WO2011021554A1 - 超硬合金およびこれを用いた切削工具 - Google Patents

超硬合金およびこれを用いた切削工具 Download PDF

Info

Publication number
WO2011021554A1
WO2011021554A1 PCT/JP2010/063630 JP2010063630W WO2011021554A1 WO 2011021554 A1 WO2011021554 A1 WO 2011021554A1 JP 2010063630 W JP2010063630 W JP 2010063630W WO 2011021554 A1 WO2011021554 A1 WO 2011021554A1
Authority
WO
WIPO (PCT)
Prior art keywords
cemented carbide
mass
particles
less
cutting tool
Prior art date
Application number
PCT/JP2010/063630
Other languages
English (en)
French (fr)
Inventor
拓也 奥野
和弘 広瀬
秀樹 森口
明彦 池ヶ谷
和男 笹谷
良治 山本
Original Assignee
住友電気工業株式会社
住友電工ハードメタル株式会社
株式会社アライドマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友電工ハードメタル株式会社, 株式会社アライドマテリアル filed Critical 住友電気工業株式会社
Priority to EP10809899.7A priority Critical patent/EP2474634B1/en
Priority to CN2010800367203A priority patent/CN102482739A/zh
Priority to US13/390,841 priority patent/US8801816B2/en
Publication of WO2011021554A1 publication Critical patent/WO2011021554A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • the present invention relates to a cemented carbide suitable for a cutting tool material and a cutting tool including a substrate made of the cemented carbide.
  • the present invention relates to a cemented carbide excellent in both heat crack resistance and wear resistance.
  • the cutting edge of a cutting tool usually becomes high temperature due to heat generated due to deformation or friction when the work material is cut. Therefore, the cutting tool material (base material) is required to maintain sufficient hardness and strength even at high temperatures.
  • base material Conventionally, in order to improve the wear resistance of cutting tools at high temperatures, elements such as Ti, Nb, Ta, Zr, etc. are added to the cemented carbide that is used to improve the high-temperature hardness, and the tool surface is made of alumina. Or a ceramic film with high high-temperature hardness such as titanium carbide. In order to lower the temperature of the cutting tool itself or the work material itself, it is effective to use cutting oil.
  • Patent Document 1 provides a layer having a large amount of WC particles having a high thermal conductivity on the surface of the alloy in order to increase the thermal conductivity of the surface of the alloy which is likely to become high temperature. Disclosed sintered alloys.
  • the use of the above cutting oil is effective in suppressing wear during continuous cutting.
  • the thermal shock during idling is increased by the above-described cutting oil, so that thermal cracking is likely to occur and the tool is likely to be lost.
  • the ceramic constituting the coating film generally has a low thermal diffusivity. For this reason, providing the coating film on the tool surface makes it difficult for heat to be transferred from the coating film on the tool surface to the base material inside the tool, and has the effect of reducing the thermal shock applied to the base material.
  • the coating film is easily peeled off due to phenomena such as higher cutting temperatures and higher weldability with the work material. The effect of suppressing thermal cracks may not be fully demonstrated.
  • the amount of additive elements is increased in order to sufficiently increase the high temperature hardness of the cemented carbide, the toughness and thermal diffusivity (thermal conductivity) of the substrate are lowered. And the reduction
  • Patent Document 1 only by improving the thermal conductivity in the vicinity of the tool surface, the temperature in the vicinity of the boundary between the high thermal conductivity portion on the surface side of the tool and the low thermal conductivity portion on the inner side of the tool. There is a risk that the difference will increase and thermal cracking will occur.
  • the hard phase mainly composed of WC particles is bound by the binder phase mainly composed of Co, and the binder phase is substantially composed of Co or Co and Ni.
  • the total content of is 4.5% by mass or more and 15% by mass or less.
  • the average particle diameter of WC particles in this cemented carbide is 0.4 ⁇ m or more and 4 ⁇ m or less. Further, when the average particle size of WC particles in the cemented carbide is x ( ⁇ m), the thermal diffusivity X (cm 2 / sec) of the cemented carbide satisfies X> 0.055x + 0.238.
  • the above cemented carbide further contains only 0.05% by mass to 3% by mass of Cr alone. Further, it is preferable that the cemented carbide further contains Cr and one or more elements selected from Ta, Nb, Zr and Ti in a total amount of 0.05% by mass or more and 5% by mass or less.
  • the cemented carbide preferably contains 0.05% by mass or more and 5% by mass or less of one or more elements of Ta and Nb in total with Cr.
  • the binder phase is substantially composed of Co and Ni, and the content of Ni is preferably 25% or less of the total content of Co and Ni.
  • the cemented carbide preferably has a coercive force (Hc) of 16 kA / m or less.
  • the cemented carbide further contains 0.05 mass% or more and 2 mass% or less of Cr, 0.2 mass% or more and 5 mass% or less of Ta, the average particle size of the particles constituting the hard phase is 1 ⁇ m or more and 4 ⁇ m or less, and contains Co.
  • the amount is 7% by mass or more and 12% by mass or less and is preferably used for a crankshaft machining tool.
  • the cemented carbide further contains 0.05 mass% to 1.2 mass% of Cr, the average particle size of the particles constituting the hard phase is 0.5 ⁇ m to 3 ⁇ m, and the Co content is 4.5 mass% to 9 mass. % Or less, and preferably used for a tool for titanium machining.
  • the present invention also relates to a cutting tool, the cutting tool comprises a substrate made of the above cemented carbide and a coating film formed on the surface of the substrate by a PVD method,
  • the coating film includes one or more first elements selected from Group 4a, 5a, 6a group elements of the periodic table, Al and Si, carbon (C), nitrogen (N), oxygen (O), and boron. It is characterized by being composed of a compound with one or more second elements selected from (B) and one or more selected from diamond-like carbon (DLC).
  • the cutting tool of the present invention comprises a substrate made of a cemented carbide and a coating film formed on the surface of the substrate by a CVD method, the coating film is a periodic table 4a, One or more first elements selected from Group 5a, 6a elements, Al and Si, and one or more selected from carbon (C), nitrogen (N), oxygen (O), and boron (B) It is composed of at least one selected from a compound with a second element and diamond.
  • the cemented carbide of the present invention has a high thermal diffusivity not only on the surface of the cemented carbide but also on the whole by having the above-described configuration. Therefore, the cutting tool comprising a substrate made of the cemented carbide of the present invention has a high thermal diffusivity of the entire tool, and can suppress the occurrence of thermal cracks due to partial thermal expansion differences, Long life can be achieved. In addition, when cutting difficult-to-cut materials that tend to be hot during cutting and tend to cause local temperature rise, the cutting tool including the substrate made of the cemented carbide of the present invention has a thermal diffusivity of the entire tool. This tendency can be relieved by having a high value. Therefore, this cutting tool can suppress a reduction in blade edge strength and progress of wear, and is excellent in wear resistance and toughness.
  • the cemented carbide of the present invention has a high thermal diffusivity and a high temperature hardness. Therefore, a cutting tool including a base material made of the cemented carbide of the present invention is excellent in heat crack resistance and wear resistance.
  • the cemented carbide of the present invention is a WC-based cemented carbide containing the most WC particles in the hard phase.
  • the WC particles substantially constitute the remainder of the cemented carbide except for compound particles, a binder phase, and inevitable impurities described later.
  • the hard phase is substantially composed only of WC particles, it is excellent in heat crack resistance, toughness and strength.
  • the hard phase is a compound of at least one metal selected from Group 4a, 5a, and 6a elements of the periodic table and at least one element of carbon and nitrogen (excluding WC), that is,
  • the wear resistance is excellent.
  • Specific compounds include TaC, (Ta, Nb) C, VC, Cr 3 C 2 , NbC, TiCN and the like.
  • the total content of metal elements other than W constituting the compound particles is preferably 0.05% by mass or more and 5% by mass or less.
  • the thermal diffusivity mentioned later there is little fall of the thermal diffusivity mentioned later, and it is excellent in abrasion resistance and heat crack resistance.
  • the cemented carbide is manufactured so that the corners are rounded, that is, a shape close to a spherical shape in short, and this property is maintained. . As a result, the thermal diffusivity is high and the thermal crack resistance is excellent.
  • the binder phase contains the most Co.
  • other iron group elements such as Ni and Fe may be contained, but it is preferable that only Co or substantially Co and Ni are included. Further, when Ni is included, the thermal diffusivity tends to decrease. Therefore, considering toughness and thermal diffusivity, only Co is preferable.
  • the total content of Co and Ni in the cemented carbide is 4.5% by mass or more and 15% by mass or less. If the total content is less than 4.5% by mass, the content of WC, which has a high thermal conductivity, increases, but the toughness is insufficient, so that the effect of suppressing thermal cracking is insufficient.
  • the toughness is improved as the amount of the binder phase increases, if the total content of Co and Ni exceeds 15% by mass, the content of WC is relatively reduced, which greatly reduces the thermal diffusivity described later. Become.
  • the decrease in WC causes a decrease in hardness, which tends to decrease the wear resistance.
  • the total content of Co and Ni is 6% by mass or more and 13% by mass or less, it is easy to become a dense cemented carbide with high sinterability and can provide a high balance between high hardness and high toughness.
  • This cemented carbide has a high thermal diffusivity and is excellent in wear resistance and toughness.
  • the Ni content is preferably 25% or less, more preferably 10% or less, of the total content of Co and Ni.
  • substantially composed means, except for inevitable impurities, when composed of Co, when composed of Co and Ni, and compounds used as raw materials (WC, Cr 3 C 2 etc.) The constituent elements (W, Cr, etc.) are allowed to be dissolved.
  • the cemented carbide of the present invention has a composition composed of WC, Co (or Co and Ni) and the remaining inevitable impurities, as well as a composition composed of WC and Co (or Co and Ni), the following additional elements and the remaining inevitable impurities. be able to.
  • the additive element include one or more elements selected from Cr, Ta, Nb, Zr, and Ti.
  • a cutting tool comprising a base material made of the cemented carbide of the present invention containing the above elements such as Cr has a cutting performance (wear resistance, heat resistance) due to a synergistic effect of grain growth suppression effect and thermal diffusivity improvement. It is expected to have high cracking properties.
  • it preferably contains Cr and one or more elements selected from Ta, Nb, Zr and Ti, and one or more elements of Cr, Ta and Nb It is more preferable to contain.
  • the content is 0.05 mass% or more and 3 mass% or less are preferable.
  • the content of the additive element is less than 0.05% by mass, it is difficult to obtain the above-described effect sufficiently.
