WO2006095835A1 - ハニカム構造体、及びその製造方法 - Google Patents

ハニカム構造体、及びその製造方法 Download PDF

Info

Publication number
WO2006095835A1
WO2006095835A1 PCT/JP2006/304653 JP2006304653W WO2006095835A1 WO 2006095835 A1 WO2006095835 A1 WO 2006095835A1 JP 2006304653 W JP2006304653 W JP 2006304653W WO 2006095835 A1 WO2006095835 A1 WO 2006095835A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cam structure
face
honeycomb
cam
Prior art date
Application number
PCT/JP2006/304653
Other languages
English (en)
French (fr)
Inventor
Yukihito Ichikawa
Original Assignee
Ngk Insulators, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Insulators, Ltd. filed Critical Ngk Insulators, Ltd.
Priority to CN2006800077929A priority Critical patent/CN101137599B/zh
Priority to EP06715474A priority patent/EP1857427B1/en
Priority to JP2007507192A priority patent/JP5185616B2/ja
Publication of WO2006095835A1 publication Critical patent/WO2006095835A1/ja
Priority to US11/889,146 priority patent/US7897237B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2422Mounting of the body within a housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2455Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the whole honeycomb or segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0012Honeycomb structures characterised by the material used for sealing or plugging (some of) the channels of the honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00129Extrudable mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2084Thermal shock resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • Y10T428/24157Filled honeycomb cells [e.g., solid substance in cavities, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • Y10T428/24165Hexagonally shaped cavities

