WO2011036832A1 - スパークプラグ及びスパークプラグの製造方法 - Google Patents

スパークプラグ及びスパークプラグの製造方法 Download PDF

Info

Publication number
WO2011036832A1
WO2011036832A1 PCT/JP2010/004161 JP2010004161W WO2011036832A1 WO 2011036832 A1 WO2011036832 A1 WO 2011036832A1 JP 2010004161 W JP2010004161 W JP 2010004161W WO 2011036832 A1 WO2011036832 A1 WO 2011036832A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
spark plug
component
compound powder
metal shell
Prior art date
Application number
PCT/JP2010/004161
Other languages
English (en)
French (fr)
Other versions
WO2011036832A9 (ja
Inventor
黒野啓一
本田稔貴
高岡勝哉
竹内裕貴
田中邦治
光岡健
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to CN201080042325.6A priority Critical patent/CN102549861B/zh
Priority to US13/497,904 priority patent/US8564184B2/en
Priority to EP10818513.3A priority patent/EP2482396B1/en
Priority to KR1020127010553A priority patent/KR101307649B1/ko
Publication of WO2011036832A1 publication Critical patent/WO2011036832A1/ja
Publication of WO2011036832A9 publication Critical patent/WO2011036832A9/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/34Sparking plugs characterised by features of the electrodes or insulation characterised by the mounting of electrodes in insulation, e.g. by embedding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/36Sparking plugs characterised by features of the electrodes or insulation characterised by the joint between insulation and body, e.g. using cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/38Selection of materials for insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Definitions

