WO2011027837A1 - セラミックハニカム構造体及びその製造方法 - Google Patents

セラミックハニカム構造体及びその製造方法 Download PDF

Info

Publication number
WO2011027837A1
WO2011027837A1 PCT/JP2010/065068 JP2010065068W WO2011027837A1 WO 2011027837 A1 WO2011027837 A1 WO 2011027837A1 JP 2010065068 W JP2010065068 W JP 2010065068W WO 2011027837 A1 WO2011027837 A1 WO 2011027837A1
Authority
WO
WIPO (PCT)
Prior art keywords
pore
less
diameter
ceramic honeycomb
honeycomb structure
Prior art date
Application number
PCT/JP2010/065068
Other languages
English (en)
French (fr)
Inventor
岡崎 俊二
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to KR1020127008714A priority Critical patent/KR101770654B1/ko
Priority to KR1020177001212A priority patent/KR101770660B1/ko
Priority to EP10813785.2A priority patent/EP2455153B1/en
Priority to US13/391,216 priority patent/US9074504B2/en
Priority to CN201080037669.8A priority patent/CN102481503B/zh
Priority to JP2011529946A priority patent/JP5630437B2/ja
Publication of WO2011027837A1 publication Critical patent/WO2011027837A1/ja
Priority to US14/718,665 priority patent/US9724633B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1208Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1216Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/125Size distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1258Permeability
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Definitions