Definitions

  • the present invention relates to a honeycomb structure and a manufacturing method thereof. More specifically, various types of internal combustion engine exhaust gas and other purifying catalyst carriers, deodorizing catalyst carriers, various filter equipment filters, heat exchanger units, fuel cell reforming catalyst carriers, etc.
  • the present invention relates to a her cam structure suitably used as a carrier for chemical reaction equipment and a method for producing the same.
  • Honeycomb structures are used as catalyst carriers in catalytic converters that treat the harmful components of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) in exhaust gas that is also exhausted from gasoline engine power. It is installed! Exhaust gas emitted from diesel engines or gasoline lean-burn engines and gasoline direct injection engines contains a large amount of particulate matter (particulate matter) mainly composed of soot (carbon black smoke). If this particulate matter is released into the atmosphere, it will cause environmental pollution.Therefore, the exhaust gas system of the diesel engine is equipped with a heavy cam filter for collecting particulate matter. . A her cam structure is also used in such a her cam filter.
  • HC hydrocarbons
  • CO carbon monoxide
  • NOx nitrogen oxides
  • a Hercam structure used for such a purpose has a structure having a large number of flow holes (cells) penetrating in the axial direction defined by porous partition walls, and exhaust gas passes through the cells. And it is processed by the catalyst component carry
  • an extruded cordierite ceramic hard structure or a silicon carbide ceramic hard structure which is provided in a large amount and at a low cost is used.
  • a metal saw-cam structure having a structure in which thin flat plates and corrugated plates are alternately arranged in a corrugated shape is used (for example, see Patent Document 1 or 2).
  • the filter a structure in which the end of a predetermined cell is sealed at one end face of the her cam structure and the end of the remaining cell is sealed at the other end face, or one end
  • a fluid such as exhaust gas is not sealed at the inlet end face of the filter, flows into a cell sealed at the outlet end face, passes through the porous partition wall, and is sealed at the inlet end face. Then, it moves to a cell that is not sealed at the end face on the outlet side and is discharged. At this time, the partition wall becomes a filtration layer, and particulate matter such as soot in the exhaust gas is captured by the partition wall and deposited on the partition wall.
  • Patent Document 1 JP-A-9-155189
  • Patent Document 2 Japanese Utility Model Publication No. 61-10917
  • Patent Document 3 Japanese Patent Laid-Open No. 61-4813
  • cell cross section the area of the cross section perpendicular to the fluid flow direction of the cell (hereinafter sometimes referred to as "cell cross section") as described above is substantially the same over the entire flow direction.
  • cell cross section There is a problem in the her cam structure that the pressure loss is high due to the inflow resistance of the fluid at the end face on the inlet side of the her cam structure and the outflow resistance at the end face on the outlet side.
  • the density of cells is increasing, and the pressure loss at the end faces on the inlet side and outlet side tends to increase.
  • the diesel particulate filter (DPF) used to purify exhaust gas exhausted by diesel engine isotropic forces also has exhaust gas inflow resistance at the inlet side end face and the outlet side end face of the her cam structure. There is a problem of high pressure loss due to the outflow resistance.
  • the collected particulate matter gradually accumulates in the filter as it is used, and the opening portion of the cell on the end face side on the inlet side is sealed in the sealed portion. Particulate matter adheres, and other particulate matter gradually accumulates starting from the particulate matter, causing the opening of the open cell at the end face on the inlet side to close, and the pressure loss increases rapidly. There is a problem of end. As shown in Fig. 29 (a) and Fig. 29 (b), the exhaust gas flow is stagnant at the end face 64 on the inlet side of the cell 63, so that the particulate matter is deposited near the end face 64 on the inlet side of the cell. It is thought that it is easy to load.
  • Reference numeral 66 denotes a plugging member that seals the opening of the cell 63.
  • the outer peripheral surface of a ceramic-cam structure 61 made of ceramic is covered with a heat-resistant gripping member 68 having compression elasticity.
  • a compression surface pressure is applied through the gripping member 68 and stored in a container 67 of metal or the like and used as the converter 60, the displacement of the Her cam structure is caused by the exhaust gas pressure or engine vibration.
  • the retainer ring 69 is disposed on the outer peripheral portion of the end face of the her cam structure 61 via a heat-resistant cushion member so as not to be closed, and is held in the container 67.
  • the retainer ring 69 holds a width of about 5 mm at the outer peripheral portion of the end face of the her cam structure 61. For this reason, the opening of the cell 63a on the outer peripheral portion is blocked by the retainer ring 69, making it difficult for the exhaust gas to pass through, so that the area of the substantial cell cross section of the entire hard cam structure 61 is reduced. As a result, the pressure loss increased. In addition, in the filter, the filtration area of the cell 63 whose opening was blocked was reduced, and the pressure loss was further increased.
  • the plugging member 66 when the plugging member 66 is provided in the opening of the cell 63 of the her cam structure 61 and used as a filter, the plugging member 66 On the end face on the inner side of the cell 63, the rigidity is discontinuous at the boundary portion Z between the plugging member 66 and the hollow cell 63 in which the plugging member 66 is not provided.
  • surface pressure is applied from the outer peripheral surface by the gripping member 68 (see FIG. 31)
  • stress concentration occurs on the outer peripheral surface near the end surface of the plugging member 66 on the inner side of the cell 63, and It is thought that cracks occur.
  • an edge stress action may cause a higher surface pressure than the inside of the gripping member, so the plugging member 66 near the end face on the inner side of the cell 63 Stress concentration increases on the outer peripheral surface.
  • this her-cam structure when used as an exhaust gas filter, cracks occur in the vicinity of the end surface on the exhaust gas inflow side due to a thermal shock due to a rapid temperature change of the exhaust gas. There was a problem that occurred. In particular, there are many cracks when the Hercam structure is mounted near the engine (close-coupled) where the exhaust gas is relatively hot and the exhaust gas temperature and flow velocity changes are very severe. ing.
  • Patent Document 2 in a honeycomb structure having a structure in which the cross-sectional dimensions of the cells are sequentially changed over the entire length of the nozzle-cam structure from the inlet side end face force to the outlet side end face. Means that it is easy to break when the molded body is fired and manufactured, and the conventional caulking technique using the gripping member 68 as shown in FIGS. 30 (a) and 30 (b) is used. There is a problem that cannot be done.
  • the present invention has been made in view of such a conventional situation, and can reduce pressure loss as compared with a conventional Hercam structure, and can be used as a filter. If this occurs, avoid the sudden increase in pressure loss caused by the clogging of the cell opening by particulate matter (particulate matter) at the end face on the inlet side, avoid the circumferential crack, Furthermore, the present invention provides a her cam structure that can avoid thermal shock and erosion at the end face of the her cam structure, and a method for manufacturing the same.
  • the present invention provides the following her cam structure and a method for manufacturing the same.
  • a cylindrical honeycomb structure including partition walls that partition and form a plurality of cells that serve as fluid flow paths penetrating from one end face to the other end face, in front of each of the cells
  • the area of the cross section (cell cross section) perpendicular to the fluid flow direction is substantially the same in a predetermined range near the center of the cell in the flow direction, and at least one end face side in the flow direction of the cell.
  • a hard cam structure that is configured to gradually decrease or gradually increase at the end of the first end (hereinafter, referred to as “first invention” t).
  • the sealing apparatus further includes a sealing member that seals the opening on one end face side of the predetermined cell and the opening on the other end face side of the remaining cell.
  • a sealing member that seals the opening on one end face side of the predetermined cell and the opening on the other end face side of the remaining cell.
  • the area force of the cell cross section of each of the cells is configured to gradually decrease or gradually increase at both ends of the cell in the flow direction.
  • the area force of the cell cross-sections of all the cells is any one of [1] to [4] configured to gradually increase or gradually decrease toward at least one of the end faces.
  • the hard cam structure is any one of [1] to [4] configured to gradually increase or gradually decrease toward at least one of the end faces.
  • the outer diameter at the end portion on the at least one end face side is configured to gradually decrease or gradually increase by more than ⁇ 0.5% compared to the outer diameter in the vicinity of the center portion of the honeycomb structure.
  • the honeycomb structure according to any one of [1] to [5] above.
  • a cylindrical hard cam in which a clay containing a molding material is formed into a honeycomb shape and a plurality of cells serving as fluid flow paths penetrating from one end face to the other end face are defined.
  • a manufacturing method of a her cam structure which obtains a molded body and fires the obtained no-cam molded body to obtain a her cam structure, on the end face of at least one of the obtained honeycomb molded body
  • a firing torch having a material force having a different shrinkage ratio at the time of firing from that of the her cam formed body, and firing the honeycomb formed body in a state where the firing torch is disposed
  • the cell is deformed so that the area of the cross section (cell cross section) perpendicular to the fluid flow direction at the end on the end face side of the cell where the firing torch is disposed is gradually decreased or increased.
  • the flow of the cell Manufacturing a honeycomb structure that is substantially the same in a predetermined range in the vicinity of the central portion in the direction and is configured to gradually decrease or gradually increase at the end of at least one end face in the flow direction of the cell.
  • Method hereinafter sometimes referred to as “second invention”.
  • the firing torch composed of a material having a shrinkage ratio different from that of the honeycomb molded body at the time of firing is disposed on both end faces of the honeycomb molded body.
  • a cylindrical hard cam in which a clay containing a molding material is formed into a honeycomb shape and a plurality of cells serving as fluid flow paths penetrating from one end face to the other end face are defined.
  • a method for manufacturing a her cam structure in which a molded body is obtained, and the obtained no-cam molded body is fired to obtain a her cam structure, which is formed in an opening portion on one end face side of a predetermined cell.
  • a plugging member having a shrinkage ratio different from that of the her cam-molded body at the time of firing is also provided in an opening portion on the other end face side of the remaining cells other than the predetermined cells.
  • the her cam structure of the present invention can reduce pressure loss, and when used as a herm filter, the her cam structure has an end face on the side into which the fluid to be treated flows! Thus, the sudden increase in pressure loss caused by the blockage of the cell opening by the particulate matter can be avoided. In addition, it is possible to avoid circumferential cracks and to avoid thermal shock and erosion at the end face of the honeycomb structure. In addition, the method of manufacturing the her cam structure of the present invention can easily manufacture the above-described her cam structure of the present invention.
  • FIG. 1 is a partial cross-sectional view schematically showing a configuration of an embodiment of a hard cam structure of the present invention (first invention).
  • FIG. 2 is a partial cross-sectional view showing a state in which one embodiment of the her cam structure of the present invention (first invention) is carried out. It is.
  • FIG. 3 is a partial cross-sectional view showing a state in which one embodiment of a her cam structure of the present invention (first invention) is carried out. It is.
  • FIG. 4 is a partial cross-sectional view schematically showing a configuration of another example of the embodiment of the hard cam structure of the present invention (first invention).
  • FIG. 5 is a partial cross-sectional view schematically showing a configuration of another example of the embodiment of the her cam structure of the present invention (first invention).
  • FIG. 6 is a partial cross-sectional view schematically showing a configuration of another example of the embodiment of the her cam structure of the present invention (first invention).
  • FIG. 7 is a partial cross-sectional view schematically showing a configuration of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 8 is a partial cross-sectional view showing a state in which another embodiment of the her cam structure of the present invention (first invention) is carried out.
  • FIG. 9 is a partial cross-sectional view schematically showing a configuration of another example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 10 is a partial cross-sectional view schematically showing a configuration of another example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 11 is a partial cross-sectional view schematically showing a configuration of another example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 12 is a partial cross-sectional view schematically showing a configuration of an example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 13 is a partial cross-sectional view schematically showing a configuration of another example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 14 is a partial cross-sectional view schematically showing a configuration of an example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 15 is a partial cross-sectional view schematically showing a configuration of another example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 16 is a partial cross-sectional view schematically showing a configuration of another example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 17 is a partial cross-sectional view schematically showing a configuration of an example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 18 is a partial cross-sectional view schematically showing a configuration of another example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 19 is a partial cross-sectional view schematically showing a configuration of another example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 20 is a partial cross-sectional view showing a state in which another embodiment of the her cam structure of the present invention (first invention) is carried out.
  • FIG. 21 is a partial cross-sectional view schematically showing the configuration of an example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 22 is a partial cross-sectional view schematically showing a configuration of another example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 23 (a) is a partial cross-sectional view schematically showing a step of forming the outer wall of the her cam structure of the present invention (first invention).
  • FIG. 24 is a partial cross-sectional view schematically showing a configuration of an example of another embodiment of the her cam structure of the present invention (first invention).
  • FIG. 25 is a partial cross-sectional view showing a state in which another embodiment of the her cam structure of the present invention (first invention) is measured.
  • FIG. 26 (a) is a partial cross-sectional view illustrating one embodiment of a method for manufacturing a her cam structure of the present invention (second invention).
  • FIG. 26 (b)] is a partial cross-sectional view illustrating one embodiment of a method for manufacturing a her cam structure of the present invention (second invention).
  • FIG. 27 (a) is a partial cross-sectional view illustrating another embodiment of a method for manufacturing a her cam structure of the present invention (second invention).
  • FIG. 27 (b) is a partial cross-sectional view illustrating another embodiment of the method for manufacturing a her cam structure of the present invention (second invention).
  • FIG. 28 (a) is a partial cross-sectional view illustrating one embodiment of a method for manufacturing a her cam structure of the present invention (second invention).
  • FIG. 28 (b) is a partial cross-sectional view illustrating one embodiment of a method for manufacturing a her cam structure of the present invention (second invention).
  • FIG. 29 (a) is a cross-sectional view illustrating the flow of fluid in a conventional honeycomb structure.
  • FIG. 29 (b) is a cross-sectional view illustrating the flow of fluid in a conventional honeycomb structure.
  • FIG. 30 (a) is a partial cross-sectional view showing a state in which a conventional honeycomb structure is canned.
  • FIG. 30 (b) is a partial cross-sectional view showing a state in which a conventional her cam structure is carried.
  • FIG. 31 is a partial cross-sectional view showing a state where a conventional honeycomb structure is canned.
  • FIG. 32 is a partial cross-sectional view of a conventional honeycomb structure.
  • FIG. 1 schematically shows a configuration of an embodiment of the her cam structure of the first invention.
  • the honeycomb structure 1 of the present embodiment includes a cylinder having partition walls 2 that partition and form a plurality of cells 3 that serve as fluid flow paths penetrating from one end face 4 to the other end face 5.
  • Area force of cross section (cell cross section) perpendicular to fluid flow direction A of each cell 3 substantially identical in a predetermined range near the center in the flow direction A of cell 3
  • a two-cam structure 1 configured to gradually increase at an end portion on at least one end face 4 side in the flow direction A of the cell 3. 1 is configured such that the area of the cell cross section gradually increases at both end faces 4 and 5 in the flow direction A of the cell 3.
  • the shape of the outer peripheral portion of the her cam structure 1 is configured so as to gradually increase at both end faces 4 and 5 in the flow direction A of the cell 3.
  • the honeycomb structure 1 according to the present embodiment has different senore densities in the vicinity of the center portion and the end portions on both end faces 4 and 5 side!
  • the Hercam structure 1 of the present embodiment has an exhaust cell area that gradually increases at both end faces 4 and 5 side end portions in the flow direction A of the cell 3.
  • the inflow loss and outflow loss of fluid such as gas can be reduced, and the pressure loss of the honeycomb structure 1 can be reduced.
  • the upper half shows a cross section and the lower half shows the appearance.
  • the heart cam structure 1 of the present embodiment can carry out the caulking in a container 7 made of metal or the like by a conventional cleaning technique.
  • the cell cross-sectional area is approximately the same up to one end surface force and the other end surface, and the partition walls that define adjacent cells are substantially parallel.
  • -Cam structure Hold the outer peripheral surface of the body with a gripping member and store it in the container! /
  • the partition wall 2 that defines the cell 3 in the predetermined range near the center in the cell flow direction A is substantially parallel to the end portion on the side of the force end faces 4 and 5. It is configured to spread at a predetermined angle.
  • the grip member 8 grips a portion having a substantially parallel outer diameter near the center of the her cam structure 1.
  • the end faces 4 and 5 whose outer diameter is larger than the vicinity of the center portion serve as a stopper, and the fluid (for example, exhaust gas) flowing into the hard cam structure 1 is used. Position shift due to differential pressure can be suppressed.
  • the outer diameter of the hard cam structure 1 is substantially parallel in the vicinity of the center portion, it becomes possible to apply a uniform canning surface pressure with the gripping member 8, and the conventional cleaning technique can The cam structure 1 can be well-carried.
  • the positional displacement of the honeycomb structure 1 can be prevented only by the gripping member 8 without using the conventional retainer ring 69 (see Fig. 30). Because of this capability, a fluid such as exhaust gas can be passed through the cells 3 of the entire her cam structure 1. Therefore, the temperature difference between the outer region and the inner region of the her cam structure 1 can be reduced, and damage such as circumferential cracks can be effectively prevented.
  • the plugging member 6 may be disposed at the end portion on the 5 side.
  • Such a hard cam structure 1 faces the outer peripheral surface near the back end face of the plugging member 6 disposed in the cell 3 when gripping with the gripping member 8 (see FIG. 2) or the like. It is possible to effectively relieve stress concentration on the outer peripheral surface to which pressure is difficult to be applied, and to effectively prevent damage such as circumferential cracks.
  • the area of the cell cross section gradually increases at both end faces 4 and 5 in the flow direction A of the cell 3.
  • the cell cross-sectional area may be gradually increased at the end on one end face 4, 5 side in the flow direction A of the cell 3.
  • Figure 5 shows the end face 4 side on the fluid inlet side
  • FIG. 6 shows the honeycomb structure 1 with the cell cross-sectional area gradually increasing at the end of the end face 5 on the fluid outlet side.
  • the plugging member 6 may be disposed at the end of the.
  • the area of the cell cross section begins to gradually increase, and there is no particular restriction on the pattern of change in the area of the cell cross section.
  • it may be gradually increased linearly in the vicinity of the 1S end face not shown, or may be gradually increased with an arbitrary curvature.
  • the vicinity of the central portion where the cell cross-sectional areas are substantially the same there is a slight change in the area of the cell cross section, and there may be a very gentle curvature in the vicinity of the central portion. It is a small dimensional change within the allowable dimensions of the structure, and can be regarded as substantially the same.
  • the allowable dimension of the honeycomb structure can be about ⁇ 0.5% in terms of the average outer diameter of the her cam structure in terms of canning.
  • the outer diameter of at least one end face 4, 5 of the her cam structure 1 is increased by gradually increasing the area of the cell cross section of at least one end face 4, 5. Is larger than the allowable dimensions. Further, in the vicinity of the center portion of the her cam structure 1, only a small dimensional change within the allowable dimension remains. In other words, if the outer diameter of the her cam structure 1 is 90 mm and the allowable dimensional tolerance is ⁇ 0.5%, the outer diameter near the center of the her cam structure 1 is 89.55 to 90. The outer diameter of at least one of the end faces 4 and 5 gradually increases beyond this range.
  • FIG. 7 is a partial cross-sectional view schematically showing a configuration of another embodiment of the her cam structure of the present invention. is there.
  • the hard cam structure 11 of the present embodiment includes partition walls 12 that partition and form a plurality of cells 13 that serve as fluid flow paths penetrating from one end face 14 to the other end face 15. Area force of a cross section (cell cross section) perpendicular to the fluid flow direction A of each cell 13 in the vicinity of the center in the flow direction A of the cell 13
  • the two-cam structure 11 is configured so as to be gradually reduced at the end of at least one end face 14 side in the flow direction A of the cell 13.
  • the area of the cell cross section gradually decreases at the end portions on both end faces 14 and 15 side in the flow direction A of the cell 13.
  • the shape of the outer peripheral portion of the her cam structure 11 is also configured to gradually increase at both end faces 14, 15 side ends in the flow direction A of the cell 13 !, The for this reason, in the hard cam structure 1 of the present embodiment, the cell density is different between the vicinity of the center portion and the end portions on both end faces 14 and 15 side.
  • the upper half shows a cross section and the lower half shows the appearance.
  • the temperature difference between the outer peripheral region and the inner region of the her cam structure 11 can be reduced, and damage such as a circumferential crack can be effectively prevented.
  • the gripping member 18 may be applied to a part of the end faces 14 and 15 to assist the gripping force in the axial direction of the double cam structure 11.
  • the outer diameter of the her cam structure 11 is substantially the same size, so that another gripping member 19 is provided in this portion.
  • the plugging member 16 may be disposed at the end on the 15 side.
  • the gripping member 18 see FIG. 8 or the like, the plugging member 16 is located near the end surface of the cell 13 in the flow direction A near the center. Surface pressure is applied to the outer peripheral surface 1, and stress concentration on the outer peripheral surface can be effectively relieved, and damage such as circumferential cracks can be effectively prevented.
  • FIG. 10 shows a two-cam structure 11 in which the area of the cell cross-section is gradually reduced at the end on the inlet side 14 of the fluid
  • FIG. 11 shows the cell on the end of the end 15 on the outlet side of the fluid.
  • the Hercam structure 11 is shown with a gradually decreasing cross-sectional area.
  • FIGS. 10 and 11 as shown in FIG. 9, one end face 14 side end portion of a predetermined cell 13a and the other end face 15 of the remaining cell 13b.
  • the plugging member 16 may be disposed on the side end.
  • the Hercam structure 11 when the Hercam structure 11 is used as a filter, when the particulate matter deposited on the partition wall 12 is regenerated, a large stress is generated at the end on the end surface 15 side on the outlet side.
  • the cell cross-sectional area at the end on the outlet end face 15 side may be gradually reduced to increase the mechanical strength of this part!
  • the edge stress at the end on the end face 14 side on the inlet side can be reduced.
  • the end on the end face 14 side on the inlet side is directly subjected to the temperature change of the fluid such as exhaust gas, so the thermal shock becomes severe, and the thermal stress overlaps with the edge stress at the end of the gripping member 18.
  • Force that easily causes damage such as circumferential cracks
  • Incremental reduction of the cell cross-sectional area at the end on the inlet side on the inlet side 14 is effective in avoiding damage such as circumferential cracks. It is effective in close-coupled.
  • the allowable dimension of the honeycomb structure can be about ⁇ 0.5% in terms of the average outer diameter of the her cam structure in terms of canning.
  • the outer diameter of at least one end face 14, 15 of the her cam structure 1 is increased by gradually increasing the area of the cell cross section of at least one end face 14, 15. It is shrinking beyond the allowable dimensions. Further, in the vicinity of the center portion of the her cam structure 11, only a small dimensional change within the allowable dimension remains.
  • the outer diameter of the two-cam structure 1 is 90 mm and the allowable dimensional tolerance is ⁇ 0.5%
  • the outer diameter near the center of the honeycomb structure 1 is 89.55-90.45 mm
  • the outer diameter of at least one of the end faces 14, 15 is gradually increased beyond this range.
  • the length in the vicinity of the center where the cell cross-sectional areas are substantially the same is not particularly limited as long as it has a length that is substantially sufficient to apply sufficient surface pressure with the conventional canning technique. Good.
  • the cell cross-sectional areas of the end portions on both end faces 14 and 15 side are configured to be extremely gradually reduced. It is possible to make the shape similar to the drum of an ancient Japanese instrument, but if you try to reduce it too much, It is preferable to adopt a configuration in which the area of the cell cross section gradually increases to the extent that no breakage or the like occurs because it may be easily cracked during firing or the vicinity of the center where the cell cross section area is substantially the same may not be secured. .
