WO2011036819A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2011036819A1
WO2011036819A1 PCT/JP2009/066831 JP2009066831W WO2011036819A1 WO 2011036819 A1 WO2011036819 A1 WO 2011036819A1 JP 2009066831 W JP2009066831 W JP 2009066831W WO 2011036819 A1 WO2011036819 A1 WO 2011036819A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
hole
insulating layer
semiconductor device
etching
Prior art date
Application number
PCT/JP2009/066831
Other languages
English (en)
French (fr)
Inventor
恵子 安部
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2009/066831 priority Critical patent/WO2011036819A1/ja
Priority to JP2011532892A priority patent/JP5377657B2/ja
Publication of WO2011036819A1 publication Critical patent/WO2011036819A1/ja
Priority to US13/369,427 priority patent/US8535977B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/50Multistep manufacturing processes of assemblies consisting of devices, each device being of a type provided for in group H01L27/00 or H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/9202Forming additional connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device.
  • LSI three-dimensional integrated circuit
  • a three-dimensional LSI In a three-dimensional LSI, substrates are bonded together by pressing the upper and lower substrates and bonding the bumps together, and then filling the gap between the substrates with an adhesive.
  • substrates are bonded together by pressing the upper and lower substrates and bonding the bumps together, and then filling the gap between the substrates with an adhesive.
  • this method there is a risk that elements in the LSI are greatly damaged when the upper and lower substrates are pressed.
  • the gap between the substrates is narrow, it is difficult to fill the gap between the substrates with an adhesive.
  • An object of the present invention is to provide a semiconductor device manufacturing method capable of effectively manufacturing a three-dimensional LSI.
  • a method of manufacturing a semiconductor device includes a step of preparing a first substrate having electrodes, a step of preparing a second substrate having through holes, the first substrate, and the second substrate. Laminating the second substrate on the first substrate with an insulating layer interposed between the substrate and the substrate, etching the insulating layer using the second substrate as a mask, Forming an opening reaching the electrode in the insulating layer below the through hole, and filling the through hole and the opening with a conductive material.
  • FIG. 1 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 2 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 3 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 4 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 5 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 6 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 7 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 8 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 9 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 10 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 11 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 12 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 13 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 14 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 15 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 16 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 17 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 18 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 19 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 20 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 21 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 22 is a cross-sectional view schematically showing a part of the method for manufacturing the semiconductor device according to the embodiment.
  • FIG. 23 is a cross-sectional view schematically showing the configuration of the semiconductor device according to the first modification example of the embodiment.
  • FIG. 24 is a cross-sectional view schematically showing the configuration of the semiconductor device according to the second modification example of the embodiment.
  • FIG. 1 to 22 are cross-sectional views schematically showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • a three-dimensional LSI having a three-layer structure will be described as an example.
  • FIG. 1 to FIG. 8 are diagrams showing a manufacturing process of a first layer substrate.
  • FIG. 1 a substrate on which an integrated circuit is formed is prepared.
  • reference numeral 102 denotes a silicon substrate (silicon wafer) as a semiconductor substrate
  • 104 denotes a circuit region formed on the surface region of the silicon substrate 102
  • 106 denotes a top metal layer serving as a connection terminal of the circuit
  • 108 denotes a passivation film.
  • holes 110 are formed in the substrate by etching.
  • anisotropic etching such as RIE (reactive ion etching) is used.
  • RIE reactive ion etching
  • a mixed gas of SF 6 and O 2 or a mixed gas of SF 6 , O 2 and C 4 F 8 can be used.
  • an insulating film 112 is deposited along the inner surface of the hole 110.
  • a material of the insulating film 112 silicon oxide, silicon nitride, organic silica, or the like can be used.
  • a plasma CVD (chemical vapor deposition) method, a thermal CVD method, or the like can be used.
  • the insulating film 112 is patterned to form a hole in the upper surface of the top metal layer 106, and a groove for wiring that connects the top metal layer 106 and a through electrode 116 described later. Form.
  • a conductive barrier film 114 is formed.
  • a barrier metal such as Ta, TaN, or TiN or polysilicon can be used.
  • a thermal CVD method, an ALD (atomic layer deposition) method, a plasma CVD method, a reactive sputtering method, an ionization sputtering method, or the like can be used. Note that in the case where polysilicon is used as the conductive material filling the hole 110 and the like, the step of forming the barrier film 114 may be omitted.
