WO2011034214A1 - プレコート金属板およびその製造方法 - Google Patents

プレコート金属板およびその製造方法 Download PDF

Info

Publication number
WO2011034214A1
WO2011034214A1 PCT/JP2010/066626 JP2010066626W WO2011034214A1 WO 2011034214 A1 WO2011034214 A1 WO 2011034214A1 JP 2010066626 W JP2010066626 W JP 2010066626W WO 2011034214 A1 WO2011034214 A1 WO 2011034214A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
coating
layer
paint
pigment
Prior art date
Application number
PCT/JP2010/066626
Other languages
English (en)
French (fr)
Inventor
植田 浩平
智明 細川
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to KR1020127006725A priority Critical patent/KR101199693B1/ko
Priority to JP2011508757A priority patent/JP4818485B2/ja
Priority to CN2010800513657A priority patent/CN102596563B/zh
Priority to IN2296DEN2012 priority patent/IN2012DN02296A/en
Publication of WO2011034214A1 publication Critical patent/WO2011034214A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/16Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies using synthetic lacquers or varnishes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/53Base coat plus clear coat type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets

Definitions

  • the present invention is mainly used for home appliances, building materials, civil engineering, machinery, automobiles, furniture, containers, etc., and a pre-coated metal plate coated with a paint in advance on the premise that it is molded after coating, and its
  • the present invention relates to a pre-coated metal plate excellent in design and a method for manufacturing the same.
  • a colored coating film Coated precoated metal plates are becoming widely used.
  • the pre-coated metal plate is generally obtained by performing a chemical conversion treatment on the surface of the metal plate and then applying a paint.
  • the pre-coated metal plate is generally used after being cut and press-molded with the paint applied.
  • Patent Document 1 discloses that wet-on-wet a colored base coating and clear coating containing 5 to 80 ⁇ m organic resin fine particles and a coloring pigment on a metal plate.
  • a technique for forming a coating film having a high brightness and a three-dimensional design is disclosed.
  • a colored base coating containing 5 to 80 ⁇ m organic resin fine particles and a coloring pigment and a clear coating containing a bright pigment are applied wet-on-wet on a metal plate to achieve high brightness.
  • a technique for forming a coating film having a three-dimensional design feeling is disclosed.
  • the present invention has been made in view of such problems, and has a three-dimensional effect and a deep feeling, and a pre-coated metal excellent in design properties having a glittering feeling, a three-dimensional feeling, a deep feeling, etc. more than ever. It aims at providing a board and its manufacturing method.
  • the present inventors have found that the amount exceeding the closest packing in the resin coating (depending on the shape of the fine particles, generally about 20 to 30% by volume is the closest packing). If paints containing fine pigments such as pigments and paints containing luster pigments are applied to a substrate by simultaneous coating or wet-on-wet method with controlled paint physical properties such as viscosity of paint, both paints It has been found that the center line average roughness (Ra) of the boundary surface between the formed coating films is increased, thereby obtaining a pre-coated metal plate having a glittering feeling and a deep feeling, and also having a three-dimensional feeling. It was.
  • Ra center line average roughness
  • the technique of the present invention is effective when the coating film coated on the precoated metal plate is white.
  • the concealment property is a property of optically concealing the color of the original plate when the colored coating layer is coated, and the concealability is inferior when the original plate color can be seen through without being completely concealed.
  • the visible light incident on the surface of the coating reaches the original plate on the bottom surface of the coating, is reflected by this, and when this reflected light escapes from the surface of the coating to the outside of the coating, the color of the original is transparent. appear.
  • the concealability is lowered. In order to improve the concealability, it is necessary to emit visible light incident from the surface of the coating film to the outside of the coating film before reaching the original plate.
  • fine particles such as pigments are added to the coating film, and visible light incident from the coating film surface layer is reflected and released to the outside of the coating film to ensure the concealment property of the coating film.
  • the hiding property of the coating film depends on the pigment concentration in the coating film, and increases when the pigment concentration is increased. However, it has a maximum point, and it is known that the hiding property is lowered when a certain pigment concentration is exceeded. Yes. “Coloring Material Handbook” edited by the Coloring Material Association, published on May 25, 1967, Asakura Shoten Co., Ltd. states that the hiding property is the maximum when the pigment volume concentration is around 20-30%. Yes.
  • the pigment volume concentration is generally 20 to 30%.
  • the pigment volume concentration of 20 to 30% is 46.7 in terms of the pigment mass concentration.
  • the anatase-type titanium oxide pigment corresponds to 87.6 to 150 parts by mass with respect to 100 parts by mass of the binder resin.
  • Drying and curing a paint with an amount of fine particles added that exceeds the closest packing amount in the coating film results in the amount of binder resin in the coating film being less than the amount necessary to fill the gaps between the fine particles.
  • a void is generated in the gap between the fine particles in the coating film.
  • another interface (resin / void interface, pigment / void interface) is generated between the resin or pigment in contact with the void, which increases the degree of light scattering and increases concealment.
  • the paint containing the fine particles and the paint containing the bright pigment are applied by the multi-layer simultaneous application or wet-on-wet method with the former on the base material side and the latter on the surface layer side, and simultaneously dried and hardened.
  • the coating layer of the pre-coated metal sheet has such a structure and has a sufficient concealing property and expresses a sense of brightness and depth. The reason is described below. (1) Visible light incident on the surface of the coating film is reflected by the bright pigment contained in the coating film on the surface layer side, and a part of the visible light escapes from the coating film surface layer as scattered light. (2) The light that did not collide with the bright pigment in (1) is diffusely reflected at the interface with a large Ra with the underlying coating layer.
  • the light that has been transmitted without being reflected at the interface between the coatings and incident on the lower layer side of the coating is a number of pigment / binder resin interfaces and pigments contained in the lower layer side coating. Repeated irregular reflection at the / air gap interface and binder resin / air gap interface.
  • Visible light that has been irregularly reflected in the above (4) begins to fall from the lower layer coating to the surface coating before reaching the original plate, and is reflected again by the bright pigment in the surface coating, and the coating is repeated while repeating these. Get out of the surface.
  • the pre-coated metal sheet coating appears brighter to the human eye because it is visible to the human eye in combination with light that escapes from the surface layer to the outside of the coating film.
  • (7) In addition to the above (6), it takes time for the light to enter the process (1) and immediately escape to the surface layer and to be repeatedly reflected through the various processes (2) to (5).
  • the pre-coated metal sheet coating film appears to have a high depth feeling to human eyes because it mixes with light that escapes from the surface layer to the outside of the coating film. The present invention has been completed based on such findings.
  • a part of or all of the surface of the metal plate includes a first coating layer containing a color pigment and a second pigment pigment containing a bright pigment laminated on the surface layer side of the first coating layer.
  • a coating layer containing at least two coating layers, and the center line average roughness Ra of the boundary surface between the first coating layer and the second coating layer is 0.8 ⁇ m or more.
  • a precoated metal sheet is provided.
  • the first coating layer includes fine particles having an average particle size of 100 nm or more and 2000 nm or less, and the solid content volume ratio between the fine particles and the binder resin in the first coating layer is the volume of the fine particles.
  • V1 and the volume of the binder resin are V2
  • V1 / V2 30/70 to 95/5.
  • voids exist in the first coating layer.
  • the content of the voids is preferably 3% by volume or more and 40% by volume or less with respect to the total amount of the solid content in the first coating layer and the volume of the voids.
  • the area ratio occupied by the portion where the voids exist with respect to the area of the entire cross section is It is preferable that they are 1% or more and 40% or less.
  • the fine particles are preferably color pigments.
  • coloring pigment examples include a white pigment.
  • Examples of the white pigment include titanium oxide.
  • the coating layer may further include a third coating layer disposed on the surface layer side of the second coating layer.
  • the coating layer may further include a fourth coating layer disposed between the first coating layer and the metal plate.
  • the metal plate may be subjected to chemical conversion treatment.
  • the first paint containing the color pigment and the second paint containing the luster pigment are applied to the second paint from the first paint by multi-layer simultaneous application or wet-on-wet method. Is applied to a part or all of the surface of the metal plate so that it is also on the surface side, and the first paint and the second paint in an undried state applied to the surface of the metal plate are simultaneously dried and cured. A center line of a boundary surface between the first coating layer and the second coating layer; and a first coating layer containing the colored pigment and a second coating layer containing the bright pigment. There is provided a method for producing a precoated metal sheet formed so that the average roughness Ra is 0.8 ⁇ m or more.
  • a pre-coated metal plate that has both a three-dimensional feeling and a deep feeling, and has a bright feeling, a three-dimensional feeling, a deep feeling, and the like, and a method for producing the same.
  • the pre-coated metal plate according to the present embodiment is a metal plate that can be processed after painting, and has at least two coating layers on a part or all of the surface of the metal material serving as a base material.
  • the coating layer includes a first coating layer containing a colored pigment (hereinafter referred to as “colored coating layer”) and a bright pigment laminated on the surface layer side of the first coating layer.
  • a second coating film layer (hereinafter referred to as “designable coating film layer”) including at least two layers.
  • the precoated metal sheet according to the present embodiment further includes a third coating layer (hereinafter referred to as “clear coating layer”) laminated as a coating layer on the surface layer side of the design coating layer.
  • it may have, and it is called a 4th coating layer (henceforth "primer coating layer”) on the inner layer side (namely, between a metal plate and a coloring coating layer) of a coloring coating layer. ) May further be included.
  • the center line average roughness Ra of the boundary surface between the colored coating layer and the design coating layer needs to be 0.8 ⁇ m or more.
  • the pre-coated metal plate has sufficient glitter and depth, and also has a three-dimensional effect,
  • the design property of a precoat metal plate can be improved notably.
  • the Ra on the boundary surface between the colored coating layer and the design coating layer is less than 0.8 ⁇ m, the above-described design improvement effect cannot be sufficiently obtained.
  • Ra is 1.0 ⁇ m or more, the design property is further improved, which is more preferable.
  • Ra of the interface between the colored coating layer and the design coating layer is the coating method of the colored coating layer and the design coating layer, the concentration of fine particles (pigments, etc.) in the coloring coating layer, the colored coating layer It can be controlled by the viscosity, surface tension, etc. of the coating material for forming a design coating film layer with a low share.
  • the pre-coated metal plate having a Ra of the boundary surface between the colored coating layer and the design coating layer is 0.8 ⁇ m or more is formed by laminating the two layers of the coloring coating layer and the design coating layer.
  • a paint for a colored coating layer (hereinafter referred to as “colored paint”) and a paint for a designable coating layer (hereinafter referred to as “designable paint”) with controlled tension. It is obtained by laminating two layers in an undried state, and simultaneously drying and baking-curing the laminated dried colored paint and design paint.
  • the surface tension of each paint can be adjusted by adding a predetermined amount of additives generally called surfactants such as leveling agents and antifoaming agents to the paint, but also by changing the type of solvent in the paint. It can also be adjusted. If the surface tension difference between the colored paint and the design paint is reduced, the Ra of the boundary surface between the formed color coat layer and the design paint film layer tends to increase. However, if the surface tension of the colored paint applied on the inner layer side becomes smaller than the surface tension of the design paint applied on the surface layer side, the lower layer coating film moves to the upper layer side, and the upper layer coating film moves to the lower layer side.
  • additives generally called surfactants such as leveling agents and antifoaming agents
  • the surface tension of the colored paint is preferable to make the surface tension of the colored paint larger than the surface tension of the designable paint.
  • the surface tension difference between the colored paint and the design paint varies depending on the resin type and solvent type of each coating layer, so it cannot be specified unconditionally. It is necessary to determine the optimum value. According to the knowledge of the present inventors, it is preferable that 10.0 mN / m ⁇ ([surface tension of colored paint] ⁇ [surface tension of design paint]) ⁇ 0 mN / m.
  • Ra of the interface tends to be less than 0.8 ⁇ m, and less than 0 mN / m,
  • the component of the colored coating layer and the component of the design coating layer were mixed with each other, and there was a tendency that the appearance of the precoated metal plate was inferior in design.
  • the value of ([surface tension of colored paint]-[surface tension of design paint]] is preferably 0.5 to 10 mN / m.
  • Ra of the boundary surface between the colored coating layer and the design coating layer As the most effective method for setting Ra of the boundary surface between the colored coating layer and the design coating layer to be 0.8 ⁇ m or more, for example, after drying fine particles having a particle diameter of 100 nm to 2000 nm on the colored coating layer A method in which the colored paint and the design paint are laminated in an undried state, and dried and cured at the same time in the laminated state, so that the volume of the binder resin in the coating film becomes more than the closest packing. Is mentioned. By adding fine particles such as coloring pigments more closely packed into the colored coating layer and laminating it with the design coating layer in an undried state, a concentration gradient of fine particles occurs between the coating layers, and the colored coating layer The fine particles in the layer have a function of diffusing toward the design coating layer.
  • “adding fine particles so as to be more than the closest packing relative to the volume of the binder resin in the coating film after drying” means that the voids between the fine particles such as pigments packed closest in the coating film This means that the volume is larger than the volume of the binder resin in the coating film after drying. Therefore, in this embodiment, since not all the voids between the fine particles existing in the coating film are filled with the binder resin, the voids exist in the coating film.
  • Controlling the Ra of the interface between the colored coating layer and the design coating layer by mixing fine particles in the colored coating layer means that the viscosity of each coating material and the reaction rate of the crosslinking agent added to each coating material It is also possible to control this.
  • the viscosity of each paint is low, the fine particles in the colored paint tend to diffuse into the design paint, and Ra on the boundary surface between the color paint film layer and the design paint film tends to increase.
  • paints to which fine particles (color pigments, etc.) are added at such a concentration as to become more than the closest packing in the coating after drying and curing are generally non-Newtonian fluids called concentrated dispersion paints.
  • the coating material When the viscosity is measured with a rotational viscometer, the coating material has a so-called shearing characteristic in which the viscosity is high at low rotation and the viscosity is low at high rotation.
  • the coating workability when coating such a paint on a substrate is greatly affected by the viscosity at high rotation, while the low-speed rotation is applied to the in-film flow of the paint in the drying / baking hardening process after coating.
  • the viscosity at will greatly affect. Therefore, it is important to adjust the viscosity of the paint with a low share in order to control Ra on the boundary surface between the colored coating layer and the design coating layer.
  • the viscosity at a rotation speed of 5 rpm of the colored paint by a rotational viscometer is 500 mPa or more and 4000 mPa or less. If the viscosity of the colored paint by a rotational viscometer at a rotational speed of 5 rpm exceeds 4000 mPa, the Ra of the boundary surface may be less than 0.8 ⁇ m, and if it is less than 500 mPa, the colored pigment in the colored paint enters the design paint. The bright pigment in the design paint easily diffuses into the colored paint, the interface between the two layers becomes invisible, and both layers look like the same layer containing the bright pigment and the colored pigment. There is a possibility that the designability is not sufficient.
  • the viscosity of the colored paint with a rotational viscometer at a rotational speed of 5 rpm is preferably 700 to 4000 mPa, more preferably 700 to 1000 mPa.
  • the paint viscosity can be adjusted by changing the amount of solvent in the paint and the storage conditions (storage temperature and storage period) of the paint. As the storage conditions of the paint, the higher the storage temperature and the longer the storage period, the more the pigment is dispersed in the paint and the thixotropic property becomes lower, so the paint viscosity with a low share becomes smaller. Further, the viscosity of the paint can be adjusted by adding an additive such as a dispersant or a structural viscosity imparting agent to the paint.
  • each coating layer will be described in detail in the order of a colored coating layer, a design coating layer, a clear coating layer, and a primer coating layer.
  • the colored coating layer according to the present embodiment is a coating layer containing a color pigment and a binder resin as essential components, and is closer to the inner layer side than the design coating layer, that is, closer to the metal material that is the substrate. Located in. However, when the coating layer has a three-layer or four-layer structure including one or both of the clear coating layer and the primer coating layer in addition to the colored coating layer and the design coating layer.
  • the colored coating layer is a layer located in a portion sandwiched between the primer coating layer and the design coating layer. Further, when the coating layer includes a layer other than the colored coating layer, the design coating layer, the clear coating layer, and the primer coating layer, the coating layer is provided between the design coating layer and the primer coating layer. And all the layers containing the color pigment are defined as colored coating layers.
  • colored organic fine particles may be used, and generally known inorganic coloring pigments may be used.
  • organic fine particles for example, colored fine particles such as an acrylic resin, a polystyrene resin, and a polyurethane resin can be used.
  • inorganic coloring pigments include white pigments such as titanium oxide, zinc oxide, alumina, barium sulfate, and calcium carbonate, and cuprous oxide, molybdate orange, yellow iron oxide, iron black, red rose, bitumen, and ultramarine blue. can do.
  • the color pigment is a white pigment, particularly titanium oxide having a high whiteness, because a white pre-coated metal plate having a high whiteness and an excellent design with a sense of brightness and depth can be obtained.
  • the appearance of paint with a bright and deep white design that is excellent in design is also a trend in recent years, and is a paint appearance that could only be achieved by post-coating by spraying (post-coating). Therefore, it is preferable that such a coating appearance can be achieved with a pre-coated metal plate because productivity is significantly improved.
  • Titanium oxide includes rutile type titanium oxide and anatase type titanium oxide. Anatase type titanium oxide has high photocatalytic properties. Therefore, the coating layer containing anatase-type titanium oxide has a possibility that the binder resin will be decomposed when receiving light from the outside.
  • rutile-type titanium oxide is used as titanium oxide. Is preferred.
  • commercially available products may be used. For example, “Taipek (registered trademark)” series manufactured by Ishihara Sangyo Co., Ltd., “TA” series manufactured by Fuji Titanium Co., Ltd., “TITANIX (registered trademark)” manufactured by Teika Co., Ltd. "Series etc. can be used.
  • titanium oxide particles used in the present embodiment may be titanium oxide particles alone, or titanium oxide coated with silica, alumina, zirconia, zinc oxide, antimony oxide, various organic substances, etc. It may be.
  • the organic substance used for the coating of titanium oxide is not particularly limited, but examples thereof include polyol compounds such as pentaerythritol and trimethylolpropane, alkanolamines such as triethanololamine, and organic acid salts of trimethylolamine. Examples thereof include silicon compounds such as silicon compounds, silicon resins and alkylchlorosilanes.
  • the colored coating layer according to this embodiment preferably contains fine particles having an average particle size of 100 nm to 2000 nm.
  • fine particles having the above-mentioned particle diameter By including the fine particles having the above-mentioned particle diameter in the colored coating layer, it is possible to obtain a painted appearance having excellent design properties.
  • the particle size of the fine particles according to the present embodiment is less than 100 nm, the Ra of the boundary surface between the colored coating film layer and the design coating film layer is less than 0.8 ⁇ m, the stereoscopic effect and the depth feeling are poor, and the design property is low. May be inferior.
