레이터부(32)는 예컨대, 높은 운동에너지를 지닌 전자를 금속의 타겟(target)에 충돌시켜 엑스선을 발생시키는 엑스선 방출원을 포함하고, 엑스선의 조사방향 내지는 조사범위를 제어하는 콜리메이터(collimator) 등을 포함할 수 있다. 상기 엑스선 방출원은 전자방출방식에 따라 고전류로 열전자를 방출하는 필라멘트 방식 또는 탄소나노튜브(CNT, Carbon Nano Tube) 등의 나노구조물질의 전계방출효과를 이용한 전계방출방식일 수 있다.
상기 센서부(31)는 촬영대상을 투과한 엑스선을 수광하여 위치 별 세기에 따른 전기적인 신호를 생성하는 장치로서, 본 발명의 실시예는 엑스선의 변환 방식에 따라 별도의 중간단계 없이 엑스선으로부터 직접 전기적 신호를 획득하는 직접변환방식이나 엑스선을 가시광선으로 변환하여 가시광선에 의해 간접적으로 전기적 신호를 얻는 간접변환방식 등 일반적인 기술내용이 폭넓게 적용될 수 있다.
상기 회전암(30) 및/또는 상기 회전암 지지부(20)에는 이들을 연결하며 동력을 이용하여 상기 회전암(30)을 상기 회전축(25C) 중심으로 회전시키는 회전 구동 장치(25)를 구비한다. 상기 회전 구동 장치(25)는 촬영대상의 촬영대상영역(FOV)에 대한 엑스선 촬영을 할 때, 상기 회전암(30)을 원하는 각도만큼 상대적으로 회전시키는 역할을 한다. 다시 말해, 본 실시예의 엑스선 영상 촬영장치는 촬영대상을 사이에 두고 센서부(31)와 제너레이터부(32)를 회전시키는 기구물로서 겐트리를 포함하며, 겐트리는 상기 회전암(30)과 상기 회전 구동 장치(25)를 포함하여 구성된다. 상기 센서부(31)와 제너레이터부(32)의 구체적인 구성의 실시예에 대해서는 이하에서 상세히 설명하기로 한다.
도 2는 본 발명의 한 실시예에 따른 엑스선 영상 촬영장치의 구성 및 센서의 이동에 따른 촬영대상영역의 확장을 표현한 모식도이다.
상기 센서부(31)에는 상기 제너레이터부(32)를 향해 적어도 하나의 센서(311)가 구비된다. 이때, 촬영대상영역의 높이와 폭을 각각 t1, w1이라 하면, 센서(311)의 높이 t2는 확대율*제 1 높이(t1) 이상(t2≥ 확대율* t1)이고, 센서(311)의 폭 w2는 확대율*제 1 폭(w1)/2 미만(w2<확대율*w1/2)인 것을 특징으로 한다.
그리고 상기 센서(311)는 X선 촬영 중, 즉 상기 회전축(25C)을 중심으로 한 제너레이터부(32)와 센서부(31)의 회전 중에 상기 센서부(31)의 회전 궤적, 예컨대 원형 궤적 또는 원형 궤적의 접선 방향으로 이동할 수 있도록 설치되며, 상기 제너레이터부(32)는 센서(311)의 이동에 연동하여 상기 센서(311)를 향해 조준된 엑스선 빔(XC)을 방출한다.
본 도면에서 회전축(25C)을 중심으로 한 동심원들(F, FA, FB, FC)은 상기 센서(311)의 이동 범위에 따른 촬영대상영역을 나타낸다. 예컨대, 상기 센서(311)가 실선으로 표시된 초기 위치에 고정된 상태로 상기 제너레이터부(32)와 센서부(31)가 소정각도 회전하면서 엑스선 촬영을 하면 가장 작은 제 1 촬영대상영역(F)에 대한 3차원 엑스선 영상을 얻을 수 있다. 이는 종래의 하프빔 방식의 엑스선 CT 촬영 장치와 같다.
그리고, 상기 회전축(25C)을 중심으로 하는 엑스선 영상 촬영 중에 상기 센서(311)가 실선으로 표시된 위치로부터 그 폭만큼 회전 궤적 또는 회전 궤적의 접선 방향으로 이동(311A) 한 경우 제 2 촬영대상영역(FA)은 그 반지름이 상기 센서(311)의 폭만큼 확장된다. 이와 마찬가지로 상기 센서(311)가 엑스선 촬영 중에 그 폭의 두 배만큼 이동(311B) 또는 세 배만큼 이동(311C)한 경우, 제 3, 4 촬영대상영역(FB, FC) 역시 그에 상응되게 각각 확장된다. 따라서, 상기 센서(311)의 폭이 전체 촬영대상영역(F, FA, FB, FC)의 반지름에 확대율을 곱한 값보다 작더라도 전체 촬영대상영역(F, FA, BB, FC)에 대한 3차원 엑스선 영상을 얻을 수 있다.