  • the present invention relates to a ceramic honeycomb structure used for a ceramic honeycomb filter for removing fine particles contained in exhaust gas of a diesel engine.
  • Diesel engine exhaust gas contains PM (Particulate Matter: particulate matter) whose main component is soot made of carbon and SOF content (Soluble Organic Fraction) consisting of high-boiling hydrocarbon components. If released into the atmosphere, the human body and the environment may be adversely affected. For this reason, it has been conventionally performed to install a ceramic honeycomb filter for collecting PM in the exhaust pipe of a diesel engine.
  • PM Porate Matter: particulate matter
  • SOF content Soluble Organic Fraction
  • the ceramic honeycomb filter 10 includes a ceramic honeycomb structure including a porous partition wall 2 and an outer peripheral wall 1 forming a large number of outflow side sealing channels 3 and inflow side sealing channels 4, and an outflow side sealing channel 3
  • the upstream side sealing portion 6a and the downstream side sealing portion 6c that alternately seal the exhaust gas inflow side end surface 8 and the exhaust gas outflow side end surface 9 of the inflow side sealing channel 4 in a checkered pattern.
  • the outer peripheral wall 1 of the ceramic honeycomb filter is gripped so as not to move during use by a gripping member (not shown) formed of a metal mesh or ceramic mat or the like, and is placed in a metal storage container (not shown). Is arranged.
  • purification of exhaust gas is performed as follows.
  • the exhaust gas flows in from the outflow side sealing flow path 3 opened in the exhaust gas inflow side end face 8 as indicated by a dotted arrow in FIG.
  • PM in the exhaust gas is collected.
  • the purified exhaust gas flows out from the inflow side sealing flow path 4 opened in the exhaust gas outflow side end face 9, and is released into the atmosphere.
  • the ceramic honeycomb filter needs to satisfy a high particulate collection rate and a low pressure loss.
  • these characteristics are contradictory to each other, studies have been made on optimization to satisfy both of them by controlling the porosity, pore volume, pore size on the partition wall surface, and the like. ing.
  • Special table 2005-530616 is composed of a cordierite honeycomb structure with the end closed, and the value d50 / (d50 + d90) obtained from the pore size distribution is less than 0.70, and the formula [d50 / (d50 + d90)] / [% porosity / 100]
  • the soot adhesion factor Sf is less than 1.55, and the thermal expansion coefficient (25 to 800 ° C) is 17 ⁇ 10 -7 / ° C or less.
  • a ceramic filter that captures and burns diesel exhaust particulates is disclosed, and by having such a pore structure (pore size distribution and pore connectivity), carbon soot is attached. However, it is described that a small pressure loss can be maintained.
  • Japanese Patent Laid-Open No. 2002-219319 is made of a material having cordierite whose pore distribution is controlled as a main crystal phase, and the pore distribution is such that the pore volume having a pore diameter of less than 10 ⁇ m is 15% or less of the total pore volume.
  • a porous honeycomb filter in which the pore volume with a pore diameter of 10 to 50 ⁇ m is 75% or more of the total pore volume, and the pore volume with a pore diameter of more than 50 ⁇ m is 10% or less of the total pore volume. Since this porous honeycomb filter has the pore distribution as described above, it is described that the collection efficiency of PM or the like is high and an increase in pressure loss due to pore clogging can be prevented. Yes. JP 2002-219319 describes that such pore distribution can be controlled by controlling the particle size of the silica component of the cordierite forming raw material and reducing the concentration of kaolin.
  • Japanese Patent Application Laid-Open No. 61-129015 has a small hole with a hole diameter of 5 to 40 ⁇ m and a large hole with a hole diameter of 40 to 100 ⁇ m on the surface of at least the introduction passage side of the partition wall.
  • Japanese Patent Laid-Open No. 2003-40687 has cordierite as a main component, has a porosity of 55 to 65%, an average pore diameter of 15 to 30 ⁇ m, and the total area of pores opened on the partition wall surface is 35% of the total area of the partition wall surface. % Of the honeycomb ceramic structure is disclosed, and it is described that this honeycomb ceramic structure can achieve low pressure loss and high collection efficiency.
  • Japanese Patent Laid-Open No. 2002-355511 has a catalyst supported on the partition wall surface, the porosity of the partition wall is 55 to 80%, and the total area of pores opened on the partition wall surface is 20% or more of the total area of the partition wall surface
  • An exhaust gas purification filter having a ceramic honeycomb structure is disclosed. This exhaust gas purification filter can increase the contact area between the catalyst supported on the partition wall and the deposited PM, and the PM of the catalyst can be increased. It describes that it has an effect of improving the oxidation reaction ability and an effect of suppressing an increase in pressure loss.
  • Japanese Patent Laid-Open No. 2002-349234 discloses that the total area of the open pores supporting the catalyst and opening on the partition wall surface is 30% or more of the total surface area of the partition walls, and the open area of the large open pore having an opening diameter of 30 ⁇ m or more.
  • the exhaust gas purification filter whose total is 50% or more of the total opening area of the open pore is disclosed.
  • Japanese Patent Application Laid-Open No. 2004-360654 discloses that the partition wall porosity is 55 to 75%, the average pore diameter is 15 to 40 ⁇ m, and the total area of the pores opened on the partition wall surface is the total area of the partition wall surface. 10-30% of the discloses a ceramic honeycomb filter pore circle equivalent diameter of 5 ⁇ 20 [mu] m of the pores opened in the partition wall surface is present 300 / mm 2 or more.
  • the ceramic honeycomb filter described in Japanese Patent Application Laid-Open No. 2004-360654 has not yet solved the problem of low PM collection efficiency at the beginning of use after the ceramic honeycomb filter is regenerated.
  • Japanese Patent Application Laid-Open No. 2007-45686 discloses porous resin particles having an average particle diameter of 10 to 50 ⁇ m and a porosity of 50 to 90%. The technique used as a material is disclosed. JP 2007-45686 uses a porous resin particle that is smaller in calorific value at the time of firing than solid particles and is less likely to be crushed than hollow particles as a pore-forming material. It describes that crushing during kneading and excessive heat generation during firing can be suppressed, and as a result, a porous ceramic structure having a stable porosity can be produced with good yield.
  • porous resin particles are used as a pore former, high pressure is required during extrusion molding due to the frictional resistance between the pore former particles, causing problems that the molded body and mold after extrusion are deformed. There are things to do.
  • An object of the present invention is to provide a ceramic honeycomb structure in which the PM collection rate at the beginning of use after the ceramic honeycomb filter is regenerated is improved and the increase in pressure loss when PM is collected is reduced. And a method of manufacturing the same.
  • the ceramic honeycomb structure of the present invention is a ceramic honeycomb structure having a large number of flow paths partitioned by porous partition walls,
  • the porosity of the partition wall is 40-60%
  • the opening area ratio of pores opened on the partition wall surface is 15% or more
  • the opening diameter of the pores opened on the partition wall surface is represented by a circle equivalent diameter (diameter of a circle having an area equivalent to the opening area of the pores)
  • the aperture is 10 ⁇ m or more and less than 40 ⁇ m
  • the equivalent circle diameter is 10 ⁇ m or more
  • the pore density of less than 40 ⁇ m is 350 pieces / mm 2 or more
  • An average value of circularity of pores having an equivalent circle diameter of 10 ⁇ m or more and less than 40 ⁇ m is 1 to 2.
  • the partition wall has a Darcy permeability constant of preferably 0.1 ⁇ 10 ⁇ 12 to 2 ⁇ 10 ⁇ 12 m 2 .
  • the median pore diameter when the pore diameter of the partition wall is measured by a mercury intrusion method is 5 ⁇ m or more and less than 20 ⁇ m
  • the pore volume with a pore diameter of less than 2 ⁇ m is 10% or less of the total pore volume
  • the pore volume with a pore diameter of 40 ⁇ m or more is 10% or less of the total pore volume
  • the pore distribution deviation ⁇ is preferably 0.5 or less.
  • log (D20) -log (D80)
  • D20 represents the relationship between the pore diameter and the cumulative pore volume (the cumulative value of the pore volume from the maximum pore diameter to the specific pore diameter).
  • the pore diameter ( ⁇ m) at a pore volume corresponding to 20% of the total pore volume is shown, and D80 is also the pore diameter ( ⁇ m at a pore volume corresponding to 80% of the total pore volume). ) And D80 ⁇ D20.
  • the ceramic honeycomb structure is preferably used as a filter by alternately plugging the exhaust gas inflow side or the exhaust gas outflow side of the flow path.
  • the average partition wall thickness is preferably 9.0 to 12 mm, and the average cell density is preferably 150 to 300 mm cpsi.
  • the thermal expansion coefficient between 20 and 800 ° C. of the ceramic honeycomb structure is preferably 13 ⁇ 10 ⁇ 7 / ° C. or less.
  • the method of the present invention for producing a honeycomb-shaped ceramic structure by extruding a clay containing a cordierite-forming raw material and a pore former contains 15 to 25% by mass of silica
  • the silica has an average particle size of 20-30 ⁇ m, particles having a particle size of 10 ⁇ m or less are 5% by mass or less, particles having a particle size of 100 ⁇ m or more are 5% by mass, particle size distribution deviation SD is 0.5 or less, and sphericity is 0.5 or more.
  • the amount of the pore former is 5 to 40% by mass with respect to the cordierite forming raw material
  • the pore former has an average particle size of 15 to 50 ⁇ m, particles with a particle size of 5 ⁇ m or less are 10% by mass or less, particles with a particle size of 80 ⁇ m or more are 5% by mass or less, particle size distribution deviation SD is 0.5 or less, and sphericity is It is characterized by being 0.5 or more.
  • SD log (d80) -log (d20)
  • d20 is a curve showing the relationship between the particle diameter and the cumulative volume (a value obtained by accumulating a particle volume equal to or smaller than a specific particle diameter).
  • the particle diameter ( ⁇ m) in the cumulative volume corresponding to% is shown, and d80 similarly shows the particle diameter ( ⁇ m) in the cumulative volume corresponding to 80% of the total volume, and d20 ⁇ d80.
  • the pore former is preferably a porous polymer, and the pore former particles preferably have a void of 30% or more and less than 50%.
  • 80% or more of the voids of the pore former particles contain moisture.
  • the cordierite-forming raw material contains talc in an amount of 40 to 43% by mass, the talc has an average particle size of 1 to 10 ⁇ m, and a particle size and a cumulative volume (a value obtained by accumulating a particle volume equal to or smaller than a specific particle size).
  • the particle diameter d90 in the cumulative volume corresponding to 90% of the total volume is 30 ⁇ m or less and the particle size distribution deviation SD is 0.7 or less.
  • the form factor indicating the flatness of the talc particles is preferably 0.77 or more.
  • the PM collection rate at the beginning of the collection after regeneration is improved while maintaining a low pressure loss, and therefore, the ceramic honeycomb structure has been regarded as a problem particularly with the strengthening of exhaust gas regulations. Nano-sized PM can be collected efficiently, and the problem of harmful nano-sized PM being discharged can be solved.
  • FIG. 1 It is a front view showing an example of a ceramic honeycomb filter. It is a schematic cross section showing an example of a ceramic honeycomb filter. 6 is a graph schematically showing the relationship between the equivalent circle diameter of pores opened on the partition wall surface of the ceramic honeycomb structure and the cumulative area. 3 is a graph showing the relationship between the pore diameter and the pore volume of a ceramic honeycomb structure of Example 11. It is a graph which shows the particle size distribution of the silica E used in the Example of this invention. It is an electron micrograph which shows an example of a silica particle. 3 is an electron micrograph showing the surface of partition walls of a ceramic honeycomb structure of Example 11. FIG. 3 is an electron micrograph showing a cross section of a partition wall of a ceramic honeycomb structure of Example 11. FIG.
  • Ceramic honeycomb structure (1) Structure
  • the ceramic honeycomb structure of the present invention has a number of flow paths partitioned by porous partition walls,
  • the porosity of the partition wall is 40-60%
  • the opening area ratio of pores opened on the partition wall surface is 15% or more
  • the opening diameter of the pores opened on the partition wall surface is represented by a circle equivalent diameter (diameter of a circle having an area equivalent to the opening area of the pores)
  • the aperture is 10 ⁇ m or more and less than 40 ⁇ m
  • the equivalent circle diameter is 10 ⁇ m or more
  • the pore density of less than 40 ⁇ m is 350 pieces / mm 2 or more
  • An average value of circularity of pores having an equivalent circle diameter of 10 ⁇ m or more and less than 40 ⁇ m is 1 to 2.
  • the porosity of the partition walls is preferably 43 to 57%, more preferably 45 to 55%.
  • Opening area ratio The opening area ratio of the pores opened on the partition wall surface is the total opening area of the pores opened per unit area on the partition wall surface.
  • the aperture area ratio is calculated from the electron micrograph of the surface of the partition wall, using the image analyzer (for example, Image-Pro Plus ver.3.0 manufactured by Media Cybernetics) to obtain the total aperture area of each pore. Calculate by dividing.
  • the opening area ratio is less than 15%, it is difficult to maintain a low pressure loss when PM is collected.
  • the opening area ratio is preferably 40% or less in order to prevent the PM collection ratio at the beginning of use after regeneration from decreasing.
  • the opening area ratio is more preferably 18 to 38%.
  • the median opening diameter on the basis of the area of the open pore is equal to the equivalent circle diameter (diameter of a circle having an area equivalent to the opening area of the pore).
  • the equivalent circle diameter is obtained by analyzing an electron micrograph of the surface of the partition wall with an image analyzer (for example, Image-Pro Plus ver.3.0 manufactured by Media Cybernetics). Can be sought.
  • the median opening diameter is less than 10 ⁇ m, the low pressure loss characteristic when PM is collected cannot be maintained. On the other hand, when it is 40 ⁇ m or more, the PM collection rate at the beginning of use after regeneration is high. descend.
  • the median opening diameter is preferably 15 to 35 ⁇ m.
  • Pore density with a circle-equivalent diameter of pores opened on the partition wall surface of 10 ⁇ m or more and less than 40 ⁇ m means that among the pores opened per unit area of the partition wall surface, the circle equivalent diameter is 10 ⁇ m or more and 40 ⁇ m Less than the number of pores.
  • the PM collection rate at the beginning of use after regeneration is lowered.
  • the pore density is preferably 400 / mm 2 or more.
  • the average value of the circularity is preferably 1 to 1.5.
  • the circularity is represented by a ratio A 1 / A 0 to a circle area A 1 having a circumferential length equivalent to the outer shape length (L) of the pore having an opening area A 0 , and is a value of 1 or more. It becomes.
  • the Darcy permeability constant of the partition walls of the ceramic honeycomb structure is preferably 0.1 ⁇ 10 ⁇ 12 to 2 ⁇ 10 ⁇ 12 m 2 .
  • the Darcy permeability constant is less than 0.1 ⁇ 10 ⁇ 12 m 2 , it is difficult to keep the initial pressure loss at the start of use after regeneration low.
  • the Darcy transmission constant is preferably 0.2 ⁇ 10 ⁇ 12 to 1.5 ⁇ 10 ⁇ 12 m 2 .
  • Pore size and pore distribution The median pore size when the pore size of the partition walls of the ceramic honeycomb structure is measured by the mercury intrusion method is 5 ⁇ m or more and less than 20 ⁇ m, and the pore volume of pore size less than 2 ⁇ m is all fine.
  • the pore volume is 10% or less of the pore volume
  • the pore volume having a pore diameter of 40 ⁇ m or more is 10% or less of the total pore volume
  • the pore distribution deviation ⁇ is 0.5 or less.
  • the pore distribution deviation ⁇ is log (D20) -log (D80), and as shown in FIG. 4, D20 is the pore diameter measured by the mercury intrusion method and the cumulative pore volume (from the maximum pore diameter).
  • D20 is the pore diameter measured by the mercury intrusion method and the cumulative pore volume (from the maximum pore diameter).
  • the pore diameter ( ⁇ m) at a pore volume corresponding to 20% of the total pore volume is shown.
  • the pore diameter ( ⁇ m) at a pore volume corresponding to 80% of the pore volume is shown.
  • D80 ⁇ D20.
  • the median pore diameter is less than 5 ⁇ m, it is difficult to keep the initial pressure loss at the start of use after regeneration low.
  • the pore volume having a pore diameter of 5 ⁇ m or more and less than 20 ⁇ m effective for PM collection decreases, and the PM collection performance may deteriorate.
  • the median pore diameter is preferably 7 to 18 ⁇ m.
  • a pore having a pore diameter of less than 2 ⁇ m has an effect of communicating a pore having a larger diameter, and improves the initial pressure loss characteristics. If the pore volume with a pore diameter of less than 2 ⁇ m exceeds 10%, pore connectivity is ensured, but the proportion of pores with a pore diameter of more than 2 ⁇ m is relatively small, and the initial pressure loss can be kept low. It becomes difficult. On the other hand, when there are too few pores having a pore diameter of less than 2 ⁇ m, the pore pressure is preferably 1 to 8% because pore communication is not sufficiently ensured and the initial pressure loss is increased. .
  • the pore volume with a pore diameter of 40 ⁇ m or more exceeds 10% of the total pore volume, the pore volume with a diameter of 5 ⁇ m or more and less than 20 ⁇ m effective for PM collection decreases, and the PM collection performance may deteriorate. is there.
  • the pore volume with a pore diameter of 40 ⁇ m or more is preferably 8% or less.
  • the pore volume with a pore diameter of less than 2 ⁇ m is 10% or less
  • the pore volume with a pore diameter of 40 ⁇ m or more is 10% or less
  • the pore distribution deviation ⁇ is 0.5 or less
  • the median pore diameter is 5 ⁇ m or more and less than 20 ⁇ m.
  • the proportion of pores increases, and the pore distribution becomes sharper.
  • the partition wall having such a structure has a low initial pressure loss, but if the pore distribution deviation ⁇ exceeds 0.5, the proportion of pores that adversely affect the initial pressure loss characteristics increases, and the low initial pressure loss is maintained. Becomes difficult.
  • the pore distribution deviation ⁇ is preferably 0.45 or less, more preferably 0.4 or less.
  • the ceramic honeycomb structure preferably has an average partition wall thickness in the range of 9.0 to 12 mil and an average cell density in the range of 150 to 300 cpsi.
  • the initial pressure loss at the start of use after regeneration can be kept low, the PM collection rate at the beginning of use after regeneration is improved, and when PM is collected Pressure loss is reduced.
  • the average partition wall thickness is less than 9.0 mil (0.229 mm)
  • the partition wall strength decreases.
  • it exceeds 12 mil (0.305 mm) it is difficult to maintain a low pressure loss.
  • the average cell density is less than 150 cpsi (23.3 cells / cm 2 )
  • the septum strength decreases, while when it exceeds 300 cpsi (46.5 cells / cm 2 ), it is difficult to maintain a low pressure loss.
  • the ceramic honeycomb structure preferably has a coefficient of thermal expansion of 20 to 800 ° C. of 13 ⁇ 10 ⁇ 7 / ° C. or less.
  • the thermal expansion coefficient is preferably 3 ⁇ 10 ⁇ 7 to 11 ⁇ 10 ⁇ 7 / ° C.
  • the partition walls that make up the ceramic honeycomb structure are filters for purifying exhaust gas discharged from diesel engines, so heat-resistant ceramics, that is, alumina, mullite, cordier, etc. It is preferably made of a ceramic mainly composed of light, silicon carbide, silicon nitride, zirconia, aluminum titanate, lithium aluminum silicate, etc., among them low thermal expansion cordierite with excellent thermal shock resistance, and aluminum titanate as the main crystal. It is preferable to consist of ceramics. When the main crystal phase is cordierite, it may contain other crystal phases such as spinel, mullite, sapphirine, and may further contain a glass component.
  • the ceramic honeycomb structure of the present invention has an initial pressure at the start of use after regeneration by alternately plugging the exhaust gas inflow side and the exhaust gas outflow side of the flow path in a checkered pattern. Loss can be kept low, the PM collection rate at the beginning of use after regeneration can be improved, and a ceramic honeycomb filter with reduced pressure loss when PM is collected can be obtained.
  • the plugging formed in the flow path does not necessarily need to be formed in the end face part of the flow path. Instead, it may be formed at a position entering the inside of the honeycomb structure from the inflow side end face or the outflow side end face.
  • the cordierite forming raw material contains 15 to 25% by mass of silica
  • the silica has an average particle size of 20-30 ⁇ m, particles having a particle size of 10 ⁇ m or less are 5% by mass or less, particles having a particle size of 100 ⁇ m or more are 5% by mass, particle size distribution deviation SD is 0.5 or less, and sphericity is 0.5 or more.
  • the amount of the pore former is 5 to 40% by mass with respect to the cordierite forming raw material,
  • the pore former has an average particle size of 15 to 50 ⁇ m, particles with a particle size of 5 ⁇ m or less are 10% by mass or less, particles with a particle size of 80 ⁇ m or more are 5% by mass or less, particle size distribution deviation SD is 0.5 or less, and sphericity is It is characterized by being 0.5 or more.
  • SD log (d80) ⁇ log (d20)
  • d20 is a particle diameter and a cumulative volume (specificity) as shown in FIG.
  • the particle diameter ( ⁇ m) at the cumulative volume corresponding to 20% of the total volume is shown
  • d80 is also equivalent to 80% of the total volume
  • the particle diameter ( ⁇ m) in the cumulative volume is shown.
  • the particle size can be measured using, for example, a Microtrac particle size distribution measuring device (MT3000) manufactured by Nikkiso Co., Ltd.
  • the average particle diameter of the silica particles and pore former particles is the median diameter (d50), that is, the particle diameter at the cumulative volume corresponding to 50% of the total volume in the curve showing the relationship between the particle diameter and the cumulative volume.
  • d50 median diameter
  • the particle size distribution deviation SD and the average particle diameter are similarly defined for other particles.
  • the partition wall has a large number of channels partitioned by a porous partition wall, the partition wall has a porosity of 40 to 60%, and the opening area ratio of the pores opened to the partition wall surface (partition wall surface).
  • the total opening area of the pores per unit area of the surface is 15% or more
  • the opening diameter of the pores opened on the surface of the partition wall is a circle equivalent diameter (a circle having an area equivalent to the opening area of the pores).
  • the median opening diameter on the basis of the area of the opened pores is 10 ⁇ m or more and less than 40 ⁇ m
  • the equivalent circle diameter is 10 ⁇ m or more and the pore density of less than 40 ⁇ m is 350 / mm. 2 or more, the circle equivalent diameter of 10 ⁇ m or more, it is possible to average value of circularity of the pores of less than 40 ⁇ m to obtain a ceramic honeycomb structural body, which is a 1-2.
  • the main crystal is cordierite (the main component has a chemical composition of 42 to 56% by mass of SiO 2 , 30 to 45% by mass of Al 2 O 3 and 12 to 16% by mass of MgO).
  • blend each raw material powder which has a silica source component, an alumina source component, and a magnesia source component.
  • the pores formed in the ceramic having cordierite as the main crystal are due to pores generated by firing the cordierite-forming raw material silica and talc and pores generated by burning the pore former.