  • the particle size of the fine particles exceeds 2000 nm, the volume of the gaps (voids) existing between the fine particles becomes too large, and the binder resin for forming the design coating film layer at the time of drying / baking curing is a colored coating film. It diffuses into the layer and easily enters the voids between the fine particles in the colored coating layer. Therefore, since the designable coating layer and the colored coating layer are mixed, there is no clear boundary between the two layers, and the appearance design may be deteriorated.
  • the particle diameter of the fine particles is preferably 200 to 1000 nm, more preferably 250 to 300 nm.
  • the average particle size of the fine particles in the present embodiment refers to any five parts of the coating film observed with an electron microscope at a magnification of 10,000 times, and from among the fine particles projected in the field of view for each part, from the smaller particle size.
  • V1 / V2 30/70 in terms of solid content, where V1 is the volume of the fine particles and V2 is the volume of the binder resin. It is preferably ⁇ 95/5. If V1 / V2 is less than 30/70, Ra on the boundary surface between the colored coating layer and the design coating layer may be less than 0.8, and if V1 / V2 exceeds 95/5, There is a possibility that the film of the film layer becomes brittle and has poor work adhesion.
  • V1 / V2 is preferably 35/65 or more.
  • V1 / V2 is preferably 50/50 or less from the viewpoint of making the film flexible and improving the work adhesion.
  • solid content volume means the volume of solid content including the resin (binder) component, pigment component and fine particle component in the coating film in the colored coating layer. This excludes the volume occupied by voids present in the film.
  • the solid content volume ratio in the colored coating layer in the present embodiment is the same as the composition of the paint used for coating, and can be calculated using the ratio of the pigment and fine particles added to the paint and the binder resin. .
  • the fine particles are inorganic pigments
  • the solid content volume ratio in the colored coating layer can also be determined by the following method.
  • the colored coating layer to be measured is scraped from the sample, and the mass M1 of the scraped coating is measured.
  • the fine particles having a particle size of 100 nm or more and 2000 nm or less contained in the colored coating layer according to this embodiment are not particularly limited, and generally known inorganic pigments, resin beads, and the like can be used. At this time, it is preferable that the fine particles according to the present embodiment are colored pigments because it is advantageous for obtaining design properties such as a glittering feeling and a deep feeling.
  • the fine particles according to this embodiment transparent fine particles having a particle diameter of 100 nm or more and 2000 nm or less and a coloring pigment may be used in combination. However, if the total amount of the transparent fine particles and the color pigment added is too large, the coating film tends to be brittle.
  • the amount of fine particles and coloring pigment added is limited, so that the design of the appearance of the coating may be impaired.
  • it is preferable that all of the fine particles contained in the colored coating layer are colored pigments.
  • the color pigment used as the fine particles is the same as the above-described example of the color pigment, and colored organic fine particles and generally known inorganic color pigments can be used.
  • the fine particles are more preferably white pigments, particularly titanium oxide having high whiteness.
  • the presence of voids in the colored coating layer according to the present embodiment is more preferable because a three-dimensional effect, a sense of depth of the coating film, and the like are further improved and the design properties are further improved.
  • the fine particles are present so that fine particles having a particle size of 100 nm or more and 2000 nm or less are present in the closest packing or more in the dried and cured coating film. May be contained at a high concentration.
  • the volume of the void formed between the fine particles becomes larger than the volume of the binder resin. Therefore, unlike the coating film in which the pigment is contained at a concentration that is less than the closest packing, a portion where the binder resin is not present can be present in the colored coating layer as voids.
  • the solid content volume ratio V1 / V2 between the fine particles having a particle diameter in the colored coating layer of 100 nm to 2000 nm and the binder resin is 30/70 to 95/5.
  • the void content in the colored coating layer (hereinafter referred to as “void ratio” or “void volume fraction”) is the total volume of the solid content (coating component) in the colored coating layer and the volume of the void. It is preferable for the total amount to be 3% by volume or more and 40% by volume or less because the design is improved. If the porosity is less than 3% by volume, the design properties such as the three-dimensional effect and the sense of depth of the coating may be lowered. On the other hand, if the porosity exceeds 40% by volume, the coating becomes brittle and the workability is reduced. May be greatly reduced.
  • a preferable void volume ratio is 25% or more and less than 35%.
  • the porosity in the colored coating layer can be controlled by adjusting the particle size and amount of fine particles in the colored coating layer. Specifically, when the particle size of the fine particles exceeds 2000 nm, the coating film surface has an uneven appearance, and the appearance may be poor, or the porosity may be too large, resulting in poor workability. On the other hand, if the particle size of the fine particles is less than 100 nm, the porosity is too small and the design may be inferior. In addition, when the volume ratio V1 / V2 between the fine particles and the binder resin is less than 30/70, the porosity may be reduced and the design may be deteriorated. When V1 / V2 exceeds 95/5, the porosity is too large. As a result, the film becomes brittle and the work adhesion may be poor.
  • the porosity in the colored coating layer can be controlled by adjusting the dispersion state of the coating material for forming the colored coating layer, for example, in addition to adjusting the particle size and the amount of the fine particles. Can do. Specifically, the better the dispersion state of the pigment in the paint (the more uniform), the more the binder resin is adsorbed to the pigment and efficiently fills the voids between the pigment particles, so the porosity becomes smaller. Therefore, in order to obtain a higher designability, the dispersion state should be kept to a minimum as long as there is no problem in coating properties and paint stability (this is possible in a range where there is no problem in coating properties and paint stability). As long as it is non-uniform).
  • the value calculated about arbitrary 5 places of a colored coating-film layer is averaged, and it is set as the porosity in a colored coating-film layer.
  • the dry coating film specific gravity of the colored coating film layer the calculated specific gravity calculated from the addition amount of each component contained in the colored coating film layer and the specific gravity of each component can be used.
  • the porosity present in the colored coating layer is such that there is a void with respect to the entire cross-sectional area when the cross section perpendicular to the surface of the colored coating layer is smoothed and a photograph is taken with a 10,000 times scanning microscope. It can also be confirmed by the area ratio occupied by the portion (hereinafter referred to as “void area ratio”).
  • void area ratio the area ratio occupied by the portion
  • the porosity present in the colored coating layer is expressed as a void area ratio
  • the average area porosity determined from an arbitrary field of view of 10 ⁇ m ⁇ 10 ⁇ m of a cross-sectional photograph taken at any five locations is 1% or more. It is preferable that it is 40% or less.
  • the void area ratio is less than 1%, the design properties such as the three-dimensional effect and the feeling of depth of the coating film may be lowered. On the other hand, if the void area ratio exceeds 40%, the coating film becomes brittle and the workability is large. May decrease.
  • a preferable area porosity is 20% or more and less than 35%.
  • the binder resin used in the colored coating layer according to the present embodiment is not particularly limited, and commonly used binder resins such as polyester resins, urethane resins, epoxy resins, acrylic resins, silicone resins, fluororesins, etc. Can be used.
  • binder resin used for the colored coating layer It is preferable to use a resin excellent in processability and adhesion.
  • Use of “high molecular weight polyester resin”) is preferable because processability is improved.
  • the concentration of the high molecular weight polyester resin with respect to the entire binder resin is 14% by mass or more, a thick film can be applied without causing boiling. Compatibility and workability are possible. Therefore, the concentration of the high molecular weight polyester resin with respect to the entire binder resin is preferably 14% by mass or more.
  • a polyfunctional resin having a number average molecular weight of 1000 to 7000 and a hydroxyl value of 15 KOHmg / g or more (hereinafter referred to as “low molecular weight polyfunctional resin”) is added.
  • the adhesion between the colored pigments can be improved, which is more preferable.
  • the high molecular weight polyester resin alone cannot sufficiently enter the gaps (voids) between the pigment particles present at a high concentration in the colored coating layer, and the function as a binder becomes insufficient.
  • a low molecular weight polyfunctional resin can be converted into a high molecular weight polyester resin.
  • a binder between the pigment and the pigment, or the pigment and the high molecular weight polyester resin function as a binder between the pigment and the pigment, or the pigment and the high molecular weight polyester resin, and the strength and adhesion of the entire coating layer is improved. This is because it is considered that excellent workability can be obtained.
  • the higher the hydroxyl value of the low molecular weight polyfunctional resin the more crosslink points, and the higher film adhesion can be obtained.
  • the polyfunctional group in this embodiment is a hydroxyl group, as a polyfunctional resin.
  • the resin is not particularly limited as long as it has a number average molecular weight of 1000 to 7000 and a hydroxyl value of 15 KOHmg / g or more, and generally known resins such as polyester resins, acrylic resins, urethane resins, and epoxy resins can be used.
  • binder resins such as the above high molecular weight polyester resins and low molecular weight polyfunctional resins may be used.
  • the high molecular weight polyester resin for example, “Byron (registered trademark) 300” which is a polyester resin manufactured by Toyobo Co., Ltd. can be used
  • the low molecular weight polyfunctional resin for example, Toyobo Co., Ltd. can be used.
  • “Byron (registered trademark) GK680” which is a polyester resin
  • the addition amount of the curing agent is preferably 5 parts by mass to 30 parts by mass with respect to 100 parts by mass of the total amount of the binder resin because workability and adhesion can be ensured.
  • these curing agents commercially available ones may be used.
  • melamine resin “Cymel (registered trademark) 303” manufactured by Mitsui Cytec Co., Ltd. may be used.
  • the mixing ratio of the high molecular weight polyester resin and the low molecular weight polyfunctional resin was excellent when the mass ratio was 0.25 ⁇ (low molecular weight polyfunctional resin) / (high molecular weight polyester resin) ⁇ 4. Adhesion and processability can be obtained. If the mass ratio of (low molecular weight polyfunctional resin) / (high molecular weight polyester resin) is less than 0.25, the low molecular weight polyfunctional resin will not function sufficiently, resulting in poor adhesion. If (low molecular weight polyfunctional resin) / (high molecular weight polyester resin) is larger than 4, the functional expression of the high molecular weight polyester resin becomes insufficient, and the processability may be reduced. .
  • the mixing ratio of the high molecular weight polyester resin and the low molecular weight polyfunctional resin is 0.5 to 2.0, more preferably 0.8 to 1.2.
  • the thickness of the colored coating layer according to this embodiment is preferably 10 ⁇ m or more in order to obtain excellent design properties, and more preferably 13 ⁇ m or more when higher design properties are required.
  • the thickness of the colored coating layer is preferably 80 ⁇ m or less, and higher workability is required. In some cases, the thickness is more preferably 60 ⁇ m or less.
  • the designable coating film layer according to this embodiment is a coating layer that is laminated on the surface layer side of the above-described colored coating film layer, that is, on the side farther from the metal material that is the base material, and that includes a bright pigment.
  • the coating layer has a two-layer structure composed of a colored coating film layer and a design coating film layer
  • the coating layer has a three-layer structure further including a primer coating film layer
  • a plurality of colored coating layers exist.
  • the design coating layer is located on the outermost layer of the plurality of coating layers.
  • a separate coating layer such as a clear coating layer may be laminated.
  • the glitter pigment contained in the designable coating film layer according to this embodiment is a pigment having a glitter feeling such as a pearl pigment, a glass flake pigment, a metallic pigment, and generally known pigments can be used.
  • a pearl pigment generally known pearl pigments such as mica and synthetic mica can be used, and commercially available ones may be used.
  • commercially available mica include “Pearl Glaze” sold by Nippon Koken Kogyo.
  • commercially available synthetic mica include “Ultimica” sold by Nippon Koken Kogyo Co., Ltd., which consists of aluminum oxide, magnesium oxide, silicon dioxide, and fluorine compounds.
  • the glass flake pigment is glass powder made into flakes, and a surface coated with metal or metal oxide may be used.
  • the glass flake pigment a commercially available one may be used.
  • “Metashine” manufactured by Nippon Sheet Glass Co., Ltd. can be used.
  • fine-particles, etc. can be used, for example.
  • the addition amount of the bright pigment is preferably 3% by mass or more based on the binder resin of the design coating film layer from the viewpoint of improving the glitter feeling of the coating film, and prevents the coating film from becoming brittle. From the viewpoint of improving workability, it is preferably 30% by mass or less.
  • the binder resin used in the design coating film layer according to the present embodiment is not particularly limited, and commonly used binder resins such as polyester resins, urethane resins, epoxy resins, acrylic resins, silicone resins, and fluorine resins. Etc. can be used. However, it is preferable to use the same resin as the colored coating layer as part or all of the resin of the design coating layer from the viewpoints of adhesion to the colored coating layer and sharing of the coating material. Specifically, as a part or all of the binder resin used for the design coating film layer, for example, the same resin as the colored coating film layer, that is, the glass transition temperature is 0 ° C. to 40 ° C., and the number average molecular weight is 10,000.
  • a high molecular weight polyester resin having a molecular weight of less than 30000 and a hydroxyl value of less than 10 KOHmg / g, because processability and adhesion with the colored coating layer are improved.
  • a generally known curing agent such as melamine resin or isocyanate as a curing agent to the binder resin.
  • the addition amount of the curing agent is preferably 5 parts by mass to 30 parts by mass with respect to 100 parts by mass of the total amount of the binder resin because workability and adhesion can be ensured.
  • curing agent you may use a commercially available thing, for example, the melamine resin "Cymel (trademark) 303" by Mitsui Cytec, etc. can be used.
  • the film thickness of the design coating film layer Since a glittering pigment is added to the designable coating film layer, the higher the film thickness of the designable coating film layer, the higher the glitter feeling. However, if the film thickness of the design coating film layer exceeds 30 ⁇ m, boiling tends to occur during coating, so that the coating property is deteriorated, and the coating cost is not preferable. On the other hand, if the film thickness of the design coating film layer is less than 3 ⁇ m, the effect of improving the glitter feeling by the design coating film layer becomes small, and therefore the film thickness of the design coating film layer is preferably 3 ⁇ m or more and 30 ⁇ m or less. From the viewpoint of securing a stable glitter and paintability, a more preferable film thickness of the design coating film layer is 5 ⁇ m or more and 20 ⁇ m or less.
  • the coating layer which the precoat metal plate which concerns on this embodiment has may further contain the clear coating film layer laminated
  • the clear coating layer according to the present embodiment is a transparent coating layer that does not contain a pigment.
  • the binder resin used in the clear coating layer according to the present embodiment is not particularly limited, and commonly used binder resins such as polyester resins, urethane resins, epoxy resins, acrylic resins, silicone resins, fluorine resins, and the like. Can be used. However, it is preferable to use the same resin as the design coating layer as part or all of the resin of the clear coating layer from the viewpoints of adhesion to the design coating layer and sharing of the coating material. Specifically, as the binder resin used for the clear coating layer, for example, the same resin as the design coating layer, that is, a glass transition temperature of 0 ° C.
  • a high molecular weight polyester resin having a molecular weight of less than 10 KOHmg / g it is preferable because processability and adhesion with a design coating film layer are improved.
  • a generally known curing agent such as melamine resin or isocyanate as a curing agent to these binder resins.
  • the addition amount of the curing agent is preferably 5 parts by mass to 30 parts by mass with respect to 100 parts by mass of the total amount of the binder resin because workability and adhesion can be ensured.
  • curing agent you may use a commercially available thing, for example, the melamine resin "Cymel (trademark) 303" by Mitsui Cytec, etc. can be used.
  • the film thickness of the clear coating layer according to the present embodiment is preferably 3 ⁇ m or more in order to obtain excellent design properties, and more preferably 10 ⁇ m or more when higher design properties are required.
  • the thickness of the colored coating layer exceeds 20 ⁇ m, the coating film may be boiled. Therefore, the thickness of the colored coating layer is preferably 20 ⁇ m or less, and the boiling is further suppressed at 15 ⁇ m or less. Therefore, it is preferable.
  • the coating layer which the precoat metal plate which concerns on this embodiment has may contain the primer coating layer other than the colored coating layer demonstrated above, the designable coating layer, and the clear coating layer.
  • This primer coating layer is a coating layer formed between the metal plate and the colored coating layer, and the coating layer includes three layers of a design coating layer, a colored coating layer and a primer coating layer, Alternatively, when these coating layers are composed of four layers including a clear coating layer, the coating layer on the side closest to the metal plate as the substrate is formed.
  • the coating layer having a film thickness of less than 1 ⁇ m provided for the purpose of improving the adhesion between the metal plate and the coating film and improving the corrosion resistance is the primer according to this embodiment. It does not correspond to a coating film layer, and the coating layer on the surface layer side of the coating layer having a film thickness of less than 1 ⁇ m is used as a primer coating film layer. Thus, coating-film adhesiveness can be improved more by coating a primer coating-film layer further on the inner layer side of a colored coating-film layer.
  • the resin used as the binder for the primer coating layer is not particularly limited, and commonly used binder resins such as polyester resins, urethane resins, epoxy resins, acrylic resins, silicone resins, and fluorine resins can be used. However, it is preferable to use the same resin as the colored coating layer as part or all of the resin of the primer coating layer from the viewpoints of adhesion to the colored coating layer and sharing of the coating material. Specifically, as part or all of the binder resin used for the primer coating layer, for example, the same resin as the colored coating layer, that is, a glass transition temperature of 0 ° C.
  • a high molecular weight polyester resin having a hydroxyl value of less than 30000 and 10 KOHmg / g because processability and adhesion with the colored coating layer are improved.
  • additives for imparting adhesiveness such as generally known epoxy resins and silane coupling agents may be added to the binder resin of the primer coating layer as necessary.
  • epoxy resin added to the primer coating layer include generally known epoxy resins for paint such as a condensate of epichlorohydrin and bisphenol A.
  • silane coupling agent added to the primer coating layer examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyl Examples include triethoxysilane, dimethoxydiethoxysilane, dimethoxydipropoxysilane and the like.
  • the addition amount of these epoxy resin and silane coupling agent is not particularly defined, and can be appropriately determined as necessary.
  • the addition amount of the epoxy resin or the silane coupling agent is preferably 1% by mass to 30% by mass with respect to the resin solid content of the primer coating film. If the addition amount of the epoxy resin or the silane coupling agent is 1% by mass or more, the effect of adding the epoxy resin or the silane coupling agent is sufficiently exerted, and adhesion can be secured, and the addition amount is If it is 30 mass% or less, the workability of a coating film is securable.
  • a pigment may be added to the primer coating layer according to the present embodiment, and it is preferable to add a rust preventive pigment from the viewpoint of enhancing the corrosion resistance.
  • a rust preventive pigment for example, chromium-based rust preventive pigments such as strontium chromate and potassium chromate, aluminum dihydrogen triphosphate, zinc phosphate, phosphorous acid Phosphoric anticorrosive pigments such as zinc and silica anticorrosive pigments such as silica and Ca ion-adsorbing silica can be used.
  • the chromium-based anticorrosive pigment contains hexavalent chromium, which is an environmental load substance
  • non-chromium anticorrosive pigments such as phosphoric acid-based anticorrosive pigments and silica-based anticorrosive pigments are suitable.
  • these rust preventive pigments commercially available pigments may be used, for example, “K-WHITE (registered trademark) # 105” which is aluminum dipolyphosphate tricarbonate manufactured by Teika, or Ca ion adsorption manufactured by Grace.
  • Silica “Sealdex C303” or the like can be used.
  • a white precoat metal plate when a generally known white pigment such as titanium oxide or zinc oxide is added to the primer coating layer, the whiteness of the precoat metal plate is increased and the design is further improved. Therefore, it is preferable.