  • a conductive material 116 is deposited on the entire surface, and the hole 110 and the holes and grooves formed in the step of FIG. 4 are filled with this conductive material 116.
  • the conductive material 116 Cu, W, Al, polysilicon, or the like can be used.
  • a method for depositing the conductive material 116 a PVD (physical vapor deposition) method, a CVD method, a plating method, an LPCVD method, or the like can be used.
  • the conductive material 116 is polished by CMP (chemical mechanical polishing). Thereby, the conductive material 116 formed other than the holes and the grooves is removed. As a result, an electrode is formed in the hole 110.
  • CMP chemical mechanical polishing
  • FIG. 9 to FIG. 14 are diagrams showing the manufacturing process of the second layer substrate.
  • a substrate on which an integrated circuit is formed is prepared.
  • 202 is a silicon substrate (silicon wafer) as a semiconductor substrate
  • 204 is a circuit region formed on the surface region of the silicon substrate 202
  • 206 is a top metal layer serving as a connection terminal of the circuit
  • 208 is a passivation film.
  • holes 210 are formed in the substrate by etching.
  • etching a method similar to the method shown in the step of FIG. 2 can be used.
  • an insulating film 212 is deposited along the inner surface of the hole 210.
  • the material and the deposition method of the insulating film 212 the same material and deposition method as those shown in the step of FIG. 3 can be used.
  • the insulating film 212 is patterned to form a hole in the upper surface of the top metal layer 206, and a groove for wiring that connects the top metal layer 206 and a through-electrode 218 described later. Form.
  • a conductive barrier film 214 is formed.
  • the same material and deposition method as shown in the step of FIG. 5 can be used. Note that in the case where polysilicon is used as the conductive material filling the holes 210 and the like, the step of forming the barrier film 214 may be omitted.
  • a dummy material such as polysilicon may be filled in the hole 210 to be the through hole 216 before performing the polishing and etching.
  • the dummy material may be removed after the dummy material is exposed from the back side of the substrate by polishing and etching.
  • Polysilicon used as a dummy material can be formed by LPCVD using silane gas.
  • the third layer substrate can be manufactured by the same process as the second layer substrate, the description is omitted.
  • 15 to 22 are views showing a process of laminating the first to third layers of substrates.
  • a second layer substrate (second substrate) 200 is stacked on a first layer substrate (first substrate) 100. Specifically, it is as follows.
  • an insulating layer 400 is formed on a first layer substrate (first substrate) 100, and a second layer substrate (second substrate) 200 is formed on the insulating layer 400. Laminate. At this time, alignment is performed so that the center of the through electrode 116 of the first substrate 100 and the center of the through hole 216 of the second substrate 200 coincide.
  • a resin such as polyimide or benzocyclobutene (BCB) can be used.
  • a silicon oxide film or a silicon nitride film can be used for the insulating layer 400.
  • the insulating layer 400 is etched using the second substrate 200 as a mask to form an opening reaching the through electrode 116 in the insulating layer 400 immediately below the through hole 216. That is, an etchant is supplied to the insulating layer 400 through the through hole 216, and an opening having the same planar shape as the through hole 216 is formed in the insulating layer 400. In this etching, the insulating layer 400 is selectively formed with respect to the insulating film 212 and the barrier film 214 so that the insulating film 212 and the barrier film 214 formed on the inner surface (inner wall) of the through hole 216 are not lost. Etch.
  • the etching rate of the insulating layer 400 is higher than the etching rate of the insulating film 212 and the etching rate of the barrier film 214 with respect to the etchant used for etching the insulating layer 400.
  • a resin such as polyimide or benzocyclobutene (BCB) can be used for the insulating layer 400.
  • a silicon oxide film or a silicon nitride film can be used for the insulating layer 400.
  • a silicon oxide film is used as the insulating film 212 and polyimide or benzocyclohexane is used as the insulating layer 400.
  • Resins such as butene (BCB) can be used.
  • polyimide or BCB can be selectively etched by performing RIE using a mixed gas of CF 4 and O 2 as an etching gas.
  • the dummy material is removed before the step of FIG. Specifically, the dummy material is removed before or after the first substrate 100 and the second substrate 200 are stacked in the step of FIG.
  • the dummy material is removed after the second substrate 200 is stacked, damage to the through hole entrance when the second substrate 200 is stacked can be prevented.
  • the dummy material can be removed by RIE or plasma etching using a mixed gas of CF 4 and O 2 as an etching gas.
  • a conductive material (conductive material) 218 is deposited on the entire surface.