참고로, 이상의 설명 및 도면에서는 이해의 편의를 위해 센서(311)가 제너레이터부(32)와 센서부(31)의 회전, 즉 엑스선 촬영 중에 그 폭 만큼 단계적으로 이동하는 것으로 설명했지만, 바람직하게는 센서(311)는 엑스선 촬영 중에 제너레이터부(32)와 센서부(31)의 회전에 연동하여 등속 또는 가속도 이동하는 것도 가능하다.
다시 말해, 제너레이터부(32)와 센서부(31)의 회전속도와 센서(311)의 이동속도를 적절히 조절하면 촬영대상영역은 실질적으로 나선형 또는 이와 유사한 형태로 확장되며, 제너레이터부(32)와 센서부(31)의 회전속도와 센서(311)의 이동속도가 촬영대상영역의 전 면적에 대해 충분한 각도범위의 엑스선 촬영 결과를 얻을 수 있도록 조절된다면 결국 촬영대상영역 전체에 대한 3차원 X선 영상을 구현할 수 있다.
장치 구성의 관점에서 보면, 상기 센서부(31)는 상기 센서(311)를 제한된 범위에서 그 회전 궤적 또는 회전 궤적의 접선 방향으로 이동할 수 있도록 하는 센서 구동부(312)를 포함한다. 상기 센서 구동부(312)는 예컨대, 동력을 발생시키는 모터(315)와 그 동력을 전달하는 구동축(314) 그리고 상기 센서(311)와 상기 구동축(314)을 연결하는 연결부(313)로 구성될 수 있고, 바람직하게는 센서(311)의 이동을 가이드하는 가이드부를 포함할 수 있다. 다만, 이러한 기구적인 구성은 하나의 예에 불과하고, 다양한 형태로 구현될 수 있을 것이다.
한편, 제너레이터부(32)는 상기 센서(311)의 폭에 대응되는 폭으로 상기 센서(311)의 위치 이동에 연동하여 조준된 엑스선 빔(XC)을 조사한다. 이를 위한 구성의 한 예로서 상기 제너레이터부(32)는 상기 센서의 이동 범위를 커버하는 넓은 폭의 엑스선 빔(XT)을 방출하는 엑스선 방출원(321)과, 상기 넓은 폭의 엑스선 빔(XT)을 조절하여, 상기 센서(311)의 폭에 대응되는 좁은 폭을 가지고 상기 센서(311)의 위치 이동에 따라 그에 조준된 엑스선 빔(XC)을 방출하는 콜리메이터(322)를 포함할 수 있다. 상기 콜리메이터(322)는 엑스선 빔을 부분적으로 차폐할 수 있는 적어도 하나의 블레이드(323)와 상기 적어도 하나의 블레이드(323)를 이동시킬 수 있도록 예컨대, 동력을 발생시키는 모터(324)와 그 동력을 전달하는 구동축(325) 그리고 블레이드(323)의 일부와 상기 구동축(325)을 연결하는 연결부(326)로 구성될 수 있다. 상기 콜리메이터(322)는 상기 조준된 엑스선 빔(XC)을 투과시키는 일정한 폭의 슬릿을 가진 하나의 블레이드를 하나의 모터로 구동할 수도 있고, 둘 이상의 블레이드에 개별적으로 구비된 모터로 구동할 수도 있다.
다만, 전술한 제너레이터부(32)의 구성은 하나의 예에 불과하고, 다양한 형태로 구현될 수 있을 것이다. 예를 들면, 상기 센서(311)의 폭에 대응되는 좁은 폭의 엑스선 빔을 방출하는 엑스선 방출원 및 콜리메이터를 포함하되, 엑스선 빔의 조사 방향을 상기 센서(311)의 위치 이동에 연동하도록 제너레이터부(32)를 물리적으로 이동 및/또는 회전 시키는 것도 가능하다. 이 경우 제너레이터부(32)는 이동 및/또는 회전을 위한 별도의 제너레이터 구동부를 포함할 수 있다. 이 외에도 다양한 형태의 구성이 가능하다.
한편, 전술한 실시예에 따른 엑스선 영상 촬영장치는 상기 제너레이터부(32) 및 상기 센서부(31)와 연결되어, 상기 제너레이터부(32)가 상기 센서(311)의 위치 이동과 연동하여 그에 조준된 엑스선 빔(XC)을 방출하도록 이들을 제어하는 제어부(60)를 포함할 수 있다.
