WO2011021527A1 - 送信装置、受信装置、無線装置および送信装置における伝送モード制御方法 - Google Patents

送信装置、受信装置、無線装置および送信装置における伝送モード制御方法 Download PDF

Info

Publication number
WO2011021527A1
WO2011021527A1 PCT/JP2010/063510 JP2010063510W WO2011021527A1 WO 2011021527 A1 WO2011021527 A1 WO 2011021527A1 JP 2010063510 W JP2010063510 W JP 2010063510W WO 2011021527 A1 WO2011021527 A1 WO 2011021527A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
information
transmission mode
mode
modes
Prior art date
Application number
PCT/JP2010/063510
Other languages
English (en)
French (fr)
Inventor
中嶋 康久
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to BRPI1004933A priority Critical patent/BRPI1004933A2/pt
Priority to US12/998,297 priority patent/US8649449B2/en
Priority to CN201080002817.2A priority patent/CN102326427B/zh
Priority to EP10809872.4A priority patent/EP2315472B1/en
Publication of WO2011021527A1 publication Critical patent/WO2011021527A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a transmission device, a reception device, a wireless device, and a transmission mode control method in a transmission device, and more particularly to a transmission device that wirelessly transmits digital information such as an AV (Audio Visual) signal in a wireless network.
  • AV Audio Visual
  • the transmission rate and the number of channels of the transmission path have an upper limit. Therefore, digital information that exceeds the transmission rate or exceeds the number of channels can not be transmitted.
  • the change of the transmission rate is realized by changing the modulation method.
  • this method even if there is a change in transmission rate, the same frequency band in the channel being used is occupied. Therefore, the number of channels for performing other transmissions remains insufficient. Further, since the occupied frequency band does not change, the required power consumption does not change significantly, and a large amount of power is consumed even at a small transmission rate.
  • FIG. 14 shows, for example, a channel plan assigned to 60 GHz millimeter waves.
  • 9 GHz from 57 GHz to 66 GHz is allocated as a band.
  • Four channels are arranged at 2.08 GHz intervals in this 9 GHz.
  • adjacent channels are affected by the side lobes of the channel mask and the transmission path quality is degraded. Therefore, it is usually normal to use adjacent channels.
  • channel 1 when channel 1 (CH # 1) is used, channel 3 (CH # 3) or channel 4 (CH # 4) is used. Therefore, in the 60 GHz band, up to two channels can be simultaneously used, and only up to two AV signal transmissions can be performed in the same area in order to use for the purpose of baseband transmission of AV signals.
  • the entire band of the channel may not be required.
  • the bandwidth occupied can not be changed in the current transmission mode.
  • the digital modulation scheme is QPSK (Quadrature Phase Shift Keying), and the transmission rate is 0.95 Gbps.
  • the digital modulation scheme is QPSK and the transmission rate is 1.90 Gbps.
  • the digital modulation scheme is 16 QAM (16 Quadrature Amplitude Modulation), and the transmission rate is 3.81 Gbps.
  • the bandwidth (BW) of each mode is the same at 1.76 GHz.
  • Patent Document 1 proposes a digital signal transmission method capable of setting the transmission rate that can be received by a receiver (recording device) to a standard transmission rate, a rate higher than a standard transmission rate or a rate lower than a standard transmission rate. ing. Further, for example, in Patent Document 2, even when the communication states of a plurality of physical layers change as needed and the communication quality that can be provided by each physical layer changes accordingly, each application layer is It has been proposed to enable communication at the optimum physical layer in the communication state of In addition, for example, Patent Document 3 proposes a transmission apparatus that narrows a transmission band and transmits digital information when it is determined that the DU ratio on the receiving side is low (Desired to Undesired signal ratio).
  • An object of the present invention is to make it possible to reduce power consumption and to enable efficient use of channels.
  • the concept of this invention is A digital information transmission unit for wirelessly transmitting digital information to a receiving device on a predetermined channel;
  • the digital information transmission unit is capable of coping with a plurality of transmission modes having different occupied frequency bands in the channel,
  • the digital information transmission unit is included in the transmission apparatus using the transmission mode indicated by the transmission mode determination information from the reception apparatus or another wireless apparatus among the plurality of transmission modes.
  • the concept of the present invention is A digital information receiving unit that wirelessly receives digital information from a transmitting device on a predetermined channel;
  • the transmitting apparatus is capable of coping with a plurality of transmission modes having different occupied frequency bands in the channel,
  • a transmission rate information receiving unit that wirelessly receives information of a transmission rate required for transmission of the digital information from the transmission device;
  • a transmission mode determining unit that determines a transmission mode based on at least the transmission rate information received by the transmission rate information receiving unit;
  • the receiver further includes a transmission mode information transmission unit that wirelessly transmits information on the transmission mode determined by the transmission mode determination unit to the transmission device.
  • a wireless device for managing bandwidth in a wireless network including a transmitting device and a receiving device, comprising:
  • the transmitting device wirelessly transmits digital information to the receiving device on a predetermined channel, and can cope with a plurality of transmission modes in which occupied frequency bands in the channel are different.
  • a transmission mode determination unit that determines a transmission mode;
  • a transmission mode information transmission unit for wirelessly transmitting the information on the transmission mode determined by the transmission mode determination unit to the predetermined transmission apparatus.
  • digital information such as an AV signal is wirelessly transmitted from a transmitting apparatus to a receiving apparatus on a predetermined channel.
  • the digital information is transmitted by the digital information transmission unit of the transmission device and received by the digital information reception unit of the reception device.
  • an orthogonal frequency division multiplex (OFDM) system or a direct sequence-spread spectrum (DS-SS) system is adopted for the digital information transmitting unit of the transmitting apparatus and the digital information receiving unit of the receiving apparatus.
  • the digital information transmission unit of the transmission apparatus is capable of coping with a plurality of transmission modes having different occupied frequency bands in the channel.
  • the digital information transmission unit of the transmission apparatus uses a transmission mode indicated by transmission mode determination information from the reception apparatus or another wireless apparatus.
  • the transmission mode information transmission unit of the transmission apparatus wirelessly transmits, to the reception apparatus or another wireless apparatus, information on a transmission mode that can be handled by the digital information transmission unit of the transmission apparatus.
  • the transmission rate information transmission unit of the transmission apparatus wirelessly transmits, to the reception apparatus or another wireless apparatus, information on a transmission rate required for transmission of digital information. Then, in the receiver or other wireless device, the transmission mode is determined based on at least the transmission rate information.
  • the digital information transmission unit of the transmission apparatus can cope with a plurality of transmission modes having different occupied frequency bands in the channel, and is indicated by the transmission mode determination information from the reception apparatus or another wireless apparatus. Can be used to reduce power consumption and efficiently use channels.
  • the transmission mode is determined based on user setting information on power consumption in addition to the transmission rate information.
  • the occupied frequency band is determined to be the narrower transmission mode, on the condition that the transmission rate required for the transmission of digital information is satisfied.
  • narrowing the occupied frequency band for example, in the case of the OFDM method, the number of required antennas can be reduced, and power consumption can be reduced.
  • a plurality of transmission modes that can be handled by the digital information transmission unit of the transmission device include a predetermined number of first transmission modes in which all bands in the channel are occupied frequency bands, and a half frequency band in the channels And a predetermined number of second transmission modes.
  • the transmission mode determination unit when the user setting information on power consumption indicates the standard, the transmission mode is determined from a predetermined number of first transmission modes, and on the other hand, when the user setting information on power consumption indicates a decrease, A transmission mode is determined from a predetermined number of second transmission modes.
  • the change of the transmission mode is determined based on the transmission path quality of the digital information in addition to the transmission rate information.
  • the channel quality is determined based on, for example, PER (Packet Error Rate) or RSSI (Received Signal Strength Indicator) of digital information received by the receiving apparatus.
  • PER Packet Error Rate
  • RSSI Received Signal Strength Indicator
  • the transmission mode determination unit uses the predetermined transmission device based on a bandwidth allocation request from another transmission device. A change of transmission mode is determined. Then, the transmission mode information transmission unit of the wireless terminal transmits information on the transmission mode determined to be changed to a predetermined transmission apparatus.
  • the occupied frequency band is satisfied on the condition that the transmission rate required for the transmission of digital information is satisfied so that the channel adjacent to the predetermined channel can be used in the transmission of digital information from another transmission apparatus.
  • the transmission mode is changed from the wide transmission mode to the narrow transmission mode of the occupied frequency band.
  • the digital information transmission unit of the transmission apparatus can cope with a plurality of transmission modes having different occupied frequency bands in a channel, and is indicated by transmission mode decision information from the reception apparatus or another wireless apparatus.
  • the transmission mode is used to reduce power consumption and enable efficient use of channels.
  • FIG. 7 is a diagram showing that by alternately arranging a channel plan of 60 GHz millimeter waves and two transmission modes, it is possible to simultaneously transmit AV signals of up to 4 channels in a 9 GHz band of 60 GHz.
  • FIG. 7 is a diagram showing that by alternately arranging a channel plan of 60 GHz millimeter waves and two transmission modes, it is possible to simultaneously transmit AV signals of up to 4 channels in a 9 GHz band of 60 GHz.
  • FIG. 16 is a diagram showing predicted values of the number of antennas in a new transmission mode (modes 3 to 5), which are required to maintain the transmission path quality required in the conventional transmission mode (modes 0 to 2). It is a figure which shows the relationship between an AV signal format and a transmission rate. It is a figure for demonstrating the band management (coordinate) function in a wireless transmission system. It is a sequence diagram which shows the example of a MAC control sequence at the time of one-to-one transmission in a wireless transmission system. It is a figure which shows an example of the user setting screen for the user setting regarding power consumption. It is a flowchart which shows an example of the transmission mode determination process in a coordinator (receiving device 1). FIG.
  • 5 is a conceptual view of transmission path quality and transmission mode switching. It is a sequence diagram which shows the example of a MAC control sequence at the time of joining of the new transmission device (transmission device 2) in a wireless transmission system. It is a flowchart which shows an example of the zone
  • FIG. 1 shows a configuration example of a wireless transmission system 10 as an embodiment.
  • the wireless transmission system 10 has a configuration in which a transmitting device 100 and a receiving device 200 are connected by a wireless transmission path 300.
  • the transmission apparatus 100 includes a control unit 101, a reproduction unit 102, and a transmission unit 103.
  • the reproduction unit 102 reproduces an AV signal (image data, audio data) to be transmitted from a recording medium such as an optical disk, an HDD, a semiconductor memory, and the like.
  • the transmission unit 103 is a transmission unit for transmitting a 60 GHz millimeter wave, and employs a known OFDM scheme. Also, when using 2.4 GHz or 5 GHz, the DS-SS method is also adopted.
  • the transmission unit 103 includes a modulation circuit 131, a distribution circuit 132, a plurality of antenna circuits 133, and a plurality of antennas 134.