  • the conductive material 218 fills the through hole 216, the opening formed in the insulating layer 400 immediately below the through hole 216, the hole formed in the upper surface of the top metal layer 206 in the step of FIG. 13, and the wiring groove.
  • the conductive material 218 is polished by CMP. Thereby, the conductive material 218 formed other than the holes and grooves is removed. As a result, the through electrode 218 is formed in the through hole 216 and the opening immediately below the through hole 216. That is, the through electrode 116 and the through electrode 218 are connected through the opening formed in the insulating layer 400.
  • a third layer substrate (third substrate) 300 is stacked on the second layer substrate (second substrate) 200.
  • the basic lamination process of the third substrate is the same as the lamination process of the second substrate, and thus the description of the already described items is omitted.
  • an insulating layer 500 is formed on a second layer substrate (second substrate) 200, and a third layer substrate (third substrate) 300 is formed on the insulating layer 500. Laminate. At this time, alignment is performed so that the center of the through electrode 218 of the second substrate 200 and the center of the through hole 316 of the third substrate 300 coincide.
  • the insulating layer 500 is etched using the third substrate 300 as a mask to form an opening reaching the through electrode 218 in the insulating layer 500 immediately below the through hole 316. That is, an etchant is supplied to the insulating layer 500 through the through hole 316, and an opening having the same planar shape as the through hole 316 is formed in the insulating layer 500.
  • a conductive material (conductive material) 318 is deposited on the entire surface.
  • the conductive material 318 fills the through hole 316, the opening formed in the insulating layer 500 immediately below the through hole 316, the hole formed in the upper surface of the top metal layer 306, and the wiring groove.
  • the conductive material 318 is polished by CMP. Thereby, the conductive material 318 formed other than the holes and grooves is removed. As a result, the through electrode 318 is formed in the opening directly below the through hole 316 and the through hole 316. That is, the through electrode 218 and the through electrode 318 are connected through the opening formed in the insulating layer 500.
  • the insulating layer 400 interposed between the first substrate 100 and the second substrate 200 is etched using the second substrate 200 as a mask, so that the bottom of the through-hole 216 is obtained.
  • An opening is formed in the insulating layer 400, and the through hole and the opening are filled with a conductive material to form a through electrode.
  • FIG. 23 is a cross-sectional view schematically showing the configuration of the semiconductor device according to the first modification of the present embodiment.
