WO2014102891A1 - 通信システム、通信制御装置、無線通信装置および通信方法 - Google Patents

通信システム、通信制御装置、無線通信装置および通信方法 Download PDF

Info

Publication number
WO2014102891A1
WO2014102891A1 PCT/JP2012/083394 JP2012083394W WO2014102891A1 WO 2014102891 A1 WO2014102891 A1 WO 2014102891A1 JP 2012083394 W JP2012083394 W JP 2012083394W WO 2014102891 A1 WO2014102891 A1 WO 2014102891A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
frequency
communication device
information
unit
Prior art date
Application number
PCT/JP2012/083394
Other languages
English (en)
French (fr)
Inventor
哲平 大山
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2012/083394 priority Critical patent/WO2014102891A1/ja
Priority to KR1020157016744A priority patent/KR101709425B1/ko
Priority to CA2947952A priority patent/CA2947952A1/en
Priority to JP2014553905A priority patent/JPWO2014102891A1/ja
Priority to CN201280078007.4A priority patent/CN104885495A/zh
Priority to EP12890760.7A priority patent/EP2941034B1/en
Priority to CA2896289A priority patent/CA2896289A1/en
Publication of WO2014102891A1 publication Critical patent/WO2014102891A1/ja
Priority to US14/741,887 priority patent/US20150282182A1/en
Priority to US15/794,499 priority patent/US20180049205A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present invention relates to a communication system, a communication control device, a wireless communication device, and a communication method.
  • white space type cognitive radio for example, a system having a priority to use a frequency is called a primary system or a primary system, and a system that finds a white space and performs communication is called a secondary system or a secondary system.
  • TVWS TV broadcasting is the primary system.
  • TV broadcasting is allocated a wide frequency band in the UHF (Ultra High Frequency) band, etc., and not only the frequency (physical TV channel) used varies depending on the region, but also fluctuations in the time direction. Few.
  • a sensing method and a database access method there are a sensing method and a database access method.
  • the rules announced by FCC also specify the sensing method and database access method.
  • the secondary system accesses a database on the network and acquires WS information indicating a white space.
  • WS information calculated from information such as the position of a TV broadcast transmitting station, transmission power, and transmission frequency is associated with the position information.
  • FCC rules stipulate that a secondary system using a database access method accesses a database at least once a day to use TVWS.
  • the detection frequency channel is detected based on the radio wave transmitted from the first existing system, the reception frequency channel from the peripheral device is received, the detection frequency channel, the reception frequency channel, and the list frequency channel indicated by the frequency list Based on the above, a technique for creating a new frequency list indicating these frequency channels and storing the new frequency list is known (see, for example, Patent Document 1 below).
  • An object of the present invention is to provide a communication system, a communication control device, a wireless communication device, and a communication method capable of reducing the frequency switching frequency in order to solve the above-described problems caused by the prior art.
  • a communication system including a wireless communication device and a communication control device, wherein the wireless communication device includes a position of the wireless communication device and Route information indicating a predicted route of the wireless communication device is transmitted to the communication control device, the communication control device including correspondence information between a position of the wireless communication device and a frequency usable by the wireless communication device; Based on the path information transmitted by the communication device, until each of the frequencies that can be used by the wireless communication device at the position of the wireless communication device becomes a target frequency until the wireless communication device becomes unusable The predicted time or predicted travel distance is calculated, and the wireless communication device can be used at the position of the wireless communication device based on the calculated predicted time or predicted travel distance.
  • the frequency used by the wireless communication device is selected from among various frequencies, frequency information indicating the selected frequency is transmitted to the wireless communication device, and the wireless communication device receives the frequency information transmitted by the communication control device.
  • a communication system, a communication control device, a wireless communication device, and a communication method that perform wireless communication using the indicated frequency are proposed.
  • FIG. 1-1 is a diagram of an example of a communication system according to the first embodiment.
  • FIG. 1-2 is a diagram illustrating an example of a signal flow in the communication system illustrated in FIG. 1-1.
  • FIG. 2 is a diagram illustrating an application example 1 of the communication system according to the first embodiment.
  • 3A is a diagram of an example of each configuration of the communication system depicted in FIG.
  • FIG. 3B is a diagram illustrating an example of a signal flow in the communication system illustrated in FIG.
  • FIG. 3-3 is a diagram illustrating an example of a hardware configuration of the access point.
  • FIG. 3-4 is a diagram illustrating an example of a hardware configuration of the WS database server.
  • FIG. 4 is a sequence diagram showing an operation example of the communication system shown in FIG. FIG.
  • FIG. 5 is a diagram illustrating an example of predicted route information transmitted by the access point.
  • FIG. 6 is a diagram illustrating an example of correspondence information stored in the WS database.
  • FIG. 7 is a diagram illustrating an example of frequencies that can be used at each position of the predicted path illustrated in FIG. 2.
  • FIG. 8 is a diagram of an application example 2 of the communication system according to the first embodiment.
  • FIG. 9A is a diagram of an example of each configuration of the communication system depicted in FIG.
  • FIG. 9B is a diagram illustrating an example of signal flow in the communication system illustrated in FIG.
  • FIG. 10 is a diagram of an application example 3 of the communication system according to the first embodiment.
  • FIG. 11 is a diagram illustrating an example of frequencies that can be used at each position of the predicted path illustrated in FIG. 10.
  • FIG. 12A is a diagram of an example of a communication system according to the second embodiment.
  • 12-2 is a diagram of an example of signal flow in the communication system depicted in FIG. 12-1.
  • FIG. 13 is a diagram illustrating an application example of the communication system according to the second embodiment.
  • FIG. 14A is a diagram of an example of each configuration of the communication system depicted in FIG. 14B is a diagram of an example of signal flow in the communication system depicted in FIG.
  • FIG. 15 is a sequence diagram illustrating an operation example of the communication system illustrated in FIG. 13.
  • FIG. 16 is a diagram illustrating an example of usable frequency information.
  • FIG. 17 is a diagram illustrating an example of the switching history information.
  • FIG. 18 is a diagram illustrating an example of a frequency switching history in the predicted path illustrated in FIG. 13.
  • FIG. 19 is a diagram illustrating another example of the switching history information.
  • FIG. 20 is a diagram illustrating an application example of the communication system according to the third embodiment.
  • FIG. 21 is a sequence diagram showing an operation example of the communication system shown in FIG.
  • FIG. 22 is a diagram illustrating an example of frequencies that can be used at each position of the predicted path illustrated in FIG. 20.
  • FIG. 23 is a diagram illustrating an application example of the communication system according to the fourth embodiment.
  • FIG. 24A is a diagram of an example of each configuration of the communication system depicted in FIG.
  • FIG. 24-2 is a diagram showing an example of a signal flow in the communication system shown in FIG. 24-1.
  • FIG. 24A is a diagram of an example of each configuration of the communication system depicted in FIG.
  • FIG. 24-2 is a diagram showing an example of a signal flow in the communication system shown in FIG. 24-
  • FIG. 25 is a sequence diagram showing an operation example of the communication system shown in FIG.
  • FIG. 26 is a diagram illustrating an example of the distance between the history position and the current position.
  • FIG. 27 is a diagram illustrating another example of the predetermined range.
  • FIG. 28A is a diagram of an example of a communication system according to the fifth embodiment.
  • 28-2 is a diagram of an example of signal flow in the communication system depicted in FIG. 28-1.
  • 28-3 is a diagram of another example of signal flow in the communication system depicted in FIG. 28-1.
  • FIG. 29 is a diagram illustrating an application example of the communication system according to the fifth embodiment.
  • 30A is a diagram illustrating an example of the configuration of the communication system depicted in FIG.
  • FIG. 30-2 is a diagram illustrating an example of signal flow in the configuration of the communication system depicted in FIG. 30-1.
  • FIG. 31 is a sequence diagram showing an operation example of the communication system shown in FIG.
  • FIG. 32 is a diagram illustrating an example of the switching information.
  • FIG. 33 is a diagram illustrating an application example of the communication system according to the sixth embodiment.
  • FIG. 34 is a diagram illustrating an example of frequencies that can be used in the prediction path illustrated in FIG. 33.
  • FIG. 35 is a diagram illustrating an example of a result of updating a table indicating available frequencies.
  • FIG. 36 is a diagram illustrating another example of the update result of the table indicating the usable frequencies.
  • FIG. 1-1 is a diagram of an example of a communication system according to the first embodiment.
  • FIG. 1-2 is a diagram illustrating an example of a signal flow in the communication system illustrated in FIG. 1-1.
  • the communication system 100 according to the first embodiment includes a wireless communication device 110 and a communication control device 120.
  • the wireless communication device 110 and the communication control device 120 can communicate with each other.
  • Various types of communication can be applied to communication between the wireless communication device 110 and the communication control device 120.
  • the wireless communication device 110 includes an acquisition unit 111, a transmission unit 112, a reception unit 113, and a communication unit 114.
  • the acquisition unit 111 acquires route information indicating the position of the wireless communication device 110 (self device) and the predicted route of the wireless communication device 110 in the future.
  • the position of the wireless communication device 110 is, for example, the approximate position of the wireless communication device 110 at the present time.
  • the acquisition unit 111 outputs the acquired route information to the transmission unit 112.
  • the transmission unit 112 transmits the route information output from the acquisition unit 111 to the communication control device 120 (wireless communication device).
  • the receiving unit 113 receives the frequency information transmitted from the communication control device 120. Then, the reception unit 113 outputs the received frequency information to the communication unit 114.
  • the communication unit 114 performs wireless communication using the frequency indicated by the frequency information output from the reception unit 113. For example, the communication unit 114 performs wireless communication with a base station connected to the mobile communication network.
  • the communication control device 120 includes a reception unit 121, an acquisition unit 122, a calculation unit 123, a selection unit 124, and a transmission unit 125.
  • the receiving unit 121 receives route information transmitted from the wireless communication device 110. Then, the reception unit 121 outputs the received route information to the calculation unit 123.
  • the acquisition unit 122 acquires correspondence information between the position of the wireless communication device 110 and the frequencies that can be used by the wireless communication device 110.
  • the correspondence information is stored in the memory of the communication control device 120, and the acquisition unit 122 acquires the correspondence information from the memory of the communication control device 120.
  • the acquisition unit 122 may receive correspondence information from a communication device outside the communication control device 120.
  • the acquisition unit 122 outputs the acquired correspondence information to the calculation unit 123 and the selection unit 124.
  • the calculation unit 123 performs wireless communication at the position of the wireless communication device 110 based on the position of the wireless communication device 110 indicated by the route information output from the reception unit 121 and the correspondence information output from the acquisition unit 122.
  • the frequency which the apparatus 110 can use is specified.
  • the calculation unit 123 searches the correspondence information for a frequency corresponding to the position of the wireless communication device 110 indicated by the route information, thereby specifying a frequency that can be used by the wireless communication device 110 at the position of the wireless communication device 110. .
  • the calculation unit 123 makes the target frequency unavailable to the wireless communication device 110 based on the predicted route of the wireless communication device 110 indicated by the route information and the correspondence information for each of the identified frequencies. Calculate the predicted time until. The calculation unit 123 notifies the selection unit 124 of the identified frequency and the predicted time calculated for each identified frequency.
  • the selection unit 124 selects a frequency used by the wireless communication apparatus 110 from the frequencies notified from the calculation unit 123 based on the predicted time notified from the calculation unit 123. For example, the selection unit 124 preferentially selects a frequency having a longer prediction time notified from the calculation unit 123 among the frequencies notified from the calculation unit 123.
  • the selection unit 124 outputs frequency information indicating the selected frequency to the transmission unit 125.
  • the transmission unit 125 transmits the frequency information output from the selection unit 124 to the wireless communication device 110.
  • the communication control apparatus 120 predicts the frequency that can be used by the wireless communication apparatus 110 at the position of the wireless communication apparatus 110 until it becomes unusable. A frequency with a long time can be set in the wireless communication apparatus 110. Thereby, frequency switching in the wireless communication device 110 can be reduced.
  • the selection unit 124 of the communication control device 120 may notify the calculation unit 123 of the frequency selected as the frequency used by the wireless communication device 110 at the position of the wireless communication device 110.
  • the calculation unit 123 identifies a frequency that can be used by the wireless communication device 110 at a position where the frequency notified from the selection unit 124 becomes unusable in the wireless communication device 110.
  • the calculation unit 123 targets each of the specified frequencies, and the wireless communication device 110 cannot use the target frequency before the position where the frequency notified from the selection unit 124 becomes unusable in the wireless communication device 110. Calculate the predicted time until. The calculation unit 123 notifies the selection unit 124 of the identified frequency and the predicted time calculated for each identified frequency.
  • the selection unit 124 selects the wireless communication device 110 from the position at which the selected frequency is unavailable in the wireless communication device 110 from the frequencies notified from the calculation unit 123. Select the frequency to use.
  • the selection unit 124 outputs frequency information indicating the first frequency selected for the position of the wireless communication device 110 and the second frequency selected for the position where the first frequency becomes unusable to the transmission unit 125.
  • the frequency information may be information indicating the first frequency and the second frequency and that the second frequency should be used after the first frequency.
  • the frequency information can be list information such as ⁇ F1, F2 ⁇ .
  • the communication unit 114 of the wireless communication device 110 performs wireless communication using the first frequency indicated by the frequency information. Further, when the first frequency becomes unusable as the wireless communication device 110 moves, the communication unit 114 performs wireless communication using the second frequency information indicated by the frequency information. As a result, when the frequency notified from the communication control device 120 becomes unusable, the wireless communication device 110 can use the frequency without switching the frequency again from the communication control device 120 and switch the frequency. It is possible to set a frequency at which is reduced.
  • the frequency is set to the predicted travel distance of the wireless communication device 110 until the wireless communication device 110 becomes unusable. It is good also as a structure which selects a frequency based on it.
  • the calculation unit 123 of the communication control device 120 calculates the predicted moving distance of the wireless communication device 110 until the wireless communication device 110 cannot use the target frequency for each of the specified frequencies.
  • the calculation unit 123 notifies the selection unit 124 of the identified frequency and the predicted movement distance calculated for each identified frequency.
  • the selection unit 124 selects a frequency used by the wireless communication apparatus 110 from the frequencies notified from the calculation unit 123 based on the predicted moving distance notified from the calculation unit 123. For example, the selection unit 124 preferentially selects a frequency having a longer predicted movement distance notified from the calculation unit 123 among the frequencies notified from the calculation unit 123.
  • the communication control device 120 sets a frequency with a long predicted movement distance of the wireless communication device 110 until the wireless communication device 110 becomes unusable among frequencies that can be used by the wireless communication device 110 at the position of the wireless communication device 110. 110 can be set. Thereby, frequency switching in the wireless communication device 110 can be reduced.
  • FIG. 2 is a diagram illustrating an application example 1 of the communication system according to the first embodiment.
  • the communication system 100 shown in FIGS. 1-1 and 1-2 can be applied to the communication system 200 shown in FIG. 2, for example.
  • An access point 231 is mounted on the bus vehicle 230 shown in FIG.
  • the radio communication apparatus 110 shown in FIGS. 1-1 and 1-2 can be applied to the access point 231, for example.
  • the communication control device 120 shown in FIGS. 1-1 and 1-2 can be applied to the WS database server 240, for example.
  • the access point 231 performs wireless communication with a communication terminal such as a passenger in the bus vehicle 230, for example.
  • the access point 231 has a wide-area cell network such as 3G (3rd Generation) or LTE (Long Term Evolution) as a backbone line, and wirelessly uses WS (frequency) with a base station on the backbone line. Communicate.
  • 3G 3rd Generation
  • LTE Long Term Evolution
  • WS frequency
  • the access point 231 can communicate with the WS database server 240.
  • various communication methods such as a wide area cellular method such as LTE and 3G can be used.
  • the access point 231 transmits predicted route information indicating the predicted route L1 of the bus vehicle 230 to the WS database server 240. Since the access point 231 is mounted on the bus vehicle 230, the predicted route L1 is also a predicted route of the access point 231.
  • the access point 231 receives from the WS database server 240 use frequency information indicating a frequency (WS) used by the access point 231.
  • the access point 231 performs wireless communication with the base station of the backbone line using the frequency indicated by the used frequency information received from the WS database server 240.
  • the frequencies that the access point 231 can use for wireless communication are frequencies f1 and f2 in the example shown in FIG.
  • the frequencies f1 and f2 are different from each other.
  • the frequency (WS) that can actually be used by the access point 231 differs depending on the position of the access point 231.
  • the television station 210 performs communication using the frequency f1 in the area 211. For this reason, the access point 231 cannot use the frequency f1 in the area 211.
  • the television station 220 performs communication using the frequency f2 in the area 221. For this reason, the access point 231 cannot use the frequency f ⁇ b> 2 in the area 221.
  • Pass points p1 to p8 indicate positions included in the predicted route L1 of the access point 231.
  • the passing point p1 is not included in the area 211 or the area 221.
  • the access point 231 can use the frequencies f1 and f2 at the passing point p1.
  • the passing points p2 to p7 are not included in the area 211 but are included in the area 221.
  • the access point 231 can use the frequency f1 and cannot use the frequency f2 at the passing points p2 to p7.
  • the passing point p8 is included in the area 211 and the area 221. For this reason, the access point 231 cannot use the frequencies f1 and f2 at the passing point p8.
  • the boundary point pA is a position where the access point 231 enters the area 221 in the predicted route L1.
  • the boundary point pB is a position where the access point 231 enters the area 211 in the predicted route L1.
  • the frequencies that the access point 231 can use are the frequencies f1 and f2.
  • the frequency f2 is set to the access point 231 at the passing point p1
  • the frequency f2 becomes unusable at the boundary point pA
  • the frequency is switched at the access point 231.
  • the frequency f1 is set to the access point 231 at the passing point p1
  • the frequency f1 can be used up to the boundary point pB, and therefore, the frequency is not switched at the access point 231 up to the boundary point pB.
  • the WS database server 240 causes the access point 231 to set the frequency f1 having a long estimated time until it becomes unusable among the frequencies f1 and f2 that can be used by the access point 231 at the passage point p1. As a result, frequency switching at the access point 231 can be reduced.
