WO2020075612A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2020075612A1
WO2020075612A1 PCT/JP2019/039055 JP2019039055W WO2020075612A1 WO 2020075612 A1 WO2020075612 A1 WO 2020075612A1 JP 2019039055 W JP2019039055 W JP 2019039055W WO 2020075612 A1 WO2020075612 A1 WO 2020075612A1
Authority
WO
WIPO (PCT)
Prior art keywords
honeycomb structure
exhaust gas
longitudinal direction
cross
cell
Prior art date
Application number
PCT/JP2019/039055
Other languages
English (en)
French (fr)
Inventor
修平 早川
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2020075612A1 publication Critical patent/WO2020075612A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present invention relates to a honeycomb structure.
  • the exhaust gas discharged from an internal combustion engine such as a gasoline engine or a diesel engine contains particulates such as soot (hereinafter, also referred to as PM), and in recent years, this PM may be harmful to the environment or the human body. It's a problem. Moreover, since harmful gas components such as CO, HC or NOx are also contained in the exhaust gas, there is concern about the effect of these harmful gas components on the environment or the human body.
  • titanic acid is used as an exhaust gas purifying apparatus for collecting PM in exhaust gas by connecting with an internal combustion engine and purifying harmful gas components such as CO, HC or NOx contained in the exhaust gas.
  • Various honeycomb structures made of porous ceramics such as aluminum, cordierite, and silicon carbide have been proposed.
  • Patent Document 1 discloses a honeycomb structure in which a plurality of holes are opened on an end face of a column body, and a plurality of through holes defined by partition walls are opened on the end face of the column body in a green honeycomb molded body, A part of the plurality of through-holes in the central portion of the end face is sealed, and the outer peripheral portion of the end face has a chamfered portion whose outer diameter continuously decreases as it reaches the end face, and the outer peripheral portion of the end face.
  • a honeycomb structure in which the through holes are sealed and the green honeycomb molded body is fired is disclosed.
  • the outer peripheral portion of the end face has a chamfered portion whose outer diameter continuously decreases toward the end face, and the through hole of the outer peripheral portion of the end face is sealed. Therefore, there is a problem that the filtration area becomes small.
  • Patent Document 1 when an attempt is made to manufacture a honeycomb structure in which the outer diameter of the central portion in the longitudinal direction is larger than the outer diameter of the end portion without sealing the through hole in the outer peripheral portion, After cutting the outer periphery so that the outer diameter of the part is smaller than the outer diameter of the central part, apply the paste of the raw material composition to the outer peripheral region including the part where the through holes are exposed, and dry and degrease.
  • the paste of the raw material composition to the outer peripheral region including the part where the through holes are exposed, and dry and degrease.
  • the present invention has been made in view of such a problem, can be manufactured at low cost, both ends of the through hole adjacent to the outer peripheral portion is not sealed, the longitudinal direction of the central portion in the longitudinal direction. It is an object of the present invention to provide a honeycomb structure having a cross-sectional area perpendicular to the larger than the area of the end face.
  • the honeycomb structure of the present invention is a porous cell partition wall that partitions and forms a plurality of cells that are channels of exhaust gas, and an exhaust gas introduction cell in which the end surface on the exhaust gas inlet side is opened and the end surface on the exhaust gas outlet side is closed.
  • a honeycomb structure including an exhaust gas discharge cell in which an end surface on the exhaust gas outlet side is opened and an end surface on the exhaust gas inlet side is sealed,
  • the cross-sectional area of the cross section perpendicular to the longitudinal direction of the central portion in the longitudinal direction of the honeycomb structure is the end area of the honeycomb structure. It is characterized by being larger than the area.
  • the end face of the exhaust gas introduction cell on the exhaust gas outlet side and the end face of the exhaust gas discharge cell on the exhaust gas inlet side are sealed by filling a part including the end face with a sealant. Rather than being present, it means that the cross-sectional shape perpendicular to the longitudinal direction of the cell is reduced as it approaches the end face in the end region, the area of the cross section becomes 0 at the end face, and the cell is closed.
  • the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell and the exhaust gas discharge cell is enlarged or reduced as it approaches the end face. Since the cross-sectional area of the cross section perpendicular to the longitudinal direction of the central portion of the longitudinal direction of the honeycomb structure is larger than the area of the end face of the honeycomb structure, the honeycomb structure is used as a filter for exhaust gas purification. When holding the filter, it can be firmly held with a holding sealing material made of inorganic fiber or the like for holding the filter, and the filter does not fall off or come out of the holding sealing material even when the holding force is lowered. It can be surely prevented.
  • the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell and the exhaust gas discharge cell is enlarged or reduced as it approaches the end surface, the exhaust gas inlet side and the outlet Since the opening ratio is high on the side end face, the resistance when exhaust gas flows into and out of the honeycomb structure becomes small, and the pressure loss can be sufficiently reduced.
  • both ends of the through holes adjacent to the outer periphery are crushed and not sealed, so that the effective filtration area can be increased.
  • the ratio of the cross-sectional area of the cross section perpendicular to the longitudinal direction of the central portion in the longitudinal direction of the honeycomb structure to the area of the end face of the honeycomb structure is 1.01 to 1.15. Is desirable.
  • the holding sealing material holds the honeycomb structure. The ability to do so becomes insufficient, and the honeycomb structure may fall off from the holding sealing material.
  • the ratio of the cross-sectional area of the cross section perpendicular to the longitudinal direction of the central portion in the longitudinal direction of the honeycomb structure to the area of the end face of the honeycomb structure exceeds 1.15, it becomes difficult to manufacture the honeycomb structure. In addition, when a large thermal stress is generated due to rapid heating or cooling, the honeycomb structure is likely to be damaged.
  • the ratio of the cross-sectional area of the cross section perpendicular to the longitudinal direction of the central portion in the longitudinal direction of the honeycomb structure to the cross-sectional area of the cross section perpendicular to the longitudinal direction at the end face of the internal region is 1. It is desirable that it is from 01 to 1.10.
  • the ratio of the cross-sectional area of the cross section perpendicular to the longitudinal direction of the central portion in the longitudinal direction of the honeycomb structure to the cross-sectional area of the cross section perpendicular to the longitudinal direction at the end face of the internal region that is, (honeycomb structure Of (the cross-sectional area of the cross section perpendicular to the longitudinal direction of the central part of the longitudinal direction) / (the cross-sectional area of the cross section perpendicular to the longitudinal direction at the end face of the internal region of the honeycomb structure) is 1.01 to 1.10. It can be held more firmly and can be prevented from falling off.
  • the length in the longitudinal direction of the honeycomb structure is preferably 75 to 400 mm.
  • the honeycomb structure of the present invention when the length in the longitudinal direction of the honeycomb structure is 75 to 400 mm, the distance between the central portion and the end portion is relatively short, and therefore the inclination of the outer peripheral portion is relatively large. Hence, the honeycomb structure can be more reliably held by the holding sealing material, and falling off can be prevented.
  • the length of the honeycomb structure in the longitudinal direction is less than 75 mm, the length of the honeycomb structure is too short, and thus the resistance when exhaust gas flows into and out of the honeycomb structure is reduced. The effect is less likely to be exhibited.
  • the length of the honeycomb structure in the longitudinal direction exceeds 400 mm, the length of the honeycomb structure is too long, so that the effect of improving the holding force becomes difficult to be exhibited.
  • the length of the cells in the end region in the longitudinal direction is preferably 1 to 10 mm.
  • the resistance at which the exhaust gas is introduced into the cells at the exhaust gas inlet side and the exhaust gas outlet side at the exhaust gas outlet side Since the resistance of the exhaust gas discharged from the inside of the cell can be further reduced, the pressure loss can be further reduced.
  • the honeycomb structure of the present invention when the length of the cells in the end region in the longitudinal direction is less than 1 mm, the resistance at the time of introducing the exhaust gas into the cells on the exhaust gas inlet side increases, and the exhaust gas outlet On the side, since the resistance when exhaust gas is discharged becomes large, it is not possible to sufficiently reduce the pressure loss. On the other hand, when the length of the cell in the end region in the longitudinal direction exceeds 10 mm, such a structure is formed. It becomes difficult to manufacture the honeycomb structure.
  • the thickness of the cell partition wall in the end region is 0.1 to 0.5 mm.
  • the thickness of the cell partition wall in the end region is 0.1 to 0.5 mm, the thickness of the cell partition wall is sufficiently reduced without lowering the compressive strength. Therefore, the pressure loss can be sufficiently reduced.
  • the thickness of the cell partition wall in the end region is less than 0.1 mm, the thickness of the cell partition wall becomes too thin, which lowers the compressive strength.
  • the thickness of the cell partition wall in the end region exceeds 0.5 mm, the thickness of the cell partition wall is too thick, and it becomes difficult to sufficiently reduce the pressure loss.
  • the cross-sectional shape of the cells in the inner region which is perpendicular to the longitudinal direction, be quadrangular.
