WO2020075607A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2020075607A1
WO2020075607A1 PCT/JP2019/039045 JP2019039045W WO2020075607A1 WO 2020075607 A1 WO2020075607 A1 WO 2020075607A1 JP 2019039045 W JP2019039045 W JP 2019039045W WO 2020075607 A1 WO2020075607 A1 WO 2020075607A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
honeycomb structure
cell
cell partition
partition wall
Prior art date
Application number
PCT/JP2019/039045
Other languages
English (en)
French (fr)
Inventor
郁仁 手嶋
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2020075607A1 publication Critical patent/WO2020075607A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous

Definitions

  • the present invention relates to a honeycomb structure.
  • the exhaust gas discharged from an internal combustion engine such as a gasoline engine or a diesel engine contains particulates such as soot (hereinafter, also referred to as PM), and in recent years, this PM may be harmful to the environment or the human body. It's a problem. Moreover, since harmful gas components such as CO, HC or NOx are also contained in the exhaust gas, there is concern about the effect of these harmful gas components on the environment or the human body.
  • titanic acid is used as an exhaust gas purifying apparatus for collecting PM in exhaust gas by connecting with an internal combustion engine and purifying harmful gas components such as CO, HC or NOx contained in the exhaust gas.
  • Various honeycomb structures made of porous ceramics such as aluminum, cordierite, and silicon carbide have been proposed.
  • Patent Document 1 has a plurality of first flow paths that are open at one end surface and closed at the other end surface, and a plurality of second flow paths that are closed at the one end surface and open at the other end surface.
  • a central partition wall in which the cross-sectional area of each of the first flow paths and the second flow path is constant in the axial direction, and a cross-sectional area of each of the first flow paths from the central partition wall toward the other end surface.
  • a honeycomb structure including: the other end side inclined partition wall, which is reduced and has a larger cross-sectional area of each of the second flow paths, wherein the other end side inclined partition wall has an axial length of 4 mm or more.
  • a honeycomb structure is disclosed.
  • Patent Document 1 does not describe at all that the effect of reducing the pressure loss of the honeycomb structure during passage of exhaust gas can be obtained by changing the characteristics of the other end side inclined partition wall with respect to the central partition wall.
  • the present inventor pays attention to the other end side inclined partition wall (cell partition wall of the end region of the present invention), and by changing the characteristics of the other end side inclined partition wall (cell partition wall of the end region) with respect to the central partition wall, From the standpoint that it is possible to reduce the pressure loss of the honeycomb structure, as a result of various studies, by adjusting the surface roughness on the cell partition surface of the end region, the pressure loss, especially the initial pressure loss. The inventors have found that it is possible to reduce the above, and have completed the present invention.
  • the honeycomb structure of the present invention is a porous cell partition wall partitioning and forming a plurality of cells to be a flow path of the exhaust gas, the exhaust gas inlet side end face is opened and the exhaust gas outlet side end face is sealed
  • a honeycomb structure having an introduction cell and an exhaust gas discharge cell in which an end surface on the exhaust gas outlet side is opened and an end surface on the exhaust gas inlet side is sealed,
  • the exhaust gas introduction cell and the exhaust gas discharge cell, the exhaust gas introduction cell and an internal region having a constant cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas discharge cell, and vertical to the longitudinal direction of the exhaust gas introduction cell and the exhaust gas discharge cell
  • the arithmetic mean roughness (Ra) according to JIS B 0601 on the cell partition surface of the end region is larger than the arithmetic mean roughness (Ra) according to JIS B 0601 on the cell partition surface of the inner region. Characterize.
  • the arithmetic average surface roughness (Ra) of the cell partition wall surface can be measured by a stylus type surface roughness meter, and specifically, a contact type surface roughness measuring instrument SURFCOM1400D manufactured by Tokyo Seimitsu Co., Ltd. is used.
  • 0.5 mm can be obtained by measuring with a measurement length of 0.5 mm. Specifically, the obtained honeycomb structure is cut at a predetermined location to facilitate the measurement, and then the measurement is performed. For the measurement, randomly select 6 points and take the average value.
  • the end face of the exhaust gas introduction cell on the exhaust gas outlet side and the end face of the exhaust gas discharge cell on the exhaust gas inlet side are sealed by filling a part including the end face with a sealant. Rather than being present, it means that the cross-sectional shape perpendicular to the longitudinal direction of the cell is reduced as it approaches the end face in the end region, the area of the cross section becomes 0 at the end face, and the cell is closed.
  • the cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell and the exhaust gas discharge cell is enlarged or reduced as it approaches the end face.
  • the arithmetic mean roughness (Ra) on the cell partition wall surface in the end region is larger than the arithmetic mean roughness (Ra) on the cell partition wall surface in the inner region, in the initial process of inflowing exhaust gas, PM easily adheres to the cell partition wall surface in the above-mentioned end region, the amount of PM flowing into the cell partition wall in the inner region can be reduced, and pressure loss in the initial process of inflow of exhaust gas (hereinafter referred to as initial pressure loss That is) can be reduced.
  • the arithmetic mean roughness (Ra) according to JIS B 0601 on the cell partition surface of the end region is 5 to 15 ⁇ m
  • JIS B on the cell partition surface of the end region is The arithmetic average roughness (Ra) according to 0601 is preferably 1 to 5 ⁇ m larger than the arithmetic average roughness (Ra) according to JIS B 0601 on the cell partition wall surface in the internal region.
  • the arithmetic mean roughness (Ra) according to JIS B 0601 on the cell partition wall surface in the end region is 5 to 15 ⁇ m
  • JIS B on the cell partition wall surface in the end region is
  • the arithmetic mean roughness (Ra) according to 0601 is 1 to 5 ⁇ m larger than the arithmetic mean roughness (Ra) according to JIS B 0601 on the cell partition wall surface in the internal region
  • PM is at the end portion. Adhesion is more likely to occur due to the cell partition wall surface in the region, and the initial pressure loss can be sufficiently reduced.
  • the honeycomb structure of the present invention from the arithmetic mean roughness (Ra) conforming to JIS B 0601 on the cell partition wall surface in the above-mentioned end region, to the arithmetic mean roughness (Ra) conforming to JIS B 0601 on the cell partition wall surface in the above inner region.
  • the value obtained by subtracting (Ra) is less than 1 ⁇ m
  • the arithmetic mean roughness (Ra) on the cell partition wall surface in the end region is compared with the arithmetic mean roughness (Ra) on the cell partition wall surface in the inner region. Since it is not large enough, it is difficult to reduce the initial pressure loss.