  • the present invention relates to a spark plug and a spark plug manufacturing method, and more particularly, to a small spark plug having both antifouling properties and long-term withstand voltage characteristics even if it is small, and a method for manufacturing the spark plug.
  • an insulator having a leg length portion reduced in diameter via a stepped portion is formed on the inner peripheral surface of the metal shell.
  • the gap is formed between the inner peripheral surface of the engaging convex portion and the outer peripheral surface of the leg long portion opposed thereto by engaging the stepped portion with the engaging convex portion.
  • Patent Document 1 states that “a cylindrical metal shell (1), an insulator (2) having a shaft hole locked to the inner peripheral side of the metal shell (1), and the insulator (2).
  • the front side (2i) of the insulator (2) is a step in the circumferential direction, with the side where the spark discharge gap (g) is located as the front side and the opposite side as the rear side.
  • the diameter of the stepped portion is reduced to an insulator-side engaging portion (2h) and inserted into the metal shell (1) from a rear-side opening, and the insulator-side engaging portion (2h) is
  • the insulator of the insulator (2) is engaged with the metal fitting side engaging portion (1c) protruding from the inner peripheral surface of the metal shell (1).
  • the outer peripheral surface (hereinafter referred to as a gap forming outer peripheral surface) (2k) (2k) of the portion (2i) located on the front side of the engaging portion (2h) is the inner peripheral surface (hereinafter referred to as the metal fitting-side engaging portion (1c)).
  • a spark plug (Referred to as a gap forming inner circumferential surface) (52) in a form that forms a predetermined amount of engagement position gap (Q), and the outer diameter of the gap forming outer circumferential surface (2k) is d1,
  • Patent Document 2 states that “an insulator having a substantially cylindrical shape and having a through hole in the axial direction, a rod-shaped center electrode inserted on the distal end side of the through hole of the insulator, and the insulation.
  • a substantially cylindrical metallic shell that is inserted and held at the distal end side in the axial direction of the body, one end is joined to the distal end of the metallic shell, and the other end opposite to the one end is opposed to the central electrode.
  • a ground electrode that forms a spark discharge gap between the other end and the center electrode, and the insulator includes an insulator rear end provided on a rear end side of the insulator, and the insulation An insulator front end provided on the front end side of the body and having a diameter smaller than an outer diameter of the insulator rear end, and connecting the insulator rear end and the insulator front end;
  • the metal shell is formed of a metal shell rear end provided on a rear end side of the metal shell, and the metal shell.
  • a metal shell front end portion provided on the end side and having at least a portion on the rear end side whose inner diameter is smaller than the inner diameter of the metal metal rear end portion; and the metal shell rear end portion and the metal shell front end portion A first metal shell step that is coupled to the first metal shell step through a packing, and when the cross section including the axis is viewed, the insulation
  • the outer diameter of the body tip is d1 and the inner diameter of the metal shell tip is D1
  • the length parallel to the axial direction of the insulator is (D1-d1) / 2 ⁇ 0.45 mm.
  • the gap In order to reduce the size of the spark plug, it is effective to reduce the thickness of the insulator in addition to narrowing the gap.
  • the voltage applied to the insulator forming the gap tends to increase. Therefore, if the gap is narrowed by using a thin insulator, it is possible to reduce the size while maintaining the anti-fouling property of the spark plug, but a high voltage is applied to this insulator. Dielectric breakdown may occur, and as a result, the withstand voltage characteristics may deteriorate.
  • a number of dielectric breakdowns may occur in the insulator, and the withstand voltage characteristics may be significantly degraded.
  • the spark plug is made small so that the nominal diameter of the mounting screw portion is M12 or less, it becomes difficult to achieve both the stain resistance and the withstand voltage characteristics of the spark plug.
  • An object of the present invention is to provide a spark plug that has both stain resistance and long-term withstand voltage characteristics even if it is small.
  • This invention makes it a subject to provide the manufacturing method of the spark plug which can manufacture the spark plug which has both antifouling property and long-time withstand voltage characteristic even if it is small.
  • the present invention as a means for solving the above-mentioned problems includes an insulator having a substantially cylindrical shape having a small leg length portion on the distal end side and having a through hole penetrating in the axial direction, and the distal end side of the through hole.
  • a central electrode that is formed in a substantially cylindrical shape having an engaging convex portion that protrudes radially inward, and that holds the inserted insulator with the engaging convex portion.
  • the inner diameter of the engaging convex portion is D IN (mm)
  • the maximum outer diameter of the portion of the leg long portion facing the inner peripheral surface of the engaging convex portion is d OUT (mm).
  • Condition (1) (D IN ⁇ d OUT ) /2 ⁇ 0.40 (mm)
  • Condition (2) (d OUT ⁇ d IN ) /2 ⁇ 1.65 (mm)
  • Condition (3) ⁇ ⁇ 9 .4 (F / m)
  • a cycle based on the IUPAC 1990 recommendation includes two or more kinds of Al compound powder, Si compound powder, Mg compound powder and Ba compound powder as main components.
  • the raw material powder containing the Group 2 element compound powder in the table and the rare earth compound powder of 0.5 to 4.0% by mass so that the total content of these oxides is 100% by mass is pressurized. It includes a step of manufacturing the insulator by sintering after molding.
  • the spark plug according to the present invention satisfies the above conditions (1) to (3), it is sufficient without sacrificing the fouling resistance even when a high voltage is applied to the thinned insulator for a long period of time. Demonstrate withstand voltage characteristics.
  • the spark plug manufacturing method according to the present invention since the raw material powder is pressure-molded to a predetermined size and then sintered to manufacture the insulator, the insulator satisfies the conditions (1) to (3). Satisfied. Therefore, according to the present invention, there is provided a small spark plug having both fouling resistance and long-term withstand voltage characteristics even if it is small, and a spark plug manufacturing method capable of manufacturing such a spark plug. can do.
  • FIG. 1 is a partial longitudinal sectional view showing a spark plug which is an embodiment of the spark plug according to the present invention.
  • FIG. 2 is a partially enlarged longitudinal sectional view showing an enlarged main part on the tip side of the spark plug which is an embodiment of the spark plug according to the present invention.
  • FIG. 3 is a partially enlarged longitudinal sectional view showing, in an enlarged manner, the vicinity of the gap formed by the metal shell and the insulator in the spark plug which is an embodiment of the spark plug according to the present invention.
  • the spark plug according to the present invention is formed in a substantially cylindrical shape having a small leg portion on the tip side, and has an insulator having a through hole penetrating in the axial direction, and a center electrode inserted on the tip side of the through hole And a metal shell that is formed in a substantially cylindrical shape having an engagement convex portion protruding radially inward, and holds the inserted insulator by the engagement convex portion.
  • the spark plug according to the present invention is a spark plug having such a configuration, other configurations are not particularly limited, and various known configurations can be adopted.
  • the spark plug according to the present invention includes the insulator, the center electrode, the metal shell, one end joined to the metal shell, and the other end facing the center electrode and the other end and the center electrode. And a ground electrode that forms a spark discharge gap.
  • the spark plug 100 is used as an ignition plug for an internal combustion engine such as an automobile gasoline engine.
  • the axis of the spark plug 100 configured in a substantially rod shape (the chain line shown in FIGS. 1 and 2) is referred to as “axis O”. 1 to 3, the lower side of the drawing, that is, the side on which the ground electrode 4 is installed is referred to as the tip side of the spark plug 100, and the upper side of the drawing, that is, the side on which the corrugation portion 40 is formed. This is called the rear end side.
  • the spark plug 100 is formed in a substantially cylindrical shape having a small-diameter leg portion 30 on the distal end side, and has an insulator 2 having a through-hole 6 penetrating in the direction of the axis O, and the through-hole.
  • 6 is formed in a substantially cylindrical shape so as to have a central electrode 3 inserted on the distal end side of 6 and an engaging convex portion 56 protruding radially inward on the inner peripheral surface, and engages the inserted insulator 2
  • the metal shell 1 held by the convex portion 56 and one end thereof are joined to the metal shell 1, and the other end faces the center electrode 3 to form a spark discharge gap g between the other end and the center electrode 3.
  • the spark plug 100 includes a substantially cylindrical metal shell 1 having an engagement protrusion 56 protruding radially inward in a ring shape on the inner peripheral surface, and the main metal shell 1.
  • a substantially cylindrical insulator (also referred to as “insulator” in the present invention) 2 that is inserted into the metal fitting 1 and held by the engaging convex portion 56 so as to protrude from the tip end portion of the metal shell 1 in the axis O direction.
  • a substantially rod-shaped center electrode 3 inserted in the through hole 6 of the insulator 2 so that the electrode tip 36 protrudes from the tip of the insulator 2, and one end at the tip of the metal shell 1 in the axis O direction.
  • the ground electrode 4 is provided so that the other end side opposite to the one end side is bent sideways and the side surface thereof is arranged to face the electrode tip portion 36 of the center electrode 3 while being welded. . *
  • the insulator 2 specifically, the vicinity of the distal end portion of the leg length portion 30, which will be described later, protrudes toward the ground electrode 4 from the distal end surface of the metal shell 1,
  • the center electrode 3 has an electrode tip 36 protruding from the tip surface of the insulator 2 toward the ground electrode 4.
  • a base gap S formed between the metal shell 1 and the leg long portion 30 of the insulator 2 is sandwiched between the inner peripheral surface of the metal shell 1 and the outer peripheral surface of the leg long portion 30. Is formed. *
  • the metal shell 1 is formed of a metal such as low carbon steel into a substantially cylindrical shape having an engagement convex portion 56 on the inner peripheral surface, and is used as a housing for the spark plug 100. .
  • An attachment screw portion 7 for attaching to an engine head is formed on the outer peripheral surface of the metal shell 1 on the tip end side in the axis O direction.
  • the standard of the mounting screw portion 7 there are M10, M12, M14, and the like.
  • the designation of the mounting screw portion 7 means a value defined in ISO 2705 (M12), ISO 2704 (M10), etc., and naturally allows variation within the range of dimensional tolerances defined in various standards. To do.
  • a small spark plug means a spark plug in which the nominal diameter of the mounting screw portion 7 is M12 or less, for example.
  • a tool engaging portion 11 for engaging a tool such as a spanner or a wrench from the outside when the metal shell 1 is attached to the engine head is provided on the rear end side of the mounting screw portion 7 in the metal shell 1 in the axis O direction. Is formed.
  • the cross section perpendicular to the axis O direction of the tool engaging portion 11 has a hexagonal shape.
  • the metal shell 1 is provided on the distal end side in the axis O direction of the tool engaging portion 11 and protrudes outward in the outer diameter direction at a substantially intermediate portion in the axis O direction.
  • a flange 61 is formed. The gasket 10 is inserted into the vicinity of the rear end side of the mounting screw portion 7 in the axis O direction, that is, the seat surface 62 of the flange portion 61.
  • the metal shell 1 includes a metal shell rear end portion 54 provided at the front end side of the flange portion 61 in the axis O direction and on the flange portion 61 side, A metal shell front end portion 53 provided on the front end side of the metal fitting 1 and having at least a portion on the rear end side whose inner diameter is smaller than the inner diameter of the metal metal rear end portion 54, the metal metal rear end portion 54, and the metal shell front end It comprises a first metal shell step 55 that connects the portion 53.
  • the metal shell 1 includes a metal shell rear end portion 54 formed on the front end side in the axis O direction with respect to the tool engaging portion 11 of the metal shell 1.
  • An engagement convex portion 56 also referred to as a “metal fitting base” in the present invention
  • a first metal shell step 55 that connects the metal base 56 and the metal shell rear end 54, and an inner diameter substantially the same as that of the metal shell rear end 54, formed on the front end side in the axis O direction of the metal shell base 56.
  • the metal shell 1 is arranged such that the metal shell rear end portion 54, the first metal shell step 55, the metal shell base 56, and the second metal shell step 57 from the flange portion 61 toward the front end side in the axis O direction.
  • the metal shell front part 58 is formed continuously in this order.
  • the metal shell front end 53 is formed of a metal shell front portion 58, a second metal shell step 57, and a metal shell base 56.
  • the first metal shell step 55 is a metal fitting-side engaging portion for engaging with a first insulator step 27 of the insulator 2 described later. *
  • the engaging convex portion 56 is an annular convex portion whose inner diameter is substantially constant in the direction of the axis O and makes a round in the circumferential direction of the inner hole of the metal shell 1.
  • the engaging convex portion 56 forms a trapezoidal cross section together with the first metal shell step 55 and the second metal shell step 57. Therefore, the inner peripheral surface 59 of the engaging convex portion 56 extends along the axis O.
  • the insulator 2 is a substantially cylindrical body that interpolates and holds the center electrode 3.
  • the insulator 2 has a through hole 6 that penetrates along the direction of the axis O.
  • a substantially rod-shaped terminal fitting 13 is inserted into the rear end portion of the through hole 6 in the axis O direction, and the other end side opposite to the one end side of the through hole 6 into which the terminal fitting 13 is inserted, that is, the through hole.
  • a substantially rod-shaped center electrode 3 is inserted on the tip side of the hole 6.
  • a resistor 15 is disposed between the terminal fitting 13 inserted in the through hole 6 and the center electrode 3.
  • Conductive glass seal layers 16 and 17 are disposed at both ends of the resistor 15 in the direction of the axis O, that is, at the front end and the rear end.
  • the center electrode 3 and the terminal fitting 13 are electrically connected to each other through the conductive glass seal layers 16 and 17.
  • the resistor 15 and the conductive glass seal layers 16 and 17 constitute a sintered conductive material portion.
  • the resistor 15 is configured as a resistor composition using as a raw material a mixed powder of glass powder, conductive material powder and, if necessary, ceramic powder other than glass.
  • a high voltage cable (not shown in FIG. 1) is connected to the rear end portion of the terminal fitting 13 in the axis O direction via a plug cap (not shown in FIG. 1) so that a high voltage is applied. It has become. *
  • the insulator 2 is formed in a flange shape with a protruding portion 23 that protrudes outward in the outer diameter direction from the outer peripheral surface of the insulator 2 at a substantially intermediate portion in the axis O direction of the insulator 2.
  • the insulator 2 is formed with a corrugation portion 40 having a corrugated shape with a stepped surface including the axis of the insulator 2 on the outer peripheral surface on the rear end side in the axis O direction from the protrusion 23. ing.
  • the corrugation 40 is provided with a corrugated shape on the outer peripheral surface of the insulator 2 to increase the surface area of the outer peripheral surface of the insulator 2.
  • the insulator 2 is provided on the front end side of the insulator rear end portion 26 extending from the protrusion portion 23 to the front end side on the front end side in the axis O direction than the protrusion portion 23.
  • a long leg portion 30 also referred to as “insulator front end portion” in the present invention
  • 30 having a diameter smaller than the outer diameter of the insulator rear end portion 26 is connected to the insulator rear end portion 26 and the leg length portion 30.
  • the insulator 2 is located behind the insulator formed on the rear end side in the axis O direction with respect to the protrusion 23 in the axis O direction of the insulator 2.
  • Part 24, insulator rear end portion 26 formed on the front side of protrusion 23, leg length portion 30 formed on the tip end side in the axis O direction of insulator rear end portion 26, and leg length portion 30 It has the 1st insulator step part 27 which connects the insulator rear-end part 26 and forms the circumferential direction step part.
  • the leg length portion 30 is smaller in diameter than the outer diameter of the insulator rear end portion 26 and is reduced in diameter so that the outer diameter gradually decreases toward the front end side in the axis O direction. That is, the leg portion 30 has a substantially truncated cone shape as well shown in FIGS. *
  • the insulator 2 is inserted from the opening on the rear end side in the axis O direction of the metal shell 1, and as shown in FIG. 1, the first insulator step portion 27 of the insulator 2 is the metal shell 1.
  • the first metal shell step 55 is engaged or locked.
  • the first insulator step portion 27 is an insulator-side engagement portion for engaging with the first metal shell step portion 55.
  • a substantially ring-shaped plate packing 8 is disposed as shown in FIGS. In this way, the first insulator step 27 and the first metal shell step 55 are engaged with each other via the plate packing 8 so that the insulator 2 is prevented from being pulled out in the axis O direction.
  • the plate packing 8 is made of a material having high thermal conductivity such as copper.
  • a material having high thermal conductivity of the plate packing 8 is high, the heat extraction of the spark plug 100 is improved and the heat resistance is improved.
  • a material having a thermal conductivity of 200 W / m ⁇ K or more such as copper or aluminum is preferable.
  • the designation of the mounting screw portion 7 in the spark plug 100 is as small as M12 or less, a particularly high heat resistance effect is exhibited.
  • a substantially ring-shaped packing 41 that engages with the rear peripheral edge of the protrusion 23 is formed between the inner surface of the opening on the rear end side in the axis O direction of the metal shell 1 and the outer peripheral surface of the insulator 2.
  • a substantially ring-shaped packing 42 is arranged on the rear side of the packing layer 9 through a filling layer 9 such as talc. Then, the crimping portion 12 is formed by pushing the insulator 2 toward the distal end side in the axis O direction of the metal shell 1 and crimping the opening peripheral edge of the metal shell 1 toward the packing 42 in that state. The metal shell 1 is held by the insulator 2.
  • the center electrode 3 is fixed to the shaft hole of the insulator 2 with its tip portion protruding from the tip surface of the insulator 2, and is insulated and held with respect to the metal shell 1.
  • the center electrode 3 has an electrode base material 21 made of Ni (nickel) alloy such as Inconel (trade name) 600 or 601 at least in the surface layer portion, and inside thereof is Cu (copper) for promoting heat dissipation.
  • the core material 33 which has Cu alloy etc. as a main component is embed
  • the spark plug 100 including the center electrode 3 in which the core material 33 is deeply embedded is resistant to “burn” and is preferably used as a wide-range plug having a wide operating temperature range. *