  • the transmission unit 103 supplies the AV signal reproduced by the reproduction unit 102 from the distribution circuit 132 to the plurality of antenna circuits 133 via the modulation circuit 131 that performs baseband modulation.
  • the antenna circuit 133 includes a D / A converter 133a, a power amplifier 133b, and the like.
  • control unit 101 controls the operation of each unit of the transmission apparatus 100. That is, the control unit 101 controls the AV signal generation in the reproduction unit 102, selects the modulation scheme in the modulation circuit 131, controls the antenna circuit 133, calculates the required transmission rate, and receives the device. Perform processing such as transmission to 200.
  • the receiving apparatus 200 includes a control unit 201, a transmission unit 202, a display unit 203, and a determination unit 204.
  • the transmission unit 202 is a transmission unit for receiving the 60 GHz millimeter wave transmitted from the transmission device 100, and employs the OFDM scheme corresponding to the transmission unit 103 of the transmission device 100 described above. As shown in FIG. 2, the transmission unit 202 includes a plurality of antennas 221, a plurality of antenna circuits 222, a combining circuit 223, and a demodulation circuit 224.
  • the transmission unit 202 receives the 60 GHz millimeter waves transmitted from the transmission apparatus 100 by the plurality of antennas 221, combines them by the combination circuit 223 through the plurality of antenna circuits 222, and demodulates them by the demodulation circuit 224 to obtain baseband. Get an AV signal.
  • the display unit 203 displays an image based on image data constituting the AV signal obtained by the transmission unit 202. Note that an audio output system based on audio data constituting the AV signal obtained by the transmission unit 202 is omitted.
  • the determination unit 204 detects the transmission grade (transmission path grade) of the transmission channel, and supplies the information to the control unit 201.
  • the determination unit 204 determines the transmission path quality, for example, based on PER (Packet Error Rate) or RSSI (Received Signal Strength Indicator) of the received digital information.
  • PER Packet Error Rate
  • RSSI Receiveived Signal Strength Indicator
  • the control unit 201 controls the operation of each unit of the receiving device 200. That is, the control unit 201 performs processing of control of the antenna circuit 222, selection of a demodulation method by the demodulation circuit 224, and control of display by the display unit 203. Further, the control unit 201 performs control to select a transmission mode based on the transmission path quality information detected by the determination unit 204 and user setting information on power consumption, band management (coordination) in a wireless network, and transmission quality information. Perform processing such as transmission to the device.
  • FIG. 3 shows a list of applicable transmission modes of the transmission units 103 and 202.
  • the transmission units 103 and 202 can handle mode 3 (Mode 3) to mode 5 (Mode 5) in addition to mode 0 (Mode 0) to mode 2 (Mode 2).
  • Mode 3 to mode 5 does not change the digital modulation method (16 QAM / QPSK) defined in mode 0 to mode 2), and halves the number of subcarriers used in OFDM, and the required frequency band Is half of the original transmission mode.
  • the frequency band can be similarly reduced to half of the original transmission mode.
  • mode 0 the digital modulation scheme is QPSK and the transmission rate is 0.95 Gbps.
  • mode 1 the digital modulation scheme is QPSK and the transmission rate is 1.90 Gbps.
  • mode 2 the digital modulation scheme is 16 QAM and the transmission rate is 3.81 Gbps.
  • the bandwidth (BW) of these modes 0 to 2 is 1.76 GHz.
  • mode 3 the digital modulation scheme is QPSK and the transmission rate is 0.48 Gbps.
  • mode 4 the digital modulation scheme is QPSK and the transmission rate is 0.95 Gbps.
  • mode 5 the digital modulation scheme is 16 QAM and the transmission rate is 1.90 Gbps.
  • the bandwidth (BW) of these modes 3 to 5 is 0.88 GHz.
  • Mode 1 and mode 5 can realize the same transmission rate (1.90 Gbps) in different frequency bands of 1.76 GHz and 0.88 GHz.
  • mode 0 and mode 4 can realize the same transmission rate (0.95 Gbps) in different frequency bands of 1.76 GHz and 0.88 GHz.
  • the transmission mode modes 3 to 5 in which the frequency band may be half that of the conventional one and the conventional transmission mode (modes 0 to 2), as shown in FIG. It is possible to simultaneously transmit AV signals for up to four channels.
  • FIG. 5 shows predicted values of the number of antennas in the new transmission mode (modes 3 to 5) necessary to maintain the transmission path quality required in the conventional transmission mode (modes 0 to 2).
  • the predicted value of the number of antennas is indicated by a ratio to the number of antennas required in the conventional transmission mode (modes 0 to 2) as “1”.
  • the number of antennas since only the modulation scheme is switched without changing the transmission band, the number of antennas does not change.
  • the new transmission mode since the transmission band is halved, the number of antennas is exponentially proportional to maintain the required transmission path quality. As the number of antennas decreases, the number of antenna circuits used decreases in proportion, so the power consumption is almost directly proportional to the number of antennas.
  • FIG. 6 shows the relationship between the AV signal format and the transmission rate.
  • a standard definition (SD) signal may be a transmission rate of 0.442 Gbps if it is an RGB 8-bit signal.
  • mode 0 since mode 0 is used in the conventional transmission mode, the number of antennas and power consumption do not change as compared with other transmission modes.
  • the transmission rate is 0.48 Gbps, the required transmission rate is satisfied, the number of antennas on the transmitting side may be 1/10, and the number of antennas on the receiving side may be 1/40. Power consumption can also be reduced at the same rate. Similarly, in the case of an HD (High Definition) signal, the number of antennas and power consumption can be reduced to 3/4 to 1/2 using mode 5. Thus, by selecting the transmission mode in accordance with the format of the AV signal to be transmitted, the occupied frequency band and the power consumption can be reduced.
  • the band management (coordination) function of the reception apparatus 200 will be described.
  • the receiving apparatus having the band management function as described above functions not only as a receiving apparatus but also as a coordinator.
  • FIG. 7 is a conceptual view of a bandwidth management (coordinator) function.
  • a bandwidth management (coordinator) function Within the same wireless network, there is at least one wireless device called a coordinator that manages the entire bandwidth.
  • the wireless device having this band management function is described as the receiving device 1.
  • the transmitting device 1 sends a bandwidth allocation request to the receiving device 1 (coordinator).
  • the receiving device 1 determines from the current bandwidth occupancy situation, performs bandwidth allocation, and starts transmission.
  • the transmitter 2 requests the receiver 1 (coordinator) to allocate a new band.
  • the receiving apparatus 1 determines the bandwidth availability of the same channel, and when there is an excess bandwidth, allocates a new bandwidth to the same channel by time division multiplex TDM (Time Domain Multiplex). If the bandwidth is insufficient in the same channel, the bandwidth is allocated in another channel. However, if the bandwidth is insufficient even in the other channels, the bandwidth can not be allocated, and the transmission device 2 is notified that transmission is not possible.
  • TDM Time Domain Multiplex
  • the receiver 1 (coordinator) allocates the band based on the information (the transmission mode information and the user setting information on the power consumption) of the physical layer of each receiver and transmitter. Do. In this case, the receiving device 1 (coordinator) determines a transmission mode to be used for digital information transmission based on user setting information on power consumption in addition to the information on the transmission rate required for transmission of digital information. Also, the receiving device 1 (coordinator) thereafter determines a change of the transmission mode to be used for digital information transmission based on the information of the transmission path quality related to the digital information received by the receiving device.
  • FIG. 8 shows an example of a MAC control sequence at the time of one-to-one transmission.
  • the receiving device 1 (coordinator) performs link establishment processing in response to the Association request (Request) from the transmitting device 1 which is going to participate in the wireless network. In this case, when the wireless network is currently available, the receiving device 1 (coordinator) returns to the transmitting device 1 that the connection is possible with an Association response (Response).
  • the receiving device 1 sends an announce request (Request) to the transmitting device 1 in order to obtain function information to which the transmitting device 1 corresponds.
  • the receiving device 1 acquires information on the transmission mode to which the transmitting device 1 corresponds from the Announce response (Response) returned from the transmitting device 1 in response to the Announce request (Request).
  • the transmission device 1 generates a transmission request when there is an AV signal (digital information) to be transmitted.
  • the transmitting device 1 sends a BandWidth Request (Request) to the receiving device 1 (coordinator) in order to request allocation of a band necessary for transmission of an AV signal.
  • This BandWidth request contains information on the transmission rate required to transmit digital information.
  • the receiver 1 determines the transmission mode based on the information on the transmission mode acquired from the above-mentioned Announce response, the information on the required transmission rate contained in the BandWidth request, and the user setting information. Then, the receiving device 1 (coordinator) returns to the transmitting device 1 a BandWidth response (Response) including information on the determined transmission mode.
  • a BandWidth response Response
  • the user setting information is user setting information related to power consumption. This user setting is performed based on, for example, a user setting screen displayed on the display unit 203 in the receiving device 1 (coordinator).
  • FIG. 9 shows an example of the user setting screen. The user can perform the power consumption setting by selecting the “energy saving setting” item among the setting items. The user can set "normal” or “decrease” as the power consumption.
  • FIG. 9 shows a state in which the power consumption is set to "decrease".
  • the transmission mode is determined in consideration of the user setting information related to the above-mentioned power consumption. In this case, when the power consumption is set to “decrease”, transmission modes (modes 3 to 5) in which the frequency band may be half that in the prior art are preferentially selected.
  • the transmitter 1 starts transmission of an AV signal using the transmission mode specified by the BandWidth response from the receiver 1 (coordinator).
  • the frequency band is determined to be a transmission mode (modes 3 to 5) which may be half the conventional one, and this transmission mode (transmission mode B) shows a state where transmission of the AV signal is started. There is.
  • the transmitting device 1 periodically transmits a Link Quality Request to the receiving device 1 (coordinator) during transmission of the AV signal.
  • the receiver 1 (coordinator) returns to the transmitter 1 a Link Quality Response (Response) including information on the transmission path quality related to the AV signal sent from the transmitter 1.
  • the information on the transmission path quality is, for example, PER (Packet Error Rate), received signal level (RSSI) or the like.
  • the information device 1 can confirm substantial transmission path information based on the transmission path quality information included in the Link Quality response from the reception device 1 (coordinator).
  • the receiver 1 confirms the substantial transmission rate from the above-mentioned transmission path quality information. Then, in the case of a transmission path grade that falls below the required transmission rate, the receiving device 1 (coordinator) sends a ChangeBW request with a new parameter to the transmitting device 1 for changing to a new transmission mode. Send to In response to the ChangeBW request, the transmitting device 1 returns a ChangeBW response (Response) to the receiving device 1 (coordinator), and continues transmission in the new transmission mode. Thereby, when the transmission path quality is degraded, the transmission device 1 switches to a new transmission mode and continues transmission of the AV signal.
  • the frequency band is changed to the same transmission mode (modes 0 to 2) as in the conventional case, and transmission of the AV signal is continued by this transmission mode (transmission mode A).
  • transmission mode A transmission mode A
  • a request for a transmission band has been made to the coordinator from the transmitter side, but in this embodiment, the coordinator can issue a transmission band change request to the transmitter based on transmission path quality information It is assumed.