  • the centers of the through electrodes are made to coincide with each other, but the centers of the through electrodes may not be made to coincide as shown in FIG.
  • a connection portion between the through electrode 218 of the second substrate 200 and the top metal layer 206 substantially functions as an electrode, and the through electrode 218 of the second substrate 200 and the through electrode 318 of the third substrate 300 are electrically connected. Connected to. Even with such a configuration, it is possible to obtain the same effects as those described above.
  • FIG. 24 is a cross-sectional view schematically showing the configuration of the semiconductor device according to the second modification of the present embodiment.
  • this modification there is a portion where the through electrode is not formed on the first substrate 100, and the through electrode 218 of the second substrate 200 is connected to the top metal layer 106 of the first substrate. Even with such a configuration, it is possible to obtain the same effects as those described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 電極(116)を有する第1の基板(100)を用意する工程と、貫通孔を有する第2の基板(200)を用意する工程と、第1の基板と第2の基板との間に絶縁層(400)を介在させた状態で第1の基板上に第2の基板を積層する工程と、第2の基板をマスクとして用いて絶縁層をエッチングして、貫通孔下の絶縁層に電極に達する開口を形成する工程と、貫通孔及び開口を導電物(218)で埋める工程とを備えた半導体装置の製造方法である。

Description

半導体装置の製造方法
 本発明は、半導体装置の製造方法に関する。
 半導体装置(半導体集積回路装置)のより一層の高集積化及び高速化をはかる観点から、3次元集積回路(LSI)装置が提案されている。3次元LSIでは、TSV(Through Silicon Via)と呼ばれる貫通電極を用いて基板間の電気的接続が行われる。
 3次元LSIでは通常、上下の基板を加圧してバンプ同士を圧着させた後、基板間の隙間に接着剤を充填することで基板の貼り合わせを行っている。しかしながら、この方法では、上下の基板を加圧する際にLSI中の素子が大きなダメージを受けるおそれがある。また、基板間の隙間が狭いと、基板間の隙間に接着剤を充填することが困難になる。
 上述したような問題に対して、特許文献1には以下のような方法が開示されている。まず、基板(ウエハ)に貫通孔を形成し、貫通孔の内面に絶縁膜を形成する。続いて、基板の裏面を研磨した後、基板の裏面に絶縁層を形成する。さらに、裏面の絶縁層をパターニングした後、基板同士を貼り合わせる。その後、貫通孔に導電性材料を充填することで、基板間の電気的な接続を行う。しかしながら、この方法では、ラフネスの大きい基板の裏面に形成された絶縁層をパターニングするため、十分な加工精度が得られないという問題がある。
 このように、従来は3次元LSIを効果的に作製することが困難であった。
特開2005-197339号公報
 本発明は、3次元LSIを効果的に作製することが可能な半導体装置の製造方法を提供することを目的としている。
 本発明の一視点に係る半導体装置の製造方法は、電極を有する第1の基板を用意する工程と、貫通孔を有する第2の基板を用意する工程と、前記第1の基板と前記第2の基板との間に絶縁層を介在させた状態で前記第1の基板上に前記第2の基板を積層する工程と、前記第2の基板をマスクとして用いて前記絶縁層をエッチングして、前記貫通孔下の前記絶縁層に前記電極に達する開口を形成する工程と、前記貫通孔及び前記開口を導電物で埋める工程と、を備える。
 本発明によれば、3次元LSIを効果的に作製することが可能な半導体装置の製造方法を提供することができる。
図1は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図2は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図3は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図4は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図5は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図6は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図7は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図8は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図9は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図10は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図11は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図12は