  • the ground electrode 4 is made of a metal having high corrosion resistance, and an Ni alloy such as Inconel (trade name) 600 or 601 is used as an example.
  • the ground electrode 4 has a substantially rectangular cross section perpendicular to the longitudinal direction of the ground electrode 4 and has a bent rectangular bar-like outer shape. As shown in FIG. 1, one end of the rectangular bar shape is joined to the joint 60 at one end on the front end side in the axis O direction of the metal shell 1 by welding or the like. On the other hand, the other end portion (also referred to as a tip portion) opposite to the one end portion of the ground electrode 4 is folded back to face the electrode tip portion 36 of the center electrode 3 in the direction of the axis O of the center electrode 3. As shown in FIGS. 1 and 2, a spark discharge gap g is formed in the gap between the electrode tip portion 36 of the center electrode 3 and the ground electrode 4. This spark discharge gap g is normally set to 0.3 to 1.5 mm. *
  • the spark plug 100 configured as described above is a portion of the leg length portion 30 in the insulator 2 that faces the inner peripheral surface 59 of the engagement convex portion 56 (hereinafter sometimes referred to as a leg length base portion) 29.
  • the base gap S between the engaging convex portion 56 and the leg length base portion 29 is characterized.
  • the base gap S is formed on the distal end side in the axis O direction with respect to the plate packing 8 disposed between the first insulator step portion 27 and the first metal shell step portion 55.
  • the leg length base 29 and the base gap S are set so that the inner diameter of the engagement protrusion 56 is D IN (mm) and the leg length base 29
  • d OUT (mm) is the maximum outer diameter
  • d IN (mm) is the inner diameter.
  • the condition (1) is that the minimum radial width of the base gap S, that is, the minimum separation distance between the inner peripheral surface 59 of the engagement convex portion 56 and the outer peripheral surface of the leg length base portion 29 is 0.4 ( mm) or less.
  • the condition (1) is satisfied, the anti-staining property and heat resistance of the spark plug 100 are improved, and the spark plug can be downsized. Specifically, for example, even when the spark plug 100 is placed in a use environment where contamination is likely to occur during pre-delivery, it is possible to effectively block the intrusion of unburned gas into the base gap S. it can.
  • the base gap S it is possible to prevent the outer peripheral surface of the leg length base 29 from being damaged due to adhesion of carbon or the like. Further, since the leg length base 29 and the engagement convex portion 56 are close to each other at the minimum separation distance, the heat of the heated insulator 2 is easily transmitted from the leg length base portion 29 to the engagement convex portion 56 through the base gap S. . Therefore, the heat extraction of the spark plug 100 is efficiently performed, and the heat resistance of the spark plug 100 can be improved. In addition, since the base gap S is narrowed to satisfy the condition (1), the spark plug 100 can be reduced in size. *
  • the (D IN ⁇ d OUT ) / 2 is preferably 0.05 to 0.35 (mm) in that it can be reduced in size without impairing excellent fouling resistance and heat resistance. It is particularly preferably 0.20 to 0.30 (mm).
  • the leg length portion 30 has a substantially frustoconical shape. Therefore, the outer diameter of the leg length base portion 29 is not constant in the axis O direction. Therefore, in the present invention, the maximum outer diameter d OUT is adopted as the outer diameter of the leg length base portion 29 in the condition (1).
  • the first insulator step portion 27 that interposes the plate packing 8 is not included in the portion of the leg length portion 30 that faces the engagement convex portion 56. Therefore, in the spark plug 100, the maximum outer diameter d OUT of the leg length base portion 29 is in the vicinity of the connection portion between the first insulator step portion 27 and the leg length base portion 29 as shown in FIGS.
  • the maximum outer diameter d OUT is the cross-sectional outer shape of the leg length base portion 29 in the virtual plane P 1 (see FIG. 3) including the rear end edge on the inner peripheral surface 59 of the engagement convex portion 56 and perpendicular to the axis O.
  • the outer diameter of the wire is the cross-sectional outer shape of the leg length base portion 29 in the virtual plane P 1 (see FIG. 3) including the rear end edge on the inner peripheral surface 59 of the engagement convex portion 56 and perpendicular to the axis O.
  • the length of the leg length base portion 29 in the direction of the axis O is not particularly limited, for example, 1.2 to 5.0 mm, Preferably, it is adjusted to 1.5 to 3.0 mm. When the length is adjusted within the above range, both stain resistance and heat resistance can be achieved at a higher level.
  • the maximum thickness of the leg length base 29 is 1.65 mm or less.
  • the (d OUT ⁇ d IN ) / 2 is preferably 1.0 mm or more in order to ensure the strength of the leg length base portion 29.
  • the maximum thickness of the leg length base 29 is the difference between the outer diameter and the inner diameter of the cross-sectional outline of the leg length base 29 in the virtual plane P 1 (see FIG. 3).
  • the spark plug 100 satisfies the following condition (3) when the dielectric constant of the insulator 2 is ⁇ (F / m).
  • the leg length portion 30 and the leg length base portion 29 of the insulator 2 satisfy the following condition (3).
  • the insulator 2 or the like when the insulator 2, the leg length portion 30, and the leg length base portion 29 (hereinafter, these may be referred to as the insulator 2 or the like) have a dielectric constant ⁇ within the above range.
  • the insulator 2 or the like even if the voltage applied to the insulator 2 or the like is increased by narrowing the base gap S, or even if the insulator 2 or the like is thinned as described above, the insulator 2 or the like does not break down. Demonstrate sufficient withstand voltage characteristics.
  • the insulator 2 or the like has a dielectric constant ⁇ within the above range, the insulator 2 or the like is not easily broken down even if a high voltage is applied to the insulator 2 or the like for a long period of time.
  • the spark plug 100 exhibits a sufficient withstand voltage characteristic without impairing the high fouling resistance.
  • the dielectric constant ⁇ of the insulator 2 is preferably 10.5 (F / m) or less.
  • the dielectric constant ⁇ is 10.5 (F / m) or less, the electric field is less likely to concentrate on the pores scattered inside the insulator 2, and the internal breakdown of the insulator 2 starting from the pores is effective. Can be suppressed. Therefore, when the dielectric constant ⁇ of the insulator 2 is in the range of 9.4 to 10.5 (F / m), the occurrence of dielectric breakdown can be more effectively suppressed.
  • the dielectric constant ⁇ can be measured according to JIS R1641. *
  • the spark plug 100 that satisfies all of the above conditions (1) to (3) can be downsized, and a high voltage is applied to the insulator 2 and the like that are thinned by the downsizing. Even if the state extends for a long period of time, it exhibits a sufficient withstand voltage characteristic without impairing the high fouling resistance.
  • the insulator 2 of the spark plug 100 is present in the observation region with respect to the area S of the observation region when a 250 ⁇ m ⁇ 190 ⁇ m region on the mirror polished surface is observed at a multiple of 500 times, for example, nine locations.
  • the area ratio (S A / S) of the total area S A of the pores is 2.0 to 4.0%.
  • the leg length portion 30 or the leg length base portion 29 preferably has the area ratio (S A / S) of 2.0 to 4.0%.
  • the area ratio (S A / S) is set to 2.0% or more so that the electric field does not concentrate on the scattered pores. Therefore, in the present invention, if the insulator 2 has the area ratio (S A / S) of 2.0 to 4.0%, the electric field is unlikely to concentrate on the pores that can be the starting point of dielectric breakdown, and the Even if the dielectric constant ⁇ of the insulator 2 or the like is increased for the purpose of improving the voltage characteristics, dielectric breakdown does not easily occur in the insulator 2 or the like.
  • the area ratio (S A / S) is calculated as follows. First, a surface obtained by polishing the insulator 2 or the like to a mirror state, that is, a mirror-polished surface is prepared.
  • the mirror-polished surface is formed by processing an arbitrary surface such as the insulator 2 or an arbitrary cut surface into a flat surface using a 45 ⁇ m diamond grindstone, and successively using 9 ⁇ m, 3 ⁇ m, and 0.25 ⁇ m diamond pastes. Prepare by mirror polishing until Ra is about 0.01 ⁇ m.
  • the insulator 2 of the spark plug 100 is present in the observation region with respect to the area S of the observation region when observing a plurality of, for example, nine locations of 250 ⁇ m ⁇ 190 ⁇ m on the mirror polished surface at a magnification of 500 times. It is preferable that the area ratio (S 20 / S) of the total area S 20 of pores having an equivalent circle diameter of 20 ⁇ m or more is 0.3% or less. In particular, the leg length portion 30 or the leg length base portion 29 preferably has the area ratio (S 20 / S) of 0.3% or less.
  • the spark plug 100 has few relatively large pores having an equivalent circle diameter of 20 ⁇ m or more.
  • the insulator 2 and the like thinned by downsizing can be dense and can maintain the original withstand voltage characteristics.
  • the area ratio (S 20 / S) is the total area of voids whose diameter converted to equivalent circle diameter exceeds 20 ⁇ m in each SEM reflected electron image photograph taken in the same manner as the area ratio (S A / S). divided by S 20 and the area S of the observation area the total area S 20 obtains the area ratio.
  • the area ratio thus obtained is arithmetically averaged to calculate the area ratio (S 20 / S) of the sintered body 2 and the like.
  • the insulator 2 or the like of the spark plug 100 has an area ratio (S A / S) of 2.0 to 4 when the dielectric constant ⁇ is 9.4 to 10.5 (F / m).
  • the ratio is 0.0% and the area ratio (S 20 / S) is 0.3% or less, the dielectric constant ⁇ , the area ratio (S A / S), and the area ratio (S 20 / S)
  • the electric field is not excessively concentrated in the pores, and there are few pores that are the starting points of dielectric breakdown, and the spark plug 100 exhibits excellent withstand voltage characteristics. be able to.
  • the insulator 2 of the spark plug 100 in order to adjust the dielectric constant ⁇ , the area ratio (S A / S), and the area ratio (S 20 / S) within the range, the dielectric constant ⁇ within the range.
  • the insulator 2 may be formed of an alumina-based sintered body having the area ratio (S A / S) and the area ratio (S 20 / S).
  • the insulator 2 including the long leg portion 30 is formed of an alumina-based sintered body.
  • a preferred example of this alumina-based sintered body is the second of the periodic table based on the IUPAC 1990 recommendation, which includes two or more types including an Al component as a main component, an Si component, an Mg component, and a Ba component.
  • a group element component hereinafter sometimes referred to as a Group 2 element component
  • a rare earth element component in an amount of 0.5 to 4.0% by mass. It is contained so that it may become 100 mass%.
  • the alumina-based sintered body has a dielectric constant ⁇ of 9.4 to 10.5 (F / m) and an observation region with respect to the area S of the observation region when the mirror-polished surface is observed.
  • the area ratio (S A / S) of the total area S A of the pores existing in the inside is 2.0 to 4.0%, and the total area S of the pores having an equivalent circle diameter of 20 ⁇ m or more existing in the observation region
  • the area ratio (S 20 / S) of 20 is 0.3% or less, the withstand voltage characteristic of the spark plug 100 including the insulator 2 and the like formed of this alumina-based sintered body is further improved.
  • the Al component is usually alumina (Al 2 O 3 ) and is present as a main component in the alumina-based sintered body.
  • the “main component” means a component having the highest content rate.
  • the sintered body is excellent in withstand voltage characteristics, heat resistance, mechanical characteristics, and the like.
  • the content of the Al component in the alumina-based sintered body is preferably 92.0% by mass or more and 97.0% by mass or less, and 92.5% by mass when the total content is 100% by mass. It is particularly preferably 96.5% by mass or less.
  • the content of the Al component is within the above range, a dense alumina-based sintered body is obtained.
  • the content of the Al component is defined as mass% in terms of oxide when converted to “alumina (Al 2 O 3 )” which is an oxide of the Al component.
  • the Si component is a component derived from a sintering aid and is present in the alumina-based sintered body as an oxide, an ion, or the like.
  • the Si component melts during sintering and normally generates a liquid phase, and thus functions as a sintering aid that promotes densification of the sintered body.
  • the Si component often forms a low-melting glass or the like in the grain boundary phase of alumina crystal particles after sintering.
  • the alumina-based sintered body has other specific components to be described later in addition to the Si component, it is easy to preferentially form a high melting point glass phase together with other components than the low melting point glass phase.
  • the content of the Si component is preferably 1.0 to 4.0% by mass when the total content is 100% by mass.
  • the content rate of the Si component is defined as an oxide equivalent mass% when converted to “SiO 2 ” which is an oxide of the Si component.
  • the Group 2 element component is a component derived from a sintering aid, and in this invention, the Mg component and the Ba component are essential components.
  • the Group 2 element component only needs to contain an Mg component and a Ba component, and preferably contains at least one Group 2 element component other than the Mg component and Ba component in addition to the Mg component and Ba component.
  • examples of the Group 2 element component other than the Mg component and the Ba component include a Ca component and an Sr component from the viewpoint of low toxicity and the like.
  • Preferable Group 2 element components are specifically three types of Mg component, Ba component and Ca component, three types of Mg component, Ba component and Sr component, and Mg component, Ba component and Ca component. There are four types with Sr component.
  • particularly preferred Group 2 element components are the above-mentioned three kinds.
  • the Mg component is a component derived from a sintering aid, is present in the alumina-based sintered body as an oxide, an ion, and the like, and functions as a sintering aid in the same manner as the Si component before sintering.
  • the Ba component, the Ca component, and the Sr component are components derived from a sintering aid, and are present in the alumina-based sintered body as oxides, ions, and the like, and are fired in the same manner as the Mg component before sintering. While functioning as a binder, it has the function of improving the high temperature strength of the resulting alumina-based sintered body. Therefore, when the group 2 element component is contained in the alumina-based sintered body, its withstand voltage characteristics and high-temperature strength are improved, and the sintering temperature during firing is lowered. *
  • the content of the Group 2 element component is dense even when a raw material powder having a relatively large particle size is used, and it becomes an alumina-based sintered body having excellent withstand voltage characteristics and high-temperature strength when used as an insulator.
  • the total content is 100% by mass, it is preferably 0.1 to 2.5% by mass, particularly preferably 0.5 to 2.0% by mass.
  • each content rate of Mg component, Ba component, Ca component, and Sr component should just have these total in the said range, and when these components are contained in the alumina-based sintered body, for example,
  • the content M of the Mg component is preferably 0.01 to 0.40% by mass
  • the content B of the Ba component is 0.1 to 1.6% by mass.
  • the content C of the Ca component is preferably 0.2 to 0.9% by mass
  • the content of the Sr component S is preferably 0.2 to 0.9% by mass.
  • the content C or the content S is naturally 0% by mass.
  • each content rate of a Group 2 element component shall be the oxide conversion mass% when converted into the oxide, for example, "MgO", “BaO”, “CaO”, or “SrO”.
  • the content rate of a Group 2 element component is a total content rate of each content rate of a Group 2 element component.
  • the rare earth element component (also referred to as RE component) is a component containing Sc, Y and a lanthanoid element. Specifically, the Sc component, Y component, La component, Ce component, Pr component, Nd component, Pm Component, Sm component, Eu component, Gd component, Tb component, Dy component, Ho component, Er component, Tm component, Yb component, and Lu component.
  • the RE component is present in the alumina-based sintered body as an oxide, ion, or the like.
  • the RE component is contained at the time of sintering, so that alumina grain growth at the time of sintering is prevented from excessively occurring, and RE-Si glass (rare earth glass) together with the Si component is used as a grain boundary. It can be formed to increase the melting point of the grain boundary glass phase, and the voltage resistance characteristics and high temperature strength of the alumina-based sintered body can be improved.
  • the RE component may be any component as described above, but a La component, an Nd component, a Pr component, a Y component, and the like are preferable.
  • the La component, the Nd component, the Pr component, and the Y component have large ionic radii of the elements La, Nd, Pr, and Y contained therein, and together with the Si component, form a high-melting crystalline phase, It is considered that hexaaluminate crystals having a high melting point of about 2000 ° C. are easily formed together with the components.
  • 2A represents a Group 2 element of the periodic table based on the IUPAC 1990 recommendation.
  • the insulator 2 formed of the alumina-based sintered body exhibits withstand voltage characteristics and high temperature strength.
  • the hexaaluminate crystal only needs to be present in the alumina-based sintered body, and the location of the hexaaluminate crystal is not particularly limited, but is preferably present up to the inside of the alumina-based sintered body. It is particularly preferred to be present at the boundary and / or triple point.
  • the presence of the hexaaluminate crystal can be identified by, for example, X-ray diffraction using a JCPDS card.
  • a JCPDS card For the Pr component and the Nd component, since there is no JCPDS card, identification by X-ray diffraction is not possible directly.
  • the ionic radii of Pr 3+ and Nd 3+ are almost equal to the ionic radius of La 3+ , the hexaaluminate crystal containing the Pr component or the Nd component is a JCPDS card (No. .33-699).
  • the presence of the hexaaluminate crystal containing the Pr component or the Nd component can be confirmed in comparison with the JCPDS card of the hexaaluminate crystal containing the La component. It is preferable that the hexaaluminate crystal is formed by precipitation in the firing process because the particles during firing hardly grow anisotropically.
  • the RE component tends to increase the dielectric constant ⁇ of the alumina-based sintered body as its content increases, but it may not be a dense alumina-based sintered body unless the sintering temperature is increased. Therefore, the content rate of the RE component in the alumina-based sintered body is appropriately adjusted in consideration of the formation of hexaaluminate crystals, the dielectric constant ⁇ of the alumina-based sintered body, and its sinterability.
  • the content of the RE component is preferably 0.5 to 4.0% by mass, where the total content is 100% by mass.
  • the content rate of the RE component in the alumina-based sintered body is defined as mass% in terms of oxide when converted to the oxide of each component.
  • the RE component is a La component, an Nd component, and a Y component
  • a Pr component Is the oxide equivalent mass% when converted to “Pr 6 O 11 ” which is this oxide.
  • the RE component content is the sum of the content of each RE component.
  • each content of the Al component, Si component, Group 2 element component and RE component contained in the alumina-based sintered body is, for example, an electron beam microanalyzer (EPMA), an energy dispersive microanalyzer (EPMA / It can be measured as oxide equivalent mass% by quantitative analysis using EDS), fluorescent X-ray analysis or chemical analysis.
  • EPMA electron beam microanalyzer
  • EPMA / It can be measured as oxide equivalent mass% by quantitative analysis using EDS
  • fluorescent X-ray analysis or chemical analysis is almost the same as the mixing ratio of the raw material powder used for producing the alumina-based sintered body.