  • the honeycomb structure 21 of the present embodiment includes partition walls 22 that partition and form a plurality of cells 23 that serve as fluid flow paths that penetrate from one end face 24 to the other end face 25.
  • the area of the cross section (cell cross section) perpendicular to the fluid flow direction A of each cell 23 is a predetermined range in the vicinity of the center in the flow direction A of the cell 23.
  • the shape of the outer peripheral portion of the heart cam structure 21 also changes as the area of the cell cross section of the cell 23 changes.
  • the upper half shows a cross section and the lower half shows the appearance.
  • the heart cam structure of the present embodiment is the same as the heart cam structure of the embodiment described so far, and the outer peripheral portion including the outer wall of the heart cam structure is processed and removed to be separated into the parts.
  • This is an outer coat type hard cam structure in which an outer wall is formed by applying a material and then drying or baking.
  • the outer peripheral portion of the nonicam structure 1 shown in FIGS. 1, 5, and 6 is formed into a cylindrical shape and applied with an outer wall material.
  • Multiple cells 3 A hard cam structure 31 further including an outer wall 9 that covers the outer peripheral portion of the partition wall 2 that forms the partition can be mentioned.
  • the shape of the cell 3 of such a hard cam structure 31 is the same as that of the cell 3 of the hard cam structure 1 shown in FIGS. 1, 5, and 6, and therefore the characteristics of the outer peripheral coat type are utilized.
  • the above-described effect due to the gradual increase of the cell cross-sectional area can be obtained.
  • the same components as those in the her cam structure 1 shown in FIG. 1, FIG. 5, and FIG. Description is omitted.
  • the outer peripheral portion of the honeycomb structure 11 shown in Figs. 7, 10, and 11 is formed into a cylindrical shape and then applied with an outer wall material, as shown in Figs.
  • the hard cam structure 31 may further include an outer wall 9 that covers the outer peripheral portion of the partition wall 12 that defines the plurality of cells 13. As shown in FIG. 20, such a hard cam structure 31 can be used even if a container 7 made of metal or the like is used to hold the retainer ring 69 having a conventional shape. It becomes possible to effectively use the cell 13 as a flow path, and the dead space can be reduced near the center in the flow direction A.
  • a plurality of outer cams are formed by processing the outer peripheral portion of the her cam structure 21 shown in FIG. 12 and FIG. 13 into a cylindrical shape and then applying an outer wall material.
  • a her cam structure 31 may further be provided with an outer wall 9 that covers the outer peripheral portion of the partition wall 22 that defines the cell 23.
  • the shape of the cell 23 is the same as that of the cell 23 of the her cam structure 21 shown in FIG. 12 and FIG. Effects can be obtained. Note that in the two-cam structure 31 shown in FIGS. 21 and 22,! /, The same elements as those in the hard cam structure 21 shown in FIGS. The description is omitted.
  • the honeycomb structure 31 as shown in Figs. 14 to 22 has a hard cam structure precursor 32 (specifically, for example, The honeycomb structure described in FIGS. 1 to 23 and the molded body before firing such a honeycomb structure)
  • the outer peripheral portion including the wall can be processed and removed, and another material such as a coating material 34 for the outer wall can be applied to the portion and dried or fired to form the outer wall 9.
  • a turret 33 or the like.
  • the outer peripheral portion is covered along the shape of the cell 13, and the processed surface is uniformly formed.
  • a knot-cam structure 31 further including an outer wall 9 formed by applying an outer wall material may be used.
  • Such a her cam structure 31 is similar to the her cam structure shown in FIGS. 1 to 13 with respect to the shape of the outer peripheral portion. As shown in the figure, it is possible to uniformly apply a bearing surface pressure when performing a cleaning in a container 7 made of metal or the like, and a temperature difference between the outer peripheral region and the inner region of the honeycomb structure 31. Can be reduced, and damage such as circumferential cracks can be effectively prevented.
  • the force-applying heart structure that has been applied may be the heart cam structure according to the embodiments described above. Further, in the hard cam structure 31 shown in FIG. 24, the same components as those in the hard cam structure 11 shown in FIG.
  • the cell cross-sectional shape of the Hercam structure is not limited to a square, for example, a polygon such as a triangle, hexagon, or octagon, or a round shape. It may also be a combination of these shapes.
  • the partition wall thickness is generally the same for all the partitions, but partition walls having different thicknesses may be mixed. For example, in order to increase the strength of the outer peripheral portion, the thickness of the partition wall in the outer peripheral portion may be increased.
  • various known reinforcing means can be used in the her cam structure of the present embodiment.
  • all the cells on the outer periphery of the her cam structure may be plugged to prevent the corners from being chipped. In this case, both end faces may be plugged, or only one of the end faces may be plugged.
  • the area of the opening of the cell does not need to be the same in all the cells, and cells having different areas of the opening may be mixed.
  • a nose-cam structure in which cells having a relatively large opening area and cells having a relatively small opening area are partitioned. It may be.
  • a filling material is provided at least inside a cell in which no plugging member is provided, a protruding substance is formed on the surface of the partition wall, the surface roughness of the partition wall is roughened, or the partition wall itself is bent. By doing so, it is possible to adjust the ventilation resistance of the cell. Furthermore, the trapping performance of the particulate matter can be improved by this means.
  • the cross-sectional shape of the honeycomb structure is not particularly limited, and may be any shape such as an elliptical shape, an oval shape, an opal shape, a substantially triangular shape, or a substantially rectangular shape. These shapes may be used alone or in combination.
  • the plugging member when it is disposed, it is usually disposed in a staggered manner in the openings of the plurality of cells, but is not particularly limited, for example, may be in a row, or It may be concentric or radial, and various patterns can be selected depending on the state in which the cells are partitioned.
  • the pressure loss performance and trapping performance of the particulate matter can be improved by setting the cell structure to have a thin-wall high cell density.
  • the cell structure having a partition wall thickness of 10 to 30 mil and a cell density of 50 to 350 cells Z square inches was used.
  • the cell structure By making the cell structure into a thin-walled high cell density, that is, with a partition wall thickness of lOmil or less, preferably 8mil or less, and a cell density of 350 cells Z square inch (or more, preferably 400 cells Z square inch or more). Since the surface area of the diaphragm contacted by the exhaust gas increases, the exhaust gas filtration flow rate can also be reduced, improving the particulate matter trapping performance, and if both end faces are plugged. An increase in excessive pressure loss can be suppressed by setting the cell size to 600 cells or less. From now on, the porosity of the Hercham structure was 5 to 70%, and the average pore diameter was 15 to 40 / ⁇ ⁇ .
  • the unevenness on the partition wall surface increases as a whole.
  • a high porosity and a small pore diameter are simultaneously achieved, that is, a porosity of 70% or more, preferably 75% or more, and an average pore diameter of 15 m or less, preferably 10 m or less.
  • a ridge By using a ridge, the unevenness on the partition wall surface increases as a whole, and the particulate matter capturing performance can be improved.
  • high porosity and small pore size increase the effective pores through which the exhaust gas can pass, so that the exhaust gas filtration flow rate decreases and the particulate matter in the pores.
  • the pore distribution as sharp as possible.
  • the small pore size and sharpness of distribution improve the trapping performance of particulate matter, especially nanoparticles. This is effective not only for trapping inside the partition walls but also for capturing on the surface of the partition walls, so that it is plugged! /, Even if it is in the cell, the trapping performance is improved. This is because fine uniform irregularities due to the pores are formed on the partition wall surface. Further, it is preferable because the strength is improved by reducing the pore size and the shape of the distribution.
  • the sharpness of the distribution is not particularly limited because it can be quantified by various expressions. For example, it can be quantitatively determined by the standard deviation of the distribution in the differential curve of pore diameter and pore volume, or the ratio of 50% average pore diameter to 10%, 90% average pore diameter in the integral curve.
  • the cell in which the plugging member is disposed and the plugging member are disposed can also be applied to a ceramic hard structure filter in which cells are mixed and this plugging member is disposed only on one end face side of the hard cam structure.
  • the plugging members are arranged in a staggered pattern, but the plugging pattern is not limited to this.
  • various patterns are possible depending on the shape of the cell compartment, which may be concentric or radial.
  • cells having different opening areas may be mixed, so that the area of the opening of the cells does not need to be the same in all the cells.
  • it may be a nose-cam structure in which cells having a relatively large opening area and cells having a relatively small opening area are partitioned.
  • the ventilation resistance is relatively small!
  • a plugging member is provided! /, Etc. Fluid such as exhaust gas flows into the cell. Since the amount of the exhaust gas flowing into the cell in which the plugging member is disposed is reduced because the gas is easily collected, the collection efficiency of the filter may be significantly reduced.
  • a plugging member is provided on the end face on the outlet side of a cell having a relatively large opening area, and a plugging member is not provided in a cell having a relatively small opening area. By doing so, it is possible to suppress a decrease in the collection efficiency of the filter.
  • Examples of the method for forming the honeycomb structure include an extrusion molding method, an injection molding method, a press molding method, a method of forming a through hole after forming a ceramic raw material into a cylindrical shape, and the like.
  • the extrusion molding method is preferable because it is easy to mold and can orient cordierite crystals to have low thermal expansion.
  • the extrusion may be performed in any of a horizontal (horizontal) direction, a vertical (vertical) direction, and an oblique direction.
  • the extrusion molding can be performed using, for example, a ram type extrusion molding machine, a twin screw type continuous extrusion molding apparatus, or the like.
  • a die having a desired honeycomb structure can be produced using a die having a desired cell shape, partition wall thickness, and cell density.
  • the material of the Hercam structure is cordierite, alumina, mullite, spinel, lithium 'aluminum' silicate, aluminum titanate, titanite, zircoyu,
  • ceramic materials such as silicon nitride, aluminum nitride, silicon carbide, LAS (lithium aluminum yume silicate) or a composite thereof, stainless steel, aluminum alloy, activated carbon, silica gel, zeolite adsorbing material One of them is preferably used as a material.
  • the material of the sealing member that seals the end portion of the cell can be selected in the same manner as the material of the above-described her cam structure, and is not necessarily the same as that of the her cam structure. It is preferable to use the same material as that of the honeycomb structure because the thermal expansion rates of the two coincide.
  • the raw material of the plugging member is ceramic raw material, pore former, interface It can be obtained by mixing an activator and water into a slurry, and then kneading using a mixer or the like.
  • the integrally formed heart cam structure in which the partition wall and the outer wall that define the cell are formed of a single body, or the outer wall portion separately provided on the outer peripheral portion of the partition wall.
  • the forces that have been described for the formed her cam structure can be applied to a her cam structure having a segment structure.
  • FIGS. 26 (a) and 26 (b) show a method of manufacturing a hard cam structure for obtaining a body 41. At least one end face 44 of the obtained no-cam formed body 42 is provided with a hard cam formed body 42.
  • the contact friction due to the difference in the firing shrinkage ratio between the her cam molded body 42 and the firing torch 47 is utilized.
  • the honeycomb structure 41 is obtained by deforming (gradually decreasing or gradually increasing) the cell cross-sectional area of the cells 43 of the honeycomb formed body 42 into a desired shape.
  • a conventional method for manufacturing a honeycomb structure when firing is performed using a firing torch, the honeycomb formed body and the firing torch are prevented from reacting with each other during firing, and the two are prevented from coming into close contact with each other.
  • a ceramic plate used was the same material as the product, or the defective no-cam structure that had already been fired was cut into a thin disc shape.
  • a saw-cam shape cut into a thin disk shape from a molded product of the same lot as the Hercam molded body may be used as a firing torch. For this purpose, firing was carried out with ceramic particles or ceramic fiber sheets interposed therebetween.
  • a firing torch is used to prevent the deformation of the honeycomb formed body, and the hard cam formed body and the firing torch are: As much as possible, it is designed not to be affected by firing shrinkage, and if the area of the cell cross section of the cell of the Hercam molded body is deformed to a desired shape using a firing torch, there is a concept. I did not hesitate.
  • FIG. 26 (a) in the manufacturing method of the her cam structure of the present embodiment, there is a large firing shrinkage ratio between the her cam molded body 42 and the firing torch 47.
  • the difference in firing shrinkage ratio between the hard cam molded body 42 and the firing torch 47 is adjusted to a predetermined value over the range without excessive outer diameter deformation or cracking due to the difference in Further, the honeycomb formed body 42 and the firing torch 47 are not in close contact so that the end on the end face 44 side where the firing torch 47 is disposed is deformed so as to gradually decrease or increase, A Hercam structure 41 is obtained.
  • firing firing torch 47 As a method for adjusting the difference in the firing shrinkage ratio between the honeycomb formed body 42 and the firing torch 47 to a predetermined value, for example, the material density of each of the hard cam formed body 42 and the firing torch 47 to a predetermined value, for example, the material density of each of the hard cam formed body 42 and the firing torch 47
  • a predetermined value for example, the material density of each of the hard cam formed body 42 and the firing torch 47
  • the firing firing torch 47 For example, the surface of the firing torch 47 may be roughened by making the cell thinner than the partition wall of the nozzle-cam molded body 42. In this way, the end of the honeycomb molded body 42 (honeycomb structure 41) is deformed at the end portion having a length within about 25% of the length in the axial direction.
  • the end face 44 may be deformed so as to gradually decrease or gradually increase in the vicinity of the end face 44, or may be deformed so as to gradually decrease or gradually increase with an arbitrary curvature.
  • the central part where the cell cross-sectional areas are substantially the same there is a slight change in the area of the cell cross-section, and there may be a very gentle curvature near the central part.
  • -It is a small dimensional change within the allowable dimension of the cam structure 41, and can be regarded as substantially the same.
  • the allowable dimension of the double cam structure 41 is not particularly limited. It can be about ⁇ 2% or less of the diameter.
  • the length in the vicinity of the central portion where the cell cross-sectional areas are substantially the same is not particularly limited, and has a length that is substantially sufficient to provide sufficient surface pressure with conventional canning technology. And it is sufficient.
  • a her cam structure 41 configured to gradually decrease or gradually increase at both end faces 44, 45 side ends in the flow direction of the cell 43.
  • a firing torch 47 is disposed on both end faces 44, 45 of the hard cam formed body.
  • the area of the cell cross section of the cell 43 is substantially within a predetermined range near the center in the flow direction of the cell 43. It is possible to easily obtain a nozzle-cam structure 41 which is the same and is configured to gradually decrease or gradually increase at an end portion on at least one end face 44 side in the flow direction of the cell 43.
  • a nozzle-cam structure 41 which is the same and is configured to gradually decrease or gradually increase at an end portion on at least one end face 44 side in the flow direction of the cell 43.
  • cordierite, square cell partition wall thickness of 0.11 mm, cell density of 600 cells, Z square inch, outer diameter of ⁇ 90 mm, length of 110 mm and enlarges about 10 mm in the vicinity of both end faces.
  • This Hercam structure is obtained by enlarging the average outer diameter at the end of both end faces by about 5% with an outer diameter of ⁇ 90mm as the reference dimension.
  • the clay containing the molding material is formed into a honeycomb shape, and as shown in FIGS. 28 (a) and 28 (b), the one end face 54 is used to the other.
  • a cylindrical hard cam body 52 in which a plurality of cells 53 serving as a fluid flow path penetrating to the end face 55 of the tube is defined and obtained, and the obtained no-cam molded body 52 is fired to form a hard cam structure.
  • the honeycomb formed body 52 is fired in a state where the plugging member 56 is disposed and the plugging member 56 is disposed.
  • the area of the cross section (cell cross section) perpendicular to the fluid flow direction at the end face 54, 55 side of each cell 53 on the side where the plugging member 56 is disposed is gradually reduced or increased.
  • the area force of the cell cross section of each cell 53 is substantially the same in a predetermined range near the center in the flow direction of the cell 53, and at the end of at least one end face 54, 55 side in the flow direction of the cell 53.
  • This is a method of manufacturing a her cam structure that obtains a her cam structure 51 configured to gradually decrease or increase.
  • plugging members 56 are arranged on both end faces 54, 55 of the hard cam molded body 52, and end parts on both end faces 54, 55 side are provided.
  • the plugging member 56 is disposed only on one end face 54, and the end on the one end face 54 side is gradually reduced or gradually increased. Let ’s transform it into
  • the plugging member 56 is disposed by disposing the plugging member 56 having a different firing shrinkage rate from the her cam molded body 52. By intentionally reducing or enlarging the site where the cell is disposed, the end of the cell 53 is deformed so as to gradually decrease or increase.
  • the plugging member 56 is relatively enlarged, and the end portion of the cell 53 is gradually increased. To do.
  • the firing shrinkage rate of the honeycomb formed body 52 is smaller than the firing shrinkage rate of the plugging member 56, the Hercome formed body 52 is dragged by the shrinkage of the plugging member 56, and the cell The end of 53 gradually decreases.
  • the raw material mixing ratio and the particle size can be changed.
  • the shrinkage difference varies depending on the product size, the cell structure, and the depth of the plugging member 56, and should be appropriately determined each time.
  • firing is performed on the end face on which the plugging member 56 is disposed. Firing may be performed with the torch 57 disposed.
  • the difference in the firing shrinkage rate between the hard cam molded body 52 and the plugging member 56 becomes too large. Finally, firing cracks may occur. Therefore, when the difference in firing shrinkage ratio between the hard cam molded body 52 and the plugging member 56 is adjusted to a predetermined value, the difference in firing shrinkage ratio between the two is smaller. It is preferable to adjust so that it is within 30%. For example, it is preferable that the firing shrinkage rate of the her cam formed body 52 is 0.7 to 1.3. This range varies depending on the product size, cell structure, depth of the plugging member 56, and the like, and should be appropriately determined each time.
  • the area of the cell cross section of the cell 53 is approximately within a predetermined range in the vicinity of the center in the flow direction of the cell 53. It is possible to easily obtain a nozzle-cam structure 51 which is the same and is configured to gradually decrease or gradually increase at the end portion on the side of at least one end face 54 in the flow direction of the cell 53.
  • the hard cam structure 51 is a silicon carbide ceramic
  • the raw material orientation is not related, but in the cordierite ceramic hard cam structure, the plugging member 56 is not oriented. Care must be taken during production.
  • cordierite square cell partition wall thickness of 0.30 mm, cell density of 300 cells Z square inch, outer diameter ⁇ 143 mm, length 152 mm, plugging depth (cell fluid depth The length of the plug in the flow direction) is 5 mm, and a two-cam structure with an enlargement of approximately 15 mm in the vicinity of both end surfaces can be easily manufactured.
  • This Hercam structure is obtained by enlarging the average outer diameter at the ends of both end faces by about 10% with an outer diameter of 143 mm as a reference dimension.
  • the her cam formed body 52 is fired and then the plugging member 56 is disposed.
  • a difference in firing shrinkage can be produced. This is because the Hercam molded body 52 has already been fired, and the dimensional change is very small in firing after the plugging member 56 is disposed, and the firing shrinkage rate can be regarded as 1 at all times. Since the hard cam molded body 52 has already been fired, it becomes difficult for the her cam molded body 52 and the plugging member 56 to be integrated together, and the firing shrinkage rate of the plugging member 56 exceeds 1.
  • a cordierite ceramic material excellent in heat resistance and low thermal expansion is used as a kaolin having an average particle diameter of 5 to: LO / zm AI O-2SiO ⁇ 2 ⁇ O) Talc (3MgO ⁇ 0 to 20% by mass, average particle size 15 to 30 i um
  • Mass 0 / o to an average particle diameter 4 to 8 / zeta aluminum oxide 0-15 wt 0/0 Paiiota, the average particle size 3 to 100 m fused silica or quartz 10-20% by weight of the composition of the main raw material Is preferred.
  • the additive include noinda, a surfactant for promoting dispersion in a liquid medium, and a pore former for forming pores.
  • binder examples include hydroxypropyl methylcellulose, methinoresenorelose, hydroxyethinoresenorelose, strong levoxino retinoresenorose, polybutyl alcohol, polyethylene terephthalate, wax, agar and the like.
  • surfactant examples include ethylene glycol, dextrin, fatty acid sarcophagus, polyalcohol, and the like. The amount of the surfactant added is 0.1 to 5 parts per 100 parts by mass of the ceramic raw material. Part by mass is preferred.
  • pore-forming agent examples include graphite, coatas, wheat flour, starch, foamed resin, water absorbent resin, phenol resin, polyethylene terephthalate, fly ash balloon, shirasu balloon, silica balloon, alumina gel, silica gel, An organic fiber, an inorganic fiber, a hollow fiber etc. can be mentioned. These additives can be used singly or in combination of two or more depending on the purpose.
  • the binder, surfactant and pore former contained in the plugging member can be selected in the same manner as the material of the above-mentioned hard cam structure.
  • the ceramic material is usually kneaded after adding about 10 to 40 parts by weight of water to 100 parts by weight of the mixed raw material powder of the main raw material and additives added as necessary.
  • a plastic mixture can be added.
  • Extrusion molding can be performed using a vacuum kneader, ram type extruder, etc. You can.
  • the outer shape of the Her-cam molded body is a cylinder having a perfect circle or ellipse on the end surface, a prism having a polygonal shape such as a triangle or a square on the end surface, and the side force of these cylinders and prisms.
  • Examples of the shape of the cells of the Hercam molded body include polygons such as squares and octagons, perfect circles, ellipses, and the like.
  • the means for drying the two-cam body thus obtained is not particularly limited, and examples thereof include hot air drying, microwave drying, dielectric drying, vacuum drying, vacuum drying, freeze drying and the like. However, it is preferable to dry by microwave drying and hot air drying or a combination of dielectric drying and hot air drying. As drying conditions, it is preferable to dry at 80 to 150 ° C. for 10 minutes to 1 hour. In addition, special methods such as freeze drying, vacuum drying, vacuum drying, and far-infrared drying can also be applied. Next, the end surfaces on both sides of the dried no-cam body are cut into a predetermined length.
  • a plugging member is provided in the opening of the cell of the Hercam molded body as necessary.
  • the film is placed on the end face of the kno-cam molded body.
  • Polyester film is used for the film material.
  • Adhesive is applied to one side of the film, and the film is attached to the end face of the two-cam structure.
  • the cell openings on the end face of the her cam structure with the polyester film attached are punched in a zigzag pattern using a laser device capable of NC scanning. When perforated, the periphery of the hole rises due to the effect of melting of the film.
  • the main material of the plugging member is a cordierite ceramic material excellent in heat resistance and low thermal expansion, and the average grain size is small in that the difference in thermal expansion coefficient after firing with the honeycomb-shaped formed body is small.
  • the raw material preparation ratio and the raw material particle diameter are changed within a predetermined range while maintaining the cordierite composition.
  • the honeycomb formed body actually manufactured is pre-fired in advance, the firing shrinkage rate is measured, and the blending ratio of the raw material of the plugging member is matched with the firing shrinkage rate of the obtained honeycomb formed body And adjusting the particle size of the raw material. Adjustment is performed mainly by the silica raw material. Also, the plugging part By adding an appropriate amount of the pore former described above to the material, the porosity of the plugging member can be adjusted, and the firing shrinkage rate can also be adjusted.
  • the shrinkage of firing will be adjusted by trial and error, but it can be predicted by increasing the track record.
  • the end of the her cam structure was controlled to expand or contract within a range of about 30% of the reference outer diameter of the her cam structure. Note that this value is a guideline, and the hard cam structure of the present invention is not limited to this value.
  • the process proceeds to the filling sub-process.
  • Water, binder, dispersant, etc. are put into the cordierite raw material to make a slurry of about 200 dPa
  • the knot-cam molded body with the film attached is pressed into the container, and the slurry in the container is also injected into the cell. Remove from container after press-fitting.
  • the slurry filling depth was 5 mm.
  • conventionally known means for strengthening the end face side on the inlet side of the cell may be used!
  • the temperature increase rate and cooling rate are set in order to achieve uniform firing shrinkage and cooling shrinkage inside the product by uniformizing the temperature distribution inside the product depending on the size of the product to be fired. It is a very important factor in manufacturing because it is necessary to optimize the speed.
  • cordierite hard cam structure with plugging member No. 2 cam filter
  • the partition portion of the her cam structure was 0.6 X 10 _6 Z ° C
  • the plugging member was 0.8 X 10 _6 Z ° C.
  • the Hercam structure of the present invention includes a purification catalyst carrier, a deodorization catalyst carrier, various filter filters, and a heat exchanger unit for various internal combustion engine exhaust gases including automobile exhaust gas. Alternatively, it is preferably used as a carrier for chemical reaction equipment such as a carrier for a reforming catalyst of a fuel cell. In addition, the method of manufacturing the her cam structure of the present invention can easily manufacture the her cam structure of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