  • the receiver 1 confirms the substantial transmission rate from the above-described transmission path quality information during transmission of the AV signal. Then, the receiving apparatus 1 (coordinator) changes the transmission mode A to the transmission mode B when the transmission path quality is improved again, and after that, when the transmission path quality is deteriorated again, the transmission mode B Repeating to change to the transmission mode A is repeated.
  • the flowchart of FIG. 10 illustrates an example of transmission mode determination processing in the coordinator (receiving device 1).
  • the coordinator starts processing in step ST1, and then proceeds to processing in step ST2.
  • the coordinator determines whether the transmission of the AV signal has started or is in progress. Before the start of transmission, the coordinator proceeds to the process of step ST3.
  • step ST 3 the coordinator acquires information on the required transmission rate included in the BandWidth request transmitted from the transmitter 1. Then, in step ST4, the coordinator acquires user setting information related to power consumption, and then proceeds to the process of step ST5. In this step ST5, the coordinator determines whether the setting of the power consumption is "standard" or "decrease".
  • step ST6 the coordinator selects a transmission mode that satisfies the required transmission rate from among the transmission modes (modes 0 to 2) having the same frequency band as the conventional one.
  • step ST7 the coordinator selects a transmission mode that satisfies the required transmission rate from among the transmission modes (modes 3 to 5) for which the frequency band may be half that of the prior art.
  • the coordinator proceeds to the process of step ST8 after the process of step ST6 or step ST7.
  • the coordinator proceeds to the process of step ST8 also when transmission is in progress in step ST2 described above.
  • the coordinator acquires transmission path quality information.
  • the coordinator determines whether the channel quality is equal to or higher than a threshold. For example, when the information on the transmission path quality is PER, the threshold is taken as the value of this PER. Alternatively, when the channel quality information is RSSI (received signal level), the threshold value is taken as the value of this RSSI.
  • RSSI received signal level
  • step ST10 When the channel quality is equal to or higher than the threshold value, the coordinator proceeds to the process of step ST10.
  • step ST10 when the setting of the power consumption is "decrease", the coordinator selects a transmission mode which satisfies the required transmission rate from among the transmission modes (modes 3 to 5) in which the frequency band may be half that of the prior art. . When the transmission mode is already selected, the selection is continued. After the process of step ST10, the coordinator ends the process in step ST12.
  • step ST11 when the setting of the power consumption is "decrease" and the transmission mode satisfying the required transmission rate is selected from the transmission modes (modes 3 to 5), the coordinator cancels the selection. . That is, the coordinator selects a transmission mode that satisfies the required transmission rate from the transmission modes (modes 0 to 2). When the transmission mode is already selected, the selection is continued. After the process of step ST11, the coordinator ends the process in step ST12.
  • FIG. 11 shows a conceptual diagram of transmission path quality and transmission mode switching.
  • mode 5 satisfying the required transmission rate is selected from among the transmission modes (mode 3 to mode 5) where the frequency band may be half that of the prior art. Is shown.
  • mode 5 changes from the same transmission mode (mode 0 to mode 2) to the mode 2 satisfying the required transmission rate. Be done.
  • mode 2 is changed to mode 5 again. The same is repeated below.
  • the threshold value of the transmission path grade when the transmission mode (modes 3 to 5) is changed to the transmission mode (modes 0 to 2) and the transmission mode (modes 0 to 2) to the transmission mode (modes 3 to 5) does not have to be the same, and may be different. In that case, for example, the threshold value of the transmission path grade when changing from the transmission mode (modes 0 to 2) to the transmission mode (modes 3 to 5) is the transmission mode (modes 3 to 5) to the transmission mode (mode It is made larger than the threshold value of the transmission path grade in the case of being changed to 0 to 2).
  • FIG. 12 illustrates an example of a MAC control sequence at the time of joining of a new transmission device (transmission device 2).
  • the new transmitting device 2 joins the wireless network, if the required transmission band and channel are insufficient, in the prior art, the receiving device 1 (coordinator) requests transmission until the transmission band and channel are free. I had to refuse.
  • the new transmission apparatus 2 can transmit by designating a new transmission mode for the transmission apparatus 1 that has already performed transmission, and securing a transmission band and a channel. Become.
  • the transmitting device 1 transmits an AV signal in the already secured transmission mode, but when a new transmitting device 2 requests transmission, the receiving device 1 (coordinator) determines the available bandwidth in the current channel and the others. The channel and transmission mode are determined from the free band information in the channel of. If the bandwidth is insufficient, the receiving device 1 (coordinator) sends the transmitting device 1 a ChangeBW request for performing bandwidth limitation by transmission mode change.
  • the transmitting device 1 In response to the ChangeBW request, the transmitting device 1 returns a ChangeBW response and continues transmission in the new transmission mode if the bandwidth restriction does not affect the transmission rate in response to the ChangeBW request.
  • the AV signal from the transmitting device 1 to the receiving device 1 (coordinator) is changed from the state of being transmitted in the transmission mode A to the state of being transmitted in the transmission mode B which may be half the frequency band.
  • the transmitter 1 (coordinator) returns a BandWidth response to the transmitter 2 using the newly secured band information.
  • the transmission device 2 starts transmission of the AV signal to the reception device 2 using the transmission mode specified by the BandWidth response from the reception device 1 (coordinator).
  • the frequency band is determined to be the same transmission mode (modes 0 to 2) as in the conventional case, and the transmission mode of the AV signal is started by this transmission mode (transmission mode C).
  • the receiving apparatus 1 performs band limitation control according to transmission path quality during transmission, as in the MAC control sequence example of FIG. That is, the receiving device 1 (coordinator) constantly checks the transmission path quality between the transmitting device 1 and the receiving device 1 and between the transmitting device 2 and the receiving device 2, and when the transmission path quality is degraded, Bandwidth control.
  • the flowchart of FIG. 13 illustrates an example of the band change process in the coordinator (the receiving device 1).
  • the coordinator starts processing in step ST21, and then proceeds to processing in step ST22.
  • step ST22 the coordinator determines whether there is a new transmission request. If there is no new transmission request, the coordinator immediately ends the processing in step ST30.
  • step ST22 When there is a new transmission request in step ST22, the coordinator proceeds to the process of step ST23.
  • step ST23 the coordinator acquires information on the required transmission rate included in the BandWidth request transmitted from the transmission device 2 (new transmission device). Also, in step ST24, the coordinator acquires used band information on all channels in the wireless network.
  • step ST25 the coordinator determines from the information acquired in step ST23 and step ST24 described above whether or not the transmission rate necessary for new transmission can be secured.
  • step ST26 the coordinator selects a transmission mode capable of securing the requested transmission rate, and returns it to the transmitting device 2 as a BandWidth response. After the process of step ST26, the coordinator ends the process in step ST30.
  • step ST27 the coordinator compares, among the streams currently being transmitted, the transmission rate that can be transmitted in that transmission mode with the transmission rate required for the actual transmission, and determines whether there is a stream with a sufficient bandwidth. Do. If there is no stream with a sufficient bandwidth, the coordinator returns a BandWidth response with a flag indicating that the bandwidth is insufficient in response to the new transmission request in step ST28, and rejects the transmission. After the process of step ST28, the coordinator ends the process in step ST30.
  • the coordinator determines a new transmission mode for the stream at step ST29. Then, the coordinator transmits a Change BW request to the transmission apparatus of the stream to change the transmission mode and continue the transmission, and secures a band. Thereafter, the coordinator returns a BandWidth response to the transmitter 2 newly requesting transmission. After the process of step ST29, the coordinator ends the process in step ST30.
  • the transmission unit 103 of the transmission apparatus 100 is capable of coping with a plurality of transmission modes having different occupied frequency bands in a channel. Further, in the transmission section 103 of the transmission apparatus 100, among the plurality of transmission modes, the transmission mode indicated by the transmission mode determination information from the coordinator (the reception apparatus 200) is used. Therefore, power consumption can be reduced and channels can be efficiently used.
  • the transmission mode is determined based on the user setting information related to the power consumption in addition to the transmission rate information necessary for the transmission of the AV signal (digital information).
  • the occupied frequency band is determined to be the narrow transmission mode, on the condition that the transmission rate required for the transmission of the AV signal is satisfied.
  • narrowing the occupied frequency band for example, in the case of the OFDM method, the number of required antennas can be reduced, and power consumption can be reduced.
  • the coordinator in a state in which the predetermined transmission apparatus transmits digital information on the predetermined channel, the predetermined transmission is performed based on the bandwidth allocation request (transmission request) from another transmission apparatus. A change in the transmission mode used by the device is determined. Then, information on the transmission mode determined to be changed is transmitted from the coordinator (the receiving device 200) to a predetermined transmitting device.
  • the bandwidth is wide, provided that the transmission rate required for the transmission of the AV signal is satisfied so that the channel adjacent to the predetermined channel can be used in the transmission of the AV signal from the other transmission apparatus.
  • the transmission mode is changed to a narrow band transmission mode. Therefore, transmission of digital information from another transmission device can be performed in parallel with transmission of digital information from a predetermined transmission device, and efficient use of a channel becomes possible.
  • the coordinator (the receiving device 200), during transmission of the AV signal, transmits AV signal (digital information) in addition to transmission rate information required for transmission of the AV signal.
  • the change of the transmission mode is determined based on the transmission path quality. Then, for example, when the transmission path quality deteriorates below a predetermined threshold, the transmission mode is changed from the transmission mode in which the occupied frequency band is narrow to the transmission mode in which the occupied frequency band is wide.
  • the transmission mode is determined (changed) based on the transmission path quality, it is possible to keep the transmission path quality relating to digital information high.
  • the transmission unit 103 of the transmission apparatus 100 and the transmission unit 202 of the reception apparatus 200 have half of the conventional frequency band in addition to the conventional transmission mode (mode 0 to 2). It is possible to cope with a good transmission mode (modes 3 to 5). However, in this way, it is possible to cope with a plurality of transmission modes of three or more stages in addition to the two stages (1.76 GHz, 0.88 GHz) of occupied bandwidth, and to configure more minute band control. You can also.
  • the receiving device 200 used also as a coordinator was shown.
  • the wireless network includes a wireless device as a coordinator.
  • the present invention enables reduction of power consumption and efficient use of a channel, and can be applied to a transmitting apparatus etc. that wirelessly transmits digital information such as an AV signal in a wireless network.
  • DESCRIPTION OF SYMBOLS 10 ... Wireless transmission system, 100 ... Transmission device, 101 ... Control part, 102 ... Reproduction part, 103 ... Transmission part, 131 ... Modulation circuit, 132 ... Distribution circuit, 133 ... antenna circuit, 134 ... antenna, 133a ... D / A converter, 133b ... power amplifier, 200 ... reception device, 201 ... control unit, 202 ... transmission unit, 203: display unit, 204: determination unit, 221: antenna, 222: antenna circuit, 222a: power amplifier, 222b: A / D converter, 223: combining circuit, 224 ⁇ Demodulation circuit, 300 ⁇ Transmission line