  • silica and pore former contribute to most of the pores formed, and therefore pores generated when cordierite ceramics are fired by adjusting their average particle size and particle size distribution. Can be controlled. Therefore, by using silica and a pore former whose usage amount, average particle size and particle size distribution are in the above-mentioned range, partition walls having a preferable pore structure are formed, and the PM collection rate at the beginning of use after regeneration. As a result, a ceramic honeycomb structure with reduced pressure loss when PM is collected can be obtained.
  • Silica Particles Silica is known to exist stably up to a higher temperature than other raw materials, and melt and diffuse above 1300 ° C. to form pores. Therefore, when 15 to 25% by mass of silica is contained, a desired amount of pores can be obtained.
  • silica is contained in an amount exceeding 25% by mass, kaolin and talc, which are other silica source components, must be reduced in order to maintain the main crystal as cordierite. The expansion effect (effect obtained by orienting kaolin during extrusion molding) is reduced, and the thermal shock resistance is reduced.
  • the content of silica is preferably 17 to 23%.
  • the average particle diameter of silica is preferably 22 to 28 ⁇ m.
  • the proportion of fine pores that open to the partition wall surface that adversely affects the maintenance of low pressure loss characteristics when PM is collected Will increase.
  • the proportion of silica particles having a particle diameter of 10 ⁇ m or less is preferably 3% by mass or less.
  • the proportion of silica particles having a particle diameter of 100 ⁇ m or more is preferably 3% by mass or less.
  • the particle size distribution deviation SD of the silica particles is 0.5 or less.
  • the particle size distribution deviation SD is preferably 0.45 or less, more preferably 0.4 or less.
  • Silica particles having a desired particle size distribution as described above can be obtained by classifying silica particles using a classifier, mixing a plurality of silica particles classified into several particle sizes, or optimizing grinding conditions.
  • Silica particles with a sphericity of 0.5 or more are used.
  • the sphericity of the silica particles is less than 0.5, the circularity of the pores opened on the partition wall surface increases, and the coarse pores that worsen PM collection at the beginning of use after regeneration increase, and PM The number of micropores that adversely affect the maintenance of low pressure drop characteristics when the is collected is increased.
  • the sphericity of the silica particles is preferably 0.6 or more, and more preferably 0.7 or more.
  • the sphericity of the silica particle is a value obtained by dividing the projected area of the silica particle by the area of a circle whose diameter is the maximum value of the straight line connecting the two points on the outer periphery of the particle through the center of gravity of the silica particle. It can be obtained by an image analysis apparatus.
  • the silica particles may be crystalline or amorphous, but are preferably amorphous from the viewpoint of adjusting the particle size distribution.
  • Amorphous silica can be obtained by crushing an ingot produced by melting high-purity natural silica at high temperature.
  • Silica particles may contain Na 2 O, K 2 O and CaO as impurities, but in order to prevent the thermal expansion coefficient from increasing, the content of the impurities is preferably 0.1% or less in total. .
  • Silica particles with high sphericity can be obtained by pulverizing high-purity natural silica and spraying it in a high-temperature flame.
  • Spherical amorphous silica as shown in FIG. 6 can be obtained by simultaneously melting and spheroidizing silica particles by thermal spraying into a high-temperature flame.
  • the spherical silica particles are preferably further adjusted in particle size by a method such as classification.
  • Pore-forming material The pore-forming material is contained in an amount of 5 to 40% by mass with respect to the cordierite-forming raw material, and in the firing process of the cordierite ceramics, the pores disappear by burning before the cordierite is synthesized. Form.
  • the content of the pore former is less than 5% by mass, the amount of pores formed by the pore former is reduced, so that the low pressure loss characteristic when PM is collected cannot be maintained.
  • the pore former content exceeds 40% by mass, the proportion of pores that deteriorates the PM collection rate at the beginning of use after regeneration increases.
  • the pore former content is preferably 5 to 15% by mass, more preferably 7 to 13% by mass.
  • the average particle diameter of the pore former particles is 15 to 50 ⁇ m.
  • the average particle diameter of the pore former particles is preferably 17 to 45 ⁇ m.
  • the particle size distribution deviation SD of the pore former is 0.5 or less.
  • the particle size distribution deviation SD of the pore former is 0.5 or less.
  • the pore distribution formed becomes sharp, contributing to the maintenance of low pressure loss characteristics when PM is collected and used after regeneration
  • the proportion of pores that can collect PM at the beginning of the start increases.
  • the porous partition wall having the pore structure described in the present invention is formed, and the PM collection rate at the beginning of use after regeneration is improved while maintaining a low pressure loss when PM is collected A honeycomb structure can be obtained.
  • the particle size distribution deviation SD of the pore former is preferably 0.4 or less, more preferably 0.35 or less.
  • the pore former particles should have a sphericity of 0.5 or more.
  • the sphericity of the pore-forming material particles is less than 0.5, the circularity of the pores opened on the partition wall surface increases, and the coarse pores that worsen the PM collection at the beginning of use after regeneration increase. The number of micropores that adversely affect the maintenance of low pressure drop characteristics when PM is collected increases.
  • the sphericity of the pore former particles is preferably 0.7 or more, more preferably 0.8 or more.
  • the sphericity of the pore former particles can be determined in the same manner as the silica particles.
  • the pore former is not limited in its material, and graphite, wheat flour, starch powder, unfoamed resin, foamed resin, foamed hollow resin, Ceramic coating resin, ceramic coating hollow resin, porous polymer and the like can be used as the pore former.
  • the pore former particles are a porous polymer, and the pore former particles preferably have a void of 30% or more and less than 50%, and further 80% of the voids. It is preferable that moisture is contained as described above. If the pore former particles are porous polymer and have voids of 30% or more and less than 50%, the calorific value of combustion during firing is reduced, cracking during firing is less likely to occur, and pores are formed during extrusion molding. Since the material particles are not easily crushed, desired pores can be stably obtained.
  • porous polymer used as the pore former particles resins such as (poly) methyl methacrylate, polybutyl methacrylate, polyacrylic ester, polystyrene, polyacrylic ester and the like are suitable.
  • the pores of the pore former particles are less than 30%, the calorific value of combustion at the time of firing increases, and cracks are likely to occur in the ceramic honeycomb structure.
  • it is 50% or more, the pore former particles are easily crushed when the forming raw materials are mixed and kneaded, and it is difficult to stably obtain a desired pore distribution.
  • a high pressure is required for extrusion molding due to the frictional resistance between the pore former particles, and the molded article after extrusion may be deformed. In some cases, the mold is deformed by high pressure and cannot be molded.
  • a porous polymer containing water in 80% or more of the voids as a pore former, the frictional resistance between pore former particles is reduced, and extrusion molding is not required without requiring high extrusion pressure. Is possible.
  • a porous polymer containing water in the voids can be produced using a vacuum impregnation apparatus.
  • the cordierite-forming raw material contains 40 to 43% by mass of talc, the average particle size of the talc is 1 to 10 ⁇ m, the particle size and the cumulative volume (specific In the curve showing the relationship with the cumulative value of the particle volume below the particle diameter), the particle diameter d90 at the cumulative volume corresponding to 90% of the total volume is 30 ⁇ m or less, and the particle size distribution deviation SD is 0.7 or less. Is preferred.
  • the partition wall has pores generated by firing the silica and talc in the cordierite forming raw material and pores generated by burning the pore former, but formed by silica and the pore former. Between the pores, talc particles having an average particle size of 1 to 10 ⁇ m smaller than the average particle size of silica and pore former form pores, so that the pores formed by silica and pore former are talc particles. Communicating through the pores formed by the above-described structure improves the connectivity of the pores in the partition walls. As a result, the low pressure loss characteristic when PM is collected is maintained. In particular, by using the porous polymer pore former described above, desired pores can be stably obtained in the partition walls, and low pressure loss characteristics when PM is collected can be stably obtained.
  • the average particle size of the talc particles is preferably 2 to 8 ⁇ m.
  • d90 is preferably 25 ⁇ m or less.
  • the cumulative volume corresponding to 90% of the total volume When the particle size d90 of the slag is 30 ⁇ m or less, the pore size distribution is sharpened by setting the talc particle size distribution deviation SD to 0.7 or less, so the initial pressure loss at the start of use after regeneration is kept low. The ratio of pores that can be collected and can collect PM at the beginning of use after regeneration is increased.
  • the particle size distribution deviation SD is preferably 0.65 or less, more preferably 0.6 or less.
  • Talc particles having a desired particle size distribution as described above can be obtained by classifying talc particles by a classifier, mixing a plurality of talc particles classified into several particle sizes, or optimizing grinding conditions.
  • Talc is preferably plate-like particles from the viewpoint of reducing the thermal expansion coefficient of the ceramic honeycomb structure in which the main component of the crystal phase is cordierite.
  • the form factor indicating the tabularity of the talc particles is preferably 0.77 or more, more preferably 0.8 or more, and most preferably 0.83 or more.
  • Talc may contain Fe 2 O 3 , CaO, Na 2 O, K 2 O and the like as impurities.
  • the content of Fe 2 O 3 is preferably 0.5 to 2.5% by mass in the magnesia source material, and the content of Na 2 O, K 2 O and CaO is thermal expansion. From the viewpoint of reducing the coefficient, the total content is preferably 0.50% by mass or less.
  • Kaolin Kaolin powder can be blended as a silica source material in addition to the silica powder.
  • the kaolin powder content is preferably 1 to 15% by mass. When the content of kaolin powder exceeds 15% by mass, it may be difficult to adjust the pores having a pore diameter of less than 2 ⁇ in the ceramic honeycomb structure to 10% or less, and the content of kaolin powder is 1% by mass. If it is less than 1, the thermal expansion coefficient of the ceramic honeycomb structure is increased.
  • the kaolin powder content is more preferably 4 to 8% by mass.
  • the cleavage index which is an index quantitatively indicating the shape of the kaolin particles, is preferably 0.80 or more, and more preferably 0.85 or more. The larger the cleavage index, the better the orientation of the kaolin particles.
  • the cleavage index of kaolin particles is obtained by pressing a certain amount of kaolin particles into a container and measuring the peak intensity of each of the (200), (020) and (002) planes of the kaolin particles by X-ray diffraction.
  • the following formula from the measured values: Cleavage index I (002) / (I (200) + I (020) + I (002) ) [Wherein, I (200) , I (020) and I (002) are the respective peak intensities on the (200) plane, (020) plane and (002) plane of kaolin particles measured by X-ray diffraction, respectively. Value. ].
  • Alumina source material As the alumina source material, aluminum oxide and / or aluminum hydroxide is preferable in that it has few impurities.
  • the total content of Na 2 O, K 2 O and CaO as impurities in aluminum oxide and aluminum hydroxide is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and most preferably 0.1% by mass or less. is there.
  • the content of aluminum hydroxide in the cordierite forming raw material is preferably 6 to 42% by mass.
  • the content of aluminum oxide in the cordierite forming raw material is preferably 35% by mass or less.
  • Firing is performed using a continuous furnace or a batch furnace with the temperature adjusted and maintained at 1350-1450 ° C for 1-50 hours. After the cordierite main crystals have been sufficiently formed, they are cooled to room temperature. Do it.
  • the rate of temperature increase is a temperature range in which the binder decomposes so that cracks do not occur in the ceramic honeycomb structure during the firing process, particularly in the case of a large ceramic honeycomb structure having an outer diameter of 150 mm or more and a total length of 150 mm or more, for example, 150 to It is preferably 0.2 to 10 ° C./hr at 350 ° C., and 5 to 20 ° C./hr in the temperature range where the cordierite reaction proceeds, for example, 1150 to 1400 ° C. Cooling is preferably performed at a rate of 20 to 40 ° C./h, particularly in the range of 1400 to 1300 ° C.
  • the present invention it is important to adjust the particle size distribution of silica, talc and pore former as described above. Therefore, in the present invention, after adding a pore former and a binder to a cordierite forming raw material composed of silica particles, talc particles, kaolin particles, alumina particles, etc., mixing is performed by a method having no grinding media such as a Henschel mixer. After the addition of water, it is preferable to knead by a method that does not apply excessive shear such as a kneader to produce a plasticized clay for extrusion.
  • silica particles By mixing by a method that does not have a grinding media, silica particles, especially amorphous silica particles, are prevented from being pulverized during the mixing process, and silica particles having a desired particle size distribution and particle shape are obtained after extrusion molding. Can be present as it is. Therefore, it is possible to obtain a ceramic honeycomb structure with improved PM collection rate at the beginning of collection after regeneration while maintaining low pressure loss. In particular, when spherical silica is used, the effect of adopting the mixing method is great.
  • silica particles particularly spherical silica particles, are pulverized during the mixing process, and the shape and particle diameter thereof are not preferable.
  • the chemical composition is A cordierite-forming raw material powder containing 50% by mass of SiO 2 , 35% by mass of Al 2 O 3 and 13% by mass of MgO was obtained.
  • the pore-forming material having the particle shape shown in Table 5 is added in the amount shown in Table 6, and after adding methylcellulose, it is kneaded by adding water to make plastic cordierite.
  • a ceramic clay made of raw materials was prepared.
  • the pore formers A to M were used by impregnating the pores of each porous polymer with water using a vacuum impregnation apparatus. Table 5 shows the water volume in the voids of the porous polymer as the water content.
  • the resulting kneaded clay was extruded to prepare a honeycomb-shaped formed body, and after drying, the periphery was removed and fired in a firing furnace on a schedule of 200 hours. However, 150 to 350 ° C and 1150 to 1400 ° C are heated at a rate of 2 ° C / hr and 10 ° C / hr, respectively, and maintained at a maximum temperature of 1410 ° C for 24 hours, and 1400 to 1300 ° C at a rate of 30 ° C / hr. Cooled down. The outer periphery of the fired ceramic honeycomb body is coated with a skin material made of amorphous silica and colloidal silica and dried.
  • the outer diameter is 266.7 mm and the total length is 304.8 mm, and the cell pitch and partition wall thickness shown in Table 7 are provided. Ceramic honeycomb structures of Examples 1 to 26 and Comparative Examples 1 to 9 were obtained. Electron micrographs of the partition wall surface and cross section of the ceramic honeycomb structure of Example 11 are shown in FIGS. 7 and 8, respectively.
  • the particle size distribution of silica powder and talc powder was measured using a Nikkiso Co., Ltd. Microtrac particle size distribution analyzer (MT3000). Average particle diameter (median diameter d50), ratio of particle diameter of 10 ⁇ m or less, ratio of 100 ⁇ m or more And the particle size distribution deviation were determined.
  • the sphericity of the silica particles is the area of a circle whose diameter is the maximum value of the projected area A1 and the straight line that passes through the center of gravity and connects the two points on the outer periphery of the particle, obtained from an image of the particle taken with an electron microscope. It is a value calculated from A2 by the formula: A1 / A2, and is expressed as an average value for 20 particles.
  • the plugging material slurry made of the cordierite forming raw material is filled in the end portions of the flow paths of these ceramic honeycomb structures so as to be alternately plugged, the plugging material slurry is dried and fired.
  • the cordierite ceramic honeycomb filters of Examples and Comparative Examples were manufactured. The length of the plugged material after firing was in the range of 7 to 10 mm. Each ceramic honeycomb filter was made of two identical ones.
  • the aperture area ratio of the pores opened on the partition wall surface is determined by analyzing the electron micrograph of the partition wall surface cut out from the honeycomb filter with an image analyzer (Media-Cybernetics Co., Ltd. Image-Pro Plus Plus 3.0). It was calculated
  • the equivalent circle diameter of the pores corresponding to 50% of the total pore area is The median opening diameter was calculated.
  • the pore density with an equivalent circle diameter of 10 ⁇ m or more and less than 40 ⁇ m of pores opened on the partition wall surface is the number of pores with an equivalent circle diameter of 10 ⁇ m or more and less than 40 ⁇ m among the pores opened per unit area of the partition wall surface Calculated.
  • Porosity, median pore diameter, pore volume of 5 ⁇ m or more and less than 20 ⁇ m, pore volume of 20 ⁇ m or more, and pore distribution deviation were measured by mercury porosimetry.
  • a test piece (10 mm ⁇ 10 mm ⁇ 10 mm) cut out from the ceramic honeycomb filter was placed in a measurement cell of Autopore III manufactured by Micromeritics, and the inside of the cell was decompressed, and mercury was introduced and pressurized. From the relationship between the pressure during pressurization and the volume of mercury pushed into the pores present in the test piece, the relationship between the pore diameter and the cumulative pore volume was determined.
  • the porosity was calculated from the measured value of the total pore volume, assuming that the true specific gravity of cordierite was 2.52 g / cm 3 .
  • CTE coefficient of thermal expansion
  • Darcy's permeability constant is the maximum value of air permeability measured using Perm Automated Porometer (registered trademark) 6.0 version (Porous Materials) while increasing the air flow rate from 30 cc / sec to 400 cc / sec. .
  • the initial pressure loss was expressed as the pressure difference (pressure loss) between the inflow side and the outflow side when air was fed into the ceramic honeycomb filter fixed to the pressure loss test stand at a flow rate of 10 Nm 3 / min.
  • the initial pressure loss was evaluated as “ ⁇ ” when the pressure loss exceeded 0.7 and 1.0 kPa or less, “ ⁇ ” when the pressure loss was 0.7 kPa or less, and “X” when the pressure loss exceeded 1.0 kPa.
  • the pressure loss when collecting 2 g / liter was applied to a ceramic honeycomb filter fixed to a pressure loss test stand at a rate of 3 g / h of carbon powder with a particle size of 0.042 ⁇ m at an air flow rate of 10 Nm 3 / min. This was expressed as the pressure difference (pressure loss) between the inflow side and the outflow side when the soot deposition amount per liter of filter was 2 g.
  • the soot collection pressure loss was evaluated as “ ⁇ ” when the pressure loss was over 1.2 and 1.5 kPa or less, “ ⁇ ” when the pressure loss was 1.2 kPa or less, and “X” when the pressure loss was over 1.5 kPa.
  • the collection efficiency was the same as above, while carbon powder with a particle size of 0.042 ⁇ m was introduced at a rate of 3 g / h at a flow rate of 10 Nm 3 / min into a ceramic honeycomb filter fixed to a pressure loss test stand. Measure the number of carbon powder particles flowing into the honeycomb filter and the number of carbon powder particles flowing out of the honeycomb filter every minute using SMPS (Scanning Mobility Particle Sizer) (Model 3936 made by TIS). the number of particles of carbon powder flowing into the honeycomb filter of up to 4 minutes N in, and the particle number N out of the carbon powder flowing out of the honeycomb filter, the formula: was determined by (N in -N out) / N in. The case where the collection efficiency was 95% or more and less than 98% was evaluated as “ ⁇ ”, the case where it was 98% or more was evaluated as “ ⁇ ”, and the case where it was less than 95% was evaluated as “ ⁇ ”.
  • the ceramic honeycomb filters of Examples 1 to 26 of the present invention have improved PM collection rate at the beginning of collection after regeneration while maintaining low pressure loss.
  • the ceramic honeycomb filters of Examples 17, 25 and 26 manufactured using porous pore materials containing 50%, 10% and 0% moisture, respectively were regenerated while maintaining a low pressure loss.
  • the PM collection rate at the beginning of the subsequent collection was improved, a high pressure was applied during extrusion molding, so the molded body after extrusion was deformed, and deformation was also observed in the mold.
  • Example 26 produced using a porous pore-forming material having a moisture content of 0%, the mold was greatly deformed, and subsequent extrusion molding was impossible.
  • the ceramic honeycomb filters of Comparative Examples 1 and 4 having a large median opening diameter of pores opened on the partition wall surface and low pore density of 10 ⁇ m or more and less than 40 ⁇ m have low collection efficiency.
  • the ceramic honeycomb filter having a small opening area ratio and a median opening diameter of pores opened on the partition wall surface in Comparative Examples 2 and 5, both the initial pressure loss and the pressure loss at the time of collecting 2 g / L of soot were large. Since the ceramic honeycomb filter has a lower pore density of 10 ⁇ m or more and less than 40 ⁇ m, it can be seen that the collection efficiency is slightly lower than that of the ceramic honeycomb filter of Comparative Example 2.
  • the ceramic honeycomb filter of Comparative Example 3 having a large median opening diameter of pores opened on the partition wall surface has low collection efficiency.
  • the ceramic honeycomb filter of Comparative Example 6, in which the opening area ratio of the pores opened on the partition wall surface and the pore density of 10 ⁇ m or more and less than 40 ⁇ m is low and the average value of the circularity of the pores of 10 ⁇ m or more and less than 40 ⁇ m is large is 2 g It can be seen that the pressure loss during / L collection is large and the collection efficiency is low.
  • the ceramic honeycomb filter having a low opening area ratio of pores opened on the partition wall surface and a pore density of 10 ⁇ m or more and less than 40 ⁇ m in Comparative Example 7 has a large initial pressure loss and a large pressure loss when collecting 2 g / L. Recognize. It can be seen that the ceramic honeycomb filter having a porosity of more than 60% in Comparative Example 8 has a low collection efficiency and a large thermal expansion coefficient.
  • the ceramic honeycomb filter having a low average pore density of 10 ⁇ m or more and less than 40 ⁇ m and a large average circularity of the pores of 10 ⁇ m or more and less than 40 ⁇ m in Comparative Example 9 has a slightly large pressure loss when collecting 2 g / L. It can be seen that the collection efficiency is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Geometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Nanotechnology (AREA)