 ハニカム構造体1は、一方の端面4から他方の端面5まで貫通する流体の流路となる複数のセル3を区画形成する隔壁2を備えた筒状のハニカム構造体1であって、それぞれのセル3の前記流体の流れ方向Aに垂直な断面(セル断面)の面積が、セル3の流れ方向Aにおける中心部近傍の所定範囲において略同一であるとともに、セル3の流れ方向Aにおける少なくとも一方の端面4側の端部において漸減又は漸増するように構成されている。このハニカム構造体によれば、排気ガス等の流体の流入損失及び流出損失を軽減し、圧力損失を低減することが可能である。

Description

明 細 書
ハニカム構造体、及びその製造方法
技術分野
[0001] 本発明は、ハニカム構造体、及びその製造方法に関する。さらに詳しくは、自動車 排ガスをはじめとした各種内燃機関排気ガスの浄ィヒ触媒用担体や脱臭用触媒担体 、各種濾過機器用フィルタ、熱交換器ユニット、或いは燃料電池の改質触媒用担体 等の化学反応機器用担体として好適に用いられるハ-カム構造体、及びその製造方 法に関する。
背景技術
[0002] ガソリンエンジン力も排出される排気ガス中の炭化水素 (HC)、一酸化炭素(CO)、 窒素酸化物 (NOx)の有害成分を処理する触媒コンバータには、ハニカム構造体が 触媒担体として搭載されて!、る。ディーゼルエンジン或 、はガソリンリーンバーンェン ジンやガソリン直噴エンジンカゝら排出される排気ガス中にはスート (カーボン黒煙)を 主体とするパティキュレートマター (微粒子状物質)が多量に含まれており、このパテ ィキュレートマターが大気中に放出されると環境汚染を引き起こすため、ディーゼル エンジンの排気ガス系には、パティキュレートマターを捕集するためのハ-カムフィル タが搭載されて 、る。このようなハ-カムフィルタにもハ-カム構造体が用いられて ヽ る。
[0003] このような目的で使用されるハ-カム構造体は、多孔質の隔壁により区画された軸 方向に貫通する多数の流通孔 (セル)を有する構造であり、排気ガスはセルを通過し て、セルを区画する隔壁に担持された触媒成分によって処理される。一般には、大 量かつ安価に提供される押出成形されたコージヱライト質セラミックハ-カム構造体 或いは炭化珪素質セラミックハ-カム構造体が使われている。或いは、薄い平板と波 型板を交互にコルゲート状に卷!、た構造の金属製ノヽ-カム構造体が使われて 、る ( 例えば、特許文献 1又は 2参照)。
[0004] フィルタにおいては、ハ-カム構造体の一方の端面において所定のセルの端部を 封止し、他方の端面において残余のセルの端部を封止した構造、又は、一方の端部 のみを封止した構造が挙げられる。排気ガス等の流体は、このフィルタの入口側端面 において封止されておらず、出口側端面において封止されたセルに流入し、多孔質 の隔壁を通過して、入口側端面において封止され、出口側端面において封止されて いないセルに移動して排出される。そして、この際に隔壁が濾過層となり、排気ガス 中のスート等のパティキュレートマターが隔壁に捕捉されて隔壁上に堆積する。
[0005] 従来、セルは長手方向(流体の流れ方向)に垂直に切断した断面においては、どの 部分で切断した断面でも略同一の大きさであり、従って、隣り合うセルを区画する隔 壁は略並行となっていた。また、ハ-カム構造体の外径寸法も全長方向(流体の流 れ方向)全体にわたって略同一とする構造が一般的に採用されていた。また、このよ うな形状のハニカム構造体とは異なり、セルの断面の寸法をノヽニカム構造体の全長 にわたつて入口側端面力 出口側端面へかけて順次変化させる構造も提案されてい る (例えば、特許文献 3参照)。
特許文献 1 :特開平 9-155189号公報
特許文献 2 :実開昭 61-10917号公報
特許文献 3:特開昭 61— 4813号公報
[0006] し力しながら、上述したような、セルの流体の流れ方向に垂直な断面(以下、「セル 断面」と 、うことがある)の面積が、流れ方向の全域にわたって略同一であるハ-カム 構造体においては、ハ-カム構造体の入口側の端面における流体の流入抵抗と出 口側の端面における流出抵抗により圧力損失が高いという問題がある。最近の排気 ガス規制強化に対応すベぐハニカム構造体はその表面積を増大させるために高セ ル密度化の方向にあり、入口側及び出口側の端面における圧力損失は増加する方 向にある。これは、セルの入口側の端面においては、排気ガス等の流体がセルに流 入したときによどみ域が発生し、実質的に流体が通過可能なセル断面の面積が急激 に縮小し、この部分において速度変化が起きて流体損失が生じるためである。セル の出口側の端面においても排気ガス等の流体が通過可能なセル断面の面積が急激 に拡大し、速度変化が起きて流体損失が生じる。ディーゼルエンジン等力 排出され る排気ガスの浄化に用いられるディーゼルパティキュレートフィルタ(DPF)において も、ハ-カム構造体の入口側の端面における排気ガスの流入抵抗と出口側の端面に おける流出抵抗とにより圧力損失が高いという問題がある。
[0007] また、ディーゼルパティキュレートフィルタでは、その使用に伴って、捕集されたパテ ィキュレートマターが次第にフィルタ内に堆積し、入口側の端面側におけるセルの開 口部を封止した部分にパティキュレートマターが付着し、そこを起点としてさらに別の パティキュレートマターが次第に堆積して、入口側の端面において開口しているセル の開口を閉塞させてしまうために、その圧力損失が急増してしまうという問題がある。 図 29 (a)及び図 29 (b)に示すように、セル 63の入口側の端面 64では排気ガスの流 れによどみがあるため、パティキュレートマターがセルの入口側の端面 64付近に堆 積し易いということも原因と考えられる。なお、符号 66は、セル 63の開口部を封止す る目封止部材を示している。
[0008] また、図 30 (a)及び図 30 (b)に示すように、セラミックを用いたノヽ-カム構造体 61の 外周面を、圧縮弾性を有する耐熱性の把持部材 68で覆い、この把持部材 68を介し て圧縮面圧を付与しながら金属等の容器 67内に収納してコンバータ 60として用いる 場合には、排気ガスの圧力やエンジンの振動によりハ-カム構造体の位置ずれが生 じないように、ハ-カム構造体 61の端面の外周部に耐熱性クッション部材を介してリ テナーリング 69を配設して、容器 67内に保持していた。通常、ハ-カム構造体 61の 端面の外周部における幅約 5mm程度がリテナーリング 69によって保持されている。 このため、外周部のセル 63aの開口部はリテナーリング 69によって閉塞されて排気ガ スが通過し難くなつており、ハ-カム構造体 61全体としての実質的なセル断面の面 積が減少して、圧力損失が上昇することとなっていた。また、フィルタにおいては、開 口部が閉塞されたセル 63の濾過面積が減少することも加わり、さらに圧力損失が上 昇することとなっていた。また、リテナーリング 69をノヽ-カム構造体 61の出口側の端 面のみに配設したとしても、出口側の端面においてセル 63aの開口部が閉塞された 場合には、排気ガス等の流体が通過し難くなり、圧力損失が上昇する。
[0009] さらに、このようなコンバータ 60として用いられた状態での実負荷時において、ハニ カム構造体 61の外周部に円周状の亀裂が発生し易いという問題があった。円周状 の亀裂の発生位置はハニカム構造体 61の軸方向の中間部分であったり、把持部材 68の端部付近であったりする力 ハ-カム構造体 61の軸方向の長さが長いほど、軸 方向の中間部分で円周状亀裂が多く発生し、また、セル 63の開口部が目封止され ているハ-カム構造体 61 (ノ、二カムフィルタ)においては、把持部材 68の端部付近 で円周状亀裂が多く発生する。
[0010] 上述したようにリテナーリング 69でハ-カム構造体 61の端面の外周部が閉塞され ると、図 31に示すように、外周部のセル 63aに排気ガスが流れ難くなり、ノ、二カム構 造体 61の外周側の領域 Yは比較的低温となり、リテナーリング 69によって閉塞され て 、な 、セル 63bから構成される内側の領域 Xでは比較的高温となって温度差が発 生する。このため、上述した内側の領域 Xが加熱され軸方向に熱膨張しても外周部 が低温なため内部に追従できずに、ハ-カム構造体 61の外周面に軸方向の引張応 力が発生し円周状亀裂が発生するものと考えられる。把持部材 68によって外周面に 面圧が作用し自由な熱膨張が拘束されているので、把持部材 68による面圧が高い ほど外周面の引張応力が増大する。ハ-カム構造体 61の開口部を封止してフィルタ として用いた場合にぉ ヽても同様である。
[0011] また、図 32に示すように、ハ-カム構造体 61のセル 63の開口部に目封止部材 66 を配設してフィルタとして用いた場合には、この目封止部材 66のセル 63内方側にお ける端面において、 目封止部材 66と、 目封止部材 66が配設されていない中空のセ ル 63との境界部分 Zにおいて剛性が不連続となっている。このため、把持部材 68 ( 図 31参照)等により外周面から面圧を受けた場合に、 目封止部材 66のセル 63内方 側における端面付近の外周面で応力集中が発生し、円周状亀裂が発生するものと 考えられる。把持部材 68 (図 31参照)の端部ではエッジストレス作用により、把持部 材内側よりも高い面圧が作用することがあるので、 目封止部材 66のセル 63内方側に おける端面付近の外周面で応力集中が増大する。
[0012] さらに、このハ-カム構造体を排気ガスのフィルタとして用いた場合には、排気ガス の急激な温度変化による熱衝撃のために、排気ガスが流入する側の端面付近にお いて亀裂が発生するという問題があった。特に、ハ-カム構造体が、排気ガスが比較 的高温状態であり、排気ガスの温度変化や流速変化が非常に厳しいエンジン近傍( close -coupled)に搭載されている場合に亀裂が多く発生している。
[0013] また、図示は省略するが、従来のハ-カム構造体においては、排気ガスの流れに のって排気管からの酸化鉄等の固形異物が飛来した場合に、ハ-カム構造体の入 口側の端面がエロージョンを起こし易いという問題がある。特に、ハ-カム構造体が エンジン近傍 (close - coupled)に搭載されて!ヽる場合にエロージョンを起こし易く、 また、ハニカム構造体が薄壁構造、或いは、その材質が高気孔率ゃ大細孔径の場 合にもエロージョンを起こし易 、と 、うことが確認されて 、る。
[0014] また、特許文献 2に示すような、セルの断面寸法をノヽ-カム構造体の全長にわたつ て入口側端面力 出口側端面へかけて順次変化させる構造のハニカム構造体にお いては、成形体を焼成して製造する際に割れ易いということ、また、図 30 (a)及び図 3 0 (b)に示すような、把持部材 68を用いた従来のキヤユング技術を利用することがで きないという問題がある。
[0015] 本発明は、このような従来の事情に鑑みてなされたものであり、従来のハ-カム構 造体と比較して圧力損失を低減することが可能であり、また、フィルタとして用いた場 合に、入口側の端面において、パティキュレートマター (微粒子状物質)によるセルの 開口部の閉塞によって起こる圧力損失の急増現象を回避すること、また、円周状亀 裂を回避すること、さらに、ハ-カム構造体の端面における熱衝撃やエロージョンを 回避することが可能なハ-カム構造体及びその製造方法を提供する。
発明の開示
[0016] 本発明は、以下のハ-カム構造体、及びその製造方法を提供するものである。
[0017] [1] 一方の端面から他方の端面まで貫通する流体の流路となる複数のセルを区 画形成する隔壁を備えた筒状のハニカム構造体であって、それぞれの前記セルの前 記流体の流れ方向に垂直な断面 (セル断面)の面積が、前記セルの前記流れ方向 における中心部近傍の所定範囲において略同一であるとともに、前記セルの前記流 れ方向における少なくとも一方の端面側の端部にお 、て漸減又は漸増するように構 成されたハ-カム構造体 (以下、「第一の発明」 t 、うことがある)。
[0018] [2] 所定の前記セルの一方の前記端面側の開口部と、残余の前記セルの他方の 前記端面側の開口部とを封止する封止部材をさらに備えた前記 [1]に記載のハニカ ム構造体。
[0019] [3] 複数の前記セルを区画形成する前記隔壁の外周部分を覆う外壁をさらに備 えた前記 [1]又は [2]に記載のハニカム構造体。
[0020] [4] それぞれの前記セルの前記セル断面の面積力 前記セルの前記流れ方向に おける両方の端面側の端部にぉ 、て漸減又は漸増するように構成された前記 [1]〜
[3]の 、ずれかに記載されたハ-カム構造体。
[0021] [5] 全ての前記セルの前記セル断面の面積力 少なくとも一方の前記端面側に ぉ 、て漸増又は漸減するように構成された前記 [ 1]〜 [4]の 、ずれかに記載のハ- カム構造体。
[0022] [6] 前記少なくとも一方の端面側の端部における外径が、前記ハニカム構造体の 中心部近傍の外径に比して ±0. 5%を超えて漸減又は漸増するように構成された前 記 [1]〜 [5]の 、ずれかに記載のハニカム構造体。
[0023] [7] 前記セル断面の面積が、前記ハニカム構造体の軸方向の長さの 25%以内の 長さの端部にお 、て漸減又は漸増するように構成された前記 [ 1]〜 [6]の 、ずれか に記載のハ-カム構造体。
[0024] [8] 成形材料を含む坏土をハニカム状に成形して、一方の端面から他方の端面 まで貫通する流体の流路となる複数のセルが区画形成された筒状のハ-カム成形体 を得、得られたノヽ-カム成形体を焼成してハ-カム構成体を得るハ-カム構造体の 製造方法であって、得られた前記ハニカム成形体の少なくとも一方の前記端面に、 前記ハ-カム成形体と焼成時における収縮率が異なる材料力 構成された焼成用ト チを配設し、前記焼成用トチを配設した状態で前記ハニカム成形体を焼成すること により、それぞれの前記セルの前記焼成用トチを配設した側の前記端面側の端部に おける前記流体の流れ方向に垂直な断面 (セル断面)の面積を漸減又は漸増するよ うに変形させて、それぞれの前記セルの前記セル断面の面積力 前記セルの前記流 れ方向における中心部近傍の所定範囲において略同一であるとともに、前記セルの 前記流れ方向における少なくとも一方の端面側の端部において漸減又は漸増するよ うに構成されたハニカム構造体を得るハニカム構造体の製造方法 (以下、「第二の発 明」ということがある)。
[0025] [9] 前記ハニカム成形体の両方の前記端面に、前記ハニカム成形体と焼成時に おける収縮率が異なる材料から構成された前記焼成用トチを配設し、前記焼成用ト チを配設した状態で前記ハニカム成形体を焼成する前記 [8]に記載のハニカム構造 体の製造方法。
[0026] [10] 成形材料を含む坏土をハニカム状に成形して、一方の端面から他方の端面 まで貫通する流体の流路となる複数のセルが区画形成された筒状のハ-カム成形体 を得、得られたノヽ-カム成形体を焼成してハ-カム構成体を得るハ-カム構造体の 製造方法であって、所定の前記セルの一方の前記端面側の開口部分に、前記ハニ カム成形体と焼成時における収縮率が異なる目封止部材を配設し、前記目封止部 材を配設した状態で前記ハ-カム成形体を焼成することにより、それぞれの前記セル の前記目封止部材を配設した側の前記端面側の端部における前記流体の流れ方 向に垂直な断面 (セル断面)の面積を漸減又は漸増するように変形させて、それぞれ の前記セルの前記セル断面の面積力 前記セルの前記流れ方向における中心部近 傍の所定範囲において略同一であるとともに、前記セルの前記流れ方向における少 なくとも一方の端面側の端部において漸減又は漸増するように構成されたノヽ-カム 構造体を得るハ-カム構造体の製造方法 (以下、「第三の発明」 、うことがある)。
[0027] [11] 所定の前記セル以外の残余の前記セルの他方の前記端面側の開口部分 にも、前記ハ-カム成形体と焼成時における収縮率が異なる目封止部材を配設し、 前記目封止部材を配設した状態で前記ハニカム成形体を焼成する前記 [10]に記載 のハニカム構造体の製造方法。
[0028] 本発明のハ-カム構造体は、圧力損失を低減することが可能であり、また、ハ-カ ムフィルタとして用いた場合には、被処理流体が流入する側の端面にお!、てパティキ ユレ一トマター (微粒子状物質)によるセルの開口部の閉塞によって起こる圧力損失 の急増現象を回避することができる。また、円周状亀裂を回避すること、さらには、ハ 二カム構造体の端面における熱衝撃やエロージョンを回避することができる。また、 本発明のハ-カム構造体の製造方法は、上述した本発明のハ-カム構造体を簡便 に製造することができる。
図面の簡単な説明
[0029] [図 1]本発明(第一の発明)のハ-カム構造体の一の実施の形態の構成を模式的に 示す一部断面図である。 [図 2]本発明(第一の発明)のハ-カム構造体の一の実施の形態をキヤユングした状 態を示す一部断面図である。である。
[図 3]本発明(第一の発明)のハ-カム構造体の一の実施の形態をキヤユングした状 態を示す一部断面図である。である。
[図 4]本発明(第一の発明)のハ-カム構造体の一の実施の形態の他の例の構成を 模式的に示す一部断面図である。
圆 5]本発明(第一の発明)のハ-カム構造体の一の実施の形態の他の例の構成を 模式的に示す一部断面図である。
圆 6]本発明(第一の発明)のハ-カム構造体の一の実施の形態の他の例の構成を 模式的に示す一部断面図である。
圆 7]本発明(第一の発明)のハ-カム構造体の他の実施の形態の構成を模式的に 示す一部断面図である。
[図 8]本発明(第一の発明)のハ-カム構造体の他の実施の形態をキヤユングした状 態を示す一部断面図である。
圆 9]本発明(第一の発明)のハ-カム構造体の他の実施の形態の他の例の構成を 模式的に示す一部断面図である。
[図 10]本発明(第一の発明)のハ-カム構造体の他の実施の形態の他の例の構成を 模式的に示す一部断面図である。
[図 11]本発明(第一の発明)のハ-カム構造体の他の実施の形態の他の例の構成を 模式的に示す一部断面図である。
[図 12]本発明(第一の発明)のハ-カム構造体の他の実施の形態の一例の構成を模 式的に示す一部断面図である。
[図 13]本発明(第一の発明)のハ-カム構造体の他の実施の形態の他の例の構成を 模式的に示す一部断面図である。
[図 14]本発明(第一の発明)のハ-カム構造体の他の実施の形態の一例の構成を模 式的に示す一部断面図である。
[図 15]本発明(第一の発明)のハ-カム構造体の他の実施の形態の他の例の構成を 模式的に示す一部断面図である。 [図 16]本発明(第一の発明)のハ-カム構造体の他の実施の形態の他の例の構成を 模式的に示す一部断面図である。
[図 17]本発明(第一の発明)のハ-カム構造体の他の実施の形態の一例の構成を模 式的に示す一部断面図である。
[図 18]本発明(第一の発明)のハ-カム構造体の他の実施の形態の他の例の構成を 模式的に示す一部断面図である。
[図 19]本発明(第一の発明)のハ-カム構造体の他の実施の形態の他の例の構成を 模式的に示す一部断面図である。
[図 20]本発明(第一の発明)のハ-カム構造体の他の実施の形態をキヤユングした状 態を示す一部断面図である。
圆 21]本発明(第一の発明)のハ-カム構造体の他の実施の形態の一例の構成を模 式的に示す一部断面図である。
圆 22]本発明(第一の発明)のハ-カム構造体の他の実施の形態の他の例の構成を 模式的に示す一部断面図である。
[図 23(a)]本発明(第一の発明)のハ-カム構造体の外壁を形成する工程を模式的に 示す一部断面図である。
圆 23(b)]本発明(第一の発明)のハ-カム構造体の外壁を形成する工程を模式的に 示す一部断面図である。
圆 24]本発明(第一の発明)のハ-カム構造体の他の実施の形態の一例の構成を模 式的に示す一部断面図である。
[図 25]本発明(第一の発明)のハ-カム構造体の他の実施の形態をキヤユングした状 態を示す一部断面図である。
[図 26(a)]本発明(第二の発明)のハ-カム構造体の製造方法の一の実施の形態を説 明する一部断面図である。
圆 26(b)]本発明(第二の発明)のハ-カム構造体の製造方法の一の実施の形態を説 明する一部断面図である。
[図 27(a)]本発明(第二の発明)のハ-カム構造体の製造方法の他の実施の形態を説 明する一部断面図である。 [図 27(b)]本発明(第二の発明)のハ-カム構造体の製造方法の他の実施の形態を説 明する一部断面図である。
[図 28(a)]本発明(第二の発明)のハ-カム構造体の製造方法の一の実施の形態を説 明する一部断面図である。
[図 28(b)]本発明(第二の発明)のハ-カム構造体の製造方法の一の実施の形態を説 明する一部断面図である。
[図 29(a)]従来のハニカム構造体における流体の流れを説明する断面図である。
[図 29(b)]従来のハニカム構造体における流体の流れを説明する断面図である。
[図 30(a)]従来のハニカム構造体をキヤニングした状態を示す一部断面図である。
[図 30(b)]従来のハ-カム構造体をキヤユングした状態を示す一部断面図である。
[図 31]従来のハニカム構造体をキヤニングした状態を示す一部断面図である。
[図 32]従来のハニカム構造体の一部断面図である。
符号の説明
[0030] 1:ハニカム構造体、 2:隔壁、 3:セル、 4:端面 (一方の端面)、 5:端面 (他方の端面) 、 6:目封止部材 17:容器、 8:把持部材、 9:外壁、 11:ハ-カム構造体、 12:隔壁、 1 3:セル、 14:端面 (一方の端面)、 15:端面 (他方の端面)、 16:目封止部材、 18:把 持部材、 21:ハニカム構造体、 31:ハニカム構造体、 32:ハニカム構造前駆体、 33: 砥石、 34:コート材、 41:ハ-カム構造体、 42:隔壁、 43:セル、 44:端面(一方の端 面)、 45:端面 (他方の端面)、 47:焼成用トチ、 51:ハ-カム構造体、 52:隔壁、 53: セル、 54:端面 (一方の端面)、 55:端面 (他方の端面)、 56:目封止部材、 57:焼成 用トチ、 60:コンバータ、 61:ハ-カム構造体、 63:セル、 64:端面、 67:容器、 68:把 持部材、 69:リテナーリング。
発明を実施するための最良の形態
[0031] 以下、図面を参照して、本発明(第一〜第三の発明)のハ-カム構造体、及びその 製造方法の実施の形態について詳細に説明するが、本発明は、これに限定されて 解釈されるものではなぐ本発明の範囲を逸脱しない限りにおいて、当業者の知識に 基づいて、種々の変更、修正、改良をカ卩ぇ得るものである。
[0032] 図 1は、第一の発明のハ-カム構造体の一の実施の形態の構成を模式的に示す 一部断面図である。図 1に示すように、本実施の形態のハニカム構造体 1は、一方の 端面 4から他方の端面 5まで貫通する流体の流路となる複数のセル 3を区画形成する 隔壁 2を備えた筒状のハ-カム構造体 1であって、それぞれのセル 3の流体の流れ方 向 Aに垂直な断面 (セル断面)の面積力 セル 3の流れ方向 Aにおける中心部近傍 の所定範囲において略同一であるとともに、セル 3の流れ方向 Aにおける少なくとも 一方の端面 4側の端部において漸増するように構成されたノ、二カム構造体 1である。 なお、図 1に示す本実施の形態のハ-カム構造体 1は、セル 3の流れ方向 Aにおける 両方の端面 4, 5側の端部において、セル断面の面積が漸増するように構成されてお り、これに伴ってハ-カム構造体 1の外周部分の形状もセル 3の流れ方向 Aにおける 両方の端面 4, 5側の端部において漸増するように構成されている。このため、本実 施の形態のハニカム構造体 1は、その中心部近傍と両方の端面 4, 5側の端部とにお V、てはセノレ密度が異なって!/、る。
[0033] このように本実施の形態のハ-カム構造体 1は、セル 3の流れ方向 Aにおける両方 の端面 4, 5側の端部においてセル断面の面積が漸増していることから、排気ガス等 の流体の流入損失及び流出損失を軽減し、ハニカム構造体 1の圧力損失を低減す ることができる。なお、図 1に示すノヽ-カム構造体 1においては、上部半分が断面を 示し、下部半分が外観を示している。
[0034] また、本実施の形態のハ-カム構造体 1は、図 2に示すように、従来からのキヤニン グ技術により、金属等の容器 7内にキヤユングを行うことが可能である。従来のハ-カ ム構造体にぉ 、ては、セル断面の面積が一方の端面力 他方の端面まで概ね同一 であり、隣接するセルを区画形成する隔壁は略並行となっているため、ハ-カム構造 体の外周面を把持部材で把持して容器内に収納して!/、た。本実施の形態のハニカ ム構造体 1は、セルの流れ方向 Aにおける中心部近傍の所定範囲においてはセル 3 を区画形成する隔壁 2は略並行である力 端面 4, 5側の端部においては所定の角 度をもって広がるように構成されて 、る。