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】消費電力の低下を可能とし、また、チャネルの効率的な使用を可能とする。 【解決手段】送信装置は、チャネル内で占有周波数帯域を異にする複数の伝送モードに対応可能とされる。コーディネータは、ユーザ設定情報が消費電力の減を示すとき、デジタル情報の伝送に必要とする伝送レートを満たすことを条件として、占有周波数帯域が狭い側の伝送モードに決定する。コーディネータは、他の送信装置からのデジタル情報の送信において所定のチャネルに隣接したチャネルの利用が可能となるように、デジタル情報の伝送に必要とする伝送レートを満たすことを条件として、この所定のチャネルの伝送につき、占有周波数帯域の広い伝送モードから占有周波数帯域の狭い伝送モードに変更する。

Description

送信装置、受信装置、無線装置および送信装置における伝送モード制御方法
 この発明は、送信装置、受信装置、無線装置および送信装置における伝送モード制御方法に関し、特に、無線ネットワーク内においてAV(Audio Visual)信号等のデジタル情報を無線送信する送信装置等に関する。
 AV信号等のデジタル情報を無線送信する無線伝送システムにおいて、その伝送路の伝送レートとチャネル数には上限がある。そのため、伝送レートを超えたり、チャネル数を上回ったりするようなデジタル情報は、伝送することができない。
 現在、無線伝送システムでは、伝送レートの変更を、変調方式を変更することで実現している。しかし、この方法では、伝送レートの変更があっても、使用しているチャネル内の同一周波数帯域を占有する。そのため、他の伝送を行うチャネル数が不足したままである。また、占有周波数帯域が変わらないため、必要とする消費電力は大幅には変わらず、少ない伝送レートでも大きな電力を消費する。
 図14は、例えば、60GHzミリ波に割り当てられたチャネルプランを示している。60GHzミリ波には、57GHzから66GHzまでの9GHzが帯域として割り当てられている。この9GHzの中に4つのチャネルが2.08GHz間隔で配置されている。1つのチャネルの全帯域を用いた無線伝送が行われると、隣接チャネルはチャネルマスクのサイドローブの影響を受けて伝送路品位が低下する。そのため、通常は、隣々接となるチャネルを用いることが普通である。
 図14で、チャネル1(CH#1)を使っている場合は、チャネル3(CH#3)もしくはチャネル4(CH#4)を使うことになる。したがって、60GHzの帯域では、最大2チャネルを同時に用いることができ、AV信号のベースバンド伝送の目的で使うためには、同一エリア内では最大2つのAV信号伝送しかできないことになる。
 また、伝送するAV信号のフォーマットによっては、チャネルの全帯域を必要としない場合がある。しかし、図15に示すように、現在の伝送モードでは占有する帯域幅を変更できない。例えば、モード0(Mode 0)では、デジタル変調方式はQPSK(Quadrature Phase ShiftKeying)であり、伝送レートは0.95Gbpsである。また、モード1(Mode 1)では、デジタル変調方式はQPSKであり、伝送レートは1.90Gbpsである。さらに、モード2(Mode 2)では、デジタル変調方式は16QAM(16 QuadratureAmplitude Modulation)であり、伝送レートは3.81Gbpsである。しかし、各モードの帯域幅(BW)は1.76GHzで同じである。
 例えば、特許文献1には、受信装置(記録装置)が受信できる伝送レートを、標準の伝送レート、標準の伝送レートより高いレートまたは標準の伝送レートより低いレートにできるデジタル信号伝送方法が提案されている。また、例えば、特許文献2には、複数の物理層の通信状態がそれぞれ随時変化し、それに伴って各物理層によって提供可能な通信品質が随時変化する場合であっても、各アプリケーション層が現在の通信状態で最適な物理層で通信可能とすることが提案されている。また、例えば、特許文献3には、受信側のDU比(Desired to Undesired signal ratio)が低いと判断した場合、送信帯域を狭めてデジタル情報の送信を行う伝送装置が提案されている。
特開2000-215598号公報 特開2004-328319号公報 特開2008-236664号公報
 この発明の目的は、消費電力の低下を可能とし、また、チャネルの効率的な使用を可能とすることにある。
 この発明の概念は、
 デジタル情報を、所定のチャネルで受信装置に無線送信するデジタル情報送信部を備え、
 上記デジタル情報送信部は、上記チャネル内で占有周波数帯域を異にする複数の伝送モードに対応可能とされており、
 上記デジタル情報送信部は、上記複数の伝送モードのうち上記受信装置または他の無線装置からの伝送モード決定情報で示される伝送モードを用いる
 送信装置にある。
 また、この発明の概念は、
 送信装置から、デジタル情報を、所定のチャネルで無線受信するデジタル情報受信部を備え、
 上記送信装置は、上記チャネル内の占有周波数帯域を異にする複数の伝送モードに対応可能とされており、
 上記送信装置から、上記デジタル情報の伝送に必要とする伝送レートの情報を無線受信する伝送レート情報受信部と、
 少なくとも、上記伝送レート情報受信部で受信された伝送レート情報に基づいて伝送モードを決定する伝送モード決定部と、
 上記伝送モード決定部で決定された伝送モードの情報を上記送信装置に無線送信する伝送モード情報送信部をさらに備える
 受信装置にある。
 さらに、この発明の概念は、
 送信装置および受信装置を含む無線ネットワーク内で帯域を管理する無線装置であって、
 上記送信装置は、所定のチャネルでデジタル情報を受信装置に無線送信し、上記チャネル内の占有周波数帯域を異にする複数の伝送モードに対応可能とされており、
 所定の送信装置からの帯域割り当て要求があるとき、少なくとも、該帯域割り当て要求に含まれる要求伝送レートの情報および消費電力に関するユーザ設定情報に基づいて、上記複数の伝送モードから上記要求伝送レートを満たす伝送モードを決定する伝送モード決定部と、
 上記伝送モード決定部で決定された伝送モードの情報を上記所定の送信装置に無線送信する伝送モード情報送信部と
 を備える無線装置にある。
 この発明において、送信装置から受信装置に、AV信号等のデジタル情報が、所定チャネルで、無線伝送される。この場合、デジタル情報は、送信装置のデジタル情報送信部により送信され、受信装置のデジタル情報受信部により受信される。例えば、送信装置のデジタル情報送信部および受信装置のデジタル情報受信部には、OFDM(orthogonal frequency division multiplex)方式やDS-SS(direct sequence-spread spectrum)方式が採用される。ここで、送信装置のデジタル情報送信部は、チャネル内で占有周波数帯域を異にする複数の伝送モードに対応可能とされている。
 送信装置のデジタル情報送信部では、複数の伝送モードのうち、受信装置または他の無線装置からの伝送モード決定情報で示される伝送モードが用いられる。例えば、受信装置または他の無線装置には、送信装置の伝送モード情報送信部により、送信装置のデジタル情報送信部が対応可能な伝送モードの情報が無線送信される。また、例えば、受信装置または他の無線装置には、送信装置の伝送レート情報送信部により、デジタル情報の伝送に必要とする伝送レートの情報が無線送信される。そして、受信装置または他の無線装置では、少なくとも、伝送レート情報に基づいて、伝送モードが決定される。
 このように、送信装置のデジタル情報送信部がチャネル内で占有周波数帯域を異にする複数の伝送モードに対応可能とされ、受信装置または他の無線装置からの伝送モード決定情報で示される伝送モードが用いられることで、消費電力の低下、チャネルの効率的な使用が可能となる。
 例えば、受信装置または他の無線装置では、伝送レート情報の他に、消費電力に関するユーザ設定情報に基づいて、伝送モードが決定される。この場合、ユーザ設定情報が消費電力の減を示すとき、デジタル情報の伝送に必要とする伝送レートを満たすことを条件として、占有周波数帯域が狭い側の伝送モードに決定される。このように占有周波数帯域が狭くなることで、例えば、OFDM方式の場合、必要なアンテナ数を少なくでき、消費電力を低減できる。
 例えば、送信装置のデジタル情報送信部が対応可能な複数の伝送モードは、チャネル内の全帯域を占有周波数帯域とする所定数の第1の伝送モードと、チャネル内の半分の帯域を占有周波数帯域とする所定数の第2の伝送モードとされる。この場合、伝送モード決定部では、消費電力に関するユーザ設定情報が標準を示すとき、所定数の第1の伝送モードから伝送モードが決定され、一方、消費電力に関するユーザ設定情報が減を示すとき、所定数の第2の伝送モードから伝送モードが決定される。
 例えば、受信装置または他の無線装置では、伝送中においては、伝送レート情報の他に、デジタル情報に係る伝送路品位に基づいて、伝送モードの変更が決定される。伝送路品位は、例えば、受信装置で受信されたデジタル情報のPER(Packet Error Rate)あるいはRSSI(Received SignalStrength Indicator)に基づいて判定される。例えば、伝送路品位が所定の閾値より悪化した場合、占有周波数帯域が狭い伝送モードから、占有周波数帯域が広い伝送モードに変更される。このようにデジタル情報に係る伝送路品位に基づいて伝送モードが決定(変更)されることで、デジタル情報に係る伝送路品位を高く保つことが可能となる。
 例えば、無線端末の伝送モード決定部では、所定の送信装置が所定のチャネルでデジタル情報を送信している状態で、他の送信装置からの帯域割り当て要求に基づいて、この所定の送信装置で用いる伝送モードの変更が決定される。そして、無線端末の伝送モード情報送信部により、変更決定された伝送モードの情報が所定の送信装置に送信される。
 この場合、他の送信装置からのデジタル情報の送信において所定のチャネルに隣接したチャネルの利用が可能となるように、デジタル情報の伝送に必要とする伝送レートを満たすことを条件として、占有周波数帯域の広い伝送モードから占有周波数帯域の狭い伝送モードに変更される。これにより、所定の送信装置からのデジタル情報の送信と共に、他の送信装置からのデジタル情報の送信を並行して行うことが可能となり、チャネルの効率的な使用が可能となる。
 この発明によれば、送信装置のデジタル情報送信部がチャネル内で占有周波数帯域を異にする複数の伝送モードに対応可能とされ、受信装置または他の無線装置からの伝送モード決定情報で示される伝送モードが用いられるものであり、消費電力の低下、チャネルの効率的な使用が可能となる。
この発明の実施の形態としての無線伝送システムの構成例を示すブロック図である。 無線伝送システムを構成する送信装置および受信装置の伝送部の構成例を示すブロック図である。 送信装置および受信装置の伝送部が対応可能な伝送モードの一覧を示す図である。 60GHzミリ波のチャネルプランと、二つの伝送モードを交互に配置することで、60GHzの9GHzの帯域の中で同時に最大4チャネル分のAV信号の伝送が可能となることを示す図である。 従来の伝送モード(モード0~2)で要求される伝送路品位を保持するために必要な、新しい伝送モード(モード3~5)におけるアンテナ数の予測値を示す図である。 AV信号フォーマットと伝送レートの関係を示す図である。 無線伝送システムにおける帯域管理(コーディネート)機能を説明するための図である。 無線伝送システムにおける一対一伝送時におけるMAC制御シーケンス例を示すシーケンス図である。 消費電力に関するユーザ設定のためのユーザ設定画面の一例を示す図である。 コーディネータ(受信装置1)における伝送モード決定処理の一例を示すフローチャートである。 伝送路品位と伝送モード切り換えの概念図である。 無線伝送システムにおける新たな送信装置(送信装置2)の加入時におけるMAC制御シーケンス例を示すシーケンス図である。 コーディネータ(受信装置1)における帯域変更処理の一例を示すフローチャートである。 60GHzミリ波に割り当てられたチャネルプランを示す図である。 伝送モードの一覧を示す図である。
 以下、発明を実施するための形態(以下、「実施の形態」とする)について説明する。なお、説明は以下の順序で行う。
 1.実施の形態
 2.変形例
 <1.実施の形態>
 [無線伝送システムの構成]
 図1は、実施の形態としての無線伝送システム10の構成例を示している。この無線電送システム10は、送信装置100および受信装置200が無線伝送路300で接続された構成となっている。
 送信装置100は、制御部101、再生部102および伝送部103を有している。再生部102は、光ディスク、HDD、半導体メモリ等の記録メディアから、送信すべきAV信号(画像データ、音声データ)を再生する。伝送部103は、60GHzのミリ波を送信するための伝送部であり、周知のOFDM方式を採用する。また、2.4GHzや5GHzを用いる場合にはDS-SS方式も採用されている。
 この伝送部103は、図2に示すように、変調回路131、分配回路132、複数個のアンテナ回路133および複数のアンテナ134を有している。伝送部103は、再生部102で再生されたAV信号を、ベースバンド変調を行う変調回路131を経由し、分配回路132から複数のアンテナ回路133に供給する。なお、アンテナ回路133には、D/Aコンバータ133a、パワーアンプ133b等が含まれている。