Abstract

 多孔質の隔壁で仕切られた多数の流路を有するセラミックハニカム構造体であって、前記隔壁の気孔率が40~60%であり、前記隔壁表面に開口した細孔の開口面積率(隔壁表面の単位面積当たりに開口する細孔の総開口面積)が15%以上であり、前記隔壁表面に開口した細孔の開口径を、円相当径(細孔の開口面積と同等の面積を有する円の直径)で表した場合の、前記開口した細孔の面積基準でのメジアン開口径が10μm以上、40μm未満であり、前記円相当径が10μm以上、40μm未満の細孔密度が350個/mm2以上であり、前記円相当径が10μm以上、40μm未満の細孔の円形度の平均値が1~2であることを特徴とするセラミックハニカム構造体。

Description

セラミックハニカム構造体及びその製造方法
 本発明は、ディーゼル機関の排出ガス中に含まれる微粒子を除去するためのセラミックハニカムフィルタに用いられるセラミックハニカム構造体に関する。
 ディーゼルエンジンの排気ガス中には、炭素質からなる煤と高沸点炭化水素成分からなるSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とするPM(Particulate Matter:粒子状物質)が含まれており、これが大気中に放出されると、人体や環境に悪影響を与えるおそれがある。このため、ディーゼルエンジンの排気管の途中に、PMを捕集するためのセラミックハニカムフィルタを装着することが従来から行われている。
 排気ガス中のPMを捕集、浄化するセラミックハニカムフィルタの一例を図1及び図2に示す。セラミックハニカムフィルタ10は、多数の流出側封止流路3及び流入側封止流路4を形成する多孔質隔壁2と外周壁1とからなるセラミックハニカム構造体と、流出側封止流路3及び流入側封止流路4の排気ガス流入側端面8及び排気ガス流出側端面9を市松模様に交互に封止する上流側封止部6aと下流側封止部6cとからなる。セラミックハニカムフィルタの前記外周壁1は、金属メッシュ又はセラミックス製のマット等で形成された把持部材(図示せず)で使用中に動かないように把持され、金属製収納容器(図示せず)内に配置されている。
 セラミックハニカムフィルタ10において、排気ガスの浄化は次の通り行われる。排気ガスは図2に点線矢印で示すように、排気ガス流入側端面8に開口している流出側封止流路3から流入する。そして、隔壁2を通過する際に、詳しくは隔壁2の表面及び内部に存在する互いに連通した細孔により形成される連通孔を通過する際に、排気ガス中のPMが捕集される。浄化された排気ガスは、排気ガス流出側端面9に開口している流入側封止流路4から流出し、大気中に放出される。
 隔壁2にPMが捕集され続けると、隔壁2の表面及び内部の連通孔がPMにより目詰まりしてしまい、排気ガスがセラミックハニカムフィルタを通過する際の圧力損失が増加する。このため、圧力損失が規定値に達する前にPMを燃焼除去してセラミックハニカムフィルタを再生する必要がある。
 セラミックハニカムフィルタは、微粒子の捕集率が高いこと、圧力損失が低いことを満足する必要がある。しかしながらこれらの特性は相反する関係にあるため、気孔率、細孔容積、隔壁表面に存在する細孔の大きさ等を制御して両者をともに満足させるように最適化する検討が従来から行われている。
 特表2005-530616号は、端部を閉塞したコーディエライト・ハニカム構造体からなり、細孔径分布から求めた値d50/(d50+d90)が、0.70未満であり、式[d50/(d50+d90)]/[%多孔率/100]により定義されるすす付着時透過率因子Sfが、1.55未満であり、熱膨張係数(25~800℃)が、17×10-7/℃以下である、ディーゼル排気微粒子を捕捉しかつ燃焼させるセラミックフィルタを開示しており、このような細孔構造(細孔径分布及び細孔連結性)を有することにより、炭素ススが付着している状態であっても小さい圧力損失を維持することができると記載している。
 特開2002-219319号は、細孔分布を制御したコーディライトを主結晶相とする材料からなり、前記細孔分布が、細孔径10μm未満の細孔容積が全細孔容積の15%以下であり、細孔径10~50μmの細孔容積が全細孔容積の75%以上であり、細孔径50μmを超える細孔容積が全細孔容積の10%以下である多孔質ハニカムフィルタを開示しており、この多孔質ハニカムフィルタは、前記のような細孔分布を有するため、PM等の捕集効率が高く、かつ細孔の目詰まりによる圧力損失の増大を防止することができると記載している。特開2002-219319号は、このような細孔分布は、コーディライト化原料のシリカ成分の粒径を制御するとともに、カオリンを低濃度化することにより制御できると記載している。
 特開昭61-129015号は、隔壁の少なくとも導入通路側の表面に、孔径5~40μmの小孔と、孔径40~100μmの大孔からなり、小孔の数が大孔の数の5~40倍となるように構成された、隔壁の内部の内部細孔と連通する表面細孔を具備している排出ガス浄化用フィルタを開示しており、この排出ガス浄化用フィルタは、微粒子の捕集効率が使用時期によらずほとんど一定で高い値を示すと記載している。
 特開2003-40687号は、コージェライトを主成分とし、気孔率が55~65%、平均細孔径が15~30μm、隔壁表面に開口した細孔の総面積が、隔壁表面の総面積の35%以上であるハニカムセラミックス構造体を開示しており、このハニカムセラミックス構造体により、低い圧力損失と高い捕集効率を達成することができると記載している。
 特開2002-355511号は、隔壁表面に担持された触媒を有し、隔壁の気孔率が55~80%、隔壁表面に開口した細孔の総面積が、隔壁表面の総面積の20%以上である、セラミック製のハニカム構造を有する排ガス浄化フィルタを開示しており、この排ガス浄化フィルタは、隔壁に担持された触媒と堆積したPMとの接触面積を増加させることができ、触媒によるPMの酸化反応能力を向上させる効果、及び圧力損失の増大を抑制する効果を有すると記載している。
 特開2002-349234号は、触媒が担持され、隔壁表面に開口するオープンポアの合計面積が、隔壁の全表面積に対して30%以上であり、開口径が30μm以上の大オープンポアの開口面積の合計が、前記オープンポアの全開口面積の50%以上である排ガス浄化フィルタを開示しており、このような構造を有することにより、PMの酸化燃焼効率が大幅に向上するとともに、熱応力による破損を防止することができると記載している。
 しかしながら、特表2005-530616号、特開2002-219319号、特開昭61-129015号、特開2003-40687号、特開2002-355511号、及び特開2002-349234号に記載された排ガス浄化フィルタのPMの捕集性能は、PMがある程度堆積することにより高くなるものの、使用開始初期のPMが堆積する前の状態(セラミックハニカムフィルタを未使用の状態から使用する時、又は再生処理した後再び使用する時)では必ずしも十分でない。特に排ガス規制の強化に伴い問題視されるようになったナノサイズのPMの捕集効率が不十分であり、有害なナノサイズのPMが捕集されずに排出されるという問題がある。
 これらの問題を解決するため、特開2004-360654号は、隔壁の気孔率が55~75%、平均細孔径が15~40μm、隔壁表面に開口した細孔の総面積が隔壁表面の総面積の10~30%、隔壁表面に開口した細孔のうち円相当径が5~20μmである細孔が300個/mm2以上存在するセラミックハニカムフィルタを開示している。しかしながら、特開2004-360654号に記載したセラミックハニカムフィルタであっても、セラミックハニカムフィルタが再生された後の使用開始初期でのPM捕集効率が低いという問題を解決するには至っていない。
 一方、安定した気孔率を有する多孔質セラミックス構造体を製造する方法として、特開2007-45686号は平均粒径が10~50μmで、気孔率が50~90%の多孔質樹脂粒子を造孔材として使用する技術を開示している。特開2007-45686号は、中実粒子よりも焼成時の発熱量が小さく、中空粒子よりも潰れにくい多孔質樹脂粒子を造孔材として使用することにより、造孔材粒子の成形原料混合・混練時における潰れと、焼成時における過剰な発熱とを抑えることができ、その結果、安定した気孔率を持った多孔質セラミックス構造体を歩留良く製造することができると記載している。しかしながら、多孔質樹脂粒子を造孔材として使用した場合、造孔材粒子同士の摩擦抵抗のため押出し成形時に高い圧力が必要となり、押出し後の成形体や金型が変形してしまうトラブルが発生することがある。
 本発明の目的は、セラミックハニカムフィルタが再生された後の使用開始初期でのPM捕集率が改善されるとともに、PMが捕集された際の圧力損失の上昇が低減されたセラミックハニカム構造体、及びその製造方法を提供することにある。
 すなわち本発明のセラミックハニカム構造体は、多孔質の隔壁で仕切られた多数の流路を有するセラミックハニカム構造体であって、
前記隔壁の気孔率が40~60%であり、
前記隔壁表面に開口した細孔の開口面積率(隔壁表面の単位面積当たりに開口する細孔の総開口面積)が15%以上であり、
前記隔壁表面に開口した細孔の開口径を、円相当径(細孔の開口面積と同等の面積を有する円の直径)で表した場合の、前記開口した細孔の面積基準でのメジアン開口径が10μm以上、40μm未満であり、
前記円相当径が10μm以上、40μm未満の細孔密度が350個/mm2以上であり、
前記円相当径が10μm以上、40μm未満の細孔の円形度の平均値が1~2である
ことを特徴とする。
 前記隔壁のダルシー透過定数は0.1×10-12~2×10-12m2であるのが好ましい。
 前記隔壁の細孔径を水銀圧入法により測定した時のメジアン細孔径は5μm以上、20μm未満であり、
細孔径2μm未満の細孔容積は全細孔容積の10%以下であり、
細孔径40μm以上の細孔容積は全細孔容積の10%以下であり、
細孔分布偏差σは0.5以下であるのが好ましい。
ただし、σ=log(D20)-log(D80)であり、D20は、細孔径と累積細孔容積(最大の細孔径から特定の細孔径までの細孔容積を累積した値)との関係を示す曲線において、全細孔容積の20%に相当する細孔容積での細孔径(μm)を示し、D80は同様に全細孔容積の80%に相当する細孔容積での細孔径(μm)を示し、D80<D20である。
 セラミックハニカム構造体は、前記流路の排気ガス流入側又は排気ガス流出側が交互に目封止され、フィルタとして使用されるのが好ましい。
 平均隔壁厚さは9.0~12 mil、平均セル密度は150~300 cpsiであるのが好ましい。
 前記セラミックハニカム構造体の20~800℃間の熱膨張係数は13×10-7/℃以下であるのが好ましい。
 コーディエライト化原料及び造孔材を含む坏土を押出成形しハニカム状のセラミック構造体を製造する本発明の方法は、
前記コーディエライト化原料が15~25質量%のシリカを含み、
前記シリカが、平均粒子径20~30μm、粒子径10μm以下の粒子が5質量%以下、粒子径100μm以上の粒子が5質量%以下、粒度分布偏差SDが0.5以下、及び真球度が0.5以上であり、
前記造孔材の量が、コーディエライト化原料に対して5~40質量%であり、
前記造孔材が、平均粒子径15~50μm、粒子径5μm以下の粒子が10質量%以下、粒子径80μm以上の粒子が5質量%以下、粒度分布偏差SDが0.5以下、及び真球度が0.5以上であることを特徴とする。
ただし、SD=log(d80)-log(d20)であり、d20は、粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の20%に相当する累積体積での粒子径(μm)を示し、d80は同様に全体積の80%に相当する累積体積での粒子径(μm)を示し、d20<d80である。
 前記造孔材は多孔質ポリマーであり、前記造孔材粒子は30%以上50%未満の空隙を有しているのが好ましい。
 前記造孔材粒子の空隙の80%以上に水分が含有されているのが好ましい。
 前記コーディエライト化原料にタルクを40~43質量%含み、前記タルクの平均粒子径が1~10μmであり、粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の90%に相当する累積体積での粒子径d90が30μm以下であり、粒度分布偏差SDが0.7以下であるのが好ましい。
 前記タルク粒子の平板度を示す形態係数は0.77以上であるのが好ましい。
 本発明のセラミックハニカム構造体は、低い圧力損失を維持しつつ、再生後の捕集開始初期のPM捕集率が改善されるので、特に排ガス規制の強化に伴い問題視されるようになったナノサイズのPMを効率よく捕集することができ、有害なナノサイズのPMが排出されるという問題を解決することができる。
セラミックハニカムフィルタの一例を示す正面図である。 セラミックハニカムフィルタの一例を示す模式断面図である。 セラミックハニカム構造体の隔壁表面に開口した細孔の円相当径と累積面積との関係を模式的に示すグラフである。 実施例11のセラミックハニカム構造体の細孔径と細孔容積との関係を示すグラフである。 本発明の実施例で使用したシリカEの粒度分布を示すグラフである。 シリカ粒子の一例を示す電子顕微鏡写真である。 実施例11のセラミックハニカム構造体の隔壁の表面を示す電子顕微鏡写真である。 実施例11のセラミックハニカム構造体の隔壁の断面を示す電子顕微鏡写真である。
[1] セラミックハニカム構造体
(1)構造
 本発明のセラミックハニカム構造体は、多孔質の隔壁で仕切られた多数の流路を有し、
前記隔壁の気孔率が40~60%であり、
前記隔壁表面に開口した細孔の開口面積率(隔壁表面の単位面積当たりに開口する細孔の総開口面積)が15%以上であり、
前記隔壁表面に開口した細孔の開口径を、円相当径(細孔の開口面積と同等の面積を有する円の直径)で表した場合の、前記開口した細孔の面積基準でのメジアン開口径が10μm以上、40μm未満であり、
前記円相当径が10μm以上、40μm未満の細孔密度が350個/mm2以上であり、
前記円相当径が10μm以上、40μm未満の細孔の円形度の平均値が1~2である
ことを特徴とする。このような構造を有することにより、本発明のセラミックハニカム構造体は、再生後の使用開始初期のPM捕集率が改善されるとともに、PMが捕集された際の圧力損失の上昇が低減される。
(i)気孔率
 隔壁の気孔率が40%未満の場合、圧力損失が大きくなり、PMが捕集された際に低い圧力損失特性を維持することができず、一方、気孔率が60%を超えると、再生後の使用開始初期のPM捕集率が低下する。隔壁の気孔率は、好ましくは43~57%であり、さらに好ましくは45~55%である。
(ii)開口面積率
 隔壁表面に開口した細孔の開口面積率は、隔壁表面の単位面積当たりに開口する細孔の総開口面積である。開口面積率は、隔壁の表面を撮影した電子顕微鏡写真から、画像解析装置(例えば、Media Cybernetics 社製 Image-Pro Plus ver.3.0)で各細孔の開口面積の合計を求め、測定視野面積で除算して算出する。
 開口面積率が15%未満である場合、PMが捕集された際の低い圧力損失を維持し難くなる。一方、再生後の使用開始初期のPM捕集率が低下するのを防止するためには、開口面積率は40%以下であるのが好ましい。前記開口面積率は、より好ましくは18~38%である。
(iii)メジアン開口径
 開口した細孔の面積基準でのメジアン開口径は、図3に示すように、円相当径(細孔の開口面積と同等の面積を有する円の直径)に対して、隔壁表面に開口した細孔の累積面積(特定の円相当径以下の細孔の開口面積を累積した値)をプロットしたグラフにおいて、全細孔面積の50%に相当する累積面積となる細孔の円相当径である。メジアン開口径は、細孔の開口面積及び円相当径は、隔壁の表面を撮影した電子顕微鏡写真を、画像解析装置(例えば、Media Cybernetics 社製 Image-Pro Plus ver.3.0)で解析することによって求めることができる。
 メジアン開口径が10μm未満である場合、PMが捕集された際の低い圧力損失特性を維持することができず、一方、40μm以上である場合、再生後の使用開始初期のPM捕集率が低下する。前記メジアン開口径は、好ましくは15~35μmである。
(iv)細孔密度
 隔壁表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度とは、隔壁表面の単位面積あたりに開口する細孔のうち、円相当径が10μm以上40μm未満の細孔の数である。
 前記円相当径が10μm以上、40μm未満である細孔密度が350個/mm2未満である場合、再生後の使用開始初期のPM捕集率が低下する。前記細孔密度は、好ましくは400個/mm2以上である。
(v)円形度