  • the content is more preferably 0.3% by mass or more and 3% by mass or less.
  • the Cr content is preferably 0.05% by mass to 3% by mass, and the total content is more preferably 0.3% by mass to 5% by mass.
  • the additive element it is possible to use a simple element as a raw material or a compound such as a carbide containing the metal element (for example, TaNbC, Cr 3 C 2 or the like).
  • the compound used as the raw material exists as a compound in the cemented carbide as it is, forms a new composite compound, or exists as a single element.
  • V is often used as a grain growth inhibitor, but it is preferable that the cemented carbide of the present invention does not contain V.
  • V is too strong to suppress grain growth and prevents the effect of strengthening the bond between adjacent WC particles by sintering and reprecipitation of WC slightly during sintering, resulting in thermal diffusivity. I think that it becomes low.
  • the present inventors use WC with a rounded corner (called a rounded corner shape) as a raw material instead of a square WC, and produce a cemented carbide so that the shape is maintained. did.
  • the obtained cemented carbide (the cemented carbide with rounded WC) was examined, and the thermal diffusivity was high. Therefore, the shape of the hard phase particles in the cemented carbide is close to a spherical shape with rounded corners, which is considered to be closely related to the high thermal diffusivity of the cemented carbide. .
  • rounded WC is likely to have a larger contact area between WC particles and more likely to diffuse heat through WC particles having a higher thermal diffusivity than WC with an angular shape.
  • the surface area of the WC tends to be small due to the round shape of the WC, and the interface of the WC-Co, which is difficult for heat to diffuse, becomes smaller as a whole of the cemented carbide. It is thought to be higher.
  • the present inventors have compared the conventional cemented carbide having an acute shape in which substantially all WC particles in the cemented carbide have an angular shape with respect to the WC having an angular shape in the cross section of the cemented carbide. The knowledge that the thermal diffusivity is high and the thermal characteristics are excellent when the particle content is within a predetermined range was obtained.
  • this average number is referred to as an acute angle number
  • This average number was calculated from the average particle diameter of WC particles and the volume ratio of WC particles
  • the average number of acute angles per WC particle was calculated by dividing by ⁇ 100 ⁇ m 2 ⁇ (volume% of WC) ⁇ / ⁇ (average particle size / 2) 2 ⁇ ⁇ .
  • the cemented carbide used as a raw material and produced so that its shape is maintained reflects the WC structure having a rounded corner shape, and has a small average acute angle per WC particle of 0.25 or less.
  • a cemented carbide satisfying the average number of acute angles per WC particle ⁇ 0.25 is expected to be suitable for a cutting tool material because of its high thermal diffusivity and excellent other characteristics.
  • the hard phase particles mainly composed of WC particles preferably have an average particle size of 0.4 ⁇ m or more and 4 ⁇ m or less because of excellent wear resistance and toughness.
  • the average particle size of WC is set to 4 ⁇ m or less.
  • the average particle size of WC is 0.4 ⁇ m or more. Although it depends on the application, it is particularly preferably 0.8 ⁇ m or more and 2.4 ⁇ m or less.
  • the cemented carbide of the present invention comprising the above specific composition and containing the hard phase particles having the above specific shape and size is the thermal diffusivity when the average particle diameter of WC particles in the alloy is x ( ⁇ m).
  • the greatest feature is that X (cm 2 / sec) satisfies X> 0.055x + 0.238.
  • the thermal diffusivity of the cemented carbide has a correlation with the average particle size (particle size) of the WC particles, and the change in the WC particle size mainly affects the change in the thermal diffusivity.
  • the inventors made various cemented carbides by changing the manufacturing method and raw materials, and investigated the relationship between the particle size of WC in the cemented carbide and the thermal diffusivity.
  • the thermal diffusivity X of the cemented carbide produced by the conventional production method is 0.055x + 0.238 or less, and the thermal diffusivity X of the cemented carbide produced by the specific production method described later exceeds 0.055x + 0.238. It was a thing. In particular, when manufactured by a specific method described later, a cemented carbide with a thermal diffusivity X exceeding 0.048x + 0.270 (X> 0.048x + 0.270), and a cemented carbide with a thermal diffusivity X exceeding 0.048x + 0.287 ( X> 0.048x + 0.287). That is, the cemented carbide of the present invention has a sufficiently high thermal diffusivity and is excellent in heat crack resistance and wear resistance at high temperatures.
  • the cemented carbide of the present invention has a high thermal diffusivity while maintaining the same strength and hardness as a conventional cemented carbide having the same size of WC particles as the main component of the hard phase.
  • the coercive force can be reduced to 16 kA / m or less by adjusting the size of the WC particles and the amount of the binder phase in the cemented carbide.
  • Cemented carbide is generally produced by a process of raw material preparation ⁇ raw material crushing and mixing ⁇ drying ⁇ molding ⁇ sintering ( ⁇ heat treatment as appropriate).
  • the pulverization and mixing are conventionally performed for a relatively long time (several to several tens of hours) using a ball mill or an attritor.
  • WC is excessively pulverized, so that the WC particles have an angular shape with sharp corners.
  • a large amount of very fine WC particles are generated, the contact area between the WC particles and the binder phase (area of the WC-Co interface) increases.
  • cemented carbide having a low thermal diffusivity can be obtained by interposing a binder phase such as Co having a lower thermal diffusivity than WC particles between WC particles. Therefore, the present inventors have studied to perform medialess mixing using an axial mixer, a Henschel mixer, or the like in order to solve the above problem.
  • a good structure cannot be obtained only by medialess mixing, and a cemented carbide excellent in heat cracking resistance cannot be obtained. Therefore, as a result of various studies, when mixed after performing the following pretreatment, a cemented carbide excellent in heat cracking resistance even when the mixing time is short, specifically, a cemented carbide satisfying X> 0.055x + 0.238. Obtained.
  • the pretreatment is a process that can break up the agglomeration.
  • a raw material powder is processed at a high pressure using a jet mill (a device that disperses the target by applying pressure to the target, such as a slurry of the raw material powder or a mixture of gas and raw material powder, from a nozzle).
  • a jet mill a device that disperses the target by applying pressure to the target, such as a slurry of the raw material powder or a mixture of gas and raw material powder, from a nozzle.
  • the present inventors examined there is a difference in heat dissipation during the collision between the dry process and the wet process in the pretreatment, and the dry process tends to have an adverse effect on the crystallinity of the powder. I found out. Therefore, wet processing using a slurry-like body is more desirable.
  • the cemented carbide manufactured using the raw material that has been mixed for a relatively short time after crushing the agglomeration as described above has a high thermal diffusivity is that the shape of the WC particles in the alloy structure is This is probably because the shape is rounder than the WC particles in conventional cemented carbide, and there are few WC-Co interfaces that lower the thermal diffusivity. Furthermore, by adopting a manufacturing method comprising the above specific pulverization and mixing steps, even if a raw material powder of fine particles (FSSS (Fischer method) or less) is used, there is little aggregation of the raw material Co powder, A cemented carbide having a good alloy structure can be obtained using the fine raw material powder.
  • FSSS Fischer method
  • sintering is performed by holding at 1320-1500 ° C. in a vacuum atmosphere for 1-2 hours.
  • the cemented carbide of the present invention has a high thermal diffusivity, and is excellent in wear resistance and toughness in addition to heat cracking resistance. Therefore, it can utilize suitably for the raw material of the member by which heat cracking resistance, abrasion resistance, and toughness are requested
  • a cutting tool material such as a milling tool, a difficult-to-cut material processing tool, and a heavy cutting tool.
  • the cemented carbide of the present invention is suitable as a material for a crankshaft machining tool that requires heat cracking resistance.
  • this cemented carbide When used as a material for crankshaft machining tools, this cemented carbide has a Co content of 7% by mass to 12% by mass, Cr of 0.05% by mass to 2% by mass, and Ta of 0.2% by mass or more.
  • the average particle size of the particles constituting the hard phase is 1 ⁇ m or more and 4 ⁇ m or less.
  • the cemented carbide of the present invention as described above, the WC particles in the alloy have a rounded corner shape, so that WC is prevented from falling off, and because the thermal diffusivity is high, Ti and Even when a Ti alloy is used as a work material, the cemented carbide of the present invention can have good wear resistance.
  • the cemented carbide of the present invention is suitable for a tool material used for cutting Ti and Ti alloys.
  • the cemented carbide has a Co content of 4.5 mass% to 9 mass%, Cr content of 0.05 mass% to 1.2 mass%, and the hard phase. It is preferable that the average particle size of the particles constituting the material is 0.5 ⁇ m or more and 3 ⁇ m or less.
  • a cutting tool having the cemented carbide of the present invention as a base material and having a coating film of one or more layers on the surface of the base material can be obtained.
  • This cutting tool can further improve the wear resistance due to the presence of a highly hard film, and can further improve the thermal crack resistance due to the heat insulating effect of the film.
  • the coating films formed by the PVD method or the CVD method on the cemented carbide of the present invention are more adhesive, wear resistant, and defect resistant than the coating films formed on the conventional cemented carbide. Excellent in terms of sex. The reason is considered as follows.
  • the cemented carbide of the present invention has a low content of angular WC as described above, there are few angular projections derived from angular WC on the surface of the alloy.
  • the film growth tends to grow from the hard phase on the surface of the cemented carbide. Therefore, when the film is formed on the cemented carbide of the present invention by the PVD method, the coating film is easily formed continuously along the surface of the base material, compared with the case where the film is grown from the angular hard phase particles. Thus, the continuity of the coating film in the surface direction of the film can be improved.
  • the film when the film is formed on the cemented carbide of the present invention by the PVD method, it is considered that the film quality is excellent in wear resistance and peeling resistance as compared with the case of coating on the conventional cemented carbide.