좀 더 구체적으로 상기 제어부(60)는 예컨대 상기 센서 구동부(312)와 연결되어 모터(315)를 제어하면서 그 제어 신호 또는 상기 센서(311)의 위치 정보를 피드백 받은 신호를 이용하여 상기 제너레이터부(32)로부터 방출되는 엑스선 빔의 방향을 제어할 수 있다. 엑스선 빔의 방향 제어는 본 도면의 실시예와 같이 콜리메이터(322)를 구동하는 모터(324)에 대한 제어를 통해 이루어질 수 있다. 다만, 전술한 바와 같이 제너레이터부(32)가 다른 형태로 구현되는 경우 상기 제어부(60)의 제어 신호를 받는 구체적인 대상은 달라질 수 있다.
더 나아가, 상기 제어부(60)는 상기 제너레이터부(32) 및 센서부(31)와 더불어 겐트리의 구동을 함께 제어할 수 있다. 즉, 제어부(60)는 겐트리의 회전, 센서의 이동, 제너레이터부(32)의 엑스선 빔 방향이 상호 연동되도록 제어하는 것도 가능하며, 그 구체적인 내용은 앞서 언급한바 있다.
도 3은 상기 도 2의 실시예에 따른 엑스선 영상 촬영장치에서 센서의 이동을 이용한 촬영대상영역의 위치 선택을 표현한 모식도이다.
상기 도 2의 실시예 또는 전술한 바와 같이 변형된 실시예에 따른 엑스선 영상 촬영장치를 이용하면, 전술한 촬영대상영역의 확장뿐만 아니라 촬영대상영역의 위치를 센서(311)의 가용한 이동 범위 내에서 자유롭게 선택할 수 있다. 선택된 위치를 중심으로 해서 센서(311)의 이동을 이용한 확장도 가능함은 물론이다.
본 도면은 회전축(25C)을 중심으로 상기 제너레이터부(32)와 센서(311)를 포함하는 센서부를 회전시키며 엑스선 촬영을 진행할 때, 상기 제너레이터부(32)가 지나는 궤적 상의 몇몇 지점(32D,32E)에서의 전술한 넓은 폭의 엑스선 빔(XT,XTD,XTE)과 좁은 폭의 엑스선 빔(XC,XCD,XCE), 그리고 이들이 중첩되는 위치에 형성되는 촬영대상영역(FF)을 보인다. 상기 제너레이터부(32)가 전술한 몇몇 지점(32D,32E)에 위치할 때 상기 센서(311)는 상기 넓은 폭의 엑스선 빔(XT,XTD,XTE)의 조사 범위 내의 위치(311D,311E)로 이동하여 상기 조준된 엑스선 빔(XC,XCD,XCE)을 수광할 수 있다.
도 4는 본 발명의 엑스선 영상 촬영장치에 의해 구현되는 자유로운 형태의 촬영대상영역(FT)을 예시한다. 상기 도 3을 참조하여 설명한 바와 같이 장치를 구동하면 촬영대상, 예컨대 피검자의 두부(H)가 고정된 상태에서 촬영대상영역(FT)의 위치를 자유롭게 선택할 수 있고, 상기 도 2를 참조하여 세로 방향으로의 콜리메이터 구동을 응용하여 앞서 설명한 구동방식과의 결합을 통해 촬영대상영역(FT)의 크기도 자유로운 형태로 확장할 수 있다. 이를 통해 피검자의 두부에서 검진이 필요한 부위의 형상에 맞는 자유 형상의 촬영대상영역(FT)에 대한 3차원 엑스선 영상 촬영이 가능하다.
도 5는 본 발명의 한 실시예에 따른 엑스선 영상 촬영장치를 이용하여 엑스선 파노라마 영상을 촬영하는 모습을 표현한 모식도이다. 도시된 바와 같이, 제너레이터부(32)와 센서(311)를 포함하는 센서부를 단일의 고정된 회전축(25C)을 중심으로 회전시키되, 센서(311)의 위치를 그 회전 궤적 또는 회전 궤적의 접선 방향으로 이동시킴으로써 실제로는 회전축(25C)을 이동시키지 않으면서도 종래의 파노라마 엑스선 촬영장치에서 그 회전축을 이동시키는 것과 같은 효과를 얻을 수 있다. 따라서, 본 발명에 따른 엑스선 영상 촬영장치는, 엑스선 CT 영상 및 3차원 엑스선 영상을 제공하는 것 외에도 이와 같은 특성을 이용하여 치열궁(50)에 해당하는 포커스 레이어에 대한 엑스선 파노라마 영상을 제공할 수 있다.