  • alumina-based sintered body is quantitatively analyzed using, for example, an electron beam microanalyzer (EPMA), two or more kinds including Al 2 O 3 as a main component, SiO 2 , MgO, and BaO,
  • EPMA electron beam microanalyzer
  • Al 2 O 3 as a main component
  • SiO 2 SiO 2
  • MgO MgO
  • BaO BaO
  • the alumina-based sintered body substantially comprises an Al component, a Si component, a Group 2 element component, and an RE component.
  • “substantially” means that components other than the above components are not actively contained by addition or the like. Therefore, the alumina-based sintered body may contain inevitable impurities as long as the object of the present invention is not impaired. Examples of such inevitable impurities include Na, S, and N. The content of these inevitable impurities should be small. For example, when the total mass of the Al component, Si component, Group 2 element component and RE component is 100 parts by mass, it is 1.0 part by mass or less. Good.
  • the alumina-based sintered body has other components such as B component, Ti component, and Mn component in addition to the Al component, Si component, Group 2 element component, and RE component. , Ni component and the like may be contained in a small amount.
  • the insulator 2 is formed of an alumina-based sintered body, the insulator 2 and the alumina-based sintered body have the same composition and characteristics. Therefore, according to the present invention, it is possible to provide a spark plug that has both stain resistance and long-term withstand voltage characteristics even if it is small. Furthermore, according to the present invention, it is possible to provide a small spark plug that has both anti-fouling property and long-term withstand voltage characteristics even when mounted on an internal combustion engine or the like with high output. *
  • the spark plug manufacturing method according to the present invention comprises two or more types of periodic table based on the IUPAC 1990 recommendation, including Al compound powder, Si compound powder, Mg compound powder and Ba compound powder as main components. Elemental compound powder (hereinafter sometimes referred to as Group 2 elemental compound powder) and 0.5 to 4.0% by mass of rare earth compound powder, the total of these oxide conversion contents being 100% by mass
  • the process includes a step of sintering the raw material powder contained so as to form an insulator after pressure molding.
  • the spark plug manufacturing method according to the present invention will be specifically described below. *
  • raw material powder that is, Al compound powder, Si compound powder, two or more Group 2 element compound powders including Mg compound powder and Ba compound powder
  • the rare earth compound powder is mixed in the slurry.
  • each powder of the same material as the Al component, the same material as the Si component, the same material as the Group 2 element component, and the same material as the RE component (these powders are also referred to as raw material powders) Can be mixed in the slurry.
  • the mixing ratio of each powder can be set, for example, to be the same as the content of each component. This mixing is preferably performed for 8 hours or more so that the mixed state of the raw material powders can be made uniform and the obtained sintered body can be highly densified.
  • the Al compound powder is not particularly limited as long as it is a compound that can be converted into an Al component by firing, and usually alumina (Al 2 O 3 ) powder is used. Since the Al compound powder may actually contain unavoidable impurities such as Na, it is preferable to use a high-purity one. For example, the purity of the Al compound powder is 99.5% or more. Is preferred.
  • As the Al compound powder in order to obtain a dense alumina-based sintered body, it is usually preferable to use a powder having an average particle size of 0.1 to 5.0 ⁇ m.
  • the average particle diameter is a value measured by a laser diffraction method using a Microtrac particle size distribution measuring apparatus (MT-3000) manufactured by Nikkiso Co., Ltd.
  • the Si compound powder is not particularly limited as long as it is a compound that can be converted into a Si component by firing.
  • Si oxides including complex oxides
  • hydroxides carbonates, chlorides, sulfates, nitrates.
  • various inorganic powders such as phosphates. Specific examples include SiO 2 powder.
  • the usage-amount is grasped
  • the purity of the Si compound powder is basically the same as that of the Al compound powder.
  • the average particle diameter D50 of the Si compound powder is preferably 0.5 to 3.0 ⁇ m.
  • the Si compound powder has an average particle diameter D50 in the above range
  • the pulverization time of the Si compound powder can be made relatively short and the productivity is excellent, and in particular, the generation of pores having an equivalent circle diameter of 20 ⁇ m or more can be prevented.
  • the average particle size D50 is a particle size having an integrated value of 50% in the particle size distribution, and is a value measured by a laser diffraction method using a Microtrac particle size distribution measuring device (MT-3000) manufactured by Nikkiso Co., Ltd.
  • the Group 2 element compound powder is not particularly limited as long as it is a compound that can be converted into two or more Group 2 element components including a Mg component and a Ba component by firing, for example, an alkali.
  • Examples thereof include various inorganic powders such as oxides of earth elements (including composite oxides), hydroxides, carbonates, chlorides, sulfates, nitrates, and phosphates.
  • the Group 2 element compound powder is preferably Mg compound powder, Ba compound powder, Ca compound powder and / or Sr compound powder.
  • MgO powder as Mg compound powder, MgCO 3 powder, BaO powder as Ba compound powder, BaCO 3 powder, CaO powder as Ca compound powder, CaCO 3 powder, SrO powder as Sr compound powder, SrCO 3 powder, etc. can be mentioned.
  • the usage-amount is grasped
  • the purity of the Group 2 element compound powder is basically the same as that of the Al compound powder.
  • the average particle diameter D50 of the Group 2 element compound powder is preferably 0.5 to 3.0 ⁇ m for the same reason as the Si compound powder.
  • the rare earth element compound powder is not particularly limited as long as it is a compound that is converted into an RE component by firing, and examples thereof include rare earth element oxides and composite oxides thereof.
  • the dielectric constant ⁇ of the obtained alumina-based sintered body can be adjusted. Specifically, when the mixing ratio of the rare earth element compound powder is increased, the dielectric constant ⁇ tends to increase.
  • the usage-amount is grasped
  • the purity and average particle size of the rare earth element compound powder are basically the same as those of the Al compound powder. *
  • the respective powders are mixed so that the oxide-converted content of the rare earth compound powder in the raw material powder is 0.5 to 4.0% by mass.
  • each oxide-converted content of Al compound powder, Si compound powder, Group 2 element compound powder, rare earth compound powder, etc. It is the same as the content rate.
  • a hydrophilic binder can also be mix
  • the hydrophilic binder include polyvinyl alcohol, water-soluble acrylic resin, gum arabic, and dextrin.
  • distributes raw material powder water, alcohol, etc. can be used, for example.
  • These hydrophilic binders and solvents can be used alone or in combination of two or more.
  • the use ratio of the hydrophilic binder and the solvent is 0.1 to 5.0 parts by mass, preferably 0.5 to 3.0 parts by mass with respect to 100 parts by mass of the raw material powder.
  • water is 40 to 120 parts by mass, preferably 50 to 100 parts by mass. *
  • the slurry thus obtained can be prepared to have an average particle size of 1.4 to 5 ⁇ m, for example.
  • the slurry thus obtained is spray-dried by a spray drying method or the like, and granulated to have an average particle size of 50 to 200 ⁇ m, preferably 70 to 150 ⁇ m.
  • the average particle size is a value measured by a laser diffraction method (manufactured by Nikkiso Co., Ltd., Microtrac particle size distribution measuring device (MT-3000)). *
  • the granulated product is pressure-molded to obtain an unsintered molded body preferably having the shape and dimensions of the insulator 2.
  • This pressure molding is performed under a pressure of 50 to 70 MPa.
  • the area ratio (S A / S) in the obtained alumina-based sintered body can be adjusted to 2.0 to 4.0%.
  • the pressurizing pressure is reduced, the area ratio (S A / S) is increased.
  • the pressurizing pressure is increased, the area ratio (S A / S) is decreased.
  • the obtained green molded body is ground to adjust its own shape. Since this green body is formed of a granulated product having a relatively large average particle size, it is excellent in processability and is easily shaped into a desired shape with high productivity by the above-mentioned industrially inexpensive method. Can.
  • the green molded body thus ground and shaped into a desired shape is calcined at 1500 to 1700 ° C., preferably 1550 to 1650 ° C. in the air atmosphere for 1 to 8 hours, preferably 3 to 7 hours.
  • a base sintered body is obtained.
  • the firing temperature is 1500 to 1700 ° C.
  • the sintered body is easily sufficiently densified, and abnormal grain growth of the alumina component is unlikely to occur, so that the withstand voltage characteristics and mechanical strength of the obtained alumina-based sintered body are ensured. be able to.
  • the firing time is 1 to 8 hours, the sintered body is easily densified sufficiently, and abnormal grain growth of the alumina component is difficult to occur. Therefore, the withstand voltage characteristics and mechanical strength of the obtained alumina-based sintered body are improved. Can be secured. *
  • alumina-based sintered body containing 0% by mass of a rare earth element component is obtained.
  • This alumina-based sintered body has a dielectric constant ⁇ in the range of 9.4 to 10.5 (F / m).
  • the obtained alumina-based sintered body has pores existing in the observation region with respect to the area S of the observation region when observing a 250 ⁇ m ⁇ 190 ⁇ m region on the mirror-polished surface at a magnification of 500 times, for example, nine locations.
  • the area ratio (S A / S) of the total area S A is 2.0 to 4.0%, and the area ratio of the total area S 20 of pores having an equivalent circle diameter of 20 ⁇ m or more existing in the observation region (S 20 / S) is 0.3% or less. Therefore, this alumina-based sintered body exhibits high fouling resistance and high withstand voltage characteristics over a long period of time when used as a small spark plug insulator. Therefore, this alumina-based sintered body is particularly suitable as a material for forming an insulator included in a small spark plug or a spark plug for an internal combustion engine with high output. It is suitable as a material for forming an insulator provided in a small spark plug having both.
  • This alumina-based sintered body may be shaped again if desired so as to conform to the shape and dimensions of the insulator 2. In this manner, the alumina-based sintered body and the insulator 2 for the spark plug 100 made of the alumina-based sintered body can be produced. *
  • the center electrode 3 is inserted into the through hole 6 of the obtained insulator 2.
  • the insulator 2 with the center electrode 3 inserted therein is inserted into the metal shell 1 and the first metal shell step 55 and the first insulator step 27 are engaged with each other so that the metal shell 1 is insulated. 2 is attached.
  • the metal shell 1 is adjusted to the shape and dimensions.
  • the ground electrode 4 is joined to the vicinity of the end of the metal shell 1 by electric resistance welding or the like before or after the insulator 2 is attached. In this way, the spark plug 100 that satisfies the conditions (1) to (3) can be manufactured.
  • FIGS. In the method for manufacturing a spark plug according to the present invention, as an embodiment of assembling the center electrode, the insulator, and the metal shell, for example, one embodiment of the spark plug according to the present invention shown in FIGS. Can be mentioned. *
  • a spark plug according to the present invention is used as an ignition plug for an internal combustion engine for automobiles such as a gasoline engine or a diesel engine, and is formed in a screw hole provided in a head (not shown) that defines a combustion chamber of the internal combustion engine.
  • the mounting screw portion 7 is screwed and fixed at a predetermined position.
  • the insulator 2 is made of the alumina-based sintered body having the above composition and the above characteristics, according to the present invention, both the anti-fouling property and the long-term withstand voltage characteristics can be achieved even if it is small.
  • a spark plug manufacturing method capable of manufacturing a spark plug can be provided. Furthermore, according to the present invention, it is possible to provide a method for manufacturing a small spark plug that has both anti-fouling properties and long-term withstand voltage characteristics even when mounted on an internal combustion engine or the like with increased output.
  • the leg length portion 30 has a substantially truncated cone shape.
  • the leg length portion has a leg length base portion having a cylindrical shape having a substantially uniform outer diameter, and a step difference from the leg length base portion. It may be provided with a substantially truncated cone-shaped leg length tip portion having a diameter smaller than that of the leg length base portion.
  • the spark plug 100 includes the center electrode 3 and the ground electrode 4.
  • a noble metal tip may be provided at the tip of the center electrode and / or the surface of the ground electrode.
  • the tip of the center electrode and the noble metal tip formed on the surface of the ground electrode usually have a cylindrical shape, are adjusted to an appropriate size, and the tip of the center electrode by an appropriate welding technique such as laser welding or electric resistance welding. Then, it is fused and fixed to the surface of the ground electrode.
  • the spark discharge gap is formed by the surface of the noble metal tip formed on the tip of the center electrode and the surface of the noble metal tip formed on the surface of the ground electrode.
  • the material forming the noble metal tip include noble metals such as Pt, Pt alloy, Ir, and Ir alloy.
  • Examples 1 to 15 and Comparative Examples 1 to 5 Alumina powder, Si compound powder and Group 2 element compound powder as Mg compound powder, Ba compound powder, Ca compound powder and / or Sr compound powder and rare earth compound powder A hydrophilic binder was added to the raw material powder (types of each mixed powder are shown in Table 1) to prepare a slurry.
  • the average particle diameter D50 of the Si compound powder and the Group 2 element compound powder is shown in Table 1 as “Average particle diameter D ( ⁇ m) of sintering aid” 50. *
  • the obtained slurry was spray-dried by a spray drying method or the like to granulate a powder having an average particle diameter of about 100 ⁇ m.
  • This powder was subjected to rubber press molding at the “molding pressure” shown in Table 1 to obtain a green compact.
  • This unfired molded body is fired in the atmosphere at a firing temperature of 1500 to 1700 ° C. with a firing time set to 1 to 8 hours.
  • a ligature was obtained. The firing conditions were all set to be the same within the above range. *
  • each of the obtained alumina-based sintered bodies was quantitatively analyzed using an energy dispersive microanalyzer (EPMA / EDS), and the Al component, the Si component, the Group 2 element component, and the rare earth element It was calculated as a mass ratio (%) when the total content (in oxide conversion) with the component was 100 mass%.
  • the analysis conditions of the energy dispersive microanalyzer (EPMA / EDS) were set at a spot diameter of 200 mm and an acceleration voltage of 20 kV using a field emission electron probe microanalyzer (JXA-8500F, manufactured by JEOL Ltd.) and measured at 10 locations. The calculated average value was used. The results are shown in Table 1.
  • the spark plug 100 shown in FIGS. 1 to 3 was manufactured.
  • the nominal diameter of the mounting screw portion 7 is set to a value suitable for the “plug type” shown in Table 1, and the spark discharge gap g is set to 1.1 mm.
  • the inner diameter D IN (mm) of the engagement convex portion 56, the maximum outer diameter d OUT (mm) of the leg length base portion, and the inner diameter d IN (mm) thereof were adjusted to values shown in Table 1, respectively.
  • a pre-delivery durability test was performed using each of the spark plugs thus prepared.
  • each spark plug is attached to a test vehicle (displacement: 1500 cc, inline 4-cylinder) with a voltage application polarity in which the ground electrode 4 side is positive and the center electrode 2 side is negative, and is exemplified in JIS: D1606.
  • the running pattern (test room temperature: ⁇ 10 ° C.) was taken as one cycle, and this was repeated until the insulation resistance of the spark plug decreased to 10 M ⁇ or less.
  • the anti-fouling property of the spark plug was evaluated based on the number of cycles. The case where the number of cycles was 10 cycles or more was “ ⁇ ”, and the case where it was 6 cycles or less was “x”. The results are shown in Table 2.
  • withstand voltage characteristics applied voltage 33 kV The results are shown in Table 2 as “withstand voltage characteristics applied voltage 33 kV”. In the withstand voltage characteristics in which a voltage of 33 kV is applied to the metal shell 1 and the center electrode 3, it is practically acceptable if the breakdown rate (%) is less than 20%, and the breakdown rate (%) is 0%. If it is present, it will exhibit practically sufficient withstand voltage characteristics over a long period of time. *
  • Each spark is basically the same as the withstand voltage characteristic 1 except that the voltage continuously applied between the metal shell 1 and the center electrode 3 is set to 38 kV.
  • the withstand voltage characteristic when a high voltage was applied to the plug was evaluated. The results are shown in Table 2 as “withstand voltage characteristics applied voltage 38 kV”. In the withstand voltage characteristics in which a high voltage of 38 kV is applied to the metal shell 1 and the center electrode 3, it is practically acceptable if the breakdown rate (%) is less than 20%, and the breakdown rate (%) is 0%. If so, a practically sufficient withstand voltage characteristic is exhibited over a long period of time. *
  • the dielectric constant ⁇ (F / m), the area ratio (S A / S) and the area ratio (S 20 / S) in the insulator of each spark plug are the alumina-based sintered bodies shown in Table 2. Were identical to those of.
  • Examples 1 to 15 that satisfy all the conditions (1) to (3) are spark plugs that are miniaturized so that the nominal diameter of the mounting screw portion 7 is M12. Nevertheless, not only when a voltage of 33 kV is continuously applied over a long period of 200 hours, but also when a high voltage of 38 kV is continuously applied over a long period of 200 hours, the stain resistance is not impaired. High breakdown voltage characteristics that are resistant to dielectric breakdown.
  • oxides of Group 2 elements of the periodic table based on the IUPAC 1990 recommendation and 0.5 or more of Al 2 O 3 , SiO 2 , MgO, and BaO whose main components are alumina-based sintered bodies
  • oxide of rare earth element is contained in an amount of ⁇ 4.0% by mass so that the total content thereof becomes 100% by mass, even if the spark plug is downsized, the anti-fouling property is obtained. High withstand voltage characteristics were exhibited without loss.
  • the dielectric constant ⁇ is 9.4 to 10.5, the area ratio (S A / S) is 2.0 to 4.0%, and the area ratio (S 20 / S) is 0.3% or less.
  • Comparative Examples 1 and 2 do not satisfy the condition (2), and the leg length base is very thick at 2.1 mm or more. Therefore, the comparative example 1 and 2 are excellent in withstand voltage characteristics, but cannot be sufficiently downsized. Comparative Examples 3 to 5 satisfy the condition (2) but do not satisfy the condition (3). Therefore, the dielectric breakdown easily occurs, and the withstand voltage characteristic when a high voltage of 38 kV is applied is practically acceptable. The range was not reached. In Comparative Examples 1 and 3, the condition (1) was not satisfied, and the base gap S was wide, so that the antifouling property was poor.
  • the spark plug according to the present invention can be used for any internal combustion engine, but a small spark plug that requires a thin insulator, for example, a high-output internal combustion engine or the like.
  • a spark plug for use in an internal combustion engine that requires a small spark plug having both antifouling properties and long-term withstand voltage characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Spark Plugs (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