  • the film growth tends to grow from the binder phase on the surface of the cemented carbide, and is easily influenced by the size of the binder phase region exposed on the alloy surface. Since the cemented carbide of the present invention has a small content of fine WC as described above and the Co phase region on the surface of the alloy is not subdivided, it is formed on the cemented carbide of the present invention by the CVD method. In this case, it is considered that the crystallinity and adhesion of the film are improved as compared with the case of coating on a conventional cemented carbide, resulting in a film quality having excellent wear resistance.
  • the coating film includes one or more first elements selected from periodic table 4a, 5a, 6a group elements, Al and Si, and carbon (C), nitrogen (N), oxygen (O), and boron.
  • a compound composed of one or more second elements selected from (B), i.e., composed of a carbide, nitride, oxide, boride, and solid solution of the first element (e.g., TiCN, Al 2 O 3 , TiAlN, TiN, AlCrN, TiAlON), diamond, diamond-like carbon (DLC), and cubic boron nitride (cBN) may be used.
  • Both the PVD method and the CVD method can be used to form the coating film.
  • Diamond is preferably CVD
  • DLC is preferably PVD.
  • Test Example 1 A plurality of WC-based cemented carbides were produced by different production methods, and the thermal diffusivity (cm 2 / sec) and the average particle size ( ⁇ m) of WC particles were examined for each cemented carbide.
  • WC powder, Cr 3 C 2 powder (average particle size: 2 ⁇ m), TaC powder (average particle size: 3 ⁇ m), NbC powder (average particle size) shown in Table 1 are used as raw material powders. Diameter: 3 ⁇ m), VC powder (average particle size: 2 ⁇ m), ZrC powder (average particle size: 2 ⁇ m), TiC powder (average particle size: 2 ⁇ m), Co powder (powder ⁇ : average particle size 1.2 ⁇ m (sample No. 3, 7, 11, 16, 101 to 106 ⁇ , powder ⁇ : average particle size 0.5 ⁇ m ⁇ sample No.
  • Ni powder (average (Particle size: 0.5 ⁇ m) are prepared and blended so as to have the composition (mass%) shown in Table 1.
  • the raw material WC powder used was high-temperature carbonization (carbonization temperature: 1900-2170 ° C.).
  • the WC powder produced by high-humidity carbonization has high crystallinity and excellent thermal diffusivity, so that it is easy to obtain a cemented carbide having a high thermal diffusivity.
  • Sample Nos. 1 to 27 were pretreated using a jet mill on the blended raw material powder.
  • the above pretreatment is carried out by wet or dry method.
  • pressure In the case of dry type (sample No. 7, 19), pressure: 0.4 MPa, in the case of wet type (samples No. 1 to 27 other than sample No. 7 and 19) , Pressure: 100 MPa.
  • the blended raw material powders were pulverized and mixed by the mixing method and mixing time shown in Table 1 (wet mixing).
  • Commercial devices were used for the axial mixer (AM), ball mill (BM), and attritor (ATR).
  • Sample Nos. 101 to 106 were subjected to wet mixing of raw material powders by the mixing method and mixing time shown in Table 1 without performing the above pretreatment.
  • the contents (mass%) of Cr, Ta, Nb, V, Zr and Ti are measured by EDX (Energy Dispersiven X-ray Spectroscopy) analysis.
  • the content of Co and Ni in the cemented carbide was also measured by EDX analysis, and was almost the same as the amount used for the raw material.
  • the composition of the hard phase in the cemented carbide was examined by X-ray diffraction, the hard phase of any sample was substantially composed of WC particles.
  • the composition analysis can also be measured by XPS (X-ray Photoelectron Spectroscopy) and SIMS (secondary ion mass spectrometry).
  • the average particle diameter ( ⁇ m) of the WC particles in the cemented carbide is measured using an EBSD (Electron Back-Scatter diffraction) method by FESEM (Field Emission Scanning Electron Microscope). Specifically, the measurement is performed as follows. Take an arbitrary cross-section of cemented carbide (here, number of cross-sections: 2), and for each of multiple fields of view (here, 1 field of view: 2 fields of view at 500 ⁇ m 2 ), WC particles according to the crystal orientation Identify (mapping).
  • EBSD Electron Back-Scatter diffraction
  • FESEM Field Emission Scanning Electron Microscope
  • the equivalent circle diameter of the area is obtained for all WC particles present in each field of view, and the equivalent circle diameter is defined as the diameter of the WC particles, and the average of the diameters is defined as the average particle diameter of the field of view.
  • Table 2 shows the average particle diameter of all the fields of view (here, a total of four fields of view because two fields are taken for each of the two cross sections).
  • the measurement conditions for the WC particle size are acceleration voltage: 15 kV, irradiation current: 1.0 nA, and scan step: 75 nm. A commercially available EBSD device can be used for this measurement.
  • the thermal diffusivity (cm 2 / sec) is measured using a laser flash method after machining a cemented carbide to ⁇ 10 mm ⁇ 2 mm. An arbitrary 5 points are selected for each sample, and the thermal diffusivity of each point is measured.
  • FIG. 1 shows a result (linear of a linear function) obtained by approximating the correlation between the average particle diameter x of the WC particles in the obtained cemented carbide and the thermal diffusivity X by the least square method.
  • sample Nos. 1 to 25 and sample Nos. 101 to 106 can be distinguished by a straight line having an inclination of 0.055. Therefore, as a straight line for distinguishing between sample Nos. 1 to 25 and sample Nos. 101 to 106, a straight line of a linear function with an inclination of 0.055 is adopted, and an intercept (intersection with the vertical axis) is obtained as follows. When a straight line having an inclination of 0.055 and passing through each data point of sample Nos. 1 to 25 is taken, the minimum value of each intercept is 0.2435.
  • a cemented carbide having a high thermal diffusivity can be obtained by mixing for a short time after a specific pretreatment.
  • the cemented carbides of Sample Nos. 1 to 25 obtained by mixing for a short time after the pretreatment are performed according to the conventional manufacturing method when the average particle size of the WC particles in the cemented carbide is the same.
  • the thermal diffusivity is high and X> 0.055x + 0.238 is satisfied.
  • Tables 1 and 2 show the following. 1. When the composition is the same, the larger the average particle size of WC in the cemented carbide, the higher the thermal diffusivity.
  • the thermal diffusivity tends to be higher as the total content of Co and Ni as the binder phase is smaller.
  • Cemented carbide with coercive force Hc of 16 kA / m or less tends to have a high thermal diffusivity. 6. When pretreatment is performed, cemented carbide with high thermal diffusivity tends to be obtained when wet treatment is performed.
  • Fig. 2 (I) is a SEM observation image (4000 times) of the cross section of sample No. 12, and Fig. 2 (II) is a SEM observation image (4000 times) of the cross section of sample No. 103.
  • gray particles indicate hard phase particles.
  • sample No. 12 obtained by mixing for a short time after specific pretreatment has a structure in which the hard phase particles are rounded and there are few fine particles. I understand.
  • Sample No. 103 which has been mixed for a long time has an angular shape of hard phase particles, and it can be seen that the structure has many fine particles.
  • Sample Nos. 6, 8, and 12 satisfying X> 0.055x + 0.238 have a small average acute angle number of 0.25 or less, and WC in the cemented carbide has a rounded shape. I understand.
  • Test Example 2 A cutting tool based on the cemented carbide prepared in Test Example 1 was prepared, and the cutting performance was examined.
  • a coated cutting tool in which a cutting tool tip (base material) made of cemented carbide is coated with TiCN film (thickness: 4 ⁇ m) and Al 2 O 3 film (thickness: 1 ⁇ m) in order from the base material side by CVD.
  • Test object Sample No. 6, 9, 11, 12, 17, 26 Uses a coated cutting tool with a TiAlN film (thickness: 3 ⁇ m) coated by PVD method on a cutting tool tip (base material) made of cemented carbide.
  • Work material SCM435 (4 round bars grooved)
  • the cemented carbide satisfying X> 0.055x + 0.238 has a higher thermal diffusivity than the cemented carbide having the same average particle diameter of WC in the cemented carbide as described above. Therefore, cutting tools based on cemented carbide satisfying X> 0.055x + 0.238 have the same average particle diameter of WC, and samples No. 102 and 103 not satisfying X> 0.055x + 0.238 Compared to heat cracking resistance.
  • a cutting tool including a base material made of a cemented carbide satisfying X> 0.055x + 0.238 is superior in abrasion resistance as compared with Sample Nos. 105 and 106.
  • the cemented carbide with high thermal diffusivity is used.
  • the cutting tool used as the substrate is excellent in wear resistance.
  • the titanium processing tool has a Co content of 4.5% by mass or more and 9% by mass or less, a Cr content of 0.05% by mass or more and 1.2% by mass or less, and the average particle size of the hard phase particles is 0.5%. It can be seen that it is preferable to use a cemented carbide having a thickness of ⁇ m or more and 3 ⁇ m or less.
  • cemented carbide satisfying X> 0.055x + 0.238 and having a total content of Co and Ni of 4 mass% to 15 mass%, particularly 6 mass% to 13 mass% is suitable for a cutting tool material. It can be said that it is preferable.
  • cemented carbides with an average particle size of WC particles of 0.4 ⁇ m or more and 4.0 ⁇ m or less, particularly 0.8 ⁇ m or more and 2.4 ⁇ m or less are further excellent in heat crack resistance, wear resistance, and toughness, and are more suitable for the material of cutting tools. It can be said that.
  • Test Example 3 A coated cutting tool in which a coating film was formed on a substrate made of a cemented carbide was produced, and the cutting performance was examined.
  • Each sample was produced as follows.
  • the same WC powder, Cr 3 C 2 powder, TaC powder, and Co powder (powder ⁇ ) as those used in Test Example 1 were prepared.
  • the WC powder was high-temperature carbonized, and the average particle size was appropriately selected.
  • the prepared raw material powder was mix
  • This blended raw material powder was pretreated by a wet jet mill under the same conditions as in Test Example 1, and then mixed for 1.5 h by a ball mill, followed by drying ⁇ molding (molding pressure: 1000 kg / cm 2 ) ⁇ sintering (
  • a cutting tool tip (base material) made of cemented carbide having the shape of SNGN120804 was obtained through a process of vacuum atmosphere, 1400 ° C. ⁇ 1 hour.
  • This base material was coated with a TiCN film (thickness: 4 ⁇ m) and an Al 2 O 3 film (thickness: 1 ⁇ m) in order by the CVD method to obtain coated cutting tools of Sample Nos. 31 to 41.
  • the obtained coated cutting tool was subjected to a high-speed intermittent cutting test under the following conditions to evaluate the thermal crack resistance. The results are shown in Table 5. Evaluation of thermal crack resistance was performed in the same manner as in Test Example 2.
  • the above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration.
  • the composition of the cemented carbide, the average particle diameter of the raw material powder, and the like can be changed as appropriate.
  • the cemented carbide of the present invention can be suitably used for a cutting tool such as a throw-away tip.
  • the cemented carbide of the present invention can be suitably used for a cutting tool material that is used under conditions in which the cutting edge is extremely hot, particularly when used for high-speed cutting and difficult-to-cut materials.
  • the cutting tool of the present invention can be suitably used for milling, cutting difficult-to-cut materials, and heavy cutting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