 図1に戻って、制御部101は、送信装置100の各部の動作を制御する。すなわち、この制御部101は、制御部101は、再生部102でのAV信号生成の制御、変調回路131での変調方式の選択、アンテナ回路133の制御、必要とする伝送レートの計算および受信装置200への伝達などの処理を行う。
 受信装置200は、制御部201、伝送部202、表示部203および判定部204を有している。伝送部202は、送信装置100から伝送される60GHzのミリ波を受信するための伝送部であり、上述の送信装置100の伝送部103に対応して、OFDM方式を採用する。この伝送部202は、図2に示すように、複数のアンテナ221、複数のアンテナ回路222、合成回路223および復調回路224を有している。伝送部202は、送信装置100から伝送される60GHzのミリ波を複数のアンテナ221で受信し、複数のアンテナ回路222を介して合成回路223で合成し、復調回路224で復調してベースバンドのAV信号を得る。
 図1に戻って、表示部203は、伝送部202で得られたAV信号を構成する画像データによる画像を表示する。なお、伝送部202で得られたAV信号を構成する音声データによる音声出力系については省略している。判定部204は、伝送チャネルの伝送品位(伝送路品位)を検出し、その情報を制御部201に供給する。判定部204は、例えば、例えば、受信されたデジタル情報のPER(Packet Error Rate)あるいはRSSI(Received SignalStrength Indicator)に基づいて、伝送路品位を判定する。
 制御部201は、受信装置200の各部の動作を制御する。すなわち、制御部201は、アンテナ回路222の制御、復調回路224での復調方式の選択、表示部203での表示の制御の処理を行う。また、制御部201は、判定部204により検出された伝送路品位情報および消費電力に関するユーザ設定情報に基づき伝送モードを選択する制御、無線ネットワーク内での帯域管理(コーディネート)、伝送品位情報の送信装置への伝達などの処理を行う。
 [対応可能な伝送モード]
 図3は、伝送部103,202の対応可能な伝送モードの一覧を示している。伝送部103,202は、モード0(Mode 0)~モード2(Mode 2)の他に、モード3(Mode 3)~モード5(Mode 5)に対応可能とされている。モード3~モード5は、モード0~モード2)で定義されたデジタル変調方式(16QAM/QPSK)は変更せず、OFDMで用いられるサブキャリアの数を半分にした方式で、必要とする周波数帯域は元の伝送モードの半分になる。DS-SS方式では、疑似ランダム雑音パターン(pseudo random noise)のデータ長を半分にすることで、同様に周波数帯域を元の伝送モードの半分にすることができる。
 モード0(Mode 0)は、デジタル変調方式がQPSKであって伝送レートは0.95Gbpsである。モード1(Mode 1)は、デジタル変調方式がQPSKであって伝送レートは1.90Gbpsである。モード2(Mode 2)は、デジタル変調方式が16QAMであって伝送レートは3.81Gbpsである。これらモード0~2の帯域幅(BW)は1.76GHzである。
 モード3(Mode 3)は、デジタル変調方式がQPSKであって伝送レートは0.48Gbpsである。モード4(Mode 4)は、デジタル変調方式がQPSKであって伝送レートは0.95Gbpsである。モード5(Mode 5)は、デジタル変調方式が16QAMであって伝送レートは1.90Gbpsである。これらモード3~5の帯域幅(BW)は、0.88GHzである。
 モード1とモード5は同じ伝送レート(1.90Gbps)を、1.76GHzと0.88GHzという異なる周波数帯域で実現できる。同様に、モード0とモード4は同じ伝送レート(0.95Gbps)を、1.76GHzと0.88GHzという異なる周波数帯域で実現できる。周波数帯域が従来の半分でよい伝送モード(モード3~5)と従来の伝送モード(モード0~2)とを、図4に示すように、交互に配置することで、60GHzの9GHzの帯域の中で同時に最大4チャネル分のAV信号の伝送が可能となる。
 図5は、従来の伝送モード(モード0~2)で要求される伝送路品位を保持するために必要な、新しい伝送モード(モード3~5)におけるアンテナ数の予測値を示している。この図5では、アンテナ数の予測値を、従来の伝送モード(モード0~2)で必要とするアンテナ数を「1」とし、これに対する比率で示している。従来の伝送モードは、伝送帯域は変えずに変調方式のみを切換えているため、アンテナの数は変化しない。新しい伝送モードでは、伝送帯域が半分になるため、必要な伝送路品位を保持するためにはアンテナ数は指数比例する。アンテナの数が減少すれば、使用するアンテナ回路の数が比例して減少するので、消費電力はほぼアンテナの数に正比例する。
 図6は、AV信号フォーマットと伝送レートの関係を示している。SD(Standard Definition)信号はRGB各8ビットの信号であれば0.442Gbpsの伝送レートでよい。しかし、従来の伝送モードではモード0を使うため、他の伝送モードと比較してアンテナ数、消費電力は変わらない。
 新しい伝送モードのモード3を選択すると、伝送レートは0.48Gbpsであり、必要な伝送レートを満足し、送信側のアンテナ数は1/10、受信側のアンテナ数は1/40でよいことになり、消費電力も同じ比率で低減できる。同様に、HD(High Definition)信号の場合は、モード5を用いて、アンテナ数、消費電力を3/4~1/2にすることができる。このようにして、伝送するAV信号のフォーマットに応じて伝送モードを選択することで、占有周波数帯域と消費電力の低減が可能になる。
 [受信装置の無線ネットワーク内での帯域管理(コーディネート)機能]
 受信装置200が有する帯域管理(コーディネート)機能について説明する。なお、このように帯域管理機能を有する受信装置は、受信装置として機能する他にコーディネータとしても機能する。
 図7は、帯域管理(コーディネータ)機能の概念図である。同一無線ネットワーク内には全体の帯域を管理するコーディネータと呼ばれる無線装置が少なくとも1つ存在する。図7では、この帯域管理機能を持つ無線装置を、受信装置1として説明する。送信装置1は受信装置1にAV信号などのデジタル情報を伝送する場合、受信装置1(コーディネータ)に対して、帯域割り当て要求を行う。受信装置1は、現状の帯域占有状況から判断し、帯域割り当てを行い、伝送がスタートする。
 別の送信装置2が受信装置2へデータ伝送を開始する際、送信装置2は受信装置1(コーディネータ)に新たな帯域割り当ての要求を行う。受信装置1は、同一チャネルの帯域可不足を判断し、帯域が余っている場合は、時間分割多重TDM(Time Domain Multiplex)により新たな帯域を同一チャネル内に割り当てる。もし、同一チャネル内で帯域が不足している場合は、別のチャネルで帯域を割り当てる。しかし、他のチャネルでも帯域が不足している場合は、帯域割り当てが不可能として、送信装置2へ伝送不可を通知する。
 この実施の形態において、受信装置1(コーディネータ)は、帯域割り当ての際、それぞれの受信装置と送信装置の物理層の情報(伝送モード情報および消費電力に関するユーザ設定情報)に基づいて、帯域割り当てを行う。この場合、受信装置1(コーディネータ)は、デジタル情報の伝送に必要とする伝送レートの情報の他に、消費電力に関するユーザ設定情報に基づいて、デジタル情報伝送に用いるべき伝送モードを決定する。また、受信装置1(コーディネータ)は、その後に、受信装置が受信するデジタル情報に係る伝送路品位の情報に基づいて、デジタル情報伝送に用いるべき伝送モードの変更を決定する。
 [一対一伝送時における動作]
 図8は、一対一伝送時におけるMAC制御シーケンス例を表している。受信装置1(コーディネータ)は、無線ネットワークに参加しようとする送信装置1からのAssociation 要求(Request)に応じて、リンク確立処理を行う。この場合、受信装置1(コーディネータ)は、現在無線ネットワークが使用可能である場合は、送信装置1にAssociation 応答(Response)で接続可能である旨を返す。
 次に、受信装置1(コーディネータ)は、送信装置1が対応している機能情報を取得するために、送信装置1に、Announce 要求(Request)を送る。受信装置1(コーディネータ)は、このAnnounce 要求(Request)に応じて送信装置1から返されるAnnounce 応答(Response)から、送信装置1が対応する伝送モードの情報を取得する。
 送信装置1は、伝送しようとするAV信号(デジタル情報)があるとき、伝送要求を発生する。この場合、送信装置1は、受信装置1(コーディネータ)に、AV信号の伝送に必要な帯域の割り当て要求するために、BandWidth 要求(Request)を送る。このBandWidth 要求には、デジタル情報を伝送するために必要とする伝送レートの情報が含まれている。
 受信装置1(コーディネータ)は、上述のAnnounce 応答から取得した伝送モードの情報、BandWidth 要求に含まれている必要とする伝送レートの情報、さらには、ユーザ設定情報に基づいて伝送モードを決定する。そして、受信装置1(コーディネータ)は、決定された伝送モードの情報を含むBandWidth 応答(Response)を、送信装置1に返す。
 ユーザ設定情報は、消費電力に関するユーザ設定情報である。このユーザ設定は、例えば、受信装置1(コーディネータ)において、表示部203に表示されるユーザ設定画面に基づいて行われる。図9は、ユーザ設定画面の一例を示している。ユーザは、設定項目のうち「省エネ設定」の項目を選択することで消費電力設定を行うことができる。ユーザは、消費電力として、「標準」あるいは「減」に設定できる。図9は、消費電力が「減」に設定された状態を示している。
 従来は、要求される伝送レートに基づき伝送モードの中から要求された伝送レートを満足する最も高速の伝送モードを選択する処理が行われる。そして、伝送路品位が低下した場合も、伝送モードの変更はせず、伝送するAV信号の処理を行って必要とされる伝送レートを低下させていた。しかし、この実施の形態においては、上述の消費電力に関するユーザ設定情報を加味して、伝送モードが決定される。この場合、消費電力が「減」に設定されているときは、周波数帯域が従来の半分でよい伝送モード(モード3~5)が優先的に選択される。
 送信装置1は、受信装置1(コーディネータ)からのBandWidth 応答で指定された伝送モードを用いて、AV信号の伝送を開始する。図8のシーケンス例の場合、周波数帯域が従来の半分でよい伝送モード(モード3~5)に決定され、この伝送モード(伝送モードB)により、AV信号の伝送が開始された状態を示している。
 送信装置1は、AV信号の伝送中、受信装置1(コーディネータ)に、Link Quality 要求(Request)を定期的に送る。受信装置1(コーディネータ)は、この要求に応じて、送信装置1から送られてくるAV信号に係る伝送路品位の情報を含む、Link Quality 応答(Response)を、送信装置1に返す。ここで、伝送路品位の情報は、例えば、PER(Packet Error Rate)、あるいは受信信号レベル(RSSI)等である。情報装置1は、受信装置1(コーディネータ)からのLink Quality 応答に含まれる伝送路品位情報に基づいて、実質的な伝送路情報を確認できる。
 受信装置1(コーディネータ)は、上述の伝送路品位情報から実質的な伝送レートを確認する。そして、受信装置1(コーディネータ)は、必要とする伝送レートを下回る様な伝送路品位の場合は、新たな伝送モードへの変更のため、新たなパラメータによるChangeBW 要求(Request)を、送信装置1に送る。送信装置1は、ChangeBW 要求に応じて、受信装置1(コーディネータ)に、ChangeBW 応答(Response)を返し、新しい伝送モードで伝送を継続する。これにより、伝送路品位が低下した場合、送信装置1は、新たな伝送モードに切り替えてAV信号の伝送を継続する。
 図8のシーケンス例の場合、周波数帯域が従来と同じ伝送モード(モード0~2)に変更され、この伝送モード(伝送モードA)により、AV信号の伝送が継続される状態を示している。従来は、伝送帯域の要求は送信装置側からコーディネータに対して要求されていたが、この実施の形態では、伝送路品位情報に基づきコーディネータ側から送信装置へ伝送帯域の変更要求を出すことが可能とされている。
 なお、図8のシーケンス例には示していないが、以降も、AV信号の伝送中、受信装置1(コーディネータ)は、上述の伝送路品位情報から実質的な伝送レートを確認する。そして、受信装置1(コーディネータ)は、伝送路品位が再び向上した場合には、伝送モードAから伝送モードBに変更し、さらにその後、伝送路品位が再び低下した場合には、伝送モードBから伝送モードAに変更するということを繰り返す。
 図10のフローチャートは、コーディネータ(受信装置1)における伝送モード決定処理の一例を示している。