  • the cross-sectional shape perpendicular to the longitudinal direction of the cells in the internal region is a quadrangle, and in manufacturing the honeycomb structure, in the end region, a cross-section perpendicular to the longitudinal direction of the cells. The shape can be easily expanded or reduced as it approaches the end face, and a honeycomb structure having a sufficiently low pressure loss can be realized.
  • the honeycomb structure of the present invention it is desirable that the honeycomb structure is made of one honeycomb fired body having an outer peripheral wall on the outer periphery.
  • the opening ratio at the end face can be increased due to the absence of the adhesive layer, so that the pressure loss reducing effect is further improved. Can be demonstrated.
  • the honeycomb fired body is preferably made of cordierite or aluminum titanate.
  • the honeycomb fired body when the honeycomb fired body is made of cordierite or aluminum titanate, since the ceramic is a material having a low coefficient of thermal expansion, when large thermal stress occurs during regeneration or the like. Even in this case, the honeycomb structure is resistant to cracks.
  • the cell partition walls have a porosity of 35 to 65%.
  • the porosity of the cell partition wall is 35 to 65%, the cell partition wall can satisfactorily trap PM in the exhaust gas, and the pressure caused by the cell partition wall It is possible to suppress an increase in loss. Therefore, the pressure loss can be further reduced.
  • the porosity of the cell partition walls is less than 35%, the proportion of the pores of the cell partition walls is too small, so that the exhaust gas hardly passes through the cell partition walls, and the pressure loss when the exhaust gas passes through the cell partition walls increases.
  • the porosity of the cell partition walls exceeds 65%, the mechanical properties of the cell partition walls are low, and cracks are likely to occur during reproduction or the like.
  • the average pore diameter of the pores contained in the cell partition walls is preferably 5 to 30 ⁇ m.
  • the average pore diameter of the pores contained in the cell partition walls is 5 to 30 ⁇ m, PM can be collected with high collection efficiency while suppressing an increase in pressure loss.
  • the average pore diameter of the pores contained in the cell partition walls is less than 5 ⁇ m, the pores are too small, and the pressure loss when exhaust gas permeates the cell partition walls increases. On the other hand, if the average pore diameter of the pores contained in the cell partition wall exceeds 30 ⁇ m, the pore diameter becomes too large, and the PM trapping efficiency decreases.
  • FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention
  • FIG. 1 (b) is a sectional view taken along the line AA in FIG. 1 (a).
  • c) is an end view as seen from one end surface side.
  • FIG. 2A is a perspective view schematically showing the unsealed honeycomb molded body produced by the molding process
  • FIG. 2B is the unsealed honeycomb molded body shown in FIG. 2A.
  • FIG. 9 is a sectional view taken along line BB of FIG. 3 (a) to 3 (c) are explanatory views schematically showing the step of making a certain region including the end face of the unsealed honeycomb molded body a region having a large amount of water.
  • FIG. 4 is an explanatory diagram schematically showing a state of a remolding step of the unsealed honeycomb molded body.
  • FIG. 5 is a cross-sectional view schematically showing a state of a remolding step of the unsealed honeycomb molded body.
  • 6 (a) to 6 (d) are explanatory views schematically showing the steps of manufacturing the honeycomb structure of the present invention using the sealed honeycomb formed body.
  • the honeycomb structure of the present invention is a porous cell partition wall that partitions and forms a plurality of cells that are channels of exhaust gas, and an exhaust gas introduction cell in which the end surface on the exhaust gas inlet side is opened and the end surface on the exhaust gas outlet side is closed.
  • a honeycomb structure including an exhaust gas discharge cell in which an end surface on the exhaust gas outlet side is opened and an end surface on the exhaust gas inlet side is sealed,
  • the cross-sectional area of the cross section perpendicular to the longitudinal direction of the central portion in the longitudinal direction of the honeycomb structure is the end area of the honeycomb structure. It is characterized by being larger than the area.
  • FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention
  • FIG. 1 (b) is a sectional view taken along the line AA in FIG. 1 (a).
  • c) is an end view as seen from one end surface side.
  • the honeycomb structure 10 shown in FIGS. 1 (a) and 1 (b) has a porous cell partition wall 11 for partitioning and forming a plurality of cells 12 and 13 serving as exhaust gas flow paths, and an end face 10a on the exhaust gas inlet side.
  • An exhaust gas introduction cell 12 that is opened and has an end face 10b on the exhaust gas outlet side sealed, and an exhaust gas discharge cell 13 that has an end face 10b on the exhaust gas outlet side opened and the end face 10a on the exhaust gas inlet side are sealed,
  • the introduction cell 12 and the exhaust gas discharge cell 13 have an inner region 10B having a constant cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell 12 and the exhaust gas discharge cell 13, and the longitudinal direction of the exhaust gas introduction cell 12 and the exhaust gas discharge cell 13 (Fig. In FIG. 1 (a), a cross-sectional shape perpendicular to the double-headed arrow (1) includes end regions 10A and 10C that are enlarged or reduced as they approach the end face and are sealed.
  • the honeycomb fired body is also a honeycomb structure.
  • the cross-sectional area D 1 of the cross section perpendicular to the longitudinal direction of the central portion 10c in the longitudinal direction of the honeycomb structure 10 is larger than the area D 2 of the end faces 10a and 10b of the honeycomb structure 10. .
  • the honeycomb structure 10 when used as a filter for purifying exhaust gas, it can be firmly held by a holding sealing material made of inorganic fiber or the like for holding the filter, and the filter falls off or comes out of the holding sealing material. Even if the holding pressure by the holding sealing material is lowered, it is possible to reliably prevent the occurrence of the occurrence.
  • the central portion 10c in the longitudinal direction of the honeycomb structure 10 refers to a half of the length of the honeycomb structure.
  • the cross-sectional shapes of the exhaust gas introduction cell 12 and the exhaust gas discharge cell 13 which are perpendicular to the longitudinal direction are enlarged or reduced as they approach the end surface, and the exhaust gas inlet side and Since the aperture ratio is high at the end face on the outlet side, the resistance when exhaust gas flows into and out of the honeycomb structure 10 becomes small, and the pressure loss can be sufficiently reduced.
  • the ratio (D 2 ) of the cross-sectional area (D 2 ) of the cross section perpendicular to the longitudinal direction of the central portion 10c in the longitudinal direction of the honeycomb structure to the area (D 1 ) of the end face of the honeycomb structure. / D 1 ) is preferably 1.01 to 1.15. Further, the ratio of the cross-sectional area (D 2 ) of the cross section perpendicular to the longitudinal direction of the central portion in the longitudinal direction of the honeycomb structure to the cross-sectional area (D 3 ) of the cross section perpendicular to the longitudinal direction at the end face of the internal region is 1 It is desirable to be 0.01 to 1.10. When D 2 / D 1 is 1.01 to 1.15 and D 2 / D 3 is 1.01 to 1.10, the above-mentioned holding sealing material can more firmly hold the honeycomb structure. Therefore, it is possible to reliably prevent the dropout.
  • the length in the longitudinal direction of the honeycomb structure is preferably 75 to 400 mm.
  • the honeycomb structure of the present invention when the length in the longitudinal direction of the honeycomb structure is 75 to 400 mm, the distance between the central portion and the end portion is relatively short, and therefore the inclination of the outer peripheral portion becomes steep. With the holding sealing material, the honeycomb structure can be held more reliably, and falling off can be prevented.
  • the length of the cells in the end region in the longitudinal direction is preferably 1 to 10 mm.
  • the resistance at which the exhaust gas is introduced into the cells at the exhaust gas inlet side and the exhaust gas outlet side at the exhaust gas outlet side Since the resistance of the exhaust gas discharged from the inside of the cell can be further reduced, the pressure loss can be further reduced.
  • the above-mentioned end region refers to both a region into which exhaust gas flows and a region from which exhaust gas flows out.
  • the thickness of the cell partition wall in the end region is preferably 0.1 to 0.5 mm.
  • the thickness of the cell partition wall in the inner region is preferably 0.12 to 0.4 mm.
  • the shape of the honeycomb structure of the present invention is not limited to a columnar shape, and examples thereof include a prismatic shape, an elliptic cylindrical shape, an oblong cylindrical shape, and a round chamfered prismatic shape (for example, a round chamfered triangular pillar). .
  • the cross-sectional shape of the inner region perpendicular to the longitudinal direction of the cells is not limited to a quadrangle, and may be a triangle, a hexagon, or an octagon, but a quadrangle is preferable.
  • the density of cells in a cross section perpendicular to the longitudinal direction of the honeycomb fired body is preferably 31 to 155 cells / cm 2 (200 to 1000 cells / inch 2 ).
  • the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
  • the honeycomb structure of the present invention may be composed of one honeycomb fired body having an outer peripheral wall on the outer periphery, or may be provided with a plurality of honeycomb fired bodies, and the plurality of honeycomb fired bodies are adhesive.
  • the honeycomb fired body has one outer peripheral wall having an outer peripheral wall.
  • the material constituting the honeycomb structure of the present invention is not particularly limited, and examples thereof include carbide ceramics such as silicon carbide, titanium carbide, tantalum carbide, and tungsten carbide, and nitrides such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride.
  • carbide ceramics such as silicon carbide, titanium carbide, tantalum carbide, and tungsten carbide
  • nitrides such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride.
  • examples include ceramics, alumina, zirconia, cordierite, mullite, oxide ceramics such as aluminum titanate, and silicon-containing silicon carbide, but the honeycomb structure is composed of one honeycomb fired body having an outer peripheral wall on the outer periphery. In this case, cordierite or aluminum titanate is preferable.
  • the honeycomb fired body is made of cordierite or aluminum titanate, since the ceramic is a material having a low coefficient of thermal expansion, even when a large thermal stress occurs during regeneration, cracks and the like This is because the honeycomb structure does not easily occur.