 熱拡散率が高く、耐摩耗性に優れる超硬合金、およびこの超硬合金からなる基材を具える切削工具を提供する。WC粒子を主体とする硬質相がCoを主体とする結合相により結合されてなり、切削工具に用いられるWC基超硬合金である。上記結合相は、Co、又はCo及びNiから実質的に構成され、Co及びNiの合計含有量が4.5質量%以上15質量%以下である。この超硬合金中のWC粒子の平均粒径は、0.4μm以上4μm以下であり、WC粒子の平均粒径をx(μm)とするとき、この合金の熱拡散率X(cm2/sec)は、X>0.055x+0.238を満たす。この超硬合金は、更にCr、Ta、Nb、Zr及びTiから選択される1種以上の元素を合計で0.05質量%以上5質量%以下含有することができる。

Description

超硬合金およびこれを用いた切削工具
 本発明は、切削工具の素材に適した超硬合金、及びこの超硬合金からなる基材を具える切削工具に関する。特に、耐熱亀裂性と耐摩耗性との双方に優れた超硬合金に関するものである。
 従来、WC(炭化タングステン)粒子をCo(コバルト)で結合したWC基超硬合金が、切削工具の素材に利用されている。
 切削工具の刃先は、被削材を切断するときの変形や摩擦などに伴って発生する熱により、通常高温になる。そのため、切削工具の素材(基材)には、高温になっても十分な硬度や強度を維持できることが求められる。従来、切削工具の高温での耐摩耗性を向上するために、素材となる超硬合金にTi、Nb、Ta、Zrなどの元素を添加することにより高温硬度を向上させたり、工具表面にアルミナや炭化チタンといった高温硬度が高いセラミックス膜を被覆したりした。また、切削工具自体や被削材自体の温度を下げるには、切削油を用いることが効果的である。特開平08-225877号公報(以下「特許文献1」と記す)は、高温になり易い合金表面の熱伝導率を高めるために、熱伝導率が高いWC粒子が多い層を合金の表面に設けた焼結合金を開示している。
特開平08-225877号公報
 しかし、従来の切削工具では、高速切削や難削材の加工といった切削時の発熱量が大きい切削条件での使用に対して十分な性能を有しておらず、更なる性能の向上が望まれる。
 上記切削油の使用は、連続切削において摩耗抑制に効果がある。しかし、断続切削では、上記切削油により空転時の熱衝撃が強くなるため、熱亀裂が発生し易くなり、工具が欠損し易い。
 上記被覆膜を構成するセラミックスは、一般に熱拡散率が低い。このため、被覆膜を工具表面に設けることにより、工具表面の被覆膜から工具内部の基材に熱が伝わり難くなり、基材に加わる熱衝撃を和らげる効果がある。しかし、近年、切削速度の更なる高速化が望まれており、被覆膜による断熱効果だけでは、このような要求に十分に対応することが難しい。また、難削材を切削する場合、切削温度が通常より高くなることや被削材との溶着性が上がるなどの現象に起因して、被覆膜の剥離が起こり易く、上記被覆膜による熱亀裂の抑制効果が十分発揮できないことがある。特に、被削材の難削化が年々高まってきており、工具表面に発生する熱量が多くなる傾向にある。そのため、工具内部に熱がこもった状態になり易く、近年、上記熱亀裂の発生などの問題が顕著になってきている。
 一方、上記超硬合金の高温硬度を十分に高くするために添加元素を多くすると、基材の靱性や熱拡散率(熱伝導率)が低下する。そして、基材の熱拡散率の低下は耐熱亀裂性を低下させる。
 他方、特許文献1に記載されるように、工具表面近傍の熱伝導率を向上するだけでは、工具の表面側の高熱伝導率部分と工具の内部側の低熱伝導率部分との境界付近において温度差が大きくなり、熱亀裂が生じる恐れがある。
 このような刃先が高温となり易い使用環境にある切削工具の長寿命化を図るには、熱衝撃に対する耐久性を向上させることが望まれる。そこで、本発明の目的は、耐熱亀裂性及び耐摩耗性に優れる切削工具の素材に適した超硬合金を提供することにある。また、本発明の他の目的は、耐熱亀裂性及び耐摩耗性に優れる切削工具を提供することにある。
 本発明の超硬合金は、WC粒子を主体とする硬質相がCoを主体とする結合相により結合されてなり、上記結合相がCo、又はCo及びNiから実質的に構成され、Co及びNiの合計含有量が4.5質量%以上15質量%以下である。この超硬合金中のWC粒子の平均粒径は、0.4μm以上4μm以下である。また、この超硬合金中のWC粒子の平均粒径をx(μm)とするとき、この超硬合金の熱拡散率X(cm2/sec)は、X>0.055x+0.238を満たす。
 上記の超硬合金は、更に、Crのみを0.05質量%以上3質量%以下含有することが好ましい。また超硬合金は、更に、Crと、Ta、Nb、Zr及びTiから選択される1種以上の元素とを合計で0.05質量%以上5質量%以下含有することが好ましい。
 超硬合金は、Ta及びNbの1種以上の元素をCrとの合計で0.05質量%以上5質量%以下含有することが好ましい。
 結合相は、Co及びNiから実質的に構成され、Niの含有量がCo及びNiの合計含有量の25%以下であることが好ましい。
 超硬合金は、抗磁力(Hc)が16kA/m以下であることが好ましい。超硬合金は、更に、Crを0.05質量以上%2質量%以下、Taを0.2質量以上%5質量%以下含有し、硬質相を構成する粒子の平均粒径が1μm以上4μm以下、Coの含有量が7質量%以上12質量%以下であり、クランクシャフト加工用工具に用いられることが好ましい。
 超硬合金は、更に、Crを0.05質量以上%1.2質量%以下含有し、硬質相を構成する粒子の平均粒径が0.5μm以上3μm以下であり、Coの含有量が4.5質量%以上9質量%以下であり、チタン加工用工具に用いられることが好ましい。
 本発明は、切削工具に関するものでもあり、該切削工具は、上記の超硬合金からなる基材と、該基材の表面にPVD法により形成された被覆膜とを具えるものであり、該被覆膜は、周期律表4a、5a、6a族元素、Al及びSiから選択される1種以上の第1元素と、炭素(C)、窒素(N)、酸素(O)、及び硼素(B)から選択される1種以上の第2元素との化合物、及びダイヤモンドライクカーボン(DLC)から選択される1種以上から構成されることを特徴とする。
 本発明の切削工具は、超硬合金からなる基材と、該基材の表面にCVD法により形成された被覆膜とを具えるものであり、該被覆膜は、周期律表4a、5a、6a族元素、Al及びSiから選択される1種以上の第1元素と、炭素(C)、窒素(N)、酸素(O)、及び硼素(B)から選択される1種以上の第2元素との化合物、及びダイヤモンドから選択される1種以上から構成されることを特徴とする。
 本発明の超硬合金は、上記のような構成を有することにより、超硬合金の表面だけでなく全体に亘って熱拡散率が高い。そのため、本発明の超硬合金からなる基材を具える切削工具は、工具全体の熱拡散率が高いことにより、部分的な熱膨張差に起因する熱亀裂の発生を抑制することができ、長寿命化を図れる。また、切削時に高温になり易く、局所的な温度上昇が生じる傾向にある難削材を切削する場合、本発明の超硬合金からなる基材を具える切削工具は、工具全体の熱拡散率が高いことで、この傾向を和らげることができる。そのため、この切削工具は、刃先強度の低下や摩耗の進行を抑制することができ、耐摩耗性や靭性にも優れる。
 本発明の超硬合金は、熱拡散率が高く、高温硬度が高い。そのため、本発明の超硬合金からなる基材を具える切削工具は、耐熱亀裂性及び耐摩耗性に優れる。
超硬合金中のWC粒子の平均粒径と熱拡散率との関係を示すグラフである。 超硬合金の走査型電子顕微鏡の写真であり(4000倍)、(I)は、試料No.12であり、(II)は、試料No.103である。
 以下、本発明を詳細に説明する。
 <超硬合金>
 《組成》
 [硬質相]
 本発明の超硬合金は、硬質相にWC粒子を最も多く含むWC基超硬合金である。このWC粒子は、後述する化合物粒子及び結合相、不可避不純物を除く、超硬合金の残部を実質的に構成する。硬質相が実質的にWC粒子のみから構成される場合、耐熱亀裂性、靭性、強度に優れる。硬質相がWC粒子に加えて、周期律表4a、5a、6a族元素から選ばれる少なくとも1種の金属と、炭素及び窒素の少なくとも1種の元素との化合物(但し、WCを除く)、つまり、上記金属の炭化物(但し、WCを除く)、窒化物、炭窒化物、及びこれらの固溶体から選択される1種又は2種以上の化合物からなる化合物粒子を含有すると、耐摩耗性に優れる。具体的な化合物として、TaC、(Ta、Nb)C、VC、Cr3C2、NbC、TiCNなどが挙げられる。
 本発明の超硬合金において、上記化合物粒子を含む場合、化合物粒子を構成するW以外の金属元素の合計含有量が、0.05質量%以上5質量%以下であることが好ましい。これにより後述する熱拡散率の低下が少なく、耐摩耗性及び耐熱亀裂性に優れる。また、後述するように、原料のWCとして、角部が丸められた形状、端的に言うと球形状に近い形状であって、この性状が保持されるように超硬合金を製造することが好ましい。これにより熱拡散率が高く、耐熱亀裂性に優れる。
 [結合相]
 結合相は、Coを最も多く含む。Coに加えて、Ni、Feといった他の鉄族元素を含有してもよいが、Coのみ、又はCo及びNiから実質的に構成されることが好ましい。更に、Niを含むと熱拡散率が低下する傾向にあるため、靭性や熱拡散率を考慮するとCoのみが好ましい。超硬合金中のCo及びNiの合計含有量は、4.5質量%以上15質量%以下とする。上記合計含有量が4.5質量%未満であると、高熱伝導率であるWCの含有割合が多くなるものの、靭性が不足するため、熱亀裂の抑制効果が不十分となる。結合相量の増加に伴い靭性が向上するものの、Co及びNiの合計含有量が15質量%を超えると、WCの含有量が相対的に低減することで、後述する熱拡散率の低下が大きくなる。また、WCが低減することで硬度の低下を招き、引いては耐摩耗性が低下し易い。特に、Co及びNiの合計含有量が6質量%以上13質量%以下であると、焼結性が高く緻密な超硬合金となり易い上に、高硬度と高靭性とをバランス良く具えることができ、この超硬合金は、熱拡散率が高く、耐摩耗性及び靭性に優れる。結合相にNiを含有する場合、Niの含有量は、Co及びNiの合計含有量の25%以下が好ましく、10%以下がより好ましい。なお、「実質的に構成される」とは、不可避不純物を除き、Coにより構成される場合、Co及びNiにより構成される場合の他、原料に用いた化合物(WC、Cr3C2など)の構成元素(W、Crなど)が固溶していることを許容する。
 [その他の含有元素]
 本発明の超硬合金は、WCとCo(又はCo及びNi)と残部不可避不純物からなる組成の他、WCとCo(又はCo及びNi)と以下の添加元素と残部不可避不純物からなる組成とすることができる。添加元素は、Cr、Ta、Nb、Zr及びTiから選択される1種又は2種以上の元素が挙げられる。上記元素を合計で0.05質量%以上5.0質量%以下含有していると、硬質相を構成する粒子(主としてWC粒子)の粒成長を抑制して、原料に用いた粉末の大きさ、形状を維持し易い。特に、Crなどの粒成長抑制効果がある元素を上記範囲内で含有することは、強度の低下を低減し、かつ高温硬度の向上や後述する熱拡散率の向上に寄与すると期待される。従って、上記Crなどの元素を含む本発明の超硬合金からなる基材を具える切削工具は、粒成長抑制効果と熱拡散率の向上との相乗効果により、切削性能(耐摩耗性、耐熱亀裂性)が高いと期待される。上記添加元素を2種以上含有する場合、Crと、Ta、Nb、Zr及びTiから選択される1種以上の元素とを含有することが好ましく、Crと、Ta及びNbの1種以上の元素とを含有することがより好ましい。Ta、Nbを含有する場合、Ti、Zrを含有する場合と比較して、熱拡散率の低下や靭性の低下が少なく、粒成長抑制効果もCrとの相乗効果で高くなる。上記添加元素を1種のみ含有する場合、粒成長抑制効果と熱拡散率の向上との相乗効果が最もよく発現する傾向にあることから、Crのみを含有することが好ましく、その含有量は、0.05質量%以上3質量%以下が好ましい。上記添加元素の含有量が0.05質量%未満では、上述の効果が十分に得られ難く、5質量%を超えると、熱拡散率が低下し易い。特に、Crのみを含有する場合、その含有量は、0.3質量%以上3質量%以下がより好ましい。Crと上記Taなどの元素とを含有する場合、Crの含有量は、0.05質量%以上3質量%以下が好ましく、合計含有量は0.3質量%以上5質量%以下がより好ましい。上記添加元素を超硬合金中に存在させるには、原料に元素単体を用いたり、上記金属元素を含む炭化物などの化合物(例えば、TaNbC、Cr3C2など)を用いることが挙げられる。原料に用いた化合物は、超硬合金中にそのまま化合物として存在したり、新たな複合化合物を形成して存在したり、単体元素になって存在したりする。
 なお、粒成長抑制剤として、Vもよく利用されるが、本発明の超硬合金は、Vを含有しないことが好ましい。この理由は、Vは、粒成長抑制効果が強過ぎて、焼結の際、WCの若干の溶解及び再析出により隣り合うWC粒子同士の結合を強める効果を妨げることで、結果として熱拡散率が低くなるからと考えている。
 《硬質相粒子の形状》
 本発明者らは、角張った形状のWCではなく、角部が丸められた形状(角丸め形状と呼ぶ)のWCを原料に使用して、その形状が保持されるように超硬合金を作製した。そして、得られた超硬合金(角丸め形状のWCが存在する超硬合金)を調べたところ、熱拡散率が高かった。従って、超硬合金中の硬質相粒子の形状が、角部が丸められて球形状に近い形状であることは、超硬合金の熱拡散率が高いことに密接に関係していると考えられる。この理由は、丸みを帯びた形状のWCは、角張った形状のWCと比較して、WC粒子同士の接触面積が広くなり易く、熱拡散率が高いWC粒子同士を通じた熱拡散が起こり易くなるため、或いは、WCが丸みを帯びた形状であることで表面積が小さくなり易く、熱が拡散し難いWC-Coの界面が超硬合金全体として小さくなる結果、超硬合金全体の熱拡散率が高くなるため、と考えられる。