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図13は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図14は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図15は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図16は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図17は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図18は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図19は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図20は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図21は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図22は、実施形態に係る半導体装置の製造方法の一部を模式的に示した断面図である。 図23は、実施形態の第1の変更例に係る半導体装置の構成を模式的に示した断面図である。 図24は、実施形態の第2の変更例に係る半導体装置の構成を模式的に示した断面図である。
 以下、本発明の実施形態を図面を参照して説明する。
 図1~図22は、本発明の実施形態に係る半導体装置の製造方法を模式的に示した断面図である。本実施形態では、3層構造の3次元LSIを例に説明する。
 図1~図8は、第1層目の基板の製造工程を示した図である。
 まず、図1に示すように、集積回路が形成された基板を用意する。図1において、102は半導体基板であるシリコン基板(シリコンウエハ)、104はシリコン基板102の表面領域に形成された回路領域、106は回路の接続端子となるトップメタル層、108はパッシベーション膜を示している。
 次に、図2に示すように、エッチングによって基板に穴110を形成する。このエッチングには、RIE(reactive ion etching)等の異方性エッチングを用いる。エッチングガスとしては、SF6及びO2の混合ガス、或いはSF6、O2及びC48の混合ガスを用いることができる。
 次に、図3に示すように、穴110の内面に沿って絶縁膜112を堆積する。絶縁膜112の材料には、シリコン酸化物、シリコン窒化物、有機シリカ等を用いることができる。また、絶縁膜112の堆積方法には、プラズマCVD(chemical vapor deposition)法や熱CVD法等を用いることができる。
 次に、図4に示すように、絶縁膜112をパターニングして、トップメタル層106の上面に穴を形成するとともに、トップメタル層106と後述する貫通電極116とを接続する配線のための溝を形成する。
 次に、図5に示すように、導電性のバリア膜114を形成する。バリア膜114を設けることにより、穴110等を埋める導電性材料がシリコン基板中へ拡散することを防止できる。バリア膜114には、Ta、TaN、TiN等のバリアメタル或いはポリシリコンを用いることができる。また、バリア膜114の堆積方法には、熱CVD法、ALD(atomic layer deposition)法、プラズマCVD法、反応性スパッタリング法或いはイオン化スパッタリング法等を用いることができる。なお、穴110等を埋める導電性材料としてポリシリコンを用いる場合には、バリア膜114の形成工程を省略してもよい。
 次に、図6に示すように、導電性材料116を全面に堆積し、この導電性材料116によって穴110並びに図4の工程で形成した穴及び溝を埋める。導電性材料116には、Cu、W、Al或いはポリシリコン等を用いることができる。また、導電性材料116の堆積方法には、PVD(physical vapor deposition)法、CVD法、メッキ法或いはLPCVD法等を用いることができる。
 次に、図7に示すように、CMP(chemical mechanical polishing)によって導電性材料116を研磨する。これにより、穴及び溝以外に形成されている導電性材料116を除去する。その結果、穴110内に電極が形成される。
 次に、図8に示すように、基板の裏面側から機械研磨及びエッチングを行い、電極116を露出させる。これにより、TSV(Through Silicon Via)構造の貫通電極116が得られる。
 図9~図14は、第2層目の基板の製造工程を示した図である。
 まず、図9に示すように、集積回路が形成された基板を用意する。図9において、202は半導体基板であるシリコン基板(シリコンウエハ)、204はシリコン基板202の表面領域に形成された回路領域、206は回路の接続端子となるトップメタル層、208はパッシベーション膜を示している。
 次に、図10に示すように、エッチングによって基板に穴210を形成する。このエッチングには、図2の工程で示した方法と同様の方法を用いることができる。
 次に、図11に示すように、穴210の内面に沿って絶縁膜212を堆積する。絶縁膜212の材料や堆積方法には、図3の工程で示したのと同様の材料や堆積方法を用いることができる。
 次に、図12に示すように、絶縁膜212をパターニングして、トップメタル層206の上面に穴を形成するとともに、トップメタル層206と後述する貫通電極218とを接続する配線のための溝を形成する。
 次に、図13に示すように、導電性のバリア膜214を形成する。このバリア膜214の材料や堆積方法には、図5の工程で示したのと同様の材料や堆積方法を用いることができる。なお、穴210等を埋める導電性材料としてポリシリコンを用いる場合には、バリア膜214の形成工程を省略してもよい。
 次に、図14に示すように、基板の裏面側から機械研磨及びエッチングを行い、貫通孔216を形成する。なお、研磨及びエッチングによる貫通孔入り口へのダメージを防止するために、研磨及びエッチングを行う前に、貫通孔216となる穴210内にポリシリコン等のダミー材料を充填しておいてもよい。この場合、研磨及びエッチングによって基板の裏面側からダミー材料を露出させた後にダミー材料を除去すればよい。ダミー材料として用いるポリシリコンは、シランガスを用いたLPCVD法で形成することができる。
 3層目の基板は、2層目の基板と同様の工程によって製造することができるため、説明は省略する。
 図15~図22は、第1層目から第3層目の基板を積層する工程を示した図である。
 まず、図15~図18に示すように、第1層目の基板(第1の基板)100上に第2層目の基板(第2の基板)200を積層する。具体的には、以下の通りである。