  • FIG. 3A is a diagram of an example of each configuration of the communication system depicted in FIG.
  • FIG. 3B is a diagram illustrating an example of a signal flow in the communication system illustrated in FIG. 3A and 3B, the same parts as those shown in FIG.
  • the access point 231 includes, for example, a route acquisition unit 311, a communication unit 312, a frequency setting unit 313, and a communication unit 314.
  • the path acquisition unit 311 acquires predicted path information (for example, see FIG. 5) indicating the position of the access point 231 and the predicted path L1 (for example, see FIG. 2) of the access point 231.
  • information indicating the predicted path is stored in the memory of the access point 231, and the path acquisition unit 311 acquires information indicating the predicted path from the memory of the access point 231.
  • the route acquisition unit 311 may acquire information indicating the predicted route from the car navigation system of the bus vehicle 230 or the like.
  • the route acquisition unit 311 can acquire information indicating the position of the access point 231 using, for example, GPS (Global Positioning System).
  • the route acquisition unit 311 outputs the acquired predicted route information to the communication unit 312.
  • the communication unit 312 performs wireless communication with the WS database server 240. For example, the communication unit 312 transmits the predicted route information output from the route acquisition unit 311 to the WS database server 240. In addition, the communication unit 312 receives the used frequency information transmitted from the WS database server 240. Then, the communication unit 312 outputs the received use frequency information to the frequency setting unit 313.
  • the frequency setting unit 313 sets the frequency used by the communication unit 314 for wireless communication to the frequency indicated by the used frequency information output from the route acquisition unit 311.
  • the communication unit 314 performs wireless communication using the frequency set by the frequency setting unit 313.
  • the communication unit 314 relays communication between the communication terminal of the bus vehicle 230 and the base station by wireless communication.
  • the communication unit 312 and the communication unit 314 may be realized by a single communication unit.
  • the acquisition unit 111 illustrated in FIGS. 1-1 and 1-2 can be realized by the route acquisition unit 311, for example.
  • the transmission unit 112 and the reception unit 113 illustrated in FIGS. 1-1 and 1-2 can be realized by the communication unit 312, for example.
  • the communication unit 114 illustrated in FIGS. 1-1 and 1-2 can be realized by the frequency setting unit 313 and the communication unit 314, for example.
  • the WS database server 240 includes a WS database 321, a communication unit 322, and a frequency selection unit 323.
  • the WS database 321 stores correspondence information that associates the position of the access point 231 with the frequencies that can be used by the access point 231.
  • the communication unit 322 performs wireless communication with the access point 231. For example, the communication unit 322 receives the predicted route information transmitted from the access point 231. Then, the communication unit 322 outputs the received predicted route information to the frequency selection unit 323. In addition, the communication unit 322 transmits the used frequency information output from the frequency selection unit 323 to the access point 231.
  • the frequency selection unit 323 specifies the frequency that can be used by the access point 231 at the current position of the access point 231 as the usable frequency of the access point 231. Specifically, the frequency selection unit 323 uses the access point 231 based on the current position of the access point 231 indicated by the predicted route information output from the communication unit 322 and the correspondence information stored in the WS database 321. Identify possible frequencies.
  • the frequency selection unit 323 calculates an estimated time until the next frequency switching occurs in the access point 231 when the access point 231 is set for each identified usable frequency. Then, the frequency selection unit 323 selects the usable frequency having the longest predicted time as the used frequency of the access point 231 from the identified usable frequencies. The frequency selection unit 323 outputs use frequency information indicating the selected use frequency to the communication unit 322.
  • the receiving unit 121 and the transmitting unit 125 shown in FIGS. 1-1 and 1-2 can be realized by the communication unit 322, for example.
  • the acquisition unit 122 illustrated in FIGS. 1-1 and 1-2 can be realized by the WS database 321, for example.
  • the calculation unit 123 and the selection unit 124 illustrated in FIGS. 1-1 and 1-2 can be realized by the frequency selection unit 323, for example.
  • FIG. 3-3 is a diagram illustrating an example of a hardware configuration of the access point.
  • the access point 231 illustrated in FIGS. 3A and 3B can be realized by the information processing apparatus 330 illustrated in FIG. 3C, for example.
  • the information processing device 330 includes a CPU 331, a memory 332, a user interface 333, a wireless communication interface 334, and a GPS module 335.
  • the CPU 331, the memory 332, the user interface 333, the wireless communication interface 334, and the GPS module 335 are connected by a bus 339.
  • the CPU 331 Central Processing Unit controls the entire information processing apparatus 330. Further, the information processing apparatus 330 may include a plurality of CPUs 331.
  • the memory 332 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM (Random Access Memory).
  • the main memory is used as a work area for the CPU 331.
  • the auxiliary memory is a non-volatile memory such as a magnetic disk or a flash memory.
  • Various programs for operating the information processing device 330 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 331.
  • the user interface 333 includes, for example, an input device that receives an operation input from the user, an output device that outputs information to the user, and the like.
  • the input device can be realized by a key (for example, a keyboard) or a remote controller, for example.
  • the output device can be realized by, for example, a display or a speaker. Further, an input device and an output device may be realized by a touch panel or the like.
  • the user interface 333 is controlled by the CPU 331.
  • the wireless communication interface 334 is a communication interface that performs communication with the outside of the information processing apparatus 330 by wireless, for example.
  • the wireless communication interface 334 is controlled by the CPU 331.
  • the GPS module 335 is a module that acquires information indicating the current position of the information processing device 330.
  • the GPS module 335 is controlled by the CPU 331.
  • the route acquisition unit 311 illustrated in FIGS. 3A and 3B can be realized by the CPU 331, the memory 332, and the GPS module 335, for example.
  • the communication units 312 and 314 illustrated in FIGS. 3A and 3B can be realized by the CPU 331 and the wireless communication interface 334, for example.
  • the frequency setting unit 313 illustrated in FIGS. 3A and 3B can be realized by the CPU 331, for example.
  • FIG. 3-4 is a diagram illustrating an example of a hardware configuration of the WS database server.
  • the WS database server 240 shown in FIGS. 3A and 3B can be realized by the information processing device 340 shown in FIG. 3-4, for example.
  • the information processing device 340 includes a CPU 341, a memory 342, a user interface 343, a wired communication interface 344, and a wireless communication interface 345.
  • the CPU 341, the memory 342, the user interface 343, the wired communication interface 344, and the wireless communication interface 345 are connected by a bus 349.
  • the CPU 341 controls the entire information processing apparatus 340.
  • the information processing apparatus 340 may include a plurality of CPUs 341.
  • the memory 342 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM.
  • the main memory is used as a work area for the CPU 341.
  • the auxiliary memory is, for example, a nonvolatile memory such as a magnetic disk, an optical disk, or a flash memory.
  • Various programs for operating the information processing apparatus 340 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 341.
  • the user interface 343 includes, for example, an input device that receives an operation input from the user, an output device that outputs information to the user, and the like.
  • the input device can be realized by a key (for example, a keyboard) or a remote controller, for example.
  • the output device can be realized by, for example, a display or a speaker. Further, an input device and an output device may be realized by a touch panel or the like.
  • the user interface 343 is controlled by the CPU 341.
  • the wired communication interface 344 is a communication interface that communicates with the outside of the information processing apparatus 340 (for example, a host system) by, for example, a wired connection.
  • the wired communication interface 344 is controlled by the CPU 341.
  • the wireless communication interface 345 is a communication interface that performs communication with the outside of the information processing device 340, for example, wirelessly.
  • the wireless communication interface 345 is controlled by the CPU 341.
  • the communication unit 322 illustrated in FIGS. 3A and 3B can be realized by the CPU 341 and the wireless communication interface 345, for example.
  • the WS database 321 shown in FIGS. 3A and 3B can be realized by the memory 342, for example.
  • the frequency selection unit 323 illustrated in FIGS. 3A and 3B can be realized by the CPU 341, for example.
  • FIG. 4 is a sequence diagram showing an operation example of the communication system shown in FIG.
  • the communication system 200 shown in FIG. 2 operates as each step shown in FIG. 4, for example.
  • the access point 231 transmits the predicted route information of the access point 231 to the WS database server 240 (step S401).
  • the WS database server 240 identifies an available frequency corresponding to the current position of the access point 231 based on the predicted route information transmitted in step S401 and the correspondence information (step S402). Next, when the WS database server 240 causes the access point 231 to set, the predicted time until the next frequency switching of the access point 231 occurs is calculated for each usable frequency specified in step S402 (step S403). ).
  • the WS database server 240 selects the frequency having the maximum predicted time calculated in step S403 from the usable frequencies specified in step S402 (step S404).
  • the WS database server 240 transmits use frequency information indicating the frequency selected in step S404 to the access point 231 (step S405).
  • the access point 231 sets the frequency indicated by the used frequency information transmitted in step S405 to the frequency used by the access point 231 for wireless communication (step S406), and the series of operations ends.
  • the access point 231 can be set to a frequency having a long estimated time until the access point 231 becomes unusable among the frequencies that can be used by the access point 231 at the current position of the access point 231. As a result, frequency switching at the access point 231 can be reduced.
  • the timing for executing the operation shown in FIG. 4 is not limited to this.
  • the operation shown in FIG. 4 may be executed each time the frequency being used by the access point 231 becomes unavailable as the access point 231 moves. As a result, frequency switching at the access point 231 can be reduced not only when the power is turned on.
  • the operation shown in FIG. 4 may be executed. Or the operation
  • FIG. 5 is a diagram illustrating an example of predicted route information transmitted by the access point.
  • the access point 231 transmits, for example, predicted route information 500 illustrated in FIG. 5 to the WS database server 240 as predicted route information.
  • predicted route information 500 for each passing point (passing points p1 to p8...)
  • the predicted route information 500 indicates that the access point 231 has a latitude (36 [°], 43'00 ”) and a longitude (140 [°], 22'00" at 10:00 on 12/11/11. ) Is scheduled to pass the passing point p1.
  • the predicted route information 500 may be, for example, a list of position information in time series.
  • the predicted route information 500 is information indicating, for example, each position included in the predicted route L1 and a predicted time passing through each position included in the predicted route L1.
  • the WS database server 240 can calculate the predicted time and predicted travel distance until the access point 231 cannot use the target frequency.
  • the predicted route information 500 may not include the time (day and time). .
  • FIG. 6 is a diagram illustrating an example of correspondence information stored in the WS database.
  • correspondence information 600 shown in FIG. 6 is stored.
  • a frequency that can be used by the access point 231 is associated with each combination of latitude and longitude.
  • the correspondence information 600 indicates that the frequency that can be used by the access point 231 at the position of latitude (36 [°], 43 ') and longitude (140 [°], 19') is the frequency f1.
  • FIG. 7 is a diagram illustrating an example of frequencies that can be used at each position of the predicted path illustrated in FIG. 2.
  • the frequency selection unit 323 of the WS database server 240 performs a calculation based on the predicted route information (for example, see FIG. 5) output from the communication unit 322 and the correspondence information (for example, see FIG. 6) stored in the WS database 321. For example, a table 700 shown in FIG. 7 is created.
  • a frequency that can be used by the access point 231 is associated with each passing point of the access point 231 based on the predicted route indicated by the predicted route information. Further, the passing points of the table 700 include each passing point complemented based on the passing points p1 to p8,... In addition to the passing points p1 to p8,.
  • the distance between each passing point of the access point 231 is associated.
  • the distance between each passing point can be calculated based on, for example, the latitude and longitude of each passing point.
  • the approximate current time is assumed to be 10:00 on December 11/11.
  • the current position of the access point 231 is latitude (36 [°], 43'00 ") and longitude (140 [°], 22'00").
  • the frequency selection unit 323 specifies the usable frequencies f1 and f2 corresponding to the current position of the access point 231 based on the created table 700.
  • the frequency selection unit 323 sets the access point 231 for each of the specified frequencies f1 and f2 based on the table 700, the frequency selection unit 323 calculates an estimated time until the next frequency switching occurs at the access point 231. calculate.
  • the frequency f1 when the frequency f1 is set for the access point 231, the frequency f1 can be used until 10:34:00 on the same day, so the estimated time until the frequency switching occurs at the access point 231. Is 34 minutes.
  • the frequency f2 when the frequency f2 is set for the access point 231, the frequency f2 can be used until 10:07:00 on the same day, and therefore the estimated time until the frequency switching occurs at the access point 231 is 7 minutes. .
  • the frequency selection unit 323 selects, as the use frequency of the access point 231, the frequency f 1 having the longest prediction time until the frequency switching occurs at the access point 231 among the specified frequencies f 1 and f 2.
  • the frequency selection unit 323 calculates the predicted movement distance of the access point 231 until the next frequency switching occurs in the access point 231 when the access point 231 is set for each specified usable frequency. Then, the frequency selection unit 323 selects the usable frequency having the longest predicted travel distance calculated as the usable frequency of the access point 231 from the identified usable frequencies.
  • the frequency f2 When the frequency f2 is set for the access point 231, the frequency f2 can be used up to the position of latitude (36 [°], 43'00 ”) and longitude (140 [°], 20'00"). For this reason, the predicted moving distance of the access point 231 until frequency switching occurs in the access point 231 is 3 [km].
  • the frequency selection unit 323 selects, as the use frequency of the access point 231, the frequency f 1 having the longest estimated moving distance until the frequency is switched at the access point 231 among the specified frequencies f 1 and f 2.
  • FIG. 8 is a diagram of an application example 2 of the communication system according to the first embodiment.
  • the communication system 200 includes a frequency management device 810 in addition to the configuration shown in FIG.
  • the communication control device 120 shown in FIGS. 1-1 and 1-2 can be applied to the frequency management device 810, for example.
  • the frequency management device 810 can communicate with the access point 231 and the WS database server 240, respectively.
  • wireless communication can be used for communication between the frequency management device 810 and the access point 231.
  • wired communication can be used for communication between the frequency management device 810 and the WS database server 240. In this case, direct communication between the WS database server 240 and the access point 231 may not be possible.
  • the access point 231 transmits predicted route information indicating the predicted route L1 to the frequency management device 810.
  • the access point 231 receives use frequency information indicating the frequency (WS) used by the access point 231 from the frequency management device 810.
  • the access point 231 performs wireless communication with the base station of the backbone line using the frequency indicated by the used frequency information received from the frequency management device 810.
  • the frequency management device 810 receives information indicating the WS that can be used by the access point 231 from the WS database server 240. Then, the frequency management apparatus 810 transmits position information indicating the position of the access point 231 indicated by the correspondence information 600 received from the received access point 231 to the WS database server 240.
  • the function of selecting the use frequency of the access point 231 and notifying the access point 231 may be realized by a communication control device (for example, the frequency management device 810) different from the WS database server 240.
  • the WS database server 240 and the frequency management device 810 may be operated by different operators.
  • FIG. 9A is a diagram of an example of each configuration of the communication system depicted in FIG.
  • FIG. 9B is a diagram illustrating an example of signal flow in the communication system illustrated in FIG. 9A and 9B, the same parts as those shown in FIGS. 3A and 3B are denoted by the same reference numerals, and description thereof is omitted.
  • the WS database server 240 shown in FIG. 8 includes a communication unit 911 and a WS database 321.
  • the communication unit 911 transmits the correspondence information stored in the WS database 321 to the frequency management device 810.
  • wired communication can be used for communication with the frequency management apparatus 810 by the communication unit 911.
  • the frequency management device 810 includes a communication unit 921, a frequency selection unit 323, and a communication unit 322.
  • the communication unit 921 receives the correspondence information transmitted from the WS database server 240.
  • the communication unit 921 outputs the received correspondence information to the frequency selection unit 323.
  • the frequency selection unit 323 specifies the usable frequency of the access point 231 based on the predicted route information output from the communication unit 322 and the correspondence information output from the communication unit 921. Then, when the frequency selection unit 323 is set to the access point 231 for each identified usable frequency based on the correspondence information output from the communication unit 921, switching of the next frequency occurs at the access point 231.
  • the predicted time (or predicted travel distance) is calculated.
  • the frequency management device 810 shown in FIGS. 9-1 and 9-2 can be realized by the information processing device 340 shown in FIG. 3-4, for example.
  • the communication unit 322 shown in FIGS. 9-1 and 9-2 can be realized by the CPU 341 and the wireless communication interface 345, for example.
  • the frequency selection unit 323 shown in FIGS. 9-1 and 9-2 can be realized by the CPU 341, for example.
  • the communication unit 921 shown in FIGS. 9-1 and 9-2 can be realized by the CPU 341 and the wired communication interface 344, for example.
  • the WS database server 240 shown in FIGS. 9-1 and 9-2 can be realized by the information processing apparatus 340 shown in FIG. 3-4, for example. However, in this case, the wireless communication interface 345 shown in FIG. 3-4 may not be provided.
  • the communication unit 911 shown in FIGS. 9-1 and 9-2 can be realized by the CPU 341 and the wired communication interface 344, for example.
  • the WS database 321 shown in FIGS. 9-1 and 9-2 can be realized by the memory 342, for example.
  • FIG. 10 is a diagram of an application example 3 of the communication system according to the first embodiment. 10, parts that are the same as the parts shown in FIG. 2 are given the same reference numerals, and descriptions thereof will be omitted.
  • the frequencies that the access point 231 can use for wireless communication are frequencies f1 to f4.
  • the frequencies f1 to f4 are different from each other.
  • the access point 231 can perform wireless communication using a plurality of frequencies.
  • radio communication using a plurality of frequencies for example, carrier aggregation in LTE, channel bonding in WiFi, or the like can be used.
  • the television station 1010 performs communication using the frequency f3 in the area 1011. For this reason, the access point 231 cannot use the frequency f3 in the area 1011.
  • the television station 1020 performs communication using the frequency f4 in the area 1021. For this reason, the access point 231 cannot use the frequency f4 in the area 1021.
  • the passing point p1 is not included in the areas 221 and 1021, but is included in the area 1011.
  • the access point 231 can use the frequencies f1, f2, and f4 at the passing point p1.