 前記円相当径が10μm以上、40μm未満の細孔の円形度の平均値が2を超える場合、PMが捕集された際の低い圧力損失を維持し難く、再生後の使用開始初期のPM捕集率が低下する。前記円形度の平均値は、好ましくは1~1.5である。なお円形度は、開口面積がA0である細孔の外形長さ(L)と同等の円周長さを有する円の面積A1との比A1/A0で表し、1以上の値となる。
(vi) ダルシー透過定数
 セラミックハニカム構造体の隔壁のダルシー透過定数は0.1×10-12~2×10-12m2であるのが好ましい。前記ダルシー透過定数を有することで、再生後の使用開始時の初期圧力損失を低く維持でき、再生後の使用開始初期のPM捕集率が改善されるとともに、PMが捕集された際の圧力損失が低減される。ダルシー透過定数が0.1×10-12m2未満である場合、再生後の使用開始時の初期圧力損失を低く維持することが難しくなる。一方、2×10-12 m2を超える場合、PM捕集性能が悪くなる場合がある。ダルシー透過定数は、好ましくは0.2×10-12~1.5×10-12m2である。
(vii)細孔径及び細孔分布
 セラミックハニカム構造体の隔壁の細孔径を水銀圧入法により測定した時のメジアン細孔径が5μm以上、20μm未満であり、細孔径2μm未満の細孔容積が全細孔容積の10%以下であり、細孔径40μm以上の細孔容積が全細孔容積の10%以下であり、細孔分布偏差σが0.5以下であるのが好ましい。このような細孔構造を有することにより、再生後の使用開始時の初期圧力損失を低く維持でき、再生後の使用開始初期のPM捕集率が改善されるとともに、PMが捕集された際の圧力損失が低減される。
 ここで細孔分布偏差σは、log(D20)-log(D80)であり、図4に示すように、D20は、水銀圧入法で測定した細孔径と累積細孔容積(最大の細孔径から特定の細孔径までの細孔容積を累積した値)との関係を示す曲線において、全細孔容積の20%に相当する細孔容積での細孔径(μm)を示し、D80は同じく全細孔容積の80%に相当する細孔容積での細孔径(μm)を示す。D80<D20である。
 前記メジアン細孔径が5μm未満である場合、再生後の使用開始時の初期圧力損失を低く維持することが難しくなる。一方、20μm以上の場合、PM捕集に有効な細孔径5μm以上、20μm未満の細孔容積が少なくなり、PM捕集性能が悪くなる場合がある。前記メジアン細孔径は、好ましくは7~18μmである。
 細孔径2μm未満の細孔は、それよりも径の大きな細孔を連通させる効果があり、初期圧力損失特性を向上させる。細孔径2μm未満の細孔容積が10%を超えると細孔の連通性は確保されるものの、細孔径2μmを超える細孔の割合が相対的に少なくなり、初期圧力損失を低く維持することが難しくなる。一方、細孔径2μm未満の細孔が少な過ぎる場合、細孔の連通性が十分確保されず初期圧力損失が大きくなるので、細孔径2μm未満の細孔容積は、好ましくは1~8%である。
 細孔径40μm以上の細孔容積が全細孔容積の10%を超える場合、PM捕集に有効な細孔径5μm以上、20μm未満の細孔容積が少なくなり、PM捕集性能が悪くなる場合がある。細孔径40μm以上の細孔容積は、好ましくは8%以下である。
 細孔径2μm未満の細孔容積が10%以下であり、細孔径40μm以上の細孔容積が10%以下であり、細孔分布偏差σが0.5以下である時、メジアン細孔径5μm以上、20μm未満の細孔の割合が多くなり、細孔分布がシャープとなる。このような構造の隔壁は低い初期圧力損失を有するが、細孔分布偏差σが0.5を超えると、初期圧力損失特性に悪影響を与える細孔の割合が多くなり、低い初期圧力損失を維持することが難しくなる。細孔分布偏差σは、好ましくは0.45以下、さらに好ましくは0.4以下である。
(viii) ハニカム構造
 セラミックハニカム構造体は、平均隔壁厚さが9.0~12 milの範囲にあり、平均セル密度が150~300 cpsiの範囲にあるのが好ましい。このようなハニカム構造を有することで、再生後の使用開始時の初期圧力損失を低く維持でき、再生後の使用開始初期のPM捕集率が改善されるとともに、PMが捕集された際の圧力損失が低減される。平均隔壁厚さが9.0 mil(0.229 mm)未満の場合、隔壁の強度が低下し、一方、12 mil(0.305 mm)を超える場合、低い圧力損失を維持することが難しくなる。平均セル密度が150 cpsi(23.3セル/cm2)未満の場合、隔壁の強度が低下し、一方、300 cpsi(46.5セル/cm2)を超える場合、低い圧力損失を維持することが難しくなる。
(2) 熱膨張係数
 セラミックハニカム構造体は、20~800℃間の熱膨張係数が13×10-7/℃以下であるのが好ましい。このような熱膨張係数を有することで、ディーゼル機関の排出ガス中に含まれる微粒子を除去するためのセラミックハニカムフィルタとして用いた際、耐熱衝撃性を維持することができ、実用に耐え得る強度を維持することができる。熱膨張係数は、好ましくは、3×10-7~11×10-7/℃である。
(3)材質
 セラミックハニカム構造体を構成する隔壁は、本用途がディーゼルエンジンから排出される排気ガスを浄化するためのフィルタであることから、耐熱性を有するセラミックス、すなわち、アルミナ、ムライト、コーディエライト、炭化珪素、窒化珪素、ジルコニア、チタン酸アルミニウム、リチウムアルミニウムシリケート等を主結晶とするセラミックスからなるのが好ましく、中でも耐熱衝撃性に優れる低熱膨張のコーディエライト、チタン酸アルミニウムを主結晶とするセラミックスからなるのが好ましい。主結晶相がコーディエライトである場合、スピネル、ムライト、サフィリン等の他の結晶相を含有しても良く、さらにガラス成分を含有しても良い。
(4) セラミックハニカムフィルタ
 本発明のセラミックハニカム構造体は、前記流路の排気ガス流入側及び排気ガス流出側を市松模様に交互に目封止することにより、再生後の使用開始時の初期圧力損失を低く維持でき、再生後の使用開始初期のPM捕集率が改善されるとともに、PMが捕集された際の圧力損失が低減されたセラミックハニカムフィルタとすることができる。ここで、排気ガス流入側及び排気ガス流出側が市松模様に交互に目封止されるのであれば、流路に形成される目封止は、必ずしも、流路の端面部に形成される必要はなく、流入側端面又は流出側端面からハニカム構造体の内部に入った位置に形成してもよい。
[2]セラミックハニカム構造体の製造方法
 コーディエライト化原料及び造孔材を含む坏土を押出成形しハニカム状のセラミック構造体を製造する本発明の方法は、
前記コーディエライト化原料が15~25質量%のシリカを含み、
前記シリカが、平均粒子径20~30μm、粒子径10μm以下の粒子が5質量%以下、粒子径100μm以上の粒子が5質量%以下、粒度分布偏差SDが0.5以下、及び真球度が0.5以上であり、
前記造孔材の量が、コーディエライト化原料に対して5~40質量%であり、
前記造孔材が、平均粒子径15~50μm、粒子径5μm以下の粒子が10質量%以下、粒子径80μm以上の粒子が5質量%以下、粒度分布偏差SDが0.5以下、及び真球度が0.5以上であることを特徴とする。
 ここで、シリカ粒子及び造孔材粒子の粒度分布偏差SDは、SD=log(d80)-log(d20)で表され、d20は、図5に示すように、粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の20%に相当する累積体積での粒子径(μm)を示し、d80は同様に全体積の80%に相当する累積体積での粒子径(μm)を示す。なおd20<d80である。粒度は、例えば、日機装(株)製マイクロトラック粒度分布測定装置(MT3000)を用いて測定することができる。シリカ粒子及び造孔材粒子の平均粒子径は、メジアン径(d50)、つまり前述の粒子径と累積体積との関係を示す曲線において、全体積の50%に相当する累積体積での粒子径で表す。本願において、特に断りのない限り、他の粒子についても同様にして粒度分布偏差SD及び平均粒子径を定義する。
 本発明の方法により、多孔質の隔壁で仕切られた多数の流路を有し、前記隔壁の気孔率が40~60%であり、前記隔壁表面に開口した細孔の開口面積率(隔壁表面の単位面積当たりに開口する細孔の総開口面積)が15%以上であり、前記隔壁表面に開口した細孔の開口径を、円相当径(細孔の開口面積と同等の面積を有する円の直径)で表した場合の、前記開口した細孔の面積基準でのメジアン開口径が10μm以上、40μm未満であり、前記円相当径が10μm以上、40μm未満の細孔密度が350個/mm2以上であり、前記円相当径が10μm以上、40μm未満の細孔の円形度の平均値が1~2であることを特徴とするセラミックハニカム構造体を得ることができる。
 コーディエライト化原料は、主結晶がコーディエライト(主成分の化学組成が42~56質量%のSiO2、30~45質量%のAl2O3及び12~16質量%のMgO)となるように、シリカ源成分、アルミナ源成分及びマグネシア源成分を有する各原料粉末を配合する必要がある。コージェライトを主結晶とするセラミックスに形成される細孔は、コーディエライト化原料のシリカ及びタルクが焼成されて生じる細孔と、造孔材が燃焼されて生じる細孔によるものである。
 中でもシリカ及び造孔材は、形成される細孔の大部分に寄与することから、それらの平均粒子径や粒度分布を調節することにより、コーディエライト質セラミックスが焼成された際に生じる細孔を制御することができる。従って、使用量、平均粒子径及び粒度分布が前述の範囲にあるシリカ及び造孔材を使用することにより、好ましい細孔構造を有する隔壁が形成され、再生後の使用開始初期のPM捕集率が改善されるとともに、PMが捕集された際の圧力損失が低減されたセラミックハニカム構造体を得ることができる。
(1)シリカ粒子
 シリカは、他の原料に比べて高温まで安定に存在し、1300℃以上で溶融拡散し、細孔を形成することが知られている。このため、15~25質量%のシリカを含有すると、所望の量の細孔が得られる。25質量%を超えてシリカを含有させると、主結晶をコーディエライトに維持するために、他のシリカ源成分であるカオリン、タルクを低減させなければならず、その結果、カオリンによって得られる低熱膨張化の効果(押出し成形時にカオリンが配向されることで得られる効果)が低減し耐熱衝撃性が低下する。一方、15%未満の場合、隔壁表面に開口した細孔の量が少なくなるので、PMが捕集された際の低い圧力損失特性が得られなくなる場合がある。シリカの含有量は、好ましくは17~23%である。
 シリカの平均粒子径が20μm未満の場合、隔壁表面に開口した細孔のうち、PMが捕集された際の低い圧力損失特性の維持に悪い影響を与える微小細孔の割合が多くなる。一方、30μmを超える場合、再生後の使用開始初期のPM捕集率を悪化させる粗大細孔が多くなる。シリカの平均粒子径は、好ましくは22~28μmである。
 シリカの粒子径10μm以下の粒子が5質量%を超える場合、隔壁表面に開口した細孔のうち、PMが捕集された際の低い圧力損失特性の維持に悪い影響を与える微小細孔の割合が多くなる。シリカの粒子径10μm以下の粒子の割合は、好ましくは3質量%以下である。
 シリカの粒子径100μm以上の粒子が5質量%を超える場合、再生後の使用開始初期のPM捕集率を悪化させる粗大細孔が多くなり、再生後の使用開始初期のPM捕集性能が悪くなる場合がある。シリカの粒子径100μm以上の粒子の割合は、好ましくは3質量%以下である。
 シリカ粒子の平均粒子径が20~30μm、粒子径10μm以下の粒子が5質量%以下、粒子径100μm以上の粒子が5質量%以下である場合、シリカ粒子の粒度分布偏差SDを0.5以下とすることで、隔壁表面に形成される細孔のうち、再生後の使用開始初期のPM捕集率を悪化させず、PMが捕集された際の低圧力損失の維持に貢献する細孔の割合が多くなる。
 粒度分布偏差SDが0.5を超えると、粒度分布がブロードになり、形成される細孔分布もブロードになる。そのため、PM捕集率及び圧力損失特性に悪影響を与える細孔の割合が多くなり、再生後の使用開始初期のPM捕集率が低下し、PMが捕集された際の低い圧力損失が維持されなくなる。粒度分布偏差SDは、好ましくは0.45以下、さらに好ましくは0.4以下である。前述のような所望の粒子径分布を有するシリカ粒子は、分級装置によるシリカ粒子の分級、いくつかの粒子径に分級した複数のシリカ粒子の混合、又は粉砕条件の最適化により得ることができる。
 シリカ粒子は、0.5以上の真球度のものを用いる。シリカ粒子の真球度が、0.5未満である場合、隔壁表面に開口した細孔の円形度が大きくなり、再生後の使用開始初期のPM捕集を悪化させる粗大細孔が増加するとともに、PMが捕集された際の低い圧力損失特性の維持に悪い影響を与える微小細孔が増加する。シリカ粒子の真球度は、好ましくは0.6以上であり、さらに好ましくは0.7以上である。シリカ粒子の真球度は、シリカ粒子の投影面積を、シリカ粒子の重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積で割った値であり、電子顕微鏡写真から画像解析装置で求めることができる。
 前記シリカ粒子は結晶質のものであっても、非晶質のものであってもよいが、粒度分布を調整する観点から非晶質のものが好ましい。非晶質シリカは高純度の天然珪石を高温溶融して製造したインゴットを粉砕して得ることができる。シリカ粒子は不純物としてNa2O、K2O及びCaOを含有しても良いが、熱膨張係数が大きくなるのを防止するため、前記不純物の含有量は合計で0.1%以下であるのが好ましい。
 真球度の高いシリカ粒子は、高純度の天然珪石を微粉砕し高温火炎の中に溶射することにより得られる。高温火炎の中への溶射によりシリカ粒子の溶融と球状化とを同時に行い、図6に示すような球状の非晶質シリカを得ることができる。この球状シリカ粒子は、さらに分級等の方法により粒度の調整を行うのが好ましい。
(2) 造孔材
 造孔材は、コーディエライト化原料に対して5~40質量%含まれ、コージェライト質セラミックスの焼成過程において、コージェライトが合成される前に燃焼消失して細孔を形成する。造孔材の含有量が5質量%未満である場合、造孔材により形成される細孔の量が少なくなるので、PMが捕集された際の低い圧力損失特性が維持されなくなる。造孔材の含有量が40質量%を超えると、再生後の使用開始初期のPM捕集率を悪化させる細孔の割合が多くなる。造孔材の含有量は、好ましくは5~15質量%であり、さらに好ましくは7~13質量%である。
 造孔材粒子の平均粒子径は15~50μmである。平均粒子径が15μm未満の場合、低い圧力損失特性の維持に寄与する細孔が少なくなり、PMが捕集された際に圧力損失が上昇する。造孔材粒子の平均粒子径が50μmを超えると、形成される細孔が粗大になるので再生後の使用開始初期のPM捕集率を悪化させる細孔の割合が多くなる。造孔材粒子の平均粒子径は、好ましくは17~45μmである。
 造孔材の粒度分布偏差SDは0.5以下である。造孔材の粒度分布偏差SDを0.5以下とすることで、形成される細孔分布がシャープになるため、PMが捕集された際の低い圧力損失特性の維持に貢献し、再生後の使用開始初期のPMを捕集することのできる細孔の割合が多くなる。その結果、本発明に記載の気孔構造を有する多孔質隔壁が形成され、PMが捕集された際の低い圧力損失を維持しつつ、再生後の使用開始初期のPM捕集率を改善したセラミックハニカム構造体を得ることができる。
 造孔材の粒度分布偏差SDが0.5を超えると、粒度分布がブロードになり、形成される細孔分布もブロードになる。そのため、PM捕集率及び圧力損失特性に悪影響を与える細孔の割合が多くなり、再生後の使用開始初期のPM捕集率が低下し、PMが捕集された際の低い圧力損失が維持されなくなる。造孔材の粒度分布偏差SDは、好ましくは0.4以下、さらに好ましくは0.35以下である。
 造孔材粒子は、0.5以上の真球度のものを用いる。造孔材粒子の真球度が、0.5未満である場合、隔壁表面に開口した細孔の円形度が大きくなり、再生後の使用開始初期のPM捕集を悪化させる粗大細孔が増加するとともに、PMが捕集された際の低い圧力損失特性の維持に悪い影響を与える微小細孔が増加する。造孔材粒子の真球度は、好ましくは0.7以上であり、さらに好ましくは0.8以上である。なお、造孔材粒子の真球度は、シリカ粒子と同様にして求めることができる。
 造孔材は、その平均粒子径と粒度分布偏差SDが前述の範囲内であれば、その材質に限定はなく、グラファイト、小麦粉、澱粉粉、未発泡樹脂、発泡済み樹脂、発泡済み中空樹脂、セラミックコーティング樹脂、セラミックコーティング中空樹脂、多孔質ポリマー等を造孔材として用いることができる。
 本発明のセラミックハニカム構造体の製造方法において、前記造孔材粒子が多孔質ポリマーであり、前記造孔材粒子が30%以上50%未満の空隙を有するのが好ましく、さらに前記空隙の80%以上に水分が含有されているのが好ましい。造孔材粒子が多孔質ポリマーで、30%以上50%未満の空隙を有している場合、焼成時の燃焼発熱量が少なくなり、焼成時の割れを生じ難くなるとともに、押出し成形時に造孔材粒子が潰れ難いため、所望の細孔を安定して得ることができる。