  • the JIS B on the cell partition wall surface in the above inner region can be determined. It is difficult to form a rough surface having a value obtained by subtracting the arithmetic mean roughness (Ra) according to 0601 above 5 ⁇ m on the cell partition wall surface in the end region. Yes.
  • the porosity of the cell partition walls in the inner region is preferably 35 to 65%.
  • the porosity of the cell partition walls in the end region is caused by the inner region together with the effect of increasing the surface roughness of the cell partition walls. Initial pressure loss can be suppressed, and sufficient mechanical strength can be maintained.
  • the porosity of the cell partition walls in the inner region is less than 35%, the proportion of the pores of the cell partition walls in the inner region is too small, so that the exhaust gas is less likely to pass through the cell partition walls in the inner region and the pressure loss increases.
  • the porosity of the cell partition walls in the inner region exceeds 65%, the mechanical properties of the cell partition walls in the inner region are not sufficient, and cracks or the like are likely to occur during reproduction.
  • the average pore diameter of the pores of the cell partition wall in the end region is 5 to 30 ⁇ m.
  • the average pore diameter of the pores of the cell partition walls in the above-mentioned end region is 5 to 30 ⁇ m, PM can be trapped with high trapping efficiency while keeping the initial pressure loss low. it can.
  • the average pore diameter of the pores of the cell partition walls in the end region is less than 5 ⁇ m, the pores are too small, and the pressure loss when exhaust gas permeates the cell partition walls increases.
  • the average pore diameter of the pores of the cell partition wall in the above-mentioned end region exceeds 30 ⁇ m, the pore diameter becomes too large, and the PM trapping efficiency decreases.
  • the length of the cells in the end region in the longitudinal direction is preferably 1 to 10 mm.
  • the lengthwise length of the cells in the end region is 1 to 10 mm, the effect of increasing the arithmetic mean roughness (Ra) on the cell partition wall surface in the end region is exhibited. Therefore, the initial pressure loss can be further reduced.
  • the honeycomb structure of the present invention when the length in the longitudinal direction of the cells in the end regions is less than 1 mm, the end regions are too small, and therefore the arithmetic mean roughness (Ra) on the cell partition surface of the end regions is increased. ) Is difficult to be exerted, and the initial pressure loss cannot be sufficiently reduced. On the other hand, when the length of the cells in the end region in the longitudinal direction exceeds 10 mm, the honeycomb structure having such a structure is Manufacturing becomes difficult.
  • the cross-sectional shape of the cells in the inner region which is perpendicular to the longitudinal direction, be quadrangular.
  • the cross-sectional shape perpendicular to the longitudinal direction of the cells in the internal region is a quadrangle, and in manufacturing the honeycomb structure, in the end region, a cross-section perpendicular to the longitudinal direction of the cells. The shape can be easily expanded or reduced as it approaches the end face, and a honeycomb structure having a sufficiently low pressure loss can be realized.
  • the honeycomb structure of the present invention it is desirable that the honeycomb structure is made of one honeycomb fired body having an outer peripheral wall on the outer periphery.
  • the opening ratio at the end face can be increased due to the absence of the adhesive layer, thus reducing the initial pressure loss. You can demonstrate more.
  • the honeycomb fired body is preferably made of cordierite or aluminum titanate.
  • the honeycomb fired body when the honeycomb fired body is made of cordierite or aluminum titanate, since the ceramic is a material having a low coefficient of thermal expansion, when large thermal stress occurs during regeneration or the like. Even in this case, the honeycomb structure is resistant to cracks.
  • FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention
  • FIG. 1 (b) is a sectional view taken along the line AA in FIG. 1 (a).
  • c) is an end view as seen from one end surface side.
  • FIG. 2A is a perspective view schematically showing the unsealed honeycomb molded body produced by the molding process
  • FIG. 2B is the unsealed honeycomb molded body shown in FIG. 2A.
  • FIG. 9 is a sectional view taken along line BB of FIG.
  • FIG. 3 is an explanatory view schematically showing a state of a remolding step of the unsealed honeycomb molded body.
  • FIG. 4 is a cross-sectional view schematically showing a state of a remolding step of the unsealed honeycomb molded body.
  • FIG. 5 is sectional drawing which shows the pressure loss measuring method typically.
  • FIG. 6 is a graph showing the arithmetic average roughness (Ra) of the cell partition wall surface in the end region and the inner region of the honeycomb structure obtained in Example 1.
  • the honeycomb structure of the present invention is a porous cell partition wall that partitions and forms a plurality of cells that are channels of exhaust gas, and an exhaust gas introduction cell in which the end surface on the exhaust gas inlet side is opened and the end surface on the exhaust gas outlet side is closed.
  • a honeycomb structure including an exhaust gas discharge cell in which an end surface on the exhaust gas outlet side is opened and an end surface on the exhaust gas inlet side is sealed,
  • the exhaust gas introduction cell and the exhaust gas discharge cell, the exhaust gas introduction cell and an internal region having a constant cross-sectional shape perpendicular to the longitudinal direction of the exhaust gas discharge cell, and vertical to the longitudinal direction of the exhaust gas introduction cell and the exhaust gas discharge cell
  • the cross-sectional shape is enlarged or reduced as it approaches the end face, and the arithmetic mean roughness (Ra) in accordance with JIS B 0601 on the cell partition surface of the end region is the cell of the inner region. It is characterized in that it is larger than the arithmetic average roughness (Ra) according to JIS B 0601 (hereinafter, simply referred to as arithmetic average roughness (Ra)) on the partition wall surface.
  • FIG. 1 (a) is a perspective view schematically showing an example of the honeycomb structure of the present invention
  • FIG. 1 (b) is a sectional view taken along the line AA in FIG. 1 (a).
  • c) is an end view as seen from one end surface side.
  • the honeycomb structure 10 shown in FIGS. 1 (a) and 1 (b) has a porous cell partition wall 11 for partitioning and forming a plurality of cells 12 and 13 serving as exhaust gas flow paths, and an end face 10a on the exhaust gas inlet side.
  • An exhaust gas introduction cell 12 that is opened and has an end face 10b on the exhaust gas outlet side sealed, and an exhaust gas discharge cell 13 that has an end face 10b on the exhaust gas outlet side opened and the end face 10a on the exhaust gas inlet side are sealed,
  • the introduction cell 12 and the exhaust gas discharge cell 13 are perpendicular to the longitudinal direction of the exhaust gas introduction cell 12 and the exhaust gas discharge cell 13 and the internal region 10B having a constant sectional shape perpendicular to the longitudinal direction of the exhaust gas introduction cell 12 and the exhaust gas discharge cell 13.
  • the cross-sectional shape is enlarged or reduced as it approaches the end face, and the end regions 10A and 10C are sealed.
  • the honeycomb structure 10 is made of a single honeycomb fired body, the honeycomb fired body is also a honeycomb structure.