  • the passing points p2 to p7 are included in the areas 221, 1011 and 1021. Therefore, the access point 231 can use the frequency f1 at the passing points p2 to p7.
  • the passing point p8 is not included in the area 1011 but is included in the areas 221 and 1021. For this reason, the access point 231 can use the frequencies f1 and f3 at the passing point p8.
  • the boundary point pA is a position where the access point 231 enters the area 221 in the predicted route L1.
  • the boundary point pB is a position where the access point 231 enters the area 1021 in the predicted route L1.
  • the boundary point pC is a position where the access point 231 leaves the area 1011 on the predicted route L1.
  • the frequencies that the access point 231 can use are frequencies f1, f2, and f4.
  • the access point 231 does not switch the frequency.
  • the frequency f2 is set in the access point 231 at the passing point p1
  • the frequency f2 becomes unusable at the boundary point pA
  • the frequency is switched at the access point 231.
  • the frequency f4 is set in the access point 231 at the passing point p1
  • the frequency f4 becomes unusable at the boundary point pB, and the frequency switching occurs at the access point 231.
  • the WS database server 240 causes the access point 231 to set a frequency having a long estimated time until the access point 231 becomes unusable among the frequencies f1, f2, and f4 that can be used by the access point 231 at the passage point p1. For example, when the access point 231 performs wireless communication using two frequencies at the same time, the WS database server 240 causes the access point 231 to set the two frequencies f1 and f4 having the longest estimated time until it becomes unusable. As a result, frequency switching at the access point 231 can be reduced.
  • FIG. 11 is a diagram illustrating an example of frequencies that can be used at each position of the predicted path illustrated in FIG. 10.
  • the frequency selection unit 323 of the WS database server 240 illustrated in FIG. 10 performs, for example, a table 1100 illustrated in FIG. 11 by an operation based on the predicted route information output from the communication unit 322 and the correspondence information stored in the WS database 321. Create
  • the frequency at which the access point 231 can be used is associated with each passing point of the access point 231 based on the predicted route indicated by the predicted route information.
  • the frequency f1 when the frequency f1 is set for the access point 231, the frequency f1 can be used up to the passing point p8 at the end of the predicted path L1, and therefore, until the frequency switching occurs at the access point 231.
  • the prediction time is the longest.
  • the frequency f2 when the frequency f2 is set for the access point 231, the frequency f2 can be used until 10:00 on the same day, and therefore the estimated time until the frequency switching occurs at the access point 231 is 4 minutes.
  • the frequency f4 when the frequency f4 is set for the access point 231, the frequency f4 can be used until 10:07:00 on the same day, and therefore the estimated time until the frequency switching occurs at the access point 231 is 7 minutes. .
  • the frequency selection unit 323 uses the two frequencies f1 and f4 that have the longest prediction time until the frequency switching occurs at the access point 231 among the specified frequencies f1, f2, and f4. Select as.
  • the wireless communication device can set a frequency having a long estimated time until it becomes unusable among frequencies that can be used by the wireless communication device at the position of the wireless communication device. it can. Alternatively, it is possible to cause the wireless communication device to set a frequency having a long predicted moving distance until the wireless communication device becomes unusable, among frequencies that can be used by the wireless communication device. Thereby, frequency switching in the wireless communication device can be reduced.
  • FIG. 12A is a diagram of an example of a communication system according to the second embodiment.
  • 12-2 is a diagram of an example of signal flow in the communication system depicted in FIG. 12-1.
  • 12A and 12B the same parts as those shown in FIGS. 1-1 and 1-2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the wireless communication apparatus 110 includes an acquisition unit 111, a transmission unit 112, a reception unit 113, a calculation unit 1211, a selection unit 124, and a communication unit 114.
  • the acquisition unit 111 acquires position information indicating the position of the wireless communication device 110. Then, the acquisition unit 111 outputs the acquired position information to the transmission unit 112.
  • the acquisition unit 111 acquires route information indicating a predicted route of the wireless communication device 110 in the future. Then, the acquisition unit 111 acquires history information indicating a switching history at a position included in the predicted route of the wireless communication device 110 at a frequency used by the wireless communication device 110 for wireless communication based on the acquired route information. . The acquisition unit 111 outputs the acquired history information to the calculation unit 1211.
  • the transmission unit 112 transmits the position information output from the acquisition unit 111 to the communication control device 120 (wireless communication device).
  • the receiving unit 113 receives frequency information transmitted from the communication control device 120. Then, the reception unit 113 outputs the received frequency information to the calculation unit 1211.
  • the calculation unit 1211 Based on the history information output from the acquisition unit 111, the calculation unit 1211 targets each of the frequencies indicated by the frequency information output from the reception unit 113 until the wireless communication device 110 cannot use the target frequency. Calculate the predicted time of. Then, the calculation unit 1211 notifies the selection unit 124 of the frequency indicated by the frequency information and the predicted time calculated for each frequency indicated by the frequency information.
  • the selection unit 124 selects a frequency used by the wireless communication apparatus 110 from the frequencies notified from the calculation unit 1211 based on the predicted time notified from the calculation unit 1211. Then, the selection unit 124 notifies the communication unit 114 of the selected frequency. The communication unit 114 performs wireless communication using the frequency notified from the selection unit 124.
  • the communication control device 120 includes a receiving unit 121, a specifying unit 1221, an acquiring unit 122, and a transmitting unit 125.
  • the receiving unit 121 receives the position information transmitted from the wireless communication device 110. Then, the receiving unit 121 outputs the received position information to the specifying unit 1221.
  • the acquisition unit 122 outputs the acquired correspondence information to the specifying unit 1221.
  • the specifying unit 1221 is configured at the position of the wireless communication device 110. Identifies the available frequencies. For example, the specifying unit 1221 specifies a frequency that can be used by the wireless communication apparatus 110 at the position of the wireless communication apparatus 110 by searching the correspondence information for a frequency corresponding to the position of the wireless communication apparatus 110 indicated by the position information. .
  • the specifying unit 1221 outputs frequency information indicating the specified frequency to the transmitting unit 125.
  • the transmission unit 125 transmits the frequency information output from the specifying unit 1221 to the wireless communication apparatus 110.
  • the wireless communication device 110 predicts a frequency that can be used by the wireless communication device 110 at the position of the wireless communication device 110 until it becomes unavailable. A frequency with a long time can be set. Thereby, frequency switching in the wireless communication device 110 can be reduced.
  • the frequency is set to the predicted travel distance of the wireless communication device 110 until the wireless communication device 110 becomes unusable. It is good also as a structure which selects a frequency based on it.
  • the calculation unit 1211 of the wireless communication device 110 calculates the predicted moving distance of the wireless communication device 110 until the wireless communication device 110 cannot use the target frequency for each of the specified frequencies.
  • the calculation unit 1211 notifies the selection unit 124 of the frequency indicated by the frequency information and the predicted movement distance calculated for each frequency indicated by the frequency information.
  • the selection unit 124 selects a frequency to be used by the wireless communication device 110 from the frequencies notified from the calculation unit 1211 based on the predicted movement distance notified from the calculation unit 1211. For example, the selection unit 124 preferentially selects a frequency having a longer predicted movement distance notified from the calculation unit 1211 out of the frequencies notified from the calculation unit 1211.
  • the wireless communication device 110 sets a frequency that has a long predicted travel distance of the wireless communication device 110 until the wireless communication device 110 becomes unusable among the frequencies that can be used by the wireless communication device 110 at the position of the wireless communication device 110. Can do. Thereby, frequency switching in the wireless communication device 110 can be reduced.
  • FIG. 13 is a diagram illustrating an application example of the communication system according to the second embodiment.
  • the switching histories 1301 to 1304 shown in FIG. 13 are histories indicating positions where frequency switching has occurred in the access point 231 in the past and frequencies before and after switching.
  • the switching history 1301 indicates that switching from the frequency f2 to the frequency f3 has occurred in the past at the boundary point pA.
  • the access point 231 acquires the switching histories 1301 and 1302 corresponding to the positions included in the predicted route L1 of the access point 231 among the switching histories 1301 to 1304.
  • the frequencies that can be used by the access point 231 are the frequencies f1 and f2.
  • the frequency f2 is set to the access point 231 at the passing point p1
  • the frequency f2 becomes unusable at the boundary point pA
  • the frequency is switched at the access point 231.
  • the frequency f1 is set to the access point 231 at the passing point p1
  • the frequency f1 can be used up to the boundary point pB, and therefore, the frequency is not switched at the access point 231 up to the boundary point pB.
  • the WS database server 240 causes the access point 231 to set the frequency f1 having a long estimated time until it becomes unusable among the frequencies f1 and f2 that can be used by the access point 231 at the passage point p1. As a result, frequency switching at the access point 231 can be reduced.
  • FIG. 14A is a diagram of an example of each configuration of the communication system depicted in FIG. 14B is a diagram of an example of signal flow in the communication system depicted in FIG. 14A and 14B, the same parts as those shown in FIGS. 3A and 3B are denoted by the same reference numerals, and description thereof is omitted.
  • the access point 231 includes, for example, a route acquisition unit 311, a communication unit 312, a switching history storage unit 1411, a frequency selection unit 1412, a communication unit 314, Is provided.
  • the route acquisition unit 311 acquires current position information indicating the current position of the access point 231. Then, the route acquisition unit 311 outputs the acquired current position information to the communication unit 312.
  • the route acquisition unit 311 acquires predicted route information of the access point 231 (see, for example, FIG. 5). Then, the route acquisition unit 311 outputs the acquired predicted route information to the frequency selection unit 1412.
  • the communication unit 312 transmits the current position information output from the route acquisition unit 311 to the WS database server 240. Further, the communication unit 312 receives usable frequency information transmitted from the WS database server 240. Then, the communication unit 312 outputs the received usable frequency information to the frequency selection unit 1412.
  • the switching history storage unit 1411 stores frequency switching history information that the access point 231 uses for wireless communication.
  • the frequency selection unit 1412 performs access based on the predicted route information output from the route acquisition unit 311, history information stored in the switching history storage unit 1411, and usable frequency information output from the communication unit 312.
  • the frequency used by the point 231 is selected.
  • the frequency selection unit 1412 sets the selected frequency as a frequency used by the communication unit 314 for wireless communication.
  • the communication unit 314 performs wireless communication using the frequency set by the frequency selection unit 1412.
  • the acquisition unit 111 shown in FIGS. 12A and 12B can be realized by the route acquisition unit 311, for example.
  • the transmission unit 112 and the reception unit 113 illustrated in FIGS. 12A and 12B can be realized by the communication unit 312, for example.
  • the calculation unit 1211 illustrated in FIGS. 12A and 12B can be realized by the frequency selection unit 1412, for example.
  • the communication unit 114 illustrated in FIGS. 12A and 12B can be realized by the communication unit 314, for example.
  • the WS database server 240 includes a communication unit 322 and a WS database 321.
  • the communication unit 322 receives the current position information transmitted from the access point 231. Then, the communication unit 322 outputs the received current position information to the WS database 321. In addition, the communication unit 322 transmits usable frequency information output from the WS database 321 to the access point 231.
  • the WS database 321 specifies a frequency corresponding to the position indicated by the current position information output from the access point 231 in the stored correspondence information, and outputs usable frequency information indicating the specified frequency to the communication unit 322. .
  • the receiving unit 121 and the transmitting unit 125 shown in FIGS. 12-1 and 12-2 can be realized by the communication unit 322, for example.
  • the specifying unit 1221 and the acquiring unit 122 illustrated in FIGS. 12A and 12B can be realized by the WS database 321, for example.
  • FIG. 15 is a sequence diagram illustrating an operation example of the communication system illustrated in FIG. 13.
  • the communication system 200 shown in FIG. 13 operates as each step shown in FIG. 15, for example.
  • the access point 231 transmits current position information indicating the current position of the access point 231 to the WS database server 240 (step S1501).
  • the WS database server 240 transmits usable frequency information indicating a frequency that can be used by the access point 231 at the position indicated by the current position information transmitted in step S1501 to the access point 231 (step S1502).
  • the access point 231 acquires the predicted route information and switching history information of the access point 231 (step S1503).
  • the access point 231 calculates an estimated time until frequency switching occurs at the access point 231 for each usable frequency indicated by the usable frequency information transmitted in step S1502 (step S1504).
  • the access point 231 selects the frequency having the maximum predicted time calculated in step S1504 from the usable frequencies indicated by the usable frequency information transmitted in step S1502 (step S1505).
  • the access point 231 sets the frequency used for wireless communication to the frequency selected in step S1505 (step S1506), and the series of operations ends.
  • the access point 231 can be set to a frequency having a long estimated time until the access point 231 becomes unusable among the frequencies that can be used by the access point 231 at the current position of the access point 231. As a result, frequency switching at the access point 231 can be reduced.
  • the timing for executing the operation shown in FIG. 15 is not limited to this.
  • the operation shown in FIG. 15 may be executed each time the frequency being used by the access point 231 becomes unavailable as the access point 231 moves. As a result, frequency switching at the access point 231 can be reduced not only when the power is turned on.
  • the operation shown in FIG. 15 may be executed. Or the operation
  • FIG. 16 is a diagram illustrating an example of usable frequency information.
  • the WS database server 240 transmits usable frequency information 1600 illustrated in FIG. 16 to the access point 231.
  • the usable frequency information 1600 frequencies (f1, f2,%) That can be used by the access point 231 at the current position of the access point 231 are listed.
  • the access point 231 selects a frequency to be used for wireless communication from the frequencies listed in the usable frequency information 1600.
  • FIG. 17 is a diagram illustrating an example of the switching history information.
  • the switching history storage unit 1411 of the access point 231 stores, for example, switching history information 1700 illustrated in FIG.
  • switching history information 1700 the date (yy / mm / dd), time (hh: mm: ss), latitude (latitude), and longitude (longitude) for each position where frequency switching has occurred in the past at the access point 231.
  • the frequencies before and after switching are associated with each other. “None” in the frequency before and after switching indicates that there is no frequency usable in the access point 231.
  • the first record of the switching history information 1700 has a latitude (36 [°], 43'00 ”) and a longitude (140 [°], 22'00) at 10:07:11 on 12/11/11. ") Indicates that the access point 231 has passed through the passing point p1.
  • the first record of the switching history information 1700 indicates that switching from the frequency f2 to the frequency f1 has occurred when the access point 231 passes the passing point p1.
  • FIG. 18 is a diagram illustrating an example of a frequency switching history in the predicted path illustrated in FIG. 13.
  • the frequency selection unit 1412 of the access point 231 includes the predicted route information output from the route acquisition unit 311 (for example, see FIG. 5) and the switching history information stored in the switching history storage unit 1411 (for example, see FIG. 17).
  • the switching information is associated with the passing point of the access point 231 that has been frequency switched in the past among the passing points of the access point 231 based on the predicted route indicated by the predicted route information.
  • the switching information indicates the frequency before and after switching at the corresponding passing point.
  • the frequency selection unit 1412 calculates the predicted time until the next frequency switching at the access point 231 when the access point 231 is set based on the table 1800 for each of the specified frequencies f1 and f2. .
  • the frequency f1 when the frequency f1 is set for the access point 231, the frequency f1 can be used until 10:34:00 on the same day, and therefore the estimated time until the frequency switching occurs at the access point 231. Is 34 minutes.
  • the frequency f2 when the frequency f2 is set for the access point 231, the frequency f2 can be used until 10:07:00 on the same day, and therefore the estimated time until the frequency switching occurs at the access point 231 is 7 minutes. .
  • the frequency selection unit 1412 selects, as the use frequency of the access point 231, the frequency f 1 having the longest prediction time until the frequency switching occurs at the access point 231 among the specified frequencies f 1 and f 2.
  • the frequency selection unit 1412 calculates the predicted movement distance of the access point 231 until the next frequency switching occurs in the access point 231 when setting the communication unit 314 for each identified usable frequency. Then, the frequency selection unit 1412 selects the usable frequency with the longest predicted travel distance calculated as the usable frequency of the access point 231 from the identified usable frequencies.
  • FIG. 19 is a diagram illustrating another example of the switching history information. 19, parts that are the same as the parts shown in FIG. 17 are given the same reference numerals, and descriptions thereof will be omitted.
  • the switching history storage unit 1411 of the access point 231 may store, for example, switching history information 1700 illustrated in FIG.
  • switching history information 1700 shown in FIG. 19 in addition to the items shown in FIG. 17, a passage direction (direction) is associated with each position where the frequency switching has occurred in the access point 231 in the past.
  • the switching direction of the switching history information 1700 shown in FIG. 19 is indicated by, for example, an angle with a predetermined direction (for example, the right direction in FIG. 13).
  • the access point 231 moves the passing point p1 at a direction of 180 ° with respect to a predetermined direction (for example, as shown in FIG. It indicates that it has passed in the left direction.
  • the switching history information 1700 the switching corresponding to the combination of the position of the frequency of the access point 231 included in the predicted path L1 and the direction in which the access point 231 has passed the position included in the predicted path L1. History may be included. This makes it possible to more accurately determine the frequency switching history (for example, see FIG. 18) in the predicted route L1 of the access point 231.
  • the radio communication device can set a frequency having a long estimated time until it becomes unusable among frequencies that can be used by the radio communication device at the position of the radio communication device. it can.
  • the wireless communication device it is possible to cause the wireless communication device to set a frequency having a long predicted moving distance until the wireless communication device becomes unusable, among frequencies that can be used by the wireless communication device. Thereby, frequency switching in the wireless communication device can be reduced.
  • a communication system 100 according to the third embodiment is the same as the communication system 100 shown in FIGS. 1-1 and 1-2, for example.
  • the calculation unit 123 of the communication control device 120 sets the target frequency in the wireless communication device 110 for each of the identified frequencies, and the wireless communication device 110 that occurs in the predicted route of the wireless communication device 110. Calculate the predicted number of frequency switching.
  • the calculation unit 123 notifies the selection unit 124 of the identified frequency and the number of predictions calculated for each identified frequency.