 まず、図15に示すように、第1層目の基板(第1の基板)100上に絶縁層400を形成し、絶縁層400上に第2層目の基板(第2の基板)200を積層する。このとき、第1の基板100の貫通電極116の中心と第2の基板200の貫通孔216の中心とが一致するようにアライメントを行う。絶縁層400には、ポリイミドやベンゾシクロブテン(BCB)等の樹脂を用いることができる。また、絶縁層400にシリコン酸化膜やシリコン窒化膜を用いることも可能である。
 次に、図16に示すように、第2の基板200をマスクとして用いて絶縁層400をエッチングして、貫通孔216直下の絶縁層400に貫通電極116に達する開口を形成する。すなわち、貫通孔216を通してエッチャントを絶縁層400に供給し、貫通孔216と同一の平面形状を有する開口を絶縁層400に形成する。このエッチングの際に、貫通孔216の内面(内壁)に形成された絶縁膜212及びバリア膜214が消失しないようにするため、絶縁層400を絶縁膜212及びバリア膜214に対して選択的にエッチングする。すなわち、絶縁層400をエッチングする際に用いるエッチャントに対して、絶縁層400のエッチングレートが絶縁膜212のエッチングレート及びバリア膜214のエッチングレートよりも高くなるようにする。貫通孔216の内面の最上層にバリア膜214が形成されている場合には、絶縁層400としてポリイミドやベンゾシクロブテン(BCB)等の樹脂を用いることができる。また、絶縁層400にシリコン酸化膜やシリコン窒化膜を用いることも可能である。また、バリア膜214を形成せずに、貫通孔216の内面の最上層に絶縁膜212が形成されている場合には、絶縁膜212としてシリコン酸化膜を用い、絶縁層400としてポリイミドやベンゾシクロブテン(BCB)等の樹脂を用いることができる。このとき、エッチングガスにCF4及びO2の混合ガスを用いてRIEを行うことで、ポリイミドやBCBを選択的にエッチングすることができる。
 なお、図14の工程で貫通孔216内にダミー材料を充填しておいた場合には、図16の工程の前にダミー材料を除去しておく。具体的には、図15の工程で第1の基板100と第2の基板200とを積層する前或いは積層した後に、ダミー材料を除去する。第2の基板200を積層した後にダミー材料を除去する場合には、第2の基板200を積層する際の貫通孔入り口へのダメージを防止することができる。なお、ダミー材料としてポリシリコンを用いた場合には、エッチングガスにCF4及びO2の混合ガスを用いたRIE又はプラズマエッチングによってダミー材料を除去することができる。
 次に、図17に示すように、導電性材料(導電物)218を全面に堆積する。この導電性材料218によって、貫通孔216、貫通孔216直下の絶縁層400に形成した開口、図13の工程でトップメタル層206の上面に形成した穴及び配線用の溝を埋める。この導電性材料218の材料や堆積方法には、図6の工程で示したのと同様の材料や堆積方法を用いることができる。
 次に、図18に示すように、CMPによって導電性材料218を研磨する。これにより、穴や溝以外に形成されている導電性材料218が除去される。その結果、貫通孔216及び貫通孔216直下の開口に貫通電極218が形成される。すなわち、絶縁層400に形成された開口を介して、貫通電極116と貫通電極218とが接続される。
 次に、図19~図22に示すように、第2層目の基板(第2の基板)200上に第3層目の基板(第3の基板)300を積層する。なお、第3の基板の基本的な積層工程は第2の基板の積層工程と同様であるため、すでに説明した事項の説明は省略する。
 まず、図19に示すように、第2層目の基板(第2の基板)200上に絶縁層500を形成し、絶縁層500上に第3層目の基板(第3の基板)300を積層する。このとき、第2の基板200の貫通電極218の中心と第3の基板300の貫通孔316の中心とが一致するようにアライメントを行う。
 次に、図20に示すように、第3の基板300をマスクとして用いて絶縁層500をエッチングして、貫通孔316直下の絶縁層500に貫通電極218に達する開口を形成する。すなわち、貫通孔316を通してエッチャントを絶縁層500に供給し、貫通孔316と同一の平面形状を有する開口を絶縁層500に形成する。
 次に、図21に示すように、導電性材料(導電物)318を全面に堆積する。この導電性材料318によって、貫通孔316、貫通孔316直下の絶縁層500に形成した開口、トップメタル層306の上面に形成した穴及び配線用の溝を埋める。
 次に、図22に示すように、CMPによって導電性材料318を研磨する。これにより、穴や溝以外に形成されている導電性材料318が除去される。その結果、貫通孔316及び貫通孔316直下の開口に貫通電極318が形成される。すなわち、絶縁層500に形成された開口を介して、貫通電極218と貫通電極318とが接続される。
 以上のようにして、絶縁層400に形成された開口及び絶縁層500に形成された開口を介して、貫通電極116、218及び318が接続された構造が得られる。
 以上のように、本実施形態では、第1の基板100と第2の基板200との間に介在した絶縁層400を第2の基板200をマスクとして用いてエッチングすることで、貫通孔216下の絶縁層400に開口を形成し、貫通孔及び開口を導電物で埋めて貫通電極を形成している。このように、第2の基板200をマスクとして用いてエッチングを行うため、製造工程を簡略化することができるとともに、積層された基板の電極同士を確実に接続することができる。第2の基板と第3の基板との関係についても同様である。したがって、特性や信頼性に優れた半導体装置を簡単な工程で製造することができる。
 また、基板の裏面側からではなく表面側からパターニングを行うため、高精度で微細加工を行うことができ、高密度のパターンを形成することができる。また、バンプを用いて接続を行うものではないため、バンプ接続時の加圧によるダメージを無くすことができ、信頼性の高い半導体装置を得ることができる。
 図23は、本実施形態の第1の変更例に係る半導体装置の構成を模式的に示した断面図である。上述した実施形態では、貫通電極同士の中心が互いに一致するようにしたが、図23に示すように貫通電極同士の中心が一致していなくてもよい。図23の例では。第2の基板200の貫通電極218とトップメタル層206との接続部分が実質的に電極として機能し、第2の基板200の貫通電極218と第3の基板300の貫通電極318とが電気的に接続される。このような構成であっても、上述した効果と同様の効果を得ることが可能である。