耐汚損性と長期にわたる耐電圧特性とを兼ね備える小型のスパークプラグ、及び、このスパークプラグの製造方法を提供すること。先端側に脚長部30を有する絶縁体2と中心電極3と係合凸部56で絶縁体2を保持する主体金具1とを備え、係合凸部56の内径DIN、係合凸部56の内周面59に対面する脚長部30の最大外径dOUT、その内径dIN及び絶縁体2の誘電率εが下記条件を満足するスパークプラグ100、並びにAl化合物粉末とSi化合物粉末とMg化合物粉末及びBa化合物粉末を含む2種類以上の第2族元素化合物粉末と0.5~4.0質量%の希土類化合物粉末とを含有する原料粉末を加圧成形後に焼結して絶縁体2を製造する工程を含むスパークプラグ100の製造方法。条件:(DIN-dOUT)/2≦0.40(mm)、(dOUT-dIN)/2≦1.65(mm)及びε≧9.4(F/m))

Description

スパークプラグ及びスパークプラグの製造方法
この発明は、スパークプラグ及びスパークプラグの製造方法に関し、さらに詳しくは、小型であっても耐汚損性と長期にわたる耐電圧特性とを兼ね備える小型のスパークプラグ及びこのスパークプラグの製造方法に関する。
自動車用ガソリンエンジン等の内燃機関の着火用に使用されるスパークプラグの1つとして、先端側に段部を介して縮径された脚長部を有する絶縁体が主体金具の内周面に形成された係合凸部に前記段部を係合させることによって主体金具に組み付けられ、前記係合凸部の内周面とこれに対向する前記脚長部の外周面との間に隙間が形成されるタイプのスパークプラグがある。このようなスパークプラグにおいて、前記間隙に例えば低温環境下等で発生する未燃ガスが侵入すると、前記間隙内における前記脚長部の外周面が汚損され、その結果、スパークプラグの耐汚損性が悪化する。 
そこで、耐汚損性を考慮して前記間隙を広くするという従来の技術常識に反して前記間隙を所定距離以下に狭めることにより、スパークプラグの耐汚損性を損ねることなく小型化を図ることのできるスパークプラグが提案されている。 
例えば、特許文献1には、「筒状の主体金具(1)と該主体金具(1)の内周側に係止された軸孔を有する絶縁体(2)と該絶縁体(2)の前記軸孔に保持された中心電極(3)と、該中心電極(3)の先端と対向することで火花放電ギャップ(g)を形成する接地電極(4)とを備え、前記絶縁体(2)の軸線方向(O)において前記火花放電ギャップ(g)の位置する側を前方側、これと反対側を後方側として、前記絶縁体(2)は、前端部(2i)が周方向の段部により縮径されて該段部が絶縁体側係合部(2h)とされ、前記主体金具(1)に対し後方側開口部から挿入されるとともに、前記絶縁体側係合部(2h)が前記主体金具(1)の内周面から突出する金具側係合部(1c)と係合し、かつ、前記絶縁体(2)の前記絶縁体側係合部(2h)よりも前方側に位置する部分(2i)の外周面(以下、隙間形成外周面という)(2k)が、前記金具側係合部(1c)の内周面(以下、隙間形成内周面という)(52)と、所定量の係合位置隙間(Q)を形成する形にて対向するとともに、前記隙間形成外周面(2k)の外径をd1、前記隙間形成内周面(52)の内径をD1として、β=(D1-d1)/2にて表される係合位置隙間量βが0.4mm以下に調整されていることを特徴とするスパークプラグ」が記載されている。 
また、特許文献2には、「略筒状に形成され、軸線方向に貫通孔を有する絶縁体と、当該絶縁体の前記貫通孔の先端側に挿設される棒状の中心電極と、前記絶縁体の軸線方向の先端側を内挿して保持する略筒状の主体金具と、一端部が当該主体金具の先端に接合され、当該一端部とは反対の他端部が前記中心電極に対向し、前記他端部と前記中心電極との間に火花放電ギャップを形成する接地電極とを備え、前記絶縁体は、前記絶縁体の後端側に設けられた絶縁体後端部と、前記絶縁体の先端側に設けられ、当該絶縁体後端部の外径よりも縮径された絶縁体先端部と、前記絶縁体後端部と前記絶縁体先端部とを連結する第1絶縁体段部とから構成され、前記主体金具は、前記主体金具の後端側に設けられた主体金具後端部と、前記主体金具の先端側に設けられ、内径が当該主体金具後端部の内径よりも縮径された部分を少なくとも後端側に有する主体金具先端部と、前記主体金具後端部と前記主体金具先端部とを連結する第1主体金具段部とから構成され、前記第1絶縁体段部は、パッキンを介して前記第1主体金具段部に係合し、軸線を含む断面を見たときに、前記絶縁体先端部の外径をd1、前記主体金具先端部の内径をD1として、(D1-d1)/2<0.45mmとなる隙間の、前記絶縁体の軸線方向に平行な長さが、前記パッキンと前記主体金具段部との係合位置のうち、軸線方向の最先端側の位置を起点として前記絶縁体の先端側を+したとき、1.2mm以上、5mm以下であることを特徴とするスパークプラグ」が記載されている。 
ところで、スパークプラグの小型化を図るには、前記間隙を狭くすることに加えて絶縁体の肉厚を薄くすること有効である。その一方で、前記間隙を狭くすると、一般に、前記間隙を形成する絶縁体に印加される電圧が高くなる傾向がある。したがって、肉厚が薄くされた絶縁体を用いて前記間隙を狭くすると、スパークプラグの耐汚損性を維持しつつ小型化を図ることは可能になるものの、この絶縁体に高い電圧が印加されて絶縁破壊が生じ、その結果、耐電圧特性が低下することがある。特に、絶縁体に高い電圧が印加された状態が長期間にわたって継続すると、絶縁体に多数の絶縁破壊が生じて耐電圧特性が著しく低下することがある。例えば、取付ネジ部の呼び径がM12以下になるようにスパークプラグを小型にすると、スパークプラグの耐汚損性と耐電圧特性とを両立しにくくなる。
特開2002-260817号公報 特開2005-183177号公報
この発明は、小型であっても耐汚損性と長期にわたる耐電圧特性とを兼ね備えるスパークプラグを提供することを、課題とする。 
この発明は、小型であっても耐汚損性と長期にわたる耐電圧特性とを兼ね備えるスパークプラグを製造することのできるスパークプラグの製造方法を提供することを、課題とする。
前記課題を解決するための手段としてのこの発明は、先端側に小径の脚長部を有する略筒状に形成され、軸線方向に貫通する貫通孔を有する絶縁体と、前記貫通孔の前記先端側に挿設された中心電極と、径方向内側に突出する係合凸部を有する略筒状に形成され、内挿された前記絶縁体を前記係合凸部で保持する主体金具とを備えて成るスパークプラグであって、前記係合凸部の内径をDIN(mm)、前記脚長部のうち前記係合凸部の内周面に対面している部分の最大外径をdOUT(mm)及びその内径をdIN(mm)、並びに、前記絶縁体の誘電率をε(F/m)としたときに、下記条件(1)~(3)を満足することを特徴とする。 条件(1):(DIN-dOUT)/2≦0.40(mm) 条件(2):(dOUT-dIN)/2≦1.65(mm) 条件(3):ε≧9.4(F/m) 
前記課題を解決するための別の手段としてのこの発明は、主成分としてのAl化合物粉末と、Si化合物粉末と、Mg化合物粉末及びBa化合物粉末を含む2種類以上の、IUPAC1990年勧告に基づく周期表の第2族元素化合物粉末と、0.5~4.0質量%の希土類化合物粉末とをこれらの酸化物換算含有率の合計が100質量%となるように含有する原料粉末を、加圧成形後に焼結して、前記絶縁体を製造する工程を含むことを特徴とする。
この発明に係るスパークプラグは、前記条件(1)~(3)を満足するから薄肉化された絶縁体に高い電圧がかかった状態が長期間に及んでも耐汚損性を損ねることなく十分な耐電圧特性を発揮する。また、この発明に係るスパークプラグの製造方法は、前記原料粉末を所定寸法に加圧成形した後に焼結して前記絶縁体を製造するからこの絶縁体は前記条件(1)~(3)を満足する。したがって、この発明によれば、小型であっても耐汚損性と長期にわたる耐電圧特性とを兼ね備える小型のスパークプラグ、及び、このようなスパークプラグを製造することのできるスパークプラグの製造方法を提供することができる。
図1は、この発明に係るスパークプラグの一実施例であるスパークプラグを示す部分縦断面図である。 図2は、この発明に係るスパークプラグの一実施例であるスパークプラグの先端側の要部を拡大して示す部分拡大縦断面図である。 図3は、この発明に係るスパークプラグの一実施例であるスパークプラグにおける主体金具と絶縁体とで形成される間隙部分の近傍を拡大して示す部分拡大縦断面図である。
この発明に係るスパークプラグは、先端側に小径の脚長部を有する略筒状に形成され、軸線方向に貫通する貫通孔を有する絶縁体と、前記貫通孔の先端側に挿設された中心電極と、径方向内側に突出する係合凸部を有する略筒状に形成され、内挿された絶縁体を係合凸部で保持する主体金具とを備えている。この発明に係るスパークプラグは、このような構成を有するスパークプラグであれば、その他の構成は特に限定されず、公知の種々の構成を採ることができる。例えば、この発明に係るスパークプラグは、前記絶縁体と、前記中心電極と、前記主体金具と、一端部が主体金具に接合され、他端部が中心電極に対向して他端部及び中心電極の間に火花放電間隙を形成する接地電極とを備えていてもよい。 
この発明に係るスパークプラグの一実施例であるスパークプラグについて、図1~図3を参照して説明する。このスパークプラグ100は、自動車用ガソリンエンジン等の内燃機関の着火用プラグとして使用される。なお、以下の説明において、略棒状に構成されたスパークプラグ100の軸線(図1及び図2に示す一点鎖線)を「軸線O」と称する。また、図1~図3において、図面の下方側すなわち接地電極4が設置される側をスパークプラグ100の先端側と称し、図面の上方側すなわちコルゲーション部40が形成される側をスパークプラグ100の後端側と称する。 
このスパークプラグ100の基本的な構成について説明する。このスパークプラグ100は、図1に示されるように、先端側に小径の脚長部30を有する略筒状に形成され、軸線O方向に貫通する貫通孔6を有する絶縁体2と、この貫通孔6の先端側に挿設された中心電極3と、径方向内側に突出する係合凸部56を内周面に有するように略筒状に形成され、内挿された絶縁体2を係合凸部56で保持する主体金具1と、一端部が主体金具1に接合され、他端部が中心電極3に対向してこの他端部及び中心電極3の間に火花放電間隙gを形成する接地電極4とを備えて成る。 
より具体的には、スパークプラグ100は、図1に示されるように、径方向内側にリング状に突出する係合凸部56を内周面に有する略筒状の主体金具1と、この主体金具1に内挿され、主体金具1の軸線O方向の先端部から突出するように係合凸部56で保持された略筒状の絶縁体(この発明において「絶縁碍子」とも称する。)2と、絶縁体2の先端から電極先端部36が突出するように絶縁体2の貫通孔6に内挿された略棒状の中心電極3と、主体金具1の軸線O方向の先端部に一端が溶接されると共に、この一端側とは反対の他端側が側方に曲げ返されて、その側面が中心電極3の電極先端部36と対向するように配置された接地電極4とを備えて成る。 
スパークプラグ100においては、図1及び図2に示されるように、絶縁体2、具体的には後述する脚長部30の先端部近傍が主体金具1の先端面よりも接地電極4側に突出し、前記中心電極3はその電極先端部36が絶縁体2の先端面よりも接地電極4側に突出している。そして、後述するように、前記主体金具1と絶縁体2の脚長部30との間には主体金具1の内周面と脚長部30の外周面とで挟まれて形成される基部間隙Sが形成されている。 
前記主体金具1は、図1に示されるように、低炭素鋼等の金属により、係合凸部56を内周面に有する略筒状に形成され、スパークプラグ100のハウジングとして使用されている。主体金具1における前記軸線O方向の先端部側の外周面には、図示しないエンジンヘッドに取り付けるための取付ネジ部7が形成されている。この取付ネジ部7の規格の一例としては、M10、M12及びM14等が挙げられる。この発明において、取付ネジ部7の呼びは
、ISO2705(M12)及びISO2704(M10)等に規定された値を意味し、当然に、諸規格に定められた寸法公差の範囲内での変動を許容する。この発明において、小型のスパークプラグは、例えば、取付ネジ部7の呼び径がM12以下であるスパークプラグを意味する。主体金具1における前記取付ネジ部7の前記軸線O方向の後端側には主体金具1をエンジンヘッドに取り付ける際にスパナやレンチ等の工具を外側から係合させるための工具係合部11が形成されている。スパークプラグ100において工具係合部11の軸線O方向に直交する断面は六角形状を呈している。また、前記主体金具1は、図1に示されるように、前記工具係合部11の前記軸線O方向の先端側であって前記軸線O方向の略中間部に外径方向外側に凸設された鍔部61が形成されている。そして、取付ネジ部7の前記軸線O方向の後端側近傍すなわち鍔部61の座面62にガスケット10が嵌挿されている。 
前記主体金具1は、図1及び図2に示されるように、前記鍔部61の前記軸線O方向の先端側であって前記鍔部61側に設けられた主体金具後端部54と、主体金具1の先端側に設けられ、内径が主体金具後端部54の内径よりも縮径された部分を少なくとも後端側に有する主体金具先端部53と、主体金具後端部54と主体金具先端部53とを連結する第1主体金具段部55とから構成されている。 
より具体的には、主体金具1は、図1及び図2に示されるように、主体金具1の工具係合部11よりも軸線O方向の先端側に形成された主体金具後端部54と、この主体金具後端部54の軸線O方向の先端側に主体金具1の内径方向内側に凸設された係合凸部(この発明において「主体金具基部」とも称する。)56と、この主体金具基部56と主体金具後端部54とを連結する第1主体金具段部55と、前記主体金具基部56の軸線O方向の先端側に形成され、主体金具後端部54と略同一の内径を有する主体金具前方部58と、この主体金具前方部58と前記主体金具基部56とを連結する第2主体金具段部57とを有して成る。したがって、主体金具1は、その鍔部61から前記軸線O方向の先端側に向かって、主体金具後端部54、第1主体金具段部55、主体金具基部56、第2主体金具段部57及び主体金具前方部58がこの順に連続して形成されて成る。この発明において、前記主体金具先端部53は主体金具前方部58と第2主体金具段部57と主体金具基部56とで形成されている。前記第1主体金具段部55は後述する絶縁体2の第1絶縁体段部27と係合するための主体金具側係合部位である。 
前記係合凸部56は、図1~図3に示されるように、その内径が前記軸線O方向に略一定で主体金具1の内孔の周方向に一巡する環状凸部である。この係合凸部56は前記第1主体金具段部55及び第2主体金具段部57と共に台形断面を成している。したがって、係合凸部56の内周面59は前記軸線Oに沿って延在している。 
前記絶縁体2は、図1に示されるように、中心電極3を内挿して保持する略筒状体である。この絶縁体2は前記軸線O方向に沿って貫通する貫通孔6を有している。この貫通孔6の軸線O方向の後端部には略棒状の端子金具13が挿設され、その端子金具13が挿設されている貫通孔6の一端側とは反対の他端側すなわち貫通孔6の先端側には略棒状の中心電極3が挿設されている。前記貫通孔6に挿設された端子金具13及び中心電極3の間には、図1に示されるように、抵抗体15が配設されている。この抵抗体15の、軸線O方向の両端部すなわち先端部及び後端部には導電性ガラスシール層16及び17が各々配設されている。そして、導電性ガラスシール層16及び17を介して中心電極3と端子金具13とが互いに電気的に接続されている。このように、抵抗体15と導電性ガラスシール層16及び17とが焼結導電材料部を構成している。前記抵抗体15は、ガラス粉末と導電材料粉末と必要に応じてガラス以外のセラミック粉末との混合粉末を原料とする抵抗体組成物として構成されている。また、端子金具13の軸線O方向の後端部には、高圧ケーブル(図1に図示しない。)がプラグキャップ(図1に図示しない。)を介して接続され、高電圧が印加されるようになっている。 
前記絶縁体2は、図1に示されるように、絶縁体2の軸線O方向の略中間部に絶縁体2の外周面より外径方向外側に向かって突出する突出部23がフランジ状に形成されている。この絶縁体2は、図1に示されるように、前記突出部23よりも軸線O方向後端側の外周面に絶縁体2の軸線を含む段面が波打ち形状を有するコルゲーション部40が形成されている。このコルゲーション部40は絶縁体2の外周面に波打ち形状を設けて絶縁体2の外周面の表面積を広くする。したがって、例えば絶縁体2の外周面を伝わってリークした電気が流れ、漏電(リーク現象)が生じたときでも、絶縁体2の外周面を伝わるうちに消尽するため、漏電防止の効果が得られる。 
前記絶縁体2は、前記突出部23よりも前記軸線O方向の先端側であって前記突出部23から前記先端側に延在する絶縁体後端部26と、その先端側に設けられ、この絶縁体後端部26の外径よりも縮径された脚長部(この発明において「絶縁体先端部」とも称する。)30と、前記絶縁体後端部26及び前記脚長部30を連結する第1絶縁体段部27とから構成されている。 
より具体的には、絶縁体2は、図1及び図2に示されるように、絶縁体2の軸線O方向において、突出部23よりも軸線O方向の後端側に形成された絶縁体後方部24と、突出部23よりも前方側に形成された絶縁体後端部26と、絶縁体後端部26の軸線O方向の先端側に形成された脚長部30と、この脚長部30と絶縁体後端部26とを連結し、周方向段部を形成する第1絶縁体段部27とを有してなる。前記脚長部30は、絶縁体後端部26の外径よりも小径で、かつ、前記軸線O方向先端側に向かって徐々に外径が小さくなるように細径化されている。すなわち、この脚長部30は図1及び図2によく示されるように略円錐台形をなしている。 
スパークプラグ100において、絶縁体2は主体金具1における軸線O方向の後端側の開口部から挿入され、図1に示されるように、絶縁体2の第1絶縁体段部27が主体金具1の第1主体金具段部55に係合又は係止している。前記第1絶縁体段部27は前記第1主体金具段部55に係合するための絶縁体側係合部となっている。主体金具1の第1主体金具段部55と第1絶縁体段部27との間には、図1~図3に示されるように、略リング状の板パッキン8が配設されている。このように、第1絶縁体段部27と第1主体金具段部55とが板パッキン8を介して係合することにより、絶縁体2の軸線O方向の抜き止めがなされている。前記板パッキン8は、例えば銅のような熱伝導率の高い材質で形成されている。板パッキン8の熱伝導率が高いと、スパークプラグ100の熱引きがよくなり、耐熱性が向上する。このような前記材質として、例えば、銅、アルミニウム等の熱伝導率が200W/m・K以上の材質であるのが好ましい。特に、スパークプラグ100における取付ネジ部7の呼びがM12以下と小さいと、特に高い耐熱性効果を発揮する。 
スパークプラグ100において、主体金具1における軸線O方向の後端側の開口部内面と絶縁体2の外周面との間には突出部23の後方側周縁と係合する略リング状のパッキン41が配置され、さらに、その後方側にはタルク等の充填層9を介して略リング状のパッキン42が配置されている。そして、絶縁体2を主体金具1の軸線O方向の先端側に向けて押し込み、その状態で主体金具1の開口周縁部をパッキン42に向けて加締めることにより、加締め部12が形成され、主体金具1が絶縁体2に保持されている。 
前記中心電極3は、その先端部が絶縁体2の先端面から突出した状態で絶縁体2の軸孔に固定されており、主体金具1に対して絶縁保持されている。前記中心電極3はインコネル(商標名)600又は601等のNi(ニッケル)系合金等からなる電極母材21を少なくとも表層部に有し、その内部には、放熱促進のためのCu(銅)又はCu合金等を主成分とする芯材33が埋設されている。すなわち、この中心電極3は、本体となる外材と、この外材の内部の軸心部に同心的に埋め込まれるように形成されてなる芯材33とにより形成されている。このように内部に前記芯材33が深く埋設された中心電極3を備えてなるスパークプラグ100は、「焼け」にも強く、使用温度範囲の広いワイドレンジ型プラグとして好適に使用される。 
前記接地電極4は、図1に示されるように、耐腐食性の高い金属から構成され、一例としてインコネル(商標名)600又は601等のNi合金が用いられている。この接地電極4は、自身の長手方向と直交する横断面が略長方形であり、屈曲された角棒状の外形を呈している。そして、図1に示されるように、角棒状の一端部が主体金具1の軸線O方向の先端側の一端部の接合部60に溶接等により接合されている。一方、この接地電極4の一端部とは反対の他端部(先端部とも称する。)は、中心電極3の電極先端部36とこの中心電極3の軸線O方向に対向するよう側方に折り返され、図1及び図2に示されるように、中心電極3の電極先端部36と接地電極4との対向面の隙間に火花放電間隙gが形成されている。この火花放電間隙gは、通常、0.3~1.5mmに設定される。 