  • the selection unit 124 selects a frequency used by the wireless communication apparatus 110 from the frequencies notified from the calculation unit 123 based on the number of predictions notified from the calculation unit 123. For example, the selection unit 124 preferentially selects a frequency having a large number of predictions notified from the calculation unit 123 among the frequencies notified from the calculation unit 123.
  • the wireless communication device 110 With the communication system 100 according to the third embodiment, it is possible to cause the wireless communication device 110 to set a frequency at which the frequency switching prediction frequency is reduced in the prediction path among the frequencies that can be used at the position of the wireless communication device 110. Thereby, frequency switching in the wireless communication device 110 can be reduced.
  • the frequency of the wireless communication device 110 is selected by the communication control device 120
  • a configuration in which the frequency of the wireless communication device 110 is selected by the wireless communication device 110 as in the second embodiment may be adopted.
  • the calculation unit 1211 illustrated in FIGS. 12A and 12B sets the target frequency in the wireless communication device 110 for each of the identified frequencies
  • the predicted path of the wireless communication device 110 Calculate the predicted number of frequency switching to occur.
  • the calculation unit 1211 notifies the selection unit 124 of the identified frequency and the number of predictions calculated for each identified frequency.
  • the selection unit 124 selects a frequency to be used by the wireless communication apparatus 110 from the frequencies notified from the calculation unit 1211 based on the predicted number of times notified from the calculation unit 1211.
  • FIG. 20 is a diagram illustrating an application example of the communication system according to the third embodiment. 20, parts that are the same as the parts shown in FIG. 2 or 10 are given the same reference numerals, and descriptions thereof will be omitted.
  • the frequencies that the access point 231 can use for wireless communication are frequencies f1 to f3.
  • the frequencies f1 to f3 are different from each other.
  • the passing point p1 is not included in the area 221 but is included in the area 1011.
  • the access point 231 can use the frequencies f1 and f2 at the passing point p1.
  • the passing points p2 to p7 are included in the areas 221 and 1011. Therefore, the access point 231 can use the frequency f1 at the passing points p2 to p7.
  • the passing point p8 is not included in the area 1011 but is included in the area 221. For this reason, the access point 231 can use the frequencies f1 and f3 at the passing point p8.
  • the boundary point pA is a position where the access point 231 enters the area 221 in the predicted route L1.
  • the boundary point pB is a position where the access point 231 leaves the area 1011 in the predicted route L1.
  • the frequencies that the access point 231 can use are the frequencies f1 and f2.
  • the predicted frequency of switching the frequency of the access point 231 in the predicted route L1 is zero.
  • the predicted frequency of frequency switching of the access point 231 is one at the boundary point pA.
  • the WS database server 240 causes the access point 231 to set a frequency f1 with a low frequency switching prediction frequency among the frequencies f1 to f3 that can be used by the access point 231 at the passing point p1. As a result, frequency switching at the access point 231 can be reduced.
  • the access point 231 and WS database server 240 shown in FIG. 20 are the same as those shown in FIGS. 3-1, 3-2, for example.
  • the frequency selection unit 323 of the WS database server 240 calculates the predicted number of times that the switching of the frequency of the access point 231 occurs in the predicted path L1 when the access point 231 is set for each identified usable frequency. Then, the frequency selection unit 323 selects the use frequency having the largest calculated number of predictions from the usable frequencies of the access point 231 as the use frequency of the access point 231.
  • FIG. 21 is a sequence diagram showing an operation example of the communication system shown in FIG.
  • the communication system 200 shown in FIG. 20 operates as each step shown in FIG. 21, for example.
  • the access point 231 transmits the predicted route information of the access point 231 to the WS database server 240 (step S2101).
  • the WS database server 240 specifies an available frequency corresponding to the current position of the access point 231 based on the predicted route information transmitted in step S2101 and the correspondence information (step S2102).
  • the WS database server 240 calculates, for each usable frequency specified in step S2102, the number of times that the frequency switching in the predicted path L1 occurs when the access point 231 is set (step S2103).
  • the WS database server 240 selects the frequency with the smallest number of predictions calculated in step S2103 from the usable frequencies specified in step S2102 (step S2104).
  • the WS database server 240 transmits use frequency information indicating the frequency selected in step S2104 to the access point 231 (step S2105).
  • the access point 231 sets the frequency indicated by the used frequency information transmitted in step S2105 to the frequency used by the access point 231 for wireless communication (step S2106), and the series of operations ends.
  • the operation shown in FIG. 21 is executed, for example, when the access point 231 is turned on.
  • the timing for executing the operation shown in FIG. 21 is not limited to this.
  • FIG. 22 is a diagram illustrating an example of frequencies that can be used at each position of the predicted path illustrated in FIG. 20.
  • the frequency selection unit 323 of the WS database server 240 illustrated in FIG. 20 performs, for example, a table 2200 illustrated in FIG. 22 by an operation based on the predicted route information output from the communication unit 322 and the correspondence information stored in the WS database 321. Create
  • the frequency at which the access point 231 can be used is associated with each passing point of the access point 231 based on the predicted route indicated by the predicted route information.
  • the frequency selection unit 323 selects the frequency f1 having the smallest number of frequency switching predictions in the prediction path L1 among the specified frequencies f1 and f2 as the use frequency of the access point 231.
  • a frequency with a small number of prediction times that frequency switching occurs in the prediction path is set in the wireless communication device. be able to. Thereby, frequency switching in the wireless communication device can be reduced.
  • a communication system 100 according to the fourth embodiment is the same as the communication system 100 shown in FIGS. 12A and 12B, for example.
  • the acquisition unit 111 of the wireless communication device 110 acquires history information indicating a history of switching of frequencies used by the wireless communication device 110 for wireless communication in a predetermined range including the position of the wireless communication device 110.
  • the acquisition unit 111 outputs the acquired history information to the calculation unit 1211.
  • the calculation unit 1211 Based on the history information output from the acquisition unit 111, the calculation unit 1211 performs switching from the target frequency to another frequency within a predetermined range for each of the frequencies indicated by the frequency information output from the reception unit 113. Calculate the number of occurrences. Then, the calculation unit 1211 notifies the selection unit 124 of the frequency indicated by the frequency information and the number of times calculated for each frequency indicated by the frequency information.
  • the selection unit 124 selects a frequency used by the wireless communication apparatus 110 from the frequencies notified from the calculation unit 1211 based on the number of times notified from the calculation unit 1211. Then, the selection unit 124 notifies the communication unit 114 of the selected frequency.
  • FIG. 23 is a diagram illustrating an application example of the communication system according to the fourth embodiment.
  • the communication system 100 according to the fourth embodiment can be applied to the communication system 200 shown in FIG. 23, for example.
  • An access point 231 is mounted on the vehicle 2310 shown in FIG.
  • the wireless communication apparatus 110 according to the fourth embodiment can be applied to the access point 231, for example.
  • the communication control apparatus 120 according to the fourth embodiment can be applied to the WS database server 240, for example.
  • the predetermined range 2311 is a predetermined range including the position of the access point 231.
  • the predetermined range 2311 is a range surrounded by a circle with a predetermined radius centered on the access point 231.
  • the predetermined radius is determined by the moving speed of the access point 231, for example. For example, if the moving speed (for example, average moving speed) of the access point 231 is v [km / h], the predetermined range 2311 is a circle having the access point 231 as the center and a radius of a ⁇ v (a is a constant). It is the range surrounded by.
  • the predetermined range 2311 is a circle having a radius of 30 km centered on the current position of the access point 231.
  • the switching histories 2321 to 2327 shown in FIG. 23 correspond to the positions corresponding to the positions included in the predetermined range 2311 in the history indicating the positions where the frequency switching has occurred in the access point 231 in the past and the frequencies before and after the switching. It is a history.
  • the access point 231 acquires the switching history 2321 to 2327. For example, the access point 231 extracts switching histories 2321 to 2327 by extracting a history in which the distance between the position corresponding to the history and the current position of the access point 231 is equal to or less than a predetermined radius from the stored history. To get.
  • the frequencies that can be used by the access point 231 at the current position of the access point 231 are frequencies f1 to f3.
  • the access point 231 calculates the number of histories including the switching history from the target frequency to another frequency among the switching histories 2321 to 2327.
  • the access point 231 sets the frequency f1 among the frequencies f1 to f3 that can be used by the access point 231 at the current position of the access point 231. As a result, frequency switching at the access point 231 can be reduced.
  • FIG. 24A is a diagram of an example of each configuration of the communication system depicted in FIG.
  • FIG. 24-2 is a diagram showing an example of a signal flow in the communication system shown in FIG. 24-1.
  • FIGS. 24-1 and 24-2 parts that are the same as the parts shown in FIGS. 14-1 and 14-2 are given the same reference numerals, and descriptions thereof are omitted.
  • the access point 231 includes a range acquisition unit 2411 instead of the route acquisition unit 311 illustrated in FIGS. 14-1 and 14-2, for example.
  • the range acquisition unit 2411 acquires current position information indicating the current position of the access point 231. Then, the range acquisition unit 2411 outputs the acquired current position information to the communication unit 312.
  • the range acquisition unit 2411 acquires the prediction range information of the access point 231.
  • the prediction range information is information indicating the predetermined range 2311 shown in FIG. 23, for example. Then, the range acquisition unit 2411 outputs the acquired prediction range information to the frequency selection unit 1412.
  • the frequency selection unit 1412 Based on the prediction range information output from the range acquisition unit 2411, the usable frequency information output from the communication unit 312, and the switching history information output from the switching history storage unit 1411, the frequency selection unit 1412 The frequency used by H.231 is selected.
  • the acquisition unit 111 according to the fourth embodiment can be realized by the range acquisition unit 2411, for example.
  • FIG. 25 is a sequence diagram showing an operation example of the communication system shown in FIG.
  • the communication system 200 shown in FIG. 23 operates as each step shown in FIG. 25, for example.
  • the access point 231 transmits current position information indicating the current position of the access point 231 to the WS database server 240 (step S2501).
  • the WS database server 240 transmits usable frequency information indicating a frequency that can be used by the access point 231 at the position indicated by the current position information transmitted in step S2501 to the access point 231 (step S2502).
  • the access point 231 acquires the prediction range information and switching history information of the access point 231 (step S2503).
  • the access point 231 calculates, based on the switching history information, the number of switching histories included in the prediction range indicated by the prediction range information for each usable frequency indicated by the usable frequency information transmitted in step S2502. (Step S2504).
  • the access point 231 selects the frequency having the smallest number calculated in step S2504 from the usable frequencies indicated by the usable frequency information transmitted in step S2502 (step S2505).
  • the access point 231 sets the frequency used for wireless communication to the frequency selected in step S2505 (step S2506), and the series of operations ends.
  • the access point 231 can be set to a frequency with a small number of switching histories included in the prediction range of the access point 231. As a result, frequency switching at the access point 231 can be reduced.
  • the operation shown in FIG. 25 is executed, for example, when the access point 231 is turned on.
  • the timing for executing the operation shown in FIG. 25 is not limited to this.
  • FIG. 26 is a diagram illustrating an example of the distance between the history position and the current position.
  • the frequency selection unit 1412 of the access point 231 creates, for example, a table 2600 illustrated in FIG. 26 based on the prediction range information output from the range acquisition unit 2411 and the switching history information stored in the switching history storage unit 1411. To do.
  • the distance between the history position (latitude and longitude) and the current position of the access point 231 is associated with each history of the switching history information 1700 shown in FIG.
  • the predetermined range 2311 shown in FIG. 23 is a circle having a radius of 30 [km] centered on the current position of the access point 231.
  • the record 2602 in the table 2600 has a distance of 35 [km] and is outside the predetermined range 2311.
  • the access point 231 selects a frequency based on the record 2601 corresponding to the position included in the predetermined range 2311 in the table 2600.
  • the record 2601 has zero history of switching from the frequency f1 to another frequency.
  • the history of switching from the frequency f2 to another frequency is four.
  • the history of switching from the frequency f3 to another frequency is three.
  • the frequency selection unit 1412 selects the frequency f1 having the smallest number of histories included in the predetermined range 2311 among the frequencies f1 to f3 as the use frequency of the access point 231.
  • the predetermined range 2311 is a range surrounded by a circle with a predetermined radius centered on the access point 231
  • the predetermined range 2311 is not limited thereto. For example, it may be determined based on the traveling direction of the access point 231.
  • FIG. 27 is a diagram illustrating another example of the predetermined range.
  • the average moving speed of the access point 231 in the X-axis direction is Vx
  • the average moving speed of the access point 231 in the Y-axis direction is Vy
  • the current position of the access point 231 is (Px, Py).
  • the predetermined range 2311 can be a range represented by the following formula (1).
  • a is a real value taking a range of 0 ⁇ a ⁇ 1.
  • the frequency can be selected based on the history information about the position where the access point 231 is likely to be the destination. For this reason, it is possible to select a frequency at which frequency switching in the wireless communication device is likely to be less.
  • the number of histories of switching from the target frequency to another frequency in a predetermined range including the position of the wireless communication device among the frequencies that can be used by the wireless communication device is reduced.
  • the frequency can be selected by calculating the predicted movement range of the access point 231 from the movement speed of the access point 231 and counting the frequency switching history that occurred in the calculated predicted movement range. Accordingly, it is possible to select a frequency that is highly likely to reduce frequency switching in the wireless communication device.
  • the access point 231 selects a frequency based on a value obtained by weighting and counting the history of switching from the target frequency to another frequency according to the distance from the access point 231 at the position where the corresponding switching has occurred. May be.
  • the history weight increases as the distance from the access point 231 at the position where the corresponding switching has occurred is smaller.
  • the frequency can be selected by increasing the weight of the history for the position where the access point 231 is likely to be the destination. For this reason, it is possible to select a frequency at which frequency switching in the wireless communication device is likely to be less.
  • the history weight w (r) can be calculated by, for example, a monotonically decreasing function expressed by the following equation (2).
  • R represents the radius of the predetermined range 2311. r indicates the distance from the access point 231 where the switching corresponding to the history occurred.
  • the history weight can be increased as the distance from the access point 231 at the position where the corresponding switching occurs is smaller.
  • the history weight at the boundary of the predetermined range 2311 can be set to zero.
  • the number of times of switching Nf from the frequency f to the other frequency is, for example, (3 ) Equation.
  • nf indicates the number of positions where switching has occurred in the predetermined range 2311 for the frequency f.
  • the switching frequency Nf (Nf1) for the frequency f1 is zero.
  • the switching frequency Nf (Nf2) for the frequency f2 is expressed by the following equation (4).
  • the switching frequency Nf (Nf3) for the frequency f3 is expressed by the following equation (5).
  • FIG. 28A is a diagram of an example of a communication system according to the fifth embodiment.
  • 28-2 is a diagram of an example of signal flow in the communication system depicted in FIG. 28-1.
  • 28A and 28B the same parts as those shown in FIGS. 1-1 and 1-2 are denoted by the same reference numerals, and description thereof is omitted.
  • the wireless communication device 2830 performs wireless communication by selecting a frequency that can be used by the wireless communication device 2830 at the position of the wireless communication device 2830. Also, correspondence information between positions and usable frequencies in the wireless communication device 110 and the wireless communication device 2830 is common.
  • the radio communication device 2830 transmits switching information to the communication control device 120 when frequency switching occurs.
  • the switching information includes, for example, information indicating the time and position where the frequency switching has occurred and the frequencies before and after the switching.
  • a plurality of wireless communication devices 2830 may exist.
  • the communication control apparatus 120 includes a receiving unit 2821 and a storage unit 2822 in addition to the configurations shown in FIGS. 1-1 and 1-2.
  • the receiving unit 2821 receives the switching information transmitted by the wireless communication device 2830. Then, the reception unit 2821 causes the storage unit 2822 to store the received switching information.
  • the calculating unit 123 Based on the switching information stored in the storage unit 2822, the calculating unit 123 targets each identified frequency from the target frequency to another frequency in the predicted path indicated by the path information output from the receiving unit 121. Calculate the number of times that switching occurred. Then, the calculation unit 123 notifies the selection unit 124 of the identified frequency and the number of times calculated for each identified frequency.
  • the calculation unit 123 determines, based on the switching information stored in the storage unit 2822, each of the identified frequencies from the target frequency in the predicted route indicated by the route information output from the reception unit 121. Calculate the time or distance until switching to the frequency occurs. Then, the calculation unit 123 notifies the selection unit 124 of the identified frequency and the time or distance required for switching calculated for each identified frequency.
  • the selection unit 124 selects the frequency used by the wireless communication apparatus 110 from the frequencies notified from the calculation unit 123 based on the number of times notified from the calculation unit 123 or the time or distance required for switching. For example, the selection unit 124 preferentially selects a frequency having a large number of times notified from the calculation unit 123 among the frequencies notified from the calculation unit 123. If the notified information is the time or distance required for switching, the frequency having the longest time or the longest distance is selected.
  • the communication system 100 has a frequency that is low in the number of times that switching to another frequency has occurred in the predicted path, or switching. It is possible to cause the wireless communication device 110 to set a frequency that takes the longest time or distance to complete.
  • FIG. 28-3 is a diagram showing another example of signal flow in the communication system shown in FIG. 28-1.
  • the acquisition unit 111 of the wireless communication device 110 acquires range information indicating a predetermined range including the position of the wireless communication device 110.
  • the predetermined range is the same as the predetermined range (predicted movement range) described in the fourth embodiment, for example.
  • the acquisition unit 111 outputs the acquired range information to the transmission unit 112.
  • the transmission unit 112 transmits the range information output from the acquisition unit 111 to the communication control device 120.
  • the receiving unit 121 of the communication control device 120 receives the range information transmitted from the wireless communication device 110. Then, the reception unit 121 outputs the received range information to the calculation unit 123. Based on the switching information stored in the storage unit 2822, the calculation unit 123 targets each specified frequency from the target frequency to another frequency in a predetermined range indicated by the range information output from the reception unit 121. Calculate the number of times that switching occurred.
  • the communication system 100 shown in FIG. 28-3 wirelessly transmits a frequency that can be used by the wireless communication apparatus 110 at the position of the wireless communication apparatus 110 and has a low frequency of switching to another frequency within a predetermined range.