  • the arithmetic mean roughness (Ra) of the cell partition surface in the end regions 10A and 10C is larger than the arithmetic mean roughness (Ra) of the cell partition surface in the inner region 10B. Therefore, in the honeycomb structure 10 of the present invention, in the initial process of the inflow of exhaust gas, PM easily adheres to the cell partition surface of the end region, and the amount of PM flowing into the cell partition of the inner region is reduced. It is possible to reduce the initial pressure loss.
  • the arithmetic mean roughness (Ra) according to JIS B 0601 on the cell partition wall surface in the above-mentioned end region is 5 to 15 ⁇ m, and JIS B on the above-mentioned end region cell partition wall surface.
  • the arithmetic average roughness (Ra) according to 0601 is preferably 1 to 5 ⁇ m larger than the arithmetic average roughness (Ra) according to JIS B 0601 on the surface of the cell partition wall in the internal region.
  • the arithmetic mean roughness (Ra) according to JIS B 0601 on the cell partition wall surface in the end region is 5 to 15 ⁇ m
  • the JIS B on the cell partition wall surface in the end region is If the arithmetic mean roughness (Ra) according to 0601 is 1 to 5 ⁇ m larger than the arithmetic mean roughness (Ra) according to JIS B 0601 on the surface of the cell partition wall in the above inner region, PM is at the above-mentioned end portion. Adhesion is more likely to occur due to the cell partition wall surface in the region, and the initial pressure loss can be sufficiently reduced.
  • the porosity of the cell partition walls in the inner region is preferably 35 to 65%.
  • the porosity of the cell partition walls in the inner region is 35 to 65%
  • the porosity of the cell partition walls in the end region is caused by the inner region together with the effect of increasing the surface roughness of the cell partition walls. Initial pressure loss can be suppressed, and sufficient mechanical strength can be maintained.
  • the average pore diameter of the pores of the cell partition wall in the end region is 5 to 30 ⁇ m.
  • the porosity and the average pore diameter are measured by a mercury intrusion method under the conditions of a contact angle of 130 ° and a surface tension of 485 mN / m.
  • the length of the cells in the end region is 1 to 10 mm in the longitudinal direction.
  • the lengthwise length of the cells in the end region is 1 to 10 mm, the effect of increasing the arithmetic mean roughness (Ra) on the cell partition wall surface in the end region is exhibited. It is easy and the initial pressure loss can be further reduced.
  • the shape of the honeycomb structure of the present invention is not limited to a columnar shape, and examples thereof include a prismatic shape, an elliptic cylindrical shape, an oblong cylindrical shape, and a round chamfered prismatic shape (for example, a round chamfered triangular pillar). .
  • the cross-sectional shape of the inner region perpendicular to the longitudinal direction of the cells is not limited to a quadrangle, and may be a triangle, a hexagon, or an octagon, but a quadrangle is preferable.
  • the density of cells in a cross section perpendicular to the longitudinal direction of the honeycomb fired body is preferably 31 to 155 cells / cm 2 (200 to 1000 cells / inch 2 ).
  • the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
  • the honeycomb structure of the present invention may be composed of one honeycomb fired body having an outer peripheral wall on the outer periphery, or may be provided with a plurality of honeycomb fired bodies, and the plurality of honeycomb fired bodies are adhesive.
  • the honeycomb fired body has one outer peripheral wall having an outer peripheral wall.
  • the material constituting the honeycomb structure of the present invention is not particularly limited, and examples thereof include carbide ceramics such as silicon carbide, titanium carbide, tantalum carbide, and tungsten carbide, and nitrides such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride.
  • carbide ceramics such as silicon carbide, titanium carbide, tantalum carbide, and tungsten carbide
  • nitrides such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride.
  • examples include ceramics, alumina, zirconia, cordierite, mullite, oxide ceramics such as aluminum titanate, and silicon-containing silicon carbide, but the honeycomb structure is composed of one honeycomb fired body having an outer peripheral wall on the outer periphery. In this case, cordierite or aluminum titanate is preferable.
  • the honeycomb fired body is made of cordierite or aluminum titanate, since the ceramic is a material having a low coefficient of thermal expansion, even when a large thermal stress occurs during regeneration, cracks and the like This is because the honeycomb structure does not easily occur.
  • silica and magnesia also have a role as a firing aid, but as the firing aid, in addition to silica and magnesia, oxides of Y, La, Na, K, Ca, Sr, and Ba are used. It may be used. If necessary, the following additives are added to these mixed powders to obtain a raw material composition.
  • the molding aid include ethylene glycol, dextrin, fatty acid, fatty acid soap, and polyalcohol.
  • the organic binder include hydrophilic organic polymers such as carboxymethyl cellulose, polyvinyl alcohol, methyl cellulose and ethyl cellulose.
  • Examples of the dispersion medium include a dispersion medium composed of only water or a dispersion medium composed of 50% by volume or more of water and an organic solvent.
  • examples of the organic solvent include alcohols such as benzene and methanol.
  • examples of the pore-forming agent include balloons, which are minute hollow spheres, spherical acrylic particles, graphite, and starch.
  • balloons include alumina balloons, glass micro balloons, shirasu balloons, fly ash (FA) balloons, and mullite balloons.
  • the raw material composition may further contain other components.
  • other components include plasticizers, dispersants, and lubricants.
  • plasticizers include polyoxyalkylene compounds such as polyoxyethylene alkyl ether and polyoxypropylene alkyl ether.
  • dispersant include sorbitan fatty acid ester.
  • lubricant include glycerin.
  • the molding step is a step of molding the raw material composition obtained in the mixing step to produce an unsealed honeycomb molded body.
  • the unsealed honeycomb molded body can be produced by, for example, extruding the raw material composition using an extrusion die. That is, the unsealed honeycomb molded body is manufactured by extruding the tubular outer peripheral wall of the honeycomb structure and the wall portion constituting the partition wall at one time. Further, in the extrusion molding, a molded body corresponding to the shape of a part of the honeycomb structure may be molded. That is, a honeycomb molded body having the same shape as the honeycomb structure may be manufactured by molding a molded body corresponding to a part of the shape of the honeycomb structure and combining the molded bodies.
  • FIG. 2A is a perspective view schematically showing the unsealed honeycomb molded body produced by the molding process
  • FIG. 2B is the unsealed honeycomb molded body shown in FIG. 2A.
  • FIG. 9 is a sectional view taken along line BB of FIG.
  • the cells 22 and 23 have a square cross section perpendicular to the longitudinal direction, and the shape of the cells 22 and 23 at the end faces 20a ′ and 20b ′ is completely zero.
  • An unsealed honeycomb molded body 20 'having the same rectangular shape and having cell partition walls 21 separating cells 22 and 23 and having a cylindrical shape as a whole is produced.
  • a taper jig is used to re-form the unsealed honeycomb molded body 20 ′ to form a portion corresponding to an end region of the honeycomb structure, thereby forming an exhaust gas introduction cell and an exhaust gas discharge cell.
  • the cross-sectional shape of 22 and 23 perpendicular to the longitudinal direction is enlarged or reduced as it approaches the end face, and the sealed honeycomb molded body has a closed shape.