 コーディネータは、ステップST1において、処理を開始し、その後に、ステップST2の処理に移る。このステップST2において、コーディネータは、AV信号の伝送開始前か伝送中かを判断する。伝送開始前のとき、コーディネータは、ステップST3の処理に移る。
 このステップST3において、コーディネータは、送信装置1から伝送されたBandWidth 要求に含まれる要求伝送レートの情報を取得する。そして、コーディネータは、ステップST4において、消費電力に関するユーザ設定情報を取得し、その後に、ステップST5の処理に移る。このステップST5において、コーディネータは、消費電力の設定が「標準」であるか「減」であるかを判断する。
 「標準」に設定されているとき、コーディネータは、ステップST6において、周波数帯域が従来と同じ伝送モード(モード0~2)の中から要求伝送レートを満たす伝送モードを選択する。一方、「減」に設定されているとき、コーディネータは、ステップST7において、周波数帯域が従来の半分でよい伝送モード(モード3~5)の中から要求伝送レートを満たす伝送モードを選択する。
 コーディネータは、ステップST6またはステップST7の処理の後、ステップST8の処理に移る。コーディネータは、上述のステップST2で伝送中であるときも、ステップST8の処理に移る。このステップST8において、コーディネータは、伝送路品位情報を取得する。そして、コーディネータは、ステップST9において、伝送路品位が閾値以上か否かを判定する。例えば、閾値は、伝送路品位の情報がPERであるとき、このPERの値とされる。あるいは、閾値は、伝送路品位の情報がRSSI(受信信号レベル)であるとき、このRSSIの値とされる。
 伝送路品位が閾値以上であるとき、コーディネータは、ステップST10の処理に移る。このステップST10において、コーディネータは、消費電力の設定が「減」であるときは、周波数帯域が従来の半分でよい伝送モード(モード3~5)の中から要求伝送レートを満たす伝送モードを選択する。なお、既に、その伝送モードが選択されているときは、その選択を継続する。コーディネータは、ステップST10の処理の後、ステップST12において、処理を終了する。
 また、伝送路品位が閾値より小さいとき、コーディネータは、ステップST11の処理に移る。このステップST11において、コーディネータは、消費電力の設定が「減」であって、伝送モード(モード3~5)の中から要求伝送レートを満たす伝送モードが選択されているとき、その選択を解除する。すなわち、コーディネータは、伝送モード(モード0~2)の中から要求伝送レートを満たす伝送モードを選択する。なお、既に、その伝送モードが選択されているときは、その選択を継続する。コーディネータは、ステップST11の処理の後、ステップST12において、処理を終了する。
 図11は、伝送路品位と伝送モード切り換えの概念図を示している。この例においては、消費電力の設定が「減」とされ、最初に周波数帯域が従来の半分でよい伝送モード(モード3~モード5)の中から要求伝送レートを満たすモード5が選択された場合を示している。この場合、その後に、伝送路品位が悪化して閾値より小さくなるときには、モード5から、周波数帯域が従来と同じ伝送モード(モード0~モード2)の中から要求伝送レートを満たすモード2に変更される。さらに、その後に、伝送路品位が改善されて閾値以上となるときには、モード2からモード5に再度変更される。以下、同様の繰り返しとなる。
 なお、伝送モード(モード3~5)から伝送モード(モード0~2)に変更される場合の伝送路品位の閾値と、伝送モード(モード0~2)から伝送モード(モード3~5)に変更される場合の伝送路品位の閾値とは、同じである必要はなく、異なっていてもよい。その場合、例えば、伝送モード(モード0~2)から伝送モード(モード3~5)に変更される場合の伝送路品位の閾値の方が、伝送モード(モード3~5)から伝送モード(モード0~2)に変更される場合の伝送路品位の閾値より大きくされる。
 [新たな送信装置の加入時の動作]
 図12は、新たな送信装置(送信装置2)の加入時におけるMAC制御シーケンス例を表している。新たな送信装置2が無線ネットワークに加わる際に、必要とする伝送帯域、チャネルが不足している場合、従来の技術では、受信装置1(コーディネータ)は、伝送帯域、チャネルが空くまで伝送要求を拒否しなければならなかった。しかし、この実施の形態においては、既に伝送を行っている送信装置1に対して、新たな伝送モードを指定して、伝送帯域、チャネルを確保することで、新たな送信装置2が伝送可能となる。
 図12の制御シーケンス例では、既に、受信装置2および送信装置1,2が、受信装置1(コーディネータ)と、Association 要求/応答、およびAnnounce 要求/応答の処理を終了している時点から記述している。図12のシーケンス例の場合、送信装置1から受信装置1(コーディネータ)に、周波数帯域が従来と同じ伝送モードAでAV信号の伝送が行われている。
 送信装置1は、既に確保された伝送モードでAV信号を伝送しているが、新たな送信装置2が伝送を要求した場合、受信装置1(コーディネータ)は、現状のチャネルでの空き帯域と他のチャネルでの空き帯域情報からチャネルおよび伝送モードを決定する。帯域が不足している場合、受信装置1(コーディネータ)は、送信装置1に対して伝送モード変更による帯域制限を行うためのChangeBW 要求を送る。
 送信装置1は、ChangeBW 要求に応じて、帯域制限を実施しても伝送レートに影響を与えない場合は、ChangeBW 応答を返し、新しい伝送モードで伝送を継続する。この場合、送信装置1から受信装置1(コーディネータ)へのAV信号は、伝送モードAで伝送される状態から、周波数帯域が従来の半分でよい伝送モードBで伝送される状態に変更される。
 送信装置1(コーディネータ)は、新たに確保できた帯域情報を用いて、送信装置2にBandWidth 応答を返す。送信装置2は、受信装置1(コーディネータ)からのBandWidth応答で指定された伝送モードを用いて、受信装置2へのAV信号の伝送を開始する。図12のシーケンス例の場合、周波数帯域が従来と同じ伝送モード(モード0~2)に決定され、この伝送モード(伝送モードC)により、AV信号の伝送が開始された状態を示している。
 なお、図12のシーケンス例には示していないが、受信装置1(コーディネータ)は、伝送中において、図8のMAC制御シーケンス例と同様に、伝送路品位に応じた帯域制限の制御を行う。すなわち、受信装置1(コーディネータ)は、送信装置1と受信装置1の間、および送信装置2と受信装置2の間の伝送路品位を常時確認し、伝送路品位が低下した場合には、新たな帯域制限の制御を行う。
 図14に示したように、既に2チャネル分の全帯域伝送に60GHzの帯域が使用されているとき、新たな全帯域伝送はできない。しかし、この実施の形態のように、新たに定義した伝送帯域が半分でよい伝送モード(モード3~5)を指定することで、図4に示したように、最大限4つチャネルまでの伝送を同時に行うことが可能となる。
 図13のフローチャートは、コーディネータ(受信装置1)における帯域変更処理の一例を示している。
 コーディネータは、ステップST21において、処理を開始し、その後に、ステップST22の処理に移る。このステップST22において、コーディネータは、新たな伝送要求があるか否かを判定する。コーディネータは、新たな伝送要求がないときは、直ちに、ステップST30において、処理を終了する。
 ステップST22で新たな伝送要求があるとき、コーディネータは、ステップST23の処理に移る。このステップST23において、コーディネータは、送信装置2(新たな送信装置)から伝送されたBandWidth 要求に含まれる要求伝送レートの情報を取得する。また、コーディネータは、ステップST24において、無線ネットワーク内の全チャネルでの使用帯域情報を取得する。
 次に、コーディネータは、ステップST25において、上述のステップST23およびステップST24で取得した情報から、新たな伝送に必要な伝送レートを確保できるか否かを判断する。確保できるとき、コーディネータは、ステップST26において、要求された伝送レートを確保出来る伝送モードを選択し、送信装置2へBandWidth 応答として返す。コーディネータは、このステップST26の処理の後、ステップST30において、処理を終了する。
 ステップST25で確保できないとき、コーディネータは、ステップST27の処理に移る。このステップST27において、コーディネータは、現在伝送しているストリームの中で、その伝送モードで伝送できる伝送レートと実際の伝送に必要な伝送レートを比較し、帯域余裕のあるストリームがあるかどうかを判断する。帯域余裕のあるストリームがないとき、コーディネータは、ステップST28において、新たな伝送要求に対して、帯域が不足している旨のフラグを持つBandWidth 応答を返し、伝送を拒否する。コーディネータは、このステップST28の処理の後、ステップST30において、処理を終了する。
 ステップST27で帯域余裕のあるストリームがあるとき、コーディネータは、ステップST29において、そのストリームに対する新たな伝送モードを決定する。そして、コーディネータは、そのストリームの送信装置へ、伝送モードを変更して伝送を継続するためにChangeBW 要求を伝送し、帯域を確保する。その後、コーディネータは、新たに伝送を要求する送信装置2に対して、BandWidth 応答を返送する。コーディネータは、このステップST29の処理の後、ステップST30において、処理を終了する。
 以上説明したように、図1に示す無線伝送システム10において、送信装置100の伝送部103は、チャネル内で占有周波数帯域を異にする複数の伝送モードに対応可能とされている。また、この送信装置100の伝送部103では、複数の伝送モードのうち、コーディネータ(受信装置200)からの伝送モード決定情報で示される伝送モードが用いられる。したがって、消費電力の低下、チャネルの効率的な使用が可能となる。
 すなわち、コーディネータ(受信装置200)では、AV信号(デジタル情報)の伝送に必要な伝送レート情報の他に、消費電力に関するユーザ設定情報に基づいて、伝送モードが決定される。この場合、ユーザ設定情報が消費電力の減を示すとき、AV信号の伝送に必要とする伝送レートを満たすことを条件として、占有周波数帯域が狭い側の伝送モードに決定される。このように占有周波数帯域が狭くなることで、例えば、OFDM方式の場合、必要なアンテナ数を少なくでき、消費電力を低減できる。
 また、コーディネータ(受信装置200)では、所定の送信装置が所定のチャネルでデジタル情報を送信している状態で、他の送信装置からの帯域割り当て要求(伝送要求)に基づいて、この所定の送信装置で用いる伝送モードの変更が決定される。そして、コーディネータ(受信装置200)から、所定の送信装置に、変更決定された伝送モードの情報が送信される。
 この場合、他の送信装置からのAV信号の送信において所定のチャネルに隣接したチャネルの利用が可能となるように、AV信号の伝送に必要とする伝送レートを満たすことを条件として、帯域の広い伝送モードから帯域の狭い伝送モードに変更される。そのため、所定の送信装置からのデジタル情報の送信と共に、他の送信装置からのデジタル情報の送信を並行して行うことが可能となり、チャネルの効率的な使用が可能となる。
 また、図1に示す無線伝送システム10において、コーディネータ(受信装置200)では、AV信号の伝送中においては、AV信号の伝送に必要とする伝送レート情報の他に、AV信号(デジタル情報)に係る伝送路品位に基づいて、伝送モードの変更が決定される。そして、例えば、伝送路品位が所定の閾値より悪化した場合、占有周波数帯域が狭い伝送モードから、占有周波数帯域が広い伝送モードに変更される。このように伝送路品位に基づいて伝送モードが決定(変更)されるため、デジタル情報に係る伝送路品位を高く保つことが可能となる。
 <2.変形例>
 なお、上述実施の形態において、送信装置100の伝送部103および受信装置200の伝送部202が、周波数帯域が従来と同じ伝送モード(モード0~2)の他に、周波数帯域が従来の半分でよい伝送モード(モード3~5)に対応可能とされている。しかし、このように占有帯域幅が2段階(1.76GHz、0.88GHz)だけでなく、3段階以上の複数の伝送モードに対応可能とし、さらに細かな帯域制御が行われるように構成することもできる。
 また、上述実施の形態においては、受信装置200がコーディネータを兼用するものを示した。しかし、無線ネットワークに、コーディネータとしての無線装置を含む構成も考えられる。
 この発明は、消費電力の低下、チャネルの効率的な使用が可能となるものであり、無線ネットワーク内においてAV信号等のデジタル情報を無線送信する送信装置等に適用できる。
 10・・・無線伝送システム、100・・・送信装置、101・・・制御部、102・・・再生部、103・・・伝送部、131・・・変調回路、132・・・分配回路、133・・・アンテナ回路、134・・・アンテナ、133a・・・D/Aコンバータ、133b・・・パワーアンプ、200・・・受信装置、201・・・制御部、202・・・伝送部、203・・・表示部、204・・・判定部、221・・・アンテナ、222・・・アンテナ回路、222a・・・パワーアンプ、222b・・・A/Dコンバータ、223・・・合成回路、224・・・復調回路、300・・・伝送路