  • the communication device 110 can be set. Thereby, frequency switching in the wireless communication device 110 can be reduced.
  • the wireless communication device 110 may transmit the switching information to the communication control device 120 when the frequency is switched.
  • the receiving unit 2821 receives the switching information transmitted by the wireless communication device 2830 and stores the received switching information in the storage unit 2822. Accordingly, it is possible to cause the wireless communication apparatus 110 to set a frequency with a small number of times of switching to another frequency in the wireless communication apparatus 110 and the wireless communication apparatus 2830.
  • FIG. 29 is a diagram illustrating an application example of the communication system according to the fifth embodiment. 29, the same parts as those shown in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.
  • the communication system 100 shown in FIGS. 1-1 and 1-2 can be applied to the communication system 200 shown in FIG. 29, for example.
  • An access point 2921 is mounted on the bus vehicle 2920.
  • An access point 2931 is mounted on the bus vehicle 2930.
  • the radio communication apparatus 2830 shown in FIGS. 28-1 and 28-2 can be applied to each of the access points 2921 and 2931, for example.
  • the access points 231, 292, and 1931 transmit switching information indicating the position where the frequency switching has occurred and the frequencies before and after the switching to the switching history database server 2910.
  • the switching history database server 2910 stores the switching information transmitted from the access points 231, 292, and 1931.
  • frequency switching information from a plurality of WS devices can be aggregated in the switching history database server 2910, and a frequency used by the access point 231 can be selected based on the aggregated switching information. Further, the frequencies used by the access points 2921 and 2931 may be selected based on the switching information collected in the switching history database server 2910.
  • FIG. 30A is a diagram illustrating an example of the configuration of the communication system depicted in FIG. 30-2 is a diagram illustrating an example of signal flow in the configuration of the communication system depicted in FIG. 30-1.
  • 30-1 and 30-2 the same parts as those shown in FIGS. 3-1 and 3-2 are denoted by the same reference numerals and description thereof is omitted.
  • the switching history database server 2910 includes a communication unit 3011, a switching history database 3012, and a frequency selection unit 3013.
  • the communication unit 3011 performs wireless communication with the access points 231, 292 and 1931.
  • the communication unit 3011 receives switching information transmitted from the access points 2921, 2931. Then, the communication unit 3011 stores the received switching information in the switching history database 3012.
  • the communication unit 3011 receives the predicted route information transmitted from the access point 231. Then, the communication unit 3011 outputs the received predicted route information to the frequency selection unit 3013. In addition, the communication unit 3011 transmits current position information indicating the current position of the access point 231 indicated by the received predicted route information to the WS database server 240.
  • the communication unit 3011 receives usable frequency information transmitted from the WS database server 240. Then, the communication unit 3011 outputs the received usable frequency information to the frequency selection unit 3013. In addition, the communication unit 3011 transmits the used frequency information output from the frequency selection unit 3013 to the access point 231.
  • the frequency selection unit 3013 selects the frequency used by the access point 231 based on the predicted route information and usable frequency information output from the communication unit 3011 and the switching information stored in the switching history database 3012. Then, the frequency selection unit 3013 outputs use frequency information indicating the selected frequency to the communication unit 3011.
  • the WS database server 240 includes a WS database 321 and a communication unit 322.
  • the communication unit 322 performs wired communication with the switching history database server 2910. For example, the communication unit 322 receives the current position information transmitted from the switching history database server 2910. Then, the communication unit 322 specifies the usable frequency of the access point 231 based on the current position of the access point 231 indicated by the received current position information and the correspondence information stored in the WS database 321. The communication unit 322 transmits usable frequency information indicating the identified usable frequency to the switching history database server 2910.
  • the reception units 121 and 2821 and the transmission unit 125 illustrated in FIGS. 28A and 28B can be realized by the communication unit 3011, for example.
  • the acquisition unit 122 illustrated in FIGS. 28A and 28B can be realized by the WS database server 240, for example.
  • the calculation unit 123 and the selection unit 124 illustrated in FIGS. 28A and 28B can be realized by the frequency selection unit 3013, for example.
  • the storage unit 2822 shown in FIGS. 28A and 28B can be realized by the switching history database 3012, for example.
  • the switching history database server 2910 can be realized by the information processing device 340 shown in FIG. 3-4, for example.
  • the communication unit 3011 can be realized by the wired communication interface 344 and the wireless communication interface 345 illustrated in FIG. 3-4, for example.
  • the switching history database 3012 can be realized by the memory 342 shown in FIG. 3-4, for example.
  • the frequency selection unit 3013 can be realized by the CPU 341 shown in FIG. 3-4, for example.
  • FIG. 31 is a sequence diagram showing an operation example of the communication system shown in FIG.
  • the communication system 200 shown in FIG. 29 operates as each step shown in FIG. 31, for example.
  • the access point 231 transmits predicted route information indicating the current position and predicted route of the access point 231 to the switching history database server 2910 (step S3101).
  • the switching history database server 2910 transmits current position information indicating the current position of the access point 231 indicated by the predicted route information transmitted in step S3101 to the WS database server 240 (step S3102).
  • the WS database server 240 transmits usable frequency information indicating a frequency that can be used at the position indicated by the current position information transmitted in step S3102 to the switching history database server 2910 (step S3103).
  • the switching history database server 2910 calculates the number of switching histories included in the predicted route indicated by the predicted route information for each usable frequency indicated by the usable frequency information transmitted in step S3103 (step S3104). Next, the switching history database server 2910 selects the frequency having the smallest number calculated in step S3104 among the usable frequencies indicated by the usable frequency information (step S3105).
  • the switching history database server 2910 transmits use frequency information indicating the frequency selected in step S3105 to the access point 231 (step S3106).
  • the access point 231 sets the frequency indicated by the used frequency information transmitted in step S3106 to the frequency used by the access point 231 for wireless communication (step S3107), and the series of operations ends.
  • the operation shown in FIG. 31 is executed, for example, when the access point 231 is powered on.
  • the timing for executing the operation shown in FIG. 31 is not limited to this.
  • the operation shown in FIG. 31 may be performed every time a frequency that is being used by the access point 231 becomes unavailable as the access point 231 moves. As a result, frequency switching at the access point 231 can be reduced not only when the power is turned on.
  • the operation shown in FIG. 31 may be executed every time the predicted route L1 of the access point 231 changes.
  • the operation shown in FIG. 31 may be periodically executed. Thereby, even if the predicted route L1 of the access point 231 changes due to reroute or the like, frequency switching at the access point 231 can be reduced.
  • FIG. 32 is a diagram illustrating an example of the switching information.
  • the access points 231, 292, and 1931 transmit switching information 3200 shown in FIG. 32 to the switching history database server 2910, for example.
  • the switching information 3200 the position where the frequency switching has occurred is associated with the switching information.
  • the switching information indicates the frequency before and after switching.
  • the frequency is switched from the frequency f2 to the frequency f3 at the latitude (36 [°], 38'55 ”) and the longitude (140 [°], 33'20"). Is shown.
  • a frequency with a small number of times of switching to another frequency in the predicted path is used. Can be set. Thereby, frequency switching in the wireless communication device can be reduced.
  • the WS database server 240 manages the use frequencies of the WS devices belonging to the respective networks and uses different frequencies between adjacent networks, thereby avoiding mutual interference.
  • the WS database server 240 that has received the predicted route from the moving access point 231 manages frequency usage so as to suppress interference with other WS devices in the route that the access point 231 passes.
  • frequency allocation to the access point 231 is performed on a first-come-first-served basis.
  • the use situation of the frequency of another WS device located in the vicinity of the predicted path of the access point 231 is also considered.
  • the other WS device can change the frequency. May be.
  • FIG. 33 is a diagram illustrating an application example of the communication system according to the sixth embodiment. 33, the same parts as those shown in FIG. 10 are denoted by the same reference numerals and description thereof is omitted.
  • the passing point p2 is not included in the area 1021 but is included in the areas 221 and 1011.
  • the access point 231 can use the frequencies f1 and f4 at the passing point p2.
  • the passing points p3 to p6 are included in the areas 221, 1011 and 1021. Therefore, the access point 231 can use the frequency f1 at the passing points p3 to p6.
  • the passing point p7 is not included in the area 1011 but is included in the areas 221 and 1021. For this reason, the access point 231 can use the frequencies f1 and f3 at the passing point p7.
  • the WS device 3310 is located in the vicinity of the predicted route L1 of the access point 231, and the WS device 3310 performs wireless communication using the frequency f1.