  • the film thickness of the primer coating layer As for the film thickness of the primer coating layer, the higher the film thickness, the higher the workability and adhesion, so when considering these performance aspects, it is necessary to set the upper limit of the thickness of the primer coating layer There is no. However, when the thickness of the primer coating layer exceeds 30 ⁇ m, unlike the colored coating layer, the pigment concentration in the paint is low, so boiling tends to occur during painting, paintability deteriorates, and paint cost From the point of view, it is not preferable. Therefore, the film thickness of the primer coating layer is preferably 30 ⁇ m or less.
  • the film thickness of the primer coating film layer is less than 1 ⁇ m, the effect of improving the workability and adhesion by the primer coating film layer is small, and therefore the film thickness of the primer coating film layer is preferably 1 ⁇ m or more. From the viewpoint of ensuring stable processability, adhesion, and paintability, a more preferable film thickness of the primer coating layer is 3 ⁇ m or more and 20 ⁇ m or less.
  • Base material metal plate
  • a publicly known steel plate, a stainless steel plate, an aluminum plate, a copper plate, an aluminum alloy plate, a titanium plate, etc. can be used.
  • the surface of these metal plates may be plated.
  • Examples of the type of plating include zinc plating, aluminum plating, copper plating, nickel plating, and the like, and may be alloy plating thereof.
  • it is preferable to use a steel plate as the metal plate because it is excellent in formability.
  • a zinc-based plated steel sheet as the steel sheet because the corrosion resistance is further improved.
  • galvanized steel sheet generally known ones such as hot dip galvanized steel sheet, electrogalvanized steel sheet, iron-zinc alloy plated steel sheet, aluminum-zinc alloy plated steel sheet, zinc-aluminum-magnesium alloy plated steel sheet, etc. Can be used.
  • the adhesion between the metal plate and the coating layer, corrosion resistance, and the like are improved. is there.
  • chemical conversion treatment those generally applied can be used.
  • zinc phosphate chemical conversion treatment, chromate-free chemical conversion treatment, coating-type chromate treatment, electrolytic chromic acid treatment, reaction chromate treatment, and the like can be used.
  • coating-type chromate treatment, electrolytic chromic acid treatment, and reactive chromate treatment are less preferred because hexavalent chromium, which is an environmentally hazardous substance, is used.
  • the zinc phosphate chemical conversion treatment may be inferior in work adhesion as compared with other treatments. Therefore, as the chemical conversion treatment applied to the metal material according to this embodiment, a chromate-free treatment is suitable.
  • the chromate-free chemical conversion treatment includes an inorganic chemical conversion treatment agent and an organic chemical conversion treatment agent, and any of them may be used.
  • a chromate-free chemical conversion treatment for example, a treatment using an aqueous solution containing a silane coupling agent, a zirconium compound, a titanium compound, tannin or tannic acid, a resin, silica, or the like is known.
  • JP-A-53-9238, JP-A-9-241576, JP-A-2001-89868, JP-A-2001-316845, JP-A-2002-60959, JP-A-2002-38280 In addition, a known chromate-free chemical conversion treatment technique described in JP 2002-266081 A, JP 2003-253464 A, or the like may be used.
  • chromate treatment agent “ZM-1300AN” manufactured by Nihon Parkerizing Co., Ltd. chromate-free chemical conversion treatment agent “CT-E300N” produced by Nihon Parkerizing Co., Ltd., trivalent chromium system manufactured by Nihon Paint Co., Ltd.
  • a commercially available chemical conversion treatment agent such as the chemical conversion treatment agent “Surf Coat (registered trademark) NRC1000” can be used.
  • the chemical conversion treatment applied to the metal plate one that has been confirmed in advance to be excellent in work adhesion and corrosion resistance can be used. According to the knowledge of the present inventors, it is preferable to add any one or more of silica, silane coupling agent, tannic acid, and zirconium oxide to the water-soluble resin because of excellent work adhesion and corrosion resistance. .
  • the method for producing a precoated metal sheet according to the present embodiment includes at least two layers including a colored coating layer containing a colored pigment and a designable coating layer containing a bright pigment laminated on the surface layer side of the colored coating layer. Is formed such that the center line average roughness Ra of the boundary surface between the colored coating layer and the design coating layer becomes 0.8 ⁇ m or more.
  • the pre-coated metal plate according to the present embodiment uses a general continuous coating line (referred to as “CCL”) or a coating line for a cut plate, and appropriately selects a necessary process and performs the selected process. Can be manufactured.
  • the typical manufacturing process of the painting line is “washing” ⁇ “drying” ⁇ “chemical conversion treatment” ⁇ “drying” ⁇ “painting” ⁇ “drying / baking” ⁇ “cooling” ⁇ “drying”.
  • the manufacturing process of the precoat metal plate in embodiment is not limited to this.
  • the pre-coated metal plate according to the present embodiment may be manufactured by repeatedly performing coating, drying and baking for each coating layer as is usually done.
  • a paint for forming a colored paint film layer and a paint for forming a design paint film layer are applied to part or all of the metal material surface by wet-on-wet or multi-layer simultaneous application, and then dried simultaneously. -You may bake and manufacture.
  • the wet-on-wet or multi-layer simultaneous coating method can be manufactured on an existing continuous coating line (CCL) that manufactures pre-coated metal sheets without adding an oven to dry and bake the paint, and the number of drying processes, etc. Is preferable because productivity is improved.
  • CTL continuous coating line
  • the colored coating layer and the design coating layer are dried and baked and cured, and then a clear coating layer coating (hereinafter referred to as “clear coating”) is applied. It may be dried and baked.
  • a clear paint as well as a colored paint and a design paint may be applied by wet-on-wet or a multi-layer simultaneous application method, and then the three laminated layers may be simultaneously dried and baked and cured.
  • the wet-on-wet or multi-layer simultaneous coating method is more preferable because the manufacturing process is further omitted.
  • the metal material of the present embodiment is a galvanized steel sheet
  • wet-on-wet coating equipment or simultaneous multi-layer coating equipment is used after the plating process in continuous electroplated steel sheet equipment or continuous hot-dip galvanized steel sheet equipment.
  • multi-layer simultaneous application means that a plurality of coating liquids are simultaneously applied by a device capable of discharging different paints from two or more parallel slits such as a slot die coater or a slide hopper type curtain coater. It is a method of applying to a base material in a laminated state, and simultaneously drying and baking this laminated coating liquid.
  • wet-on-wet coating refers to a multi-layered structure in which a coating liquid is once coated on a substrate and then wetted before the coating liquid dries, and another coating liquid is further applied thereon.
  • the coating liquid is simultaneously dried and baked.
  • a coating layer such as roll coating, dip coating, curtain flow coating, or roller curtain coating is applied, and then the coating layer is dried.
  • a method that can be applied without contact with the substrate such as curtain flow coating, roller curtain coating, slide hopper curtain coating, slot die coating, etc.
  • a method of simultaneously drying and baking the laminated multilayer coating film in a wet state for example, a method of simultaneously drying and baking the laminated multilayer coating film in a wet state.
  • baking ovens for paints such as hot air drying ovens, direct heating ovens, induction heating, etc.
  • a furnace, an infrared heating furnace, a heating furnace using these in combination, or the like can be used.
  • the present embodiment it is possible to provide a pre-coated metal plate excellent in design and having a bright feeling, a three-dimensional feeling, a deep feeling, and the like, and a method for manufacturing the same. Therefore, in the fields of home appliances, building materials, civil engineering, machinery, automobiles, furniture, containers, etc., not using post-coating materials with low productivity but using pre-coated metal plates with high productivity for design. An excellent product can be manufactured and assembled, and effects such as improved work efficiency can be obtained. Thus, it can be said that the precoat metal plate and the manufacturing method thereof according to the present embodiment are extremely valuable in industry.
  • Metal plate A hot-dip galvanized steel plate having a thickness of 0.5 mm was used as a metal plate serving as a base material for the pre-coated metal plate.
  • As the hot dip galvanized steel sheet one having a zinc adhesion amount of 45 g / m 2 on one side was used.
  • Coloring paint “Byron (registered trademark) 300”, a polyester resin manufactured by Toyobo Co., Ltd. (glass transition point 7 ° C., number average molecular weight 23,000, hydroxyl value 5 KOHmg / g) (this resin is hereinafter referred to as “polymer resin”) was dissolved in a mixed solvent.
  • a melamine resin “Cymel (registered trademark) 303” manufactured by Mitsui Cytec Co., Ltd. was added to this solution so that the mass ratio of the resin solids was 10 parts by mass with respect to 100 parts by mass of the polyester resin solids.
  • 0.5% by mass of an acidic catalyst “Catalyst (trademark) 600” manufactured by Mitsui Cytec Co., Ltd. was added to this mixed solution of polyester resin and melamine resin to prepare a polymer clear coating.
  • Byron (registered trademark) 300 (a glass transition point of 7 ° C., a number average molecular weight of 23,000, a hydroxyl value of 5 KOH mg / g) and a “Byron (registered trademark) GK680” (glass) manufactured by Toyobo Co., Ltd.
  • coloring paints were prepared by adding necessary amounts of titanium oxide fine particles having a particle size of 280 nm, alumina fine particles having a particle size of 700 nm, 1000 nm, and 4000 nm, and silica particles having a particle size of 40 nm to these clear paints.
  • titanium oxide fine particles having a particle size of 280 nm “Taipec (registered trademark) CR-95” manufactured by Ishihara Sangyo Co., Ltd. was used, and as alumina fine particles having a particle size of 700 nm, 1000 nm, and 4000 nm, respectively, “Nippon Light Metal Co., Ltd.” “A33F”, “A32”, and “A34” were used, and “Aerosil 200” manufactured by Nippon Aerosil Co., Ltd. was used as the silica particles having a particle diameter of 12 nm.
  • the fine particles were added by converting their addition amount with respect to the resin solid content shown by volume ratio in Table 1 from the specific gravity of each resin and each fine particle into a mass ratio. Since the titanium oxide fine particles themselves are colored pigments, no other color pigments were added to the paint in which the titanium oxide fine particles were added as fine particles contained in the colored coating layer. On the other hand, carbon black “Toka Black # 7300” manufactured by Tokai Carbon Co., Ltd. is added as a coloring pigment to the paint in which alumina or silica is added as fine particles, and 3 parts by mass with respect to a total of 100 parts by mass of total resin solids and fine particles. did.
  • the viscosity is adjusted by diluting each paint with a mixed solvent as necessary, and for the colored paint, a BYK surfactant BYK- 333 was added to adjust the surface tension.
  • the viscosity of the paint was measured according to JIS Z 8803.9 “Viscosity measurement method using a cone-plate rotary viscometer”. Specifically, it measured using the rotational viscoelasticity measuring apparatus "RSF-II” by Rheometrics.
  • the surface tension of the paint was measured using a platinum ring method surface tension measuring device “Dinometer” manufactured by BYK in accordance with JIS K 3362.8.4 “Ring ring method”.
  • a necessary amount of a mixed solvent for dilution (diluted thinner) and a surfactant were added while adjusting to a target viscosity and surface tension.
  • a mixture of cyclohexanone and Solvesso 150 at a mass ratio of 1: 1 was used as the diluted thinner.
  • Table 1 shows the details of the colored paint produced as described above.
  • 0.5% by mass of an acidic catalyst “Catalyst (trademark) 600” manufactured by Mitsui Cytec Co., Ltd. was added to this mixed solution of polyester resin and melamine resin to prepare a polymer clear coating.
  • “Pearl Glaze” sold by Nippon Koken Kogyo Co., Ltd. is used as mica
  • non-feeling aluminum paste # 7100 manufactured by Toyo Aluminum Co., Ltd. is used as aluminum flake
  • “Metal” manufactured by Nippon Sheet Glass Co., Ltd. is used as glass flake. Shine "was used.
  • the mica-added design paint is referred to as “mica paint”
  • the aluminum flake-added design paint is referred to as “aluminum flake paint”
  • the glass-flake-added design paint is referred to as “glass flake paint”.
  • Back surface paint As a back surface paint to be applied to the back surface of the metal plate, that is, the back side of the surface on which the colored paint or the design paint is applied, a beige color of the back paint Olga 100 manufactured by Nippon Fine Coatings Co., Ltd. was prepared.
  • pre-coated steel sheet The metal sheet prepared in 1 above is degreased by immersing it in an aqueous solution at a temperature of 60 ° C. containing 2% by mass of FC-4336 (manufactured by Nihon Parkerizing) for 10 seconds. Dried.
  • the chemical conversion treatment liquid prepared in 2 above was applied to both sides of the degreased metal plate with a roll coater and dried in a hot air drying furnace to obtain a chemical conversion coating layer.
  • the chemical conversion treatment liquid was applied so that the amount of the entire coating film after drying was 100 mg / m 2 .
  • the ultimate plate temperature during the chemical conversion treatment drying was set to 60 ° C.
  • the primer coating prepared in 3 above is applied to the surface of the metal plate subjected to chemical conversion treatment with a roll coater so as to have a dry film thickness of 5 ⁇ m, and the other surface is the back surface prepared in 6 above.
  • the primer coating layer is applied by coating the paint with a roll coater to a dry film thickness of 5 ⁇ m, and drying and baking in a induction heating furnace blown with hot air under the condition that the ultimate temperature of the metal plate is 210 ° C. Formed. After dry baking, water was sprayed on the painted metal plate with water and cooled.
  • the colored paint produced in 4 above and the design paint produced in 5 above are simultaneously applied with a slide popper type curtain coater, and hot air is blown into the laminated paint.
  • the metal plate was simultaneously dried and baked under the condition that the ultimate temperature of the metal plate was 230 ° C. to form a colored coating layer and a design coating layer on the primer coating layer.
  • water was sprayed on the coated metal plate and cooled with water to obtain a pre-coated metal plate as a test material (hereinafter, this method is referred to as “3 coat 2 bake” or “3C2B”). Called).
  • a colored coating, a design coating, and a clear coating are applied on the primer coating layer for those that form a clear coating layer (the outermost coating layer) on the design coating layer.
  • Three layers are coated simultaneously with a slide popper type curtain coater, and the laminated coating is simultaneously dried and baked in an induction heating furnace blown with hot air under the condition that the ultimate plate temperature of the metal plate is 230 ° C.
  • a colored coating layer, a design coating layer and a clear coating layer were formed thereon. After drying and baking, water was sprayed onto the coated metal plate and cooled with water to obtain a pre-coated metal plate as a test material (hereinafter referred to as “4 coat 2 bake” or “4C2B”). Called).
  • a co-test material without a primer coating layer was also produced. That is, the prepainted metal plate having only the colored coating layer and the design coating layer is directly applied on the surface of the metal plate after the chemical conversion treatment.
  • the colored coating prepared in the above 4 and the design coating prepared in the above 5. By applying two layers at the same time with a slide popper type curtain coater, and simultaneously drying and baking the laminated paint under the condition that the ultimate plate temperature of the metal plate is 230 ° C. in an induction heating furnace blown with hot air, A pre-coated metal plate as a co-test material was obtained (hereinafter, this method is referred to as “2 coat 1 bake” or “2C1B”).
  • a colored paint is applied on the primer coating layer with a roll coater, and is dried and baked at the same time in an induction heating furnace in which hot air is blown under a condition that the ultimate plate temperature is 230 ° C.
  • a design coating is applied on the dried and cured colored coating layer with a roll coater, and the ultimate temperature of the steel plate is 230 ° C. in an induction heating furnace in which hot air is blown.
  • drying and baking were performed to form a colored coating layer and a design coating layer on the primer coating layer.
  • water was sprayed on the coated metal plate and cooled with water to obtain a pre-coated steel plate as a test material (hereinafter, this method is referred to as “3 coat 3 bake” or “3C3B”). ).
  • the line for producing the pre-coated metal plate co-test material in this example was a so-called two-bake line having only two heating furnaces (ovens), when producing a 3C3B sample, the production line was run twice. The test material was produced by letting it pass.
  • the centerline average roughness Ra of the boundary surface between the colored coating layer and the design coating layer is determined according to JIS B6061. The measurement was performed as follows. The pre-coated metal plate was cut vertically so that the cross-section of the coating film could be observed, the cut pre-coated metal plate was embedded in the resin, the cross-section was polished, and a cross-sectional photograph of the coating film with a 1000 ⁇ optical microscope was taken. Next, a transparent resin sheet (using a commercially available OHP sheet) was placed on the photograph to accurately trace the unevenness at the coating film interface. Next, as shown in FIG.
  • the reference length l is extracted in the direction of the average line of the boundary surface curve
  • the X axis is taken in the direction of the average line of the extracted portion
  • the Y axis is taken in the longitudinal magnification direction
  • the interface curve is drawn.
  • y f (x)
  • a value obtained by the following formula (I) was calculated as Ra.
  • the average value of five measurements was adopted as the center line average roughness Ra of the boundary surface between the colored coating layer and the design coating layer of the precoated metal sheet.
  • the sample with Ra of the boundary surface of 1.0 ⁇ m or more was evaluated as “ ⁇ ”, the sample with 0.8 ⁇ m or more and less than 1.0 ⁇ m was evaluated as “ ⁇ ”, and the sample with less than 0.8 ⁇ m was evaluated as “ ⁇ ”.
  • the precoat metal plate which coated only the colored coating film with the single layer on the hot-dip galvanized steel plate was produced on the coating conditions when the colored coating film of each metal plate was applied. Subsequently, it cut
  • Samples having a void volume ratio measured in the manner as described above of 25% or more and less than 35% are ⁇ , 3% or more and less than 25% are ⁇ ( ⁇ ), 35% or more and less than 40% are ⁇ (+), Less than 3% was evaluated as x (-), and more than 40% was evaluated as x (+).
  • Samples having a void area ratio measured as described above of 20% or more and less than 35% are ⁇ , those having 1% or more and less than 20% are ⁇ ( ⁇ ), samples having a void area ratio of 35% or more and less than 40% are ⁇ (+), Less than 1% was evaluated as x (-), and more than 40% was evaluated as x (+).
  • a sample in which peeling of the coating film was not observed at all was evaluated as ⁇
  • a sample in which the convex portion was partially peeled was evaluated as ⁇
  • a sample in which the convex portion was completely peeled was evaluated as ⁇ .
  • Corrosion resistance test A sample in which scratches reaching the metal plate substrate were put on a coating film on the evaluation surface of each precoated metal plate produced with a cutter knife, and this was used as a medium-resistant salt water according to JIS K 5600.7.1. The sprayability was investigated. The exposure time of spraying with salt water was 240 hours.
  • the creep width of corrosion of the coating film from the scratch portion of the sample after the test was measured, and the samples having a maximum creep width of 3 mm or less were evaluated as ⁇ , those exceeding 3 mm to 10 mm or less, and ⁇ exceeding 10 mm were evaluated as ⁇ . .
  • the samples with a specular gloss of 80% or more measured in this way were evaluated as ⁇ , those with 50% or more and less than 80% were evaluated as ⁇ , and samples with less than 50% were evaluated as ⁇ .
  • examples (Examples 1 to 27) in which Ra on the boundary surface between the colored coating layer and the design coating layer satisfying the requirements of the precoated metal sheet of the present invention are 0.8 ⁇ m or more are designed. It is suitable because of its excellent feeling. On the other hand, examples where the Ra of the boundary surface is less than 0.8 ⁇ m (Comparative Examples 28, 30, 31, 33, 34, and 35) are unsuitable because of poor design feeling. In addition, examples in which Ra on the boundary surface is 1.0 ⁇ m or more (Examples 2 to 4, 8, 10 to 13 and the like) are more preferable because they are particularly excellent in design feeling.
  • Examples in which the void volume ratio of the colored coating layer is 3 to 40%, or in which the void area ratio of the cross section is 1 to 40% (Examples 1 to 27) deviate from this (Comparative Examples 28, 30 to 32, 35), which is more suitable because it is more excellent in design. Furthermore, those having a void volume ratio of 25% or more and less than 35%, or those having a void area ratio of 25% or more and less than 35% are more preferable because the design properties are further improved.
  • (Examples 1 to 27) are more suitable because the boundary surface Ra is 0.8 ⁇ m or more and is excellent in design.
  • Those having a (particulate volume) / (binder resin volume) of less than 30/70 are not preferred because Ra on the interface is less than 0.8 ⁇ m and the design is poor.
  • the (particulate volume) / (binder resin volume) was more than 95/5 (Comparative Example 29)
  • the film was slightly brittle and had a tendency to be inferior in workability.
  • the particle size of the fine particles contained in the colored coating layer is preferably 100 to 2000 nm. In an example of less than 100 nm (Comparative Example 30) and an example of more than 1000 nm (Comparative Example 31), the boundary surface Ra between the colored coating layer and the design coating layer is less than 0.8 ⁇ m.
  • a clear coating on the colored coating layer (Example 12) is particularly suitable because it is particularly excellent in gloss.
  • the pre-coated metal plate preferably has a primer coating layer under the colored coating layer, and the example (Example 27) having no primer coating layer tended to be inferior in workability.
  • the examples (Examples 17 to 26) containing the rust preventive pigment in the primer coating layer were superior in corrosion resistance to the examples (Examples 1 to 16) not containing the rust preventive pigment, so that the corrosion resistance was improved. Shows that it is preferable to add a rust preventive pigment to the primer coating layer.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