[0035] 従来のハ-カム構造体においては、例えば、特開 2004— 321848号公報、特開 2 003— 166410号公報、 US2003/0041575A1等【こお!ヽて、ノヽニカム構造体の一 方の端面部にぉ 、て、セル断面の面積が拡大したセルと縮小したセルとが混在した 構成のものが開示されている力 本実施の形態のハ-カム構造体 1は、少なくとも一 方の端面 4側の端部にお 、て、すべてのセル断面の面積が漸増するように構成され たハ-カム構造体 1である。
[0036] 図 2に示すように、ハ-カム構造体 1をキヤユングする際には、ハ-カム構造体 1の 中心部近傍の外径が略平行な部分を、把持部材 8で把持する。このように構成するこ とによって、中心部近傍よりも外径が大きくなつた端面 4, 5側がストッパーの役割を果 たし、ハ-カム構造体 1に流入する流体 (例えば、排気ガス)の差圧による位置ずれを 抑制することができる。また、中心部近傍においてはハ-カム構造体 1の外径が略平 行であるため、把持部材 8で均一にキヤニング面圧を付与することが可能となり、従来 のキヤ-ング技術によりハ-カム構造体 1のキヤ-ングを良好に行うことができる。
[0037] 特に、本実施の形態のハ-カム構造体 1においては、従来のリテナーリング 69 (図 30参照)を用いることなぐ把持部材 8のみでハニカム構造体 1の位置ずれを防止す ることができること力ら、ハ-カム構造体 1全体のセル 3にわたつて排気ガス等の流体 を通過させることができる。このため、ハ-カム構造体 1の外周の領域と内側の領域と における温度差を小さくし、円周状亀裂等の破損を有効に防止することができる。
[0038] また、ハ-カム構造体 1をキヤユングする場合には、図 3に示すように、ノ、二カム構 造体 1の端面付近での外周面を把持する別の把持部材 9を配設することにより、ハニ カム構造体 1の軸方向における把持力を補助することができる。
[0039] 本実施の形態のハ-カム構造体 1にお 、ては、図 4に示すように、所定のセル 3aの 一方の端面 4側の端部と、残余のセル 3bの他方の端面 5側の端部とに目封止部材 6 を配設したものであってもよい。このようなハ-カム構造体 1は、把持部材 8 (図 2参照 )等で把持してキヤユングする際に、セル 3に配設した目封止部材 6の奥側端面付近 の外周面に面圧が付与され難ぐ外周面における応力集中を有効に緩和して、円周 状亀裂等の破損を有効に防止することができる。
[0040] なお、図 1に示す本実施の形態のハ-カム構造体 1においては、セル 3の流れ方向 Aにおける両方の端面 4, 5側の端部においてセル断面の面積が漸増している力 図 5及び図 6に示すように、セル 3の流れ方向 Aにおける一方の端面 4, 5側の端部にお いてセル断面の面積が漸増した構成としてもよい。図 5は、流体の入口側の端面 4側 の端部においてセル断面の面積が漸増したハ-カム構造体 1を示し、図 6は、流体 の出口側の端面 5側の端部においてセル断面の面積が漸増したハニカム構造体 1を 示している。また、図 5及び図 6に示すノヽ-カム構造体 1においては、図 4に示すよう に、所定のセル 3aの一方の端面 4側の端部と、残余のセル 3bの他方の端面 5側の 端部とに目封止部材 6を配設したものであってもよ 、。
[0041] また、セル断面の面積が漸増し始める部位については特に制限はなぐまた、セル 断面の面積の変化のパターンについても特に制限はない。例えば、図示は省略する 1S 端面付近で直線的に漸増してもよいし、任意の曲率をもって漸増してもよい。ま た、セル断面の面積が略同一となる中心部近傍の周辺においては、若干のセル断 面の面積の変化を伴い、中心部近傍においては非常に緩やかな曲率を伴う場合が あるが、ハニカム構造体の許容寸法内での小さい寸法変化であり、実質的に略同一 とみなすことができる。例えば、特に限定されることはないが、キヤニング上、ハニカム 構造体の許容寸法としては、ハ-カム構造体の平均外径ではおよそ ±0. 5%とする ことができる。本実施の形態のハ-カム構造体 1においては、少なくとも一方の端面 4 , 5のセル断面の面積が漸増することにより、ハ-カム構造体 1の少なくとも一方の端 面 4、 5の外径が許容寸法以上に拡大している。また、ハ-カム構造体 1の中心部近 傍においては、許容寸法内の小さい寸法変化に留まっている。つまり、ハ-カム構造 体 1の外径が 90mmで、許容寸法公差を ±0. 5%とした場合には、ハ-カム構造体 1の中心部近傍の外径は 89. 55〜90. 45mmの間で変化するものとし、少なくとも 一方の端面 4, 5における外径はこの範囲を超えて漸増している。
[0042] なお、図 1に示すような本実施の形態のハ-カム構造体 1にお!/、て、両方の端面 4, 5側の端部のセル断面の面積が極端に漸増するように構成し、 日本古楽器のつつみ に似た形状にすることも可能だが、あまりにも極端に漸増するようにした場合には、焼 成時に割れ易いことや、セル断面の面積が略同一となる中心部近傍が確保できなく なることがあるため、破損等が生じない程度にセル断面の面積が漸増する構成にす ることが好ましい。
[0043] 次に、第一の発明のハ-カム構造体の他の実施の形態について説明する。図 7は 、本発明のハ-カム構造体の他の実施の形態の構成を模式的に示す一部断面図で ある。図 7に示すように、本実施の形態のハ-カム構造体 11は、一方の端面 14から 他方の端面 15まで貫通する流体の流路となる複数のセル 13を区画形成する隔壁 1 2を備えた筒状のハ-カム構造体 11であって、それぞれのセル 13の流体の流れ方 向 Aに垂直な断面 (セル断面)の面積力 セル 13の流れ方向 Aにおける中心部近傍 の所定範囲において略同一であるとともに、セル 13の流れ方向 Aにおける少なくとも 一方の端面 14側の端部において漸減するように構成されたノ、二カム構造体 11であ る。なお、図 7に示す本実施の形態のハ-カム構造体 11は、セル 13の流れ方向 Aに おける両方の端面 14, 15側の端部において、セル断面の面積が漸減するように構 成されており、これに伴ってハ-カム構造体 11の外周部分の形状もセル 13の流れ 方向 Aにおける両方の端面 14, 15側の端部にぉ 、て漸増するように構成されて!、る 。このため、本実施の形態のハ-カム構造体 1は、その中心部近傍と両方の端面 14 , 15側の端部とにおいてはセル密度が異なっている。なお、図 7に示すハ-カム構 造体 11においては、上部半分が断面を示し、下部半分が外観を示している。
[0044] 本実施の形態のハ-カム構造体 11においては、図 8に示すように、ハ-カム構造 体 11を金属等の容器 7内にキヤユングを行う際には、従来から使用されて!ヽたリテナ 一リング 69 (図 30参照)を用いることなぐハ-カム構造体 11の端面 14, 15側の端 部の外周面がテーパ状に小さくなつている部位に、このテーパ状の外周面に対応し た形状の把持部材 18を配設することによって、容器 7内にハ-カム構造体 11を固定 することができる。このように構成することによって、従来のリテナーリング 69 (図 30参 照)を用いずに把持部材 18のみでノ、二カム構造体 11の位置ずれを防止することが でき、ハ-カム構造体 11全体のセル 13にわたつて排気ガス等の流体を通過させるこ とができる。このため、ハ-カム構造体 11の外周の領域と内側の領域とにおける温度 差を小さくし、円周状亀裂等の破損を有効に防止することができる。また、このように キヤユングを行う場合には、端面 14, 15の一部に把持部材 18が掛力るようにしてハ 二カム構造体 11の軸方向の把持力を補助してもよい。
[0045] 従来のハ-カム構造体においては、例えば、特開 2004— 321848号公報、特開 2 003— 166410号公報、 US2003/0041575A1等【こお!ヽて、ノヽニカム構造体の一 方の端面部にぉ 、て、セル断面の面積が拡大したセルと縮小したセルとが混在した 構成のものが開示されている力 本実施の形態のハ-カム構造体 11は、少なくとも 一方の端面 14側の端部において、すべてのセル断面の面積が漸減するように構成 されたハ-カム構造体 11である。
[0046] また、ハ-カム構造体 11の中心部近傍においては、ハ-カム構造体 11の外径が 略同一の大きさであるため、この部分に他の把持部材 19を配設することで均一にキ ャユング面圧を付与することが可能となり、従来のキヤユング技術によりハ-カム構造 体のキヤ-ングを良好に行うことができる。
[0047] また、本実施の形態のハ-カム構造体 11においては、図 9に示すように、所定のセ ル 13aの一方の端面 14側の端部と、残余のセル 13bの他方の端面 15側の端部とに 目封止部材 16を配設したものであってもよい。このようなハ-カム構造体 11は、把持 部材 18 (図 8参照)等で把持してキヤユングする際に、 目封止部材 16の、セル 13の 流れ方向 Aにおける中心部側の端面付近の外周面に面圧が付与され 1 、外周面 における応力集中を有効に緩和して、円周状亀裂等の破損を有効に防止することが できる。
[0048] なお、図 7に示す本実施の形態のハ-カム構造体 11においては、セル 13の流れ 方向 Aにおける両方の端面 14, 15側の端部においてセル断面の面積が漸減してい るが、図 10及び図 11に示すように、セル 13の流れ方向 Aにおける一方の端面 14, 1 5側の端部においてセル断面の面積が漸減した構成としてもよい。図 10は、流体の 入口側の端面 14側の端部においてセル断面の面積が漸減したノ、二カム構造体 11 を示し、図 11は、流体の出口側の端面 15側の端部においてセル断面の面積が漸減 したハ-カム構造体 11を示している。また、図 10及び図 11に示すハ-カム構造体 1 1においては、図 9に示すように、所定のセル 13aの一方の端面 14側の端部と、残余 のセル 13bの他方の端面 15側の端部とに目封止部材 16を配設したものであっても よい。
[0049] 例えば、ハ-カム構造体 11をフィルタとして用いた場合、隔壁 12に堆積したパティ キュレートマターを再生する際には、出口側の端面 15側の端部により大きな応力が 発生するので、図 10に示すノ、二カム構造体 11のように、出口側の端面 15側の端部 におけるセル断面の面積を漸減し、この部分の機械的強度を高めてもよ!、。 [0050] また、図 11に示すようなハ-カム構造体 11においては、入口側の端面 14側の端 部でのエッジストレスを低減することができる。通常、入口側の端面 14側の端部は排 気ガス等の流体の温度変化を直接に受けるので、熱衝撃が厳しくなり、把持部材 18 の端部でのエッジストレスに熱応力が重複して円周状亀裂等の破損が発生し易くな る力 入口側の端面 14側の端部におけるセル断面の面積を漸減することにより、円 周状亀裂等の破損の回避に効果があり、特にエンジン近傍 (close— coupled)にお いて有効である。
[0051] また、セル断面の面積が漸減し始める部位については特に制限はなぐまた、セル 断面の面積の変化のパターンについても特に制限はない。例えば、図示は省略する 力 端面付近で直線的に漸減してもよいし、任意の曲率をもって漸減してもよい。ま た、セル断面の面積が略同一となる中心部近傍の周辺においては、若干のセル断 面の面積の変化を伴い、中心部近傍においては非常に緩やかな曲率を伴う場合が あるが、ハニカム構造体の許容寸法内での小さい寸法変化であり、実質的に略同一 とみなすことができる。例えば、特に限定されることはないが、キヤニング上、ハニカム 構造体の許容寸法としては、ハ-カム構造体の平均外径ではおよそ ±0. 5%とする ことができる。本実施の形態のハ-カム構造体 11においては、少なくとも一方の端面 14, 15のセル断面の面積が漸増することにより、ハ-カム構造体 1の少なくとも一方 の端面 14、 15の外径が許容寸法以上に縮小している。また、ハ-カム構造体 11の 中心部近傍においては、許容寸法内の小さい寸法変化に留まっている。つまり、ノヽ 二カム構造体 1の外径が 90mmで、許容寸法公差を ±0. 5%とした場合には、ハニ カム構造体 1の中心部近傍の外径は 89. 55-90. 45mmの間で変化するものとし、 少なくとも一方の端面 14, 15における外径はこの範囲を超えて漸増している。また、 セル断面の面積が略同一となる中心部近傍の長さについても特に制限はなぐ実質 的に従来のキヤニング技術で十分な面圧を付与できるのに必要な長さを有していれ ばよい。
[0052] なお、図 7に示すような本実施の形態のハ-カム構造体 11において、両方の端面 1 4, 15側の端部のセル断面の面積が極端に漸減するように構成し、 日本古楽器の太 鼓に似た形状にすることも可能だが、あまりにも極端に漸減するようにした場合には、 焼成時に割れ易いことや、セル断面の面積が略同一となる中心部近傍が確保できな くなることがあるため、破損等が生じない程度にセル断面の面積が漸増する構成に することが好ましい。
[0053] 次に、第一の発明のハ-カム構造体のさらに他の実施の形態について説明する。
図 12及び図 13は、それぞれ本発明のハ-カム構造体のさらに他の実施の形態の構 成を模式的に示す一部断面図である。本実施の形態のハニカム構造体 21は、図 12 及び図 13に示すように、一方の端面 24から他方の端面 25まで貫通する流体の流路 となる複数のセル 23を区画形成する隔壁 22を備えた筒状のハ-カム構造体 21であ つて、それぞれのセル 23の流体の流れ方向 Aに垂直な断面(セル断面)の面積が、 セル 23の流れ方向 Aにおける中心部近傍の所定範囲において略同一であるととも に、セル 23の流れ方向 Aにおける一方の端面側の端部(図 12においては、入口側 の端面 24の端部、図 13においては、出口側の端面 25の端部)において漸増し、他 方の端面側の端部(図 12においては、出口側の端面 25の端部、図 13においては、 入口側の端面 24の端部)において漸減するように構成されたノ、二カム構造体 21であ る。図 12及び図 13に示す本実施の形態のハ-カム構造体 21は、セル 23のセル断 面の面積の変化に伴って、ハ-カム構造体 21の外周部分の形状も変化している。な お、図 12及び図 13に示すノヽ-カム構造体 21においては、上部半分が断面を示し、 下部半分が外観を示して 、る。
[0054] このように構成することによって、図 1や図 7に示すハ-カム構造体と同様の効果を 得ることができる。なお、セル 23のセル断面の変化の形状等については、これまでに 説明した図 1〜図 11に示すノヽ-カム構造体と同様に構成されて 、ることが好ま 、。
[0055] 次に、第一の発明のハ-カム構造体のさらに他の実施の形態について説明する。
本実施の形態のハ-カム構造体は、これまでに説明した実施の形態のハ-カム構造 体において、ハ-カム構造体の外壁を含めた外周部分を加工除去して、その部位に 別材料を塗布して乾燥或いは焼成することにより外壁を形成した外周コートタイプの ハ-カム構造体である。
[0056] 例えば、図 1、図 5及び図 6に示すノヽニカム構造体 1の外周部分を円筒形状に加工 して力も外壁材を塗布して形成された、図 14〜図 16に示すような、複数のセル 3を 区画形成する隔壁 2の外周部分を覆う外壁 9をさらに備えたハ-カム構造体 31を挙 げることができる。このようなハ-カム構造体 31のセル 3の形状については、図 1、図 5及び図 6に示すハ-カム構造体 1のセル 3と同様であるため、外周コートタイプの特 性を生かしつつ、セル断面の面積の漸増による上述した効果を得ることができる。な お、図 14〜図 16に示すハ-カム構造体 31においては、図 1、図 5及び図 6に示すハ 二カム構造体 1と同様の各要素には同一の符号を付してその説明を省略する。
[0057] また、図 7、図 10及び図 11に示すハニカム構造体 11の外周部分を円筒形状に加 ェしてから外壁材を塗布して形成された、図 17〜図 19に示すような、複数のセル 13 を区画形成する隔壁 12の外周部分を覆う外壁 9をさらに備えたハ-カム構造体 31で あってもよい。このようなハ-カム構造体 31は、図 20に示すように、従来から使用され ている形状のリテナーリング 69を使用して金属等の容器 7内にキヤユングを行ったと しても、流体の流路となるセル 13を有効に活用することが可能となり、流れ方向 Aに おける中心部近傍においてデッドスペースを減少させることができる。このため、ハニ カム構造体 31の外周の領域とその内側とにおける温度差を軽減することができ、円 周状亀裂等の破損を有効に防止することができる。なお、図 17〜図 19に示すハ-カ ム構造体 31においては、図 7、図 10及び図 11に示すハ-カム構造体 11と同様の各 要素には同一の符号を付してその説明を省略する。
[0058] また、図 12及び図 13に示すハ-カム構造体 21の外周部分を円筒形状に加工して から外壁材を塗布して形成された、図 21及び図 22に示すような、複数のセル 23を区 画形成する隔壁 22の外周部分を覆う外壁 9をさらに備えたハ-カム構造体 31であつ てもよい。セル 23の形状については、図 12及び図 13に示すハ-カム構造体 21のセ ル 23と同様であるため、外周コートタイプの特性を生かしつつ、セル断面の面積の漸 増又は漸減による上述した効果を得ることができる。なお、図 21及び図 22に示すノヽ 二カム構造体 31にお!/、ては、図 12及び図 13に示すハ-カム構造体 21と同様の各 要素には同一の符号を付してその説明を省略する。
[0059] 図 14〜図 22に示すようなハニカム構造体 31は、例えば、図 23 (a)及び図 23 (b) に示すように、ハ-カム構造前駆体 32 (具体的には、例えば、図 1〜図 23において 説明したハニカム構造体や、このようなハニカム構造体を焼成する前の成形体)の外 壁を含めた外周部分を加工除去して、その部位に、外壁用のコート材 34等の別材料 を塗布して乾燥或いは焼成して外壁 9を形成することによって得ることができる。なお 、図 23 (a)の外周部分の加工は砲石 33等を用いて行うことができる。
[0060] また、図 24に示すように、本実施の形態のハ-カム構造体 31においては、外周部 分をセル 13の形状に沿ってカ卩ェして、その加工面に一様に外壁材を塗布することに よって形成された外壁 9をさらに備えたノヽ-カム構造体 31であってもよい。このような ハ-カム構造体 31は、外周部分の形状に関しては、図 1〜図 13に示したハ-カム構 造体と同様であるため、外周コートタイプの特性を生かしつつ、図 25に示すように、 金属等の容器 7内にキヤ-ングを行う際に、均一にキヤユング面圧を付与することが 可能となるとともに、ハニカム構造体 31の外周の領域と内側の領域とにおける温度差 を小さくし、円周状亀裂等の破損を有効に防止することができる。なお、図 24に示す ハ-カム構造体 31にお 、ては、図 7に示すハ-カム構造体 11のセル 13の形状に沿 つて加工して、その加工面に一様に外壁材を塗布したものである力 元になるハ-カ ム構造体にっ 、ては、これまでに説明した実施の形態のハ-カム構造体であればよ い。また、図 24に示すハ-カム構造体 31においては、図 7に示すハ-カム構造体 11 と同様の各要素には同一の符号を付してその説明を省略する。
[0061] なお、図示は省略するが、ハ-カム構造体のセル断面の形状については、四角に 限定されることはなぐ例えば、三角、六角、八角等の多角形や、丸形であってもよく 、また、これらの形状の組み合わせであってもよい。また、隔壁の厚さはすべての隔 壁について略同一とする構造が一般的であるが、厚さの異なる隔壁が混在していて もよい。例えば、外周部の強度を高めるために、外周部における隔壁の厚さを厚くし てもよい。また、本実施の形態のハ-カム構造体においては、既に公知となっている 様々な補強手段を用いることができる。また、ハ-カム構造体の外周部のセルを全て 目封止して、角部の欠け防止を行ってもよい。この場合には、両方の端面ともに目封 止を行ってもよいし、どちらかの片方の端面のみに目封止を行ってもよい。
[0062] なお、セルの開口部の面積は、全てのセルで同一とする必要はなぐ開口部の面 積の異なるセルが混在するようにしてもよい。例えば、相対的に開口部の面積の大き いセルと、相対的に開口部の面積の小さいセルとが区画形成されたノヽ-カム構造体 であってもよい。また、少なくとも目封止部材が配設されていないセルの内部に充填 物を設けたり、隔壁の表面に突起状物質を形成したり、隔壁の表面粗さを粗くしたり、 隔壁自体を曲げたりすることでも、セルの通気抵抗を調整することが可能である。さら に、この手段により、微粒子状物質の捕捉性能を向上させることもできる。
[0063] セルの入口側の端面においては、排気ガス等の流体中に含まれる酸化鉄や溶接 スパッタ片等の固形異物或 、は排気ガス自体によるエロージョン現象が発生すること があるので、セルの入口側の端面を強化することが好ましい。強化手段としては、公 知である各種の従来技術が適用できる。セルの入口側の端面に相当する領域を区 画する隔壁と目封止部材とをともに強化することが好ま 、。
[0064] また、ハニカム構造体の断面形状についても特に制限はなぐ円形の他、楕円形、 長円形、オーパル形、略三角形、略四角形等の多角形などあらゆる形状をとることが できる。これら形状を単独で用いても組み合わせで用いてもよい。また、目封止部材 を配設する場合には、通常、複数のセルの開口部に千鳥状に配設しているが、特に 限定されることはなぐ例えば、列状でもよいし、或いは、同心円状や放射状でもよく 、セルの区画形成された状態によって様々なパターンを選択することができる。
[0065] また、フィルタとして用いる際には、セル構造を薄壁高セル密度とすることでパティ キュレートマターの圧損性能と捕捉性能を向上させることができる。従来は、例えば、 隔壁の厚さ 25mil (0. 64mm)、セル密度 100セル Z平方インチ(正方形セルの場 合セルピッチ 2. 54mm)のセル構造や、隔壁の厚さ 17mil(0. 43mm)、セル密度 1 00セル Z平方インチ(正方形セルの場合セルピッチ 2. 54mm)のセル構造、隔壁の 厚さ 12mil(0. 30mm)、セル密度 300セル Z平方インチ(正方形セルの場合セルピ ツチ 1. 47mm)のセル構造のように、隔壁の厚さ 10〜30mil、セル密度 50〜350セ ル Z平方インチのセル構造が利用されて 、た。セル構造を薄壁高セル密度とするこ と、即ち、隔壁の厚さ lOmil以下、好ましくは 8mil以下、セル密度 350セル Z平方ィ ンチ(以上、好ましくは 400セル Z平方インチ以上とすることで排気ガスが接触する隔 壁表面積が増加するので、排気ガスの濾過流速も低下し、パティキュレートマターの 捕捉性能を向上させることができる。さらに、両方の端面を目封止している場合には 6 00セル Z平方インチ以下とすることで過度な圧力損失の上昇を抑制できる。また、従 来は、ハ-カム構造体の気孔率力 5〜70%で、平均細孔径は 15〜40 /ζ πιであつ た。従来の気孔率範囲 45〜70%で平均細孔径 m以下、好ましくは 10 m以 下と小細孔径化とすることで隔壁表面での凹凸が全体的に増加するのでパティキュ レートマターの捕捉性能を向上させることができる。更に、高気孔率化し同時に小細 孔径化すること、即ち、気孔率 70%以上、好ましくは 75%以上、平均細孔径 15 m 以下、好ましくは 10 m以下とする高気孔率かつ小細孔径ィ匕とすることでより一層、 隔壁表面での凹凸が全体的に増加するのでパティキュレートマターの捕捉性能を向 上させることができる。また、高気孔率ィ匕し小細孔径ィ匕することは、排気ガスが通過で きる有効な細孔が増加するので、排気ガスの濾過流速の低下することと微粒子状物 質が細孔内壁面と接触する機会が増加することでパティキュレートマターの捕捉性能 を向上させることができる。また、細孔分布はできる限りシャープにすることが好ましい 。小細孔径ィ匕と分布のシャープィ匕によって、微粒子状物質、特にナノパーティクルの 捕捉性能が向上する。これは隔壁内部での捕捉だけでなく隔壁表面での捕捉にも効 果があるので目封止されて!/、な 、セルにぉ 、ても捕捉性能が向上する。隔壁表面に 細孔による細かい均一な凹凸が形成されるからである。また、小細孔径化と分布のシ ヤープィ匕によって強度も向上するので好ましい。分布のシャープ程度については様 々な表現で定量化できるので、特に限定されるものではない。例えば、細孔径と細孔 容積の微分曲線における分布の標準偏差、あるいは積分曲線における 50%平均細 孔径と 10%、 90%平均細孔径との比率により定量ィ匕できる。