 また、本発明者らは、超硬合金中の実質的に全てのWC粒子が角張った鋭角的な形状である従来の超硬合金に対して、超硬合金の断面において、角張った形状のWC粒子の含有率が所定の範囲以下であると、熱拡散率が高く熱特性に優れる、との知見を得た。例えば、超硬合金の断面のSEM観察像(3000倍)において、各WC粒子の角部のうち、曲率半径が100nm以下の鋭角の個数を調べ、10μm×10μmにおける平均数(5個の領域について算出した平均数(n=5の平均)。以下、この平均数を鋭角数と呼ぶ)を求め、この平均数を、WC粒子の平均粒径及びWC粒子の体積割合から算出した平均粒子数({100μm2×(WCの体積%)}/{(平均粒径/2)2×π}で除して、WC粒子1個あたりの平均鋭角数を算出した。すると、角丸め形状のWCを原料に用い、その形状が保持されるように作製した超硬合金は、角丸め形状のWC組織を反映して、上記WC粒子1個あたりの平均鋭角数が小さく、0.25以下である。従って、WC粒子1個あたりの平均鋭角数≦0.25を満たす超硬合金は、熱拡散率が高く、他の特性にも優れて切削工具の素材に好適であると期待される。
 《硬質相粒子の大きさ》
 WC粒子を主体とする硬質相粒子は、平均粒径が0.4μm以上4μm以下であると、耐摩耗性や靭性に優れて好ましい。本発明者らが調べたところ、WC粒子が大きくなると、WC自体の熱拡散率に近くなるものの、強度や硬度が低下する。そのため、超硬合金自体の熱拡散率の優位性や切削工具に必要とされる強度や硬度を考慮して、WCの平均粒径を4μm以下とする。一方、WC粒子が小さ過ぎると、靭性が低下し易い上に、WC粒子の表面積が多くなり、従来の製造方法により得られた超硬合金との優位差が十分に得られないと考えられるため、WCの平均粒径を0.4μm以上とする。用途などにもよるが、特に0.8μm以上2.4μm以下が好ましい。
 《熱特性》
 上記特定の組成からなり、上記特定の形状及び大きさの硬質相粒子を含有する本発明の超硬合金は、合金中のWC粒子の平均粒径をx(μm)とするとき、熱拡散率X(cm2/sec)がX>0.055x+0.238を満たすことを最大の特徴とする。超硬合金の熱拡散率は、WC粒子の平均粒径(粒度)と相関があり、WCの粒径の変化が熱拡散率の変化に支配的に作用する。本発明者らは、製造方法や原料などを変化させて種々の超硬合金を作製し、超硬合金中のWCの粒径と熱拡散率との関係を調べたところ、同じ原料を用いても、従来の製造方法により作製した超硬合金の熱拡散率Xは0.055x+0.238以下であり、後述する特定の製造方法により作製した超硬合金の熱拡散率Xは0.055x+0.238を超えるものであった。特に、後述する特定の方法で製造すると、熱拡散率Xが0.048x+0.270を超える超硬合金(X>0.048x+0.270)、更に熱拡散率Xが0.048x+0.287を超える超硬合金(X>0.048x+0.287)が得られる。即ち、本発明の超硬合金は、熱拡散率が十分に高く、耐熱亀裂性や高温での耐摩耗性に優れる。WC粒子の粒径を大きくすれば、超硬合金の熱拡散率は高くなり、最終的にWC自体の熱拡散率に収束する。しかし、WC粒子の粗大化は、硬度や強度の低下を招く。本発明の超硬合金は、硬質相の主成分であるWC粒子の大きさが同一である従来の超硬合金と同等程度の強度や硬度を維持しながら、熱拡散率が高い。
 《抗磁力(保磁力)Hc》
 超硬合金の抗磁力(JIS G 0202(6204) 1987年)が16kA/m以下であると、熱拡散率や靭性が高く好ましい。通常、硬質相を構成する粒子が微粒となると、主として結合相を構成するCoが細分化され、Co相の平均厚みが小さくなり、抗磁力が大きくなる。従って、抗磁力が16kA/mを超える超硬合金は、合金組織中に微細なWC粒子の含有率が高く、熱拡散率が低い傾向にある、或いはCoの含有量が極端に少なく、通常の切削工具として使用する際に求められる十分な靭性が得られない。但し、抗磁力が低過ぎると、大きなWC粒子の含有率が高くなり、耐摩耗性の低下を招くため、8kA/m以上15.5kA/m以下がより好ましい。超硬合金中のWC粒子の大きさや結合相量を調整することで、抗磁力を16kA/m以下にすることができる。
 <製造方法>
 超硬合金は、一般に、原料の準備→原料の粉砕及び混合→乾燥→成形→焼結(→適宜熱処理)という工程で製造される。上記粉砕及び混合は、従来、ボールミルやアトライターを用いて比較的長時間(数~数十時間)行われている。しかし、本発明者らが調べたところ、巣が発生しないように十分に混合する従来の方法では、WCの粉砕が過度に行われるため、WC粒子が鋭角な角部を有する角張った形状となったり、非常に微細なWC粒子が多量に生じたりすることにより、WC粒子と結合相との接触面積(WC-Coの界面の面積)が増加する。そのため、WC粒子間にWC粒子よりも熱拡散率が低いCoなどの結合相が介在することで、熱拡散率が低い超硬合金しかえられない、と考えられる。そこで、本発明者らは、上記問題を解決するために、アキシャルミキサーやヘンシェルミキサーなどを用いたメディアレス混合を行うことを検討した。しかし、メディアレス混合だけでは良好な組織が得られず、耐熱亀裂性に優れる超硬合金が得られなかった。そこで、種々検討した結果、以下の前処理を行ってから混合すると、混合時間が短くても耐熱亀裂性に優れる超硬合金、具体的には、X>0.055x+0.238を満たす超硬合金が得られた。前処理は、凝集を解砕することができる処理を行う。例えば、ジェットミル(原料粉末のスラリー状体、又は気体と原料粉末との混合物といった対象をノズルから加圧して噴射することで、当該対象を分散する装置)を用い、原料粉末を高圧で処理することが挙げられる。なお、本発明者らが調べたところ、上記前処理において乾式処理と湿式処理とでは衝突の際の熱の放散に差があり、乾式処理の方が粉末の結晶性に悪影響が出易い傾向があることを見出した。従って、スラリー状体を用いる湿式処理の方が望ましい。
 上述のように凝集を解砕してから比較的短時間の混合を行った原料を用いて製造された超硬合金が、高い熱拡散率を有する理由は、合金組織中のWC粒子の形状が従来の超硬合金中のWC粒子よりも丸みを帯びた形状であり、熱拡散率を低下させるWC-Co界面が少ないためである、と考えられる。更に、上記特定の粉砕及び混合工程を具える製造方法を採用することで、微粒(FSSS(フィッシャー法)で1μm以下)の原料粉末を使用しても原料のCo粉末の凝集が少ないことから、上記微粒の原料粉末を使用して良好な合金組織を有する超硬合金を得ることができる。また、上述した添加元素を含有する超硬合金とする場合、添加元素の原料もそのまま混合すると、合金組織に凝集残りなどが存在して、強度が低下する。そのため、上記ジェットミルによる前処理を行う、或いは混合前にアトライター又はボールミルなどで予備粉砕を行うと、良好な合金組織を有する超硬合金が得られる。
 上記乾燥、成形、焼結などは、一般的な条件を利用することができる。例えば、焼結は、真空雰囲気で1320~1500℃に1~2時間保持することで行う。
 <用途>
 本発明の超硬合金は、熱拡散率が高く、耐熱亀裂性に加えて耐摩耗性、靭性にも優れる。従って、耐熱亀裂性や耐摩耗性、靭性が要求される部材の素材に好適に利用することができる。例えば、フライス切削用工具、難削材加工用工具、重切削工具といった切削工具の素材に好適である。特に、本発明の超硬合金は、耐熱亀裂性が要求されるクランクシャフト加工用工具の素材に好適である。
 クランクシャフト加工用工具の素材に利用する場合、この超硬合金は、Coの含有量が7質量%以上12質量%以下であり、Crを0.05質量以上%2質量%以下、Taを0.2質量以上%5質量%以下含有し、上記硬質相を構成する粒子の平均粒径が1μm以上4μm以下であることが好ましい。上記構成を具えることで、本発明の超硬合金の特徴である高熱拡散率の実現に加えて、亀裂の進展抵抗を高めることができる。
 一方、チタン(Ti)及びTi合金を被削材とする場合、切削の際に被削材が工具表面に凝着し易く、摩耗の進行は、この凝着に伴うWCの脱落が大きな要因になっていると考えられる。また、Ti及びTi合金は、熱伝導率が低く、切削した場合、切屑の接触長さが短いため、工具刃先部に熱が集中し易い。これに対し、本発明の超硬合金は、上述のように当該合金中のWC粒子が角丸め形状であることでWCの脱落が抑制される上に、熱拡散率が高いことで、Ti及びTi合金を被削材とする場合であっても、本発明の超硬合金は、良好な耐摩耗性を有することができる。従って、本発明の超硬合金は、Ti及びTi合金の切削に利用される工具の素材に好適である。上記チタン加工用工具の素材に利用する場合、この超硬合金は、Coの含有量が4.5質量%以上9質量%以下であり、Crを0.05質量%以上1.2質量%以下含有し、上記硬質相を構成する粒子の平均粒径が0.5μm以上3μm以下であることが好ましい。
 本発明の超硬合金を基材とし、この基材表面に1層又は複数層の被覆膜を具えた切削工具(被覆切削工具)とすることができる。この切削工具は、高硬度な膜の存在により耐摩耗性を更に向上できたり、膜の断熱効果により耐熱亀裂性を更に向上できる。特に、本発明の超硬合金上にPVD法やCVD法により形成された被覆膜はいずれも、従来の超硬合金上に形成された被覆膜よりも密着性、耐摩耗性、耐欠損性の点で優れる。この理由は、以下のように考えられる。本発明の超硬合金は、上述のように角張ったWCの含有率が低いため、当該合金表面に、角張ったWCに由来する角張った突起が少ない。ここで、PVD法により成膜する場合、膜成長は、超硬合金の表面における硬質相から成長する傾向にある。そのため、本発明の超硬合金上にPVD法により成膜する場合、角張った硬質相粒子から膜成長する場合と比較して、基材の表面に沿って被覆膜が連続的に形成され易くなり、膜の表面方向の被覆膜の連続性を向上することができる。従って、本発明の超硬合金上にPVD法により成膜する場合、従来の超硬合金上に被覆した場合と比較して、耐摩耗性、耐剥離性に優れた膜質になると考えられる。一方、CVD法により成膜する場合、膜成長は、超硬合金の表面における結合相から成長する傾向にあり、当該合金表面に露出している結合相の領域の大きさの影響を受け易い。本発明の超硬合金は、上述のように微粒WCの含有量が少なく、当該合金表面のCo相の領域が細分化されていないため、本発明の超硬合金上にCVD法により成膜する場合、従来の超硬合金上に被覆した場合と比較して、膜の結晶性や密着性が向上し、結果として耐摩耗性に優れた膜質になると考えられる。
 上記被覆膜は、周期律表4a、5a、6a族元素、Al及びSiから選択される1種以上の第1元素と、炭素(C)、窒素(N)、酸素(O)、及び硼素(B)から選択される1種以上の第2元素とからなる化合物、即ち、上記第1元素の炭化物、窒化物、酸化物、硼化物及びこれらの固溶体からなるもの(例えば、TiCN、Al2O3、TiAlN、TiN、AlCrN、TiAlON)、ダイヤモンド、ダイヤモンドライクカーボン(DLC)、及び立方晶窒化硼素(cBN)から選択される1種又は2種からなるものが挙げられる。上記被覆膜の形成は、PVD法、CVD法のいずれも利用することができる。ダイヤモンドは、CVD法が、DLCは、PVD法が好ましい。
 (試験例1)
 複数のWC基超硬合金を異なる製造方法で作製し、各超硬合金について熱拡散率(cm2/sec)とWC粒子の平均粒径(μm)とを調べた。
 超硬合金の作製にあたり、原料粉末として、表1に示す平均粒径のWC粉末、Cr3C2粉末(平均粒径:2μm)、TaC粉末(平均粒径:3μm)、NbC粉末(平均粒径:3μm)、VC粉末(平均粒径:2μm)、ZrC粉末(平均粒径:2μm)、TiC粉末(平均粒径:2μm)、Co粉末(粉末α:平均粒径1.2μm{試料No.3、7、11、16、101~106}、粉末β:平均粒径0.5μm{試料No.1、2、4~6、8~10、12~15、17~27}、Ni粉末(平均粒径:0.5μm)をそれぞれ用意し、表1に示す組成(質量%)になるように配合する。原料のWC粉末は、高温炭化(炭化温度:1900~2170℃)のものを利用した。高湿炭化で製造したWC粉末は、結晶性が高く、熱拡散率に優れるため、熱拡散率が高い超硬合金を得易い。その他の原料粉末は、市販のものを利用した。
 試料No.1~27は、まず、配合した原料粉末にジェットミルを用いて前処理を行った。上記前処理は、湿式又は乾式で行い、乾式の場合(試料No.7、19)、圧力:0.4MPa、湿式の場合(試料No.1~27のうち試料No.7、19以外の試料)、圧力:100MPaとした。上記前処理後、配合した原料粉末を表1に示す混合方法及び混合時間で粉砕混合した(湿式混合)。アキシャルミキサー(AM)、ボールミル(BM)、アトライター(ATR)は、いずれも市販の装置を用いた。
 試料No.101~106は、上記前処理を行わず、表1に示す混合方法及び混合時間で原料粉末を湿式混合した。
 上記混合後、乾燥→成形(成形圧力:1000kg/cm2)→焼結(真空雰囲気、1400℃×1時間)の工程を経て、試料No.1~27、101~106の超硬合金を得た。
Figure JPOXMLDOC01-appb-T000001
 得られた各超硬合金について、Cr、Ta、Nb、V、Zr及びTiの含有量(質量%)、WC粒子の平均粒径(μm)、熱拡散率(cm2/sec)、抗磁力(kA/m)を測定した。その結果を表2に示す。