  • FIG. 3 is an explanatory view schematically showing a state of the remolding step of the unsealed honeycomb molded body
  • FIG. 4 is a sectional view schematically showing a state of the remolding step of the unsealed honeycomb molded body. is there.
  • a taper including a support portion 33, a base portion 31 fixed on the support portion 33, and a large number of quadrangular pyramid-shaped tip portions 32 formed on the base portion 31.
  • the corner portion 32c which is the boundary portion of the four flat surfaces 32b forming the quadrangular pyramid of the tip portion 32 forms the square of the cell partition wall 21 on the end surface 20a 'of the unsealed honeycomb molded body 20'.
  • the taper jig 30 is arranged so as to be in contact with the center of the side 21a, and the taper jig 30 is pushed toward the central portion of the unsealed honeycomb molded body 20 '.
  • the tip bottom surface 32a is welded to the tip forming surface 31a of the base 31.
  • the portion corresponding to the end region of the cell 22 into which the tip 32 is pushed has a shape in which the cross-sectional shape perpendicular to the longitudinal direction of the cell is enlarged as it approaches the end face, and the cell into which the tip 32 is pushed
  • the portions corresponding to the end regions of the cells 23 existing on the upper, lower, left, and right sides of the cell 22 are reduced in shape as the cross-sectional shape perpendicular to the longitudinal direction of the cells 23 approaches the end surface, and become a sealed shape.
  • the shape of the sealed honeycomb formed body viewed from the end face is the same as the honeycomb structure 10 shown in FIG. 1C, the square of the cell 12 on the end face 10a is rotated by 45 ° with respect to the square of the cell 12 of the internal region 10B. , Becomes an enlarged shape.
  • the arithmetic mean roughness (Ra) of the four flat surfaces 32b forming the tip 32 of the taper jig 30 is adjusted, the material of the tip is changed, the drying temperature of the tip is changed, By changing the speed or the like when pushing the tip end portion, or by increasing the water content at the end portion of the honeycomb formed body by a method such as spraying water on the end face of the honeycomb formed body before pushing in the taper jig 30, sealing is performed.
  • the arithmetic mean roughness (Ra) of the end region of the honeycomb formed body can be adjusted.
  • the sealed honeycomb molded body obtained by this remolding step is dried at 100 to 150 ° C. using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a reduced pressure dryer, a vacuum dryer, and a freeze dryer. Then, it is dried in an air atmosphere and degreased at 250 to 400 ° C. and an oxygen concentration of 5% by volume to an air atmosphere.
  • a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a reduced pressure dryer, a vacuum dryer, and a freeze dryer.
  • the firing step is a step of firing the sealed honeycomb formed body obtained in the re-forming step at 1400 to 1600 ° C.
  • the reaction with titania proceeds from the surface of alumina to form an aluminum titanate phase.
  • the firing can be performed using a known single furnace, so-called batch furnace, or continuous furnace.
  • the firing temperature is preferably in the range of 1450 to 1550 ° C.
  • the firing time is not particularly limited, but the firing temperature is preferably maintained for 1 to 20 hours, more preferably 1 to 10 hours.
  • the oxygen concentration may be adjusted by mixing an inert gas such as nitrogen gas or argon gas into the air atmosphere.
  • the arithmetic mean roughness (Ra) on the cell partition wall surface in the end region is the arithmetic mean roughness (Ra) on the cell partition wall surface in the inner region (Ra) through the above-mentioned mixing step, molding step, remolding step, and firing step. It is possible to produce a honeycomb structure of the present invention larger than Ra).
  • Example 1 a raw material composition having the following composition was prepared. Fine titania powder having D50 of 0.6 ⁇ m: 11.1% by weight, coarse titania powder having D50 of 13.0 ⁇ m: 11.1% by weight, alumina powder having D50 of 15.9 ⁇ m: 30.4% by weight, D50 of 1 .1 ⁇ m silica powder: 2.8% by weight, D50 3.8 ⁇ m magnesia powder: 1.4% by weight, D50 31.9 ⁇ m acrylic resin (pore forming material): 18.5% by weight, methylcellulose (organic A binder having a composition of 7.1% by weight, a molding aid (ester type nonion): 4.7% by weight, and ion-exchanged water (dispersion medium): 12.9% by weight are mixed with a mixer. A raw material composition was prepared.
  • the prepared raw material composition was put into an extrusion molding machine and extrusion-molded to prepare an unsealed honeycomb molded body 20 'in which cells were not sealed.
  • the unsealed honeycomb molded body 20 ' is manufactured, moisture is adhered until the water content of the end surface of the unsealed honeycomb molded body 20' becomes 35%, and remolding is performed to form the sealed honeycomb molded body of the present invention.
  • the body was made.
  • the honeycomb structure was manufactured by holding and firing the sealed honeycomb molded body obtained through the remolding step at 1450 ° C. for 15 hours in the air atmosphere.
  • the obtained honeycomb structure had a porosity of 57%, an average pore diameter of 17 ⁇ m, a size of 34 mm ⁇ 34 mm ⁇ 100 mm, a peripheral wall thickness of 0.3 mm, and a cell partition wall thickness of 0.40 mm on the end face.
  • the thickness of the cell partition wall in the region was 0.25 mm
  • the number of cells (cell density) was 300 cells / inch 2
  • the shape was a square pole.
  • the porosity and the average pore diameter were measured by the methods described below.
  • Example 1 A honeycomb structure was manufactured in the same manner as in Example 1 except that moisture was not adhered to the end surface of the unsealed honeycomb molded body 20 'during the remolding.
  • the characteristics of the obtained honeycomb structure were the same as those in Example 1 except that the arithmetic mean roughness (Ra) of the cell partition wall surface in the end region described below was different.
  • Example 1 The honeycomb structures obtained in Example 1 and Comparative Example 1 were cut into a size of 10 mm ⁇ 10 mm ⁇ 10 mm to prepare a sample for pore measurement.
  • the porosity and the average pore diameter were measured using a porosimeter (manufactured by Shimadzu Corporation, Autopore III 9420) by a mercury porosimetry using the sample for pore measurement.
  • the contact angle was 130 ° and the surface tension was 485 mN / m under the mercury intrusion method.
  • FIG. 5 is sectional drawing which shows the pressure loss measuring method typically.
  • the pressure loss measuring device 210 includes a pipe 212 branched from an exhaust gas pipe 214 of a diesel engine 211 having a displacement of 1.6 liters, and the honeycomb structure 10 obtained in Example 1 and Comparative Example 1 in a metal casing 213. It was fixed and arranged.
  • the end of the honeycomb structure 10 on the exhaust gas inlet side is arranged on the side close to the pipe 212 of the diesel engine 211. That is, the exhaust gas is arranged so that the exhaust gas flows into the cell having the open end on the exhaust gas inlet side.
  • FIG. 6 is a graph showing the arithmetic average roughness (Ra) of the cell partition wall surface in the end region and the inner region of the honeycomb structure obtained in Example 1.
  • Ra arithmetic average roughness
  • the honeycomb structure according to Example 1 in which the surface roughness in the end region is rougher than that in the inner region has a smaller initial pressure loss than the honeycomb structure according to Comparative Example 1. It turned out.