Claims (8)

  1. 촬영대상영역을 사이에 두고 서로 대향하는 제너레이터부와 센서부;
    상기 제너레이터부와 상기 센서부 사이의 회전축을 중심으로 상기 제너레이터와 상기 센서부를 대향 회전시키는 겐트리;
    상기 센서부에 구비되어 엑스선을 검출하는 적어도 하나의 센서;
    상기 센서부에 구비되고, 상기 회전축을 중심으로 하는 상기 제너레이터부와 상기 센서부의 회전 중에 상기 센서를 상기 센서부의 회전 궤적 또는 상기 회전 궤적의 접선 방향으로 이동시키는 센서 구동부; 및,
    상기 센서의 검출결과로 상기 촬영대상영역의 전 면적에 대한 3차원 엑스선 영상을 구현하는 영상처리장치를 포함하는,
    엑스선 영상 촬영 장치.
  2. 제 1 항에 있어서,
    상기 촬영대상영역의 폭이 w1인 경우,
    상기 센서의 폭 w2는 확대율*제 1 폭(w1)/2 미만(w2<확대율*w1/2)이고,
    상기 확대율은 제너레이터부와 상기 회전축 사이의 거리 대 상기 제너레이터부와 상기 센서 사이의 거리 비인,
    엑스선 영상촬영장치.
  3. 제 2 항에 있어서,
    상기 센서 구동부는 상기 센서를 등속도 또는 가속도 이동 시키는,
    엑스선 영상 촬영장치.
  4. 제 1 항에 있어서,
    상기 제너레이터부는 상기 센서를 향해 엑스선 빔을 방출하는,
    엑스선 영상 촬영장치.
  5. 제 4 항에 있어서,
    상기 제너레이터부는,
    상기 엑스선을 방출하는 엑스선 방출원; 및
    상기 센서에 대응되게 상기 엑스선을 조절하는 콜리메이터를 포함하는,
    엑스선 영상 촬영장치.
  6. 제 4 항에 있어서,
    상기 제너레이터부가 상기 센서를 향해 상기 엑스선을 방출하도록 상기 제너레이터부를 이동 또는 회전시키는 제너레이터 구동부를 더 포함하는,
    엑스선 영상 촬영장치.
  7. 촬영대상영역을 사이에 두고 서로 대향하는 제너레이터부와 센서부, 상기 제너레이터부와 상기 센서부 사이의 회전축을 중심으로 상기 제너레이터와 상기 센서부를 대향 회전시키는 겐트리, 상기 센서부에 구비되어 엑스선을 검출하는 적어도 하나의 센서를 이용한 엑스선 촬영 방법으로서,
    상기 회전축을 중심으로 상기 제너레이터부와 상기 센서부의 회전시키는 동시에 상기 센서를 상기 센서부의 회전 궤적 또는 상기 회전 궤적의 접선 방향으로 이동시키는 단계; 및,
    상기 센서의 검출결과로 상기 촬영대상영역의 전 면적에 대한 3차원 엑스선 영상을 구현하는 단계를 포함하는,
    엑스레이 영상 촬영방법.
  8. 청구항 7에 있어서,
    상기 촬영대상영역의 폭이 w1인 경우, 상기 센서의 폭 w2는 확대율*제 1 폭(w1)/2 미만(w2<확대율*w1/2)이고, 상기 확대율은 제너레이터부와 상기 회전축 사이의 거리 대 상기 제너레이터부와 상기 센서 사이의 거리 비인,
    엑스선 영상촬영방법.
PCT/KR2015/007722 2014-07-28 2015-07-24 엑스선 영상 촬영장치 및 엑스선 영상 촬영방법 WO2016018002A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15827868.9A EP3175787B1 (en) 2014-07-28 2015-07-24 X-ray imaging device and x-ray imaging method
CN201580048140.9A CN107072610A (zh) 2014-07-28 2015-07-24 X射线成像装置和x射线成像方法
US15/500,017 US10405815B2 (en) 2014-07-28 2015-07-24 X-ray imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140095717 2014-07-28
KR10-2014-0095717 2014-07-28