立体感と深み感とを兼ね備えるとともに、これまで以上に光輝感、立体感、深み感等を有する意匠性に優れたプレコート金属板及びその製造方法を提供する。金属板表面の一部または全部に、着色顔料を含む第1の塗膜層と、当該着色塗膜層の表層側に配置された光輝顔料を含む第2の塗膜層と、を含む少なくとも2層以上の被覆層を有するプレコート金属板およびその製造方法において、第1の塗膜層と第2の塗膜層との境界面の中心線平均粗さRaが0.8μm以上となるようにした。

Description

プレコート金属板およびその製造方法
 本発明は、家電用、建材用、土木用、機械用、自動車用、家具用、容器用等に主に用いられ、塗装後に成形加工することを前提として予め塗料を塗装したプレコート金属板およびその製造方法に関し、特に、意匠性に優れたプレコート金属板およびその製造方法に関する。
 近年、家電用、建材用、土木用、機械用、自動車用、家具用、容器用等に用いる金属材として、金属材の加工後に塗装されていたポスト塗装製品に代わって、着色した塗膜を被覆したプレコート金属板が広く使用されるようになってきている。プレコート金属板は、一般的には金属板表面に化成処理を施した上に塗料を塗装したもので、塗料を塗装した状態で切断し、プレス成形されて使用されることが一般的である。このようなプレコート金属板を用いることでユーザにより行われる塗装工程を省略でき、生産性の向上やコストダウンに寄与するため、近年では産業界でのプレコート金属板の使用が増加している。
 他方、最近では、家電や自動車分野等を中心に、光輝感や深み感に優れた意匠外観(以下、「高意匠性外観」と称する場合がある。)を有する塗装に対するニーズが高まってきている。このような高意匠性外観を有する塗装は、通常、スプレー塗装で行われている。高意匠性外観を有する塗装においては、メタリック、マイカ、パール、ガラスなどの様々な種類の光輝顔料を含む塗料を重ね塗りしたり、厚膜塗装したりすることで、光輝感や深み感を向上させている。
 以上のように、最近では、これまで以上の光輝感や深み感のある高意匠性外観を有し、かつ、生産性の高いプレコート金属板に対する要望が高まってきている。
 プレコート鋼板において高意匠性外観を発現させる技術として、例えば、特許文献1には、金属板上に5~80μmの有機樹脂微粒子と着色顔料を含有する着色ベース塗膜とクリヤー塗膜をウェットオンウェットで塗装し、高輝感と立体意匠感を有する塗膜を形成する技術が開示されている。また、例えば、特許文献2には、金属板上に5~80μmの有機樹脂微粒子と着色顔料を含有する着色ベース塗膜と高輝顔料を含むクリヤー塗膜をウェットオンウェットで塗装し、高輝感と立体意匠感を有する塗膜を形成する技術が開示されている。
特開平11−19584号公報 特開平11−19581号公報
 しかしながら、着色ベース塗膜中に有機樹脂微粒子と着色顔料とを添加する特許文献1及び特許文献2の技術では、有機樹脂微粒子の添加量を増加させると、塗膜表面の凹凸が増すために立体感は増すが、着色顔料を多く添加できなくなるために隠蔽性が劣り深み感がなくなってしまう。一方、着色顔料の添加量を増加させると、隠蔽性が増すために深み感は増すが、有機樹脂微粒子を多く添加できなくなるために立体感がなくなってしまう。すなわち、特許文献1及び特許文献2の技術のいずれを用いても、立体感と深み感とを兼ね備える高意匠性外観を有するプレコート金属板を提供することは困難である、という問題があった。
 本発明は、このような問題に鑑みてなされたものであって、立体感と深み感とを兼ね備えるとともに、これまで以上に光輝感、立体感、深み感等を有する意匠性に優れたプレコート金属板及びその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討した結果、樹脂塗膜中に最密充填となる量を超える量(微粒子の形状によっても異なるが、一般におよそ20~30体積%が最密充填となる)の顔料など微粒子を添加した塗料と、光輝顔料を含む塗料とを塗料の粘度等の塗料物性を制御して多層同時塗布またはウェットオンウェット方式により基材に塗装すると、両塗料により形成された塗膜間の境界面の中心線平均粗さ(Ra)が大きくなり、これにより、光輝感および深み感を有し、さらには立体感をも有するプレコート金属板が得られることを見出した。また、微粒子を含む塗膜中に空隙を所定量設けることにより、十分な隠蔽性を有し、且つ、プレコート金属板の意匠感がさらに増すことを見出した。特に本願発明の技術はプレコート金属板に被覆された塗膜が白色系であるときに効果を発揮する。
 一般に隠蔽性とは、着色した塗膜層を被覆した時に原板の色を光学的に隠す特性であり、隠しきれずに、原板の色が透けて見える場合は隠蔽性が劣ることになる。一般に、塗膜表層に入射した可視光が塗膜底面の原板まで到達し、これに反射し、更にこの反射光が塗膜表層から塗膜の外へ抜け出たときに、原板の色が透けて見える。原板に反射した可視光が塗膜外へ抜け出す量が多い場合に、隠蔽性が低くなる。隠蔽性を高めるためには、塗膜表層から入射した可視光を原板に達する前に塗膜外へ放出する必要がある。一般には塗膜中に顔料などの微粒子を添加し、これに塗膜表層から入射した可視光を反射させて塗膜外へ放出することで塗膜の隠蔽性を確保している。塗膜の隠蔽性は塗膜中の顔料濃度に依存しており、顔料濃度を高めると高まるが、極大点を有し、ある一定の顔料濃度を超えると隠蔽性は低くなることが知られている。「色材ハンドブック」社団法人色材協会編集、昭和42年5月25日発行、株式会社朝倉書店には、顔料体積濃度で20~30%付近で隠蔽性が極大点となることが記載されている。塗膜中に顔料などの微粒子が添加されていると、バインダー樹脂と微粒子との界面屈折率差により光が反射する。顔料濃度が多いとこの界面屈折率差による反射界面が多くなり、塗膜表層から入射した多くの光が原板に達する前に反射して塗膜外に放出されるため、隠蔽性が高まる。しかし、塗膜中に含まれる顔料の濃度が更に高まると粒子同士の間隔が狭まり、この間隔が光の波長の1/2程度以下になると顔料表面(顔料とバインダー樹脂との界面)における散乱効率が低下してくるため、隠蔽性が低下すると一般に言われている。そのため、塗膜に高隠蔽性を付与するためには顔料体積濃度で20~30%とすることが一般的である。例えば、微粒子がアナターゼ型酸化チタンで、バインダー樹脂の比重を1.2、アナターゼ型酸化チタンの比重を4.2とした場合、顔料体積濃度20~30%は顔料質量濃度に換算すると46.7~60%となり、バインダー樹脂100質量部に対してアナターゼ型酸化チタン顔料が87.6~150質量部に相当する。
 塗膜中に最密充填となる量を超える量の微粒子を添加した塗料を乾燥硬化させると、塗膜中のバインダー樹脂分量が微粒子同士の隙間を埋めるのに必要な量より少なくなってしまうため、塗膜中の微粒子同士の隙間に空隙が発生する。空隙が発生するとこの空隙に接する樹脂や顔料との間に別の界面(樹脂と空隙との界面、顔料と空隙との界面)が発生するため、光散乱度が高まり、隠蔽性も高まることを発明者らは知見した。また、この微粒子を添加した塗料と、光輝顔料を含む塗料とを前者を基材側、後者を表層側になるようにして多層同時塗布またはウェットオンウェット方式により塗装し同時に乾燥硬化させると、乾燥硬化工程において微粒子を添加した塗料中の微粒子が、光輝顔料を含む塗料層へ拡散し、これがドライビングフォースとなって両塗膜の界面が大きく乱れて界面Raが大きくなることを発見した。更にはプレコート金属板の皮膜層をこの様な構成とすることで、十分な隠蔽性を有し、且つ、光輝感および深み感が発現することを見出した。この理由を以下に記述する。(1)塗膜表面に入射した可視光が表層側の塗膜中に含まれる光輝顔料で反射して、一部が散乱光として塗膜表層から塗膜外へ抜け出す。(2)前記(1)で光輝顔料にぶつからなかった光は、この下の塗膜層とのRaの大きな界面で拡散反射する。(3)前記(2)で拡散反射した散乱光が再度、光輝顔料に反射するため更に光が拡散する。(4)前記(2)にて塗膜間界面で反射せずに透過して下層側の塗膜へ入射した光は、下層側の塗膜中に含まれる数多くの顔料/バインダー樹脂界面、顔料/空隙界面、バインダー樹脂/空隙界面で乱反射を繰り返えす。(5)前記(4)で乱反射を繰り返した可視光は原板に到達する前に下層塗膜から表層塗膜へ抜けだし、表層塗膜中の光輝顔料に再度反射し、これらを繰り返しながら塗膜表層から抜け出す。(6)塗膜表層に入射した光は前記(1)~(5)の過程で拡散反射を繰り返し、反射するごとに光散乱度が増し、これら散乱した光が最終的に原板に達すること無く表層から塗膜外へ抜け出す光と混在して人の目には見えるため、人の目にはプレコート金属板塗膜がより輝いて見える。(7)前記(6)に加えて、前記(1)の過程で入射してから直ちに表層へ抜け出す光と、前記(2)~(5)の様々な過程を経て繰り返し反射するために時間を掛けて表層から塗膜外へ抜け出す光とが混在するため、人の目にはプレコート金属板塗膜が高い深み感となって見える。
 本発明は、このような知見に基づいて完成されたものである。
 すなわち、本発明によれば、金属板表面の一部または全部に、着色顔料を含む第1の塗膜層と、当該第1の塗膜層の表層側に積層された光輝顔料を含む第2の塗膜層と、を含む少なくとも2層以上の被覆層を有し、前記第1の塗膜層と前記第2の塗膜層との境界面の中心線平均粗さRaが0.8μm以上であるプレコート金属板が提供される。
 前記第1の塗膜層は、平均粒径が100nm以上2000nm以下の微粒子を含み、前記第1の塗膜層中における前記微粒子と前記バインダ樹脂との固形分体積比率は、前記微粒子の体積をV1、前記バインダ樹脂の体積をV2とすると、V1/V2=30/70~95/5であることが好ましい。
 前記第1の塗膜層中には、空隙が存在することが好ましい。
 前記空隙の含有率は、前記第1の塗膜層中の固形分の全体積と前記空隙の体積の合計量に対して、3体積%以上40体積%以下であることが好ましい。
 また、前記第1の塗膜層の表面に垂直な断面を平滑にして、10000倍の走査型顕微鏡で写真撮影した場合に、前記断面全体の面積に対する前記空隙が存在する部分の占める面積率が、1%以上40%以下であることが好ましい。
 前記微粒子は、着色顔料であることが好ましい。
 前記着色顔料としては、例えば、白色顔料が挙げられる。
 前記白色顔料としては、例えば、酸化チタンが挙げられる。
 前記被覆層は、前記第2の塗膜層の表層側に配置された第3の塗膜層をさらに含んでいてもよい。
 また、前記被覆層は、前記第1の塗膜層と前記金属板との間に配置された第4の塗膜層をさらに含んでいてもよい。
 前記金属板には、化成処理が施されていてもよい。
 また、本発明によれば、着色顔料を含む第1の塗料と光輝顔料を含む第2の塗料とを、多層同時塗布またはウェットオンウェット方式により、前記第2の塗料が前記第1の塗料よりも表層側となるように、金属板表面の一部または全部に塗布し、前記金属板表面に塗布された未乾燥状態の前記第1の塗料および前記第2の塗料を同時に乾燥硬化させることにより、前記着色顔料を含む第1の塗膜層と、前記光輝顔料を含む第2の塗膜層と、を前記第1の塗膜層と前記第2の塗膜層との境界面の中心線平均粗さRaが0.8μm以上となるように形成するプレコート金属板の製造方法が提供される。
 本発明によれば、立体感と深み感とを兼ね備えるとともに、これまで以上に光輝感、立体感、深み感等を有する意匠性に優れたプレコート金属板及びその製造方法を提供することが可能となる。
塗膜境界面の凹凸の状態の一例を示す図である。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。
<プレコート金属板の構成>
 まず、本発明の一実施形態に係るプレコート金属板の構成について詳細に説明する。
 本実施形態に係るプレコート金属板は、塗装後の加工が可能な金属板であって、基材となる金属材の表面の一部または全部に、少なくとも2層の被覆層を有している。この被覆層は、具体的には、着色顔料を含む第1の塗膜層(以下、「着色塗膜層」と称する。)と、第1の塗膜層の表層側に積層された光輝顔料を含む第2の塗膜層(以下、「意匠性塗膜層」と称する。)と、を少なくとも含む2層以上の積層構造を有している。また、本実施形態に係るプレコート金属板は、被覆層として、意匠性塗膜層のさらに表層側に積層された第3の塗膜層(以下、「クリヤー塗膜層」と称する。)をさらに有していてもよく、また、着色塗膜層の内層側(すなわち、金属板と着色塗膜層との間)に、第4の塗膜層(以下、「プライマー塗膜層」と称する。)をさらに有していてもよい。
[着色塗膜層と意匠性塗膜層との界面の粗さについて]
 本実施形態に係るプレコート金属板では、着色塗膜層と意匠性塗膜層との境界面の中心線平均粗さRaが0.8μm以上であることが必要である。このように、着色塗膜層と意匠性塗膜層との境界面のRaを大きくすることにより、プレコート金属板が十分な光輝感および深み感を有し、さらには立体感をも有するため、プレコート金属板の意匠性を顕著に向上させることができる。着色塗膜層と意匠性塗膜層との境界面のRaが0.8μm未満であると、上記の意匠性の向上効果を十分に得ることができない。Raが1.0μm以上であると上記の意匠性が更に向上するため、より好適である。
(境界面のRaの制御方法)
 着色塗膜層と意匠性塗膜層との境界面のRaは、着色塗膜層および意匠性塗膜層の塗布方法、着色塗膜層中の微粒子(顔料など)の濃度、着色塗膜層および意匠性塗膜層形成用の塗料の低シェアでの粘度や表面張力等により、制御することができる。例えば、着色塗膜層と意匠性塗膜層との境界面のRaを0.8μm以上としたプレコート金属板は、着色塗膜層と意匠性塗膜層の2層を積層する際に、表面張力を制御した着色塗膜層用の塗料(以下、「着色塗料」と称する。)と意匠性塗膜層用塗料(以下、「意匠性塗料」と称する。)を、乾燥および焼付け硬化させる前の未乾燥の状態で2層に積層し、積層した未乾燥状態の着色塗料および意匠性塗料を同時に乾燥および焼付け硬化させることにより得られる。
 各塗料の表面張力は、レベリング剤や消泡剤など、一般に界面活性剤と呼ばれる添加剤を塗料に所定量添加することによって調整することができるが、塗料中の溶剤の種類を変えることによっても調整することもできる。着色塗料と意匠性塗料との表面張力差を小さくすると、形成される着色塗膜層と意匠性塗膜層との境界面のRaは大きくなる傾向である。ただし、表層側に塗装される意匠性塗料の表面張力よりも内層側に塗装される着色塗料の表面張力の方が小さくなると、下層の塗膜が上層側へ、上層の塗膜が下層側へ移動しようとするため、部分的に下層塗膜が盛り上がり表層に突き出る、もしくは、上層塗膜が薄くなり盛り上がった下層塗膜が透けて見える現像、いわゆる両層の混層と呼ばれる塗装欠陥が発生しやすい。そのため、意匠性塗料の表面張力より着色塗料の表面張力の方を大きくすることが好ましい。着色塗料と意匠性塗料との表面張力差は、各塗膜層の樹脂種や溶剤種の違いによって好適な値が異なるため、一概に規定することはできず、塗料ごとに事前に調査して最適値を決める必要がある。本発明者らの知見では、10.0mN/m≧([着色塗料の表面張力]−[意匠性塗料の表面張力])≧0mN/mであると好適である。([着色塗料の表面張力]−[意匠性塗料の表面張力])の値が10.0mN/m超では、境界面のRaが0.8μm未満となる傾向であり、0mN/m未満では、着色塗膜層の成分と意匠性塗膜層の成分とが混ざり合ってしまい、プレコート金属板の外観の意匠性に劣る傾向が見られた。([着色塗料の表面張力]−[意匠性塗料の表面張力])の値は、好ましくは0.5~10mN/mである。
 着色塗膜層と意匠性塗膜層との境界面のRaを0.8μm以上とするための最も効果的な方法としては、例えば、着色塗膜層に粒径100nm~2000nmの微粒子を乾燥後の塗膜中のバインダ樹脂の体積に対して最密充填以上となるように添加し、この着色塗料と意匠性塗料とを未乾燥の状態で積層し、積層した状態で同時に乾燥・硬化させる方法が挙げられる。着色塗膜層中に最密充填以上の着色顔料等の微粒子を添加し、意匠性塗膜層と未乾燥状態で積層することで、塗膜層間に微粒子の濃度勾配が発生し、着色塗膜層中の微粒子が意匠性塗膜層側へ拡散しようとする働きが生じる。さらに、乾燥・硬化工程で熱が加わるため、この熱がドライビングフォースとなって微粒子が拡散しようとする働きが顕著になる。他方、乾燥・硬化工程で熱を加えると塗膜を形成する樹脂の架橋反応が起こるため、微粒子の層間拡散の動きを抑制する働きが生じる。そのため、着色塗膜層と意匠性塗膜層との境界面が粗れた状態となり、Raが大きくなる。
 ここでいう「微粒子を乾燥後の塗膜中のバインダ樹脂の体積に対して最密充填以上となるように添加」とは、塗膜中に最密充填された顔料等の微粒子間の空隙の体積が、乾燥後の塗膜中のバインダ樹脂の体積よりも大きい」ということを意味している。従って、本実施形態では、塗膜中に存在する微粒子間の空隙の全てがバインダ樹脂により充填されないため、塗膜中に空隙が存在することとなる。
 着色塗膜層中に微粒子を混入させて着色塗膜層と意匠性塗膜層との境界面のRaを制御することは、各塗料の粘度や、各塗料中に添加した架橋剤の反応速度を制御することによっても可能である。各塗料の粘度が低いと、着色塗料中の微粒子が意匠性塗料中へ拡散しやすくなり、着色塗膜層と意匠性塗膜層との境界面のRaが大きくなる傾向となる。本発明者らの知見によると、乾燥・硬化後に塗膜中で最密充填以上となるような濃度で微粒子(着色顔料など)を添加した塗料は、一般に濃厚分散系塗料と呼ばれる非ニュートン流体となり、回転粘度計で粘度を測定した際に、低回転では粘度が高く、高回転では粘度が低くなる、いわゆるシェアシニング特性を持つ塗料となる。このような塗料を基材に塗装するときの塗装作業性には、高回転での粘度が大きく影響する一方で、塗装した後の乾燥・焼付け硬化工程での塗料の膜内流動には低回転での粘度が大きく影響することとなる。従って、着色塗膜層と意匠性塗膜層との境界面のRaの制御には、低シェアでの塗料粘度を調整することが重要となる。具体的には、本実施形態では、回転粘度計による着色塗料の回転数5rpmでの粘度が、500mPa以上4000mPa以下であることが好ましい。回転粘度計による着色塗料の回転数5rpmでの粘度が4000mPa超では、境界面のRaが0.8μm未満となるおそれがあり、500mPa未満では、着色塗料中の着色顔料が意匠性塗料中へ、意匠性塗料中の光輝顔料が着色塗料中へ拡散しやすくなり、両層の界面が見えなくなり、両層とも光輝顔料と着色顔料を含む同一層のようになってしまい、プレコート金属板の外観の意匠性が十分でないおそれがある。回転粘度計による着色塗料の回転数5rpmでの粘度は、好ましくは700~4000mPa、より好ましくは700~1000mPaである。
 塗料粘度は、塗料中の溶剤量および塗料の保管条件(保管温度および保管期間)を変更することにより調整することができる。塗料の保管条件としては、保管温度が高いほど、また、保管期間が長いほど、塗料中の顔料の分散が進み、チキソトロピー性が低くなるため、低シェアでの塗料粘度が小さくなる。さらに、分散剤や構造粘性付与剤等の添加剤を塗料中に添加することによっても、塗料粘度を調整することができる。