Abstract

本発明のハニカム構造体は、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端面が開口され且つ排ガス出口側の端面が封じられている排ガス導入セルと、排ガス出口側の端面が開口され且つ排ガス入口側の端面が封じられている排ガス排出セルとを備えたハニカム構造体であって、前記排ガス導入セル及び前記排ガス排出セルは、前記排ガス導入セル及び前記排ガス排出セルの長手方向に垂直な断面形状が一定である内部領域と、前記排ガス導入セル及び前記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されている端部領域とからなり、前記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)は、前記内部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)よりも大きいことを特徴とする。

Description

ハニカム構造体
本発明は、ハニカム構造体に関する。
ガソリンエンジンやディーゼルエンジン等の内燃機関から排出される排ガス中には、スス等のパティキュレート(以下、PMともいう)が含まれており、近年、このPMが環境または人体に害を及ぼすことが問題となっている。また、排ガス中には、CO、HCまたはNOx等の有害なガス成分も含まれていることから、この有害なガス成分が環境または人体に及ぼす影響についても懸念されている。
そこで、内燃機関と連結されることにより排ガス中のPMを捕集したり、排ガスに含まれるCO、HCまたはNOx等の排ガス中の有害なガス成分を浄化したりする排ガス浄化装置として、チタン酸アルミニウム、コージェライト、炭化ケイ素等の多孔質セラミックからなるハニカム構造体が種々提案されている。
また、これらのハニカムフィルタでは、内燃機関の燃費を改善し、圧力損失の上昇に起因する運転時のトラブル等をなくすために、圧力損失の低いハニカム構造体からなるフィルタが種々提案されている。
特許文献1には、一端面で開放されて他端面で閉じられた複数の第1流路、及び、前記一端面で閉じられて前記他端面で開放された複数の第2流路を有し、各前記第1流路及び各前記第2流路の断面積がそれぞれ軸方向に一定である中央隔壁と、前記中央隔壁から前記他端面に向かって、各前記第1流路の断面積が縮小され、かつ、各前記第2流路の断面積が拡大される、他端側傾斜隔壁と、を備えるハニカム構造体であって、前記他端側傾斜隔壁の軸方向長さは4mm以上であるハニカム構造体が開示されている。
特許文献1には、中央隔壁に対し、他端側傾斜隔壁の特性を変えることにより、排ガス通過の際のハニカム構造体の圧力損失を低減させる効果が得られることは、全く記載されていない。
再公表2016-098835号
本発明者は、他端側傾斜隔壁(本発明の端部領域のセル隔壁)に注目し、中央隔壁に対し、他端側傾斜隔壁(端部領域のセル隔壁)の特性を変えることにより、ハニカム構造体の圧力損失を低下させることが可能であるとの見地に立ち、種々検討した結果、端部領域のセル隔壁表面における表面粗度を調整することにより、圧力損失、特に初期の圧力損失を低減させることが可能であることを見出し、本発明を完成するに至った。
すなわち、本発明のハニカム構造体は、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端面が開口され且つ排ガス出口側の端面が封じられている排ガス導入セルと、排ガス出口側の端面が開口され且つ排ガス入口側の端面が封じられている排ガス排出セルとを備えたハニカム構造体であって、
上記排ガス導入セル及び上記排ガス排出セルは、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が一定である内部領域と、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されている端部領域とからなり、
上記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)は、上記内部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)よりも大きいことを特徴とする。
本発明では、セル隔壁表面の算術平均面粗さ(Ra)は、触針式の表面粗さ計で測定でき、具体的には東京精密製の接触式表面粗さ測定機であるSURFCOM1400Dを用い、0.5mmの測定長さで測定することにより得ることができる。具体的には、得られたハニカム構造体を所定の箇所で切断する等し、測定し易くした後、測定を行う。測定は無作為に6点を選んで測定し、その平均値をとる。
なお、上記排ガス導入セルの排ガス出口側の端面及び上記排ガス排出セルの排ガス入口側の端面が封じられているとは、上記した端面を含む部分が封止剤を充填することにより目封じされているのではなく、上記端部領域において、セルの長手方向に垂直な断面形状が端面に近づくに従って縮小され、端面において上記断面の面積が0となり、閉じられていることをいう。
本発明のハニカム構造体における排ガス導入セルの端部領域及び排ガス排出セルの端部領域では、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されており、上記端部領域のセル隔壁表面における算術平均粗さ(Ra)は、上記内部領域のセル隔壁表面における算術平均粗さ(Ra)よりも大きいので、排ガスが流入する初期の過程において、PMが上記端部領域のセル隔壁表面に付着し易くなり、内部領域のセル隔壁に流入するPMの量を減少させることができ、排ガスが流入する初期の過程における圧力損失(以下、初期圧力損失という)を低減させることができる。
本発明のハニカム構造体では、上記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)は5~15μmであり、かつ、上記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)は、上記内部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)と比較して、1~5μm大きいことが望ましい。
本発明のハニカム構造体において、上記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)は5~15μmであり、かつ、上記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)が、上記内部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)と比較して、1~5μm大きいと、PMが上記端部領域のセル隔壁表面により付着し易くなり、初期圧力損失を充分に低減させることができる。
本発明のハニカム構造体において、上記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)から、上記内部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)を引いた値が1μm未満であると、上記端部領域のセル隔壁表面における算術平均粗さ(Ra)が上記内部領域のセル隔壁表面における算術平均粗さ(Ra)と比較して充分に大きくないので、初期圧力損失が低減されにくく、一方、上記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)から、上記内部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)を引いた値が5μmを超えるような粗面を端部領域のセル隔壁表面に形成するのは難しい。
本発明のハニカム構造体では、上記内部領域におけるセル隔壁の気孔率は、35~65%であることが望ましい。
本発明のハニカム構造体において、上記内部領域におけるセル隔壁の気孔率が、35~65%であると、上記端部領域におけるセル隔壁の表面粗度を大きくした効果と相まって、内部領域に起因する初期圧力損失を抑制することができ、かつ、充分な機械的強度を維持することができる。
上記内部領域におけるセル隔壁の気孔率が35%未満では、内部領域におけるセル隔壁の気孔の割合が小さすぎるため、排ガスが内部領域におけるセル隔壁を通過しにくくなり、圧力損失が大きくなる。一方、上記内部領域におけるセル隔壁の気孔率が65%を超えると、内部領域におけるセル隔壁の機械的特性が充分でなく、再生時等において、クラック等が発生し易くなる。
本発明のハニカム構造体では、上記端部領域におけるセル隔壁の気孔の平均気孔径は、5~30μmであることが望ましい。
本発明のハニカム構造体において、上記端部領域におけるセル隔壁の気孔の平均気孔径が、5~30μmであると、初期圧力損失を低く保ちながら、高い捕集効率でPMを捕集することができる。
上記端部領域におけるセル隔壁の気孔の平均気孔径が5μm未満であると、気孔が小さすぎるため、排ガスがセル隔壁を透過する際の圧力損失が大きくなる。一方、上記端部領域におけるセル隔壁の気孔の平均気孔径が30μmを超えると、気孔径が大きくなりすぎるので、PMの捕集効率が低下してしまう。
本発明のハニカム構造体では、上記端部領域のセルの長手方向の長さは、1~10mmであることが望ましい。
本発明のハニカム構造体において、上記端部領域のセルの長手方向の長さが、1~10mmであると、端部領域のセル隔壁表面における算術平均粗さ(Ra)を高くした効果が発揮され易く、初期圧力損失をさらに低減させることができる。
本発明のハニカム構造体において、上記端部領域のセルの長手方向の長さが、1mm未満であると、端部領域が小さすぎるので、端部領域のセル隔壁表面における算術平均粗さ(Ra)を高くした効果が発揮されにくく、初期圧力損失を充分に低減できなくなり、一方、上記端部領域のセルの長手方向の長さが、10mmを超えると、そのような構造のハニカム構造体の製造が難しくなる。
本発明のハニカム構造体において、上記内部領域におけるセルの長手方向に垂直な断面形状は、四角形であることが望ましい。