 Cr、Ta、Nb、V、Zr及びTiの含有量(質量%)は、EDX(Energy Dispersiven X-ray Spectroscopy)分析して測定する。超硬合金中のCo及びNiの含有量もEDX分析して測定したところ、原料に用いた量と概ね同様であった。また、超硬合金中の硬質相の組成をX線回折にて調べたところ、いずれの試料の硬質相も、実質的にWC粒子により構成されていた。なお、組成の分析は、XPS(X-ray Photoelectron Spectroscopy)や、SIMS(secondary ion mass spectrometry)によっても測定できる。
 超硬合金中のWC粒子の平均粒径(μm)は、FESEM(Field Emission Scanning Electron Microscope)によるEBSD(Electron Back-Scatter diffraction)法を利用して測定する。具体的には、以下のように測定する。超硬合金の任意の断面をとり(ここでは、断面数:2個)、その断面における任意の複数の視野(ここでは、1視野:500μm2で2視野)についてそれぞれ、結晶粒方位によりWC粒子の識別(マッピング)を行う。各視野に存在する全てのWC粒子について面積の円相当径を求め、この円相当径をWC粒子の直径とし、この直径の平均をこの視野の平均粒径とする。そして、全ての視野の平均粒径(ここでは、二つの断面のそれぞれに二つの視野をとるため、合計4視野分)を平均したものをWC粒子の平均粒径とし、表2に示す。WC粒子の粒径の測定条件は、加速電圧:15kV、照射電流:1.0nA、スキャンステップ:75nmとする。この測定には、市販のEBSD装置を用いることができる。
 熱拡散率(cm2/sec)は、超硬合金をφ10mm×2mmに加工し、レーザーフラッシュ法を用いて測定する。各試料において任意の5点を選択して各点の熱拡散率を測定し、これら5点の平均をこの試料の熱拡散率とし、表2に示す。
 抗磁力(kA/m)は、市販の測定装置を用いて測定する。
 更に、得られた超硬合金中のWC粒子の平均粒径xと熱拡散率Xとの相関を最小二乗法により近似した結果(一次関数の直線)を図1に示す。Coを4.5~15質量%含有する原料を用い、前処理の後にアキシャルミキサーやボールミルにより短時間の混合を行って作製した試料No.1~25の近似式は、X=0.048x+0.281である。一方、ボールミルやアトライターで長時間の混合粉砕を行って作製した試料No.101~106の近似式は、X=0.055x+0.226である。上記近似式から、試料No.1~25と、試料No.101~106とは、傾き0.055の直線により区別できると考えられる。そこで、試料No.1~25と、試料No.101~106とを区別する直線として、傾き0.055の一次関数の直線を採用し、以下のようにして切片(縦軸との交点)を求める。傾き0.055の直線であって、試料No.1~25の各データ点を通過する直線をとったとき、各切片の最小値は、0.2435である。また、傾き0.055の直線であって、試料No.101~106の各データ点を通過する直線をとったとき、各切片の最大値は、0.2325である。この切片の最小値:0.2435及び切片の最大値:0.2325との中間値:0.238を上記区別する直線の切片とする。以上から、試料No.1~25と、試料No.101~106とを区別する直線として、X=0.055x+0.238が得られる。
 また、試料No.1~25において、WC粒子の平均粒径と熱拡散率との関係がより好ましい状態にある試料No.2、4~6、8~15、17、18、20~22、24(以下、グループαと呼ぶ)と、それ以外の試料(以下、グループβと呼ぶ)とを区別する直線として、傾き0.048の一次関数の直線を採用し、以下のようにして切片(縦軸との交点)を求める。傾き0.048の直線であって、グループαの試料の各データ点を通過する直線をとったとき、各切片の最小値は、0.273、グループβの試料の各データ点を通過する直線をとったとき、各切片の最大値は、0.268である。この切片の最小値:0.273及び切片の最大値:0.268との中間値:0.270を上記区別する直線の切片とする。以上から、グループαとグループβとを区別する直線として、X=0.048x+0.270が得られる。同様にして、更に好ましい試料No.5、6、8~10、12~14、17と、それ以外の試料とを区別する直線として、X=0.048x+0.287が得られる。これらの近似式の値も表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、特定の前処理後に短時間の混合を行うことで、熱拡散率が高い超硬合金が得られることが分かる。特に、前処理を行ってから短時間の混合を行って得られた試料No.1~25の超硬合金は、超硬合金中のWC粒子の平均粒径が同じ場合、従来の製造方法により得られた試料No.101~106と比較して、熱拡散率が高く、X>0.055x+0.238を満たす。
 また、表1、2から、以下のことが分かる。
 1. 組成が等しい場合、超硬合金中のWCの平均粒径が大きいほど熱拡散率が高い傾向にある。
 2. 添加元素の含有量が等しい場合、結合相であるCo及びNiの合計含有量が少ないほど熱拡散率が高い傾向にある。
 3. Coの一部をNiに置換しても、上述のように前処理を行ってから短時間の混合を行って作製した場合、熱拡散率が高い超硬合金が得られる。
 4. 超硬合金中のWCの平均粒径が等しい場合、添加元素の含有量が多過ぎると熱拡散率が低い傾向にある。
 5. 抗磁力Hcが16kA/m以下である超硬合金は、熱拡散率が高い傾向にある。
 6. 前処理を行う場合、湿式処理を行うと、熱拡散率が高い超硬合金が得られる傾向にある。
 図2(I)は、試料No.12の断面のSEM観察像(4000倍)であり、図2(II)は、試料No.103の断面のSEM観察像(4000倍)である。図2において灰色の粒体は、硬質相粒子を示す。図2(I)に示すように、特定の前処理後に短時間の混合を行って得られた試料No.12は、硬質相粒子が丸みを帯びており、微細な粒子が少ない組織であることが分かる。これに対して、長時間の混合を行った試料No.103は、硬質相粒子が角張った形状であり、微細な粒子が多く存在する組織であることが分かる。
 試料No.6、8、12、102、103、104において、上述した平均鋭角数を算出した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、X>0.055x+0.238を満たす試料No.6、8、12は、平均鋭角数が0.25以下と小さく、超硬合金中のWCが丸みを帯びた形状であることが分かる。
 (試験例2)
 試験例1で作製した超硬合金を基材とする切削工具を作製し、切削性能を調べた。
 この試験で用いた切削工具(基材)は、試験例1と同様にして混合粉末を乾燥後、SNGN120804の形状のプレス成型体を作製し、この成型体を試験例1と同様の条件で焼結して作製した。得られた切削工具について、以下の条件で切削試験を行い、耐摩耗性、耐熱亀裂性、靭性を評価した。耐摩耗性試験、耐熱亀裂性試験、靭性試験の結果を表4に示す。
 [耐摩耗性]
 試験対象:試料No.6、8~12、14、17~20、23、27、105、106
 被削材(質量%):Ti-6Al-4V材(丸棒)
 切削速度:V=70m/min、送り:f=0.1mm/rev.、切込み:d=1mm、wet(湿式)の旋削加工
 評価:9分間切削した後の逃げ面摩耗量Vb(mm)
 [耐熱亀裂性]
 試験対象:試料No.6、9、11、12、17~20、23、25、102、103
 超硬合金からなる切削工具チップ(基材)にCVD法により、基材側から順にTiCN膜(厚さ:4μm)、Al2O3膜(厚さ:1μm)を被覆した被覆切削工具を使用
 被削材:SCM435
 切削速度:V=250m/min、送り:f=0.3mm/刃、切込み:Ad=2mm、Rd=40mm、wet(湿式)のフライス加工
 評価:切削距離が1200mmとなった時点で切削を中止し、熱亀裂損傷により逃げ面に生じた亀裂本数(本)、及び亀裂の平均長(mm)。
 [靭性]
 試験対象:試料No.6、9、11、12、17、26
 超硬合金からなる切削工具チップ(基材)にPVD法によりTiAlN膜(厚さ:3μm)を被覆した被覆切削工具を使用
 被削材:SCM435(丸棒4本溝入)
 切削速度:V=100m/min、送り:f=0.2mm/rev.、切込み:2mm、dry(乾式)の断続切削加工(旋削)
 評価:刃先に欠損が生じるまでの切削時間を合計10コーナー測定し、10コーナーの平均時間(分)。最大切削時間:10分。
Figure JPOXMLDOC01-appb-T000004
 X>0.055x+0.238を満たす超硬合金は、上述のように超硬合金中のWCの平均粒径が同じ超硬合金と比較すると、熱拡散率が高い。そのため、X>0.055x+0.238を満たす超硬合金を基材とする切削工具は、WCの平均粒径が同程度であって、X>0.055x+0.238を満たさない試料No.102、103と比較して耐熱亀裂性に優れる。また、X>0.055x+0.238を満たす超硬合金からなる基材を具える切削工具は、試料No.105、106と比較して、耐摩耗性に優れる。特に、切削時に大きな発熱を伴う切削加工、具体的には、上記試験のようにTi合金といった難削材を被削材とする切削加工であっても、上記熱拡散率が高い超硬合金を基材とする切削工具は、耐摩耗性に優れる。また、表4から、チタン加工用工具は、Coの含有量が4.5質量%以上9質量%以下であり、Crを0.05質量以上%1.2質量%以下含有し、硬質相粒子の平均粒径が0.5μm以上3μm以下である超硬合金を利用することが好ましいことが分かる。
 一方、X>0.055x+0.238を満たす超硬合金であっても試料No.27のようにCo及びNiの合計含有量が多過ぎると、耐摩耗性に劣り、試料No.26のように上記合計含有量が少な過ぎると、靭性に劣ることが分かる。
 従って、X>0.055x+0.238を満たし、かつCo及びNiの合計含有量が4質量%以上15質量%以下、特に6質量%以上13質量%以下を満たす超硬合金は、切削工具の素材に好適であると言える。加えて、WC粒子の平均粒径が0.4μm以上4.0μm以下、特に0.8μm以上2.4μm以下である超硬合金は、耐熱亀裂性、耐摩耗性、靭性に更に優れ、切削工具の素材により好適であると言える。
 (試験例3)
 超硬合金からなる基材に被覆膜を形成した被覆切削工具を作製し、切削性能を調べた。
 各試料は、以下のように作製した。原料粉末として、試験例1で用いたものと同様のWC粉末、Cr3C2粉末、TaC粉末、Co粉末(粉末β)を用意した。特に、WC粉末は高温炭化のものであって、平均粒径は適宜選択した。そして、用意した原料粉末を所定の組成となるように配合した。この配合した原料粉末に、湿式ジェットミルにより試験例1と同様の条件で前処理を行ってから、ボールミルで1.5h混合した後、乾燥→成形(成形圧力:1000kg/cm2)→焼結(真空雰囲気、1400℃×1時間)の工程を経て、SNGN120804の形状の超硬合金製の切削工具チップ(基材)を得た。この基材にCVD法により順にTiCN膜(厚さ:4μm)、Al2O3膜(厚さ:1μm)を被覆して、試料No.31~41の被覆切削工具を得た。得られた被覆切削工具について、以下の条件で高速断続切削試験を行い、耐熱亀裂性を評価した。その結果を表5に示す。耐熱亀裂性の評価は、試験例2と同様に行った。
 被削材:S50C
 切削速度:V=300m/min、送り:f=0.3mm/刃、切込み:Ad=2mm、Rd=30mm、wet(湿式)のフライス加工
 また、試験例1と同様にして、超硬合金中のWC粒子の平均粒径(μm)、Cr、Ta、Coの含有量(質量%)、熱拡散率(cm2/sec)を測定した。その結果を表5に示す。更に、超硬合金中のWC粒子の平均粒径をx、熱拡散率をXとするとき、X=0.055x+0.238の値を求めた。その結果も表5に示す。なお、試験例1と同様にして、超硬合金中の硬質相の組成を調べたところ、いずれの試料の硬質相も、実質的にWC粒子により構成されていた。また、超硬合金中の80質量%以上がWC粒子であった。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、X>0.055x+0.238を満たす超硬合金であって、特に、Coの含有量が7~12質量%であり、Crを0.05~2質量%かつTaを0.2~5質量%含有し、WC粒子の平均粒径が1μm以上4μm以下を満たす超硬合金からなる基材を具える被覆切削工具は、耐熱亀裂特性に優れることが分かる。従って、このような超硬合金からなる切削工具は、特に耐熱亀裂性に優れることが望まれるクランクシャフト加工用工具に好適に利用することができると期待される。
 なお、上述した実施の形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、超硬合金の組成や、原料粉末の平均粒径などを適宜変更することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明の超硬合金は、スローアウェイチップなどの切削工具に好適に利用することができる。本発明の超硬合金は、特に、高速切削や難削材の加工に利用される場合のように刃先が非常に高温になる条件で利用される切削工具の素材に好適に利用することができる。本発明切削工具は、フライス加工、難削材の切削加工、重切削加工に好適に利用することができる。