  • the cell partition walls have a porosity of 35 to 65%.
  • the porosity of the cell partition wall is 35 to 65%, the cell partition wall can satisfactorily trap PM in the exhaust gas, and the pressure caused by the cell partition wall It is possible to suppress an increase in loss. Therefore, the pressure loss can be further reduced.
  • the average pore diameter of the pores contained in the cell partition wall is preferably 5 to 30 ⁇ m.
  • the average pore diameter of the pores contained in the cell partition walls is 5 to 30 ⁇ m
  • PM can be collected with high collection efficiency while suppressing an increase in pressure loss.
  • the porosity and the average pore diameter are measured by a mercury intrusion method under the conditions of a contact angle of 130 ° and a surface tension of 485 mN / m.
  • silica and magnesia also have a role as a firing aid, but as the firing aid, in addition to silica and magnesia, oxides of Y, La, Na, K, Ca, Sr, and Ba are used. It may be used. If necessary, the following additives are added to these mixed powders to obtain a raw material composition.
  • the molding aid include ethylene glycol, dextrin, fatty acid, fatty acid soap, and polyalcohol.
  • the organic binder include hydrophilic organic polymers such as carboxymethyl cellulose, polyvinyl alcohol, methyl cellulose and ethyl cellulose.
  • Examples of the dispersion medium include a dispersion medium composed of only water or a dispersion medium composed of 50% by volume or more of water and an organic solvent.
  • examples of the organic solvent include alcohols such as benzene and methanol.
  • examples of the pore-forming agent include balloons, which are minute hollow spheres, spherical acrylic particles, graphite, and starch.
  • balloons include alumina balloons, glass micro balloons, shirasu balloons, fly ash (FA) balloons, and mullite balloons.
  • the raw material composition may further contain other components.
  • other components include plasticizers, dispersants, and lubricants.
  • plasticizers include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether.
  • dispersant include sorbitan fatty acid ester.
  • lubricant include glycerin.
  • the molding step is a step of molding the raw material composition obtained in the mixing step to produce an unsealed honeycomb molded body.
  • the unsealed honeycomb molded body can be produced by, for example, extruding the raw material composition using an extrusion die. That is, the unsealed honeycomb molded body is manufactured by extruding the tubular outer peripheral wall of the honeycomb structure and the wall portion constituting the partition wall at one time.
  • a molded body corresponding to a part of the shape of the honeycomb structure may be molded. That is, a honeycomb molded body having the same shape as the honeycomb structure may be manufactured by molding a molded body corresponding to a part of the shape of the honeycomb structure and combining the molded bodies.
  • FIG. 2A is a perspective view schematically showing the unsealed honeycomb molded body produced by the molding process
  • FIG. 2B is the unsealed honeycomb molded body shown in FIG. 2A.
  • FIG. 9 is a sectional view taken along line BB of FIG.
  • the cross-sectional shape of the cells 22 and 23 perpendicular to the longitudinal direction is a square, and the shapes of the cells 22 and 23 on the end faces 20a and 20b are also the same square as a result of the molding process.
  • 3 (a) to 3 (c) are explanatory views schematically showing the step of making a certain region including the end face of the unsealed honeycomb molded body a region having a large amount of water.
  • FIG. 3A shows an unsealed honeycomb molded body 20 that has undergone the molding process.
  • FIG. 4 is an explanatory view schematically showing a state of the remolding step of the unsealed honeycomb molded body
  • FIG. 5 is a sectional view schematically showing a state of the remolding step of the unsealed honeycomb molded body. is there.
  • a taper including a support portion 43, a base portion 41 fixed on the support portion 43, and a large number of quadrangular pyramid-shaped tip portions 42 formed on the base portion 41.
  • a corner portion 42c which is a boundary portion between the four flat surfaces 42b forming the quadrangular pyramid of the tip portion 42, forms one side 21a of the cell partition wall 21 in the end surface 20a of the unsealed honeycomb molded body 20.
  • the taper jig 40 is pushed toward the center of the unsealed honeycomb molded body 20.
  • the front end portion 42 has a front end portion bottom surface 42 a bonded to the base portion 41.
  • the portion corresponding to the end region of the cell 22 into which the tip 42 is pushed has a shape in which the cross-sectional shape perpendicular to the longitudinal direction of the cell is enlarged as it approaches the end face, and the cell into which the tip 42 is pushed.
  • the portions corresponding to the end regions of the cells 23 existing on the upper, lower, left, and right sides of the cell 22 are reduced in shape as the cross-sectional shape perpendicular to the longitudinal direction of the cells 23 approaches the end surface, and become a sealed shape.
  • the square of the cell 12 on the end face 10a is the same as that of the honeycomb structure 10 shown in FIG. The shape is obtained by rotating a square by 45 °.
  • 6 (a) to 6 (d) are explanatory views schematically showing the steps of manufacturing the honeycomb structure of the present invention using the sealed honeycomb formed body 30.
  • the end face of the sealed honeycomb molded body 30 is heated at 80 to 300 ° C. for 1 to 120 seconds using a far infrared (IR) dryer 60 as shown in FIG.
  • IR far infrared
  • the microwave dryer 70 is used to heat at an output of 500 to 6000 kW for 1 to 20 minutes at a pressure of 0.05 to 1 atm, and then to a state shown in FIG. 6 (c).
  • the hot air dryer 80 is used to heat at 90 to 130 ° C.
  • the sealed honeycomb molded body 30 ' is carried into the firing furnace 90, and degreased at 250 to 400 ° C. and an oxygen concentration of 5% by volume to the atmosphere, and then 1400 to 1600 ° C. Bake at.
  • the reaction with titania proceeds from the surface of alumina to form an aluminum titanate phase.
  • the firing may be performed using a continuous furnace.
  • the firing temperature is preferably in the range of 1450 to 1550 ° C.
  • the firing time is not particularly limited, but the firing temperature is preferably maintained for 1 to 20 hours, more preferably 1 to 10 hours.
  • the firing step be performed in an air atmosphere.
  • the oxygen concentration may be adjusted by mixing an inert gas such as nitrogen gas or argon gas into the air atmosphere.
  • the honeycomb structure of the present invention can be manufactured through the above steps.
  • Example 1 a raw material composition having the following composition was prepared. Fine titania powder having D50 of 0.6 ⁇ m: 11.1% by weight, coarse titania powder having D50 of 13.0 ⁇ m: 11.1% by weight, alumina powder having D50 of 15.9 ⁇ m: 30.4% by weight, D50 of 1 .1 ⁇ m silica powder: 2.8% by weight, D50 3.8 ⁇ m magnesia powder: 1.4% by weight, D50 31.9 ⁇ m acrylic resin (pore forming material): 18.5% by weight, methylcellulose (organic A binder having a composition of 7.1% by weight, a molding aid (ester type nonion): 4.7% by weight, and ion-exchanged water (dispersion medium): 12.9% by weight are mixed with a mixer. A raw material composition was prepared.
  • the prepared raw material composition is put into an extrusion molding machine and subjected to extrusion molding to have an unsealed honeycomb molded body 20 having a shape shown in FIGS. 2A and 2B and cells not sealed. Was produced.
  • a region including both end faces 20a, 20b is formed by spraying water droplets 51 on both end faces of the unsealed honeycomb molded body 20 by using the sprayer 50 and attaching the water droplets 51 to both end faces 20a, 20b (see FIG. 3 (b)).
  • a water-rich region was formed in W (see FIG. 3C).
  • the taper jig 40 made of aluminum was used to perform remolding to manufacture the sealed honeycomb molded body 30.
  • the distance (V: valley width shown in FIG. 5) between the tip portions 42 for forming the end surface 20a of the unsealed honeycomb molded body 20 is set to 0.13 mm, and the tip of the quadrangular pyramid shape is formed.
  • the angle ⁇ between the flat surface 42b of the portion 42 and a surface perpendicular to the tip forming surface 41a (tip bottom 42a) on which the tip 42 of the base 41 is formed is set to 12.5 ° (FIG. 4 and FIG. 5).
  • the far-infrared (IR) dryer 60 is used to heat the end face of the sealed honeycomb formed body 30 obtained through the re-forming step at 250 ° C. for 30 seconds to obtain a water-rich region of the end face and its periphery. The area was contracted (see FIG. 6 (a)).
  • a sealed honeycomb molded body 30 ' was produced in which the cross-sectional area of the cross section perpendicular to the longitudinal direction of the central portion in the longitudinal direction of the honeycomb molded body was larger than the area of the end face of the honeycomb molded body.
  • the obtained sealed honeycomb formed body 30 ′ was carried into the firing furnace 90, degreased at 300 ° C. in the air atmosphere, and then held at 1450 ° C. in the air atmosphere for 15 hours to be fired to obtain a honeycomb structure. It was manufactured (see FIG. 6D).
  • the honeycomb structure had a 57% porosity, average pore diameter of 17 .mu.m, the longitudinal direction of the cross-sectional area 16500Mm 2 at the central portion, the cross-sectional area of 15300mm 2 at the end face of the inner area, 14300Mm 2 the area of the end face, Length 100 mm (internal region is 94 mm, end regions on both end faces are 2 mm each), outer peripheral wall thickness is 0.3 mm, cell partition wall thickness at end face is 0.4 mm, cell partition wall thickness at inner region is 0.
  • the shape was approximately 25 mm, the number of cells (cell density) was 300 cells / inch 2 , and was a substantially columnar shape.
  • the obtained honeycomb structure has a cross-sectional area (D 2 ) at the central portion in the longitudinal direction which is 6.8% larger than the cross-sectional area (D 3 ) at the end surface of the internal region and 13.3 larger than the area (D 1 ) of the end surface. It was big.
  • the porosity and the average pore diameter were measured by the methods described below. It was also confirmed that the holding power was improved when the periphery of the honeycomb structure obtained in Example 1 was wrapped with a mat and canned.
  • Example 2 The honeycomb structure obtained in Example 1 was cut into a size of 10 mm ⁇ 10 mm ⁇ 10 mm to prepare a pore measurement sample.
  • the porosity and the pore diameter were measured using a porosimeter (manufactured by Shimadzu Corporation, Autopore III 9420) by a mercury porosimetry method using the sample for pore measurement.
  • the contact angle was 130 ° and the surface tension was 485 mN / m under the mercury intrusion method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