Claims (16)

  1.  デジタル情報を、所定のチャネルで受信装置に無線送信するデジタル情報送信部を備え、
     上記デジタル情報送信部は、上記チャネル内で占有周波数帯域を異にする複数の伝送モードに対応可能とされており、
     上記デジタル情報送信部は、上記複数の伝送モードのうち上記受信装置または他の無線装置から送られてくる伝送モード決定情報で示される伝送モードを用いる
     送信装置。
  2.  上記受信装置または上記他の無線装置に、上記デジタル情報送信部が対応可能な伝送モードの情報を無線送信する伝送モード情報送信部をさらに備える
     請求項1に記載の送信装置。
  3.  上記受信装置または上記他の無線装置に上記デジタル情報の伝送に必要とする伝送レートの情報を無線送信する伝送レート情報送信部をさらに備え、
     上記受信装置または上記無線装置は、少なくとも、該伝送レート情報に基づいて、伝送モードを決定する
     請求項1に記載の送信装置。
  4.  上記受信装置または上記他の無線装置は、上記伝送レート情報の他に、消費電力に関するユーザ設定情報に基づいて、伝送モードを決定する
     請求項3に記載の送信装置。
  5.   上記受信装置または上記他の無線装置は、上記伝送レート情報の他に、上記デジタル情報に係る伝送路品位に基づいて、伝送モードを決定する
     請求項3に記載の送信装置。
  6.  上記デジタル情報送信部は、OFDM方式またはDS-SS方式を採用する
     請求項1に記載の送信装置。
  7.  送信装置から、デジタル情報を、所定のチャネルで無線受信するデジタル情報受信部を備え、
     上記送信装置は、上記チャネル内の占有周波数帯域を異にする複数の伝送モードに対応可能とされており、
     上記送信装置から、上記デジタル情報の伝送に必要とする伝送レートの情報を無線受信する伝送レート情報受信部と、
     少なくとも、上記伝送レート情報受信部で受信された伝送レート情報に基づいて伝送モードを決定する伝送モード決定部と、
     上記伝送モード決定部で決定された伝送モードの情報を上記送信装置に無線送信する伝送モード情報送信部をさらに備える
     受信装置。
  8.  上記伝送モード決定部は、上記伝送レート情報の他に、消費電力に関するユーザ設定情報に基づいて、伝送モードを決定する
     請求項7に記載の受信装置。
  9.  上記送信装置が対応可能な複数の伝送モードは、上記チャネル内の全帯域を占有周波数帯域とする所定数の第1の伝送モードと、上記チャネル内の半分の帯域を占有周波数帯域とする所定数の第2の伝送モードであり、
     上記伝送モード決定部は、上記消費電力に関するユーザ設定情報が標準を示すとき、上記所定数の第1の伝送モードから上記送信装置で用いる伝送モードを決定し、上記消費電力に関するユーザ設定情報が減を示すとき、上記所定数の第2の伝送モードから上記送信装置で用いる伝送モードを決定する
     請求項8に記載の受信装置。
  10.  上記伝送モード決定部は、上記伝送レート情報の他に、上記デジタル情報に係る伝送路品位に基づいて、伝送モードを決定する
     請求項7に記載の受信装置。
  11.  上記デジタル情報受信部は、OFDM方式またはDS-SS方式を採用する
     請求項7に記載の受信装置。
  12.  送信装置および受信装置を含む無線ネットワーク内で帯域を管理する無線装置であって、
     上記送信装置は、所定のチャネルでデジタル情報を受信装置に無線送信し、上記チャネル内の占有周波数帯域を異にする複数の伝送モードに対応可能とされており、
     所定の送信装置からの帯域割り当て要求があるとき、少なくとも、該帯域割り当て要求に含まれる要求伝送レートの情報および消費電力に関するユーザ設定情報に基づいて、上記複数の伝送モードから上記要求伝送レートを満たす伝送モードを決定する伝送モード決定部と、
     上記伝送モード決定部で決定された伝送モードの情報を上記所定の送信装置に無線送信する伝送モード情報送信部と
     を備える無線装置。
  13.  上記送信装置が対応可能な複数の伝送モードは、上記チャネル内の全帯域を占有周波数帯域とする所定数の第1の伝送モードと、上記チャネル内の半分の帯域を占有周波数帯域とする所定数の第2の伝送モードであり、
     上記伝送モード決定部は、上記消費電力に関するユーザ設定情報が標準を示すとき、上記所定数の第1の伝送モードから上記所定の送信装置で用いる伝送モードを決定し、上記消費電力に関するユーザ設定情報が減を示すとき、上記所定数の第2の伝送モードから上記所定の送信装置で用いる伝送モードを決定する
     請求項12に記載の無線装置。
  14.  上記伝送モード決定部は、さらに、上記所定の送信装置がデジタル情報を送信している状態で、該デジタル情報に係る伝送路品位に基づいて、該所定の送信装置で用いる伝送モードの変更を決定し、
     上記伝送モード情報送信部は、さらに、上記伝送モード決定部で変更が決定された伝送モードの情報を上記所定の送信装置に送信する
     請求項12に記載の無線装置。
  15.  上記伝送モード決定部は、さらに、上記所定の送信装置が所定のチャネルでデジタル情報を送信している状態で、他の送信装置からの帯域割り当て要求に基づいて、該所定の送信装置で用いる伝送モードの変更を決定し、
     上記伝送モード情報送信部は、さらに、上記伝送モード決定部で変更が決定された伝送モードの情報を上記所定の送信装置に送信する
     請求項12に記載の無線装置。
  16.  無線ネットワークを構成し、所定のチャネルでデジタル情報を受信装置に無線送信し、上記チャネル内の占有周波数帯域を異にする複数の伝送モードに対応可能とされている送信装置における伝送モード制御方法であって、
     上記送信装置から上記デジタル情報の伝送に必要とする伝送レートの情報を無線受信するステップと、
     消費電力に関するユーザ設定情報を取得するステップと、
     上記伝送レートの情報および上記消費電力に関するユーザ設定情報に基づいて、上記複数の伝送モードから上記要求伝送レートを満たす伝送モードを決定するステップと、
     上記決定された伝送モードの情報を上記送信装置に無線送信するステップとを有する
     送信装置における伝送モード制御方法。
PCT/JP2010/063510 2009-08-18 2010-08-09 送信装置、受信装置、無線装置および送信装置における伝送モード制御方法 WO2011021527A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI1004933A BRPI1004933A2 (pt) 2009-08-18 2010-08-09 aparelho emissor, aparelho de recepção, aparelho sem fio que gerencia uma banda em uma rede sem fio, e, metodo de controle de modo de transmissão para um aparelho
US12/998,297 US8649449B2 (en) 2009-08-18 2010-08-09 Sending apparatus, reception apparatus, wireless apparatus and transmission mode control method for sending apparatus
CN201080002817.2A CN102326427B (zh) 2009-08-18 2010-08-09 发送器装置、接收器装置、无线电装置和用于控制发送器装置中的传输模式的方法
EP10809872.4A EP2315472B1 (en) 2009-08-18 2010-08-09 Transmitter apparatus, receiver apparatus, radio apparatus, and method for controlling transmission modes in transmitter apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009189560A JP2011041229A (ja) 2009-08-18 2009-08-18 送信装置、受信装置、無線装置および送信装置における伝送モード制御方法
JP2009-189560 2009-08-18