また、セルの一方の端面側の端部を目封止部材によって閉塞したノヽニカム構造体 にお 、て、 目封止部材が配設されたセルと、 目封止部材が配設されて!/、な 、セルが 混在しており、この目封止部材がハ-カム構造体の一方の端面側のみ配置されてい るセラミックハ-カム構造のフィルタにも適用することができる。通常は、 目封止部材 は千鳥状に配設されているが、 目封じのパターンはこれに限らない。例えば、 目封止 部材を配設するセルを複数集合させて、一方で目封じされて 、な 、セルも複数集合 させる構成でもよ ヽし、列状に集合させて目封止部材を配設した構成としてもょ 、。 或いは、同心円状や放射状でもよぐセルの区画形成された形状によって様々なパ ターンが可能である。 [0067] なお、このようなハ-カム構造体においては、セルの開口部の面積は、全てのセル で同一とする必要はなぐ開口部の面積の異なるセルが混在するようにしてもよい。 例えば、相対的に開口部の面積の大きいセルと、相対的に開口部の面積の小さいセ ルとが区画形成されたノヽ-カム構造体であってもよい。全てのセルの開口部の面積 が同一の場合では、相対的に通気抵抗が小さ!、目封止部材が配設されて!/、な 、セ ルの方へ、排気ガス等の流体が流れ込み易くなつてしまうために、 目封止部材を配 設したセルに流入する排気ガスの量が減少するので、フィルタの捕集効率が大幅に 低下してしまうことがある。このために、相対的に開口部の面積の大きいセルの出口 側の端面に目封止部材を配設し、相対的に開口部の面積の小さいセルには目封止 部材を配設しな 、ようにすることで、フィルタの捕集効率の低下を抑制することができ る。
[0068] ハニカム構造体の成形方法としては、例えば、押出し成形法、射出成形法、プレス 成形法、セラミック原料を円柱状に成形後貫通孔を形成する方法等を挙げることがで きるが、連続成形が容易であるとともに、コージエライト結晶を配向させて低熱膨張性 にできる点で押出し成形法が好ましい。また、押出成形は横 (水平)方向、縦 (垂直) 方向、斜め方向のいずれの方向でもよい。押出成形は、例えば、ラム式押出し成形 機、 2軸スクリュー式連続押出成形装置等を用いて行うことができる。押出成形すると きには、所望のセル形状、隔壁厚さ、セル密度を有する口金を使用して、所望のハニ カム構造を有するハ-カム成形体を作製することができる。
[0069] ハ-カム構造体の材質にっ 、ては、強度、耐熱性等の観点から、コージヱライト、ァ ルミナ、ムライト、スピネル、リチウム 'アルミニウム'シリケート、チタン酸アルミニウム、 チタ二了、ジルコユア、窒化珪素、窒化アルミニウム、炭化珪素、 LAS (リチウムアルミ ユウムシリケート)のセラミック材料のうちの 1種若しくはそれらの複合物、又は、ステン レス鋼、アルミニウム合金、或いは、活性炭、シリカゲル、ゼォライトの吸着材料のうち の 1種を材料とすることが好ましい。また、セルの端部を封止する封止部材の材質は 、前述のハ-カム構造体の材質と同様に選択することができ、必ずしもハ-カム構造 体と同一にする必要はないが、ハニカム構造体の材質と同一にすると、両者の熱膨 張率が一致するため好ましい。 目封止部材の原料は、セラミック原料、造孔材、界面 活性剤及び水等を混合してスラリー状にし、その後ミキサー等を使用して混練するこ とにより得ることができる。
[0070] また、これまでの実施の形態にぉ 、ては、セルを区画形成する隔壁と外壁とがー体 で成形された一体成形のハ-カム構造体や、隔壁の外周部分に別途外壁形成され たハ-カム構造体についての説明を行ってきた力 例えば、セグメント構造を有する ハ-カム構造体にぉ 、ても適用することができる。
[0071] 次に、第二の発明のハ-カム構造体の製造方法の一の実施の形態について説明 する。本実施の形態のハニカム構造体の製造方法は、成形材料を含む坏土をハニ カム状に成形して、図 26 (a)及び図 26 (b)に示すように、一方の端面 44から他方の 端面 45まで貫通する流体の流路となる複数のセル 43が区画形成された筒状のハ- カム成形体 42を得、得られたノヽ-カム成形体 42を焼成してハ-カム構成体 41を得 るハ-カム構造体の製造方法であって、図 26 (a)に示すように、得られたノヽ-カム成 形体 42の少なくとも一方の端面 44に、ハ-カム成形体 42と焼成時における収縮率( 焼成収縮率)が異なる材料カゝら構成された焼成用トチ 47を配設し、焼成用トチ 47を 配設した状態でハニカム成形体 42を焼成することにより、図 26 (b)に示すように、そ れぞれのセル 43の焼成用トチ 47を配設した側の端面 44側の端部のおける流体の 流れ方向に垂直な断面 (セル断面)の面積を漸減又は漸増するように変形させて、そ れぞれのセル 43のセル断面の面積が、セル 43の流れ方向における中心部近傍の 所定範囲において略同一であるとともに、セル 43の流れ方向における少なくとも一方 の端面 44側の端部にぉ ヽて漸減又は漸増するように構成されたハ-カム構造体 41 を得るハ-カム構造体の製造方法である。
[0072] このように、本実施の形態のハ-カム構造体の製造方法にお!、ては、ハ-カム成形 体 42と焼成用トチ 47との焼成収縮率の差による接触摩擦を利用して、ハニカム成形 体 42のセル 43のセル断面の面積を所望の形状に変形 (漸減又は漸増)させてハ- カム構造体 41を得る製造方法である。
[0073] 従来のハニカム構造体の製造方法において、焼成用トチを用いて焼成を行う場合 には、焼成時にハニカム成形体と焼成用トチとが反応して両者が密着してしまうのを 防止するため、例えば、アルミナ質、ムライト質、又は炭化珪素質で既に焼成されて いるセラミック板、或いは、製品と同材質で既に焼成されている不良となったノヽ-カム 構造体を薄く円盤状に切断したものが用いられていた。また、ハ-カム成形体と同一 ロットの成形品から薄い円盤状に切り出されたノヽ-カム状のものを焼成用トチとして 用いることもあり、このような場合には、両者の密着を防止するためにセラミック粒子或 いはセラミック繊維シートを介在させて焼成を行って 、た。従来のハ-カム構造体の 製造方法にぉ 、ては、ハニカム成形体の変形を防止するために焼成用トチが用いら れており、また、ハ-カム成形体と焼成用トチとは、極力、焼成収縮の影響を受けな いようにされており、焼成用トチを用いて、ハ-カム成形体のセルのセル断面の面積 を所望の形状に変形させると ヽぅ概念は存在して ヽなかった。
[0074] 図 26 (a)に示すように、本実施の形態のハ-カム構造体の製造方法にお!、ては、 ハ-カム成形体 42と焼成用トチ 47との大きな焼成収縮率の差の影響で過度な外径 変形或いは割れを伴うことのな 、範囲にぉ 、て、ハ-カム成形体 42と焼成用トチ 47 との焼成収縮率の差を所定の値に調整し、さらに、ハニカム成形体 42と焼成用トチ 4 7とが密着しな 、ようにして、焼成用トチ 47を配設した側の端面 44側の端部を漸減又 は漸増するように変形させて、ハ-カム構造体 41を得る。
[0075] ハニカム成形体 42と焼成用トチ 47との焼成収縮率の差を所定の値に調整する方 法としては、例えば、ハ-カム成形体 42と焼成用トチ 47とのそれぞれの材料密度に 差をつけること、原料調合割合や粒度を変えること、仮焼して収縮を途中まで完了さ せてぉ 、た焼成用トチ 47を用いること、焼成されたハ-カム構造の焼成用トチ 47の セルをノヽ-カム成形体 42の隔壁よりも薄くして焼成用トチ 47の表面を粗くすること等 を挙げることができる。このようにして、ハニカム成形体 42 (ハニカム構造体 41)の軸 方向の長さのおよそ 25%以内の長さの端部において変形させる。なお、例えば、端 面 44付近で直線的に漸減又は漸増するように変形させてもょ 、し、任意の曲率をも つて漸減又は漸増するように変形させてもよい。また、セル断面の面積が略同一とな る中心部近傍の周辺においては、若干のセル断面の面積の変化を伴い、中心部近 傍においては非常に緩やかな曲率を伴う場合があるが、ハ-カム構造体 41の許容 寸法内での小さい寸法変化であり、実質的に略同一とみなすことができる。なお、ハ 二カム構造体 41の許容寸法としては、特に限定されることはないが、例えば、基準外 径寸法のおよそ ± 2%以下とすることができる。また、セル断面の面積が略同一とな る中心部近傍の長さについても特に制限はなぐ実質的に従来のキヤニング技術で 十分な面圧を付与できるのに必要な長さを有するようなものとすればよい。
[0076] 本実施の形態のハニカム構造体の製造方法においては、ハニカム成形体 42と焼 成用トチ 47との大きな焼成収縮率の差の影響で過度な外径変形或 、は割れを伴う ことがな 、ように焼成収縮率の差を所定の範囲に調整する必要もあり、焼成用トチ 47 としては、焼成されたものよりも、未焼成のものを用いることが好ましい。
[0077] また、本実施の形態のハニカム構造体の製造方法において、セル 43の流れ方向 における両方の端面 44, 45側の端部において漸減又は漸増するように構成された ハ-カム構造体 41を得る際には、図 27 (a)及び図 27 (b)に示すように、ハ-カム成 形体 42の両方の端面 44, 45に焼成用トチ 47を配設する。
[0078] このような本実施の形態のハ-カム構造体の製造方法によれば、セル 43のセル断 面の面積が、セル 43の流れ方向における中心部近傍の所定範囲にぉ 、て略同一 であるとともに、セル 43の流れ方向における少なくとも一方の端面 44側の端部にお いて漸減又は漸増するように構成されたノヽ-カム構造体 41を簡便に得ることができ る。例えば、上述した製造方法により、コージエライト質で、正方形セルの隔壁の厚さ 0. 11mm,セル密度 600個 Z平方インチ、外径 φ 90mm、長さ 110mmであり、その 両端面部近傍およそ 10mmを拡大させたノヽ-カム構造体を簡便に製造することがで きる。このハ-カム構造体は、外径 φ 90mmを基準寸法として、両側の端面の端部で の平均外径をおよそ 5%拡大させたものである。
[0079] 次に、第三の発明のハ-カム構造体の製造方法の一の実施の形態について説明 する。本実施の形態のハニカム構造体の製造方法は、成形材料を含む坏土をハニ カム状に成形して、図 28 (a)及び図 28 (b)に示すように、一方の端面 54から他方の 端面 55まで貫通する流体の流路となる複数のセル 53が区画形成された筒状のハ- カム成形体 52を得、得られたノヽ-カム成形体 52を焼成してハ-カム構成体 51を得 るハ-カム構造体の製造方法であって、所定のセル 53の一方の端面 54側の開口部 分に、ハニカム成形体 52と焼成時における収縮率 (焼成収縮率)が異なる目封止部 材 56を配設し、目封止部材 56を配設した状態でハニカム成形体 52を焼成すること により、それぞれのセル 53の目封止部材 56を配設した側の端面 54, 55側の端部に おける流体の流れ方向に垂直な断面 (セル断面)の面積を漸減又は漸増するように 変形させて、それぞれのセル 53のセル断面の面積力 セル 53の流れ方向における 中心部近傍の所定範囲において略同一であるとともに、セル 53の流れ方向における 少なくとも一方の端面 54, 55側の端部において漸減又は漸増するように構成された ハ-カム構造体 51を得るハ-カム構造体の製造方法である。なお、図 28 (a)及び図 28 (b)においては、ハ-カム成形体 52の両方の端面 54, 55に目封止部材 56を配 設し、両方の端面 54, 55側の端部を漸減又は漸増するように変形させた場合を示し ているが、例えば、一方の端面 54のみに目封止部材 56を配設して、一方の端面 54 側の端部を漸減又は漸増するように変形させてもょ 、。
[0080] 従来のハ-カム構造体の製造方法にお!、て目封止部材を配設する場合には、ハ 二カム成形体と目封止部材との焼成収縮率が略同一となるように工夫がされて 、た。 上述したように、本実施の形態のハ-カム構造体の製造方法においては、ハ-カム 成形体 52と焼成収縮率が異なる目封止部材 56を配設することで、目封止部材 56を 配設した部位を意図的に縮小又は拡大させて、セル 53の端部を漸減又は漸増する ように変形させる。例えば、ハニカム成形体 52の焼成収縮率が、目封止部材 56の焼 成収縮率よりも大きな場合には、相対的に目封止部材 56が拡大することとなり、セル 53の端部が漸増する。逆に、ハニカム成形体 52の焼成収縮率が、目封止部材 56の 焼成収縮率よりも小さな場合には、目封止部材 56の収縮にハ-カム成形体 52がひ きずられて、セル 53の端部が漸減する。
[0081] ハニカム成形体 52と目封止部材 56との焼成収縮率の差を所定の値に調整する方 法としては、例えば、原料調合割合や粒度を変えることを挙げることができる。また、 製品サイズやセル構造、目封止部材 56の深さによっても収縮差は変化するので、そ の都度、適宜決められるべきものである。
[0082] なお、本実施の形態のハ-カム構造体の製造方法においては、図 28 (a)及び図 2 8 (b)に示すように、目封止部材 56を配設した端面に焼成用トチ 57を配設した状態 で焼成を行ってもよい。
[0083] なお、ハ-カム成形体 52と目封止部材 56との焼成収縮率の差が大きくなりすぎる と、ついには焼成亀裂を生じることがあるため、ハ-カム成形体 52と目封止部材 56と の焼成収縮率の差を所定の値に調整する場合に、両者の焼成収縮率の差が 30% 以内となるように調整することが好ましい。例えば、ハ-カム成形体 52の焼成収縮率 力その場合には、目封止部材 56の焼成収縮率は、 0. 7〜1. 3であることが好ましい 。なお、この範囲については、製品サイズやセル構造、目封止部材 56の深さ等によ つても異なるため、その都度、適宜決められるべきものである。
[0084] このような本実施の形態のハ-カム構造体の製造方法によれば、セル 53のセル断 面の面積が、セル 53の流れ方向における中心部近傍の所定範囲にぉ 、て略同一 であるとともに、セル 53の流れ方向における少なくとも一方の端面 54側の端部にお いて漸減又は漸増するように構成されたノヽ-カム構造体 51を簡便に得ることができ る。なお、ハ-カム構造体 51が炭化珪素質セラミックの場合には、原料配向性は関 係ないが、コージエライト質セラミックハ-カム構造体においては、目封止部材 56が 配向していないので、製造の際には注意が必要である。例えば、上述した製造方法 により、コージエライト質で、正方形セルの隔壁の厚さ 0. 30mm,セル密度 300個 Z 平方インチ、外径 φ 143mm、長さ 152mm、 目封止深さ(セルの流体の流れ方向に おける目封じの長さ) 5mmであり、その両端面部近傍およそ 15mmを拡大させたノヽ 二カム構造体を簡便に製造することができる。このハ-カム構造体は、外径 φ 143m mを基準寸法として、両側の端面の端部での平均外径をおよそ 10%拡大させたもの である。
[0085] なお、本実施の形態のハ-カム構造体の製造方法にお!、ては、ハ-カム成形体 5 2をー且焼成してから、目封止部材 56を配設して再度、焼成することにより、焼成収 縮率の差を生じさせることができる。これはハ-カム成形体 52が既に焼成されており 、目封止部材 56を配設した後の焼成において寸法変化は非常に小さぐ実質的に 常に焼成収縮率を 1とみなせるからである。ハ-カム成形体 52が既に焼成されてい るので、ハ-カム成形体 52と目封止部材 56とが一体ィ匕し難くなり、目封止部材 56の 焼成収縮率が 1を超える場合には、ハ-カム成形体 52との間に隙間が生じる方向で あり、また、目封止部材 56の焼成収縮率が 1未満の場合には、ハニカム成形体 52の セル 53を押し広げるように力が作用する方向である。このため、本実施の形態のよう に端面の端部を拡大させる構造にぉ 、てはよ!/、が、端部を縮小させる他の実施の形 態の構造においては隙間が生じるだけとなり好ましくないこともある。
実施例
[0086] 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定 されるものではない。
[0087] ハ-カム状成形体を成形するための成形原料の主原料としては、耐熱性及び低熱 膨張性に優れるコージエライト質セラミックの原料として、平均粒径 5〜: LO /z mのカオ リン (AI O - 2SiO · 2Η O) 0〜20質量%、平均粒径15〜30 iu mのタルク(3MgO ·
2 3 2 2
4SiO ·Η 0) 37〜40質量%、平均粒径 1〜: LO /z mの水酸化アルミニウム 15〜45
2 2
質量0 /ο、平均粒径 4〜8 /ζ πιの酸化アルミニウム 0〜15質量0 /0、平均粒径 3〜100 mの溶融シリカ又は石英 10〜20質量%の組成物を主原料とするのが好ましい。この セラミック材料に、必要に応じての所望の添加剤を添加してもよい。添加剤としては、 ノインダ、媒液への分散を促進するための界面活性剤、気孔を形成するための造孔 材等を挙げることができる。バインダとしては、例えば、ヒドロキシプロピルメチルセル ロース、メチノレセノレロース、ヒドロキシェチノレセノレロース、力ノレボキシノレメチノレセノレロー ス、ポリビュルアルコール、ポリエチレンテレフタレート、ワックス、寒天等を挙げること ができ、界面活性剤としては、例えば、エチレングリコール、デキストリン、脂肪酸石鹼 、ポリアルコール等を挙げることができ、界面活性剤の添加量は、セラミック原料 100 質量部に対して、 0. 1〜5質量部が好ましい。造孔剤としては、例えば、グラフアイト、 コータス、小麦粉、澱粉、発泡系榭脂、吸水性榭脂、フエノール榭脂、ポリエチレンテ レフタレート、フライアッシュバルーン、シラスバルーン、シリカバルーン、アルミナゲル 、シリカゲル、有機質繊維、無機質繊維、中空繊維等を挙げることができる。これら添 加剤は、 目的に応じて 1種単独又は 2種以上組み合わせて用いることができる。 目封 止部材に含まれるバインダ、界面活性剤及び造孔材につ!/、ても前述のハ-カム構造 体の材質と同様に選択することができる。
[0088] セラミック材料は、通常、上述した主原料及び必要に応じて添加される添加物の混 合原料粉末 100質量部に対して、 10〜40質量部程度の水を投入後、混練し、可塑 性混合物とする。押出し成形は、真空土練機、ラム式押出し成形機等を用いて行うこ とができる。ハ-カム成形体の外形としては、例えば、端面の形状が真円又は楕円の 円柱、端面の形状が三角、四角等の多角形である角柱、これらの円柱、角柱の側面 力 Sくの字に湾曲した形状等を挙げることができ、ハ-カム成形体のセルの形状として は、例えば、断面形状が四角、八角等の多角形、真円、楕円等を挙げることができる 。こうして得られたノ、二カム成形体を乾燥する手段としては、特に限定されるものでは ないが、例えば、熱風乾燥、マイクロ波乾燥、誘電乾燥、減圧乾燥、真空乾燥、凍結 乾燥等を挙げることができ、各種方法で行うことが可能であるが、マイクロ波乾燥と熱 風乾燥又は、誘電乾燥と熱風乾燥を組み合わせた方法で乾燥することが好ま 、。 また、乾燥条件としては、 80〜150°Cで 10分〜 1時間乾燥するのが好ましい。他に 凍結乾燥、減圧乾燥、真空乾燥、遠赤外線乾燥等などの特殊な方法も適用できる。 次に乾燥されたノ、二カム成形体の両側の端面を所定の長さに切断加工する。
[0089] 次に、必要に応じてハ-カム成形体のセルの開口部に目封止部材を配設する。ま ず、マスキング副工程においてフィルムをノヽ-カム成形体の端面に配置する。フィル ム材質はポリエステルフィルムを使用する。フィルムの片面には粘着剤が塗布されて おり、フィルムをノ、二カム構造体の端面に貼り付ける。次に、 NC走査可能なレーザー 装置にて、ポリエステルフィルムを貼り付けたハ-カム構造体端面のセル開口部を千 鳥状に穿孔する。穿孔した際に、フィルムが溶ける影響で、孔の周囲が盛り上がる。
[0090] 目封止部材の主原料としては、耐熱性及び低熱膨張性に優れるコージエライト質セ ラミックの原料として、ハニカム状成形体との焼成後の熱膨張係数の差が小さな点で 、平均粒径 1〜20 μ mのカオリン 0〜20質量0 /0、平均粒径 5〜60 μ mのタルク 37〜 40質量%、平均粒径 0. 5〜20 111の水酸ィ匕ァルミ-ゥム15〜45質量%、平均粒 径 1〜20 μ mの酸化アルミニウム 0〜15質量0 /0、平均粒径 1〜200 μ mの溶融シリ 力又は石英 10〜20質量を主原料とするのが好ましい。ハ-カム成形体との焼成収 縮率のマッチング調整のために、コージエライト組成を維持しつつ、原料調合割合や 原料粒子径を所定の範囲内において変更する。実際に製作したハニカム成形体を 予め先行焼成して、その焼成収縮率を測定しておき、得られたハニカム成形体の焼 成収縮率とマッチングするように、 目封止部材の原料の調合割合や原料粒子径を調 整することで行われる。主にはシリカ原料によって調整が行われる。また、 目封止部 材に前述した造孔材を適量添加することで、目封止部材の気孔率を調整するととも に、焼成収縮率も調整することができる。最初はトライアンドエラーで焼成収縮率を調 整することになるが、実績を増すことで、予測することが可能となる。本実施例におい ては、ハ-カム構造体の基準外径のおよそ 30%以内の範囲内で、ハ-カム構造体 の端部が拡大或いは縮小するように制御した。なお、この値は目安であり、本発明の ハ-カム構造体がこれに限定されることはな 、。
[0091] 次に、充填副工程に移る。コージエライト原料に水、バインダ、分散剤等を入れて、 200dPa · s程度のスラリーを作り、目封止部材の原料を調整したスラリーを目封止用 容器に入れておき、千鳥状に穿孔されたフィルムが貼られたノヽ-カム成形体を容器 内に圧入し、容器内のスラリーを穿孔された孔カもセル内へ注入する。圧入完了後、 容器から取り出す。スラリーの充填深さ(セルの流体の流れ方向の長さ)は 5mmとし た。ここで、セルの入口側の端面における耐エロージョン性を向上させるために、従 来公知のセルの入口側の端面側を強化する手段を用いてもよ!、。
[0092] 次に、セルの開口部に充填したスラリーを乾燥するために、ハ-カム成形体の端面 に 120°Cの熱風を当ててフィルムを剥さずに約 5分乾燥する。熱風送風機、ホットプ レート、遠赤外線乾燥機で乾燥は可能である。この後に焼成することで目封止部材 を備えたコージエライト質のハ-カム構造体が得られる。焼成は 1410〜1440°Cの温 度で約 5時間行った。通常、単窯又はトンネル等の連続炉を用い焼成を行うことがで きる。また、昇温速度と冷却速度については、焼成する製品サイズにより、製品内部 での温度分布を均一化して製品内部での均一な焼成収縮と冷却収縮を実現するた めに、昇温速度と冷却速度の適正化が必要であり製造上は非常に重要なファクター である。
[0093] こうして、目封止部材を備えたコージエライト質のハ-カム構造体 (ノヽ二カムフィルタ ) (ハ-カム構造体の気孔率 60%、平均細孔径 25 m、直径 191mm、長さ 203mm 、隔壁の厚さ 300 /ζ πι、セル密度 300セル Ζ平方インチ)を得た。得られたノヽ-カム フィルタについて、 40〜800°Cの平均熱膨張係数を測定したところ、ハ-カム構造体 の隔壁部分は、 0. 6 X 10_6Z°Cであり、目封止部材は 0. 8 X 10_6Z°Cであった。 本実施例によって得られたノヽ-カム構造体 (実施例 1〜35)の各種仕様について表
Figure imgf000032_0001
Figure imgf000032_0002
0094
Figure imgf000033_0001
産業上の利用可能性
本発明のハ-カム構造体は、自動車排ガスをはじめとした各種内燃機関排気ガス の浄化触媒用担体や脱臭用触媒担体、各種濾過機器用フィルタ、熱交換器ユニット 、或いは燃料電池の改質触媒用担体等の化学反応機器用担体として好適に用いら れる。また、本発明のハ-カム構造体の製造方法は、本発明のハ-カム構造体を簡 便に製造することができる。