 図24は、本実施形態の第2の変更例に係る半導体装置の構成を模式的に示した断面図である。本変更例では、第1の基板100に貫通電極が形成されていない部分が存在し、第2の基板200の貫通電極218が第1の基板のトップメタル層106に接続されている。このような構成であっても、上述した効果と同様の効果を得ることが可能である。
 以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲内において種々変形して実施することが可能である。
 100、200、300…基板   102、202…シリコン基板
 104、204…回路領域   106、206…トップメタル層
 108、208…パッシベーション膜   110、210…穴
 112、212、312…絶縁膜   114、214、314…バリア膜
 116、218、318…貫通電極   216、316…貫通孔
 400、500…絶縁層

Claims (8)

  1.  電極を有する第1の基板を用意する工程と、
     貫通孔を有する第2の基板を用意する工程と、
     前記第1の基板と前記第2の基板との間に絶縁層を介在させた状態で前記第1の基板上に前記第2の基板を積層する工程と、
     前記第2の基板をマスクとして用いて前記絶縁層をエッチングして、前記貫通孔下の前記絶縁層に前記電極に達する開口を形成する工程と、
     前記貫通孔及び前記開口を導電物で埋める工程と、
     を備えたことを特徴とする半導体装置の製造方法。
  2.  前記貫通孔の内面には絶縁膜が形成されている
     ことを特徴とする請求項1に記載の方法。
  3.  前記絶縁層をエッチングする際に用いるエッチャントに対して、前記絶縁層のエッチングレートは前記絶縁膜のエッチングレートよりも高い
     ことを特徴とする請求項2に記載の方法。
  4.  前記絶縁膜上には導電性のバリア膜が形成されている
     ことを特徴とする請求項2に記載の方法。
  5.  前記絶縁層をエッチングする際に用いるエッチャントに対して、前記絶縁層のエッチングレートは前記バリア膜のエッチングレートよりも高い
     ことを特徴とする請求項4に記載の方法。
  6.  前記絶縁層の材料は、ベンゾシクロブテン、ポリイミド、シリコン酸化物及びシリコン窒化物から選択される
     ことを特徴とする請求項1に記載の方法。
  7.  前記貫通孔を有する第2の基板を用意する工程は、前記貫通孔を形成するための予備的な穴にダミー材料を充填する工程と、前記予備的な穴に充填されたダミー材料を前記第2の基板の裏面側から露出させる工程と、前記ダミー材料を除去する工程と、を含む
     ことを特徴とする請求項1に記載の方法。
  8.  前記貫通孔を有する第2の基板を用意する工程は、前記貫通孔を形成するための予備的な穴にダミー材料を充填する工程と、前記予備的な穴に充填されたダミー材料を前記第2の基板の裏面側から露出させる工程と、を含み、
     前記第2の基板を積層した後に前記ダミー材料を除去する
     ことを特徴とする請求項1に記載の方法。
PCT/JP2009/066831 2009-09-28 2009-09-28 半導体装置の製造方法 WO2011036819A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/066831 WO2011036819A1 (ja) 2009-09-28 2009-09-28 半導体装置の製造方法
JP2011532892A JP5377657B2 (ja) 2009-09-28 2009-09-28 半導体装置の製造方法
US13/369,427 US8535977B2 (en) 2009-09-28 2012-02-09 Semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066831 WO2011036819A1 (ja) 2009-09-28 2009-09-28 半導体装置の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/369,427 Continuation US8535977B2 (en) 2009-09-28 2012-02-09 Semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
WO2011036819A1 true WO2011036819A1 (ja) 2011-03-31

Family

ID=43795589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066831 WO2011036819A1 (ja) 2009-09-28 2009-09-28 半導体装置の製造方法

Country Status (3)

Country Link
US (1) US8535977B2 (ja)
JP (1) JP5377657B2 (ja)
WO (1) WO2011036819A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008824A1 (ja) * 2011-07-12 2013-01-17 東京エレクトロン株式会社 プラズマエッチング方法
JP2013021001A (ja) * 2011-07-07 2013-01-31 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法
JP2013165100A (ja) * 2012-02-09 2013-08-22 Seiko Epson Corp 半導体装置、半導体装置の製造方法、回路装置、電子機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130154106A1 (en) * 2011-12-14 2013-06-20 Broadcom Corporation Stacked Packaging Using Reconstituted Wafers
US9972534B1 (en) * 2017-06-05 2018-05-15 Vanguard International Semiconductor Corporation Semiconductor devices, through-substrate via structures and methods for forming the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197855A (ja) * 2001-12-27 2003-07-11 Toshiba Corp 半導体装置およびその製造方法
JP2004039667A (ja) * 2002-06-28 2004-02-05 Sekisui Chem Co Ltd スルーホールが形成された半導体素子の製造方法、及び、半導体パッケージの製造方法