このように構成されるスパークプラグ100は、絶縁体2における脚長部30のうち前記係合凸部56の内周面59に対向している部分(以下、脚長基部と称することがある。)29及び係合凸部56と脚長基部29との基部間隙Sに、特徴を有している。前記基部間隙Sは、第1絶縁体段部27と第1主体金具段部55との間に配置された前記板パッキン8よりも軸線O方向の先端側に形成されている。スパークプラグ100において、具体的には、図2及び図3によく示されるように、脚長基部29及び基部間隙Sは、係合凸部56の内径をDIN(mm)、並びに、脚長基部29の最大外径をdOUT(mm)及びその内径をdIN(mm)としたときに、下記条件(1)及び(2)を満足している。条件(1):(DIN-dOUT)/2≦0.40(mm)条件(2):(dOUT-dIN)/2≦1.65(mm) 
前記条件(1)は、換言すると、前記基部間隙Sにおける半径方向の最小幅、すなわち、係合凸部56の内周面59と脚長基部29の外周面との最小離間距離が0.4(mm)以下である。前記条件(1)を満足すると、スパークプラグ100の耐汚損性及び耐熱性が向上すると共にスパークプラグの小型化も可能になる。具体的には、例えば、プレデリバリ時等の汚損が生じやすい使用環境下にスパークプラグ100がおかれた場合にも、前記基部間隙Sへの未燃ガスの侵入を効果的に遮断することができる。その結果、前記基部間隙S内において、カーボン等の付着によって生じる前記脚長基部29の外周面の汚損を防止できる。また、脚長基部29と係合凸部56とは前記最小離間距離で近接するから、加熱された絶縁体2の熱が脚長基部29から基部間隙Sを介して係合凸部56に伝わりやすくなる。したがって、スパークプラグ100の熱引きが効率よく行われ、スパークプラグ100の耐熱性を向上させることができる。加えて、前記基部間隙Sが前記条件(1)を満たすように狭められているからスパークプラグ100を小型化することもできる。 
前記(DIN-dOUT)/2は、優れた耐汚損性及び耐熱性を損ねることなく小型化を図ることができる点で、0.05~0.35(mm)であるのが好ましく、0.20~0.30(mm)であるのが特に好ましい。 
ここで、前記脚長部30は、図1~図3に示されるように、略円錐台形をなしているから、その脚長基部29における外径は前記軸線O方向に一定ではな
い。そこで、この発明においては、前記条件(1)における前記脚長基部29の外径としてその最大外径dOUTを採用する。この発明において、脚長部30のうち係合凸部56に対向している部分に前記板パッキン8を介装する第1絶縁体段部27は含まない。したがって、スパークプラグ100において、脚長基部29の最大外径dOUTは、図2及び図3に示されるように、第1絶縁体段部27と脚長基部29との接続部近傍であって係合凸部56の内周面59における後方端縁に対向する部分の外径である。換言すると、前記最大外径dOUTは、係合凸部56の内周面59における後方端縁を含み前記軸線Oに垂直な仮想平面P(図3参照。)における脚長基部29の断面外形線の外径となる。 
前記脚長基部29の前記軸線O方向の長さ、すなわち、係合凸部56における内周面59の前記軸線O方向の長さは、特に限定されず、例えば、1.2~5.0mm、好ましくは1.5~3.0mmに調整される。前記長さが前記範囲内に調整されると耐汚損性及び耐熱性をより一層高い水準で両立することができる。 
前記条件(2)は、換言すると、前記脚長基部29の最大厚さが1.65mm以下である。前記条件(2)を満足すると、スパークプラグ100を十分に小型化することができる。前記(dOUT-dIN)/2は、脚長基部29の強度を確保するため、1.0mm以上であるのが好ましい。前記脚長基部29の最大厚さは、図3に示されるように、仮想平面P(図3参照。)における脚長基部29の断面外形線の外径と内径との差である。 
スパークプラグ100は、前記絶縁体2の誘電率をε(F/m)としたときに、下記条件(3)を満足する。特に、この発明においては、絶縁体2のうち、特に前記脚長部30及び前記脚長基部29が下記条件(3)を満足するのが好ましい。条件(3):ε≧9.4(F/m) 
このように、絶縁体2、脚長部30及び脚長基部29(以下、これらを含めて絶縁体2等と称することがある。)が前記範囲の誘電率εを有していると、前記のように基部間隙Sを狭くすることによって絶縁体2等に印加される電圧が高くなっても、また前記のように絶縁体2等が薄肉化されても、絶縁体2等が絶縁破壊することなく十分な耐電圧特性を発揮する。さらに、絶縁体2等が前記範囲の誘電率εを有していると、絶縁体2等に高い電圧が印加された状態が長期間にわたって継続しても、絶縁体2等が絶縁破壊しにくく、スパークプラグ100が高い耐汚損性を損ねることなく十分な耐電圧特性を発揮する。絶縁体2の誘電率εは10.5(F/m)以下であるのが好ましい。前記誘電率εが10.5(F/m)以下であると、絶縁体2の内部に点在する気孔に電界が集中しにくくなり、前記気孔を起点とする絶縁体2の内部破壊を効果的に抑制できる。したがって、絶縁体2の誘電率εが9.4~10.5(F/m)の範囲内にあると絶縁破壊の発生をより一層効果的に抑制できる。誘電率εはJIS R1641に準拠して測定することができる。 
このように前記条件(1)~(3)のいずれをも満足するスパークプラグ100は、小型化を図ることができると共に、その小型化によって薄肉化された絶縁体2等に高い電圧がかかった状態がたとえ長期間に及んでも高い耐汚損性を損ねることなく十分な耐電圧特性を発揮する。 
この発明において、スパークプラグ100の絶縁体2は、その鏡面研磨面における250μm×190μmの領域を倍率500倍で複数箇所例えば9個所観察したときに、観察領域の面積Sに対する、観察領域内に存在する気孔の合計面積Sの面積割合(S/S)が2.0~4.0%であるのが好ましい。特に、脚長部30又は脚長基部29が2.0~4.0%の前記面積割合(S/S)を有しているのが好ましい。前記面積割合(S/S)が小さくなると、通常、絶縁体2の内部に点在する気孔に電界が集中しにくくなって前記気孔を起点とする絶縁体2の内部破壊を抑制できるが、あまりにも小さくなりすぎると、かえって気孔に電界が集中するようになり、絶縁体2の内部破壊が生じやすくなる。このように、この発明において、点在する気孔に電界が集中しないように前記面積割合(S/S)が2.0%以上に設定されている。したがって、この発明において、絶縁体2が2.0~4.0%の前記面積割合(S/S)を有していると、絶縁破壊の起点となりうる気孔に電界が集中しにくく、耐電圧特性の向上を目的として絶縁体2等の誘電率εを高くしても絶縁体2等に絶縁破壊が発生しにくくなる。 
前記面積割合(S/S)は次のようにして算出する。まず絶縁体2等を鏡面状態にまで研磨してなる面、すなわち、鏡面研磨面を調製する。前記鏡面研磨面は、絶縁体2等の任意の表面又は任意の切断面を45μmのダイヤモンド砥石を用いて平面に加工し、9μm、3μm、0.25μmのダイヤモンドペーストを順次用いてその表面粗さRaが0.01μm程度になるまで鏡面研磨加工して、調製する。次いで、このようにして調製された鏡面研磨面に導電性付与のためのカーボン蒸着を行い、電子顕微鏡を用いて前記鏡面研磨面における250μm×190μmの領域を倍率500倍で複数箇所例えば9個所観察し、各観察領域を写真撮影する。撮影した各SEM反射電子像写真を画像解析ソフト(Soft Imaging System ”Five”、Olympus社製)で二値化することにより、気孔に相当する空隙部を識別する。各SEM反射電子像写真において、前記空隙部の総面積S及びこの総面積Sを観察領域の面積Sで除して前記面積割合を求める。このようにして求めた前記面積割合を算術平均して、焼結体2等の前記面積割合(S/S)を算出する。 
この発明において、スパークプラグ100の絶縁体2は、前記鏡面研磨面における250μm×190μmの領域を倍率500倍で複数箇所例えば9個所観察したときに、観察領域の面積Sに対する、観察領域内に存在する円相当直径が20μm以上の気孔の合計面積S20の面積割合(S20/S)が0.3%以下であるのが好ましい。特に、脚長部30又は脚長基部29が0.3%以下の前記面積割合(S20/S)を有しているのが好ましい。前記絶縁体2等が0.3%以下の前記面積割合(S20/S)を有している場合には、円相当直径が20μm以上の比較的大きな気孔がほとんど存在しないから、スパークプラグ100の小型化によって薄肉化された絶縁体2等が緻密で本来の耐電圧特性を維持できる。前記面積割合(S20/S)は、前記面積割合(S/S)と同様にして撮影した各SEM反射電子像写真において、円相当直径に換算した直径が20μmを超える空隙部の総面積S20及びこの総面積S20を観察領域の面積Sで除して前記面積割合を求める。このようにして求めた前記面積割合を算術平均して、焼結体2等の前記面積割合(S20/S)を算出する。 
この発明において、スパークプラグ100の絶縁体2等は、その誘電率εが9.4~10.5(F/m)のときに、前記面積割合(S/S)が2.0~4.0%であり、かつ前記面積割合(S20/S)が0.3%以下であると、誘電率εと面積割合(S/S)と面積割合(S20/S)とが相俟って相乗効果を奏し、前記のように、気孔に電界が過度に集中することもなく、また、そもそも絶縁破壊の起点となる気孔が少なく、スパークプラグ100が優れた耐電圧特性を発揮することができる。 
スパークプラグ100の絶縁体2において、前記誘電率ε、前記面積割合(S/S)及び前記面積割合(S20/S)を前記範囲内に調整するには、前記範囲の前記誘電率ε、前記面積割合(S/S)及び前記面積割合(S20/S)を有するアルミナ基焼結体で絶縁体2を形成すればよい。 
スパークプラグ100において、脚長部30を含む絶縁体2はアルミナ基焼結体で形成されている。このアルミナ基焼結体は、その好適な一例を挙げると、主成分としてのAl成分と、Si成分と、Mg成分及びBa成分を含む2種類以上の、IUPAC1990年勧告に基づく周期表の第2族元素の成分(以下、第2族元素成分と称することがある。)と、0.5~4.0質量%の希土類元素成分とを、これらの含有率の合計(以下、合計含有率と称することがある。)が100質量%となるように、含有している。絶縁体2等がこのようなアルミナ基焼結体で形成されていると、スパークプラグ100の小型化を図るために肉厚が薄くされても耐汚損性を損ねることなく耐電圧特性を発揮できる。 
特に、前記アルミナ基焼結体が、9.4~10.5(F/m)の誘電率εを有し、かつ、鏡面研磨面を観察したときに、観察領域の面積Sに対する、観察領域内に存在する気孔の合計面積Sの面積割合(S/S)が2.0~4.0%であり、前記観察領域内に存在する円相当直径が20μm以上の気孔の合計面積S20の面積割合(S20/S)が0.3%以下であると、このアルミナ基焼結体で形成した絶縁体2等を備えたスパークプラグ100の耐電圧特性はより一層向上する。 
前記Al成分は、通常、アルミナ(Al)であり、アルミナ基焼結体中に主成分として存在する。この発明において「主成分」とは含有率が最も高い成分をいう。Al成分を主成分として含有すると、焼結体の耐電圧特性、耐熱性及び機械的特性等に優れる。アルミナ基焼結体中におけるAl成分の含有率は、前記合計含有率を100質量%としたときに、92.0質量%以上97.0質量%以下であるのが好ましく、92.5質量%以上96.5質量%以下であるのが特に好ましい。Al成分の含有率が前記範囲内にあると緻密なアルミナ基焼結体になる。その結果、アルミナ基焼結体の粒界に低融点ガラス相の形成及び気孔の残留が少なく、このアルミナ基焼結体で形成した絶縁体は高い耐電圧特性を発揮する。なお、この発明において、Al成分の含有率はAl成分の酸化物である「アルミナ(Al)」に換算したときの酸化物換算質量%とする。 
前記Si成分は、焼結助剤由来の成分であり、酸化物、イオン等として、アルミナ基焼結体中に存在する。前記Si成分は、焼結時には溶融して通常液相を生じるので、焼結体の緻密化を促進する焼結助剤として機能する。更に、Si成分は、焼結後はアルミナ結晶粒子の粒界相に低融点ガラス等を形成することが多い。しかし、前記アルミナ基焼結体がSi成分に加えて後述する他の特定成分を有していると、低融点ガラス相よりも他の成分と共に高融点ガラス相等を優先的に形成しやすい。よって、前記アルミナ基焼結体は低温において融解し難いので、絶縁破壊の原因と成り得るマイグレーション等が生じ難くなる。Si成分の含有率は前記合計含有率を100質量%としたときに、1.0~4.0質量%であるのが好ましい。なお、この発明において、Si成分の含有率はSi成分の酸化物である「SiO」に換算したときの酸化物換算質量%とする。 
前記第2族元素成分は、焼結助剤由来の成分であり、この発明においてMg成分及びBa成分は必須の成分である。この第2族元素成分は、Mg成分及びBa成分を含んでいればよく、Mg成分及びBa成分に加えてMg成分及びBa成分以外の第2族元素成分を1種以上含んでいるのが好ましい。ここで、Mg成分及びBa成分以外の第2族元素成分としては、低毒性等の観点から、Ca成分及びSr成分が挙げられる。好ましい第2族元素成分は、具体的には、Mg成分
とBa成分とCa成分との3種、Mg成分とBa成分とSr成分との3種、及び、Mg成分とBa成分とCa成分とSr成分との4種が挙げられる。この発明において、特に好ましい第2族元素成分は前記3種である。 
前記Mg成分は、焼結助剤由来の成分であり、酸化物、イオン等として、アルミナ基焼結体中に存在し、焼結前のSi成分と同様に焼結助剤として機能する。前記Ba成分、前記Ca成分及び前記Sr成分は、焼結助剤由来の成分であり、酸化物、イオン等として、アルミナ基焼結体中に存在し、焼結前のMg成分と同様に焼結助剤として機能すると共に、得られるアルミナ基焼結体の高温強度を向上させる機能を有する。したがって、アルミナ基焼結体に前記第2族元素成分が含有していると、その耐電圧特性及び高温強度が向上するとともに焼成時の焼結温度が低下する。 
前記第2族元素成分の含有率は、比較的大きな粒径を有する原料粉末を用いても緻密となり、絶縁体としたときの耐電圧特性及び高温強度に優れるアルミナ基焼結体となる点で、前記合計含有率を100質量%としたときに、0.1~2.5質量%であるのが好ましく、0.5~2.0質量%であるのが特に好ましい。 
Mg成分、Ba成分、Ca成分及びSr成分の各含有率は、これらの合計が前記範囲内にあればよく、これらの成分が前記アルミナ基焼結体に含有されている場合には、例えば、前記合計含有率を100質量%としたときに、Mg成分の含有率Mは0.01~0.40質量%であるのが好ましく、Ba成分の含有率Bは0.1~1.6質量%であるのが好ましく、0.18~1.6質量%であるのが特に好ましく、Ca成分の含有率Cは0.2~0.9質量%であるのが好ましく、Sr成分の含有率Sは0.2~0.9質量%であるのが好ましい。この発明において、前記アルミナ基焼結体がCa成分及びSr成分のいずれか一方を含有していない場合は、当然に、その含有率C又は含有率Sは0質量%となる。なお、この発明において、第2族元素成分の各含有率はその酸化物、例えば、「MgO」、「BaO」、「CaO」又は「SrO」に換算したときの酸化物換算質量%とする。また、第2族元素成分の含有率は第2族元素成分の各含有率の合計含有率である。 
前記希土類元素成分(RE成分ともいう。)は、Sc、Y及びランタノイド元素を含有する成分であり、具体的には、Sc成分、Y成分、La成分、Ce成分、Pr成分、Nd成分、Pm成分、Sm成分、Eu成分、Gd成分、Tb成分、Dy成分、Ho成分、Er成分、Tm成分、Yb成分及びLu成分である。RE成分は、酸化物、イオン等として、アルミナ基焼結体中に存在する。このRE成分は、焼結時に含有されていることにより、焼結時におけるアルミナの粒成長が過度に生じないように抑制すると共に、Si成分と共にRE-Si系ガラス(希土類ガラス)を粒界に形成して粒界ガラス相の融点を高めることができ、アルミナ基焼結体の耐電圧特性及び高温強度を向上させることができる。 
RE成分は、前記した各成分であればよいが、La成分、Nd成分、Pr成分及びY成分等が好ましい。La成分、Nd成分、Pr成分及びY成分は、それらに含まれる各元素La、Nd、Pr及びYのイオン半径が大きく、Si成分と相俟って高融点の結晶相を形成すると共に、Al成分と共に2000℃程度の高融点を有するヘキサアルミネート結晶を容易に形成すると考えられる。このヘキサアルミネート結晶は、β-アルミナ構造を有し、組成式としては、RE(2A)x(Al)yOz(前記x、y及びzはそれぞれ、x=0~2.5、y=11~16及びz=18~28である。なお、「2A」はIUPAC1990年勧告に基づく周期表の第2族元素を表す。)で示される組成を有しており、例えば、化学式:REAl1118等で表される結晶相である。よって、前記アルミナ基焼結体が、RE成分として、La成分、Nd成分、Pr成分及びY成分からなる群より選択される少なくとも1種の成分を含有すると、融点の高いヘキサアルミネート結晶が形成されているので、前記アルミナ基焼結体で形成された絶縁体2は耐電圧特性及び高温強度を発揮する。前記ヘキサアルミネート結晶は、アルミナ基焼結体中に存在すればよく、その存在箇所は特に限定されないが、アルミナ基焼結体の内部にまで存在するのが好ましく、アルミナ結晶粒の二粒子粒界及び/又は三重点に存在するのが特に好ましい。 
前記ヘキサアルミネート結晶の存在は、例えば、JCPDSカードを用いて、X線回折で同定することができる。なお、Pr成分及びNd成分に関しては、JCPDSカードが存在しないので、X線回折による同定は直接的には不可能である。しかし、Pr3+及びNd3+のイオン半径がLa3+のイオン半径とほぼ同等であるので、Pr成分又はNd成分が含まれるヘキサアルミネート結晶は、La成分を含むヘキサアルミネート結晶のJCPDSカード(No.33-699)と類似したX線回折スペクトルを示す。したがって、La成分を含むヘキサアルミネート結晶のJCPDSカードと対比して、Pr成分又はNd成分を含むヘキサアルミネート結晶の存在を確認することができる。前記ヘキサアルミネート結晶は焼成過程において析出生成させると、焼成時の粒子が異方成長し難いので好ましい。 
RE成分は、その含有率が高くなるとアルミナ基焼結体の誘電率εが高くなる傾向がある反面、焼結温度を高くしないと緻密なアルミナ基焼結体にならないことがある。したがって、アルミナ基焼結体におけるRE成分の含有率は、ヘキサアルミネート結晶の形成とアルミナ基焼結体の誘電率εとその焼結性とを考慮して適宜に調整される。例えば、RE成分の含有率は、前記合計含有率を100質量%としたときに、0.5~4.0質量%であるのが好ましい。なお、この発明において、アルミナ基焼結体におけるRE成分の含有率は、各成分の酸化物に換算したときの酸化物換算質量%とする。具体的には、RE成分がLa成分、Nd成分及びY成分である場合にはこれらの酸化物である「RE」に換算したときの酸化物換算質量%とし、Pr成分である場合にはこの酸化物である「Pr11」に換算したときの酸化物換算質量%とする。前記アルミナ基焼結体が複数種のRE成分を含有するとき、RE成分の含有量は各RE成分の含有量の合計である。 
この発明において、アルミナ基焼結体が含有するAl成分、Si成分、第2族元素成分及びRE成分の各含有率は、例えば、電子線マイクロアナライザ(EPMA)、エネルギー分散型マイクロアナライザー(EPMA/EDS)を用いた定量分析、蛍光X線分析又は化学分析により酸化物換算質量%として測定することができる。なお、この発明において、アルミナ基焼結体を前記定量分析、蛍光X線分析又は化学分析することにより算出した結果とアルミナ基焼結体の製造に用いる原料粉末の混合比とはほぼ一致する。 
したがって、前記アルミナ基焼結体は、例えば、電子線マイクロアナライザ(EPMA)を用いて定量分析すると、主成分としてのAlと、SiOと、MgO及びBaOを含む2種類以上の、IUPAC1990年勧告に基づく周期表の第2族元素の酸化物と、0.5~4.0質量%の希土類元素の酸化物とを、これらの含有率の合計が100質量%となるように、含有している。 