Claims (10)

  1.  WC粒子を主体とする硬質相がCoを主体とする結合相により結合されてなる超硬合金であって、
     前記結合相は、Co、又はCo及びNiから実質的に構成され、Co及びNiの合計含有量が4.5質量%以上15質量%以下であり、
     前記超硬合金中のWC粒子の平均粒径が0.4μm以上4μm以下であり、
     前記超硬合金中のWC粒子の平均粒径をx(μm)とするとき、この超硬合金の熱拡散率X(cm2/sec)は、X>0.055x+0.238を満たす超硬合金。
  2.  前記超硬合金は、更に、Crのみを0.05質量%以上3質量%以下含有する請求の範囲1に記載の超硬合金。
  3.  前記超硬合金は、更に、Crと、Ta、Nb、Zr及びTiから選択される1種以上の元素とを合計で0.05質量%以上5質量%以下含有する請求の範囲1に記載の超硬合金。
  4.  前記超硬合金は、Ta及びNbの1種以上の元素をCrとの合計で0.05質量%以上5質量%以下含有する請求の範囲3に記載の超硬合金。
  5.  前記結合相は、Co及びNiから実質的に構成され、Niの含有量がCo及びNiの合計含有量の25%以下である請求の範囲1に記載の超硬合金。
  6.  前記超硬合金は、抗磁力(Hc)が16kA/m以下である請求の範囲1に記載の超硬合金。
  7.  前記超硬合金は、更に、Crを0.05質量以上%2質量%以下、Taを0.2質量以上%5質量%以下含有し、
     前記硬質相を構成する粒子の平均粒径が1μm以上4μm以下、
     Coの含有量が7質量%以上12質量%以下であり、
     前記超硬合金は、クランクシャフト加工用工具に用いられる請求の範囲1に記載の超硬合金。
  8.  前記超硬合金は、更に、Crを0.05質量以上%1.2質量%以下含有し、
     前記硬質相を構成する粒子の平均粒径が0.5μm以上3μm以下であり、
     Coの含有量が4.5質量%以上9質量%以下であり、
     前記超硬合金は、チタン加工用工具に用いられる請求の範囲1に記載の超硬合金。
  9.  請求の範囲1に記載の超硬合金からなる基材と、
     前記基材の表面にPVD法により形成された被覆膜とを具える切削工具であり、
     前記被覆膜は、周期律表4a、5a、6a族元素、Al及びSiから選択される1種以上の第1元素と、炭素(C)、窒素(N)、酸素(O)、及び硼素(B)から選択される1種以上の第2元素との化合物、及びダイヤモンドライクカーボン(DLC)から選択される1種以上から構成される切削工具。
  10.  請求の範囲1に記載の超硬合金からなる基材と、
     前記基材の表面にCVD法により形成された被覆膜とを具える切削工具であり、
     前記被覆膜は、周期律表4a、5a、6a族元素、Al及びSiから選択される1種以上の第1元素と、炭素(C)、窒素(N)、酸素(O)、及び硼素(B)から選択される1種以上の第2元素との化合物、及びダイヤモンドから選択される1種以上から構成される切削工具。
PCT/JP2010/063630 2009-08-20 2010-08-11 超硬合金およびこれを用いた切削工具 WO2011021554A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10809899.7A EP2474634B1 (en) 2009-08-20 2010-08-11 Super hard alloy and cutting tool using same
CN2010800367203A CN102482739A (zh) 2009-08-20 2010-08-11 硬质合金以及使用该硬质合金的切削工具
US13/390,841 US8801816B2 (en) 2009-08-20 2010-08-11 Cemented carbide and cutting tool using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009191493A JP5462549B2 (ja) 2009-08-20 2009-08-20 超硬合金
JP2009-191493 2009-08-20

Publications (1)

Publication Number Publication Date
WO2011021554A1 true WO2011021554A1 (ja) 2011-02-24

Family

ID=43607009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063630 WO2011021554A1 (ja) 2009-08-20 2010-08-11 超硬合金およびこれを用いた切削工具

Country Status (7)

Country Link
US (1) US8801816B2 (ja)
EP (1) EP2474634B1 (ja)
JP (1) JP5462549B2 (ja)
KR (1) KR101581081B1 (ja)
CN (2) CN102482739A (ja)
TW (1) TWI470088B (ja)
WO (1) WO2011021554A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015101746A (ja) * 2013-11-22 2015-06-04 住友電気工業株式会社 超硬合金およびこれを用いた表面被覆切削工具
JP2015101745A (ja) * 2013-11-22 2015-06-04 住友電気工業株式会社 超硬合金およびこれを用いた表面被覆切削工具
JP2015101747A (ja) * 2013-11-22 2015-06-04 住友電気工業株式会社 超硬合金およびこれを用いた表面被覆切削工具
JP2015101748A (ja) * 2013-11-22 2015-06-04 住友電気工業株式会社 超硬合金およびこれを用いた表面被覆切削工具
EP3309268A4 (en) * 2015-06-15 2018-07-04 Sumitomo Electric Industries, Ltd. Cemented carbide and cutting tool
CN112609116A (zh) * 2020-11-30 2021-04-06 株洲硬质合金集团有限公司 一种新型粘结相的硬质合金及其制备方法
US10987739B2 (en) 2014-06-19 2021-04-27 Sumitomo Electric Industries, Ltd. Cemented carbide and cutting tool