安価に作製が可能で、外周部に隣接する貫通孔の両端ともが封止されておらず、長手方向の中央部分の長手方向に垂直な断面積が端面の面積に比べて大きいハニカム構造体を提供する。 本発明のハニカム構造体は、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端面が開口され且つ排ガス出口側の端面が封じられている排ガス導入セルと、排ガス出口側の端面が開口され且つ排ガス入口側の端面が封じられている排ガス排出セルとを備えたハニカム構造体であって、前記排ガス導入セル及び前記排ガス排出セルは、前記排ガス導入セル及び前記排ガス排出セルの長手方向に垂直な断面形状が略一定である内部領域と、前記排ガス導入セル及び前記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されている端部領域とからなり、前記ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積は、前記ハニカム構造体の端面の面積よりも大きいことを特徴とする。

Description

ハニカム構造体
本発明は、ハニカム構造体に関する。
ガソリンエンジンやディーゼルエンジン等の内燃機関から排出される排ガス中には、スス等のパティキュレート(以下、PMともいう)が含まれており、近年、このPMが環境または人体に害を及ぼすことが問題となっている。また、排ガス中には、CO、HCまたはNOx等の有害なガス成分も含まれていることから、この有害なガス成分が環境または人体に及ぼす影響についても懸念されている。
そこで、内燃機関と連結されることにより排ガス中のPMを捕集したり、排ガスに含まれるCO、HCまたはNOx等の排ガス中の有害なガス成分を浄化したりする排ガス浄化装置として、チタン酸アルミニウム、コージェライト、炭化ケイ素等の多孔質セラミックからなるハニカム構造体が種々提案されている。
また、これらのハニカムフィルタでは、内燃機関の燃費を改善し、圧力損失の上昇に起因する運転時のトラブル等をなくすために、圧力損失の低いハニカム構造体からなるフィルタが種々提案されている。
特許文献1には、柱体の端面に複数の孔が開口したハニカム構造体であって、柱体の端面に互いに隔壁で区画された複数の貫通孔が開口しているグリーンハニカム成形体における、上記端面の中央部の複数の貫通孔の一部が封口され、上記端面の外周部は、上記端面に至るにつれて外径が連続して減少する面取部を有すると共に、上記端面の外周部の貫通孔が封口され、上記グリーンハニカム成形体が焼成されたハニカム構造体が開示されている。
特開2015-36199号公報
しかしながら、特許文献1に記載されたハニカム構造体では、上記端面の外周部は、端面に至るにつれて外径が連続して減少する面取部を有し、上記端面の外周部の貫通孔は封口されているため、濾過面積が小さくなってしまうという問題があった。
一方、特許文献1に記載のように、外周部の貫通孔を封口することなく、長手方向の中央部の外径が端部の外径に比べて大きいハニカム構造体を製造しようとすると、端部の外径が中央部の外径に比べて小さくなるように外周部の切削加工を行った後、貫通孔が露出した部分を含む外周領域に原料組成物のペーストを塗布し、乾燥、脱脂、焼成等を行う必要があり、工程が複雑となるとともに、製造コストも増大するという問題があった。
本発明は、このような問題に鑑みてなされたものであり、安価に作製が可能で、外周部に隣接する貫通孔の両端ともが封止されてはおらず、長手方向の中央部の長手方向に垂直な断面積が端面の面積に比べて大きいハニカム構造体を提供することを目的とする。
本発明のハニカム構造体は、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端面が開口され且つ排ガス出口側の端面が封じられている排ガス導入セルと、排ガス出口側の端面が開口され且つ排ガス入口側の端面が封じられている排ガス排出セルとを備えたハニカム構造体であって、
上記排ガス導入セル及び上記排ガス排出セルは、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が一定である内部領域と、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されている端部領域とからなり、上記ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積は、上記ハニカム構造体の端面の面積よりも大きいことを特徴とする。
なお、上記排ガス導入セルの排ガス出口側の端面及び上記排ガス排出セルの排ガス入口側の端面が封じられているとは、上記した端面を含む部分が封止剤を充填することにより目封じされているのではなく、上記端部領域において、セルの長手方向に垂直な断面形状が端面に近づくに従って縮小され、端面において上記断面の面積が0となり、閉じられていることをいう。
本発明のハニカム構造体における排ガス導入セルの端部領域及び排ガス排出セルの端部領域では、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されており、上記ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積は、上記ハニカム構造体の端面の面積よりも大きいので、上記ハニカム構造体を排ガス浄化用のフィルタとして使用する際、フィルタを保持するための無機繊維等からなる保持シール材でしっかりと保持することができ、フィルタが保持シール材から脱落したり、抜け出たりするのを、保持力を下げた場合においても確実に防止することができる。
また、本発明のハニカム構造体では、上記端部領域において、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されており、排ガス入口側及び出口側の端面で開口率が高くなっているので、排ガスがハニカム構造体に流入する際及び排ガス構造体から流出する際の抵抗が小さくなり、圧力損失を充分に低減させることができる。
また、本発明のハニカム構造体では、特許文献1のハニカム構造体のように、外周に隣接する貫通孔の両端が押しつぶされ、封口されていないので、有効濾過面積を大きくとることができる。
さらに、外周部の切削加工等を行う必要がないので、安価なハニカム構造体を提供することができる。
本発明のハニカム構造体では、上記ハニカム構造体の端面の面積に対する上記ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積の割合は、1.01~1.15であることが望ましい。
本発明のハニカム構造体において、上記ハニカム構造体の端面の面積に対する上記ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積の割合、すなわち、(ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積)/(ハニカム構造体の端面の面積)が1.01~1.15であると、上記保持シール材での保持圧力を下げた状態であっても、強固にハニカム構造体を保持することができ、脱落等を確実に防止することができる。
上記ハニカム構造体の端面の面積に対する上記ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積の割合が、1.01未満であると、保持シール材でハニカム構造体を保持する能力が充分でなくなり、保持シール材からハニカム構造体が脱落するおそれが生じる。一方、上記ハニカム構造体の端面の面積に対する上記ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積の割合が、1.15を超えると、ハニカム構造体の製造が困難になるとともに、急激な加熱や冷却等により大きな熱応力が発生した際には、ハニカム構造体に破損が発生しやすくなる。
本発明のハニカム構造体では、上記内部領域の端面における長手方向に垂直な断面の断面積に対する上記ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積の割合は、1.01~1.10であることが望ましい。
本発明のハニカム構造体において、内部領域の端面における長手方向に垂直な断面の断面積に対するハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積の割合、すなわち(ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積)/(ハニカム構造体の内部領域の端面における長手方向に垂直な断面の断面積)が1.01~1.10であると、より強固に保持することができ、脱落等を防止することができる。