  • Area 3311 is an area where interference with wireless communication using frequency f1 by WS device 3310 occurs.
  • the access point 231 uses the frequency f1 between the boundary point pA and the passage point p2, for example, interference occurs with the WS device 3310.
  • the access point 231 and the WS device 3310 are WS devices that secondarily use the frequency, unlike the systems to which licenses are assigned, such as the television stations 220, 1010, and 1020, the priority for assignment is set. Absent. However, it is desirable that the access point 231 and the WS device 3310 do not use the same frequency.
  • a table indicating available frequencies is also updated using the frequencies selected by the access point 231 and the WS device 3310, and the frequencies of the access point 231 and the WS device 3310 can be selected using the updated table.
  • FIG. 34 is a diagram illustrating an example of frequencies that can be used in the prediction path illustrated in FIG. 33.
  • the frequency selection unit 323 of the WS database server 240 illustrated in FIG. 33 performs, for example, a table 3400 illustrated in FIG. 33 by calculation based on the predicted route information output from the communication unit 322 and the correspondence information stored in the WS database 321. Create
  • the frequency at which the access point 231 can be used is associated with each passing point of the access point 231 based on the predicted route indicated by the predicted route information.
  • FIG. 35 is a diagram illustrating an example of a result of updating a table indicating available frequencies.
  • the access point 231 cannot use the frequency f1 from the boundary point pA to the passing point p2.
  • the frequency f1 is excluded as a frequency corresponding to the boundary point pA and the passing point p2. Therefore, in this case, for example, the frequency f4 that is not switched to the boundary point pB is selected from the frequencies f1, f2, and f4 as the frequency used by the access point 231.
  • FIG. 36 is a diagram illustrating another example of the update result of the table indicating the usable frequencies.
  • the access point 231 cannot use the frequency f4 from the boundary point pA to the passing point p2. Further, the access point 231 can use the frequency f1 from the boundary point pA to the passing point p2.
  • the frequency f4 is excluded as a frequency corresponding to the boundary point pA and the passing point p2. Therefore, in this case, for example, the frequency f1 that is not switched is selected from the frequencies f1, f2, and f4 as the frequency used by the access point 231.
  • the frequency switching frequency can be reduced. For this reason, for example, the amount of communication accompanying frequency switching can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線通信装置(110)は、無線通信装置(110)の位置および予測経路を示す経路情報を通信制御装置(120)へ送信する。通信制御装置(120)は、無線通信装置(110)の位置と無線通信装置(110)が使用可能な周波数との対応情報と、無線通信装置(110)によって送信された経路情報と、に基づいて、無線通信装置(110)の位置において無線通信装置(110)が使用可能な周波数のそれぞれを対象に、対象の周波数を無線通信装置(110)が使用不可となるまでの予測時間等を算出し、算出した予測時間等に基づいて、無線通信装置(110)の位置において無線通信装置(110)が使用可能な周波数の中から周波数を選択し、選択した周波数を示す周波数情報を無線通信装置(110)へ送信する。無線通信装置(110)は、通信制御装置(120)によって送信された周波数情報が示す周波数を使用して無線通信を行う。

Description

通信システム、通信制御装置、無線通信装置および通信方法
 本発明は、通信システム、通信制御装置、無線通信装置および通信方法に関する。
 近年、無線トラフィックが急速に増大し続けており、有限な資源である周波数に対する需要が増え続けている。周波数の有効使用を図る手段の1つとして、周辺の電波環境を認知して最適な通信を行うコグニティブ無線技術に関する検討が進んでいる。たとえば、ホワイトスペース型(あるいは周波数共用型)コグニティブ無線として、各周波数を優先的に使用できるシステムに干渉しないように、時間、場所に応じて周波数のホワイトスペース(WS:White Space)を見つけて通信を行う機能が知られている。たとえば米国においてはTVホワイトスペース(TVWS)の通信利用が検討されている。
 ホワイトスペース型のコグニティブ無線においては、たとえば、周波数を使用する優先権のあるシステムをプライマリシステムまたは1次システム、ホワイトスペースを見つけて通信を行うシステムはセカンダリシステムまたは2次システムと呼ばれる。TVWSの場合は、TV放送がプライマリシステムとなる。
 TV放送にはUHF(Ultra High Frequency:極超短波)帯などで広い周波数帯域が割り当てられており、地域によって使用されている周波数(物理的なTVチャネル)が異なるだけでなく、時間方向の変動が少ない。このような準静的なTVWSを見つける方法として、センシング方式とデータベースアクセス方式などがある。たとえばFCC(Federal Communications Commission)によって発表されたルールでもセンシング方式やデータベースアクセス方式などについて規定されている。
 データベースアクセス方式においては、たとえばセカンダリシステムがネットワーク上のデータベースにアクセスしてホワイトスペースを示すWS情報を取得する。データベースは、たとえば、TV放送の送信局の位置、送信電力、送信周波数などの情報から計算されたWS情報を位置情報と関連付けたものとなっている。FCCのルールにおいては、データベースアクセス方式を使用するセカンダリシステムがTVWSを使用するのに少なくとも1日に1回以上データベースにアクセスすることが定められている。
 また、第1既存システムから送信される電波に基づいて検出周波数チャネルを検出するとともに、周辺装置からの受信周波数チャネルを受信し、検出周波数チャネルと、受信周波数チャネルと、周波数リストが示すリスト周波数チャネルとに基づいて、これら周波数チャネルを示す新規の周波数リストを作成し、新規の周波数リストを格納する技術が知られている(たとえば、下記特許文献1参照。)。
特開2012-54799号公報
 しかしながら、上述した従来技術では、無線通信装置が移動すると、使用可能な周波数が変化するため、周波数の切替回数が多くなる場合がある。
 本発明は、上述した従来技術による問題点を解消するため、周波数の切替回数を低減することができる通信システム、通信制御装置、無線通信装置および通信方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本発明の一側面によれば、無線通信装置および通信制御装置を含む通信システムであって、前記無線通信装置は、前記無線通信装置の位置および前記無線通信装置の予測経路を示す経路情報を前記通信制御装置へ送信し、前記通信制御装置は、前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報と、前記無線通信装置によって送信された経路情報と、に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数のそれぞれを対象に、対象の周波数を前記無線通信装置が使用不可となるまでの予測時間または予測移動距離を算出し、算出した予測時間または予測移動距離に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択し、選択した周波数を示す周波数情報を前記無線通信装置へ送信し、前記無線通信装置は、前記通信制御装置によって送信された周波数情報が示す周波数を使用して無線通信を行う通信システム、通信制御装置、無線通信装置および通信方法が提案される。
 本発明の一側面によれば、周波数の切替回数を低減することができるという効果を奏する。
図1-1は、実施の形態1にかかる通信システムの一例を示す図である。 図1-2は、図1-1に示した通信システムにおける信号の流れの一例を示す図である。 図2は、実施の形態1にかかる通信システムの適用例1を示す図である。 図3-1は、図2に示した通信システムの各構成の一例を示す図である。 図3-2は、図3-1に示した通信システムにおける信号の流れの一例を示す図である。 図3-3は、アクセスポイントのハードウェア構成の一例を示す図である。 図3-4は、WSデータベースサーバのハードウェア構成の一例を示す図である。 図4は、図2に示した通信システムの動作例を示すシーケンス図である。 図5は、アクセスポイントが送信する予測経路情報の一例を示す図である。 図6は、WSデータベースに記憶される対応情報の一例を示す図である。 図7は、図2に示した予測経路の各位置における使用可能な周波数の一例を示す図である。 図8は、実施の形態1にかかる通信システムの適用例2を示す図である。 図9-1は、図8に示した通信システムの各構成の一例を示す図である。 図9-2は、図9-1に示した通信システムにおける信号の流れの一例を示す図である。 図10は、実施の形態1にかかる通信システムの適用例3を示す図である。 図11は、図10に示した予測経路の各位置における使用可能な周波数の一例を示す図である。 図12-1は、実施の形態2にかかる通信システムの一例を示す図である。 図12-2は、図12-1に示した通信システムにおける信号の流れの一例を示す図である。 図13は、実施の形態2にかかる通信システムの適用例を示す図である。 図14-1は、図13に示した通信システムの各構成の一例を示す図である。 図14-2は、図14-1に示した通信システムにおける信号の流れの一例を示す図である。 図15は、図13に示した通信システムの動作例を示すシーケンス図である。 図16は、使用可能周波数情報の一例を示す図である。 図17は、切替履歴情報の一例を示す図である。 図18は、図13に示した予測経路における周波数の切替履歴の一例を示す図である。 図19は、切替履歴情報の別の例を示す図である。 図20は、実施の形態3にかかる通信システムの適用例を示す図である。 図21は、図20に示した通信システムの動作例を示すシーケンス図である。 図22は、図20に示した予測経路の各位置における使用可能な周波数の一例を示す図である。 図23は、実施の形態4にかかる通信システムの適用例を示す図である。 図24-1は、図23に示した通信システムの各構成の一例を示す図である。 図24-2は、図24-1に示した通信システムにおける信号の流れの一例を示す図である。 図25は、図23に示した通信システムの動作例を示すシーケンス図である。 図26は、履歴の位置と現在位置との間の距離の一例を示す図である。 図27は、所定範囲の他の例を示す図である。 図28-1は、実施の形態5にかかる通信システムの一例を示す図である。 図28-2は、図28-1に示した通信システムにおける信号の流れの一例を示す図である。 図28-3は、図28-1に示した通信システムにおける信号の流れの別の例を示す図である。 図29は、実施の形態5にかかる通信システムの適用例を示す図である。 図30-1は、図29に示した通信システムの構成の一例を示す図である。 図30-2は、図30-1に示した通信システムの構成における信号の流れの一例を示す図である。 図31は、図29に示した通信システムの動作例を示すシーケンス図である。 図32は、切替情報の一例を示す図である。 図33は、実施の形態6の通信システムの適用例を示す図である。 図34は、図33に示した予測経路における使用可能な周波数の一例を示す図である。 図35は、使用可能な周波数を示すテーブルの更新結果の一例を示す図である。 図36は、使用可能な周波数を示すテーブルの更新結果の他の例を示す図である。
 以下に添付図面を参照して、本発明にかかる通信システム、通信制御装置、無線通信装置および通信方法の実施の形態を詳細に説明する。
(実施の形態1)
(実施の形態1にかかる通信システム)
 図1-1は、実施の形態1にかかる通信システムの一例を示す図である。図1-2は、図1-1に示した通信システムにおける信号の流れの一例を示す図である。図1-1,図1-2に示すように、実施の形態1にかかる通信システム100は、無線通信装置110と、通信制御装置120と、を含む。無線通信装置110および通信制御装置120は互いに通信可能である。無線通信装置110と通信制御装置120との間の通信には各種方式の通信を適用することができる。
<無線通信装置>
 無線通信装置110は、取得部111と、送信部112と、受信部113と、通信部114と、を備える。取得部111は、無線通信装置110(自装置)の位置と、未来における無線通信装置110の予測経路と、を示す経路情報を取得する。無線通信装置110の位置は、たとえば現在における無線通信装置110のおよその位置である。取得部111は、取得した経路情報を送信部112へ出力する。送信部112は、取得部111から出力された経路情報を通信制御装置120(無線通信装置)へ送信する。
 受信部113は、通信制御装置120から送信された周波数情報を受信する。そして、受信部113は、受信した周波数情報を通信部114へ出力する。通信部114は、受信部113から出力された周波数情報が示す周波数を使用して無線通信を行う。たとえば、通信部114は、移動体通信網に接続された基地局との間で無線通信を行う。
<通信制御装置>
 通信制御装置120は、受信部121と、取得部122と、算出部123と、選択部124と、送信部125と、を備える。受信部121は、無線通信装置110から送信された経路情報を受信する。そして、受信部121は、受信した経路情報を算出部123へ出力する。
 取得部122は、無線通信装置110の位置と無線通信装置110が使用可能な周波数との対応情報を取得する。たとえば、対応情報は通信制御装置120のメモリに記憶されており、取得部122は通信制御装置120のメモリから対応情報を取得する。または、取得部122は、通信制御装置120の外部の通信装置から対応情報を受信してもよい。取得部122は、取得した対応情報を算出部123および選択部124へ出力する。
 算出部123は、まず、受信部121から出力された経路情報が示す無線通信装置110の位置と、取得部122から出力された対応情報と、に基づいて、無線通信装置110の位置において無線通信装置110が使用可能な周波数を特定する。たとえば、算出部123は、対応情報において、経路情報が示す無線通信装置110の位置と対応する周波数を検索することによって、無線通信装置110の位置において無線通信装置110が使用可能な周波数を特定する。
 そして、算出部123は、特定した周波数のそれぞれを対象として、経路情報が示す無線通信装置110の予測経路と、対応情報と、に基づいて、対象の周波数を無線通信装置110が使用不可となるまでの予測時間を算出する。算出部123は、特定した周波数と、特定した周波数ごとに算出した予測時間と、を選択部124へ通知する。
 選択部124は、算出部123から通知された予測時間に基づいて、算出部123から通知された周波数の中から無線通信装置110が使用する周波数を選択する。たとえば、選択部124は、算出部123から通知された周波数のうちの、算出部123から通知された予測時間がより長い周波数を優先的に選択する。選択部124は、選択した周波数を示す周波数情報を送信部125へ出力する。送信部125は、選択部124から出力された周波数情報を無線通信装置110へ送信する。
 図1-1,図1-2に示した通信システム100により、通信制御装置120は、無線通信装置110の位置において無線通信装置110が使用可能な周波数のうちの、使用不可となるまでの予測時間が長い周波数を無線通信装置110に設定させることができる。これにより、無線通信装置110における周波数の切り替えを少なくすることができる。
(複数の周波数の選択)
 さらに、通信制御装置120の選択部124は、無線通信装置110の位置において無線通信装置110が使用する周波数として選択した周波数を算出部123へ通知してもよい。算出部123は、選択部124から通知された周波数が無線通信装置110において使用不可となる位置において無線通信装置110が使用可能な周波数を特定する。
 そして、算出部123は、特定した周波数のそれぞれを対象として、選択部124から通知された周波数が無線通信装置110において使用不可となる位置より先で、対象の周波数を無線通信装置110が使用不可となるまでの予測時間を算出する。算出部123は、特定した周波数と、特定した周波数ごとに算出した予測時間と、を選択部124へ通知する。
 選択部124は、算出部123から通知された予測時間に基づいて、算出部123から通知された周波数の中から、選択済みの周波数が無線通信装置110において使用不可となる位置から無線通信装置110が使用する周波数を選択する。選択部124は、無線通信装置110の位置について選択した第1周波数と、第1周波数を使用不可になる位置について選択した第2周波数と、を示す周波数情報を送信部125へ出力する。
 この場合は、周波数情報は、第1周波数および第2周波数と、第1周波数より後に第2周波数を使用すべきことと、を示す情報であればよい。たとえば、第1周波数をF1、第2周波数をF2とすると、周波数情報は{F1,F2}のようなリスト情報とすることができる。
 無線通信装置110の通信部114は、周波数情報が示す第1周波数を使用して無線通信を行う。また、通信部114は、無線通信装置110の移動にともなって第1周波数が使用不可となると、周波数情報が示す第2周波数情報を使用して無線通信を行う。これにより、無線通信装置110は、通信制御装置120から通知された周波数が使用不可となったときに、通信制御装置120に対して再度周波数を問い合わせなくても、使用可能でありかつ周波数の切り替えが少なくなる周波数を設定することができる。
 無線通信装置110の位置において使用する周波数が使用不可となった時に使用する1つの周波数を通信制御装置120から通知する場合について説明したが、周波数が使用不可となった時に使用する複数の周波数を通信制御装置120から通知してもよい。
(周波数の切り替えが発生するまでの予測移動距離に基づく周波数の選択)
 周波数を無線通信装置110が使用不可となるまでの予測時間に基づいて周波数を選択する場合について説明したが、周波数を無線通信装置110が使用不可となるまでの無線通信装置110の予測移動距離に基づいて周波数を選択する構成としてもよい。
 たとえば、通信制御装置120の算出部123は、特定した周波数のそれぞれを対象として、対象の周波数を無線通信装置110が使用不可となるまでの無線通信装置110の予測移動距離を算出する。算出部123は、特定した周波数と、特定した周波数ごとに算出した予測移動距離と、を選択部124へ通知する。
 選択部124は、算出部123から通知された予測移動距離に基づいて、算出部123から通知された周波数の中から無線通信装置110が使用する周波数を選択する。たとえば、選択部124は、算出部123から通知された周波数のうちの、算出部123から通知された予測移動距離がより長い周波数を優先的に選択する。
 これにより、通信制御装置120は、無線通信装置110の位置において無線通信装置110が使用可能な周波数のうちの、使用不可となるまでの無線通信装置110の予測移動距離が長い周波数を無線通信装置110に設定させることができる。これにより、無線通信装置110における周波数の切り替えを少なくすることができる。
(実施の形態1にかかる通信システムの適用例)
 図2は、実施の形態1にかかる通信システムの適用例1を示す図である。図1-1,図1-2に示した通信システム100は、たとえば図2に示す通信システム200に適用することができる。図2に示すバス車両230にはアクセスポイント231が搭載されている。図1-1,図1-2に示した無線通信装置110は、たとえばアクセスポイント231に適用することができる。図1-1,図1-2に示した通信制御装置120は、たとえばWSデータベースサーバ240に適用することができる。
 アクセスポイント231は、たとえば、バス車両230の車内の乗客等の通信端末との間で無線通信を行う。また、アクセスポイント231は、たとえば、バックボーン回線として3G(3rd Generation)やLTE(Long Term Evolution)などの広域セル網を有し、バックボーン回線の基地局との間でWS(周波数)を用いて無線通信を行う。これにより、バス車両230の車内の乗客等の通信端末は、アクセスポイント231を介して広域セル網に接続することができる。
 また、アクセスポイント231は、WSデータベースサーバ240との間で通信可能である。アクセスポイント231とWSデータベースサーバ240との間の通信には、たとえばLTEや3Gなどの広域セルラ方式等の各種の通信方式を用いることができる。アクセスポイント231は、バス車両230の予測経路L1を示す予測経路情報をWSデータベースサーバ240へ送信する。アクセスポイント231はバス車両230に搭載されているため、予測経路L1はアクセスポイント231の予測経路でもある。
 また、アクセスポイント231は、アクセスポイント231が使用する周波数(WS)を示す使用周波数情報をWSデータベースサーバ240から受信する。アクセスポイント231は、WSデータベースサーバ240から受信した使用周波数情報が示す周波数を用いて、バックボーン回線の基地局との間で無線通信を行う。
 アクセスポイント231が無線通信に使用し得る周波数は、図2に示す例では周波数f1,f2であるとする。周波数f1,f2は互いに異なる周波数である。ただし、周波数f1,f2のうちのアクセスポイント231が実際に使用可能な周波数(WS)は、アクセスポイント231の位置によって異なる。