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680465B2 (ja) * 2011-03-29 2015-03-04 住友電工ハードメタル株式会社 刃先交換型切削チップおよびそれを用いた切削加工方法、ならびに刃先交換型切削チップの製造方法
JP2014005529A (ja) * 2012-05-29 2014-01-16 Sumitomo Electric Ind Ltd 超硬合金およびこれを用いた表面被覆切削工具
BR112015020524B1 (pt) * 2013-02-27 2021-03-16 Kyocera Corporation ferramenta de corte
US20160243619A1 (en) 2013-10-17 2016-08-25 Xjet Ltd. Methods and systems for printing 3d object by inkjet
JP5606612B1 (ja) * 2013-10-22 2014-10-15 冨士ダイス株式会社 Ni少量添加WC−Co基超硬合金またはそれを用いた工具
JP6387627B2 (ja) * 2014-03-04 2018-09-12 三菱マテリアル株式会社 耐熱亀裂性に優れた炭化タングステン基超硬合金製工具の製造方法
JP6439975B2 (ja) * 2015-01-16 2018-12-19 住友電気工業株式会社 サーメットの製造方法
JP2015145533A (ja) * 2015-02-04 2015-08-13 住友電気工業株式会社 超硬合金、および加工工具
PL3274482T3 (pl) * 2015-03-26 2020-06-15 Sandvik Intellectual Property Ab Słupek do wiercenia w skale
US10100405B2 (en) * 2015-04-20 2018-10-16 Kennametal Inc. CVD coated cutting insert and method of making the same
DE112016003954B4 (de) * 2015-08-29 2023-11-16 Kyocera Corporation Beschichtetes Werkzeug
CN105925866A (zh) * 2016-06-22 2016-09-07 柳州市同进汽车零部件制造有限公司 制砂机合金条的制备方法
ES2858096T3 (es) * 2016-09-28 2021-09-29 Sandvik Intellectual Property Una pieza de inserción de perforadora de roca
US20210276102A1 (en) * 2016-11-08 2021-09-09 Sandvik Intellectual Property Ab Method of machining ti, ti-alloys and ni-based alloys
EP3521468A4 (en) * 2017-12-11 2019-09-25 Sumitomo Electric Hardmetal Corp. CEMENTED CARBIDE AND CUTTING TOOL
KR102452868B1 (ko) 2018-01-09 2022-10-07 스미또모 덴꼬오 하드메탈 가부시끼가이샤 초경합금 및 절삭 공구
CN112005072B (zh) 2018-04-02 2022-03-25 吉野石膏株式会社 多管式旋转型换热器
US20210040587A1 (en) * 2018-11-01 2021-02-11 Sumitomo Electric Industries, Ltd. Cemented carbide, cutting tool, and method of manufacturing cemented carbide
JP2022514459A (ja) * 2018-12-13 2022-02-14 シンク サージカル,インク. ニッケル・マトリックスにおける微細粒状タングステンカーバイドから形成された外科用物品
CN109913729B (zh) * 2019-03-12 2021-05-25 广东工业大学 一种硬质合金基体及聚晶金刚石复合片的合成方法
CN110527889B (zh) * 2019-09-05 2021-11-23 无锡精蓉创材料科技有限公司 一种用于生产深腔焊劈刀的材料及其制备工艺
WO2021079561A1 (ja) * 2019-10-25 2021-04-29 住友電気工業株式会社 超硬合金及びそれを基材として含む切削工具
CN111154993A (zh) * 2019-12-25 2020-05-15 株洲鸿达实业有限公司 一种碳化钨-碳化钛固溶体的制备方法
CN112342449B (zh) * 2020-10-16 2021-11-23 株洲明日硬质合金有限公司 一种硬质合金及其制备方法和应用
CN117020283B (zh) * 2023-07-20 2024-03-08 珩星电子(连云港)股份有限公司 一种pcd内冷反镗铣刀及其制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191760A (ja) * 1988-01-26 1989-08-01 Mitsubishi Metal Corp Ti合金切削用超硬合金製正方形切削チップ
JPH08225877A (ja) 1995-02-15 1996-09-03 Sumitomo Electric Ind Ltd 窒素含有焼結硬質合金
JPH10121182A (ja) * 1996-07-19 1998-05-12 Sandvik Ab 高温度及び熱力学的特性を改良した超硬合金
JP2004052110A (ja) * 2002-07-17 2004-02-19 Hitachi Tool Engineering Ltd 超微粒超硬合金
JP2008284638A (ja) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd 被覆切削工具
JP2009007615A (ja) * 2007-06-27 2009-01-15 Kyocera Corp 超硬合金およびそれを用いた切削工具

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4769070A (en) * 1986-09-05 1988-09-06 Sumitomo Electric Industries, Ltd. High toughness cermet and a process for the production of the same
JPH02106210A (ja) * 1988-10-14 1990-04-18 Sumitomo Electric Ind Ltd ねじれ刃多結晶ダイヤモンド工具及びその製造方法
US5100703A (en) * 1989-02-23 1992-03-31 Toshiba Tungaloy Co., Ltd. Diamond-coated sintered body excellent in adhesion and process for preparing the same
US5204167A (en) * 1989-02-23 1993-04-20 Toshiba Tungaloy Co., Ltd. Diamond-coated sintered body excellent in adhesion and process for preparing the same
SG52929A1 (en) * 1996-03-12 1998-09-28 Smith International Rock bit with hardfacing material incorporating spherical cast carbide particles
US6022175A (en) * 1997-08-27 2000-02-08 Kennametal Inc. Elongate rotary tool comprising a cermet having a Co-Ni-Fe binder
US6010283A (en) * 1997-08-27 2000-01-04 Kennametal Inc. Cutting insert of a cermet having a Co-Ni-Fe-binder
DE19907749A1 (de) * 1999-02-23 2000-08-24 Kennametal Inc Gesinterter Hartmetallkörper und dessen Verwendung
JP2001329331A (ja) * 2000-05-19 2001-11-27 Hitachi Tool Engineering Ltd 高硬度高靱性超硬合金及びその製法
JP2002205207A (ja) * 2001-01-09 2002-07-23 Sumitomo Electric Ind Ltd 切削工具
US7972409B2 (en) * 2005-03-28 2011-07-05 Kyocera Corporation Cemented carbide and cutting tool
US8002052B2 (en) * 2005-09-09 2011-08-23 Baker Hughes Incorporated Particle-matrix composite drill bits with hardfacing
US7997359B2 (en) * 2005-09-09 2011-08-16 Baker Hughes Incorporated Abrasive wear-resistant hardfacing materials, drill bits and drilling tools including abrasive wear-resistant hardfacing materials
US20070082229A1 (en) * 2005-10-11 2007-04-12 Mirchandani Rajini P Biocompatible cemented carbide articles and methods of making the same
JP2007191741A (ja) * 2006-01-18 2007-08-02 Hitachi Tool Engineering Ltd Wc基超硬合金及びその製造方法
SE0602812L (sv) * 2006-12-27 2008-06-28 Sandvik Intellectual Property CVD-belagt hårdmetallskär för seghetskrävande korthålsborrningsoperationer
JP2009120903A (ja) * 2007-11-14 2009-06-04 Hitachi Tool Engineering Ltd Wc基超硬合金

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191760A (ja) * 1988-01-26 1989-08-01 Mitsubishi Metal Corp Ti合金切削用超硬合金製正方形切削チップ
JPH08225877A (ja) 1995-02-15 1996-09-03 Sumitomo Electric Ind Ltd 窒素含有焼結硬質合金
JPH10121182A (ja) * 1996-07-19 1998-05-12 Sandvik Ab 高温度及び熱力学的特性を改良した超硬合金
JP2004052110A (ja) * 2002-07-17 2004-02-19 Hitachi Tool Engineering Ltd 超微粒超硬合金
JP2008284638A (ja) * 2007-05-16 2008-11-27 Sumitomo Electric Ind Ltd 被覆切削工具
JP2009007615A (ja) * 2007-06-27 2009-01-15 Kyocera Corp 超硬合金およびそれを用いた切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2474634A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015101746A (ja) * 2013-11-22 2015-06-04 住友電気工業株式会社 超硬合金およびこれを用いた表面被覆切削工具
JP2015101745A (ja) * 2013-11-22 2015-06-04 住友電気工業株式会社 超硬合金およびこれを用いた表面被覆切削工具
JP2015101747A (ja) * 2013-11-22 2015-06-04 住友電気工業株式会社 超硬合金およびこれを用いた表面被覆切削工具
JP2015101748A (ja) * 2013-11-22 2015-06-04 住友電気工業株式会社 超硬合金およびこれを用いた表面被覆切削工具
US10987739B2 (en) 2014-06-19 2021-04-27 Sumitomo Electric Industries, Ltd. Cemented carbide and cutting tool
EP3309268A4 (en) * 2015-06-15 2018-07-04 Sumitomo Electric Industries, Ltd. Cemented carbide and cutting tool
CN112609116A (zh) * 2020-11-30 2021-04-06 株洲硬质合金集团有限公司 一种新型粘结相的硬质合金及其制备方法

Also Published As

Publication number Publication date
EP2474634B1 (en) 2019-03-20
US20120144753A1 (en) 2012-06-14
TW201122117A (en) 2011-07-01
EP2474634A1 (en) 2012-07-11
KR20120041265A (ko) 2012-04-30
KR101581081B1 (ko) 2015-12-29
TWI470088B (zh) 2015-01-21
CN102482739A (zh) 2012-05-30
CN105154744B (zh) 2020-08-11
JP2011042830A (ja) 2011-03-03
EP2474634A4 (en) 2016-11-23
CN105154744A (zh) 2015-12-16
US8801816B2 (en) 2014-08-12
JP5462549B2 (ja) 2014-04-02

Similar Documents

Publication Publication Date Title
JP5462549B2 (ja) 超硬合金
KR101635488B1 (ko) 절삭 공구
JP5594575B2 (ja) 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JPWO2012063515A1 (ja) 表面被覆切削工具
JP2006231422A (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2018118346A (ja) 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具
JP5088480B2 (ja) 表面被覆切削工具
JP2017159424A (ja) 耐チッピング性と耐摩耗性にすぐれた表面被覆切削工具
JP4645820B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2006224198A (ja) 高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP7216915B2 (ja) ダイヤモンド被覆超硬合金製工具
JP6399353B2 (ja) 耐チッピング性、耐摩耗性にすぐれた表面被覆切削工具
JP7473871B2 (ja) 耐摩耗性および耐欠損性にすぐれたwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具
JP2018144115A (ja) 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具
JP5476842B2 (ja) 高速重切削加工で硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP2017159423A (ja) 耐チッピング性と耐摩耗性にすぐれた表面被覆切削工具
JP5239950B2 (ja) 溶着生の高い被削材の重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP5099495B2 (ja) 表面被覆切削工具
JP5499861B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5234512B2 (ja) 表面被覆切削工具
JP2006231423A (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2009178833A (ja) 硬質被覆層がすぐれた潤滑性、耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP5239953B2 (ja) 溶着性の高い被削材の重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP5682500B2 (ja) 硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP2009178832A (ja) 硬質被覆層がすぐれた潤滑性と耐摩耗性を発揮する表面被覆切削工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036720.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809899

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13390841

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1605/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010809899

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127006815

Country of ref document: KR

Kind code of ref document: A