Claims

請求の範囲
[1] 一方の端面力 他方の端面まで貫通する流体の流路となる複数のセルを区画形成 する隔壁を備えた筒状のハ-カム構造体であって、
それぞれの前記セルの前記流体の流れ方向に垂直な断面 (セル断面)の面積が、 前記セルの前記流れ方向における中心部近傍の所定範囲において略同一であると ともに、前記セルの前記流れ方向における少なくとも一方の端面側の端部において 漸減又は漸増するように構成されたハ-カム構造体。
[2] 所定の前記セルの一方の前記端面側の開口部と、残余の前記セルの他方の前記 端面側の開口部とを封止する封止部材をさらに備えた請求項 1に記載のハニカム構 造体。
[3] 複数の前記セルを区画形成する前記隔壁の外周部分を覆う外壁をさらに備えた請 求項 1又は 2に記載のハ-カム構造体。
[4] それぞれの前記セルの前記セル断面の面積力 前記セルの前記流れ方向におけ る両方の端面側の端部において漸減又は漸増するように構成された請求項 1〜3の
V、ずれかに記載されたハ-カム構造体。
[5] 全ての前記セルの前記セル断面の面積力 少なくとも一方の前記端面側において 漸増又は漸減するように構成された請求項 1〜4の 、ずれかに記載のハ-カム構造 体。
[6] 前記少なくとも一方の端面側の端部における外径が、前記ハニカム構造体の中心 部近傍の外径に比して ±0. 5%を超えて漸減又は漸増するように構成された請求項
1〜5のいずれかに記載のハ-カム構造体。
[7] 前記セル断面の面積が、前記ハニカム構造体の軸方向の長さの 25%以内の長さ の端部にお 、て漸減又は漸増するように構成された請求項 1〜6の 、ずれかに記載 のハニカム構造体。
[8] 成形材料を含む坏土をハ-カム状に成形して、一方の端面から他方の端面まで貫 通する流体の流路となる複数のセルが区画形成された筒状のハ-カム成形体を得、 得られたノヽ-カム成形体を焼成してハ-カム構成体を得るハ-カム構造体の製造方 法であって、 得られた前記ハニカム成形体の少なくとも一方の前記端面に、前記ハニカム成形 体と焼成時における収縮率が異なる材料から構成された焼成用トチを配設し、前記 焼成用トチを配設した状態で前記ハニカム成形体を焼成することにより、それぞれの 前記セルの前記焼成用トチを配設した側の前記端面側の端部における前記流体の 流れ方向に垂直な断面 (セル断面)の面積を漸減又は漸増するように変形させて、そ れぞれの前記セルの前記セル断面の面積力 前記セルの前記流れ方向における中 心部近傍の所定範囲において略同一であるとともに、前記セルの前記流れ方向にお ける少なくとも一方の端面側の端部にぉ ヽて漸減又は漸増するように構成されたノヽ 二カム構造体を得るハニカム構造体の製造方法。
[9] 前記ハニカム成形体の両方の前記端面に、前記ハニカム成形体と焼成時における 収縮率が異なる材料から構成された前記焼成用トチを配設し、前記焼成用トチを配 設した状態で前記ハニカム成形体を焼成する請求項 8に記載のハニカム構造体の 製造方法。
[10] 成形材料を含む坏土をハニカム状に成形して、一方の端面から他方の端面まで貫 通する流体の流路となる複数のセルが区画形成された筒状のハ-カム成形体を得、 得られたノヽ-カム成形体を焼成してハ-カム構成体を得るハ-カム構造体の製造方 法であって、
所定の前記セルの一方の前記端面側の開口部分に、前記ハニカム成形体と焼成 時における収縮率が異なる目封止部材を配設し、前記目封止部材を配設した状態 で前記ハ-カム成形体を焼成することにより、それぞれの前記セルの前記目封止部 材を配設した側の前記端面側の端部における前記流体の流れ方向に垂直な断面( セル断面)の面積を漸減又は漸増するように変形させて、それぞれの前記セルの前 記セル断面の面積力 前記セルの前記流れ方向における中心部近傍の所定範囲に おいて略同一であるとともに、前記セルの前記流れ方向における少なくとも一方の端 面側の端部にぉ ヽて漸減又は漸増するように構成されたノ、二カム構造体を得るハ- カム構造体の製造方法。
[11] 所定の前記セル以外の残余の前記セルの他方の前記端面側の開口部分にも、前 記ハニカム成形体と焼成時における収縮率が異なる目封止部材を配設し、前記目封 止部材を配設した状態で前記ハニカム成形体を焼成する請求項 10に記載のハニカ ム構造体の製造方法。
PCT/JP2006/304653 2005-03-10 2006-03-09 ハニカム構造体、及びその製造方法 WO2006095835A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800077929A CN101137599B (zh) 2005-03-10 2006-03-09 蜂窝结构体及其制造方法
EP06715474A EP1857427B1 (en) 2005-03-10 2006-03-09 Honeycomb structure and method of manufacturing the same
JP2007507192A JP5185616B2 (ja) 2005-03-10 2006-03-09 ハニカム構造体
US11/889,146 US7897237B2 (en) 2005-03-10 2007-08-09 Honeycomb structure and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005067583 2005-03-10
JP2005-067583 2005-03-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/889,146 Continuation US7897237B2 (en) 2005-03-10 2007-08-09 Honeycomb structure and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2006095835A1 true WO2006095835A1 (ja) 2006-09-14