 造孔材粒子として用いる多孔質ポリマーとしては、(ポリ)メタクリル酸メチル、ポリメタクリル酸ブチル、ポリアクリル酸エステル、ポリスチレン、ポリアクリルエステル等の樹脂が好適である。
 造孔材粒子の空隙が30%未満である場合、焼成時の燃焼発熱量が多くなり、セラミックハニカム構造体に割れが生じ易くなる。一方、50%以上の場合、成形原料を混合及び混練した際に造孔材粒子が潰れ易くなり、所望の細孔分布を安定して得られ難くなる。
 通常、造孔材を含む成形原料を使用すると、造孔材粒子同士の摩擦抵抗のため押出し成形に高い圧力が必要となり、押出し後の成形体に変形が生じることがある。場合によっては、高い圧力によって金型が変形してしまい成形できなくなる。しかしながら、空隙の80%以上に水分を含有させた多孔質ポリマーを造孔材として使用することで、造孔材粒子間の摩擦抵抗が低減され、高い押出し圧力を必要とすることなく、押出し成形が可能となる。空隙に水分を含有させた多孔質ポリマーは、真空含浸装置を使用して作製することができる。
(3) タルク
 本発明のセラミックハニカム構造体の製造方法において、コーディエライト化原料にタルクを40~43質量%含み、前記タルクの平均粒子径が1~10μm、粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の90%に相当する累積体積での粒子径d90が30μm以下であり、粒度分布偏差SDが0.7以下であるのが好ましい。
 隔壁には、コーディエライト化原料中のシリカ及びタルクが焼成されて生じる細孔と、造孔材が燃焼されて生じる細孔とを有しているが、シリカ及び造孔材により形成された細孔間に、シリカ及び造孔材の平均粒子径よりも小さい平均粒子径1~10μmのタルク粒子が細孔を形成することで、シリカ及び造孔材により形成された細孔が、タルク粒子により形成された細孔で連通され、隔壁内の細孔の連通性が向上する。その結果、PMが捕集された際の低い圧力損失特性が維持される。特に、前述の多孔質ポリマーの造孔材を用いることで、隔壁内に所望の細孔が安定して得られ、PMが捕集された際の低い圧力損失特性が安定して得られる。しかし、タルクの平均粒子径が1μm未満の場合、細孔の連通性が確保され難くなり、PMが捕集された際の低い初期圧力損失特性が得られ難くなる。一方、10μmを超える場合、再生後の使用開始初期のPM捕集率を悪化させる粗大細孔が多くなる。タルク粒子の平均粒子径は、好ましくは2~8μmである。
 タルクの粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の90%に相当する累積体積での粒子径d90が30μmを超える場合、再生後の使用開始初期のPM捕集率を悪化させる粗大細孔が多くなる。d90は、好ましくは25μm以下である。
 タルク粒子の平均粒子径が1~10μm、粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値))との関係を示す曲線において、全体積の90%に相当する累積体積での粒子径d90が30μm以下である場合、タルクの粒度分布偏差SDを0.7以下とすることで、形成される細孔分布がシャープになるため、再生後の使用開始時の初期圧力損失を低く維持でき、かつ再生後の使用開始初期のPMを捕集することのできる細孔の割合が多くなる。
 粒度分布偏差SDが0.7を超えると、粒度分布がブロードになり、形成される細孔分布もブロードになる。そのため、PM捕集率及び圧力損失特性に悪影響を与える細孔の割合が多くなり、再生後の使用開始初期のPM捕集率が低下し、PMが捕集された際の低い圧力損失が維持されなくなる。粒度分布偏差SDは、好ましくは0.65以下、さらに好ましくは0.6以下である。前述のような所望の粒子径分布を有するタルク粒子は、分級装置によるタルク粒子の分級、いくつかの粒子径に分級した複数のタルク粒子の混合、又は粉砕条件の最適化により得ることができる。
 タルクは、結晶相の主成分がコーディエライトであるセラミックハニカム構造体の熱膨張係数を低減する観点から、板状粒子であるのが好ましい。タルク粒子の平板度を示す形態係数は、0.77以上であるのが好ましく、0.8以上であるのがより好ましく、0.83以上であるのが最も好ましい。前記形態係数は、米国特許第5,141,686号に記載されているように、板状のタルク粒子を配向させた状態でX線回折測定を行い、タルクの(004)面の回折強度Ix、及び(020)面の回折強度Iyから式:
形態係数 = Ix/(Ix+2Iy)、
により求めることができる。形態係数が大きいほどタルク粒子の平板度が高い。
 タルクは、不純物としてFe2O3、CaO、Na2O、K2O等を含有しても良い。Fe2O3の含有率は、所望の粒度分布を得るために、マグネシア源原料中、0.5~2.5質量%であるのが好ましく、Na2O、K2O及びCaOの含有率は、熱膨張係数を低くするという点から、合計で0.50質量%以下であるのが好ましい。
(4) カオリン
 シリカ源原料として、前記シリカ粉末に加えて、カオリン粉末を配合することができる。カオリン粉末の含有量は1~15質量%であるのが好ましい。カオリン粉末の含有量が15質量%を超えると、セラミックハニカム構造体の細孔径2μ未満の細孔を10%以下に調整することが困難になる場合があり、カオリン粉末の含有量が1質量%未満の場合は、セラミックハニカム構造体の熱膨張係数が大きくなる。カオリン粉末の含有量は、さらに好ましくは、4~8質量%である。
 カオリン粒子を、そのc軸が押出し成形されるハニカム構造体の長手方向と直交するように配向させると、コーディエライト結晶のc軸がハニカム構造体の長手方向と平行となり、ハニカム構造体の熱膨張係数を小さくすることができる。カオリン粒子の形状は、成形対中のカオリン粒子の配向に大きく影響を与える。カオリン粒子を前述のように配向させるためには、カオリン粒子の形状を定量的に示す指数である、へき開指数が0.80以上であるのが好ましく、0.85以上であるのがさらに好ましい。へき開指数が大きいほどカオリン粒子の配向が良好となる。
 カオリン粒子のへき開指数は、一定量のカオリン粒子を容器内にプレス充填し、X線回折によりカオリン粒子の(200)面、(020)面及び(002)面の各ピーク強度を測定し、得られた測定値から以下の式:
へき開指数 = I(002)/(I(200)+I(020)+I(002))
[式中、I(200)、I(020)及びI(002)は、それぞれX線回折により測定されたカオリン粒子の(200)面、(020)面、(002)面における各ピーク強度の値である。]により求めることができる。
(5)アルミナ源原料
 アルミナ源原料としては、不純物が少ないという点で酸化アルミニウム及び/又は水酸化アルミニウムが好ましい。酸化アルミニウム及び水酸化アルミニウム中の不純物であるNa2O、K2O及びCaOの含有量の合計は、好ましくは0.5質量%以下、より好ましくは0.3質量%以下、最も好ましくは0.1質量%以下である。水酸化アルミニウムを用いる場合のコージェライト化原料中の水酸化アルミニウムの含有量は、好ましくは6~42質量%である。酸化アルミニウムを用いる場合のコージェライト化原料中の酸化アルミニウムの含有量は、好ましくは35質量%以下である。
(6)製造方法
 上記のように調整された、コーディエライト化原料粉末及び造孔材に対して、バインダー、必要に応じて分散剤、界面活性剤等の添加剤を加えて乾式で混合した後、水を加えて混練を行い可塑化可能な坏土を作製する(前記添加剤が液体の場合は、混練の際に加えることもできる。)。この坏土を公知のハニカム構造成形用の金型から、公知の押出成形法により押出してハニカム構造の成形体を形成する。得られた成形体を乾燥した後、必要に応じて端面及び外周等の加工を施し、焼成してセラミックハニカム構造体を得る。
 焼成は、連続炉又はバッチ炉を用いて、速度を調整しながら昇温し、1350~1450℃の間で1~50時間保持し、コーディエライト主結晶が十分生成した後、室温まで冷却して行う。前記昇温速度は、特に外径150mm以上、全長150mm以上の大型のセラミックハニカム構造体の場合、焼成過程でセラミックハニカム構造体に亀裂が発生しないよう、バインダーが分解する温度範囲、例えば、150~350℃では0.2~10℃/hr、コーディエライト化反応が進行する温度域、例えば、1150~1400℃では5~20℃/hrが好ましい。冷却は、特に1400~1300℃の範囲では20~40℃/hの速度で行うのが好ましい。
 得られたハニカム構造体に対して公知の方法で目封止部を形成して所望の流路の端部が目封止されたセラミックハニカムフィルタとする。なお、この目封止部は、焼成前に形成してもよい。
 本発明の製造方法では、前述のようにシリカ、タルク、造孔材の粒度分布を調整することが重要である。従って、本発明では、シリカ粒子、タルク粒子、カオリン粒子、アルミナ粒子等からなるコージェライト化原料に、造孔材やバインダーを加えた後、ヘンシェルミキサー等の粉砕メディアを有さない方法により混合を行い、水を加えた後は、ニーダー等の過剰なせん断を加えない方法により混練を行って押出成形用の可塑化された杯土を作製するのが好ましい。
 粉砕メディアを有さない方法により混合を行うことにより、シリカ粒子、特に非晶質シリカ粒子が混合過程で粉砕されることを防ぎ、所望の粒度分布及び粒子形状を有するシリカ粒子を、押出成形後の成形体にそのまま存在させることができる。そのため、低い圧力損失を維持しつつ、再生後の捕集開始初期のPM捕集率を改善したセラミックハニカム構造体を得ることができる。特に球状シリカを用いる場合、前記混合方法を採用する効果が大きい。混合工程でボールミル等の粉砕メディアを有する混合方法を採用した場合は、シリカ粒子、特に球状シリカ粒子が混合過程で粉砕されその形状や粒径が変化するため好ましくない。
 以下に、本発明の実施の形態を詳細に説明する。
 表1~表4に示す粒子形状(粒径、粒度分布等)を有するシリカ粉末、カオリン粉末、タルク粉末、アルミナ粉末及び水酸化アルミニウム粉末を表6に示す添加量で配合して、化学組成が50質量%のSiO2、35質量%のAl2O3及び13質量%のMgOとなるコーディエライト化原料粉末を得た。このコーディエライト化原料粉末に対し、表5に示す粒子形状の造孔材を表6に示す量で添加し、メチルセルロースを添加した後、水を加えて混練し、可塑性のあるコーディエライト化原料からなるセラミック坏土を作製した。なお造孔材A~Mは、真空含浸装置を用いて各多孔質ポリマーの空隙に水を含浸させて使用した。表5に多孔質ポリマーの空隙に占める水の容積を含水率として示す。
 得られた坏土を押出してハニカム構造の成形体を作製し、乾燥後、周縁部を除去加工し、焼成炉にて200時間のスケジュールで焼成した。ただし、150~350℃及び1150~1400℃はそれぞれ2℃/hr及び10℃/hrの速度で昇温し、最高温度1410℃で24hr保持し、1400~1300℃は30℃/hrの速度で冷却した。焼成されたセラミックハニカム体の外周に、非晶質シリカとコロイダルシリカとからなる外皮材をコーティングして乾燥させ、外径266.7 mm及び全長304.8 mmで、表7に示すセルピッチと隔壁厚さを有する実施例1~26及び比較例1~9のセラミックハニカム構造体を得た。実施例11のセラミックハニカム構造体の隔壁表面及び断面の電子顕微鏡写真を、ぞれぞれ図7及び図8に示す。
 シリカ粉末及びタルク粉末の粒度分布は、日機装(株)製マイクロトラック粒度分布測定装置(MT3000)を用いて測定し、平均粒子径(メジアン径d50)、粒子径10μm以下の割合、100μm以上の割合、及び粒度分布偏差を求めた。シリカ粒子の真球度は、電子顕微鏡により撮影した粒子の画像から画像解析装置で求めた、投影面積A1と、重心を通り粒子外周の2点を結ぶ直線の最大値を直径とする円の面積A2とから、式:A1/A2で算出した値であり、20個の粒子についての平均値で表した。
 これらのセラミックハニカム構造体の流路端部に、交互に目封止されるように、コーディエライト化原料からなる目封止材スラリーを充填した後、目封止材スラリーの乾燥及び焼成を行い、実施例及び比較例の各コーディエライト質セラミックハニカムフィルタを作製した。焼成後の目封止材の長さは7~10 mmの範囲であった。各セラミックハニカムフィルタは、それぞれ同じものを2個ずつ作製した。
 得られた実施例1~26及び比較例1~9のセラミックハニカムフィルタの1個に対して、隔壁表面に開口数する細孔の測定、及びダルシーの透過定数の測定を行った。結果を表7に示す。
 隔壁表面に開口した細孔の開口面積率は、ハニカムフィルタから切り出した隔壁の表面の電子顕微鏡写真を画像解析装置(Media Cybernetics 社製 Image-Pro Plus ver.3.0)で解析し、測定視野の面積に対する各細孔の開口面積の合計の割合として求めた。また、隔壁表面に開口した細孔の円相当径(細孔の開口面積と同一の面積を有する円の直径)を算出し、隔壁表面に開口した細孔の累積面積(特定の円相当径以下の細孔の開口面積を累積した値)を円相当径に対してプロットしたグラフ(図3を参照)において、全細孔面積の50%に相当する累積面積となる細孔の円相当径をメジアン開口径として算出した。隔壁表面に開口した細孔の円相当径が10μm以上40μm未満の細孔密度は、隔壁表面の単位面積あたりに開口する細孔のうち、円相当径が10μm以上40μm未満の細孔の数として算出した。
 気孔率、メジアン細孔径、5μm以上20μm未満の細孔容積、20μm以上の細孔容積、及び細孔分布偏差の測定は、水銀圧入法により行った。セラミックハニカムフィルタから切り出した試験片(10 mm×10 mm×10 mm)を、Micromeritics社製オートポアIIIの測定セル内に収納し、セル内を減圧した後、水銀を導入して、加圧した。加圧時の圧力と試験片内に存在する細孔中に押し込まれた水銀の体積との関係から、細孔径と累積細孔容積との関係を求めた。水銀を導入する圧力は0.5 psi(0.35×10-3 kg/mm2)とし、圧力から細孔径を算出する際の常数は、接触角=130°、表面張力484 dyne/cmとした。気孔率は、全細孔容積の測定値から、コージェライトの真比重を2.52 g/cm3として、計算によって求めた。
 20~800℃間の熱膨張係数(CTE)は、ハニカムフィルタから切り出した別の試験片を用いて測定した。
 ダルシーの透過定数は、Perm Automated Porometer(登録商標)6.0版(ポーラスマテリアルズ社)を使用し、エア流量を30 cc/secから400 cc/secまで増加させながら測定した通気度の最大値とした。
 実施例1~26及び比較例1~9のセラミックハニカムフィルタのうち、残りの1個に対して、初期圧力損失、煤2 g/リットル捕集した時の圧力損失、及び捕集効率の評価を行った。結果を表7に示す。
 初期圧力損失は、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気を流量10 Nm3/minで送り込み、流入側と流出側との差圧(圧力損失)で表した。圧力損失が0.7を超え1.0 kPa以下の場合を「○」、0.7 kPa以下の場合を「◎」、1.0 kPaを越える場合を「×」として初期圧力損失を評価した。
 煤2 g/リットル捕集した時の圧力損失は、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気流量10 Nm3/minで、粒径0.042μmのカーボン粉を3 g/hの速度で投入し、フィルタ体積1リットルあたりの煤付着量が2 gとなった時の流入側と流出側との差圧(圧力損失)で表した。圧力損失が1.2を超え1.5 kPa以下の場合を「○」、1.2 kPa以下の場合を「◎」、1.5 kPaを越える場合を「×」として煤捕集圧力損失を評価した。
 捕集効率は、上記と同じく、圧力損失テストスタンドに固定したセラミックハニカムフィルタに、空気流量10 Nm3/minで、粒径0.042μmのカーボン粉を3 g/hの速度で投入しながら、1分毎にハニカムフィルタに流入するカーボン粉の粒子数とハニカムフィルタから流出するカーボン粉の粒子数とをSMPS(Scanning Mobility Particle Sizer)(TIS社製モデル3936)を用いて計測し、投入開始3分から4分までのハニカムフィルタに流入するカーボン粉の粒子数Nin、及びハニカムフィルタから流出するカーボン粉の粒子数Noutから、式:(Nin-Nout)/Ninにより求めた。捕集効率が95%以上98%未満の場合を「○」、98%以上の場合を「◎」、95%未満の場合を「×」として評価した。
Figure JPOXMLDOC01-appb-T000001
表1(続き)
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
表3(続き)
Figure JPOXMLDOC01-appb-I000005
    