 たとえば、テレビ局210は、エリア211において周波数f1を用いて通信を行っている。このため、アクセスポイント231は、エリア211においては周波数f1が使用不可となる。また、テレビ局220は、エリア221において周波数f2を用いて通信を行っている。このため、アクセスポイント231は、エリア221においては周波数f2が使用不可となる。
 通過ポイントp1~p8は、アクセスポイント231の予測経路L1に含まれる各位置を示している。通過ポイントp1は、エリア211にもエリア221にも含まれていない。このため、アクセスポイント231は、通過ポイントp1においては周波数f1,f2を使用可能である。通過ポイントp2~p7は、エリア211に含まれず、エリア221に含まれている。このため、アクセスポイント231は、通過ポイントp2~p7においては、周波数f1を使用可能であり、周波数f2を使用不可である。通過ポイントp8は、エリア211およびエリア221に含まれている。このため、アクセスポイント231は、通過ポイントp8においては周波数f1,f2を使用不可である。
 境界ポイントpAは、予測経路L1においてアクセスポイント231がエリア221へ侵入する位置である。境界ポイントpBは、予測経路L1においてアクセスポイント231がエリア211へ侵入する位置である。
 たとえば、アクセスポイント231が通過ポイントp1に位置している場合は、アクセスポイント231が使用可能な周波数は周波数f1,f2である。通過ポイントp1においてアクセスポイント231に周波数f2を設定させた場合は、境界ポイントpAにおいて周波数f2が使用不可になり、アクセスポイント231において周波数の切り替えが発生する。一方、通過ポイントp1においてアクセスポイント231に周波数f1を設定させた場合は、境界ポイントpBまで周波数f1が使用可能であるため、境界ポイントpBまでアクセスポイント231において周波数の切り替えが発生しない。
 したがって、WSデータベースサーバ240は、通過ポイントp1においてアクセスポイント231が使用可能な周波数f1,f2のうちの、使用不可となるまでの予測時間が長い周波数f1をアクセスポイント231に設定させる。これにより、アクセスポイント231における周波数の切り替えを少なくすることができる。
(通信システムの各構成)
 図3-1は、図2に示した通信システムの各構成の一例を示す図である。図3-2は、図3-1に示した通信システムにおける信号の流れの一例を示す図である。図3-1,図3-2において、図2に示した部分と同様の部分については同一の符号を付して説明を省略する。
<アクセスポイントの構成例>
 図3-1,図3-2に示すように、アクセスポイント231は、たとえば、経路取得部311と、通信部312と、周波数設定部313と、通信部314と、を備える。経路取得部311は、アクセスポイント231の位置と、アクセスポイント231の予測経路L1(たとえば図2参照)と、を示す予測経路情報(たとえば図5参照)を取得する。
 たとえば、アクセスポイント231のメモリには予測経路を示す情報が記憶されており、経路取得部311はアクセスポイント231のメモリから予測経路を示す情報を取得する。または、経路取得部311は、バス車両230のカーナビゲーションシステム等から予測経路を示す情報を取得してもよい。また、経路取得部311は、たとえばGPS(Global Positioning System:全地球測位システム)などを用いてアクセスポイント231の位置を示す情報を取得することができる。経路取得部311は、取得した予測経路情報を通信部312へ出力する。
 通信部312は、WSデータベースサーバ240との間で無線通信を行う。たとえば、通信部312は、経路取得部311から出力された予測経路情報をWSデータベースサーバ240へ送信する。また、通信部312は、WSデータベースサーバ240から送信された使用周波数情報を受信する。そして、通信部312は、受信した使用周波数情報を周波数設定部313へ出力する。
 周波数設定部313は、通信部314が無線通信に使用する周波数を、経路取得部311から出力された使用周波数情報が示す周波数に設定する。通信部314は、周波数設定部313によって設定された周波数によって無線通信を行う。たとえば、通信部314は、バス車両230の通信端末と、基地局と、の間の通信を無線通信により中継する。なお、通信部312および通信部314は、一つの通信部によって実現してもよい。
 図1-1,図1-2に示した取得部111は、たとえば経路取得部311によって実現することができる。図1-1,図1-2に示した送信部112および受信部113は、たとえば通信部312によって実現することができる。図1-1,図1-2に示した通信部114は、たとえば周波数設定部313および通信部314によって実現することができる。
<WSデータベースサーバの構成例>
 図3-1,図3-2に示すように、WSデータベースサーバ240は、WSデータベース321と、通信部322と、周波数選択部323と、を備える。WSデータベース321は、アクセスポイント231の位置と、アクセスポイント231が使用可能な周波数と、を対応付ける対応情報を記憶する。
 通信部322は、アクセスポイント231との間で無線通信を行う。たとえば、通信部322は、アクセスポイント231から送信された予測経路情報を受信する。そして、通信部322は、受信した予測経路情報を周波数選択部323へ出力する。また、通信部322は、周波数選択部323から出力された使用周波数情報をアクセスポイント231へ送信する。
 周波数選択部323は、アクセスポイント231の現在位置においてアクセスポイント231が使用可能な周波数を、アクセスポイント231の使用可能周波数として特定する。具体的には、周波数選択部323は、通信部322から出力された予測経路情報が示すアクセスポイント231の現在位置と、WSデータベース321に記憶された対応情報と、に基づいてアクセスポイント231の使用可能周波数を特定する。
 つぎに、周波数選択部323は、特定した使用可能周波数ごとに、アクセスポイント231に設定させた場合にアクセスポイント231において次の周波数の切り替えが発生するまでの予測時間を算出する。そして、周波数選択部323は、特定した使用可能周波数の中から、算出した予測時間が最も大きい使用可能周波数を、アクセスポイント231の使用周波数として選択する。周波数選択部323は、選択した使用周波数を示す使用周波数情報を通信部322へ出力する。
 図1-1,図1-2に示した受信部121および送信部125は、たとえば通信部322によって実現することができる。図1-1,図1-2に示した取得部122は、たとえばWSデータベース321によって実現することができる。図1-1,図1-2に示した算出部123および選択部124は、たとえば周波数選択部323によって実現することができる。
(アクセスポイントのハードウェア構成)
 図3-3は、アクセスポイントのハードウェア構成の一例を示す図である。図3-1,図3-2に示したアクセスポイント231は、たとえば図3-3に示す情報処理装置330によって実現することができる。情報処理装置330は、CPU331と、メモリ332と、ユーザインタフェース333と、無線通信インタフェース334と、GPSモジュール335と、を備える。CPU331、メモリ332、ユーザインタフェース333、無線通信インタフェース334およびGPSモジュール335は、バス339によって接続されている。
 CPU331(Central Processing Unit)は、情報処理装置330の全体の制御を司る。また、情報処理装置330はCPU331を複数備えていてもよい。メモリ332には、たとえばメインメモリおよび補助メモリが含まれる。メインメモリは、たとえばRAM(Random Access Memory)である。メインメモリは、CPU331のワークエリアとして使用される。補助メモリは、たとえば磁気ディスクやフラッシュメモリなどの不揮発メモリである。補助メモリには、情報処理装置330を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてCPU331によって実行される。
 ユーザインタフェース333は、たとえば、ユーザからの操作入力を受け付ける入力デバイスや、ユーザへ情報を出力する出力デバイスなどを含む。入力デバイスは、たとえばキー(たとえばキーボード)やリモコンなどによって実現することができる。出力デバイスは、たとえばディスプレイやスピーカなどによって実現することができる。また、タッチパネルなどによって入力デバイスおよび出力デバイスを実現してもよい。ユーザインタフェース333は、CPU331によって制御される。
 無線通信インタフェース334は、たとえば、無線によって情報処理装置330の外部との間で通信を行う通信インタフェースである。無線通信インタフェース334は、CPU331によって制御される。
 GPSモジュール335は、情報処理装置330の現在位置を示す情報を取得するモジュールである。GPSモジュール335は、CPU331によって制御される。
 図3-1,図3-2に示した経路取得部311は、たとえばCPU331、メモリ332およびGPSモジュール335によって実現することができる。図3-1,図3-2に示した通信部312,314は、たとえばCPU331および無線通信インタフェース334によって実現することができる。図3-1,図3-2に示した周波数設定部313は、たとえばCPU331によって実現することができる。
(WSデータベースサーバのハードウェア構成)
 図3-4は、WSデータベースサーバのハードウェア構成の一例を示す図である。図3-1,図3-2に示したWSデータベースサーバ240は、たとえば図3-4に示す情報処理装置340によって実現することができる。情報処理装置340は、CPU341と、メモリ342と、ユーザインタフェース343と、有線通信インタフェース344と、無線通信インタフェース345と、を備える。CPU341、メモリ342、ユーザインタフェース343、有線通信インタフェース344および無線通信インタフェース345は、バス349によって接続されている。
 CPU341は、情報処理装置340の全体の制御を司る。また、情報処理装置340はCPU341を複数備えていてもよい。メモリ342には、たとえばメインメモリおよび補助メモリが含まれる。メインメモリは、たとえばRAMである。メインメモリは、CPU341のワークエリアとして使用される。補助メモリは、たとえば磁気ディスク、光ディスク、フラッシュメモリなどの不揮発メモリである。補助メモリには、情報処理装置340を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてCPU341によって実行される。
 ユーザインタフェース343は、たとえば、ユーザからの操作入力を受け付ける入力デバイスや、ユーザへ情報を出力する出力デバイスなどを含む。入力デバイスは、たとえばキー(たとえばキーボード)やリモコンなどによって実現することができる。出力デバイスは、たとえばディスプレイやスピーカなどによって実現することができる。また、タッチパネルなどによって入力デバイスおよび出力デバイスを実現してもよい。ユーザインタフェース343は、CPU341によって制御される。
 有線通信インタフェース344は、たとえば、有線によって情報処理装置340の外部(たとえば上位システム)との間で通信を行う通信インタフェースである。有線通信インタフェース344は、CPU341によって制御される。
 無線通信インタフェース345は、たとえば、無線によって情報処理装置340の外部との間で通信を行う通信インタフェースである。無線通信インタフェース345は、CPU341によって制御される。
 図3-1,図3-2に示した通信部322は、たとえばCPU341および無線通信インタフェース345によって実現することができる。図3-1,図3-2に示したWSデータベース321は、たとえばメモリ342によって実現することができる。図3-1,図3-2に示した周波数選択部323は、たとえばCPU341によって実現することができる。
(通信システムの動作例)
 図4は、図2に示した通信システムの動作例を示すシーケンス図である。図2に示した通信システム200は、たとえば図4に示す各ステップのように動作する。まず、アクセスポイント231が、アクセスポイント231の予測経路情報をWSデータベースサーバ240へ送信する(ステップS401)。
 つぎに、WSデータベースサーバ240が、ステップS401によって送信された予測経路情報と、対応情報と、に基づいて、アクセスポイント231の現在位置に対応する使用可能周波数を特定する(ステップS402)。つぎに、WSデータベースサーバ240が、アクセスポイント231に設定させた場合にアクセスポイント231の次の周波数の切替が生じるまでの予測時間を、ステップS402によって特定した使用可能周波数ごとに算出する(ステップS403)。
 つぎに、WSデータベースサーバ240が、ステップS402によって特定した使用可能周波数の中から、ステップS403によって算出した予測時間が最大の周波数を選択する(ステップS404)。つぎに、WSデータベースサーバ240が、ステップS404によって選択した周波数を示す使用周波数情報をアクセスポイント231へ送信する(ステップS405)。
 つぎに、アクセスポイント231が、ステップS405によって送信された使用周波数情報が示す周波数を、アクセスポイント231が無線通信に用いる周波数に設定し(ステップS406)、一連の動作を終了する。
 以上の各ステップにより、アクセスポイント231の現在位置においてアクセスポイント231が使用可能な周波数のうちの、使用不可となるまでの予測時間が長い周波数をアクセスポイント231に設定させることができる。これにより、アクセスポイント231における周波数の切り替えを少なくすることができる。
 図4に示した動作は、たとえばアクセスポイント231の電源投入時に実行される。ただし、図4に示した動作を実行するタイミングはこれに限らない。たとえば、アクセスポイント231の移動にともなってアクセスポイント231が使用中の周波数が使用不可となるごとに図4に示した動作が実行されてもよい。これにより、電源投入時に限らず、アクセスポイント231における周波数の切り替えを少なくすることができる。
 または、アクセスポイント231の予測経路L1が変化するごとに図4に示した動作が実行されてもよい。または、周期的に図4に示した動作が実行されてもよい。これにより、リルート等によってアクセスポイント231の予測経路L1が変化しても、アクセスポイント231における周波数の切り替えを少なくすることができる。
(アクセスポイントが送信する予測経路情報)
 図5は、アクセスポイントが送信する予測経路情報の一例を示す図である。アクセスポイント231は、予測経路情報として、たとえば図5に示す予測経路情報500をWSデータベースサーバ240へ送信する。予測経路情報500においては、予測経路L1における通過ポイント(通過ポイントp1~p8…)ごとに、日(yy/mm/dd)、時間(hh:mm:ss)、緯度(latitude)および経度(longitude)が対応付けられている。
 たとえば、予測経路情報500は、アクセスポイント231が、12/11/11の10:00:00に、緯度(36[°]、43’00”)かつ経度(140[°]、22’00”)の通過ポイントp1を通過する予定であることを示している。このように、予測経路情報500は、たとえば、位置情報を時系列に列挙したものとすることができる。
 また、予測経路情報500は、たとえば、予測経路L1に含まれる各位置と、予測経路L1に含まれる各位置を通過する予測時刻と、を示す情報である。これにより、WSデータベースサーバ240において、対象の周波数をアクセスポイント231が使用不可となるまでの予測時間や予測移動距離を算出することが可能になる。ただし、WSデータベースサーバ240が対象の周波数をアクセスポイント231が使用不可となるまでの予測移動距離を算出する場合は、予測経路情報500には時刻(日および時間)は含まれていなくてもよい。
(WSデータベースに記憶される対応情報)
 図6は、WSデータベースに記憶される対応情報の一例を示す図である。WSデータベースサーバ240には、たとえば図6に示す対応情報600が記憶される。対応情報600においては、緯度(latitude)および経度(longitude)の組み合わせごとに、アクセスポイント231が使用可能な周波数が対応付けられている。
 たとえば、対応情報600は、緯度(36[°]、43’)かつ経度(140[°]、19’)の位置においてアクセスポイント231が使用可能な周波数は周波数f1であることを示している。
(予測経路の各位置における使用可能な周波数)
 図7は、図2に示した予測経路の各位置における使用可能な周波数の一例を示す図である。WSデータベースサーバ240の周波数選択部323は、通信部322から出力された予測経路情報(たとえば図5参照)と、WSデータベース321に記憶された対応情報(たとえば図6参照)と、に基づく演算によりたとえば図7に示すテーブル700を作成する。
 テーブル700においては、予測経路情報が示す予測経路に基づくアクセスポイント231の通過ポイントごとに、アクセスポイント231が使用可能な周波数が対応付けられている。また、テーブル700の通過ポイントには、予測経路情報が示す通過ポイントp1~p8,…に加えて、通過ポイントp1~p8,…に基づいて補完した各通過ポイントも含まれている。
 また、テーブル700は、アクセスポイント231の各通過ポイントの間の距離が対応付けられている。各通過ポイントの間の距離は、たとえば各通過ポイントの緯度および経度に基づいて算出することができる。
 また、およその現在時刻を12/11/11の10:00:00とする。この場合は、アクセスポイント231の現在位置は緯度(36[°]、43’00”)かつ経度(140[°]、22’00”)となる。周波数選択部323は、作成したテーブル700に基づいて、アクセスポイント231の現在位置に対応する使用可能な周波数f1,f2を特定する。
 そして、周波数選択部323は、特定した周波数f1,f2のそれぞれについて、テーブル700に基づいて、アクセスポイント231に設定させた場合に次にアクセスポイント231において周波数の切り替えが発生するまでの予測時間を算出する。
 図7に示す例では、アクセスポイント231に周波数f1を設定した場合は、同日の10:34:00まで周波数f1が使用可能であるため、アクセスポイント231において周波数の切り替えが発生するまでの予測時間は34分である。また、アクセスポイント231に周波数f2を設定した場合は、同日の10:07:00まで周波数f2が使用可能であるため、アクセスポイント231において周波数の切り替えが発生するまでの予測時間は7分である。
 したがって、周波数選択部323は、特定した周波数f1,f2のうちの、アクセスポイント231において周波数の切り替えが発生するまでの予測時間が最も長い周波数f1をアクセスポイント231の使用周波数として選択する。
(周波数の切り替えが発生するまでの移動距離に基づく使用周波数の選択)
 図2に示した例について、周波数の切り替えが発生するまでの予測時間に基づいて使用周波数を選択する場合について説明したが、周波数の切り替えが発生するまでのアクセスポイント231の予測移動距離に基づいて使用周波数を選択する構成としてもよい。
 たとえば、周波数選択部323は、特定した使用可能周波数ごとに、アクセスポイント231に設定させた場合にアクセスポイント231において次の周波数の切り替えが発生するまでのアクセスポイント231の予測移動距離を算出する。そして、周波数選択部323は、特定した使用可能周波数の中から、算出した予測移動距離が最も大きい使用可能周波数を、アクセスポイント231の使用周波数として選択する。
 この場合に、図7に示す例では、アクセスポイント231に周波数f1を設定した場合は、緯度(36[°]、41’00”)かつ経度(140[°]、16’00”)の位置まで周波数f1が使用可能である。このため、アクセスポイント231において周波数の切り替えが発生するまでのアクセスポイント231の予測移動距離は3+1.5+1.5+1.5+1.5+1.5+3+3=16.5[km]である。
 また、アクセスポイント231に周波数f2を設定した場合は、緯度(36[°]、43’00”)かつ経度(140[°]、20’00”)の位置まで周波数f2が使用可能である。このため、アクセスポイント231において周波数の切り替えが発生するまでのアクセスポイント231の予測移動距離は3[km]である。
 したがって、周波数選択部323は、特定した周波数f1,f2のうちの、アクセスポイント231において周波数の切り替えが発生するまでの予測移動距離が最も長い周波数f1をアクセスポイント231の使用周波数として選択する。
(実施の形態1にかかる通信システムの適用例2)
 図8は、実施の形態1にかかる通信システムの適用例2を示す図である。図8において、図2に示した部分と同様の部分については同一の符号を付して説明を省略する。図8に示すように、通信システム200は、図2に示した構成に加えて周波数管理装置810を備える。この場合は、図1-1,図1-2に示した通信制御装置120は、たとえば周波数管理装置810に適用することができる。
 周波数管理装置810は、アクセスポイント231およびWSデータベースサーバ240との間でそれぞれ通信可能である。周波数管理装置810とアクセスポイント231との間の通信にはたとえば無線通信を用いることができる。周波数管理装置810とWSデータベースサーバ240との間の通信にはたとえば有線通信を用いることができる。この場合は、WSデータベースサーバ240とアクセスポイント231との間で直接通信できなくてもよい。
 アクセスポイント231は、予測経路L1を示す予測経路情報を周波数管理装置810へ送信する。アクセスポイント231は、アクセスポイント231が使用する周波数(WS)を示す使用周波数情報を周波数管理装置810から受信する。アクセスポイント231は、周波数管理装置810から受信した使用周波数情報が示す周波数を用いて、バックボーン回線の基地局との間で無線通信を行う。
 周波数管理装置810は、アクセスポイント231が使用可能なWSを示す情報をWSデータベースサーバ240から受信する。そして、周波数管理装置810は、受信したアクセスポイント231から受信した対応情報600が示すアクセスポイント231の位置を示す位置情報をWSデータベースサーバ240へ送信する。
 このように、アクセスポイント231の使用周波数を選択してアクセスポイント231に通知する機能を、WSデータベースサーバ240とは異なる通信制御装置(たとえば周波数管理装置810)によって実現してもよい。また、WSデータベースサーバ240および周波数管理装置810がそれぞれ別の事業者によって運用されていてもよい。
(通信システムの各構成)
 図9-1は、図8に示した通信システムの各構成の一例を示す図である。図9-2は、図9-1に示した通信システムにおける信号の流れの一例を示す図である。図9-1,図9-2において、図3-1,図3-2に示した部分と同様の部分については同一の符号を付して説明を省略する。
 図9-1,図9-2に示すように、図8に示したWSデータベースサーバ240は、通信部911と、WSデータベース321と、を備える。通信部911は、WSデータベース321に記憶された対応情報を周波数管理装置810へ送信する。通信部911による周波数管理装置810との通信には、たとえば有線通信を用いることができる。
 周波数管理装置810は、通信部921と、周波数選択部323と、通信部322と、を備える。通信部921は、WSデータベースサーバ240から送信された対応情報を受信する。通信部921は、受信した対応情報を周波数選択部323へ出力する。
 周波数選択部323は、通信部322から出力された予測経路情報と、通信部921から出力された対応情報と、に基づいてアクセスポイント231の使用可能周波数を特定する。そして、周波数選択部323は、通信部921から出力された対応情報に基づいて、特定した使用可能周波数ごとに、アクセスポイント231に設定させた場合にアクセスポイント231において次の周波数の切り替えが発生するまでの予測時間(または予測移動距離)を算出する。
(周波数管理装置のハードウェア構成)
 図9-1,図9-2に示した周波数管理装置810は、たとえば図3-4に示した情報処理装置340によって実現することができる。この場合は、図9-1,図9-2に示した通信部322は、たとえばCPU341および無線通信インタフェース345によって実現することができる。
 図9-1,図9-2に示した周波数選択部323は、たとえばCPU341によって実現することができる。図9-1,図9-2に示した通信部921は、たとえばCPU341および有線通信インタフェース344によって実現することができる。
(WSデータベースサーバのハードウェア構成)
 図9-1,図9-2に示したWSデータベースサーバ240は、たとえば図3-4に示した情報処理装置340によって実現することができる。ただし、この場合は、図3-4に示した無線通信インタフェース345は設けなくてもよい。
 図9-1,図9-2に示した通信部911は、たとえばCPU341および有線通信インタフェース344によって実現することができる。図9-1,図9-2に示したWSデータベース321は、たとえばメモリ342によって実現することができる。