Family

ID=36953427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304653 WO2006095835A1 (ja) 2005-03-10 2006-03-09 ハニカム構造体、及びその製造方法

Country Status (5)

Country Link
US (1) US7897237B2 (ja)
EP (1) EP1857427B1 (ja)
JP (1) JP5185616B2 (ja)
CN (1) CN101137599B (ja)
WO (1) WO2006095835A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281039A (ja) * 2005-03-31 2006-10-19 Hitachi Metals Ltd セラミックハニカム構造体の製造方法
WO2008099454A1 (ja) * 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
JP2008212917A (ja) * 2007-02-09 2008-09-18 Ibiden Co Ltd ハニカム構造体および排気ガス処理装置
WO2008126335A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法
JP2009131780A (ja) * 2007-11-30 2009-06-18 Ngk Insulators Ltd ハニカム触媒体
JP2009233555A (ja) * 2008-03-26 2009-10-15 Ngk Insulators Ltd ハニカム構造体
JP2010104957A (ja) * 2008-10-31 2010-05-13 Ngk Insulators Ltd ハニカム構造体及びハニカム触媒体
JP2010528828A (ja) * 2007-05-14 2010-08-26 ジーイーオー2 テクノロジーズ,インク. 押出しセラミック生体溶解性繊維基材のための方法および装置
JP2010234333A (ja) * 2009-03-31 2010-10-21 Ngk Insulators Ltd 目封止ハニカム構造体、およびそれを用いたディーゼルパティキュレートフィルタ
JP2010536574A (ja) * 2007-08-24 2010-12-02 コーニング インコーポレイテッド 薄い多孔質セラミック壁を備えた壁流通式フィルタ
WO2011027837A1 (ja) * 2009-09-04 2011-03-10 日立金属株式会社 セラミックハニカム構造体及びその製造方法
JP2012153538A (ja) * 2011-01-21 2012-08-16 Ibiden Co Ltd ハニカム構造体の製造方法
WO2012141034A1 (ja) * 2011-04-11 2012-10-18 住友化学株式会社 ハニカム構造体
JP2012217932A (ja) * 2011-04-08 2012-11-12 Kyocera Corp ハニカム成形体の焼成方法およびこれを用いて得られるハニカム構造体ならびにこれを備えたガス処理装置
JP2013512181A (ja) * 2009-11-30 2013-04-11 コーニング インコーポレイテッド セル状セラミック未焼成体を熱的に脱脂するための方法および装置
JP2014069123A (ja) * 2012-09-28 2014-04-21 Ngk Insulators Ltd ハニカムフィルタ
JP2014195783A (ja) * 2013-03-29 2014-10-16 日本碍子株式会社 ハニカム構造体の製造方法およびハニカム構造体
WO2017033774A1 (ja) * 2015-08-25 2017-03-02 住友化学株式会社 ハニカムフィルタの製造方法
JP6122534B1 (ja) * 2016-06-13 2017-04-26 日本碍子株式会社 ハニカム構造体
JP6169227B1 (ja) * 2016-06-13 2017-07-26 日本碍子株式会社 ハニカムフィルタ
WO2018198915A1 (ja) * 2017-04-26 2018-11-01 日立金属株式会社 吸着構造体、吸着構造体ユニット及びそれらの製造方法
JP2019063787A (ja) * 2017-09-29 2019-04-25 日立金属株式会社 セラミックハニカムフィルタの製造方法
WO2020075612A1 (ja) * 2018-10-12 2020-04-16 イビデン株式会社 ハニカム構造体
JP7261627B2 (ja) 2019-03-19 2023-04-20 日本碍子株式会社 セラミックスハニカム構造体の製造方法
CN117900347A (zh) * 2024-03-15 2024-04-19 常州弘建新材料有限公司 一种蜂窝铝板边角压型设备

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101460230B (zh) * 2006-09-28 2012-02-01 日立金属株式会社 蜂窝陶瓷结构体及蜂窝陶瓷结构体的制造方法
DE102006057280A1 (de) * 2006-12-05 2008-06-12 Robert Bosch Gmbh Durch Extrudieren hergestelltes Filterelement zur Filterung von Abgasen einer Diesel-Brennkraftmaschine
EP2150512B1 (en) * 2007-05-31 2016-01-06 Corning Inc. Aluminum titanate ceramic forming green bodies with pore former and method of manufacturing ceramic articles
WO2009141874A1 (ja) * 2008-05-20 2009-11-26 イビデン株式会社 ハニカム構造体
CN101678347B (zh) * 2008-05-20 2012-10-03 揖斐电株式会社 蜂窝结构体以及废气净化装置
DE102009015420A1 (de) * 2009-03-27 2010-09-30 Emitec Gesellschaft Für Emissionstechnologie Mbh Wabenkörper für ein Abgasreinigungssystem
WO2012046320A1 (ja) * 2010-10-06 2012-04-12 イビデン株式会社 セラミック焼成体の製造方法、ハニカム構造体の製造方法、排ガス浄化装置の製造方法及び乾燥装置
JP5813965B2 (ja) * 2011-03-03 2015-11-17 日本碍子株式会社 ハニカム構造体及び排ガス浄化装置
CN102353081A (zh) * 2011-06-15 2012-02-15 朱巧荣 陶瓷板及其生产工艺
US10479734B2 (en) * 2013-08-15 2019-11-19 Corning Incorporated Method and apparatus for thermally debindering a cellular ceramic green body
JP6595194B2 (ja) * 2015-03-16 2019-10-23 日本碍子株式会社 ハニカム構造体
DE102015110997A1 (de) * 2015-07-08 2017-01-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Partikelfilter für ein Kraftfahrzeug
JP6649093B2 (ja) * 2016-01-19 2020-02-19 日本碍子株式会社 ハニカム構造体
JP6649777B2 (ja) * 2016-01-19 2020-02-19 日本碍子株式会社 ハニカム構造体
CN105863869B (zh) * 2016-04-26 2018-10-02 江苏台普动力机械有限公司 一种柴油机活塞顶部镶嵌耐磨层制备方法
EP3505244B1 (en) * 2016-08-26 2021-09-22 N.E. Chemcat Corporation Honeycomb structure, honeycomb structure type catalyst, and production methods therefor
JP2020509284A (ja) * 2017-02-11 2020-03-26 テコジェン インク.Techogen Inc. 排気ガス中間冷却およびチャージャ駆動式空気噴出装置を使用する2段内燃エンジン後処理システム
CN107327333B (zh) * 2017-07-11 2018-05-22 广州恒尚科技有限公司 三元催化器及其制备方法
US10814266B2 (en) 2017-11-24 2020-10-27 Ngk Insulators, Ltd. Honeycomb filter
CN112635964B (zh) * 2020-12-11 2021-12-03 电子科技大学 一种开缝蜂窝吸波结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202870A (ja) * 1986-02-20 1987-09-07 日本碍子株式会社 セラミツクスハニカム構造体の焼成方法
JPH01194916A (ja) * 1988-01-27 1989-08-04 Ibiden Co Ltd 炭化ケイ素質ハニカム状フィルターの製造方法
JPH01258715A (ja) * 1987-12-28 1989-10-16 Ibiden Co Ltd 炭化ケイ素質ハニカム状フィルター及びその製造方法
JPH02199067A (ja) * 1989-01-26 1990-08-07 Matsushita Electric Ind Co Ltd ハニカム状セラミックスの製造方法
JPH0585834A (ja) * 1991-09-30 1993-04-06 Ngk Insulators Ltd セラミツクスハニカム構造体の製造方法
JPH08119750A (ja) * 1994-10-24 1996-05-14 Nippon Soken Inc セラミックハニカム構造体の焼成方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294806A (en) * 1979-02-14 1981-10-13 Sakai Chemical Industry Co., Ltd. Method for preventing the wear of a monolithic catalyst by dusts
JPS614813A (ja) 1984-06-20 1986-01-10 Matsushita Electric Ind Co Ltd 燃焼排気ガス用微粒子トラツプ
JPS6110917A (ja) 1984-06-27 1986-01-18 株式会社東芝 交直変換装置の制御方法
US4786542A (en) * 1986-02-20 1988-11-22 Ngk Insulators, Ltd. Setters and firing of ceramic honeycomb structural bodies by using the same
JP3276548B2 (ja) 1995-12-06 2002-04-22 株式会社日本自動車部品総合研究所 排ガス浄化用セラミック触媒担体
DE60043233D1 (de) * 1999-02-18 2009-12-10 Corning Inc Durch extrusion von siliziumdioxid erhaltene wabenstruktur aus titanhaltigem quarzglas
JP4404497B2 (ja) * 2001-03-01 2010-01-27 日本碍子株式会社 ハニカムフィルター、及びその製造方法
JP4282941B2 (ja) * 2002-03-27 2009-06-24 日本碍子株式会社 ハニカム構造体及びその製造方法、並びにそれを使用した触媒体
JP4474633B2 (ja) * 2002-06-17 2010-06-09 日立金属株式会社 セラミックハニカム構造体の製造方法
EP1533032A4 (en) * 2002-06-17 2007-12-26 Hitachi Metals Ltd CERAMIC WAVE STRUCTURE, METHOD FOR THE PRODUCTION THEREOF AND MATERIAL MATERIAL FOR USE IN THE MANUFACTURE
JP4880581B2 (ja) * 2005-02-04 2012-02-22 イビデン株式会社 セラミックハニカム構造体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62202870A (ja) * 1986-02-20 1987-09-07 日本碍子株式会社 セラミツクスハニカム構造体の焼成方法
JPH01258715A (ja) * 1987-12-28 1989-10-16 Ibiden Co Ltd 炭化ケイ素質ハニカム状フィルター及びその製造方法
JPH01194916A (ja) * 1988-01-27 1989-08-04 Ibiden Co Ltd 炭化ケイ素質ハニカム状フィルターの製造方法
JPH02199067A (ja) * 1989-01-26 1990-08-07 Matsushita Electric Ind Co Ltd ハニカム状セラミックスの製造方法
JPH0585834A (ja) * 1991-09-30 1993-04-06 Ngk Insulators Ltd セラミツクスハニカム構造体の製造方法
JPH08119750A (ja) * 1994-10-24 1996-05-14 Nippon Soken Inc セラミックハニカム構造体の焼成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1857427A4 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281039A (ja) * 2005-03-31 2006-10-19 Hitachi Metals Ltd セラミックハニカム構造体の製造方法
KR100953292B1 (ko) * 2007-02-09 2010-04-20 이비덴 가부시키가이샤 허니콤 구조체 및 배기 가스 처리 장치
WO2008099454A1 (ja) * 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
EP1961930A1 (en) * 2007-02-09 2008-08-27 Ibiden Co., Ltd. Honeycomb structural body and exhaust gas treating apparatus
JP2008212917A (ja) * 2007-02-09 2008-09-18 Ibiden Co Ltd ハニカム構造体および排気ガス処理装置
US7811351B2 (en) 2007-02-09 2010-10-12 Ibiden Co., Ltd. Honeycomb structural body and exhaust gas treating apparatus
JPWO2008126335A1 (ja) * 2007-03-30 2010-07-22 イビデン株式会社 ハニカム構造体及びハニカム構造体の製造方法
US7862781B2 (en) 2007-03-30 2011-01-04 Ibiden Co., Ltd. Honeycomb structure and method for manufacturing honeycomb structure
WO2008126335A1 (ja) * 2007-03-30 2008-10-23 Ibiden Co., Ltd. ハニカム構造体及びハニカム構造体の製造方法
JP2010528828A (ja) * 2007-05-14 2010-08-26 ジーイーオー2 テクノロジーズ,インク. 押出しセラミック生体溶解性繊維基材のための方法および装置
JP2010536574A (ja) * 2007-08-24 2010-12-02 コーニング インコーポレイテッド 薄い多孔質セラミック壁を備えた壁流通式フィルタ
JP2009131780A (ja) * 2007-11-30 2009-06-18 Ngk Insulators Ltd ハニカム触媒体
JP2009233555A (ja) * 2008-03-26 2009-10-15 Ngk Insulators Ltd ハニカム構造体
JP2010104957A (ja) * 2008-10-31 2010-05-13 Ngk Insulators Ltd ハニカム構造体及びハニカム触媒体
JP2010234333A (ja) * 2009-03-31 2010-10-21 Ngk Insulators Ltd 目封止ハニカム構造体、およびそれを用いたディーゼルパティキュレートフィルタ
WO2011027837A1 (ja) * 2009-09-04 2011-03-10 日立金属株式会社 セラミックハニカム構造体及びその製造方法
US9074504B2 (en) 2009-09-04 2015-07-07 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
JP2014166635A (ja) * 2009-09-04 2014-09-11 Hitachi Metals Ltd セラミックハニカム構造体の製造方法
US9724633B2 (en) 2009-09-04 2017-08-08 Hitachi Metals, Ltd. Ceramic honeycomb structure and its production method
JP5630437B2 (ja) * 2009-09-04 2014-11-26 日立金属株式会社 セラミックハニカム構造体
JP2013512181A (ja) * 2009-11-30 2013-04-11 コーニング インコーポレイテッド セル状セラミック未焼成体を熱的に脱脂するための方法および装置
JP2012153538A (ja) * 2011-01-21 2012-08-16 Ibiden Co Ltd ハニカム構造体の製造方法
JP2012217932A (ja) * 2011-04-08 2012-11-12 Kyocera Corp ハニカム成形体の焼成方法およびこれを用いて得られるハニカム構造体ならびにこれを備えたガス処理装置
WO2012141034A1 (ja) * 2011-04-11 2012-10-18 住友化学株式会社 ハニカム構造体
JP2014069123A (ja) * 2012-09-28 2014-04-21 Ngk Insulators Ltd ハニカムフィルタ
JP2014195783A (ja) * 2013-03-29 2014-10-16 日本碍子株式会社 ハニカム構造体の製造方法およびハニカム構造体
WO2017033774A1 (ja) * 2015-08-25 2017-03-02 住友化学株式会社 ハニカムフィルタの製造方法
JP6122534B1 (ja) * 2016-06-13 2017-04-26 日本碍子株式会社 ハニカム構造体
JP6169227B1 (ja) * 2016-06-13 2017-07-26 日本碍子株式会社 ハニカムフィルタ
JP2017221871A (ja) * 2016-06-13 2017-12-21 日本碍子株式会社 ハニカムフィルタ
JP2017221870A (ja) * 2016-06-13 2017-12-21 日本碍子株式会社 ハニカム構造体
WO2018198915A1 (ja) * 2017-04-26 2018-11-01 日立金属株式会社 吸着構造体、吸着構造体ユニット及びそれらの製造方法
JP2018183745A (ja) * 2017-04-26 2018-11-22 日立金属株式会社 吸着構造体、吸着構造体ユニット及びそれらの製造方法
US11472718B2 (en) 2017-04-26 2022-10-18 Hitachi Metals, Ltd. Adsorption structure, adsorption structure unit, and method for manufacturing same
JP2019063787A (ja) * 2017-09-29 2019-04-25 日立金属株式会社 セラミックハニカムフィルタの製造方法
JP7151295B2 (ja) 2017-09-29 2022-10-12 日立金属株式会社 セラミックハニカムフィルタの製造方法
WO2020075612A1 (ja) * 2018-10-12 2020-04-16 イビデン株式会社 ハニカム構造体
JP7261627B2 (ja) 2019-03-19 2023-04-20 日本碍子株式会社 セラミックスハニカム構造体の製造方法
CN117900347A (zh) * 2024-03-15 2024-04-19 常州弘建新材料有限公司 一种蜂窝铝板边角压型设备
CN117900347B (zh) * 2024-03-15 2024-05-24 常州弘建新材料有限公司 一种蜂窝铝板边角压型设备

Also Published As

Publication number Publication date
CN101137599A (zh) 2008-03-05
JPWO2006095835A1 (ja) 2008-08-21
JP5185616B2 (ja) 2013-04-17
EP1857427B1 (en) 2012-11-07
EP1857427A4 (en) 2011-07-20
CN101137599B (zh) 2011-01-19
US7897237B2 (en) 2011-03-01
EP1857427A1 (en) 2007-11-21
US20090011176A1 (en) 2009-01-08

Similar Documents

Publication Publication Date Title
JP5185616B2 (ja) ハニカム構造体
US7611560B2 (en) Method of manufacturing plugged honeycomb structure, and plugged honeycomb structure
JP3983117B2 (ja) ハニカム構造体及びその製造方法
JP6140509B2 (ja) ウォールフロー型排ガス浄化フィルタ
KR100602867B1 (ko) 벌집형 필터
JP4421858B2 (ja) ハニカム構造体及びその製造方法
JP2004000896A (ja) ハニカムフィルター
US8999481B2 (en) Ceramic honeycomb filter with enhanced thermal shock resistance
WO2003031023A1 (fr) Filtre en nid d'abeilles
WO2004033070A1 (ja) ハニカム構造体
JP4373177B2 (ja) ハニカム構造体、その製造方法及びキャニング構造体
JP2018167200A (ja) ハニカムフィルタ
JP4426381B2 (ja) ハニカム構造体及びその製造方法
JP2005144250A (ja) ハニカム構造体
JP2011056463A (ja) ハニカム構造体
EP2221099B1 (en) Honeycomb structure
JP2008100408A (ja) セラミックスハニカム構造体
JP4699702B2 (ja) ハニカム構造体及びその製造方法
US8911849B2 (en) Honeycomb structure
US11260383B2 (en) Honeycomb structure
JP2008137872A (ja) ハニカム構造体
EP2236190B1 (en) Honeycomb filter and manufacturing method of the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680007792.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507192

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006715474

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006715474

Country of ref document: EP