 次に、着色塗膜層、意匠性塗膜層、クリヤー塗膜層、プライマー塗膜層の順に、各塗膜層の構成について詳細に説明する。
[着色塗膜層]
(概要)
 本実施形態に係る着色塗膜層は、着色顔料とバインダ樹脂とを必須成分として含有する塗膜層であり、意匠性塗膜層よりも内層側、すなわち、基材である金属材により近い側に位置する。ただし、被覆層が、着色塗膜層および意匠性塗膜層に加えて、クリヤー塗膜層とプライマー塗膜層のうちのいずれか一方または双方を含む3層または4層構造である場合には、着色塗膜層は、プライマー塗膜層と意匠性塗膜層とに接して挟まれた部分に位置する層とする。また、被覆層が、着色塗膜層、意匠性塗膜層、クリヤー塗膜層、プライマー塗膜層以外の他の層を含む場合には、意匠性塗膜層とプライマー塗膜層との間に位置し、かつ、着色顔料を含有する全ての層を着色塗膜層とする。
(着色顔料)
 着色塗膜層中に含有される着色顔料としては、着色された有機微粒子を用いても良いし、一般に公知の無機着色顔料を用いてもよい。有機微粒子としては、例えば、着色されたアクリル系樹脂、ポリスチレン系樹脂、ポリウレタン系樹脂等の微粒子を使用することができる。無機着色顔料としては、例えば、酸化チタン、酸化亜鉛、アルミナ、硫酸バリウム、炭酸カルシウム等の白色顔料や、亜酸化銅、モリブデートオレンジ、黄色酸化鉄、鉄黒、べんがら、紺青、群青などを使用することができる。着色顔料が白色顔料、特に白色度の高い酸化チタンであると、白色度が高く光輝感や深み感のある意匠性に優れた白色のプレコート金属板が得られるため、より好適である。光輝感や深み感のある白色の意匠性に優れた塗装外観は、近年の流行でもあり、従来はスプレーによる後塗装(ポストコート)でしか実現できなかった塗装外観である。そのため、このような塗装外観がプレコート金属板で達成できると、生産性が格段に向上するため好ましい。
 なお、酸化チタンには、ルチル型酸化チタンとアナターゼ型酸化チタンがあるが、アナターゼ型酸化チタンは、光触媒性が高い。したがって、アナターゼ型酸化チタンを含む塗膜層は、外部から光を受けた際に、バインダ樹脂が分解してしまう可能性があるため、本実施形態では、酸化チタンとして、ルチル型酸化チタンを使用する方が好ましい。ルチル型酸化チタンとしては、市販のものを使用しても良く、例えば、石原産業社製「タイペーク(登録商標)」シリーズ、富士チタン社製「TA」シリーズ、テイカ社製「TITANIX(登録商標)」シリーズ等を使用することができる。さらに、本実施形態で使用する酸化チタン粒子は、酸化チタンの粒子単体であっても、あるいは、酸化チタンに、シリカ、アルミナ、ジルコニア、酸化亜鉛、酸化アンチモン、各種有機物等でコーティングを施したものであっても良い。酸化チタンのコーティングに用いる有機物としては、特に限定されるものではないが、例えば、ペンタエリトリット、トリメチロールプロパンなどのポリオール系化合物、トリエターノールアミン、トリメチロールアミンの有機酸塩などのアルカノールアミン系化合物、シリコン樹脂、アルキルクロロシランなどのシリコン系化合物などが挙げられる。
(微粒子)
 本実施形態に係る着色塗膜層は、平均粒径が100nm以上2000nm以下の微粒子を含んでいることが好ましい。着色塗膜層中に前記粒径の微粒子が含まれていることにより、優れた意匠性を有する塗装外観を得ることができる。本実施形態に係る微粒子の粒径が100nm未満では、着色塗膜層と意匠性塗膜層との境界面のRaが0.8μm未満となり、立体感や深み感などが貧弱となり、意匠性が劣るおそれがある。一方、微粒子の粒径が2000nm超では、微粒子間に存在する隙間(空隙)の体積が大きくなりすぎて、乾燥・焼付け硬化時に、意匠性塗膜層を形成するためのバインダ樹脂が着色塗膜層中へ拡散し、着色塗膜層中の微粒子間の空隙部分に入り込みやすくなる。そのため、意匠性塗膜層と着色塗膜層とが混ざり合ったような状態となるので、両層の明確な境界面が存在しなくなり、外観の意匠性が低下するおそれがある。微粒子の粒径は、好ましくは200~1000nm、より好ましくは250~300nmである。
 本実施形態における微粒子の平均粒径とは、塗膜の任意の5つの部分を電子顕微鏡により10,000倍で観察し、各部分について視野中に映し出される微粒子のうち、粒径の小さい方から数で20%に当たる分と粒径の大きい方から数で5%に当たる分の粒子を除いた残りの微粒子の粒径の相加平均値を求め、得られた5つの値を平均したものである。
 着色塗膜層中における前述した微粒子とバインダ樹脂(詳細は後述する)との比率は、微粒子の体積をV1、バインダ樹脂の体積をV2とすると、固形分体積比でV1/V2=30/70~95/5であることが好ましい。V1/V2が30/70未満では、着色塗膜層と意匠性塗膜層との境界面のRaが0.8未満となるおそれがあり、V1/V2が95/5を超えると、着色塗膜層の皮膜が脆くなり、加工密着性に劣るおそれがある。着色塗膜層と意匠性塗膜層との境界面のRaをより確実に0.8以上とするという観点からは、V1/V2が35/65以上であることが好ましく、塗膜層の皮膜を柔軟にし、加工密着性をより向上させるという観点からは、V1/V2が50/50以下であることが好ましい。
 ここでいう「固形分体積」とは、着色塗膜層における塗膜中の樹脂(バインダ)成分と顔料成分および微粒子成分を含む固形分の体積のことを意味し、塗膜の全体積から塗膜中に存在する空隙が占める体積を除いたものである。
 本実施形態における着色塗膜層中の固形分体積比は、塗装に用いた塗料の組成と同一であり、塗料中に添加した顔料および微粒子とバインダ樹脂との比率を用いて算出することができる。なお、微粒子が無機顔料の場合には、以下のような方法によっても、着色塗膜層中の固形分体積比を求めることができる。
 まず、試料から測定対象となる着色塗膜層を削り取り、削り取った塗膜の質量M1を測定する。次に、削り取った塗膜を500℃で1時間加熱し、樹脂成分を分解させる。分解せずに残った部分を微粒子と考えることができるので、その残部の質量M2を測定する。微粒子の密度をρ1とすると、微粒子の体積V1は、V1=M2/ρ1、また、樹脂の密度をρ2とすると、樹脂の体積V2を、V2=(M1−M2)/ρ2として求めることができる。このようにして求めた微粒子の体積V1、バインダ樹脂の体積V2から、固形分体積比V1/V2を求めることができる。
 本実施形態に係る着色塗膜層に含まれる粒径100nm以上2000nm以下の微粒子としては、特に限定されるものではなく、一般に公知の無機顔料、樹脂ビーズなどを使用することができる。このとき、本実施形態に係る微粒子が着色顔料であると、光輝感や深み感等の意匠性を得るのに有利であるため好適である。本実施形態に係る微粒子として、ともに粒径が100nm以上2000nm以下の透明な微粒子と着色顔料とを併用しても良い。しかし、透明な微粒子と着色顔料の合計の添加量が多過ぎると塗膜が脆くなりやすい。そのため、加工密着性を確保するために、微粒子や着色顔料の添加量が制限されるので、塗装外観の意匠性が損ねられてしまう可能性がある。このような観点から、着色塗膜層に含まれる微粒子の全てが着色顔料であることが好ましい。微粒子として使用する着色顔料としては、前述した着色顔料の例と同様であり、着色された有機微粒子や、一般に公知の無機着色顔料を用いることができる。微粒子は白色顔料、特に白色度の高い酸化チタンであることがより好ましい。
(塗膜中の空隙)
 本実施形態に係る着色塗膜層中に空隙が存在すると、立体感や塗膜の深み感等が発現されて、意匠性がさらに向上するため、より好ましい。着色塗膜層中に空隙を存在させるようにするためには、乾燥・硬化後の塗膜中に、粒径100nm以上2000nm以下の微粒子が最密充填以上となるように存在するように、微粒子を高濃度で含有させればよい。微粒子を着色塗膜層中に高濃度で含有させることにより、微粒子間に形成された空隙の体積がバインダ樹脂の体積よりも大きくなる。そのため、顔料が最密充填未満となる濃度で含まれているような塗膜とは異なり、バインダ樹脂が存在しない部分を空隙として着色塗膜層中に存在させることができる。
 具体的には、前述したように、着色塗膜層中における粒径が100nm以上2000nm以下の微粒子とバインダ樹脂との固形分体積比V1/V2が30/70~95/5となるように、微粒子を着色塗料に添加することにより、着色塗膜層中に空隙を設けることができる。
 着色塗膜層中の空隙の含有率(以下、「空隙率」あるいは「空隙体積率」と称する。)は、着色塗膜層中の固形分(塗膜成分)の全体積と空隙の体積の合計量に対して、3体積%以上40体積%以下であると、意匠性が向上するため好ましい。空隙率が3体積%未満であると、立体感や塗膜の深み感等の意匠性が低下するおそれがあり、一方、空隙率が40体積%を超えると、塗膜が脆くなり、加工性が大きく低下するおそれがある。好ましい空隙体積率は25%以上35%未満である。
 着色塗膜層中の空隙率は、着色塗膜層中の微粒子の粒子径と添加量を調整することにより制御することができる。具体的には、微粒子の粒径が2000nm超では、塗膜表面に凹凸を有する外観となり外観不良となったり、空隙率が大きすぎて加工性に劣るおそれがある。一方、微粒子の粒径が100nm未満では、空隙率が小さくなりすぎて意匠性に劣るおそれがある。また、微粒子とバインダ樹脂との固形分体積比V1/V2が30/70未満では、空隙率が小さくなり意匠性に劣るおそれがあり、V1/V2が95/5超では、空隙率が大きすぎて皮膜が脆くなり、加工密着性に劣るおそれがある。
 着色塗膜層中の空隙率の制御は、微粒子の粒子径と添加量を調整する以外にも、例えば、着色塗膜層を形成するための塗料の分散状態を調整することによっても制御することができる。具体的には、塗料中における顔料の分散状態が良好であるほど(均一であるほど)、顔料にバインダ樹脂が吸着して効率的に顔料粒子間の空隙を埋めるため、空隙率が小さくなる。従って、より高い意匠性を得るためには、塗工性や塗料の安定性に問題の無い範囲で最低限の分散状態に留める(塗工性や塗料の安定性に問題がない範囲で可能な限り不均一にする)ことが好ましい。
 着色塗膜層中の空隙率(体積比率)は、電磁膜厚計または塗膜垂直断面からの顕微鏡観察によって得られた着色塗膜層の実膜厚から算出した単位面積当たりの付着体積量(以下、「単位面積当たりの実付着体積量」と称する。)と、プレコート金属板より単位面積当たりの着色塗膜層のみを切り出して秤量して得られた付着質量から着色塗膜層の平均の乾燥塗膜比重を用いて算出した体積量(以下、「単位面積当たりの塗膜成分体積量」と称する。)から、[空隙率]=([単位面積当たりの付着体積量]−[単位面積当たりの塗膜成分体積量])×100/[単位面積当たりの付着体積量]の式によって算出することができる。着色塗膜層の任意の5箇所について算出した値を平均して、着色塗膜層中の空隙率とする。着色塗膜層の乾燥塗膜比重としては、着色塗膜層中に含まれる各成分の添加量と各成分の比重から算出した計算比重を用いることができる。
 また、着色塗膜層中に存在する空隙率は、着色塗膜層の表面に垂直な断面を平滑にして、10000倍の走査型顕微鏡で写真を撮影した場合に、断面全体面積に対する空隙が存在する部分の占める面積率(以下、「空隙面積率」と称する。)によっても確認することができる。着色塗膜層中に存在する空隙率を空隙面積率で表した場合には、任意の5箇所について撮影した断面写真の10μm×10μmの任意の視野から求めた平均の面積空隙率が1%以上40%以下であることが好ましい。空隙面積率が1%未満では、立体感や塗膜の深み感等の意匠性が低下するおそれがあり、一方、空隙面積率が40%を超えると、塗膜が脆くなり、加工性が大きく低下するおそれがある。好ましい面積空隙率は20%以上35%未満である。
(バインダ樹脂)
 本実施形態に係る着色塗膜層に使用するバインダ樹脂としては、特に限定されず、一般に使用されているバインダ樹脂、例えば、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フッ素樹脂等を用いることができる。ただし、本実施形態に係る着色塗膜層には、必要に応じて最密充填以上となる量の微粒子を添加するため、塗膜が脆くなりやすいことから、着色塗膜層に使用するバインダ樹脂としては、加工性や密着性に優れる樹脂を使用することが好ましい。具体的には、着色塗膜層に使用するバインダ樹脂として、例えば、ガラス転移温度が0℃~40℃、数平均分子量が10000~30000、水酸基価が10KOHmg/g未満のポリエステル樹脂(以下、「高分子量のポリエステル樹脂」と称する。)を用いると、加工性が向上するため好ましい。
 上記のような高分子量のポリエステル樹脂の添加量については、バインダ樹脂全体に対する高分子量のポリエステル樹脂の濃度が14質量%以上であれば、沸きを発生させずに厚膜の塗装が可能となり、塗装性と加工性の両立が可能となる。そのため、バインダ樹脂全体に対する高分子量のポリエステル樹脂の濃度を14質量%以上とすることが好ましい。
 また、上記高分子量のポリエステル樹脂に加えて、数平均分子量が1000~7000、水酸基価15KOHmg/g以上の多官能性の樹脂(以下、「低分子量の多官能性樹脂」と称する。)を添加することで、着色顔料どうしの密着性を高めることができるため、より好適である。これは、高分子量のポリエステル樹脂単独では、着色塗膜層中に高濃度で存在する顔料粒子の間隙(空隙)に樹脂が十分に入り込むことができず、バインダとしての機能が不十分となるために加工性がやや低下する可能性があるが、高分子量のポリエステル樹脂と低分子量の多官能性樹脂とを組み合わせて使用することにより、低分子量の多官能性樹脂が、高分子量のポリエステル樹脂が入り込むことのできない顔料粒子と顔料粒子との間にまで入りこみ、顔料と顔料、あるいは、顔料と高分子量のポリエステル樹脂とのバインダとして機能し、被覆層全体の強度および密着性が向上するために、優れた加工性が得られるものと考えられるためである。また、低分子量の多官能性樹脂の水酸基価が高いほど、より多くの架橋点を有することとなり、より高い皮膜の密着性が得られる。なお、本実施形態における多官能基は水酸基であるが、多官能性樹脂としては。数平均分子量が1000~7000、水酸基価15KOHmg/g以上の樹脂であれば特に限定はされず、一般に公知の樹脂、例えば、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、エポキシ樹脂などを用いることができる。
 上記の高分子量のポリエステル樹脂や低分子量の多官能性樹脂のようなバインダ樹脂としては、市販のものを用いても良い。具体的には、高分子量のポリエステル樹脂としては、例えば、東洋紡社製のポリエステル樹脂である「バイロン(登録商標)300」等を使用でき、低分子量の多官能性樹脂としては、例えば、東洋紡社製のポリエステル樹脂である「バイロン(登録商標)GK680」等を使用できる。さらに、これらのバインダ樹脂には、硬化剤としてメラミン樹脂やイソシアネートなどの一般に公知の硬化剤を添加するとより好ましい。硬化剤の添加量は、バインダ樹脂の総量100質量部に対して5質量部~30質量部であると、加工性および密着性を担保できるため好適である。これら硬化剤としては、市販のものを用いても良く、例えば、三井サイテック社製のメラミン樹脂「サイメル(登録商標)303」等を使用できる。
 高分子量のポリエステル樹脂と低分子量の多官能性樹脂との混合割合は、質量比で0.25≦(低分子量の多官能性樹脂)/(高分子量のポリエステル樹脂)≦4であると優れた密着性および加工性を得ることができる。(低分子量の多官能性樹脂)/(高分子量のポリエステル樹脂)の質量比が0.25未満であると、低分子量の多官能性樹脂の機能発現が不十分となるために密着性が低下するおそれがあり、(低分子量の多官能性樹脂)/(高分子量のポリエステル樹脂)が4より大きいと高分子量のポリエステル樹脂の機能発現が不十分となるために加工性が低下するおそれがある。高分子量のポリエステル樹脂と低分子量の多官能性樹脂との混合割合は0.5~2.0、より好ましくは0.8~1.2である。
(膜厚)
 本実施形態に係る着色塗膜層の膜厚は、優れた意匠性を得るためには、10μm以上であることが好ましく、より高い意匠性を求める場合には13μm以上であることがさらに好ましい。一方、着色塗膜層の膜厚が80μmを超えると、塗膜の加工性が低下するおそれがあるため、着色塗膜層の膜厚は80μm以下であることが好ましく、より高い加工性を求める場合には60μm以下であることがさらに好ましい。
[意匠性塗膜層]
 続いて、本実施形態に係る意匠性塗膜層について説明する。
(概要)
 本実施形態に係る意匠性塗膜層は、前述した着色塗膜層の表層側、すなわち、基材である金属材からより遠い側に積層され、かつ、光輝顔料を含む被覆層である。被覆層が、着色塗膜層および意匠性塗膜層からなる2層構造の場合、これにさらにプライマー塗膜層を含む3層構造の場合、さらには、着色塗膜層が複数層存在する4層以上の構造等の場合には、意匠性塗膜層は、複数の被覆層のうち最表層に位置することとなる。ただし、意匠性塗膜層は、着色塗膜層の表層側に直接積層されていれば、必ずしも最表層に位置する必要はなく、後述するように、意匠性塗膜層のさらに表層側に、クリヤー塗膜層等の別途の被覆層が積層されていてもよい。
(光輝顔料)
 本実施形態に係る意匠性塗膜層に含まれる光輝顔料とは、パール顔料、ガラスフレーク顔料、メタリック顔料等の光輝感をもつ顔料のことであり、一般に公知のものを用いることができる。具体的には、パール顔料としては、マイカ、合成マイカなどの一般に公知のパール顔料を用いることができ、市販のものを使用しても良い。市販のマイカの例としては、日本光研工業社販売の「パールグレイズ」等が挙げられる。市販の合成マイカの例としては、酸化アルミニウム、酸化マグネシウム、二酸化ケイ素、フッ素化合物からなる日本光研工業社販売の「アルティミカ」等が挙げられる。ガラスフレーク顔料とは、フレーク状にしたガラス粉のことであり、表面に金属や金属酸化物でコーティングしたものを用いても良い。ガラスフレーク顔料としては、市販のものを使用しても良く、例えば、日本板硝子社製の「メタシャイン」等を用いることができる。また、メタリック顔料としては、例えば、アルミニウム、銀等の金属の微粒子やフレーク状の微粒子などを用いることができる。光輝顔料の添加量は、塗膜の光輝感を向上させるという観点から、意匠性塗膜層のバインダ樹脂に対し3質量%以上であることが好ましく、また、塗膜が脆くなることを防止し、加工性を向上させるという観点から、30質量%以下であることが好ましい。
(バインダ樹脂)