本発明のハニカム構造体では、上記ハニカム構造体の長手方向の長さは、75~400mmであることが望ましい。
本発明のハニカム構造体において、上記ハニカム構造体の長手方向の長さが75~400mmであると、上記中央部と端部との間の距離が比較的短いので、外周部の傾斜が比較的急となり、保持シール材により、より確実にハニカム構造体を保持することができ、脱落等を防止することができる。
上記ハニカム構造体の長手方向の長さが75mm未満であると、ハニカム構造体の長さが短すぎるため、排ガスがハニカム構造体に流入する際及び排ガス構造体から流出する際の抵抗を小さくする効果が発揮されにくくなる。一方、上記ハニカム構造体の長手方向の長さが400mmを超えると、ハニカム構造体の長さが長すぎるため、保持力を向上させる効果が発揮されにくくなる。
本発明のハニカム構造体では、上記端部領域のセルの長手方向の長さは、1~10mmであることが望ましい。
本発明のハニカム構造体において、上記端部領域のセルの長手方向の長さが、1~10mmであると、排ガス入口側において、排ガスがセル内部に導入される抵抗、及び、排ガス出口側において、排ガスがセル内部より排出される抵抗をより小さくできるため、圧力損失をさらに低減させることができる。
本発明のハニカム構造体において、上記端部領域のセルの長手方向の長さが、1mm未満であると、排ガス入口側において、セル内部への排ガスを導入する際の抵抗が大きくなり、排ガス出口側において、排ガスが排出される際の抵抗が大きくなるため、圧力損失を充分に低減できなくなり、一方、上記端部領域のセルの長手方向の長さが、10mmを超えると、そのような構造のハニカム構造体の製造が難しくなる。
本発明のハニカム構造体では、上記端部領域におけるセル隔壁の厚さは、0.1~0.5mmであることが望ましい。
本発明のハニカム構造体において、上記端部領域におけるセル隔壁の厚さが、0.1~0.5mmであると、圧縮強度を低下させることなく、セル隔壁の厚さを充分に薄くすることができるので、圧力損失を充分に低減させることができる。
本発明のハニカム構造体において、上記端部領域におけるセル隔壁の厚さが、0.1mm未満であると、セル隔壁の厚さが薄すぎることとなり、圧縮強度を低下させてしまう。一方、上記端部領域におけるセル隔壁の厚さが0.5mmを超えると、セル隔壁の厚さが厚すぎるため、圧力損失を充分に低減させることが難しくなる。
本発明のハニカム構造体において、上記内部領域におけるセルの長手方向に垂直な断面形状は、四角形であることが望ましい。
本発明のハニカム構造体において、上記内部領域におけるセルの長手方向に垂直な断面形状が、四角形であると、ハニカム構造体を製造する際、上記端部領域において、セルの長手方向に垂直な断面形状を、端面に近づくに従って拡大又は縮小させ易く、圧力損失が充分に低いハニカム構造体の実現が可能となる。
本発明のハニカム構造体では、上記ハニカム構造体は、外周に外周壁を有する一のハニカム焼成体により構成されていることが望ましい。
本発明のハニカム構造体においては、接着剤を用いて多数のハニカムセグメントを組み合わせたハニカム構造体に比べて、接着層がない分、端面における開口率を高くできるため、圧力損失の低減効果がより発揮できる。
本発明のハニカム構造体では、上記ハニカム焼成体は、コージェライト、又は、チタン酸アルミニウムからなることが望ましい。
本発明のハニカム構造体において、上記ハニカム焼成体が、コージェライト、又は、チタン酸アルミニウムからなると、上記セラミックは、熱膨張率の低い材料であるので、再生時等において大きな熱応力が発生した場合であっても、クラック等の発生しにくいハニカム構造体となる。
本発明のハニカム構造体では、上記セル隔壁の気孔率は、35~65%であることが望ましい。
本発明のハニカム構造体において、上記セル隔壁の気孔率が、35~65%であると、セル隔壁は、排ガス中のPMを良好に捕集することができ、かつ、セル隔壁に起因する圧力損失の上昇を抑制することができる。従って、圧力損失をさらに低減させることができる。
セル隔壁の気孔率が35%未満では、セル隔壁の気孔の割合が小さすぎるため、排ガスがセル隔壁を通過しにくくなり、排ガスがセル隔壁を通過する際の圧力損失が大きくなる。一方、セル隔壁の気孔率が65%を超えると、セル隔壁の機械的特性が低く、再生時等において、クラックが発生し易くなる。
本発明のハニカム構造体では、上記セル隔壁に含まれる気孔の平均気孔径は、5~30μmであることが望ましい。
本発明のハニカム構造体において、上記セル隔壁に含まれる気孔の平均気孔径が、5~30μmであると、圧力損失の増加を抑制しながら、高い捕集効率でPMを捕集することができる。
セル隔壁に含まれる気孔の平均気孔径が5μm未満であると、気孔が小さすぎるため、排ガスがセル隔壁を透過する際の圧力損失が大きくなる。一方、セル隔壁に含まれる気孔の平均気孔径が30μmを超えると、気孔径が大きくなりすぎるので、PMの捕集効率が低下してしまう。
図1(a)は、本発明のハニカム構造体の一例を模式的に示す斜視図であり、図1(b)は、図1(a)におけるA-A線断面図であり、図1(c)は、一方の端面側から見た端面図である。 図2(a)は、成形工程により作製された未封止ハニカム成形体を模式的に示す斜視図であり、図2(b)は、図2(a)に示した未封止ハニカム成形体のB-B線断面図である。 図3(a)~(c)は、未封止ハニカム成形体の端面を含む一定領域を水分の多い領域とする工程を模式的に示す説明図である。 図4は、未封止ハニカム成形体の再成形工程の様子を模式的に示す説明図である。 図5は、未封止ハニカム成形体の再成形工程の様子を模式的に示す断面図である。 図6(a)~(d)は、封止ハニカム成形体を用いて本発明のハニカム構造体を製造する工程を模式的に示す説明図である。
(発明の詳細な説明)
[ハニカム構造体]
まず、本発明のハニカム構造体について説明する。
本発明のハニカム構造体は、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端面が開口され且つ排ガス出口側の端面が封じられている排ガス導入セルと、排ガス出口側の端面が開口され且つ排ガス入口側の端面が封じられている排ガス排出セルとを備えたハニカム構造体であって、
上記排ガス導入セル及び上記排ガス排出セルは、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が一定である内部領域と、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されている端部領域とからなり、上記ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積は、上記ハニカム構造体の端面の面積よりも大きいことを特徴とする。
図1(a)は、本発明のハニカム構造体の一例を模式的に示す斜視図であり、図1(b)は、図1(a)におけるA-A線断面図であり、図1(c)は、一方の端面側から見た端面図である。
図1(a)及び図1(b)に示すハニカム構造体10は、排ガスの流路となる複数のセル12、13を区画形成する多孔質のセル隔壁11と、排ガス入口側の端面10aが開口され且つ排ガス出口側の端面10bが封じられている排ガス導入セル12と、排ガス出口側の端面10bが開口され且つ排ガス入口側の端面10aが封じられている排ガス排出セル13とを備え、排ガス導入セル12及び排ガス排出セル13は、排ガス導入セル12及び排ガス排出セル13の長手方向に垂直な断面形状が一定である内部領域10Bと、排ガス導入セル12及び排ガス排出セル13の長手方向(図1(a)中、両矢印)に垂直な断面形状が端面に近づくに従って拡大され、又は、縮小され、封じられている端部領域10A、10Cとからなる。
図1(a)及び図1(b)に示すように、ハニカム構造体10が単一のハニカム焼成体からなる場合、ハニカム焼成体はハニカム構造体でもある。
本発明のハニカム構造体10では、ハニカム構造体10の長手方向の中央部10cの長手方向に垂直な断面の断面積Dは、ハニカム構造体10の端面10a、10bの面積Dよりも大きい。
その結果、ハニカム構造体10を排ガス浄化用のフィルタとして使用する際、フィルタを保持するための無機繊維等からなる保持シール材でしっかりと保持することができ、フィルタが保持シール材から脱落又は抜け出たりするのを、保持シール材による保持圧力を下げた場合であっても確実に防止することができる。