本発明のハニカム構造体において、上記内部領域におけるセルの長手方向に垂直な断面形状が、四角形であると、ハニカム構造体を製造する際、上記端部領域において、セルの長手方向に垂直な断面形状を、端面に近づくに従って拡大又は縮小させ易く、圧力損失が充分に低いハニカム構造体の実現が可能となる。
本発明のハニカム構造体では、上記ハニカム構造体は、外周に外周壁を有する一のハニカム焼成体により構成されていることが望ましい。
本発明のハニカム構造体においては、接着剤を用いて多数のハニカムセグメントを組み合わせたハニカム構造体に比べて、接着層がない分、端面における開口率を高くできるため、初期圧力損失の低減効果をより発揮できる。
本発明のハニカム構造体では、上記ハニカム焼成体は、コージェライト、又は、チタン酸アルミニウムからなることが望ましい。
本発明のハニカム構造体において、上記ハニカム焼成体が、コージェライト、又は、チタン酸アルミニウムからなると、上記セラミックは、熱膨張率の低い材料であるので、再生時等において大きな熱応力が発生した場合であっても、クラック等の発生しにくいハニカム構造体となる。
図1(a)は、本発明のハニカム構造体の一例を模式的に示す斜視図であり、図1(b)は、図1(a)におけるA-A線断面図であり、図1(c)は、一方の端面側から見た端面図である。 図2(a)は、成形工程により作製された未封止ハニカム成形体を模式的に示す斜視図であり、図2(b)は、図2(a)に示した未封止ハニカム成形体のB-B線断面図である。 図3は、未封止ハニカム成形体の再成形工程の様子を模式的に示す説明図である。 図4は、未封止ハニカム成形体の再成形工程の様子を模式的に示す断面図である。 図5は、圧力損失測定方法を模式的に示す断面図である。 図6は、実施例1で得られたハニカム構造体の端部領域及び内部領域におけるセル隔壁表面の算術平均粗さ(Ra)を示すグラフである。
(発明の詳細な説明)
[ハニカム構造体]
まず、本発明のハニカム構造体について説明する。
本発明のハニカム構造体は、排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端面が開口され且つ排ガス出口側の端面が封じられている排ガス導入セルと、排ガス出口側の端面が開口され且つ排ガス入口側の端面が封じられている排ガス排出セルとを備えたハニカム構造体であって、
上記排ガス導入セル及び上記排ガス排出セルは、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が一定である内部領域と、上記排ガス導入セル及び上記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されている端部領域とからなり、上記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)は、上記内部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)(以下、単に算術平均粗さ(Ra)という)よりも大きいことを特徴とする。
図1(a)は、本発明のハニカム構造体の一例を模式的に示す斜視図であり、図1(b)は、図1(a)におけるA-A線断面図であり、図1(c)は、一方の端面側から見た端面図である。
図1(a)及び図1(b)に示すハニカム構造体10は、排ガスの流路となる複数のセル12、13を区画形成する多孔質のセル隔壁11と、排ガス入口側の端面10aが開口され且つ排ガス出口側の端面10bが封じられている排ガス導入セル12と、排ガス出口側の端面10bが開口され且つ排ガス入口側の端面10aが封じられている排ガス排出セル13とを備え、排ガス導入セル12及び排ガス排出セル13は、排ガス導入セル12及び排ガス排出セル13の長手方向に垂直な断面形状が一定である内部領域10Bと、排ガス導入セル12及び排ガス排出セル13の長手方向に垂直な断面形状が端面に近づくに従って拡大され、又は、縮小され、封じられている端部領域10A、10Cとからなる。
図1(a)及び図1(b)に示すように、ハニカム構造体10が単一のハニカム焼成体からなる場合、ハニカム焼成体はハニカム構造体でもある。
本発明のハニカム構造体10では、端部領域10A、10Cにおけるセル隔壁表面の算術平均粗さ(Ra)は、内部領域10Bにおけるセル隔壁表面の算術平均粗さ(Ra)よりも大きい。
このため、本発明のハニカム構造体10では、排ガスが流入する初期の過程において、PMが端部領域のセル隔壁表面に付着し易くなり、内部領域のセル隔壁に流入するPMの量を減少させることができ、初期圧力損失を低減させることができる。
本発明のハニカム構造体では、上記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)は5~15μmであり、かつ、上記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)は、上記内部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)と比較して、1~5μm大きいことが望ましい。
本発明のハニカム構造体において、上記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)は5~15μmであり、かつ、上記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)が、上記内部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)と比較して、1~5μm大きいと、PMが上記端部領域のセル隔壁表面により付着し易くなり、初期圧力損失を充分に低減させることができる。
本発明のハニカム構造体では、上記内部領域におけるセル隔壁の気孔率は、35~65%であることが望ましい。
本発明のハニカム構造体において、上記内部領域におけるセル隔壁の気孔率が、35~65%であると、上記端部領域におけるセル隔壁の表面粗度を大きくした効果と相まって、内部領域に起因する初期圧力損失を抑制することができ、かつ、充分な機械的強度を維持することができる。
本発明のハニカム構造体では、上記端部領域におけるセル隔壁の気孔の平均気孔径は、5~30μmであることが望ましい。
本発明のハニカム構造体において、上記端部領域におけるセル隔壁の気孔の平均気孔径が、5~30μmであると、圧力損失を低く保ちながら、高い捕集効率でPMを捕集することができる。
本発明のハニカム構造体において、気孔率および平均気孔径は、水銀圧入法にて接触角を130°、表面張力を485mN/mの条件で測定する。
本発明のハニカム構造体において、上記端部領域のセルの長手方向の長さは、1~10mmであることが望ましい。
本発明のハニカム構造体において、上記端部領域のセルの長手方向の長さが、1~10mmであると、端部領域のセル隔壁表面における算術平均粗さ(Ra)高くした効果が発揮され易く、初期圧力損失をさらに低減させることができる。
本発明のハニカム構造体の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。
本発明のハニカム構造体において、内部領域におけるセルの長手方向に垂直な断面形状は、四角形に限定されず、三角形、六角形、八角形であってもよいが、四角形であることが望ましい。
本発明のハニカム構造体において、ハニカム焼成体の長手方向に垂直な断面のセルの密度は、31~155個/cm(200~1000個/inch)であることが望ましい。
本発明のハニカム構造体において、ハニカム焼成体の外周面に外周コート層が形成されている場合、外周コート層の厚さは、0.1~2.0mmであることが望ましい。
本発明のハニカム構造体は、外周に外周壁を有する一のハニカム焼成体により構成されていてもよいし、複数個のハニカム焼成体を備えていてもよく、複数個のハニカム焼成体が接着剤により結合されていてもよいが、外周に外周壁を有する一のハニカム焼成体により構成されていることが望ましい。
本発明のハニカム構造体を構成する材料は、特に限定されず、例えば、炭化ケイ素、炭化チタン、炭化タンタル、炭化タングステン等の炭化物セラミック、窒化アルミニウム、窒化ケイ素、窒化ホウ素、窒化チタン等の窒化物セラミック、アルミナ、ジルコニア、コージェライト、ムライト、チタン酸アルミニウム等の酸化物セラミック、ケイ素含有炭化ケイ素等が挙げられるが、ハニカム構造体が外周に外周壁を有する一のハニカム焼成体により構成されている場合には、コージェライト、又は、チタン酸アルミニウムが好ましい。
上記ハニカム焼成体が、コージェライト、又は、チタン酸アルミニウムからなると、上記セラミックは、熱膨張率の低い材料であるので、再生時等において大きな熱応力が発生した場合であっても、クラック等の発生しにくいハニカム構造体となるからである。
次に、本発明のハニカム構造体の製造方法について説明する。
以下においては、チタン酸アルミニウムからなるハニカム構造体の製造方法を例にとって説明するが、本発明の製造対象は、チタン酸アルミニウムに限定されるものではない。
(混合工程)
まず、アルミナ粉末及びチタニア粉末にマグネシア粉末、シリカ粉末等の添加剤を添加し、混合することにより混合粉末を得る。
上記混合粉末において、シリカとマグネシアは、焼成助剤としての役割もあるが、焼成助剤としては、シリカとマグネシアの他に、Y、La、Na、K、Ca、Sr、Baの酸化物が用いられていてもよい。これらの混合粉末に以下の添加剤を必要により添加して原料組成物を得る。成形助剤としては、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコールが挙げられる。有機バインダとしては、カルボキシメチルセルロース、ポリビニルアルコール、メチルセルロース、エチルセルロース等の親水性有機高分子が挙げられる。分散媒としては、水のみからなる分散媒、又は、50体積%以上の水と有機溶剤とからなる分散媒が挙げられる。有機溶剤としては、ベンゼン、メタノール等のアルコールが挙げられる。造孔剤としては、微小中空球体であるバルーン、球状アクリル粒子、グラファイト、デンプンが挙げられる。バルーンとしては、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュ(FA)バルーン、ムライトバルーンが挙げられる。