 本実施形態に係る意匠性塗膜層に使用するバインダ樹脂としては、特に限定されず、一般に使用されているバインダ樹脂、例えば、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フッ素樹脂等を用いることができる。ただし、着色塗膜層との密着性や塗料原料の共通化等の観点から、着色塗膜層と同一の樹脂を意匠性塗膜層の樹脂の一部または全部として使用することが好ましい。具体的には、意匠性塗膜層に使用するバインダ樹脂の一部または全部として、例えば、着色塗膜層と同一の樹脂、すなわち、ガラス転移温度が0℃~40℃、数平均分子量が10000~30000、水酸基価が10KOHmg/g未満の高分子量のポリエステル樹脂を用いると、加工性や着色塗膜層との密着性が向上するため好ましい。また、バインダ樹脂には、硬化剤としてメラミン樹脂やイソシアネートなどの一般に公知の硬化剤を添加するとより好ましい。硬化剤の添加量は、バインダ樹脂の総量100質量部に対して5質量部~30質量部であると、加工性および密着性を担保できるため好適である。硬化剤としては、市販のものを用いても良く、例えば、三井サイテック社製のメラミン樹脂「サイメル(登録商標)303」等を使用できる。
(膜厚)
 意匠性塗膜層には光輝顔料が添加されているため、意匠性塗膜層の膜厚が厚いほど、高い光輝感が得られる。ただし、意匠性塗膜層の膜厚が30μmを超えると、塗装時に沸きが発生しやすくなるために塗装性が劣化し、また、塗料コストの面でも好ましくない。一方、意匠性塗膜層の膜厚が3μm未満では、意匠性塗膜層による光輝感の向上効果が小さくなるため、意匠性塗膜層の膜厚を3μm以上30μm以下とすることが好ましい。安定した光輝感および塗装性を確保するという観点から、より好ましい意匠性塗膜層の膜厚は、5μm以上20μm以下である。
[クリヤー塗膜層]
(概要)
 本実施形態に係るプレコート金属板が有する被覆層は、前述した意匠性塗膜層の表層側に積層されたクリヤー塗膜層をさらに含んでいてもよい。本実施形態に係るクリヤー塗膜層は、顔料を含まない透明な塗膜層である。意匠性塗膜層上にさらにクリヤー塗膜層を塗装することにより、プレコート金属板の光沢が増し、光輝感が高くなり、意匠性をより向上させることができる。
(バインダ樹脂)
 本実施形態に係るクリヤー塗膜層に使用するバインダ樹脂としては、特に限定されず、一般に使用されているバインダ樹脂、例えば、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フッ素樹脂等を用いることができる。ただし、意匠性塗膜層との密着性や塗料原料の共通化等の観点から、意匠性塗膜層と同一の樹脂をクリヤー塗膜層の樹脂の一部または全部として使用することが好ましい。具体的には、クリヤー塗膜層に使用するバインダ樹脂として、例えば、意匠性塗膜層と同一の樹脂、すなわち、ガラス転移温度が0℃~40℃、数平均分子量が10000~30000、水酸基価が10KOHmg/g未満の高分子量のポリエステル樹脂を用いると、加工性や意匠性塗膜層との密着性が向上するため好ましい。また、これらのバインダ樹脂には、硬化剤としてメラミン樹脂やイソシアネートなどの一般に公知の硬化剤を添加するとより好ましい。硬化剤の添加量は、バインダ樹脂の総量100質量部に対して5質量部~30質量部であると、加工性および密着性を担保できるため好適である。硬化剤としては、市販のものを用いても良く、例えば、三井サイテック社製のメラミン樹脂「サイメル(登録商標)303」等を使用できる。
(膜厚)
 本実施形態に係るクリヤー塗膜層の膜厚は、優れた意匠性を得るためには、3μm以上であることが好ましく、より高い意匠性を求める場合には10μm以上であることがさらに好ましい。一方、着色塗膜層の膜厚が20μmを超えると、塗膜に沸きが発生するおそれがあるため、着色塗膜層の膜厚は20μm以下であることが好ましく、15μm以下では沸きが更に抑制されるため好ましい。
[プライマー塗膜層]
(概要)
 本実施形態に係るプレコート金属板が有する被覆層は、以上説明した着色塗膜層、意匠性塗膜層およびクリヤー塗膜層の他に、プライマー塗膜層を含んでいてもよい。このプライマー塗膜層は、金属板と着色塗膜層との間に形成される塗膜層であり、被覆層が、意匠性塗膜層、着色塗膜層およびプライマー塗膜層の3層、あるいは、これらの塗膜層にクリヤー塗膜層を含む4層からなる場合には、基材となる金属板に最も近い側の塗膜層となる。ただし、この場合、金属板から最も近い側の層であっても、金属板と塗膜との密着性向上や耐食性向上を目的として設ける膜厚1μm未満の被覆層は、本実施形態に係るプライマー塗膜層には該当せず、膜厚1μm未満の被覆層よりも表層側の被覆層をプライマー塗膜層とする。このように、着色塗膜層の内層側にさらにプライマー塗膜層を塗装することにより、塗膜密着性をより向上させることができる。
(バインダ樹脂)
 プライマー塗膜層のバインダとして用いる樹脂は、特に限定されず、一般に使用されているバインダ樹脂、例えば、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、アクリル樹脂、シリコーン樹脂、フッ素樹脂等を用いることができる。ただし、着色塗膜層との密着性や塗料原料の共通化等の観点から、着色塗膜層と同一の樹脂をプライマー塗膜層の樹脂の一部または全部として使用することが好ましい。具体的には、プライマー塗膜層に使用するバインダ樹脂の一部または全部として、例えば、着色塗膜層と同一の樹脂、すなわち、ガラス転移温度が0℃~40℃、数平均分子量が10000~30000、水酸基価が10KOHmg/g未満の高分子量のポリエステル樹脂を用いると、加工性や着色塗膜層との密着性が向上するため好ましい。
 また、プライマー塗膜層のバインダ樹脂には、必要に応じて、一般に公知のエポキシ樹脂、シランカップリング剤などの密着性を付与するための添加剤を添加しても良い。プライマー塗膜層に添加するエポキシ樹脂としては、例えば、一般に公知のエピクロロヒドリンとビスフェノールAとの縮合体などの塗料用エポキシ樹脂等が挙げられる。また、プライマー塗膜層に添加するシランカップリング剤としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ジメトキシジエトキシシラン、ジメトキシジプロポキシシラン等が挙げられる。これらのエポキシ樹脂やシランカップリング剤の添加量については、特に規定するものではなく、必要に応じて適宜決定することができる。例えば、バインダ樹脂にポリエステル樹脂を用いた場合は、エポキシ樹脂やシランカップリング剤の添加量としては、プライマー塗膜の樹脂固形分に対する固形分濃度で1質量%~30質量%が好適である。エポキシ樹脂やシランカップリング剤の添加量が1質量%以上であれば、エポキシ樹脂やシランカップリング剤を添加した効果が十分に発揮され、かつ、密着性を確保することができ、添加量が30質量%以下であれば、塗膜の加工性を確保することができる。
(顔料)
 本実施形態に係るプライマー塗膜層には、顔料を添加してもよく、耐食性を高めるという観点からは、防錆顔料を添加することが好ましい。プライマー塗膜層に添加する防錆顔料としては、一般に公知の防錆顔料、例えば、クロム酸ストロンチウム、クロム酸カリウム等のクロム系防錆顔料、トリポリリン酸二水素アルミニウム、リン酸亜鉛、亜リン酸亜鉛等のリン酸系防錆顔料、シリカ、Caイオン吸着シリカ等のシリカ系防錆顔料などを使用することができる。ただし、クロム系防錆顔料は、環境負荷物質である6価クロムを含むため、リン酸系防錆顔料やシリカ系防錆顔料などのクロム系以外の防錆顔料が好適である。これらの防錆顔料としては、市販のものを用いてもよく、例えば、テイカ社製のトリポリリン酸二水素アルミニウムである「K−WHITE(登録商標)#105」や、グレース社製のCaイオン吸着シリカである「シールデックスC303」等を使用することができる。
 また、白色のプレコート金属板を得るためには、プライマー塗膜層に、酸化チタン、酸化亜鉛などの一般に公知の白色顔料を添加すると、プレコート金属板の白色度が増し、より意匠性が向上するため好ましい。
(膜厚)
 プライマー塗膜層の膜厚については、膜厚が厚いほど、高い加工性や密着性が得られることから、これらの性能面を考慮すると、プライマー塗膜層の膜厚の上限値を設定する必要はない。しかし、プライマー塗膜層の膜厚が30μmを超えると、着色塗膜層と異なり、塗料中の顔料濃度が低いため、塗装時に沸きが発生しやすく、塗装性が劣化すること、また、塗料コストの観点からも好ましくない。よって、プライマー塗膜層の膜厚は30μm以下であることが好ましい。一方、プライマー塗膜層の膜厚が1μm未満では、プライマー塗膜層による加工性および密着性の向上効果が小さくなるため、プライマー塗膜層の膜厚は1μm以上であることが好ましい。安定した加工性、密着性および塗装性を確保するという観点から、より好ましいプライマー塗膜層の膜厚は、3μm以上20μm以下である。
[基材(金属板)]
 本実施形態に係るプレコート金属板の基材に使用する金属板としては、一般に公知の鋼板、ステンレス鋼板、アルミニウム板、銅板、アルミ合金板、チタン板等を用いることができる。これら金属板の表面には、めっきが施されていてもよい。めっきの種類としては、亜鉛めっき、アルミめっき、銅めっき、ニッケルめっき等が挙げられ、これらの合金めっきであってもよい。本実施形態では、金属板として鋼板を用いると、成形加工性に優れるため好ましい。このとき、鋼板として亜鉛系めっき鋼板を用いると、耐食性がより向上するため、さらに好ましい。亜鉛系めっき鋼板としては、一般に公知のもの、例えば、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、鉄−亜鉛合金めっき鋼板、アルミニウム−亜鉛系合金めっき鋼板、亜鉛−アルミニウム−マグネシウム系合金めっき鋼板等を用いることができる。
 また、本実施形態に係るプレコート金属板の基材として用いる金属板の表面に化成処理が施されていると、金属板と塗膜層との密着性や耐食性等が向上するため、より好適である。このような化成処理としては、一般的に施されているものを使用できる。具体的には、例えば、リン酸亜鉛系化成処理、クロメートフリー系化成処理、塗布型クロメート処理、電解クロム酸処理、反応クロメート処理等を使用することができる。このうち、塗布型クロメート処理、電解クロム酸処理、反応クロメート処理は、環境負荷物質である6価クロムを使用するため、あまり好ましくない。また、リン酸亜鉛系化成処理も、他の処理と比較して加工密着性が劣るおそれがある。従って、本実施形態に係る金属材に施す化成処理としては、クロメートフリー系処理が好適である。
 クロメートフリー系化成処理としては、無機系の化成処理剤を用いたもの、および、有機系の化成処理剤を用いたものがあるが、いずれでもよい。具体的には、クロメートフリー系化成処理として、例えば、シランカップリング剤、ジルコニウム化合物、チタニウム化合物、タンニンまたはタンニン酸、樹脂、シリカ等を含む水溶液等を用いた処理が知られている。例えば、特開昭53−9238号公報、特開平9−241576号公報、特開2001−89868号公報、特開2001−316845号公報、特開2002−60959号公報、特開2002−38280号公報、特開2002−266081号公報、特開2003−253464号公報等に記載されている公知のクロメートフリー系化成処理技術を使用しても良い。また、これらの化成処理には、例えば、日本パーカライジング社製のクロメート処理剤「ZM−1300AN」、日本パーカライジング社製のクロメートフリー化成処理剤「CT−E300N」、日本ペイント社製の3価クロム系化成処理剤「サーフコート(登録商標)NRC1000」等の市販の化成処理剤を使用することができる。
 本実施形態においては、金属板に施す化成処理として、加工密着性や耐食性に優れることが事前に確認されたものを使用することができる。本発明者らの知見では、水溶性樹脂に、シリカ、シランカップリング剤、タンニン酸、酸化ジルコニウムのうち、いずれか1種以上を添加したものが加工密着性と耐食性に優れるため、好適である。
<プレコート金属板の製造方法>
 続いて、上述したような構成を有するプレコート金属板の製造方法について詳細に説明する。
 本実施形態に係るプレコート金属板の製造方法は、着色顔料を含む着色塗膜層と、着色塗膜層の表層側に積層されて光輝顔料を含む意匠性塗膜層と、を含む少なくとも2層の被覆層を、着色塗膜層と意匠性塗膜層との境界面の中心線平均粗さRaが0.8μm以上となるように形成する方法である。以下、本実施形態に係るプレコート金属板の製造方法の詳細について説明する。
 本実施形態に係るプレコート金属板は、一般的な連続塗装ライン(「CCL」と呼ばれる。)や切板用の塗装ラインを使用して、適宜必要な処理を選択し、選択した処理を実施することで製造できる。塗装ラインの代表的な製造工程としては、「洗浄」→「乾燥」→「化成処理」→「乾燥」→「塗装」→「乾燥・焼付け」→「冷却」→「乾燥」であるが、本実施形態におけるプレコート金属板の製造工程はこれに限定されるものではない。
 本実施形態に係るプレコート金属板は、通常行われるように各被覆層ごとに塗装と乾燥・焼付けを繰り返して行うことで製造しても良い。あるいは、着色塗膜層形成用の塗料と、意匠性塗膜層の形成用の塗料とを、ウェットオンウェットまたは多層同時塗布方式により、金属材表面の一部または全部に塗布した後に、同時に乾燥・焼付け硬化して製造しても良い。ウェットオンウェットまたは多層同時塗布方式は、プレコート金属板を製造する既存の連続塗装ライン(CCL)にて、塗料を乾燥・焼付け硬化するオーブンを増設することなく製造でき、しかも、乾燥工程の数等が減るために生産性が向上することから好ましい。
 クリヤー塗膜層を形成する場合には、着色塗膜層と意匠性塗膜層を乾燥・焼付け硬化した後に、クリヤー塗膜層用の塗料(以下、「クリヤー塗料」と称する。)を塗装して乾燥・焼付け硬化しても良い。あるいは、着色塗料、意匠性塗料とともにクリヤー塗料をもウェットオンウェットまたは多層同時塗布方式により塗装した後に、積層された3層を同時に乾燥・焼付け硬化しても良い。ウェットオンウェットまたは多層同時塗布方式によると、製造工程がさらに省略されるため、より好適である。
 なお、本実施形態の金属材が亜鉛系めっき鋼板であった場合には、連続電気めっき鋼板設備、または連続溶融亜鉛めっき鋼板設備における、めっき工程の後にウェットオンウェット塗装設備または同時多層塗布設備を有するラインにて製造することによって、めっき金属表面の酸化皮膜が形成される前に塗布することができ、酸化皮膜によるハジキ外観不良を防止することができる。
 ここで、多層同時塗布とは、スロットダイコータまたはスライドホッパー式のカーテンコータ等の平行な2個以上のスリット等から異なる塗料を積層するように吐出させることが可能な装置により複数の塗液を同時に積層した状態で基材に塗布し、この積層された塗液を同時に乾燥・焼付けさせる方法である。
 また、ウェットオンウェット塗装とは、一度基材上に塗液を塗装した後に、この塗液が乾燥する前のウェット状態で、その上に他の塗液をさらに塗布し、積層された多層の塗液を同時に乾燥・焼付けする方法である。具体的には、ウェットオンウェット塗装の方法として、例えば、ロールコーティング、ディップコーティング、カーテンフローコーティング、ローラーカーテンコーティング等の塗装方法で、塗膜層を1層塗装した後、この塗膜層を乾燥焼付けする前に、さらにその上に、カーテンフローコーティング、ローラーカーテンコーティング、スライドホッパー式カーテンコーティング、スロットダイコーティング等の基材と非接触で塗装できる方法にて2層目の塗装を施した後に、積層されたウェット状態の複層塗膜を同時に乾燥焼付けする方法などが挙げられる。
 本実施形態において、多層同時塗布、または、ウェットオンウェット塗装した塗膜を同時に乾燥・焼付け硬化する方法としては、一般に公知の塗料用焼付け炉、例えば、熱風乾燥炉、直下型加熱炉、誘導加熱炉、赤外線加熱炉、または、これらを併用した加熱炉等を用いることができる。
 このように、未乾燥状態の塗液を積層して同時塗布することにより、従来は、各層ごとに行っていた乾燥工程をまとめて行うことから、生産性や製造コストの点でも有利であり、また、乾燥設備が少なくて済むという利点もある。
(まとめ)
 以上説明したように、本実施形態によれば、従来よりも光輝感、立体感、深み感等が増した意匠性に優れたプレコート金属板およびその製造方法を提供することが可能となる。従って、家電用、建材用、土木用、機械用、自動車用、家具用、容器用等の分野において、生産性の低いポストコート材ではなく、生産性の高いプレコート金属板を用いて意匠性に優れた製品を製造および組み立てられるようになり、作業効率が向上するなどの効果が得られるようになる。このように、本実施形態に係るプレコート金属板とその製造方法は、産業上の極めて価値が高いものといえる。
 次に、実施例を用いて本発明をさらに具体的に説明するが、本発明が下記実施例に限定されるわけではない。
 まず、本実施例で使用したプレコート金属板について説明する。
1.金属板
 プレコート金属板の基材となる金属板として、板厚0.5mmの溶融亜鉛めっき鋼板を用いた。この溶融亜鉛めっき鋼板としては、亜鉛付着量が片面45g/mのものを用いた。
2.化成処理液
 シランカップリング剤を5g/l、水分散シリカ(微粒)を1.0g/l、および水系アクリル樹脂を25g/lを含む水溶液を調製し、本実施例で使用する化成処理液とした。なお、シランカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、水分散シリカとしては、日産化学社製「スノーテック−N」、水系アクリル樹脂としては、ポリアクリル酸を使用した。
3.プライマー塗料
 東洋紡社製のポリエステル樹脂である「バイロン(登録商標)290」(ガラス点移点72℃、数平均分子量22,000、水酸基価5KOHmg/g)をシクロメキサノン/ソルベッソ150=1/1の質量比で混合した混合溶剤(以下、「混合溶剤」と称する。)に溶解した。この溶液に三井サイテック社製のメラミン樹脂「サイメル(登録商標) 303」を、樹脂固形分の質量比で、ポリエステル樹脂固形分100質量部に対して10質量部となるように添加した。さらに、このポリエステル樹脂とメラミン樹脂の混合溶液に、三井サイテック社製の酸性触媒「キャタリスト(商標)600」を0.5質量%添加してプライマー塗膜層用クリヤー塗料を作製した。
 次に、このプライマー塗膜層用クリヤー塗料中に、ポリエステル樹脂とメラミン樹脂との合計の樹脂固形分100質量部に対して、石原産業社製の酸化チタンである「タイペーク(登録商標)CR−95」を100質量部添加することで、プライマー塗料(以下、「白色プライマー」と称する。)を作製した。また、クリヤー塗料中にポリエステル樹脂とメラミン樹脂との合計の樹脂固形分100質量部に対して、テイカ社製のトリポリリン酸二水素アルミニウム「K−WHITE(登録商標)#105」を30質量部、グレース社製のCaイオン吸着シリカである「シールデックスC303」を30質量部、石原産業社製の酸化チタンである「タイペーク(登録商標)CR−95」を40質量部添加することで防錆顔料入りプライマー塗料(以下、「防錆プライマー」と称する。)も作製した。
4.着色塗料
 東洋紡社製のポリエステル樹脂である「バイロン(登録商標)300」(ガラス転移点7℃、数平均分子量23,000、水酸基価5KOHmg/g)(本樹脂を以降は「高分子樹脂」と称する。)を混合溶剤に溶解した。この溶液に三井サイテック社製のメラミン樹脂「サイメル(登録商標)303」を、樹脂固形分の質量比で、ポリエステル樹脂固形分100質量部に対して10質量部となるように添加した。さらに、このポリエステル樹脂とメラミン樹脂の混合溶液に、三井サイテック社製の酸性触媒「キャタリスト(商標)600」を0.5質量%添加して高分子クリヤー塗料を作製した。