Publications (1)

Publication Number Publication Date
WO2016018002A1 true WO2016018002A1 (ko) 2016-02-04

Family

ID=55217817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007722 WO2016018002A1 (ko) 2014-07-28 2015-07-24 엑스선 영상 촬영장치 및 엑스선 영상 촬영방법

Country Status (5)

Country Link
US (1) US10405815B2 (ko)
EP (1) EP3175787B1 (ko)
KR (2) KR101740358B1 (ko)
CN (2) CN107072610A (ko)
WO (1) WO2016018002A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108882906A (zh) * 2016-03-25 2018-11-23 以友技术有限公司 重新配置使用小型x射线检测器获得的投影图像的x射线图像处理装置和方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107072610A (zh) * 2014-07-28 2017-08-18 韩国威泰有限公司 X射线成像装置和x射线成像方法
JP6837400B2 (ja) * 2017-08-23 2021-03-03 株式会社モリタ製作所 X線撮影装置及びx線撮影方法
KR102190525B1 (ko) * 2018-03-07 2020-12-14 신동준 엑스레이 촬영장치 및 촬영방법
IT201800007817A1 (it) * 2018-08-03 2020-02-03 De Gotzen Srl Apparato per l’imaging digitale di una regione della testa del paziente
US11000256B2 (en) * 2018-11-09 2021-05-11 Palodex Group Oy Calibrating an X-ray medical imaging device for cephalometric imaging
US20220167933A1 (en) * 2019-03-08 2022-06-02 Woorien Co., Ltd. X-ray imaging apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010046486A (ja) * 2008-08-22 2010-03-04 Trophy 歯科用放射線装置とその利用法
KR20100115000A (ko) * 2009-04-17 2010-10-27 (주)포인트닉스 치과용 파노라마 및 씨티 겸용 엑스선 촬영장치
KR101000315B1 (ko) * 2008-07-24 2010-12-13 (주)바텍이우홀딩스 Rpr구동방식의 치과용 엑스선 촬영장치
KR20120107438A (ko) * 2011-03-21 2012-10-02 플란메카 오이 치의술 이미징 장치
KR101396663B1 (ko) * 2011-12-22 2014-05-19 (주)제노레이 엑스선 촬영장치 및 이를 이용한 촬영방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052505A2 (en) * 2000-12-22 2002-07-04 Simage Oy A radiation imaging system and scanning device
JP4149189B2 (ja) * 2002-04-04 2008-09-10 株式会社日立メディコ X線ct装置
DE10313110A1 (de) * 2003-03-24 2004-10-21 Sirona Dental Systems Gmbh Röntgeneinrichtung und röntgenstrahlenempfindliche Kamera
KR100707796B1 (ko) * 2005-08-08 2007-04-13 주식회사바텍 파노라마 및 씨티 겸용 엑스선 촬영장치
WO2008069367A1 (en) 2006-12-04 2008-06-12 E-Woo Technology Co., Ltd A x-ray photographing apparatus comprising cephalo sensors
DE102007020642A1 (de) * 2007-04-30 2008-11-06 Dürr Dental GmbH & Co. KG Röntgengerät sowie Sensoreinheit für ein Röntgengerät
KR20090130719A (ko) 2008-06-16 2009-12-24 주식회사바텍 토모그래피 영상획득방법
CN102413770B (zh) * 2009-06-25 2014-06-25 株式会社吉田制作所 X射线摄影装置
JP4516626B1 (ja) * 2009-09-28 2010-08-04 株式会社吉田製作所 歯科用x線撮影装置
CN103096804B (zh) * 2010-07-13 2017-03-15 达卡拉通信系统株式会社 X射线断层像摄影装置
US9055913B2 (en) * 2011-04-29 2015-06-16 General Electric Company System and method for orienting an X-ray detector
KR101340456B1 (ko) 2011-06-30 2013-12-11 주식회사 휴먼레이 다중 센서를 갖는 맘모그래피용 디텍터 및 3차원 영상 획득이 가능한 맘모그래피 장치
DE102012219269A1 (de) * 2012-10-22 2014-05-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Erzeugen einer dreidimensionalen Abbildung eines Objekts
WO2015030472A1 (ko) 2013-08-27 2015-03-05 주식회사바텍 씨티 촬영 장치 및 씨티 촬영 방법
KR20150024706A (ko) 2013-08-27 2015-03-09 주식회사바텍 Ct 촬영 장치
KR20150062521A (ko) 2013-11-29 2015-06-08 주식회사바텍 Ct 촬영 장치
CN107072610A (zh) * 2014-07-28 2017-08-18 韩国威泰有限公司 X射线成像装置和x射线成像方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101000315B1 (ko) * 2008-07-24 2010-12-13 (주)바텍이우홀딩스 Rpr구동방식의 치과용 엑스선 촬영장치
JP2010046486A (ja) * 2008-08-22 2010-03-04 Trophy 歯科用放射線装置とその利用法
KR20100115000A (ko) * 2009-04-17 2010-10-27 (주)포인트닉스 치과용 파노라마 및 씨티 겸용 엑스선 촬영장치
KR20120107438A (ko) * 2011-03-21 2012-10-02 플란메카 오이 치의술 이미징 장치
KR101396663B1 (ko) * 2011-12-22 2014-05-19 (주)제노레이 엑스선 촬영장치 및 이를 이용한 촬영방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108882906A (zh) * 2016-03-25 2018-11-23 以友技术有限公司 重新配置使用小型x射线检测器获得的投影图像的x射线图像处理装置和方法
EP3434189A4 (en) * 2016-03-25 2019-11-20 Vatech Ewoo Holdings Co., Ltd. X-RAY PROCESSING DEVICE AND METHOD FOR RECONFIGURING PROJECTION PICTURES RECEIVED BY A SMALL X-RAY ACTIVE SECTOR
US10827987B2 (en) 2016-03-25 2020-11-10 Vatech Co., Ltd. X-ray image processing device and method for reconstructing projection image obtained using small X-ray detector