アルミナ基焼結体は、Al成分、Si成分、第2族元素成分及びRE成分から実質的になる。ここで、「実質的に」とは、前記成分以外の成分を添加等により積極的に含有させないことを意味する。したがって、前記アルミナ基焼結体は、この発明の目的を損なわない範囲で不可避不純物を含有していてもよい。このような不可避不純物としては、例えば、Na、S、N等が挙げられる。これらの不可避不純物の含有量は少ない方がよく、例えば、Al成分、Si成分、第2族元素成分及びRE成分の合計質量を100質量部としたときに1.0質量部以下であるのがよい。さらに、前記アルミナ基焼結体は、前記不可避不純物の他に、前記Al成分、Si成分、第2族元素成分及びRE成分に加えて、他の成分、例えば、B成分、Ti成分、Mn成分、Ni成分等を少量含有していてもよい。 
スパークプラグ100において、絶縁体2はアルミナ基焼結体で形成されているから、絶縁体2及びアルミナ基焼結体は同様の前記組成及び前記特性を有している。したがって、この発明によれば、小型であっても耐汚損性と長期にわたる耐電圧特性とを兼ね備えるスパークプラグを提供することができる。さらに、この発明によれば、高出力化された内燃機関等に装着されても耐汚損性と長期にわたる耐電圧特性とを兼ね備える小型のスパークプラグを提供することができる。 
この発明に係るスパークプラグの製造方法は、主成分としてのAl化合物粉末と、Si化合物粉末と、Mg化合物粉末及びBa化合物粉末を含む2種類以上の、IUPAC1990年勧告に基づく周期表の第2族元素の化合物粉末(以下、第2族元素化合物粉末と称することがある。)と、0.5~4.0質量%の希土類化合物粉末とをこれらの酸化物換算含有率の合計が100質量%となるように含有する原料粉末を、加圧成形後に焼結して、絶縁体を製造する工程を含んでいる。以下、この発明に係るスパークプラグの製造方法について具体的に説明する。 
この発明に係るスパークプラグの製造方法においては、まず、原料粉末、すなわち、Al化合物粉末と、Si化合物粉末と、Mg化合物粉末及びBa化合物粉末を含む2種類以上の第2族元素化合物粉末と、希土類化合物粉末とをスラリー中で混合する。また場合によっては、前記Al成分と同じ物質、前記Si成分と同じ物質、前記第2族元素成分と同じ物質、前記RE成分と同じ物質の各粉末(なお、これらの粉末も原料粉末と称することができる。)をスラリー中で混合する。ここで、各粉末の混合割合は例えば前記各成分の含有率と同一に設定することができる。この混合は、原料粉末の混合状態を均一にし、かつ得られる焼結体を高度に緻密化することができるように、8時間以上にわたって混合されるのが好ましい。 
Al化合物粉末は、焼成によりAl成分に転化する化合物であれば特に制限はなく、通常、アルミナ(Al)粉末が用いられる。Al化合物粉末は、現実的に不可避不純物、例えばNa等を含有していることがあるので、高純度のものを用いるのが好ましく、例えば、Al化合物粉末おける純度は99.5%以上であるのが好ましい。Al化合物粉末は、緻密なアルミナ基焼結体を得るには、通常、その平均粒径が0.1~5.0μmの粉末を使用するのがよい。ここで、平均粒径は日機装株式会社製のマイクロトラック粒度分布測定装置(MT-3000)によりレーザー回折法で測定した値である。 
Si化合物粉末は、焼成によりSi成分に転化する化合物であれば特に制限はなく、例えば、Siの酸化物(複合酸化物を含む。)、水酸化物、炭酸塩、塩化物、硫酸塩、硝酸塩等、リン酸塩等の各種無機系粉末を挙げることができる。具体的にはSiO粉末等を挙げることができる。なお、Si化合物粉末として酸化物以外の粉末を使用する場合には、その使用量は酸化物に換算したときの酸化物換算質量%で把握する。Si化合物粉末の純度はAl化合物粉末と基本的に同様である。Si化合物粉末の平均粒径D50が0.5~3.0μmであるのが好ましい。Si化合物粉末が前記範囲の平均粒径D50を有していると、Si化合物粉末の粉砕時間を比較的短くでき生産性に優れるうえ、特に円相当直径が20μm以上の気孔の発生を防止できる。具体的には、前記平均粒径D50を大きくすると円相当直径が20μm以上の気孔が発生しやすく前記面積割合(S20/S)が大きくなる傾向にある。前記平均粒径D50は粒度分布にける積算
値50%の粒度をいい、日機装株式会社製のマイクロトラック粒度分布測定装置(MT-3000)によりレーザー回折法で測定した値である。 
前記第2族元素化合物粉末は、焼成により第2族元素成分、すなわち、Mg成分及びBa成分を含む2種類以上の第2族元素成分に転化する化合物であれば特に制限はなく、例えば、アルカリ土類元素の酸化物(複合酸化物を含む。)、水酸化物、炭酸塩、塩化物、硫酸塩、硝酸塩等、リン酸塩等の各種無機系粉末を挙げることができる。第2族元素化合物粉末は、Mg化合物粉末と、Ba化合物粉末と、Ca化合物粉末及び/又はSr化合物粉末とであるのが好ましい。具体的には、Mg化合物粉末としてMgO粉末、MgCO粉末、Ba化合物粉末としてBaO粉末、BaCO粉末、Ca化合物粉末としてCaO粉末、CaCO粉末、Sr化合物粉末としてSrO粉末、SrCO粉末等が挙げられる。なお、第2族元素化合物粉末として酸化物以外の粉末を使用する場合には、その使用量は酸化物に換算したときの酸化物換算質量%で把握する。第2族元素化合物粉末の純度はAl化合物粉末と基本的に同様である。第2族元素化合物粉末の平均粒径D50はSi化合物粉末と同様の理由により0.5~3.0μmであるのが好ましい。 
希土類元素化合物粉末は、焼成によりRE成分に転化する化合物であれば特に制限はなく、例えば、希土類元素の酸化物及びその複合酸化物等の粉末を挙げることができる。原料粉末における希土類元素化合物粉末の混合割合を調整すると、得られるアルミナ基焼結体の誘電率εを調整することができる。具体的には、希土類元素化合物粉末の混合割合を多くすると前記誘電率εは大きくなる傾向がある。なお、希土類元素化合物粉末として酸化物以外の粉末を使用する場合には、その使用量は酸化物に換算したときの酸化物換算質量%で把握する。希土類元素化合物粉末の純度及び平均粒径はAl化合物粉末と基本的に同様である。 
前記原料粉末は、前記原料粉末における前記希土類化合物粉末の酸化物換算含有率が0.5~4.0質量%となるように、前記各粉末が混合されている。この発明に係るスパークプラグの製造方法において、Al化合物粉末、Si化合物粉末、第2族元素化合物粉末及び希土類化合物粉末等の各酸化物換算含有率は基本的には前記アルミナ基焼結体における各含有率と同様である。 
なお、前記原料粉末にバインダーとして、例えば親水性結合剤を配合することもできる。この親水性結合剤としては、例えば、ポリビニルアルコール、水溶性アクリル樹脂、アラビアゴム、デキストリン等を挙げることができる。また、原料粉末を分散させる溶媒としては、例えば、水、アルコール等を用いることができる。これらの親水性結合剤及び溶媒は1種単独でも2種以上を併用することもできる。親水性結合剤及び溶媒の使用割合は、原料粉末を100質量部としたときに、親水性結合剤は0.1~5.0質量部、好ましくは0.5~3.0質量部であり、溶媒として使用するときの水は40~120質量部、好ましくは50~100質量部である。 
このようにして得られたスラリーは、例えば、平均粒径1.4~5μmに調製することができる。次いで、このようにして得られたスラリーをスプレードライ法等により噴霧乾燥して平均粒径50~200μm、好ましくは70~150μmに造粒する。前記平均粒径はいずれもレーザー回折法(日機装株式会社製、マイクロトラック粒度分布測定装置(MT-3000))により測定した値である。 
この造粒物を加圧成形して好ましくは前記絶縁体2の形状及び寸法を有する未焼成成形体を得る。この加圧成形は50~70MPaの加圧下で行われる。前記圧力が前記範囲内にあると、得られるアルミナ基焼結体における前記面積割合(S/S)を2.0~4.0%に調整することができる。具体的には、加圧圧力を小さくすると前記面積割合(S/S)が大きくなり、逆に加圧圧力を大きくすると前記面積割合(S/S)が小さくなる。得られた未焼成成形体は研削されて自身の形状が整えられる。この未焼成成形体は比較的大きな平均粒径を有する造粒物で形成されているから加工性に優れ、工業的に安価な前記方法によって、所望の形状に容易にかつ高い生産性で整形されることができる。 
このようにして所望の形状に研削整形された未焼成成形体を大気雰囲気で1500~1700℃、好ましくは1550~1650℃で、1~8時間、好ましくは3~7時間にわたって焼成して、アルミナ基焼結体を得る。焼成温度が1500~1700℃であると、焼結体が十分に緻密化し易く、アルミナ成分の異常粒成長が生じ難いので、得られるアルミナ基焼結体の耐電圧特性及び機械的強度を確保することができる。また、焼成時間が1~8時間であると、焼結体が十分に緻密化し易く、アルミナ成分の異常粒成長が生じ難いので、得られるアルミナ基焼結体の耐電圧特性及び機械的強度を確保することができる。 
このようにして前記組成を有する未焼成成形体を焼結すると、主成分としてのAl成分とSi成分とMg成分及びBa成分を含む2種類以上の第2族元素成分と0.5~4.0質量%の希土類元素成分とを含有するアルミナ基焼結体が得られる。このアルミナ基焼結体はその誘電率εが9.4~10.5(F/m)の範囲内にある。さらに、得られるアルミナ基焼結体は、その鏡面研磨面における250μm×190μmの領域を倍率500倍で複数箇所例えば9個所観察したときに、観察領域の面積Sに対する、観察領域内に存在する気孔の合計面積Sの面積割合(S/S)が2.0~4.0%であり、観察領域内に存在する円相当直径が20μm以上の気孔の合計面積S20の面積割合(S20/S)が0.3%以下になっている。したがって、このアルミナ基焼結体は、小型のスパークプラグの絶縁体とされたときに高い耐汚損性と長期にわたる高い耐電圧特性とを発揮する。故に、このアルミナ基焼結体は、小型のスパークプラグ又は高出力化された内燃機関用のスパークプラグが備える絶縁体を形成する材料として、特に、高い耐汚損性と長期にわたる高い耐電圧特性とを兼ね備える小型のスパークプラグが備える絶縁体を形成する材料として、好適である。 
このアルミナ基焼結体は、絶縁体2の形状及び寸法に適合するように、所望により、再度、その形状等を整形されてもよい。このようにして、アルミナ基焼結体及びこのアルミナ基焼結体で構成されたスパークプラグ100用の絶縁体2を作製することができる。 
次いで、得られた絶縁体2はその貫通孔6に中心電極3が挿設される。中心電極3が挿設された絶縁体2を前記主体金具1に挿入して、第1主体金具段部55と第1絶縁体段部27とを係合させることによって、主体金具1に絶縁体2を取り付ける。なお、主体金具1は前記形状及び寸法に調整されている。接地電極4は絶縁体2を取り付ける前又は後に主体金具1の端部近傍に電気抵抗溶接等によって接合される。このようにして、前記条件(1)~(3)を満たすスパークプラグ100を製造することができる。この発明に係るスパークプラグの製造方法において、中心電極と、絶縁体と、主体金具との組み付ける態様としては、例えば図1~図3に示すところの、この発明に係るスパークプラグの一実施例を挙げることができる。 
この発明に係るスパークプラグは、自動車用の内燃機関例えばガソリンエンジン、ディーゼルエンジン等の点火栓として使用され、内燃機関の燃焼室を区画形成するヘッド(図示せず)に設けられたネジ穴に前記取付ネジ部7が螺合されて所定の位置に固定される。 
このように、前記組成及び前記特性を有するアルミナ基焼結体で絶縁体2が作製されているから、この発明によれば、小型であっても耐汚損性と長期にわたる耐電圧特性とを兼ね備えるスパークプラグを製造することのできるスパークプラグの製造方法を提供することができる。さらに、この発明によれば、高出力化された内燃機関等に装着されても耐汚損性と長期にわたる耐電圧特性とを兼ね備える小型のスパークプラグの製造方法を提供することができる。 
この発明に係るスパークプラグは、前記した実施例に限定されることはなく、本願発明の目的を達成することができる範囲において、種々の変更が可能である。例えば、前記スパークプラグ100は、脚長部30が略円錐台形をなしているが、この発明において、前記脚長部は、略均一な外径を有する円筒形を有する脚長基部と、この脚長基部から段差部を経て脚長基部よりも小径の略円錐台形の脚長先端部とを備えていてもよい。 
また、前記スパークプラグ100は、中心電極3及び接地電極4を備えているが、この発明においては、中心電極の先端部、及び/又は、接地電極の表面に、貴金属チップを備えていてもよい。中心電極の先端部及び接地電極の表面に形成される貴金属チップは、通常、円柱形状を有し、適宜の寸法に調整され、適宜の溶接手法例えばレーザー溶接又は電気抵抗溶接により中心電極の先端部、接地電極の表面に溶融固着される。中心電極の先端部に形成された貴金属チップの表面と接地電極の表面に形成された貴金属チップの表面とで前記火花放電間隙が形成される。この貴金属チップを形成する材料は、例えば、Pt、Pt合金、Ir、Ir合金等の貴金属が挙げられる。
(実施例1~15及び比較例1~5) アルミナ粉末とSi化合物粉末と第2族元素化合物粉末としてMg化合物粉末、Ba化合物粉末、Ca化合物粉末及び/又はSr化合物粉末と希土類化合物粉末との原料粉末(混合した各粉末の種類を第1表に示す。)に親水性結合剤を添加してスラリーを調製した。なお、前記Si化合物粉末及び前記第2族元素化合物粉末の平均粒径D50を「焼結助剤の平均粒径D(μm)」50として第1表に示す。 
得られたスラリーをスプレードライ法等により噴霧乾燥して平均粒径が約100μmの粉末を造粒した。この粉末を第1表に示す「成形圧力」でラバープレス成形して未焼成成形体を得た。この未焼成成形体を大気雰囲気下において焼成温度1500~1700℃の範囲内で焼成時間を1~8時間に設定して焼成し、その後、釉薬をかけて仕上げ焼成することにより、各アルミナ基焼結体を得た。前記焼成条件は前記範囲内ですべて同一の条件に設定した。 
得られたアルミナ基焼結体それぞれの組成すなわち各成分の含有率を、エネルギー分散型マイクロアナライザー(EPMA/EDS)を用いた定量分析によって、Al成分とSi成分と第2族元素成分と希土類元素成分との含有率(酸化物換算)の合計を100質量%としたときの質量割合(%)として算出した。エネルギー分散型マイクロアナライザー(EPMA/EDS)の分析条件は、フィールドエミッション電子プローブマイクロアナライザ(JXA-8500F、日本電子株式会社製)を用いてスポット径φ200、加速電圧20kVに設定し、10個所測定したときの算出平均値とした。その結果を第1表に示す。第1表において空欄はその成分が検出されなかったことを意味する。なお、第1表に示される各成分の含有率は前記原料粉末における混合割合とほぼ一致していた。また、得られたアルミナ基焼結体それぞれの誘電率ε(F/m)、面積割合(S/S)及び面積割合(S20/S)を前記方法により測定又は算出した結果を、第2表に示す。 
Figure JPOXMLDOC01-appb-T000001
(耐汚損性) 各アルミナ基焼結体を用いて、図1~図3に示されるスパークプラグ
100を製造した。実施例1~15及び比較例1~5のスパークプラグにおいて、取付ネジ部7の呼び径を第1表に示される「プラグタイプ」に適合する値に、火花放電間隙gを1.1mmに、また、前記係合凸部56の内径DIN(mm)、前記脚長基部の最大外径dOUT(mm)及びその内径dIN(mm)を第1表に示す値にそれぞれ調整した。このようにして準備した各スパークプラグを用いてプレデリバリ耐久試験を行った。すなわち、各スパークプラグを、接地電極4側を正、中心電極2側を負とする電圧印加極性で試験用自動車(排気量:1500cc、直列4気筒)に取り付け、JIS:D1606に例示されている走行パターン(テスト室温:-10℃)を1サイクルとして、スパークプラグの絶縁抵抗が10MΩ以下に低下するまでこれを繰り返した。スパークプラグの耐汚損性は、前記サイクル数により評価し、そのサイクル数が10サイクル以上であった場合を「○」、6サイクル以下であった場合を「×」とした。その結果を第2表に示す。 
(耐電圧特性:印加電圧33kV) 耐汚損性と同様にして実施例1~15及び比較例1~5の各スパークプラグをそれぞれ複数本準備した。周辺圧力が10MPaの環境下で準備したスパークプラグの主体金具1と中心電極3との間に33kVの電圧を200時間にわたって連続して印加した。この試験を各スパークプラグそれぞれについて行い、各スパークプラグの試験総数に対する絶縁破壊が発生したスパークプラグ数の破壊割合(%)を算出して、スパークプラグの耐電圧特性を評価した。耐電圧特性は、前記破壊割合(%)が0%であった場合を「◎」、前記破壊割合(%)が0%を超え20%未満であった場合を「○」、前記破壊割合(%)が20%以上であった場合を「×」とした。その結果を「耐電圧特性 印加電圧33kV」として第2表に示す。なお、主体金具1と中心電極3とに33kVの電圧を印加した耐電圧特性において、前記破壊割合(%)が20%未満であれば実用上許容でき、前記破壊割合(%)が0%であれば実用上十分な耐電圧特性を長期にわたって発揮する。 
(耐電圧特性:印加電圧38kV) 主体金具1と中心電極3との間に連続して印加する電圧を38kVに設定したこと以外は、前記耐電圧特性1と基本的に同様にして、各スパークプラグにおける高電圧が印加されたときの耐電圧特性を評価した。その結果を「耐電圧特性 印加電圧38kV」として第2表に示す。なお、主体金具1と中心電極3とに38kVの高電圧を印加した耐電圧特性において、前記破壊割合(%)が20%未満であれば実用上許容でき、前記破壊割合(%)が0%であれば実用上十分な耐電圧特性を長期にわたって発揮する。 
なお、各スパークプラグの絶縁体における誘電率ε(F/m)、前記面積割合(S/S)及び前記面積割合(S20/S)は第2表に示されたアルミナ基焼結体のそれらと同一であった。 
Figure JPOXMLDOC01-appb-T000002
第2表に示されるように、前記条件(1)~(3)をすべて満足する実施例1~15は、取付ネジ部7の呼び径がM12となるように小型化されたスパークプラグであるにもかかわらず、33kVの電圧を200時間の長期にわたって連続印加された場合だけでなく、38kVもの高電圧を200時間の長期にわたって連続印加された場合であっても、耐汚損性を損なうことなく、絶縁破壊が発生しにくく高い耐電圧特性を発揮した。同様に、アルミナ基焼結体が主成分としてのAlとSiOとMgO及びBaOを含む2種類以上の、IUPAC1990年勧告に基づく周期表の第2族元素の酸化物と0.5~4.0質量%の希土類元素の酸化物とを、これらの含有率の合計が100質量%となるように、含有していると、小型化されたスパークプラグであっても耐汚損性を損なうことなく高い耐電圧特性を発揮した。 
さらに、誘電率εが9.4~10.5で、前記面積割合(S/S)が2.0~4.0%、かつ前記面積割合(S20/S)が0.3%以下である実施例、及び、原料粉末の平均粒径D50が0.5~3.0μmで成形圧力が50~70MPaでアルミナ基焼結体を製造した実施例はいずれも長期間にわたって優れた耐電圧特性を発揮した。特に、これらをすべて満たす実施例5、7~9はいずれも、33kVの電圧、及び、38kVもの高電圧が200時間の長期にわたって連続印加されても1本も絶縁破壊が発生せず、長期間にわたって極めて優れた耐電圧特性を発揮した。 
一方、比較例1及び2は、条件(2)を満足せず脚長基部が2.1mm以上と非常に厚いから、耐電圧特性に優れる反面、十分に小型化することができない。比較例3~5は、条件(2)を満足しているが条件(3)を満たしていないから、絶縁破壊しやすく、38kVの高電圧が印加されたときの耐電圧特性は実用上の許容範囲まで到達しなかった。なお、比較例1及び3は、条件(1)を満たさず、基部間隙Sが広いから耐汚損性に劣っていた。
この発明に係るスパークプラグは、如何なる内燃機関にも使用することができるが、薄肉化された絶縁体が要求される小型のスパークプラグ、例えば、高出力化された内燃機関等に用いられるスパークプラグとして好適であり、特に、耐汚損性と長期にわたる耐電圧特性とを兼ね備える小型のスパークプラグが要求される内燃機関に用いられるスパークプラグとして好適である。
100 スパークプラグ1 主体金具2 絶縁体3 中心電極4 接地電極6 貫通孔7 取付ネジ部29 脚長基部30 脚長部(絶縁体縮径部)56 係合凸部(主体金具基部)g 火花放電間隙S 基部間隙