 また、東洋紡績社製のポリエステル樹脂である「バイロン(登録商標)300」(ガラス転移点7℃、数平均分子量23,000、水酸基価5KOHmg/g)と「バイロン(登録商標)GK680」(ガラス転移点6℃、数平均分子量6,000、水酸基価21KOHmg/g)とを1:1(質量比)で混合したもの(本混合樹脂を以降は「高分子低分子併用樹脂」と称する。)を混合溶剤に溶解した。この溶液に三井サイテック社製のメラミン樹脂「サイメル(登録商標)303」を、樹脂固形分の質量比で、ポリエステル樹脂固形分100質量部に対して10質量部となるように添加した。さらに、このポリエステル樹脂とメラミン樹脂の混合溶液に、三井サイテック社製の酸性触媒「キャタリスト(商標)600」を0.5質量%添加して高分子低分子併用クリヤー塗料を作製した。
 次に、これらクリヤー塗料中に、粒径280nmの酸化チタン微粒子、粒径700nm、1000nm、4000nmのアルミナ微粒子、粒径40nmのシリカ粒子をそれぞれ必要量添加することで着色塗料を作製した。
 粒径280nmの酸化チタン微粒子としては、石原産業社製の「タイペーク(登録商標)CR−95」を用い、粒径700nm、1000nm、4000nmのアルミナ微粒子としては、それぞれ、日本軽金属株式会社製の「A33F」、「A32」、「A34」を用い、粒径12nmのシリカ粒子としては、日本アエロジル社製の「アエロジル200」を用いた。
 微粒子は、表1に体積比率で示した樹脂固形分に対するそれらの添加量を、各樹脂及び各微粒子の比重から質量比率に換算して添加した。酸化チタンの微粒子は、これ自身が着色顔料であるため、酸化チタン微粒子を着色塗膜層に含有する微粒子として添加した塗料には、他に着色顔料を添加しなかった。一方、微粒子としてアルミナやシリカを添加した塗料には、着色顔料として、東海カーボン社製のカーボンブラック「トーカブラック#7300」を全樹脂固形分と微粒子の合計100質量部に対して3質量部添加した。
 また、各塗料の金属板への塗装時に、必要に応じて各塗料を混合溶剤で希釈して粘度を調整し、さらに、着色塗料については、必要に応じてBYK社製の界面活性剤BYK−333を添加して表面張力を調整した。塗料の粘度は、JIS Z 8803.9「円すい−板形回転粘度計による粘度測定方法」に準拠して測定した。具体的には、レオメトリクス社製の回転型粘弾性測定装置「RSF−II」を用いて測定した。塗料の表面張力は、JIS K 3362.8.4.2「輪環法」に準拠し、BYK社製の白金リング法表面張力測定装置「ダイノメータ」を用いて測定した。これらの測定を基に、目標とする粘度や表面張力となるように調整しながら、希釈用の混合溶剤(希釈シンナー)や界面活性剤を必要量添加した。希釈シンナーとしては、シクロヘキサノンとソルベッソ150を質量比で1:1の割合で混合したものを用いた。
 以上のようにして作製した着色塗料の詳細を表1に示す。
Figure JPOXMLDOC01-appb-T000001
5.意匠性塗料
 東洋紡社製のポリエステル樹脂である「バイロン(登録商標)300」(ガラス転移点7℃、数平均分子量23,000、水酸基価5KOHmg/g)を混合溶剤に溶解した。この溶液に三井サイテック社製のメラミン樹脂「サイメル(登録商標)303」を、樹脂固形分の質量比で、ポリエステル樹脂固形分100質量部に対して10質量部となるように添加した。さらに、このポリエステル樹脂とメラミン樹脂の混合溶液に、三井サイテック社製の酸性触媒「キャタリスト(商標)600」を0.5質量%添加して高分子クリヤー塗料を作製した。
 この高分子クリヤー塗料に、光輝顔料であるマイカ、アルミフレーク、ガラスフレーク(銀コート品)をそれぞれ樹脂固形分100質量部に対して5質量部添加した。マイカとしては、日本光研工業社販売の「パールグレイズ」を用い、アルミフレークとしては、東洋アルミニム社製のノンフィーリングアルミペースト#7100を用い、ガラスフレークとしては、日本板硝子社製の「メタシャイン」を用いた。以降の記載では、マイカを添加した意匠性塗料を「マイカ塗料」、アルミフレークを添加した意匠性塗料を「アルミフレーク塗料」、ガラスフレークを添加した意匠性塗料を「ガラスフレーク塗料」と称することとする。
 意匠性塗料については、レオメトリクス社製の回転型粘弾性測定装置「RSF−II」を用いて塗料粘度を測定しながら、必要に応じて希釈シンナーで希釈し、粘度が450mPaとなるように調整した。希釈シンナーとしては、シクロヘキサノンとソルベッソ150を質量比で1:1の割合で混合したものを用いた。
6.裏面塗料
 金属板の裏面、すなわち、着色塗料や意匠性塗料等を塗装する面の裏側の面に塗装する裏面塗料として、日本ファインコーティングス社製の裏面塗料のオルガ100のベージュ色を準備した。
7.プレコート鋼板の作製
 上記1で準備した金属板をFC−4336(日本パ−カライジング製)を2質量%濃度含む60℃の温度の水溶液中に10秒間浸漬することで脱脂を行い、水洗後、乾燥した。次いで、上記2で調製した化成処理液を脱脂後の金属板の両面にロールコーターにて塗布し、熱風乾燥炉で乾燥して化成処理皮膜層を得た。化成処理液は、乾燥後の塗膜全体の付着量が100mg/mとなるように塗装した。化成処理乾燥時の到達板温は60℃とした。次に、化成処理を施した金属板表面に、上記3で作製したプライマー塗料をロールコーターにて乾燥膜厚5μmとなるように塗装し、さらに、他方の面には、上記6で準備した裏面塗料をロールコーターにて乾燥膜厚5μmとなるように塗装し、熱風を吹き込んだ誘導加熱炉にて金属板の到達板温が210℃となる条件で乾燥焼付けすることで、プライマー塗膜層を形成した。乾燥焼付け後に、塗装された金属板へ水をスプレーにて拭きかけ、水冷した。
 次に、プライマー塗膜層上に、上記4で作製した着色塗料と、上記5で作製した意匠性塗料とをスライドポッパー型カーテンコータにて2層同時に塗装し、積層された塗料を熱風を吹き込んだ誘導加熱炉にて金属板の到達板温が230℃となる条件で同時に乾燥焼付し、プライマー塗膜層上に着色塗膜層および意匠性塗膜層を形成した。乾燥焼付け後に、塗装された金属板へ水をスプレーにて拭きかけ水冷することで、供試材であるプレコート金属板を得た(以下、本方法を「3コート2ベーク」または「3C2B」と称する)。
 また、必要に応じて、意匠性塗膜層上にクリヤー塗膜層(最表層の塗膜層)を形成するものについては、プライマー塗膜層上に、着色塗料と意匠性塗料とクリヤー塗料をスライドポッパー型カーテンコータにて3層同時に塗層し、積層された塗料を熱風を吹き込んだ誘導加熱炉にて金属板の到達板温が230℃となる条件で同時に乾燥焼付し、プライマー塗膜層上に着色塗膜層、意匠性塗膜層およびクリヤー塗膜層を形成した。乾燥焼付け後に、塗装された金属板へ水をスプレーにて拭きかけ水冷することで、供試材であるプレコート金属板を得た(以下、本方法を「4コート2ベーク」または「4C2B」と称する)。
 また、必要に応じて、プライマー塗膜層が無い共試材も作製した。すなわち、化成処理後の金属板の表面に、直接、着色塗膜層および意匠性塗膜層のみのプレコート金属板を、上記4で作製した着色塗料と、上記5で作製した意匠性塗料とをスライドポッパー型カーテンコータにて2層同時に塗装し、積層された塗料を熱風を吹き込んだ誘導加熱炉にて金属板の到達板温が230℃となる条件で同時に乾燥焼付し、水冷することで、共試材であるプレコート金属板を得た(以下、本方法を「2コート1ベーク」または「2C1B」と称する)。
 また、比較例として、プライマー塗膜層上に着色塗料をロールコーターにて塗装し、熱風を吹き込んだ誘導加熱炉にて金属板の到達板温が230℃となる条件で同時に乾燥焼付し、水冷して着色塗膜層を形成した後に、乾燥硬化後の着色塗膜層上に意匠性塗料をロールコーターにて塗装し、熱風を吹き込んだ誘導加熱炉にて鋼板の到達板温が230℃となる条件で同時に乾燥焼付し、プライマー塗膜層上に着色塗膜層および意匠性塗膜層を形成した。乾燥焼付け後に、塗装された金属板へ水をスプレーにて拭きかけ水冷することで、供試材であるプレコート鋼板を得た(以下、本方法を「3コート3ベーク」または「3C3B」と称する)。
 本実施例におけるプレコート金属板の共試材を製造するラインは、加熱炉(オーブン)を2つのみ有する、所謂2ベークラインであったため、3C3Bのサンプルを作製する際は、製造ラインを2回通板させて供試材を作製した。
 以上のようにして作製したプレコート金属板の詳細を表2に示す。なお、表2における着色塗料の低シェア粘度は、回転数5rpmで測定したものであり、塗装時のΔγとは、着色塗料と意匠性塗料との表面張力差を意味している。
Figure JPOXMLDOC01-appb-T000002
 以上のようにして作製したプレコート金属板について、以下の評価試験を実施した。いずれの試験についても、着色塗膜及び意匠性塗膜を塗装した面を評価面として試験を実施した。
1.着色塗膜層と意匠性塗膜層との境界面の中心線平均粗さRaの測定
 着色塗膜層と意匠性塗膜層との境界面の中心線平均粗さRaは、JIS B 6061に準拠して、次のように測定した。
 プレコート金属板を塗膜断面が観察できるように垂直に切断し、切断したプレコート金属板を樹脂に埋め込んだ後に断面部を研磨して、1000倍の光学顕微鏡による塗膜の断面写真を撮影した。次に、透明の樹脂シート(市販のOHPシートを使用)を写真上にかぶせて、塗膜界面の凹凸を正確にトレースした。次に、図1に示すように、境界面曲線の平均線の方向に基準長さlだけ抜き取り、この抜き取り部分の平均線の方向にX軸を、縦倍率方向にY軸を取り、界面曲線をy=f(x)で表したときに、以下の式(I)によって求められる値をRaとして算出した。5回の測定の平均値を、プレコート金属板の着色塗膜層と意匠性塗膜層との境界面の中心線平均粗さRaとして採用した。
 境界面のRaが1.0μm以上のサンプルを○、0.8μm以上1.0μm未満のものを△、0.8μm未満のものを×と評価した。
Figure JPOXMLDOC01-appb-I000003
2.着色塗膜層の空隙体積率の測定
 作製した各プレコート金属板について、垂直断面方向から光学顕微鏡により観察して、実膜厚を測定し、これより単位面積当たりの付着体積量を算出した。
 次に、各金属板の着色塗膜を塗装したときの塗装条件で、溶融亜鉛めっき鋼板上に着色塗膜のみを単層で塗装したプレコート金属板をそれぞれ作製した。次いで、一定の面積に切断して試料を切り出し、この質量を秤量した後に塗膜離剤で塗膜のみを剥離し、剥離後の質量を秤量した。さらに、塗膜剥離前後の質量差を試料の面積で割ったものを単位面積当たりの付着質量とし、これより各塗膜の乾燥塗膜比重(計算値)を用いて単位面積当たりの付着体積量を算出し、これを単位面積当たりの塗膜成分体積量とした。そして、以下の式(II)を用いて着色塗膜層中の空隙体積率を算出した。
 [空隙体積率]=([単位面積当たりの付着体積量]−[単位面積当たりの塗膜成分体積量])×100/[単位面積当たりの付着体積量]    (II)
各プレコート金属板の5箇所で得た値の平均を、プレコート金属板の着色塗膜層の空隙体積率として採用した。
 以上のようにして測定した空隙体積率が25%以上35%未満のサンプルを○、3%以上25%未満のものを△(−)、35%以上40%未満のものを△(+)、3%未満のものを×(−)、40%超のものを×(+)と評価した。
3.着色塗膜層断面の空隙面積率の測定
 作製した各プレコート金属板を垂直断面方向に切断し、その塗膜層の表面に垂直な断面を平滑にして、10000倍の走査型顕微鏡で写真を撮影した。そして、切断した断面における空隙面積率を画像解析により測定した。各プレコート金属板の5箇所で得た値の平均を、プレコート金属板の着色塗膜層断面の空隙面積率として採用した。
 以上のようにして測定した空隙面積率が20%以上35%未満のサンプルを○、1%以上20%未満のものを△(−)、35%以上40%未満のものを△(+)、1%未満のものを×(−)、40%超のものを×(+)と評価した。
4.加工性試験
 JIS K 5600.5.2に準拠したカッピング試験装置(一般に、エリクセン試験装置とも呼ばれる)を用いて、作製したプレコート金属板の評価面が凸側となるように加工し、さらにJIS K 5600.5.6「付着性」の7.2.6に記載のテープを用いた塗膜の除去方法(一般に、テープ剥離試験と呼ばれる)に準拠して加工した凸部の塗膜上にテープを付着させた後にテープを引き離し、凸部の塗膜の剥離状況を10倍ルーペにて観察した。
 塗膜の剥離が全く観察されないサンプルを○、凸部が部分的に剥離しているものを△、凸部で全面的に剥離しているものを×と評価した。
5.耐食性試験
 作製した各プレコート金属板の評価面の塗膜に、カッターナイフにて金属板素地に達するスクラッチを入れたサンプルを作製し、これをJIS K 5600.7.1に記載の耐中性塩水噴霧性について調査した。塩水の噴霧の暴露時間は240時間とした。
 試験後のサンプルのスクラッチ部からの塗膜の腐食のクリープ幅を測定し、最大のクリープ幅が3mm以内のサンプルを○、3mm超10mm以下のものを△、10mm超のものを×と評価した。
6.光沢測定
 作製したプレコート金属板の評価面の鏡面光沢度をJIS K 5600.4.7に準拠した試験装置にて測定した。入射光の軸が試料面の法線に対して60°となるようにした。各プレコート金属板の5箇所で得た値の平均を、プレコート金属板の鏡面光沢度として採用した。
 このようにして測定した鏡面光沢度が80%以上のサンプルを○、50%以上80%未満のものを△、50%未満のものを×と評価した。
7.意匠感の調査
 塗膜の意匠感は、官能的な指標であるため、無作為に選んだ5名の人による官能評価を行った。以下の項目について各評価者に点数付けを行ってもらい、(a)~(c)を合計した1人あたりの平均点数が2.5点以上のサンプルを○、1.5点以上2.5点未満のものを△、1.5点未満のものを×と評価した。なお、評価者に評価を依頼するときは、見本の白色塗装サンプルと黒色塗装サンプルを準備して、これらの見本サンプルと比較しながら官能評価をしてもらった。
(a)光輝感
 非常に光輝感が感じられた場合:3点
 少し光輝感があると感じた場合:2点
 全く光輝感が感じられないと感じた場合:1点
(b)立体感
 非常に立体感が感じられた場合:3点
 少し立体感が感じられた場合:2点
 全く立体感が感じられない場合:1点
(c)深み感
 非常に深み感が感じられた場合:3点
 少し深み感が感じられた場合:2点
 全く深み感が感じられない場合:1点
 意匠感を評価する際の比較に用いた白色塗装サンプル板および黒色塗装サンプル板については、以下のようにして作製した。
(意匠感を評価する際の比較に用いた白色塗装サンプル板)
 本実施例の着色塗料に用いた高分子樹脂を用いて作製したクリヤー塗料と酸化チタンを用いて、クリヤー塗料の樹脂固形分100質量部に対して酸化チタンを100質量部添加した塗料を本実施例で用いた溶融亜鉛めっき鋼板に1層のみをワイヤーバーにて乾燥膜厚20μmで塗装して、熱風乾燥炉にて到達板温230℃の条件で焼き付けることにより、白色塗装サンプル板を作製した。
(意匠感を評価する際の比較に用いた黒色塗装サンプル板)
 本実施例の着色塗料に用いた高分子樹脂を用いて作製したクリヤー塗料とカーボンブラックを用いて、クリヤー塗料の樹脂固形分100質量部に対してカーボンブラックを5質量部添加した塗料を本実施例で用いた溶融亜鉛めっき鋼板に1層のみをワイヤーバーにて乾燥膜厚20μmで塗装して、熱風乾燥炉にて到達板温230℃の条件で焼き付けることにより、黒色塗装サンプル板を作製した。
 以上のようにして行った評価試験の結果を表3に示しながら、評価結果について詳細を説明する。
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、本発明のプレコート金属板の要件を満たす着色塗膜層と意匠性塗膜層との境界面のRaが0.8μm以上の例(実施例1~27)は、意匠感に優れるため好適である。一方、境界面のRaが0.8μm未満の例(比較例28、30、31、33、34、35)は意匠感に劣るため不適である。また、境界面のRaが1.0μm以上の例(実施例2~4、8、10~13など)は、特に意匠感に優れるため、より好適である。
 着色塗膜層の空隙体積率が3~40%の例、または、断面の空隙面積率が1~40%のもの(実施例1~27)は、これを外れるもの(比較例28、30~32、35)より意匠性に優れるため、より好適である。さらに、空隙体積率が25%以上35%未満のもの、もしくは、空隙面積率が25%以上35%未満のものは、さらに意匠性が向上するため、より好適である。
 プレコート金属板の着色塗膜層中に含まれる樹脂と微粒子との配合量が、着色塗膜層中の固形分体積比率で(微粒子体積)/(バインダー樹脂体積)=30/70~95/5であるもの(実施例1~27)は、境界面Raが0.8μm以上となり意匠性に優れるため、より好適である。(微粒子体積)/(バインダー樹脂体積)が30/70未満のもの(比較例28)は、境界面のRaが0.8μm未満となり意匠性も乏しいため、好ましくない。(微粒子体積)/(バインダー樹脂体積)が95/5超のもの(比較例29)は皮膜がやや脆くなり、加工性に劣る傾向にあった。
 着色塗膜層に含まれる微粒子の粒径は100~2000nmであることが好ましい。100nm未満の例(比較例30)や1000nm超の例(比較例31)は、着色塗膜層との意匠性塗膜層との境界面Raが0.8μm未満となっている。
 着色塗膜層上にさらにクリヤー塗装を施したもの(実施例12)は光沢に特に優れるため、より好適である。プレコート金属板は、着色塗膜層の下にプライマー塗膜層を有しているほうが好ましく、プライマー塗膜層を有していない例(実施例27)は加工性に劣る傾向にあった。また、プライマー塗膜層に防錆顔料を含む例(実施例17~26)は、防錆顔料を含まない例(実施例1~16)よりも耐食性に優れていたため、耐食性を向上させるためには、プライマー塗膜層に防錆顔料を添加した方が好適であることがわかる。一方、白色顔料である酸化チタンを含むプライマー塗膜層と、微粒子を酸化チタンにした着色塗膜層とを組み合わせた例(実施例1~4、7~11)は、表3には記載していないが、白色度が高く、優れた意匠性の観点から、特に好適であった。
 プレコート金属を作製する際には、着色塗料と意匠性塗料とを未乾燥状態で積層塗布し、未乾燥状態の積層膜を形成した後に、同時に乾燥硬化させる方式を採用することが好ましい。塗装と乾燥硬化を繰り返して製造したものは、比較例36のように、着色塗膜層と意匠性塗膜層との境界面のRaが0.8μm未満となり、好ましくない。
 以上、添付図面および実施例を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更または修正に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。