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
表5(続き)
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-T000009
    
表6(続き)
Figure JPOXMLDOC01-appb-I000010
    
表6(続き)
Figure JPOXMLDOC01-appb-I000011
    
Figure JPOXMLDOC01-appb-T000012
    
表7(続き)
Figure JPOXMLDOC01-appb-I000013
    
表7(続き)
Figure JPOXMLDOC01-appb-I000014
    
表7(続き)
Figure JPOXMLDOC01-appb-I000015
    
表7(続き)
Figure JPOXMLDOC01-appb-I000016
    
 表7より、本発明の実施例1~26のセラミックハニカムフィルタは、低い圧力損失を維持しつつ、再生後の捕集開始初期のPM捕集率が改善されていることがわかる。このうち、それぞれ50%、10%及び0%の水分を含有する多孔質造孔材を用いて製造された実施例17、25及び26のセラミックハニカムフィルタは、低い圧力損失を維持しつつ、再生後の捕集開始初期のPM捕集率が改善されたが、押出し成形時に高い圧力がかかったため、押出し後の成形体が変形し、さらに金型にも変形が認められた。特に、含有水分が0%である多孔質造孔材を用いて製造された実施例26では、金型が大きく変形してしまったため以後の押出成形ができなくなった。
 一方、比較例1及び4の、隔壁表面に開口した細孔のメジアン開口径が大きく、10μm以上40μm未満の細孔密度が低いセラミックハニカムフィルタは、捕集効率が低いことがわかる。比較例2及び5の、隔壁表面に開口した細孔の開口面積率及びメジアン開口径が小さいセラミックハニカムフィルタは、初期圧力損失及び煤2g/L捕集時の圧損がともに大きく、比較例5のセラミックハニカムフィルタは、さらに10μm以上40μm未満の細孔密度が低いため比較例2のセラミックハニカムフィルタに対して捕集効率がやや低いことがわかる。比較例3の、隔壁表面に開口した細孔のメジアン開口径が大きいセラミックハニカムフィルタは、捕集効率が低いことがわかる。比較例6の、隔壁表面に開口した細孔の開口面積率及び10μm以上40μm未満の細孔密度が低く、10μm以上40μm未満の細孔の円形度の平均値が大きいセラミックハニカムフィルタは、煤2g/L捕集時の圧損が大きく、捕集効率が低いことがわかる。比較例7の、隔壁表面に開口した細孔の開口面積率及び10μm以上40μm未満の細孔密度が低いセラミックハニカムフィルタは、初期圧力損失及び煤2g/L捕集時の圧損がともに大きいことがわかる。比較例8の、気孔率が60%を超えるセラミックハニカムフィルタは、捕集効率が低く、熱膨張係数が大きいことがわかる。比較例9の、10μm以上40μm未満の細孔密度が低く、10μm以上40μm未満の細孔の円形度の平均値が大きいセラミックハニカムフィルタは、煤2g/L捕集時の圧損がやや大きく、捕集効率が低いことがわかる。

Claims (11)

  1.  多孔質の隔壁で仕切られた多数の流路を有するセラミックハニカム構造体であって、
    前記隔壁の気孔率が40~60%であり、
    前記隔壁表面に開口した細孔の開口面積率(隔壁表面の単位面積当たりに開口する細孔の総開口面積)が15%以上であり、
    前記隔壁表面に開口した細孔の開口径を、円相当径(細孔の開口面積と同等の面積を有する円の直径)で表した場合の、前記開口した細孔の面積基準でのメジアン開口径が10μm以上、40μm未満であり、
    前記円相当径が10μm以上、40μm未満の細孔密度が350個/mm2以上であり、
    前記円相当径が10μm以上、40μm未満の細孔の円形度の平均値が1~2である
    ことを特徴とするセラミックハニカム構造体。
  2.  請求項1に記載のセラミックハニカム構造体において、前記隔壁のダルシー透過定数が0.1×10-12~2×10-12m2であることを特徴とするセラミックハニカム構造体。
  3.  請求項1又は2に記載のセラミックハニカム構造体において、
    前記隔壁の細孔径を水銀圧入法により測定した時のメジアン細孔径が5μm以上、20μm未満であり、
    細孔径2μm未満の細孔容積が全細孔容積の10%以下であり、
    細孔径40μm以上の細孔容積が全細孔容積の10%以下であり、
    細孔分布偏差σが0.5以下であることを特徴とするセラミックハニカム構造体。
    [ただし、σ=log(D20)-log(D80)であり、D20は、細孔径と累積細孔容積(最大の細孔径から特定の細孔径までの細孔容積を累積した値)との関係を示す曲線において、全細孔容積の20%に相当する細孔容積での細孔径(μm)を示し、D80は同様に全細孔容積の80%に相当する細孔容積での細孔径(μm)を示し、D80<D20である。]
  4.  請求項1~3のいずれかに記載のセラミックハニカム構造体において、前記流路の排気ガス流入側又は排気ガス流出側が交互に目封止され、フィルタとして使用されることを特徴とするセラミックハニカム構造体。
  5.  請求項1~4のいずれかに記載のセラミックハニカム構造体において、平均隔壁厚さが9.0~12 mil、平均セル密度が150~300 cpsiであることを特徴とするセラミックハニカム構造体。
  6.  請求項1~5のいずれかに記載のセラミックハニカム構造体において、前記セラミックハニカム構造体の20~800℃間の熱膨張係数が13×10-7/℃以下であることを特徴とするセラミックハニカム構造体。
  7.  コーディエライト化原料及び造孔材を含む坏土を押出成形しハニカム状のセラミック構造体を製造する方法であって、
    前記コーディエライト化原料が15~25質量%のシリカを含み、
    前記シリカが、平均粒子径20~30μm、粒子径10μm以下の粒子が5質量%以下、粒子径100μm以上の粒子が5質量%以下、粒度分布偏差SDが0.5以下、及び真球度が0.5以上であり、
    前記造孔材の量が、コーディエライト化原料に対して5~40質量%であり、
    前記造孔材が、平均粒子径15~50μm、粒子径5μm以下の粒子が10質量%以下、粒子径80μm以上の粒子が5質量%以下、粒度分布偏差SDが0.5以下、及び真球度が0.5以上であることを特徴とするセラミックハニカム構造体の製造方法。
    [ただし、SD=log(d80)-log(d20)であり、d20は、粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の20%に相当する累積体積での粒子径(μm)を示し、d80は同様に全体積の80%に相当する累積体積での粒子径(μm)を示し、d20<d80である。]
  8.  請求項7に記載のセラミックハニカム構造体の製造方法において、前記造孔材が多孔質ポリマーであり、前記造孔材粒子が30%以上50%未満の空隙を有していることを特徴とするセラミックハニカム構造体の製造方法。
  9.  請求項8に記載のセラミックハニカム構造体の製造方法において、前記造孔材粒子の空隙の80%以上に水分が含有されていることを特徴とするセラミックハニカム構造体の製造方法。
  10.  請求項7~9のいずれかに記載のセラミックハニカム構造体の製造方法において、前記コーディエライト化原料にタルクを40~43質量%含み、前記タルクの平均粒子径が1~10μmであり、粒子径と累積体積(特定の粒子径以下の粒子体積を累積した値)との関係を示す曲線において、全体積の90%に相当する累積体積での粒子径d90が30μm以下であり、粒度分布偏差SDが0.7以下であることを特徴とするセラミックハニカム構造体の製造方法。
  11.  請求項7~10のいずれかに記載のセラミックハニカム構造体の製造方法において、前記タルク粒子の平板度を示す形態係数が0.77以上であることを特徴とするセラミックハニカム構造体の製造方法。
PCT/JP2010/065068 2009-09-04 2010-09-02 セラミックハニカム構造体及びその製造方法 WO2011027837A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020127008714A KR101770654B1 (ko) 2009-09-04 2010-09-02 세라믹 허니컴 구조체 및 그 제조 방법
KR1020177001212A KR101770660B1 (ko) 2009-09-04 2010-09-02 세라믹 허니컴 구조체 및 그 제조 방법
EP10813785.2A EP2455153B1 (en) 2009-09-04 2010-09-02 Method for manufacturing a ceramic honeycomb structure
US13/391,216 US9074504B2 (en) 2009-09-04 2010-09-02 Ceramic honeycomb structure and its production method
CN201080037669.8A CN102481503B (zh) 2009-09-04 2010-09-02 陶瓷蜂窝构造体及其制造方法
JP2011529946A JP5630437B2 (ja) 2009-09-04 2010-09-02 セラミックハニカム構造体
US14/718,665 US9724633B2 (en) 2009-09-04 2015-05-21 Ceramic honeycomb structure and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-205153 2009-09-04
JP2009205153 2009-09-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/391,216 A-371-Of-International US9074504B2 (en) 2009-09-04 2010-09-02 Ceramic honeycomb structure and its production method
US14/718,665 Division US9724633B2 (en) 2009-09-04 2015-05-21 Ceramic honeycomb structure and its production method

Publications (1)

Publication Number Publication Date
WO2011027837A1 true WO2011027837A1 (ja) 2011-03-10

Family

ID=43649371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065068 WO2011027837A1 (ja) 2009-09-04 2010-09-02 セラミックハニカム構造体及びその製造方法

Country Status (6)