また、原料組成物中には、その他の成分が更に含有されていてもよい。その他の成分としては、たとえば、可塑剤、分散剤、潤滑剤が挙げられる。可塑剤としては、たとえば、ポリオキシエチレンアルキルエーテル、ポリオキシプロピレンアルキルエーテル等のポリオキシアルキレン系化合物が挙げられる。分散剤としては、たとえば、ソルビタン脂肪酸エステルが挙げられる。潤滑剤としては、たとえば、グリセリンが挙げられる。
 (成形工程)
成形工程は、混合工程により得られた原料組成物を成形して未封止ハニカム成形体を作製する工程である。未封止ハニカム成形体は、たとえば、原料組成物を押出金型を用いて押出成形することにより作製することができる。すなわち、未封止ハニカム成形体は、ハニカム構造体の筒状の外周壁と隔壁となる部分を構成する壁部を一度に押出成形することにより作製する。また、押出成形では、ハニカム構造体の一部の形状に対応する成形体を成形してもよい。すなわち、ハニカム構造体の一部の形状に対応する成形体を成形し、それら成形体を組み合わせることによってハニカム構造体と同一形状を有するハニカム成形体を作製してもよい。
図2(a)は、成形工程により作製された未封止ハニカム成形体を模式的に示す斜視図であり、図2(b)は、図2(a)に示した未封止ハニカム成形体のB-B線断面図である。
図2(a)及び(b)に示すように、上記成形工程により、セル22、23の長手方向に垂直な断面形状が四角で、端面20a′、20b′におけるセル22、23の形状も全く同じ四角形状で、セル22、23を隔てるセル隔壁21を有し、全体が円柱形状の未封止ハニカム成形体20′が作製される。
(再成形工程)
この後、テーパー冶具を用い、未封止ハニカム成形体20′に対し、ハニカム構造体の端部領域に相当する部分を形成するための再成形を行い、排ガス導入セル及び排ガス排出セルとなるセル22、23の長手方向に垂直な断面形状が端面に近づくに従って拡大され、又は、縮小され、封じられた形状の封止ハニカム成形体とする。
図3は、未封止ハニカム成形体の再成形工程の様子を模式的に示す説明図であり、図4は、未封止ハニカム成形体の再成形工程の様子を模式的に示す断面図である。
図3及び図4に示すように、支持部33と支持部33上に固定された基台部31と基台部31上に形成された多数の四角錐形状の先端部32とを備えたテーパー冶具30を用い、先端部32の四角錐を構成する4つの平面32bの境界部である角部32cが未封止ハニカム成形体20′の端面20a′におけるセル隔壁21の四角を構成する一の辺21aの真ん中に当接するように配置し、未封止ハニカム成形体20′の中央部分に向かってテーパー冶具30を押し込む。なお、先端部底面32aは、基台部31の先端部形成面31aに溶着されている。
このとき、先端部32が押し込まれたセル22の端部領域に相当する部分は、セルの長手方向に垂直な断面形状が端面に近づくに従って拡大された形状となり、先端部32が押し込まれたセル22の上下左右に存在していたセル23の端部領域に相当する部分は、セル23の長手方向に垂直な断面形状が端面に近づくに従って縮小され、封じられた形状となる。また、端面から見た封止ハニカム成形体の形状は、図1(c)に示すハニカム構造体10と同じく、端面10aにおけるセル12の四角が内部領域10Bのセル12の四角を45°回転し、拡大した形状となる。
上記再成形工程において、テーパー冶具30の先端部32を構成する4つの平面32bの算術平均粗さ(Ra)を調整したり、先端部の材質を変えたり、先端部の乾燥温度を変えたり、先端部を押し込む際のスピード等を変えたり、テーパー治具30を押し込む前に、ハニカム成形体の端面に水を吹き付ける等の方法でハニカム成形体の端部の水分率を上げることにより、封止ハニカム成形体の端部領域の算術平均粗さ(Ra)を調整することができる。また、例えば、先端部32を構成する4つの平面32bの算術平均粗さ(Ra)を大きくすることにより、封止ハニカム成形体の端部領域の算術平均粗さ(Ra)を大きくすることができ、得られるハニカム構造体の端部領域の算術平均粗さ(Ra)を大きくすることができる。
この再成形工程により得られた封止ハニカム成形体は、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用い、100~150℃、大気雰囲気下で乾燥され、250~400℃、酸素濃度5容積%~大気雰囲気下で脱脂される。
(焼成工程)
焼成工程は、再成形工程により得られた封止ハニカム成形体を1400~1600℃で焼成する工程である。この焼成工程では、アルミナの表面からチタニアとの反応が進行して、チタン酸アルミニウムの相が形成される。焼成は、公知の単独炉、いわゆるバッチ炉や、連続炉を用いて行うことができる。焼成温度は、1450~1550℃の範囲であることが好ましい。焼成時間は特に限定されないが、上記の焼成温度において1~20時間保持することが好ましく、1~10時間保持することがより好ましい。また、焼成工程は大気雰囲気下で行うことが好ましい。大気雰囲気に窒素ガスやアルゴンガス等の不活性ガスを混合することにより、酸素濃度を調整してもよい。
上記した混合工程、成形工程、再成形工程、及び、焼成工程を経ることにより、端部領域のセル隔壁表面における算術平均粗さ(Ra)が、内部領域のセル隔壁表面における算術平均粗さ(Ra)よりも大きい本発明のハニカム構造体を製造することができる。
以下、上記実施形態をさらに具体化した実施例について説明する。
(実施例1)
まず、下記組成の原料組成物を調製した。
D50が0.6μmのチタニア微粉末:11.1重量%、D50が13.0μmのチタニア粗粉末:11.1重量%、D50が15.9μmのアルミナ粉末:30.4重量%、D50が1.1μmのシリカ粉末:2.8重量%、D50が3.8μmのマグネシア粉末:1.4重量%、D50が31.9μmのアクリル樹脂(造孔材):18.5重量%、メチルセルロース(有機バインダ):7.1重量%、成形助剤(エステル型ノニオン):4.7重量%、及び、イオン交換水(分散媒):12.9重量%からなる組成のものを混合機で混合し、原料組成物を調製した。
調製した原料組成物を押出成形機に投入して押出成形を行うことにより、セルが封止されていない未封止ハニカム成形体20′を作製した。
未封止ハニカム成形体20′を作製した後、未封止ハニカム成形体20′の端面の水分率が35%になるまで水分を付着させて、再成形を行い、本発明の封止ハニカム成形体を作製した。テーパー冶具30としては、未封止ハニカム成形体20′の端面20aを形成するための先端部32同士の距離(図5に示すV:谷幅)を0.13mmに設定し、先端部32の四角錐の平面32bと、基台部31の先端部32が形成されている先端部形成面31a(先端部底面 32a)に垂直な面と、の角度αを12.5°に設定した(図3及び図4参照)。
この後、再成形工程を経て得られた封止ハニカム成形体を大気雰囲気下、1450℃で15時間保持して焼成することにより、ハニカム構造体を製造した。得られたハニカム構造体は、気孔率が57%、平均気孔径が17μm、大きさが34mm×34mm×100mm、外周壁の厚さ0.3mm、端面におけるセル隔壁の厚さ0.40mm、内部領域におけるセル隔壁の厚さ0.25mm、セルの数(セル密度)が300個/inchで、四角柱形状であった。なお、気孔率及び平均気孔径の測定は、下記する方法により行った。
(比較例1)
再成形を行う際、未封止ハニカム成形体20′の端面に水分を付着させなかった他は、実施例1と同様にハニカム構造体を製造した。
得られたハニカム構造体の特性は、下記する端部領域のセル隔壁表面の算術平均粗さ(Ra)が異なるほかは、実施例1と同様であった。
[端部領域及び内部領域のセル隔壁表面の表面粗さの測定]
実施例1及び比較例1で得られたハニカム構造体をカットすることにより、端部領域及び内部領域のセル隔壁を露出させ、東京精密製の接触式表面粗さ測定機であるSURFCOM1400Dを用い、0.5mmの測定長さで6点測定した。
[気孔率及び平均気孔径]
実施例1及び比較例1で得られたハニカム構造体を10mm×10mm×10mmに切り出して、気孔測定用サンプルを準備した。気孔測定用サンプルを用いて、水銀圧入法によるポロシメーター(島津製作所社製、オートポアIII 9420)により気孔率及び平均気孔径を測定した。水銀圧入法にて接触角を130°、表面張力を485mN/mの条件とした。
[圧力損失]
図5は、圧力損失測定方法を模式的に示す断面図である。
圧力損失測定装置210は、排気量1.6リットルのディーゼルエンジン211の排ガス管214から分岐された配管212に、実施例1及び比較例1で得られたハニカム構造体10を金属ケーシング213内に固定して配置した。
ハニカム構造体10は、その排ガス入口側の端部がディーゼルエンジン211の配管212に近い側に配置される。すなわち、排ガス入口側の端部が開口されたセルに排ガスが流入するように配置される。
図6は、実施例1で得られたハニカム構造体の端部領域及び内部領域におけるセル隔壁表面の算術平均粗さ(Ra)を示すグラフである。
図6に示すように、実施例1で得られたハニカム構造体は、内部領域のセル隔壁表面における算術平均粗さ(Ra)が5.0μmであるのに対し、端部領域におけるセル隔壁表面の算術平均粗さ(Ra)は、6.8μmと高くなっていた。
一方、比較例1で得られたハニカム構造体の端部領域及び内部領域におけるセル隔壁の表面粗さの算術平均粗さ(Ra)は、いずれも5.0μmであった。
上記圧力損失測定装置を使用し、ディーゼルエンジンを動作させて、実施例1及び比較例1に係るハニカム構造体10の初期圧力損失を測定したところ、実施例1では、2.4kPaであったのに対し、比較例1では2.8kPaであった。
以上の結果より明らかなように、内部領域に比べて端部領域における表面粗さが粗い実施例1に係るハニカム構造体は、比較例1に係るハニカム構造体と比べて初期圧力損失が低減していることが判明した。
10 ハニカム構造体
10a、10b 端面
10A、10C 端部領域
10B 内部領域
11 セル隔壁
12 排ガス導入セル
13 排ガス排出セル
20′ 未封止ハニカム成形体
20a′、20b′ 端面 
21 セル隔壁
21a 一の辺
22、23 セル
30 テーパー冶具
31 基台部
31a 先端部形成面
32 先端部
32a 先端部底面
32b 平面
32c 角部
33 支持部