Claims (12)

  1.  金属板表面の一部または全部に、着色顔料を含む第1の塗膜層と、当該第1の塗膜層の表層側に積層された光輝顔料を含む第2の塗膜層と、を含む少なくとも2層以上の被覆層を有し、
     前記第1の塗膜層と前記第2の塗膜層との境界面の中心線平均粗さRaが0.8μm以上であることを特徴とする、プレコート金属板。
  2.  前記第1の塗膜層は、平均粒径が100nm以上2000nm以下の微粒子を含み、
     前記第1の塗膜層中における前記微粒子と前記バインダ樹脂との固形分体積比率は、前記微粒子の体積をV1、前記バインダ樹脂の体積をV2とすると、V1/V2=30/70~95/5であることを特徴とする、請求項1に記載のプレコート金属板。
  3.  前記第1の塗膜層中には、空隙が存在することを特徴とする、請求項1または2に記載のプレコート金属板。
  4.  前記空隙の含有率は、前記第1の塗膜層中の固形分の全体積と前記空隙の体積の合計量に対して、3体積%以上40体積%以下であることを特徴とする、請求項3に記載のプレコート金属板。
  5.  前記第1の塗膜層の表面に垂直な断面を平滑にして、10000倍の走査型顕微鏡で写真撮影した場合に、前記断面全体の面積に対する前記空隙が存在する部分の占める面積率が、1%以上40%以下であることを特徴とする、請求項3に記載のプレコート金属板。
  6.  前記微粒子は、着色顔料であることを特徴とする、請求項2~5のいずれか1項に記載のプレコート金属板。
  7.  前記第1の塗膜層に含まれる前記着色顔料は、白色顔料であることを特徴とする、請求項1~6のいずれか1項に記載のプレコート金属板。
  8.  前記白色顔料は、酸化チタンであることを特徴とする、請求項7に記載のプレコート金属板。
  9.  前記被覆層は、前記第2の塗膜層の表層側に配置された第3の塗膜層をさらに含むことを特徴とする、請求項1~8のいずれか1項に記載のプレコート金属板。
  10.  前記被覆層は、前記第1の塗膜層と前記金属板との間に配置された第4の塗膜層をさらに含むことを特徴とする、請求項1~9のいずれか1項に記載のプレコート金属板。
  11.  前記金属板には、化成処理が施されていることを特徴とする、請求項1~10のいずれか1項に記載のプレコート金属板。
  12.  着色顔料を含む第1の塗料と光輝顔料を含む第2の塗料とを、多層同時塗布またはウェットオンウェット方式により、前記第2の塗料が前記第1の塗料よりも表層側となるように、金属板表面の一部または全部に塗布し、前記金属板表面に塗布された未乾燥状態の前記第1の塗料および前記第2の塗料を同時に乾燥硬化させることにより、前記着色顔料を含む第1の塗膜層と、前記光輝顔料を含む第2の塗膜層と、を前記第1の塗膜層と前記第2の塗膜層との境界面の中心線平均粗さRaが0.8μm以上となるように形成することを特徴とする、プレコート金属板の製造方法。
PCT/JP2010/066626 2009-09-17 2010-09-17 プレコート金属板およびその製造方法 WO2011034214A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127006725A KR101199693B1 (ko) 2009-09-17 2010-09-17 프리코트 금속판 및 그 제조 방법
JP2011508757A JP4818485B2 (ja) 2009-09-17 2010-09-17 プレコート金属板およびその製造方法
CN2010800513657A CN102596563B (zh) 2009-09-17 2010-09-17 预涂金属板和其制造方法
IN2296DEN2012 IN2012DN02296A (ja) 2009-09-17 2010-09-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-215990 2009-09-17
JP2009215990 2009-09-17

Publications (1)

Publication Number Publication Date
WO2011034214A1 true WO2011034214A1 (ja) 2011-03-24

Family

ID=43758806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066626 WO2011034214A1 (ja) 2009-09-17 2010-09-17 プレコート金属板およびその製造方法

Country Status (7)

Country Link
JP (1) JP4818485B2 (ja)
KR (1) KR101199693B1 (ja)
CN (1) CN102596563B (ja)
IN (1) IN2012DN02296A (ja)
MY (1) MY161297A (ja)
TW (1) TWI440510B (ja)
WO (1) WO2011034214A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013143587A1 (en) * 2012-03-28 2013-10-03 Tarkett Gdl Multilayer surface covering
CN114390973A (zh) * 2019-09-13 2022-04-22 东洋纺株式会社 涂装代替薄膜、复合薄膜、层压金属板、加工品和成型品
CN115776943A (zh) * 2020-07-15 2023-03-10 日本制铁株式会社 预涂金属板、防烧伤罩以及预涂金属板的制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4115991A2 (en) * 2016-07-14 2023-01-11 Public Joint Stock Company "Severstal" Method for forming stainless steel parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062214A1 (ja) * 2004-12-08 2006-06-15 Nippon Steel Corporation プレコート金属板およびプレコート金属板の製造方法
WO2007013232A1 (ja) * 2005-07-28 2007-02-01 Nippon Steel Corporation プレコート金属板及びその製造方法
WO2010064725A1 (ja) * 2008-12-03 2010-06-10 新日本製鐵株式会社 塗装金属材及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591518A (en) * 1994-12-16 1997-01-07 Toray Industries, Inc. Polyester film for use of a laminate with a metal plate
US6733832B2 (en) * 2001-06-29 2004-05-11 Kansai Paint Co., Ltd. Process for forming multicolor pattern coating film
JP4918780B2 (ja) 2005-12-15 2012-04-18 凸版印刷株式会社 多層配線基板の製造方法、ならびに半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062214A1 (ja) * 2004-12-08 2006-06-15 Nippon Steel Corporation プレコート金属板およびプレコート金属板の製造方法
WO2007013232A1 (ja) * 2005-07-28 2007-02-01 Nippon Steel Corporation プレコート金属板及びその製造方法
WO2010064725A1 (ja) * 2008-12-03 2010-06-10 新日本製鐵株式会社 塗装金属材及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013143587A1 (en) * 2012-03-28 2013-10-03 Tarkett Gdl Multilayer surface covering
EP2830785A1 (en) * 2012-03-28 2015-02-04 Tarkett GDL Multilayer surface covering
CN104364021A (zh) * 2012-03-28 2015-02-18 塔吉特Gdl公司 多层表面覆盖物
RU2586095C2 (ru) * 2012-03-28 2016-06-10 ТАРКЕТТ ДжиДиЭл Многослойное поверхностное покрытие
US9624665B2 (en) 2012-03-28 2017-04-18 Tarkett Gdl Multilayer surface covering
AU2012375631B2 (en) * 2012-03-28 2018-02-15 Tarkett Gdl Multilayer surface covering
CN114390973A (zh) * 2019-09-13 2022-04-22 东洋纺株式会社 涂装代替薄膜、复合薄膜、层压金属板、加工品和成型品
CN114390973B (zh) * 2019-09-13 2024-03-08 东洋纺株式会社 涂装代替薄膜、复合薄膜、层压金属板、加工品和成型品
CN115776943A (zh) * 2020-07-15 2023-03-10 日本制铁株式会社 预涂金属板、防烧伤罩以及预涂金属板的制造方法

Also Published As

Publication number Publication date
IN2012DN02296A (ja) 2015-08-21
JPWO2011034214A1 (ja) 2013-02-14
CN102596563B (zh) 2013-08-07
KR20120037515A (ko) 2012-04-19
MY161297A (en) 2017-04-14
KR101199693B1 (ko) 2012-11-08
TW201116341A (en) 2011-05-16
CN102596563A (zh) 2012-07-18
TWI440510B (zh) 2014-06-11
JP4818485B2 (ja) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4648992B2 (ja) 塗装金属材及びその製造方法
KR101032491B1 (ko) 프리코트 금속판 및 프리코트 금속판의 제조 방법
JP4695725B2 (ja) プレコート金属板及びその製造方法
JP4808717B2 (ja) プレコート金属板及びその製造方法
CN105682916B (zh) 黑色涂装金属板
JP4897109B2 (ja) 塗装金属材とその製造方法
JP4818485B2 (ja) プレコート金属板およびその製造方法
TW201606003A (zh) 塗裝金屬板、其製造方法以及外裝建材
KR102157565B1 (ko) 프리코팅 금속판
JP4873974B2 (ja) プレコート金属板及びその製造方法
JP2008254313A (ja) プレコート金属板、これを成形加工した金属成形体及びプレコート金属板の製造方法
JP5163274B2 (ja) プレコート金属板及びその製造方法
JP6049504B2 (ja) 塗装鋼板およびその製造方法
JP2004358743A (ja) 加工部耐食性に優れた高光沢プレコート金属板
JPWO2015129918A1 (ja) プレコート金属板、プレコート金属板の製造方法
JP4477847B2 (ja) クリヤー塗装金属板
JP6659838B2 (ja) 塗装金属板
JP2006159495A (ja) 意匠性と加工性に優れた塗装金属板及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051365.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011508757

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10817325

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127006725

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2296/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1201001191

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10817325

Country of ref document: EP

Kind code of ref document: A1