Country Link
US (2) US9074504B2 (ja)
EP (1) EP2455153B1 (ja)
JP (2) JP5630437B2 (ja)
KR (2) KR101770660B1 (ja)
CN (1) CN102481503B (ja)
WO (1) WO2011027837A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013198903A (ja) * 2013-06-24 2013-10-03 Ngk Insulators Ltd ハニカム構造体
WO2015046012A1 (ja) 2013-09-24 2015-04-02 日立金属株式会社 セラミックハニカム構造体及びその製造方法
WO2015046242A1 (ja) 2013-09-24 2015-04-02 日立金属株式会社 コーディエライト質セラミックハニカム構造体及びその製造方法
JP2016526007A (ja) * 2013-05-30 2016-09-01 コーニング インコーポレイテッド 触媒の一体化のための成形セラミック基材組成物
WO2016152709A1 (ja) * 2015-03-24 2016-09-29 日立金属株式会社 セラミックハニカム構造体及びその製造方法
WO2016152727A1 (ja) * 2015-03-24 2016-09-29 日立金属株式会社 セラミックハニカム構造体
EP2502661A3 (en) * 2011-03-25 2016-11-16 NGK Insulators, Ltd. Honeycomb filter and manufacturing method of the same
JP2017171553A (ja) * 2016-03-25 2017-09-28 日本碍子株式会社 ハニカム構造体
JP2017170396A (ja) * 2016-03-25 2017-09-28 日本碍子株式会社 ハニカム構造体
JPWO2016152236A1 (ja) * 2015-03-24 2018-01-11 日立金属株式会社 セラミックハニカム構造体
JP2021137684A (ja) * 2020-03-02 2021-09-16 日本碍子株式会社 ハニカムフィルタ
JP2021137686A (ja) * 2020-03-02 2021-09-16 日本碍子株式会社 ハニカムフィルタ
US20220314210A1 (en) * 2021-03-30 2022-10-06 Ngk Insulators, Ltd. Honeycomb structure

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101949299B1 (ko) 2010-04-01 2019-02-18 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 필터 및 그 제조 방법
US10029939B2 (en) * 2015-02-27 2018-07-24 Corning Incorporated Ceramic composite beads and methods for making same
JP6426044B2 (ja) * 2015-03-30 2018-11-21 日本碍子株式会社 ハニカム構造体及びその製造方法
JP6581926B2 (ja) * 2016-03-07 2019-09-25 日本碍子株式会社 ハニカム構造体
JP6788515B2 (ja) * 2017-02-02 2020-11-25 日本碍子株式会社 目封止ハニカム構造体
JP6802096B2 (ja) * 2017-03-14 2020-12-16 日本碍子株式会社 目封止ハニカム構造体
CN109160824B (zh) * 2018-08-21 2021-02-02 武汉摩尔安科技有限公司 一种基于MOFs的陶瓷多孔材料及其制备方法
JP7273483B2 (ja) * 2018-11-07 2023-05-15 川崎重工業株式会社 酸性ガス吸収材及びその製造方法
JP2020158351A (ja) * 2019-03-27 2020-10-01 日本碍子株式会社 ハニカム構造体、および、ハニカム構造体の製造方法
US20220176368A1 (en) * 2019-04-18 2022-06-09 Corning Incorporated Low bulk density, high geometric surface area honeycomb bodies
JP7002504B2 (ja) * 2019-07-29 2022-02-04 株式会社Soken 排ガス浄化フィルタ
JP7353218B2 (ja) 2020-03-02 2023-09-29 日本碍子株式会社 ハニカムフィルタ
JP7449721B2 (ja) 2020-03-02 2024-03-14 日本碍子株式会社 ハニカムフィルタ
JP7227178B2 (ja) * 2020-03-02 2023-02-21 日本碍子株式会社 ハニカムフィルタ
JP7449720B2 (ja) 2020-03-02 2024-03-14 日本碍子株式会社 ハニカムフィルタ
JP7353217B2 (ja) 2020-03-02 2023-09-29 日本碍子株式会社 ハニカムフィルタ

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129015A (ja) 1984-11-24 1986-06-17 Nippon Denso Co Ltd 排出ガス浄化用フイルタおよびその製造方法
US5141686A (en) 1988-11-21 1992-08-25 Corning Incorporated Method for producing cordierite articles
JP2002219319A (ja) 2000-11-24 2002-08-06 Ngk Insulators Ltd 多孔質ハニカムフィルター及びその製造方法
JP2002349234A (ja) 2001-05-25 2002-12-04 Toyota Motor Corp ディーゼル排ガス浄化フィルタ
JP2002355511A (ja) 2001-05-30 2002-12-10 Denso Corp 排ガス浄化フィルタ及びその製造方法
JP2003040687A (ja) 2000-06-30 2003-02-13 Ngk Insulators Ltd ハニカムセラミックス構造体とその製造方法
JP2004360654A (ja) 2003-06-06 2004-12-24 Hitachi Metals Ltd セラミックハニカムフィルタ
JP2005530616A (ja) 2002-06-26 2005-10-13 コーニング インコーポレイテッド Dpf用途向けのケイ酸アルミニウムマグネシウム構造体
WO2006095835A1 (ja) * 2005-03-10 2006-09-14 Ngk Insulators, Ltd. ハニカム構造体、及びその製造方法
JP2007045686A (ja) 2005-08-12 2007-02-22 Ngk Insulators Ltd 多孔質セラミックス構造体の製造方法
WO2007108428A1 (ja) * 2006-03-17 2007-09-27 Ngk Insulators, Ltd. ハニカム構造体の製造方法
JP2008308378A (ja) * 2007-06-15 2008-12-25 National Institute Of Advanced Industrial & Technology セラミック多孔体
WO2009048156A1 (ja) * 2007-10-12 2009-04-16 Hitachi Metals, Ltd. コージェライト質セラミックハニカムフィルタ及びその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2578176B2 (ja) * 1988-08-12 1997-02-05 日本碍子株式会社 多孔質セラミックハニカムフィルターおよびその製法
JP2726616B2 (ja) 1993-12-15 1998-03-11 日本碍子株式会社 多孔質セラミックハニカムフィルタ
EP0761279B1 (en) * 1995-08-22 2002-11-20 Denki Kagaku Kogyo Kabushiki Kaisha Honeycomb structure
JP3329798B2 (ja) 2000-10-06 2002-09-30 日立金属株式会社 コージェライト質セラミックハニカム構造体
JP4394329B2 (ja) * 2001-03-01 2010-01-06 日本碍子株式会社 セラミックス構造体の製造方法
EP1375525B1 (en) 2001-03-14 2017-12-20 Sekisui Chemical Co., Ltd. Method for preparing hollow polymer particles
US6827754B2 (en) 2001-09-13 2004-12-07 Hitachi Metals, Ltd. Ceramic honeycomb filter
CN100458109C (zh) 2001-09-13 2009-02-04 日立金属株式会社 陶瓷蜂窝状过滤器及其制造方法
DE60218538T2 (de) * 2001-12-03 2007-11-08 Hitachi Metals, Ltd. Keramischer Wabenfilter
JP4227347B2 (ja) * 2002-03-29 2009-02-18 日本碍子株式会社 多孔質材料及びその製造方法
EP1754692B1 (en) 2003-04-24 2012-10-31 Dow Global Technologies LLC Mullite bodies
JP2005103469A (ja) * 2003-09-30 2005-04-21 Sekisui Chem Co Ltd 熱膨張性マイクロカプセルの製造方法
DE112005000601T5 (de) * 2004-03-19 2007-03-01 Ngk Insulators, Ltd. Verfahren zur Herstellung einer porösen keramischen Struktur
JP4361449B2 (ja) * 2004-09-24 2009-11-11 日本碍子株式会社 コーディエライト質ハニカム構造体の製造方法
US7485594B2 (en) 2005-10-03 2009-02-03 Dow Global Technologies, Inc. Porous mullite bodies and methods of forming them
WO2007064454A2 (en) * 2005-11-30 2007-06-07 Corning Incorporated Controlled pore size distribution porous ceramic honeycomb filter, honeycomb green body, batch mixture and manufacturing method therefor
FR2893861B1 (fr) * 2005-11-30 2008-01-04 Saint Gobain Ct Recherches Structure de filtration d'un gaz a base de sic de porosite de surface de paroi controlee
KR101648483B1 (ko) * 2008-07-28 2016-08-16 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 구조체 및 그 제조 방법
US8187353B2 (en) * 2009-01-21 2012-05-29 Corning Incorporated Filtration structures for improved particulate filter performance
KR101894341B1 (ko) * 2010-02-22 2018-10-04 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 구조체 및 그 제조 방법

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129015A (ja) 1984-11-24 1986-06-17 Nippon Denso Co Ltd 排出ガス浄化用フイルタおよびその製造方法
US5141686A (en) 1988-11-21 1992-08-25 Corning Incorporated Method for producing cordierite articles
JP2003040687A (ja) 2000-06-30 2003-02-13 Ngk Insulators Ltd ハニカムセラミックス構造体とその製造方法
JP2002219319A (ja) 2000-11-24 2002-08-06 Ngk Insulators Ltd 多孔質ハニカムフィルター及びその製造方法
JP2002349234A (ja) 2001-05-25 2002-12-04 Toyota Motor Corp ディーゼル排ガス浄化フィルタ
JP2002355511A (ja) 2001-05-30 2002-12-10 Denso Corp 排ガス浄化フィルタ及びその製造方法
JP2005530616A (ja) 2002-06-26 2005-10-13 コーニング インコーポレイテッド Dpf用途向けのケイ酸アルミニウムマグネシウム構造体
JP2004360654A (ja) 2003-06-06 2004-12-24 Hitachi Metals Ltd セラミックハニカムフィルタ
WO2006095835A1 (ja) * 2005-03-10 2006-09-14 Ngk Insulators, Ltd. ハニカム構造体、及びその製造方法
JP2007045686A (ja) 2005-08-12 2007-02-22 Ngk Insulators Ltd 多孔質セラミックス構造体の製造方法
WO2007108428A1 (ja) * 2006-03-17 2007-09-27 Ngk Insulators, Ltd. ハニカム構造体の製造方法
JP2008308378A (ja) * 2007-06-15 2008-12-25 National Institute Of Advanced Industrial & Technology セラミック多孔体
WO2009048156A1 (ja) * 2007-10-12 2009-04-16 Hitachi Metals, Ltd. コージェライト質セラミックハニカムフィルタ及びその製造方法

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2502661A3 (en) * 2011-03-25 2016-11-16 NGK Insulators, Ltd. Honeycomb filter and manufacturing method of the same
JP2016526007A (ja) * 2013-05-30 2016-09-01 コーニング インコーポレイテッド 触媒の一体化のための成形セラミック基材組成物
JP2013198903A (ja) * 2013-06-24 2013-10-03 Ngk Insulators Ltd ハニカム構造体
US9708958B2 (en) 2013-09-24 2017-07-18 Hitachi Metals, Ltd. Cordierite-type ceramic honeycomb structure and its production method
WO2015046012A1 (ja) 2013-09-24 2015-04-02 日立金属株式会社 セラミックハニカム構造体及びその製造方法
WO2015046242A1 (ja) 2013-09-24 2015-04-02 日立金属株式会社 コーディエライト質セラミックハニカム構造体及びその製造方法
JP5751397B1 (ja) * 2013-09-24 2015-07-22 日立金属株式会社 コーディエライト質セラミックハニカム構造体及びその製造方法
JP5751398B1 (ja) * 2013-09-24 2015-07-22 日立金属株式会社 セラミックハニカム構造体及びその製造方法
EP3786137A1 (en) 2013-09-24 2021-03-03 Hitachi Metals, Ltd. Production method for a cordierite-type ceramic honeycomb structure
US10065141B2 (en) 2013-09-24 2018-09-04 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
US9726066B2 (en) 2013-09-24 2017-08-08 Hitachi Metals, Ltd. Cordierite-type ceramic honeycomb structure and its production method
US9649587B2 (en) 2013-09-24 2017-05-16 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
JP6004151B1 (ja) * 2015-03-24 2016-10-05 日立金属株式会社 セラミックハニカム構造体
US10399074B2 (en) 2015-03-24 2019-09-03 Hitachi Metals, Ltd. Ceramic honeycomb structure
KR102441764B1 (ko) 2015-03-24 2022-09-07 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 구조체
KR102439667B1 (ko) 2015-03-24 2022-09-01 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 구조체 및 그의 제조 방법
KR20170129694A (ko) 2015-03-24 2017-11-27 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 구조체 및 그의 제조 방법
KR20170130362A (ko) 2015-03-24 2017-11-28 히타치 긴조쿠 가부시키가이샤 세라믹 허니컴 구조체
JPWO2016152236A1 (ja) * 2015-03-24 2018-01-11 日立金属株式会社 セラミックハニカム構造体
US9968879B2 (en) 2015-03-24 2018-05-15 Hitachi Metals, Ltd. Ceramic honeycomb structure
WO2016152727A1 (ja) * 2015-03-24 2016-09-29 日立金属株式会社 セラミックハニカム構造体
US10072543B2 (en) 2015-03-24 2018-09-11 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
US10077693B2 (en) 2015-03-24 2018-09-18 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
JP6004150B1 (ja) * 2015-03-24 2016-10-05 日立金属株式会社 セラミックハニカム構造体及びその製造方法
WO2016152709A1 (ja) * 2015-03-24 2016-09-29 日立金属株式会社 セラミックハニカム構造体及びその製造方法
JP2017170396A (ja) * 2016-03-25 2017-09-28 日本碍子株式会社 ハニカム構造体
JP2017171553A (ja) * 2016-03-25 2017-09-28 日本碍子株式会社 ハニカム構造体
JP2021137684A (ja) * 2020-03-02 2021-09-16 日本碍子株式会社 ハニカムフィルタ
JP2021137686A (ja) * 2020-03-02 2021-09-16 日本碍子株式会社 ハニカムフィルタ
JP7227177B2 (ja) 2020-03-02 2023-02-21 日本碍子株式会社 ハニカムフィルタ
JP7229192B2 (ja) 2020-03-02 2023-02-27 日本碍子株式会社 ハニカムフィルタ
US20220314210A1 (en) * 2021-03-30 2022-10-06 Ngk Insulators, Ltd. Honeycomb structure
US11534745B2 (en) * 2021-03-30 2022-12-27 Ngk Insulators, Ltd. Honeycomb structure

Also Published As

Publication number Publication date
CN102481503B (zh) 2015-05-20
EP2455153A1 (en) 2012-05-23
KR101770660B1 (ko) 2017-08-23
JP5835395B2 (ja) 2015-12-24
KR20120090054A (ko) 2012-08-16
KR20170008894A (ko) 2017-01-24
US9724633B2 (en) 2017-08-08
EP2455153A4 (en) 2015-09-30
JP2014166635A (ja) 2014-09-11
JP5630437B2 (ja) 2014-11-26
KR101770654B1 (ko) 2017-08-23
JPWO2011027837A1 (ja) 2013-02-04
US20150251124A1 (en) 2015-09-10
EP2455153B1 (en) 2018-10-31
US20120148792A1 (en) 2012-06-14
CN102481503A (zh) 2012-05-30
US9074504B2 (en) 2015-07-07

Similar Documents

Publication Publication Date Title
JP5835395B2 (ja) セラミックハニカム構造体の製造方法
JP5725247B2 (ja) セラミックハニカム構造体の製造方法
JP5402638B2 (ja) コージェライト質セラミックハニカムフィルタ及びその製造方法
JP5751398B1 (ja) セラミックハニカム構造体及びその製造方法
JP6004151B1 (ja) セラミックハニカム構造体
JP6004150B1 (ja) セラミックハニカム構造体及びその製造方法
US8821609B2 (en) Ceramic honeycomb filter and its production method
JP5724873B2 (ja) セラミックハニカム構造体及びその製造方法
WO2021075211A1 (ja) セラミックハニカム構造体及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037669.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813785

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011529946

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010813785

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13391216

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127008714

Country of ref document: KR

Kind code of ref document: A