なお、ハニカム構造体10の長手方向の中央部10cとは、ハニカム構造体の長さの1/2の部分をいう。
本発明のハニカム構造体10では、端部領域10A、10Cにおいて、排ガス導入セル12及び排ガス排出セル13の長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されており、排ガス入口側及び出口側の端面で開口率が高くなっているので、排ガスがハニカム構造体10に流入する際及び排ガス構造体10から流出する際の抵抗が小さくなり、圧力損失を充分に低減させることができる。
本発明のハニカム構造体では、ハニカム構造体の端面の面積(D)に対する上記ハニカム構造体の長手方向の中央部10cの長手方向に垂直な断面の断面積(D)の割合(D/D)は、1.01~1.15であることが望ましい。
また、内部領域の端面における長手方向に垂直な断面の断面積(D)に対する前記ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積(D)の割合は、1.01~1.10であることが望ましい。
/Dが1.01~1.15であり、D/Dが1.01~1.10であると、上記保持シール材でより強固にハニカム構造体を保持することができ、脱落等を確実に防止することができる。
本発明のハニカム構造体では、上記ハニカム構造体の長手方向の長さは、75~400mmであることが望ましい。
本発明のハニカム構造体において、上記ハニカム構造体の長手方向の長さが75~400mmであると、上記中央部と端部との間の距離が比較的短いので、外周部の傾斜が急となり、保持シール材により、より確実にハニカム構造体を保持することができ、脱落等を防止することができる。
本発明のハニカム構造体において、端部領域のセルの長手方向の長さは、1~10mmであることが望ましい。
本発明のハニカム構造体において、上記端部領域のセルの長手方向の長さが、1~10mmであると、排ガス入口側において、排ガスがセル内部に導入される抵抗、及び、排ガス出口側において、排ガスがセル内部より排出される抵抗をより小さくできるため、圧力損失をさらに低減させることができる。なお、上記した端部領域は、排ガスが流入する領域と排ガスが流出する領域の両方をいうものとする。
本発明のハニカム構造体において、端部領域におけるセル隔壁の厚さは、0.1~0.5mmであることが望ましい。
本発明のハニカム構造体において、上記端部領域におけるセル隔壁の厚さが、0.1~0.5mmであると、圧縮強度を低下させることなく、セル隔壁の厚さを充分に薄くすることができるので、圧力損失を充分に低減させることができる。
また、本発明のハニカム構造体において、内部領域におけるセル隔壁の厚さは、0.12~0.4mmであることが望ましい。
本発明のハニカム構造体の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。
本発明のハニカム構造体において、内部領域におけるセルの長手方向に垂直な断面形状は、四角形に限定されず、三角形、六角形、八角形であってもよいが、四角形であることが望ましい。
本発明のハニカム構造体において、ハニカム焼成体の長手方向に垂直な断面のセルの密度は、31~155個/cm(200~1000個/inch)であることが望ましい。
本発明のハニカム構造体において、ハニカム焼成体の外周面に外周コート層が形成されている場合、外周コート層の厚さは、0.1~2.0mmであることが望ましい。
本発明のハニカム構造体は、外周に外周壁を有する一のハニカム焼成体により構成されていてもよいし、複数個のハニカム焼成体を備えていてもよく、複数個のハニカム焼成体が接着剤により結合されていてもよいが、外周に外周壁を有する一のハニカム焼成体により構成されていることが望ましい。
本発明のハニカム構造体を構成する材料は、特に限定されず、例えば、炭化ケイ素、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、アルミナ、ジルコニア、コージェライト、ムライト、チタン酸アルミニウム等の酸化物セラミック、ケイ素含有炭化ケイ素等が挙げられるが、ハニカム構造体が外周に外周壁を有する一のハニカム焼成体により構成されている場合には、コージェライト、又は、チタン酸アルミニウムが好ましい。
上記ハニカム焼成体が、コージェライト、又は、チタン酸アルミニウムからなると、上記セラミックは、熱膨張率の低い材料であるので、再生時等において大きな熱応力が発生した場合であっても、クラック等の発生しにくいハニカム構造体となるからである。
本発明のハニカム構造体では、上記セル隔壁の気孔率は、35~65%であることが望ましい。
本発明のハニカム構造体において、上記セル隔壁の気孔率が、35~65%であると、セル隔壁は、排ガス中のPMを良好に捕集することができ、かつ、セル隔壁に起因する圧力損失の上昇を抑制することができる。従って、圧力損失をさらに低減させることができる。
本発明のハニカム構造体において、上記セル隔壁に含まれる気孔の平均気孔径は、5~30μmであることが望ましい。
本発明のハニカム構造体において、上記セル隔壁に含まれる気孔の平均気孔径が、5~30μmであると、圧力損失の増加を抑制しながら、高い捕集効率でPMを捕集することができる。
本発明のハニカム構造体において、気孔率および平均気孔径は、水銀圧入法にて接触角を130°、表面張力を485mN/mの条件で測定する。
次に、本発明のハニカム構造体の製造方法について説明する。
以下においては、チタン酸アルミニウムからなるハニカム構造体の製造方法を例にとって説明するが、本発明の製造対象は、チタン酸アルミニウムに限定されるものではない。
(混合工程)
まず、アルミナ粉末及びチタニア粉末にマグネシア粉末、シリカ粉末等の添加剤を添加し、混合することにより混合粉末を得る。
上記混合粉末において、シリカとマグネシアは、焼成助剤としての役割もあるが、焼成助剤としては、シリカとマグネシアの他に、Y、La、Na、K、Ca、Sr、Baの酸化物が用いられていてもよい。これらの混合粉末に以下の添加剤を必要により添加して原料組成物を得る。成形助剤としては、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコールが挙げられる。有機バインダとしては、カルボキシメチルセルロース、ポリビニルアルコール、メチルセルロース、エチルセルロース等の親水性有機高分子が挙げられる。分散媒としては、水のみからなる分散媒、又は、50体積%以上の水と有機溶剤とからなる分散媒が挙げられる。有機溶剤としては、ベンゼン、メタノール等のアルコールが挙げられる。造孔剤としては、微小中空球体であるバルーン、球状アクリル粒子、グラファイト、デンプンが挙げられる。バルーンとしては、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュ(FA)バルーン、ムライトバルーンが挙げられる。
また、原料組成物中には、その他の成分が更に含有されていてもよい。その他の成分としては、たとえば、可塑剤、分散剤、潤滑剤が挙げられる。可塑剤としては、たとえば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物が挙げられる。分散剤としては、たとえば、ソルビタン脂肪酸エステルが挙げられる。潤滑剤としては、たとえば、グリセリンが挙げられる。
 (成形工程)
成形工程は、混合工程により得られた原料組成物を成形して未封止ハニカム成形体を作製する工程である。未封止ハニカム成形体は、たとえば、原料組成物を押出金型を用いて押出成形することにより作製することができる。すなわち、未封止ハニカム成形体は、ハニカム構造体の筒状の外周壁と隔壁となる部分を構成する壁部を一度に押出成形することにより作製する。また、上記押出成形においては、ハニカム構造体の一部の形状に対応する成形体を成形してもよい。すなわち、ハニカム構造体の一部の形状に対応する成形体を成形し、それら成形体を組み合わせることによってハニカム構造体と同一形状を有するハニカム成形体を作製してもよい。
図2(a)は、成形工程により作製された未封止ハニカム成形体を模式的に示す斜視図であり、図2(b)は、図2(a)に示した未封止ハニカム成形体のB-B線断面図である。
図2(a)及び(b)に示すように、上記成形工程により、セル22、23の長手方向に垂直な断面形状が四角で、端面20a、20bにおけるセル22、23の形状も全く同じ四角形状で、セル22、23を隔てるセル隔壁21を有し、全体が円柱形状の未封止ハニカム成形体20が作製される。