Publications (1)

Publication Number Publication Date
WO2011021527A1 true WO2011021527A1 (ja) 2011-02-24

Family

ID=43606982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063510 WO2011021527A1 (ja) 2009-08-18 2010-08-09 送信装置、受信装置、無線装置および送信装置における伝送モード制御方法

Country Status (8)

Country Link
US (1) US8649449B2 (ja)
EP (1) EP2315472B1 (ja)
JP (1) JP2011041229A (ja)
KR (1) KR20120039503A (ja)
CN (1) CN102326427B (ja)
BR (1) BRPI1004933A2 (ja)
RU (1) RU2011112943A (ja)
WO (1) WO2011021527A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130124348A (ko) * 2010-12-07 2013-11-13 톰슨 라이센싱 협업 미디어 시스템에서 다수의 단말 디바이스에 대한 콘텐트 분배를 관리하기 위한 방법 및 장치
WO2012157565A1 (ja) * 2011-05-13 2012-11-22 日本電気株式会社 無線装置、ルータ、無線システム及び無線伝送速度最適化方法
JP6130838B2 (ja) 2011-09-30 2017-05-17 エスシーエー アイピーエルエー ホールディングス インコーポレイテッド 移動通信システム、移動通信ネットワーク、基盤装置、方法およびプログラム
GB2495282B (en) * 2011-09-30 2016-10-19 Sca Ipla Holdings Inc Communications terminal and method of communicating
GB2495281B (en) * 2011-09-30 2016-10-19 Sca Ipla Holdings Inc Mobile communications system, infrastructure equipment, base station and method
US20130114433A1 (en) * 2011-11-07 2013-05-09 Qualcomm Incorporated Scaling for fractional systems in wireless communication
WO2014102891A1 (ja) * 2012-12-25 2014-07-03 富士通株式会社 通信システム、通信制御装置、無線通信装置および通信方法
US20200092882A1 (en) * 2017-01-17 2020-03-19 Panasonic Intellectual Property Management Co., Ltd. Base station, bandwidth allocation method, wireless communication system and terminal

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215598A (ja) 1999-01-27 2000-08-04 Sony Corp デジタル信号伝送方法、デジタル信号伝送システム、デジタル信号伝送装置及び記録媒体
JP2003224620A (ja) * 2002-01-30 2003-08-08 Sony Corp 通信装置、および通信方法
JP2004153616A (ja) * 2002-10-31 2004-05-27 Kyocera Corp 通信システム、無線通信端末、データ配信装置及び通信方法
JP2004328319A (ja) 2003-04-24 2004-11-18 Sharp Corp 通信装置、並びに、そのプログラムおよび記録媒体
JP2005204218A (ja) * 2004-01-19 2005-07-28 Nissan Motor Co Ltd 車両用通信装置
WO2005076512A1 (ja) * 2004-02-04 2005-08-18 Nec Corporation 無線装置及び無線通信システム並びに送信モード選択方法
JP2006295463A (ja) * 2005-04-08 2006-10-26 Ricoh Co Ltd Dsss/ofdm両面待ち受信方法および無線lan装置
JP2008236664A (ja) 2007-03-23 2008-10-02 Hitachi Kokusai Electric Inc 伝送装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08228173A (ja) * 1995-02-20 1996-09-03 Canon Inc 通信システム
WO1999065218A1 (en) * 1998-06-09 1999-12-16 Advanced Micro Devices, Inc. Method and apparatus for scaling modem transfer capacity based on resource availability
JP2002330467A (ja) * 2001-04-27 2002-11-15 Matsushita Electric Ind Co Ltd 無線送信装置及び無線通信方法
US7545867B1 (en) * 2003-05-14 2009-06-09 Marvell International, Ltd. Adaptive channel bandwidth selection for MIMO wireless systems
EP2523383A3 (en) * 2003-07-29 2013-01-16 Broadcom Corporation Frequency selective transmit signal weighting for multiple antenna communication systems
US7321614B2 (en) * 2003-08-08 2008-01-22 Intel Corporation Apparatus and methods for communicating using symbol-modulated subcarriers
US7593347B2 (en) * 2003-12-29 2009-09-22 Intel Corporation Method and apparatus to exchange channel information
GB2411328B (en) * 2004-02-23 2007-05-16 Toshiba Res Europ Ltd Adaptive MIMO systems
EP2683106B1 (en) * 2004-10-29 2018-03-21 Fujitsu Limited Communications apparatus and communications system using multicarrier transmission mode
JP4523424B2 (ja) * 2005-01-12 2010-08-11 三菱電機株式会社 セル別レート制御方法、基地局および端末
JP4734970B2 (ja) * 2005-03-09 2011-07-27 ソニー株式会社 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP4527067B2 (ja) * 2005-03-31 2010-08-18 株式会社エヌ・ティ・ティ・ドコモ 移動局、送信方法及び移動通信システム
EP1710931B1 (en) * 2005-04-08 2011-04-06 Ricoh Company, Ltd. DSSS and OFDM two-way waiting reception method and wireless LAN apparatus
JP2006325120A (ja) * 2005-05-20 2006-11-30 Mitsubishi Electric Corp 伝送レート制御方法および基地局
US7573820B2 (en) * 2005-06-29 2009-08-11 Intel Corporation Techniques to control data transmission for a wireless system
US7818013B2 (en) * 2006-03-20 2010-10-19 Intel Corporation Downlink channel parameters determination for a multiple-input-multiple-output (MIMO) system
JP2008005382A (ja) * 2006-06-26 2008-01-10 Sharp Corp 通信システム
JP4203832B2 (ja) * 2006-12-13 2009-01-07 オムロン株式会社 無線通信装置、無線通信システム及び無線通信方法
JP5046706B2 (ja) * 2007-03-28 2012-10-10 日本無線株式会社 基地局装置
JP4846676B2 (ja) * 2007-08-22 2011-12-28 日本電信電話株式会社 伝送レート制御方法、無線基地局装置、および無線パケット通信システム
JP5164512B2 (ja) * 2007-10-05 2013-03-21 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム、無線通信方法及び基地局
US8155603B2 (en) * 2009-04-02 2012-04-10 Clearwire Ip Holdings Llc System and method of unlicensed bi-directional communications over an ultra-high frequency (UHF) band reserved for licensed communications

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000215598A (ja) 1999-01-27 2000-08-04 Sony Corp デジタル信号伝送方法、デジタル信号伝送システム、デジタル信号伝送装置及び記録媒体
JP2003224620A (ja) * 2002-01-30 2003-08-08 Sony Corp 通信装置、および通信方法
JP2004153616A (ja) * 2002-10-31 2004-05-27 Kyocera Corp 通信システム、無線通信端末、データ配信装置及び通信方法
JP2004328319A (ja) 2003-04-24 2004-11-18 Sharp Corp 通信装置、並びに、そのプログラムおよび記録媒体
JP2005204218A (ja) * 2004-01-19 2005-07-28 Nissan Motor Co Ltd 車両用通信装置
WO2005076512A1 (ja) * 2004-02-04 2005-08-18 Nec Corporation 無線装置及び無線通信システム並びに送信モード選択方法
JP2006295463A (ja) * 2005-04-08 2006-10-26 Ricoh Co Ltd Dsss/ofdm両面待ち受信方法および無線lan装置
JP2008236664A (ja) 2007-03-23 2008-10-02 Hitachi Kokusai Electric Inc 伝送装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2315472A4

Also Published As

Publication number Publication date
EP2315472A4 (en) 2016-01-06
CN102326427A (zh) 2012-01-18
RU2011112943A (ru) 2012-10-10
JP2011041229A (ja) 2011-02-24
EP2315472B1 (en) 2020-10-07
CN102326427B (zh) 2015-01-21
BRPI1004933A2 (pt) 2016-08-02
KR20120039503A (ko) 2012-04-25
US8649449B2 (en) 2014-02-11
US20110243193A1 (en) 2011-10-06
EP2315472A1 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
WO2011021527A1 (ja) 送信装置、受信装置、無線装置および送信装置における伝送モード制御方法
CA2605894C (en) Bandwidth management in a network
JP3662473B2 (ja) マルチキャストサービス提供方法及び情報配信装置
US20060251119A1 (en) Methods and apparatus to setup end-to-end flows in wireless mesh networks
JP4712867B2 (ja) 通信装置および端末
CN1972515A (zh) 无线通信系统中发送/接收信道质量信息的设备和方法
JP2009027737A (ja) 変調方法の適応を伴うネットワーク
WO2002037692A2 (en) Method and system for dynamic carrier selection
WO2008041291A1 (en) Base station device
WO2006106808A1 (ja) 帯域制御方法及び通信装置
KR20050030216A (ko) 서비스 품질 값에 따른 적응형 대역폭의 디바이스
JP4581108B2 (ja) 超広帯域負荷分散型無線通信方法及びシステム
JP2004032604A (ja) 送信装置、受信装置及びそれらを備えたデータ伝送システム
JP2009017173A (ja) 確認方法およびそれを利用した端末装置
JP2004297381A (ja) 無線通信方法及び無線通信中継装置
JP2009303125A (ja) チャネル挿入方法、送信機および受信機
JP3992551B2 (ja) 受信装置及びそれを備えたコンテンツ伝送システム
JP2004056489A (ja) 基地局、移動局及びコンテンツ配信システム
JP4393041B2 (ja) 基地局、移動局及びコンテンツ配信システム
JP6077688B1 (ja) 制御局、基地局、通信システムおよびハンドオーバ方法
JP2010011194A (ja) 無線通信方法、無線通信システム及び無線通信装置
JP2010056957A (ja) 無線通信方法及び無線通信基地局
JP2009239734A (ja) 無線通信装置、無線通信システム、及び無線通信方法
JP2007208337A (ja) 無線基地局装置及び無線端末装置
JP2010016427A (ja) 無線通信システム、無線送信装置、無線受信装置、および無線通信確立方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002817.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010809872

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117007224

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2458/DELNP/2011

Country of ref document: IN

Ref document number: 2011112943

Country of ref document: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809872

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12998297

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI1004933

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110404