JP2006287211A (ja) * 2005-03-08 2006-10-19 Sharp Corp 半導体装置、積層半導体装置およびそれらの製造方法
JP2009004593A (ja) * 2007-06-22 2009-01-08 Panasonic Corp 半導体積層構造体とそれを用いた半導体装置およびそれらの製造方法
JP2009004722A (ja) * 2007-06-20 2009-01-08 Hynix Semiconductor Inc 半導体パッケージの製造方法
JP2009141010A (ja) * 2007-12-04 2009-06-25 Hitachi Chem Co Ltd 半導体装置及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197339A (ja) 2004-01-05 2005-07-21 Seiko Epson Corp 半導体装置の製造方法及び半導体装置
KR100919712B1 (ko) * 2007-06-27 2009-10-06 삼성전자주식회사 반도체 집적 회로 장치 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197855A (ja) * 2001-12-27 2003-07-11 Toshiba Corp 半導体装置およびその製造方法
JP2004039667A (ja) * 2002-06-28 2004-02-05 Sekisui Chem Co Ltd スルーホールが形成された半導体素子の製造方法、及び、半導体パッケージの製造方法
JP2006287211A (ja) * 2005-03-08 2006-10-19 Sharp Corp 半導体装置、積層半導体装置およびそれらの製造方法
JP2009004722A (ja) * 2007-06-20 2009-01-08 Hynix Semiconductor Inc 半導体パッケージの製造方法
JP2009004593A (ja) * 2007-06-22 2009-01-08 Panasonic Corp 半導体積層構造体とそれを用いた半導体装置およびそれらの製造方法
JP2009141010A (ja) * 2007-12-04 2009-06-25 Hitachi Chem Co Ltd 半導体装置及びその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021001A (ja) * 2011-07-07 2013-01-31 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法
WO2013008824A1 (ja) * 2011-07-12 2013-01-17 東京エレクトロン株式会社 プラズマエッチング方法
TWI459465B (zh) * 2011-07-12 2014-11-01 Tokyo Electron Ltd 電漿蝕刻方法
JP2013165100A (ja) * 2012-02-09 2013-08-22 Seiko Epson Corp 半導体装置、半導体装置の製造方法、回路装置、電子機器

Also Published As

Publication number Publication date
JPWO2011036819A1 (ja) 2013-02-14
JP5377657B2 (ja) 2013-12-25
US8535977B2 (en) 2013-09-17
US20120142145A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP4937842B2 (ja) 半導体装置およびその製造方法
KR102116060B1 (ko) 반도체 장치 및 그 제조방법
US8411459B2 (en) Interposer-on-glass package structures
TWI416693B (zh) 半導體裝置及其製造方法
JP5201048B2 (ja) 半導体装置とその製造方法
JP5497756B2 (ja) 半導体素子の製造方法および半導体素子
US9355895B2 (en) Method of providing a via hole and routing structure
US9349673B2 (en) Substrate, method of manufacturing substrate, semiconductor device, and electronic apparatus
WO2010035377A1 (ja) 半導体装置及びその製造方法
KR20090076832A (ko) 반도체 장치 및 그 제조 방법
SE1250374A1 (sv) CTE-anpasad interposer och metod att tillverka en sådan
CN101740484A (zh) 形成穿透硅通孔的方法
TW201608646A (zh) 2d及3d ic封裝之整合中介層方法
WO2012107971A1 (ja) 半導体装置及びその製造方法
CN108666284A (zh) 半导体装置的制造方法及半导体装置
JP5377657B2 (ja) 半導体装置の製造方法
KR20230098518A (ko) 반도체 패키지 및 제조 방법
JP2008135553A (ja) 基板積層方法及び基板が積層された半導体装置
WO2024021356A1 (zh) 高深宽比tsv电联通结构及其制造方法
JP5834563B2 (ja) 半導体装置の製造方法
US20200185345A1 (en) Semiconductor device
JP4561307B2 (ja) 配線基板の製造方法および半導体装置の製造方法
JP5834907B2 (ja) 半導体装置、半導体装置の製造方法及び電子装置
KR100548578B1 (ko) 시스템 인 패키지의 비아패턴 형성방법
US20220238466A1 (en) Bonding Structures of Integrated Circuit Devices and Method Forming the Same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011532892

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849849

Country of ref document: EP

Kind code of ref document: A1