図3(a)~(c)は、未封止ハニカム成形体の端面を含む一定領域を水分の多い領域とする工程を模式的に示す説明図である。
図3(a)は、成形工程を経た未封止ハニカム成形体20を示している。
(端面液滴付着工程)
図3(b)に示すように、この未封止ハニカム成形体20の両端面20a、20bにスプレー等の噴霧器50を用いて水滴51を噴霧し、両方の端面20a、20bに水滴51を付着させる。噴霧器50を用いて水滴を付着させる代わりに、スポンジや刷毛等を用いて水分を付着させてもよい。
これにより、図3(c)に示すように、未封止ハニカム成形体20の端面20a、20bを含む一定の領域Wに、水分等の含有量が多い領域が形成される。
(再成形工程)
この後、テーパー冶具を用い、端面を含む一定の領域に、水分等の含有量が多い領域が形成された未封止ハニカム成形体20に対し、ハニカム構造体の端部領域に相当する部分を形成するための再成形を行い、排ガス導入セル及び排ガス排出セルとなるセル22、23の長手方向に垂直な断面形状が端面に近づくに従って拡大され、又は、縮小され、封じられた形状の封止ハニカム成形体とする。
図4は、未封止ハニカム成形体の再成形工程の様子を模式的に示す説明図であり、図5は、未封止ハニカム成形体の再成形工程の様子を模式的に示す断面図である。
図4及び図5に示すように、支持部43と支持部43上に固定された基台部41と基台部41上に形成された多数の四角錐形状の先端部42とを備えたテーパー冶具40を用い、先端部42の四角錐を構成する4つの平面42bの境界部である角部42cが未封止ハニカム成形体20の端面20aにおけるセル隔壁21の四角を構成する一の辺21aの真ん中に当接するように配置し、未封止ハニカム成形体20の中央部分に向かってテーパー冶具40を押し込む。なお、先端部42は、先端部底面42aが基台部41に接着されている。
このとき、先端部42が押し込まれたセル22の端部領域に相当する部分は、セルの長手方向に垂直な断面形状が端面に近づくに従って拡大された形状となり、先端部42が押し込まれたセル22の上下左右に存在していたセル23の端部領域に相当する部分は、セル23の長手方向に垂直な断面形状が端面に近づくに従って縮小され、封じられた形状となる。このようにして作製された封止ハニカム成形体30の端面から見た形状は、図1(c)に示すハニカム構造体10と同じく、端面10aにおけるセル12の四角が内部領域10Bのセル12の四角を45°回転した形状となる。
テーパー治具の先端部42の角度及び隣り合う先端部42同士の幅を調整することにより、端部領域におけるセル隔壁の厚さを調整することができる。
図6(a)~(d)は、封止ハニカム成形体30を用いて本発明のハニカム構造体を製造する工程を模式的に示す説明図である。
上記再成形工程の後、図6(a)に示すように遠赤外線(IR)乾燥機60を用い、封止ハニカム成形体30の端面を80~300℃で1~120秒間加熱し、端面近傍の水分の多い領域Wとその周辺領域を収縮させる。
続いて図6(b)に示すように、マイクロ波乾燥機70を用い、500~6000kWの出力で1~20分間、0.05~1気圧の状態で加熱し、さらに図6(c)に示すように、熱風乾燥機80を用い、90~130℃で1~24時間加熱し、ハニカム成形体の長手方向の中央部の長手方向に垂直な断面の断面積が、ハニカム成形体の端面の面積よりも大きい封止ハニカム成形体30′を作製する。
その後、図6(d)に示すように、封止ハニカム成形体30′を焼成炉90に搬入し、250~400℃、酸素濃度5容積%~大気雰囲気下で脱脂した後、1400~1600℃で焼成する。
この焼成工程では、アルミナの表面からチタニアとの反応が進行して、チタン酸アルミニウムの相が形成される。焼成は、連続炉を用いて行ってもよい。焼成温度は、1450~1550℃の範囲であることが好ましい。焼成時間は特に限定されないが、上記の焼成温度において1~20時間保持することが好ましく、1~10時間保持することがより好ましい。また、焼成工程は大気雰囲気下で行うことが好ましい。大気雰囲気に窒素ガスやアルゴンガス等の不活性ガスを混合することにより、酸素濃度を調整してもよい。
上記した工程を経ることにより、本発明のハニカム構造体を製造することができる。
以下、上記実施形態をさらに具体化した実施例について説明する。
(実施例1)
まず、下記組成の原料組成物を調製した。
D50が0.6μmのチタニア微粉末:11.1重量%、D50が13.0μmのチタニア粗粉末:11.1重量%、D50が15.9μmのアルミナ粉末:30.4重量%、D50が1.1μmのシリカ粉末:2.8重量%、D50が3.8μmのマグネシア粉末:1.4重量%、D50が31.9μmのアクリル樹脂(造孔材):18.5重量%、メチルセルロース(有機バインダ):7.1重量%、成形助剤(エステル型ノニオン):4.7重量%、及び、イオン交換水(分散媒):12.9重量%からなる組成のものを混合機で混合し、原料組成物を調製した。
調製した原料組成物を押出成形機に投入して押出成形を行うことにより、図2(a)及び(b)に示す形状を有し、セルが封止されていない未封止ハニカム成形体20を作製した。
未封止ハニカム成形体20の両端面に噴霧器50を用いて水滴51を噴霧し、両端面20a、20bに水滴51を付着させ(図3(b)参照)、両端面20a、20bを含む領域Wに水分の多い領域を形成した(図3(c)参照)。
その後、アルミ製のテーパー冶具40を用いて、再成形を行い、封止ハニカム成形体30を作製した。テーパー冶具40としては、未封止ハニカム成形体20の端面20aを形成するための先端部42同士の距離(図5に示すV:谷幅)を0.13mmに設定し、四角錐形状の先端部42の平面42bと、基台部41の先端部42が形成されている先端部形成面41a(先端部底面 42a)に垂直な面と、の角度αを12.5°に設定した(図4及び図5参照)。
その後、再成形工程を経て得られた封止ハニカム成形体30に対して、遠赤外線(IR)乾燥機60を用い、端面を250℃で30秒間加熱し、端面の水分の多い領域とその周辺領域を収縮させた(図6(a)参照)。
この後、マイクロ波乾燥機70を用い、1500kWの出力で10分間、常圧で加熱し(図6(b)参照)、さらに熱風乾燥機80を用い、110℃で12時間加熱し(図6(c)参照)、ハニカム成形体の長手方向の中央部の長手方向に垂直な断面の断面積が、ハニカム成形体の端面の面積よりも大きい封止ハニカム成形体30′を作製した。
得られた封止ハニカム成形体30′を焼成炉90に搬入し、300℃、大気雰囲気下で脱脂した後、大気雰囲気下、1450℃で15時間保持して焼成することにより、ハニカム構造体を製造した(図6(d)参照)。
得られたハニカム構造体は、気孔率が57%、平均気孔径が17μm、長手方向の中央部における断面積が16500mm、内部領域の端面における断面積が15300mm、端面の面積が14300mm、長さ100mm(内部領域が94mm、両端面に端部領域がそれぞれ2mm)、外周壁の厚さ0.3mm、端面におけるセル隔壁の厚さ0.4mm、内部領域におけるセル隔壁の厚さ0.25mm、セルの数(セル密度)が300個/inchの略円柱形状であった。
得られたハニカム構造体は、長手方向の中央部における断面積(D)が内部領域の端面における断面積(D)より6.8%大きく、端面の面積(D)より13.3%大きかった。なお、気孔率及び平均気孔径の測定は、下記する方法により行った。また、実施例1で得られたハニカム構造体の周囲を、マットを巻いてキャニングした際に、保持力が向上することが確認できた。
[気孔率及び気孔径の測定]
実施例1で得られたハニカム構造体を10mm×10mm×10mmに切り出して、気孔測定用サンプルを準備した。気孔測定用サンプルを用いて、水銀圧入法によるポロシメーター(島津製作所社製、オートポアIII 9420)により気孔率及び気孔径を測定した。水銀圧入法にて接触角を130°、表面張力を485mN/mの条件とした。
10 ハニカム構造体
10a、10b 端面
10A、10C 端部領域
10B 内部領域
11 セル隔壁
12 排ガス導入セル
13 排ガス排出セル
20 未封止ハニカム成形体
20a、20b、30a、30b 端面
21 セル隔壁
21a 一の辺
22、23 セル
30、30′ 封止ハニカム成形体
40 テーパー冶具
41 基台部
41a 先端部形成面
42 先端部
42a 先端部底面
42b 平面
42c 角部
43 支持部
50 噴霧器
51 水滴
60 赤外線乾燥機
70 マイクロ波乾燥機
80 熱風乾燥器
90 焼成炉