Also Published As

Publication number Publication date
KR20170008879A (ko) 2017-01-24
US10405815B2 (en) 2019-09-10
CN107072610A (zh) 2017-08-18
CN113133780A (zh) 2021-07-20
US20170245812A1 (en) 2017-08-31
KR20160014537A (ko) 2016-02-11
EP3175787A1 (en) 2017-06-07
EP3175787B1 (en) 2020-11-11
EP3175787A4 (en) 2018-05-02
KR101740358B1 (ko) 2017-06-09

Similar Documents

Publication Publication Date Title
WO2016018002A1 (ko) 엑스선 영상 촬영장치 및 엑스선 영상 촬영방법
CN110049726B (zh) 射线照相设备和使用其的射线照相方法
JP2010075338A (ja) X線治療機能を備える乳房用画像撮影及び治療装置
WO2017073997A1 (ko) 엑스선 영상 촬영장치
KR20160103518A (ko) 의료 영상 처리 장치 및 의료 영상 처리 방법
CN103943443A (zh) 具有运动阳极或阴极的x射线源
JP2024511648A (ja) X線可撓性湾曲パネル検出器を動き補償された複数のパルス作動x線源とともに使用する高速三次元のx線撮影
EP3103394B1 (en) X-ray imaging device
CN108366768B (zh) X射线ct扫描设备和其扫描方法
EP3923813B1 (en) Method and apparatus for anatomically-specified computed tomography
JPH08275938A (ja) X線ct装置
WO2016076643A1 (ko) 촬영부 하우징을 갖는 치과용 엑스선 촬영 장치
JP4737793B2 (ja) X線診断装置
JP2022082215A (ja) X線コンピュータ断層撮影装置及び制御方法
JP2006288910A (ja) 断層撮影装置
WO2014168288A1 (ko) 엑스선 영상장치 및 엑스선 영상장치의 이미징 방법
KR101863064B1 (ko) 엑스선 ct 촬영장치
JP7436443B2 (ja) X線診断装置
KR101588574B1 (ko) 입체정위 생검을 위한 생검 니들 가이딩 장치, 이를 구비한 영상 촬영 장치 및 이를 이용한 생검 채취 방법
JP7395385B2 (ja) アンギオct装置
JP2011139778A (ja) X線ct装置
JP2004180755A (ja) 放射線撮像装置
KR102022454B1 (ko) 듀얼 에너지 방식 컴퓨터 단층촬영장치의 x-레이 필터 제어기구
JP2004113257A (ja) X線ct装置
JP2023183463A (ja) X線コンピュータ断層撮影装置及び医用寝台装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15500017

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015827868

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015827868

Country of ref document: EP