Claims (5)

  1. 先端側に小径の脚長部を有する略筒状に形成され、軸線方向に貫通する貫通孔を有する絶縁体と、前記貫通孔の前記先端側に挿設された中心電極と、径方向内側に突出する係合凸部を有する略筒状に形成され、内挿された前記絶縁体を前記係合凸部で保持する主体金具とを備えて成るスパークプラグであって、 前記係合凸部の内径をDIN(mm)、前記脚長部のうち前記係合凸部の内周面に対面している部分の最大外径をdOUT(mm)及びその内径をdIN(mm)、並びに、前記絶縁体の誘電率をε(F/m)としたときに、下記条件(1)~(3)を満足することを特徴とするスパークプラグ。 条件(1):(DIN-dOUT)/2≦0.40(mm) 条件(2):(dOUT-dIN)/2≦1.65(mm) 条件(3):ε≧9.4(F/m)
  2. 前記誘電率εは10.5(F/m)以下であり、かつ、 前記絶縁体は、その鏡面研磨面における250μm×190μmの領域を倍率500倍で観察したときに、観察領域の面積Sに対する、前記観察領域内に存在する気孔の合計面積Sの面積割合(S/S)が2.0~4.0%であり、前記観察領域内に存在する円相当直径が20μm以上の気孔の合計面積S20の面積割合(S20/S)が0.3%以下であることを特徴とする請求項1に記載のスパークプラグ。
  3. 前記絶縁体は、主成分としてのAlと、SiOと、MgO及びBaOを含む2種類以上の、IUPAC1990年勧告に基づく周期表の第2族元素の酸化物と、0.5~4.0質量%の希土類元素の酸化物とを、これらの含有率の合計が100質量%となるように、含有するアルミナ基焼結体で形成されてなることを特徴とする請求項1又は2に記載のスパークプラグ。
  4. 請求項1~3のいずれか1項に記載のスパークプラグの製造方法であって、 主成分としてのAl化合物粉末と、Si化合物粉末と、Mg化合物粉末及びBa化合物粉末を含む2種類以上の、IUPAC1990年勧告に基づく周期表の第2族元素化合物粉末と、0.5~4.0質量%の希土類化合物粉末とをこれらの酸化物換算含有率の合計が100質量%となるように含有する原料粉末を、加圧成形後に焼結して、前記絶縁体を製造する工程を含むことを特徴とするスパークプラグの製造方法。
  5. 前記Si化合物粉末及び前記第2族元素化合物粉末はそれらの平均粒径D50が0.5~3.0μmであり、前記加圧成形は50~70MPaの加圧下で行われることを特徴とする請求項4に記載のスパークプラグの製造方法。
PCT/JP2010/004161 2009-09-25 2010-06-23 スパークプラグ及びスパークプラグの製造方法 WO2011036832A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080042325.6A CN102549861B (zh) 2009-09-25 2010-06-23 火花塞及火花塞的制造方法
US13/497,904 US8564184B2 (en) 2009-09-25 2010-06-23 Spark plug and process for producing spark plug
EP10818513.3A EP2482396B1 (en) 2009-09-25 2010-06-23 Spark plug and process for producing spark plug
KR1020127010553A KR101307649B1 (ko) 2009-09-25 2010-06-23 스파크 플러그 및 스파크 플러그의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-221066 2009-09-25
JP2009221066A JP4756087B2 (ja) 2009-09-25 2009-09-25 スパークプラグ及びスパークプラグの製造方法

Publications (2)

Publication Number Publication Date
WO2011036832A1 true WO2011036832A1 (ja) 2011-03-31
WO2011036832A9 WO2011036832A9 (ja) 2012-02-23

Family

ID=43795602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004161 WO2011036832A1 (ja) 2009-09-25 2010-06-23 スパークプラグ及びスパークプラグの製造方法

Country Status (6)

Country Link
US (1) US8564184B2 (ja)
EP (1) EP2482396B1 (ja)
JP (1) JP4756087B2 (ja)
KR (1) KR101307649B1 (ja)
CN (1) CN102549861B (ja)
WO (1) WO2011036832A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625531B1 (ja) * 2009-09-02 2011-02-02 日本特殊陶業株式会社 スパークプラグ
JP2013060869A (ja) * 2011-09-13 2013-04-04 Ngk Spark Plug Co Ltd 点火システム
JP5476360B2 (ja) * 2011-11-25 2014-04-23 日本特殊陶業株式会社 点火プラグ
JP5211251B1 (ja) * 2012-02-27 2013-06-12 日本特殊陶業株式会社 スパークプラグ
JP5721680B2 (ja) * 2012-09-27 2015-05-20 日本特殊陶業株式会社 スパークプラグ
JP2014187004A (ja) * 2013-02-22 2014-10-02 Ngk Spark Plug Co Ltd 絶縁体およびスパークプラグ
JP5775544B2 (ja) * 2013-05-09 2015-09-09 日本特殊陶業株式会社 点火プラグ用絶縁体及び点火プラグ
JP6631201B2 (ja) 2014-12-08 2020-01-15 株式会社デンソー 点火装置並びにこれに用いられる超親水膜の製造方法
CN105048291A (zh) * 2015-06-29 2015-11-11 唐萍 火花塞
JP6369837B2 (ja) * 2015-09-24 2018-08-08 日本特殊陶業株式会社 スパークプラグ
JP6440602B2 (ja) * 2015-09-24 2018-12-19 日本特殊陶業株式会社 スパークプラグ
JP6340453B2 (ja) * 2016-06-27 2018-06-06 日本特殊陶業株式会社 スパークプラグ
JP6546624B2 (ja) * 2017-06-27 2019-07-17 日本特殊陶業株式会社 スパークプラグ
JP6623200B2 (ja) * 2017-10-13 2019-12-18 日本特殊陶業株式会社 スパークプラグ
US11870221B2 (en) 2021-09-30 2024-01-09 Federal-Mogul Ignition Llc Spark plug and methods of manufacturing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233234A (ja) * 1998-02-12 1999-08-27 Denso Corp イオン電流検出用スパークプラグおよびイオン電流検出装置
JP2000247729A (ja) * 1999-02-23 2000-09-12 Ngk Spark Plug Co Ltd アルミナ基焼結体
JP2001335360A (ja) * 2000-05-24 2001-12-04 Ngk Spark Plug Co Ltd スパークプラグ用絶縁体及びスパークプラグ
JP2002260817A (ja) 2000-12-27 2002-09-13 Ngk Spark Plug Co Ltd スパークプラグ
JP2005183177A (ja) 2003-12-19 2005-07-07 Ngk Spark Plug Co Ltd スパークプラグ
JP2006196474A (ja) * 2000-06-30 2006-07-27 Ngk Spark Plug Co Ltd スパークプラグ
JP2009146636A (ja) * 2007-12-12 2009-07-02 Denso Corp 点火装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3432102B2 (ja) * 1996-02-15 2003-08-04 日本特殊陶業株式会社 スパークプラグ
BR0103399A (pt) 2000-06-30 2002-02-13 Ngk Spark Plug Co Vela de ignição
US6653768B2 (en) * 2000-12-27 2003-11-25 Ngk Spark Plug Co., Ltd. Spark plug
JP3795374B2 (ja) 2001-10-31 2006-07-12 日本特殊陶業株式会社 スパークプラグ
JP4690230B2 (ja) * 2006-03-16 2011-06-01 日本特殊陶業株式会社 内燃機関用スパークプラグ及びその製造方法
CN101479900A (zh) * 2006-05-12 2009-07-08 能量脉冲科技有限公司 复合火花塞
EP3739701B1 (en) * 2009-05-07 2024-04-03 Niterra Co., Ltd. Spark plug
WO2011125306A1 (ja) * 2010-04-02 2011-10-13 日本特殊陶業株式会社 スパークプラグ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233234A (ja) * 1998-02-12 1999-08-27 Denso Corp イオン電流検出用スパークプラグおよびイオン電流検出装置
JP2000247729A (ja) * 1999-02-23 2000-09-12 Ngk Spark Plug Co Ltd アルミナ基焼結体
JP2001335360A (ja) * 2000-05-24 2001-12-04 Ngk Spark Plug Co Ltd スパークプラグ用絶縁体及びスパークプラグ
JP2006196474A (ja) * 2000-06-30 2006-07-27 Ngk Spark Plug Co Ltd スパークプラグ
JP2002260817A (ja) 2000-12-27 2002-09-13 Ngk Spark Plug Co Ltd スパークプラグ
JP2005183177A (ja) 2003-12-19 2005-07-07 Ngk Spark Plug Co Ltd スパークプラグ
JP2009146636A (ja) * 2007-12-12 2009-07-02 Denso Corp 点火装置

Also Published As

Publication number Publication date
JP2011070928A (ja) 2011-04-07
US8564184B2 (en) 2013-10-22
KR101307649B1 (ko) 2013-09-12
CN102549861B (zh) 2014-01-01
KR20120065421A (ko) 2012-06-20
EP2482396A1 (en) 2012-08-01
EP2482396B1 (en) 2020-01-01
US20120262049A1 (en) 2012-10-18
EP2482396A4 (en) 2013-12-25
CN102549861A (zh) 2012-07-04
WO2011036832A9 (ja) 2012-02-23
JP4756087B2 (ja) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4756087B2 (ja) スパークプラグ及びスパークプラグの製造方法
JP4651732B1 (ja) スパークプラグ
JP4530380B2 (ja) スパークプラグ用絶縁体及びそれを備えるスパークプラグ
JP5172018B2 (ja) スパークプラグ及びスパークプラグの製造方法
US8278809B2 (en) Spark plug with alumina-based insulator
JP5111603B2 (ja) スパークプラグ
WO2009119098A1 (ja) スパークプラグ及びスパークプラグの製造方法
JP5211251B1 (ja) スパークプラグ
JP6843809B2 (ja) スパークプラグ
JP2017062878A (ja) スパークプラグ
JP6366555B2 (ja) スパークプラグ
JP5728416B2 (ja) スパークプラグ
JP6440602B2 (ja) スパークプラグ
JP5349670B1 (ja) スパークプラグ
JP2011154908A (ja) スパークプラグ、スパークプラグ用絶縁体及びその製造方法
JP2009242234A (ja) スパークプラグ用絶縁体、その製造方法及びそれを用いたスパークプラグ
WO2023008300A1 (ja) 絶縁体およびスパークプラグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080042325.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818513

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13497904

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010818513

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127010553

Country of ref document: KR

Kind code of ref document: A