Claims (11)

  1. 排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端面が開口され且つ排ガス出口側の端面が封じられている排ガス導入セルと、排ガス出口側の端面が開口され且つ排ガス入口側の端面が封じられている排ガス排出セルとを備えたハニカム構造体であって、
    前記排ガス導入セル及び前記排ガス排出セルは、前記排ガス導入セル及び前記排ガス排出セルの長手方向に垂直な断面形状が略一定である内部領域と、前記排ガス導入セル及び前記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されている端部領域とからなり、
    前記ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積は、前記ハニカム構造体の端面の面積よりも大きいことを特徴とするハニカム構造体。
  2. 前記ハニカム構造体の端面の面積に対する前記ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積の割合は、1.01~1.15である請求項1に記載のハニカム構造体。
  3. 前記内部領域の端面における長手方向に垂直な断面の断面積に対する前記ハニカム構造体の長手方向の中央部の長手方向に垂直な断面の断面積の割合は、1.01~1.10である請求項1又は2に記載のハニカム構造体。
  4. 前記ハニカム構造体の長手方向の長さは、75~400mmである請求項1~3のいずれか1項に記載のハニカム構造体。
  5. 前記端部領域のセルの長手方向の長さは、1~10mmである請求項1~4のいずれか1項に記載のハニカム構造体。
  6. 前記端部領域におけるセル隔壁の厚さは、0.1~0.5mmである請求項1~5のいずれか1項に記載のハニカム構造体。
  7. 前記内部領域におけるセルの長手方向に垂直な断面形状は、四角形である請求項1~6のいずれか1項に記載のハニカム構造体。
  8. 前記ハニカム構造体は、外周に外周壁を有する一のハニカム焼成体により構成されている請求項1~7のいずれか1項に記載のハニカム構造体。
  9. 前記ハニカム焼成体は、コージェライト、又は、チタン酸アルミニウムからなる請求項8に記載のハニカム構造体。
  10. 前記セル隔壁の気孔率は、35~65%である請求項1~9のいずれか1項に記載のハニカム構造体。
  11. 前記セル隔壁に含まれる気孔の平均気孔径は、5~30μmである請求項1~10のいずれか1項に記載のハニカム構造体。
     
PCT/JP2019/039055 2018-10-12 2019-10-03 ハニカム構造体 WO2020075612A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-193601 2018-10-12
JP2018193601A JP2020060165A (ja) 2018-10-12 2018-10-12 ハニカム構造体

Publications (1)

Publication Number Publication Date
WO2020075612A1 true WO2020075612A1 (ja) 2020-04-16

Family

ID=70165261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039055 WO2020075612A1 (ja) 2018-10-12 2019-10-03 ハニカム構造体

Country Status (2)

Country Link
JP (1) JP2020060165A (ja)
WO (1) WO2020075612A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577217A (en) * 1980-06-16 1982-01-14 Ngk Insulators Ltd Ceramic honeycomb filter and preparation thereof
JP2002210314A (ja) * 2001-01-16 2002-07-30 Ngk Insulators Ltd セラミックフィルタ
JP2003047813A (ja) * 2001-08-08 2003-02-18 Toyota Motor Corp 排気浄化装置
JP2003049631A (ja) * 2001-08-08 2003-02-21 Toyota Motor Corp 排気浄化装置
WO2006095835A1 (ja) * 2005-03-10 2006-09-14 Ngk Insulators, Ltd. ハニカム構造体、及びその製造方法
JP2006272318A (ja) * 2005-03-01 2006-10-12 Denso Corp 排ガス浄化フィルタの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577217A (en) * 1980-06-16 1982-01-14 Ngk Insulators Ltd Ceramic honeycomb filter and preparation thereof
JP2002210314A (ja) * 2001-01-16 2002-07-30 Ngk Insulators Ltd セラミックフィルタ
JP2003047813A (ja) * 2001-08-08 2003-02-18 Toyota Motor Corp 排気浄化装置
JP2003049631A (ja) * 2001-08-08 2003-02-21 Toyota Motor Corp 排気浄化装置
JP2006272318A (ja) * 2005-03-01 2006-10-12 Denso Corp 排ガス浄化フィルタの製造方法
WO2006095835A1 (ja) * 2005-03-10 2006-09-14 Ngk Insulators, Ltd. ハニカム構造体、及びその製造方法

Also Published As

Publication number Publication date
JP2020060165A (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
JP4870657B2 (ja) セラミックハニカム構造体およびその製造方法
US8323557B2 (en) Method for manufacturing honeycomb structure
US20080092499A1 (en) Porous Honeycomb Filter
EP1978006A1 (en) Honeycomb filter
US20100247852A1 (en) Honeycomb structure and bonded type honeycomb structure
US20110230335A1 (en) Honeycomb structured body
WO2009118810A1 (ja) ハニカム構造体
US8883286B2 (en) Honeycomb structure
EP2221099B1 (en) Honeycomb structure
JP2010222150A (ja) ハニカム構造体
WO2020075612A1 (ja) ハニカム構造体
WO2020075613A1 (ja) ハニカム構造体
WO2020075608A1 (ja) ハニカム構造体
US20130344283A1 (en) Honeycomb structure
WO2020075601A1 (ja) ハニカム構造体
WO2020075603A1 (ja) ハニカム構造体
WO2020075605A1 (ja) ハニカム構造体
WO2020075604A1 (ja) ハニカム構造体
WO2020075607A1 (ja) ハニカム構造体
WO2020075602A1 (ja) ハニカム構造体
WO2020075610A1 (ja) ハニカム構造体
WO2021044874A1 (ja) ハニカムフィルタ及びハニカムフィルタの製造方法
JP2020124681A (ja) ハニカム構造体の製造方法
JP2021037489A (ja) ハニカム構造体及びハニカム構造体の製造方法
JP2020124856A (ja) ハニカム構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19872132

Country of ref document: EP

Kind code of ref document: A1