Claims (8)

  1. 排ガスの流路となる複数のセルを区画形成する多孔質のセル隔壁と、排ガス入口側の端面が開口され且つ排ガス出口側の端面が封じられている排ガス導入セルと、排ガス出口側の端面が開口され且つ排ガス入口側の端面が封じられている排ガス排出セルとを備えたハニカム構造体であって、
    前記排ガス導入セル及び前記排ガス排出セルは、前記排ガス導入セル及び前記排ガス排出セルの長手方向に垂直な断面形状が一定である内部領域と、前記排ガス導入セル及び前記排ガス排出セルの長手方向に垂直な断面形状が端面に近づくに従って拡大又は縮小されている端部領域とからなり、
    前記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)は、前記内部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)よりも大きいことを特徴とするハニカム構造体。
  2. 前記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)は、5~15μmで、かつ、前記端部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)は、前記内部領域のセル隔壁表面におけるJIS B 0601に準拠した算術平均粗さ(Ra)と比較して、1~5μm大きい請求項1に記載のハニカム構造体。
  3. 前記内部領域におけるセル隔壁の気孔率は、35~65%である請求項1又は2に記載のハニカム構造体。
  4. 前記端部領域におけるセル隔壁の気孔の平均気孔径は、5~30μmである請求項1~3のいずれか1項に記載のハニカム構造体。
  5. 前記端部領域のセルの長手方向の長さは、1~10mmである請求項1~4のいずれか1項に記載のハニカム構造体。
  6. 前記内部領域におけるセルの長手方向に垂直な断面形状は、四角形である請求項1~5のいずれか1項に記載のハニカム構造体。
  7. 前記ハニカム構造体は、外周に外周壁を有する一のハニカム焼成体により構成されている請求項1~6のいずれか1項に記載のハニカム構造体。
  8. 前記ハニカム焼成体は、コージェライト、又は、チタン酸アルミニウムからなる請求項7に記載のハニカム構造体。
     
PCT/JP2019/039045 2018-10-12 2019-10-03 ハニカム構造体 WO2020075607A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-193598 2018-10-12
JP2018193598A JP7198626B2 (ja) 2018-10-12 2018-10-12 ハニカム構造体

Publications (1)

Publication Number Publication Date
WO2020075607A1 true WO2020075607A1 (ja) 2020-04-16

Family

ID=70164926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039045 WO2020075607A1 (ja) 2018-10-12 2019-10-03 ハニカム構造体

Country Status (2)

Country Link
JP (1) JP7198626B2 (ja)
WO (1) WO2020075607A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577217A (en) * 1980-06-16 1982-01-14 Ngk Insulators Ltd Ceramic honeycomb filter and preparation thereof
JPH08508199A (ja) * 1993-04-05 1996-09-03 ストッベ,ペル フィルタ本体の試料の中の通路を閉じる方法
JP2003047813A (ja) * 2001-08-08 2003-02-18 Toyota Motor Corp 排気浄化装置
JP2003049631A (ja) * 2001-08-08 2003-02-21 Toyota Motor Corp 排気浄化装置
JP2006272318A (ja) * 2005-03-01 2006-10-12 Denso Corp 排ガス浄化フィルタの製造方法
JP2013039513A (ja) * 2011-08-12 2013-02-28 Sumitomo Chemical Co Ltd ハニカムフィルタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577217A (en) * 1980-06-16 1982-01-14 Ngk Insulators Ltd Ceramic honeycomb filter and preparation thereof
JPH08508199A (ja) * 1993-04-05 1996-09-03 ストッベ,ペル フィルタ本体の試料の中の通路を閉じる方法
JP2003047813A (ja) * 2001-08-08 2003-02-18 Toyota Motor Corp 排気浄化装置
JP2003049631A (ja) * 2001-08-08 2003-02-21 Toyota Motor Corp 排気浄化装置
JP2006272318A (ja) * 2005-03-01 2006-10-12 Denso Corp 排ガス浄化フィルタの製造方法
JP2013039513A (ja) * 2011-08-12 2013-02-28 Sumitomo Chemical Co Ltd ハニカムフィルタ

Also Published As

Publication number Publication date
JP2020060164A (ja) 2020-04-16
JP7198626B2 (ja) 2023-01-04

Similar Documents

Publication Publication Date Title
JP5144075B2 (ja) ハニカム構造体及びその製造方法
JP4216174B2 (ja) コート材、セラミックスハニカム構造体及びその製造方法
US8057766B2 (en) Exhaust gas purifying apparatus and method for purifying exhaust gas
US20070234694A1 (en) Honeycomb filter
US9101865B2 (en) Honeycomb structure and manufacturing method of the same
EP2505248B1 (en) Honeycomb structured body and exhaust gas purifying apparatus
JP6110751B2 (ja) 目封止ハニカム構造体
US11339099B2 (en) Honeycomb structure
JP6110750B2 (ja) 目封止ハニカム構造体
WO2020075607A1 (ja) ハニカム構造体
WO2020075605A1 (ja) ハニカム構造体
WO2020075601A1 (ja) ハニカム構造体
WO2020075602A1 (ja) ハニカム構造体
WO2020075604A1 (ja) ハニカム構造体
WO2020075603A1 (ja) ハニカム構造体
WO2020075613A1 (ja) ハニカム構造体
JP7253892B2 (ja) ハニカム構造体
WO2020075608A1 (ja) ハニカム構造体
JP7472911B2 (ja) セラミックハニカムフィルタ
WO2020075612A1 (ja) ハニカム構造体
JP2020124681A (ja) ハニカム構造体の製造方法
JP2020124856A (ja) ハニカム構造体の製造方法
JP2021037489A (ja) ハニカム構造体及びハニカム構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870615

Country of ref document: EP

Kind code of ref document: A1