(実施の形態1にかかる通信システムの適用例3)
 図10は、実施の形態1にかかる通信システムの適用例3を示す図である。図10において、図2に示した部分と同様の部分については同一の符号を付して説明を省略する。図10に示す例では、アクセスポイント231が無線通信に使用し得る周波数は周波数f1~f4であるとする。周波数f1~f4は互いに異なる周波数である。
 また、アクセスポイント231は、複数の周波数を用いて無線通信を行うことができる。複数の周波数を用いた無線通信としては、たとえば、LTEにおけるキャリアアグリゲーションや、WiFiにおけるチャネルボンディングなどを用いることができる。
 テレビ局1010は、エリア1011において周波数f3を用いて通信を行っている。このため、アクセスポイント231は、エリア1011においては周波数f3が使用不可となる。テレビ局1020は、エリア1021において周波数f4を用いて通信を行っている。このため、アクセスポイント231は、エリア1021においては周波数f4が使用不可となる。
 図10に示す例では、通過ポイントp1は、エリア221,1021に含まれず、エリア1011に含まれている。このため、アクセスポイント231は、通過ポイントp1においては周波数f1,f2,f4が使用可能である。通過ポイントp2~p7は、エリア221,1011,1021に含まれている。このため、アクセスポイント231は、通過ポイントp2~p7においては周波数f1を使用可能である。通過ポイントp8は、エリア1011に含まれず、エリア221,1021に含まれている。このため、アクセスポイント231は、通過ポイントp8においては周波数f1,f3が使用可能である。
 境界ポイントpAは、予測経路L1においてアクセスポイント231がエリア221へ侵入する位置である。境界ポイントpBは、予測経路L1においてアクセスポイント231がエリア1021へ侵入する位置である。境界ポイントpCは、予測経路L1においてアクセスポイント231がエリア1011から出る位置である。
 たとえば、アクセスポイント231が通過ポイントp1に位置している場合は、アクセスポイント231が使用可能な周波数は周波数f1,f2,f4である。通過ポイントp1においてアクセスポイント231に周波数f1を設定させた場合は、アクセスポイント231において周波数の切り替えが発生しない。また、通過ポイントp1においてアクセスポイント231に周波数f2を設定させた場合は、境界ポイントpAにおいて周波数f2が使用不可になり、アクセスポイント231において周波数の切り替えが発生する。また、通過ポイントp1においてアクセスポイント231に周波数f4を設定させた場合は、境界ポイントpBにおいて周波数f4が使用不可になり、アクセスポイント231において周波数の切り替えが発生する。
 したがって、WSデータベースサーバ240は、通過ポイントp1においてアクセスポイント231が使用可能な周波数f1,f2,f4のうちの、使用不可となるまでの予測時間が長い周波数をアクセスポイント231に設定させる。たとえばアクセスポイント231が2つの周波数を同時に用いて無線通信を行う場合は、WSデータベースサーバ240は、使用不可となるまでの予測時間が最も長い2つの周波数f1,f4をアクセスポイント231に設定させる。これにより、アクセスポイント231における周波数の切り替えを少なくすることができる。
(予測経路の各位置における使用可能な周波数)
 図11は、図10に示した予測経路の各位置における使用可能な周波数の一例を示す図である。図10に示したWSデータベースサーバ240の周波数選択部323は、通信部322から出力された予測経路情報と、WSデータベース321に記憶された対応情報と、に基づく演算によりたとえば図11に示すテーブル1100を作成する。
 テーブル1100においては、図7に示したテーブル700と同様に、予測経路情報が示す予測経路に基づくアクセスポイント231の通過ポイントごとに、アクセスポイント231が使用可能な周波数が対応付けられている。
 図11に示す例では、アクセスポイント231に周波数f1を設定した場合は、予測経路L1の終端の通過ポイントp8まで周波数f1が使用可能であるため、アクセスポイント231において周波数の切り替えが発生するまでの予測時間は最長である。また、アクセスポイント231に周波数f2を設定した場合は、同日の10:04:00まで周波数f2が使用可能であるため、アクセスポイント231において周波数の切り替えが発生するまでの予測時間は4分である。また、アクセスポイント231に周波数f4を設定した場合は、同日の10:07:00まで周波数f4が使用可能であるため、アクセスポイント231において周波数の切り替えが発生するまでの予測時間は7分である。
 したがって、周波数選択部323は、特定した周波数f1,f2,f4のうちの、アクセスポイント231において周波数の切り替えが発生するまでの予測時間が最も長い2つの周波数f1,f4をアクセスポイント231の使用周波数として選択する。
 このように、実施の形態1によれば、無線通信装置の位置において無線通信装置が使用可能な周波数のうちの、使用不可となるまでの予測時間が長い周波数を無線通信装置に設定させることができる。または、無線通信装置の位置において無線通信装置が使用可能な周波数のうちの、使用不可となるまでの予測移動距離が長い周波数を無線通信装置に設定させることができる。これにより、無線通信装置における周波数の切り替えを少なくすることができる。
(実施の形態2)
 実施の形態2について、実施の形態1と異なる部分について説明する。
(実施の形態2にかかる通信システム)
 図12-1は、実施の形態2にかかる通信システムの一例を示す図である。図12-2は、図12-1に示した通信システムにおける信号の流れの一例を示す図である。図12-1,図12-2において、図1-1,図1-2に示した部分と同様の部分については同一の符号を付して説明を省略する。
<無線通信装置>
 実施の形態2にかかる無線通信装置110は、取得部111と、送信部112と、受信部113と、算出部1211と、選択部124と、通信部114と、を備える。取得部111は、無線通信装置110の位置を示す位置情報を取得する。そして、取得部111は、取得した位置情報を送信部112へ出力する。
 また、取得部111は、未来における無線通信装置110の予測経路を示す経路情報を取得する。そして、取得部111は、取得した経路情報に基づいて、無線通信装置110が無線通信に使用する周波数の、無線通信装置110の予測経路に含まれる位置における切り替えの履歴を示す履歴情報を取得する。取得部111は、取得した履歴情報を算出部1211へ出力する。
 送信部112は、取得部111から出力された位置情報を通信制御装置120(無線通信装置)へ送信する。受信部113は、通信制御装置120から送信された周波数情報を受信する。そして、受信部113は、受信した周波数情報を算出部1211へ出力する。
 算出部1211は、取得部111から出力された履歴情報に基づいて、受信部113から出力された周波数情報が示す周波数のそれぞれを対象に、対象の周波数を無線通信装置110が使用不可となるまでの予測時間を算出する。そして、算出部1211は、周波数情報が示す周波数と、周波数情報が示す周波数ごとに算出した予測時間を選択部124へ通知する。
 選択部124は、算出部1211から通知された予測時間に基づいて、算出部1211から通知された周波数の中から無線通信装置110が使用する周波数を選択する。そして、選択部124は、選択した周波数を通信部114へ通知する。通信部114は、選択部124から通知された周波数を使用して無線通信を行う。
<通信制御装置>
 通信制御装置120は、受信部121と、特定部1221と、取得部122と、送信部125と、を備える。受信部121は、無線通信装置110から送信された位置情報を受信する。そして、受信部121は、受信した位置情報を特定部1221へ出力する。取得部122は、取得した対応情報を特定部1221へ出力する。
 特定部1221は、受信部121から出力された位置情報が示す無線通信装置110の位置と、取得部122から出力された対応情報と、に基づいて、無線通信装置110の位置において無線通信装置110が使用可能な周波数を特定する。たとえば、特定部1221は、対応情報において、位置情報が示す無線通信装置110の位置と対応する周波数を検索することによって、無線通信装置110の位置において無線通信装置110が使用可能な周波数を特定する。
 そして、特定部1221は、特定した周波数を示す周波数情報を送信部125へ出力する。送信部125は、特定部1221から出力された周波数情報を無線通信装置110へ送信する。
 図12-1,図12-2に示した通信システム100により、無線通信装置110は、無線通信装置110の位置において無線通信装置110が使用可能な周波数のうちの、使用不可となるまでの予測時間が長い周波数を設定することができる。これにより、無線通信装置110における周波数の切り替えを少なくすることができる。
(周波数の切り替えが発生するまでの予測移動距離に基づく周波数の選択)
 周波数を無線通信装置110が使用不可となるまでの予測時間に基づいて周波数を選択する場合について説明したが、周波数を無線通信装置110が使用不可となるまでの無線通信装置110の予測移動距離に基づいて周波数を選択する構成としてもよい。
 たとえば、無線通信装置110の算出部1211は、特定した周波数のそれぞれを対象として、対象の周波数を無線通信装置110が使用不可となるまでの無線通信装置110の予測移動距離を算出する。算出部1211は、周波数情報が示す周波数と、周波数情報が示す周波数ごとに算出した予測移動距離と、を選択部124へ通知する。
 選択部124は、算出部1211から通知された予測移動距離に基づいて、算出部1211から通知された周波数の中から無線通信装置110が使用する周波数を選択する。たとえば、選択部124は、算出部1211から通知された周波数のうちの、算出部1211から通知された予測移動距離がより長い周波数を優先的に選択する。
 これにより、無線通信装置110は、無線通信装置110の位置において無線通信装置110が使用可能な周波数のうちの、使用不可となるまでの無線通信装置110の予測移動距離が長い周波数を設定することができる。これにより、無線通信装置110における周波数の切り替えを少なくすることができる。
(実施の形態2にかかる通信システムの適用例)
 図13は、実施の形態2にかかる通信システムの適用例を示す図である。図13において、図2に示した部分と同様の部分については同一の符号を付して説明を省略する。図13に示す切替履歴1301~1304は、過去にアクセスポイント231において周波数の切り替えが発生した位置と、切替前後の周波数と、を示す履歴である。たとえば、切替履歴1301は、過去に境界ポイントpAにおいて周波数f2から周波数f3への切り替えが発生したことを示している。アクセスポイント231は、切替履歴1301~1304のうちの、アクセスポイント231の予測経路L1に含まれる位置に対応する切替履歴1301,1302を取得する。
 たとえば、アクセスポイント231が通過ポイントp1に位置している場合は、アクセスポイント231が使用可能な周波数が周波数f1,f2であるとする。通過ポイントp1においてアクセスポイント231に周波数f2を設定させた場合は、境界ポイントpAにおいて周波数f2が使用不可になり、アクセスポイント231において周波数の切り替えが発生する。一方、通過ポイントp1においてアクセスポイント231に周波数f1を設定させた場合は、境界ポイントpBまで周波数f1が使用可能であるため、境界ポイントpBまでアクセスポイント231において周波数の切り替えが発生しない。
 したがって、WSデータベースサーバ240は、通過ポイントp1においてアクセスポイント231が使用可能な周波数f1,f2のうちの、使用不可となるまでの予測時間が長い周波数f1をアクセスポイント231に設定させる。これにより、アクセスポイント231における周波数の切り替えを少なくすることができる。
(通信システムの各構成)
 図14-1は、図13に示した通信システムの各構成の一例を示す図である。図14-2は、図14-1に示した通信システムにおける信号の流れの一例を示す図である。図14-1,図14-2において、図3-1,図3-2に示した部分と同様の部分については同一の符号を付して説明を省略する。
<アクセスポイントの構成例>
 図14-1,図14-2に示すように、アクセスポイント231は、たとえば、経路取得部311と、通信部312と、切替履歴記憶部1411と、周波数選択部1412と、通信部314と、を備える。経路取得部311は、アクセスポイント231の現在位置を示す現在位置情報を取得する。そして、経路取得部311は、取得した現在位置情報を通信部312へ出力する。また、経路取得部311は、アクセスポイント231の予測経路情報(たとえば図5参照)を取得する。そして、経路取得部311は、取得した予測経路情報を周波数選択部1412へ出力する。
 通信部312は、経路取得部311から出力された現在位置情報をWSデータベースサーバ240へ送信する。また、通信部312は、WSデータベースサーバ240から送信された使用可能周波数情報を受信する。そして、通信部312は、受信した使用可能周波数情報を周波数選択部1412へ出力する。
 切替履歴記憶部1411は、アクセスポイント231が無線通信に使用する周波数の切り替えの履歴情報を記憶する。周波数選択部1412は、経路取得部311から出力された予測経路情報と、切替履歴記憶部1411に記憶された履歴情報と、通信部312から出力された使用可能周波数情報と、に基づいて、アクセスポイント231が使用する周波数を選択する。そして、周波数選択部1412は、選択した周波数を、通信部314が無線通信に使用する周波数として設定する。通信部314は、周波数選択部1412によって設定された周波数によって無線通信を行う。
 図12-1,図12-2に示した取得部111は、たとえば経路取得部311によって実現することができる。図12-1,図12-2に示した送信部112および受信部113は、たとえば通信部312によって実現することができる。図12-1,図12-2に示した算出部1211は、たとえば周波数選択部1412によって実現することができる。図12-1,図12-2に示した通信部114は、たとえば通信部314によって実現することができる。
<WSデータベースサーバの構成例>
 図14-1および図14-2に示すように、WSデータベースサーバ240は、通信部322と、WSデータベース321と、を備える。通信部322は、アクセスポイント231から送信された現在位置情報を受信する。そして、通信部322は、受信した現在位置情報をWSデータベース321へ出力する。また、通信部322は、WSデータベース321から出力された使用可能周波数情報をアクセスポイント231へ送信する。
 WSデータベース321は、記憶している対応情報において、アクセスポイント231から出力された現在位置情報が示す位置に対応する周波数を特定し、特定した周波数を示す使用可能周波数情報を通信部322へ出力する。
 図12-1,図12-2に示した受信部121および送信部125はたとえば通信部322によって実現することができる。図12-1,図12-2に示した特定部1221および取得部122はたとえばWSデータベース321によって実現することができる。
(通信システムの動作例)
 図15は、図13に示した通信システムの動作例を示すシーケンス図である。図13に示した通信システム200は、たとえば図15に示す各ステップのように動作する。まず、アクセスポイント231が、アクセスポイント231の現在位置を示す現在位置情報をWSデータベースサーバ240へ送信する(ステップS1501)。
 つぎに、WSデータベースサーバ240が、ステップS1501によって送信された現在位置情報が示す位置においてアクセスポイント231が使用可能な周波数を示す使用可能周波数情報をアクセスポイント231へ送信する(ステップS1502)。
 つぎに、アクセスポイント231が、アクセスポイント231の予測経路情報および切替履歴情報を取得する(ステップS1503)。つぎに、アクセスポイント231が、アクセスポイント231において周波数の切替が生じるまでの予測時間を、ステップS1502によって送信された使用可能周波数情報が示す使用可能周波数ごとに算出する(ステップS1504)。
 つぎに、アクセスポイント231が、ステップS1502によって送信された使用可能周波数情報が示す使用可能周波数の中から、ステップS1504によって算出した予測時間が最大の周波数を選択する(ステップS1505)。つぎに、アクセスポイント231が、無線通信に使用する周波数を、ステップS1505によって選択した周波数に設定し(ステップS1506)、一連の動作を終了する。
 以上の各ステップにより、アクセスポイント231の現在位置においてアクセスポイント231が使用可能な周波数のうちの、使用不可となるまでの予測時間が長い周波数をアクセスポイント231に設定させることができる。これにより、アクセスポイント231における周波数の切り替えを少なくすることができる。
 図15に示した動作は、たとえばアクセスポイント231の電源投入時に実行される。ただし、図15に示した動作を実行するタイミングはこれに限らない。たとえば、アクセスポイント231の移動にともなってアクセスポイント231が使用中の周波数が使用不可となるごとに図15に示した動作が実行されてもよい。これにより、電源投入時に限らず、アクセスポイント231における周波数の切り替えを少なくすることができる。
 または、アクセスポイント231の予測経路L1が変化するごとに図15に示した動作が実行されてもよい。または、周期的に図15に示した動作が実行されてもよい。これにより、リルート等によってアクセスポイント231の予測経路L1が変化しても、アクセスポイント231における周波数の切り替えを少なくすることができる。
(使用可能周波数情報)
 図16は、使用可能周波数情報の一例を示す図である。WSデータベースサーバ240は、たとえば図16に示す使用可能周波数情報1600をアクセスポイント231へ送信する。使用可能周波数情報1600においては、アクセスポイント231の現在位置においてアクセスポイント231が使用可能な周波数(f1,f2,…)が列挙されている。アクセスポイント231は、使用可能周波数情報1600に列挙された周波数の中から、無線通信に使用する周波数を選択する。
(切替履歴情報)
 図17は、切替履歴情報の一例を示す図である。アクセスポイント231の切替履歴記憶部1411は、たとえば図17に示す切替履歴情報1700を記憶する。切替履歴情報1700においては、アクセスポイント231において過去に周波数の切り替えが発生した位置ごとに、日(yy/mm/dd)、時間(hh:mm:ss)、緯度(latitude)、経度(longitude)および切替前後の周波数が対応付けられている。切替前後の周波数における「none」は、アクセスポイント231において使用可能な周波数がなくなったことを示している。
 たとえば、切替履歴情報1700の一つ目のレコードは、12/11/11の10:07:00に、緯度(36[°]、43’00”)かつ経度(140[°]、22’00”)の通過ポイントp1をアクセスポイント231が通過したことを示している。また、切替履歴情報1700の一つ目のレコードは、アクセスポイント231が通過ポイントp1を通過時に、周波数f2から周波数f1への切り替えが発生したことを示している。
(予測経路における周波数の切替履歴)
 図18は、図13に示した予測経路における周波数の切替履歴の一例を示す図である。アクセスポイント231の周波数選択部1412は、経路取得部311から出力された予測経路情報(たとえば図5参照)と、切替履歴記憶部1411に記憶された切替履歴情報(たとえば図17参照)と、に基づく演算によりたとえば図18に示すテーブル1800を作成する。
 テーブル1800においては、予測経路情報が示す予測経路に基づくアクセスポイント231の通過ポイントのうち、アクセスポイント231において過去に周波数の切替があった通過ポイントに対して切替情報が対応付けられている。切替情報は、対応する通過ポイントにおける切替前後の周波数を示している。
 周波数選択部1412は、特定した周波数f1,f2のそれぞれについて、テーブル1800に基づいて、アクセスポイント231に設定させた場合に次にアクセスポイント231において周波数の切り替えが発生するまでの予測時間を算出する。
 図18に示す例では、アクセスポイント231に周波数f1を設定した場合は、同日の10:34:00まで周波数f1が使用可能であるため、アクセスポイント231において周波数の切り替えが発生するまでの予測時間は34分である。また、アクセスポイント231に周波数f2を設定した場合は、同日の10:07:00まで周波数f2が使用可能であるため、アクセスポイント231において周波数の切り替えが発生するまでの予測時間は7分である。
 したがって、周波数選択部1412は、特定した周波数f1,f2のうちの、アクセスポイント231において周波数の切り替えが発生するまでの予測時間が最も長い周波数f1をアクセスポイント231の使用周波数として選択する。
(周波数の切り替えが発生するまでの移動距離に基づく使用周波数の選択)
 図13に示した例について、周波数の切り替えが発生するまでの予測時間に基づいて使用周波数を選択する場合について説明したが、周波数の切り替えが発生するまでのアクセスポイント231の予測移動距離に基づいて使用周波数を選択する構成としてもよい。
 たとえば、周波数選択部1412は、特定した使用可能周波数ごとに、通信部314に設定する場合にアクセスポイント231において次の周波数の切り替えが発生するまでのアクセスポイント231の予測移動距離を算出する。そして、周波数選択部1412は、特定した使用可能周波数の中から、算出した予測移動距離が最も大きい使用可能周波数を、アクセスポイント231の使用周波数として選択する。
(切替履歴情報の別の例)
 図19は、切替履歴情報の別の例を示す図である。図19において、図17に示した部分と同様の部分については同一の符号を付して説明を省略する。アクセスポイント231の切替履歴記憶部1411は、たとえば図19に示す切替履歴情報1700を記憶していてもよい。図19に示す切替履歴情報1700においては、アクセスポイント231において過去に周波数の切り替えが発生した位置ごとに、図17に示した項目に加えて通過方向(direction)が対応付けられている。
 図19に示す切替履歴情報1700の通過方向は、たとえば、所定方向(たとえば図13の右方向)との間の角度によって示されている。
 たとえば、切替履歴情報1700の一つ目のレコードは、12/11/11の10:07:00に、アクセスポイント231が通過ポイントp1を、所定方向に対して180°の方向(たとえば図13の左方向)に通過したことを示している。
 このように、切替履歴情報1700には、アクセスポイント231の周波数の、予測経路L1に含まれる位置と、予測経路L1に含まれる位置をアクセスポイント231が通過した方向と、の組み合わせに対応する切り替えの履歴が含まれていてもよい。これにより、アクセスポイント231の予測経路L1における周波数の切替履歴(たとえば図18参照)をより正確に判定することができる。
 このように、実施の形態2によれば、無線通信装置の位置において無線通信装置が使用可能な周波数のうちの、使用不可となるまでの予測時間が長い周波数を無線通信装置に設定させることができる。または、無線通信装置の位置において無線通信装置が使用可能な周波数のうちの、使用不可となるまでの予測移動距離が長い周波数を無線通信装置に設定させることができる。これにより、無線通信装置における周波数の切り替えを少なくすることができる。
(実施の形態3)
 実施の形態3について、実施の形態1と異なる部分について説明する。
(実施の形態3にかかる通信システム)
 実施の形態3にかかる通信システム100は、たとえば図1-1,図1-2に示した通信システム100と同様である。ただし、通信制御装置120の算出部123は、特定した周波数のそれぞれを対象として、対象の周波数を無線通信装置110に設定した場合に、無線通信装置110の予測経路において発生する無線通信装置110の周波数の切替の予測回数を算出する。算出部123は、特定した周波数と、特定した周波数ごとに算出した予測回数を選択部124へ通知する。
 選択部124は、算出部123から通知された予測回数に基づいて、算出部123から通知された周波数の中から無線通信装置110が使用する周波数を選択する。たとえば、選択部124は、算出部123から通知された周波数のうちの、算出部123から通知された予測回数が多い周波数を優先的に選択する。
 実施の形態3にかかる通信システム100により、無線通信装置110の位置において使用可能な周波数のうちの、予測経路において周波数の切り替え予測回数が少なくなる周波数を無線通信装置110に設定させることができる。これにより、無線通信装置110における周波数の切り替えを少なくすることができる。
 また、無線通信装置110の周波数を通信制御装置120において選択する構成について説明したが、実施の形態2のように、無線通信装置110の周波数を無線通信装置110において選択する構成としてもよい。たとえば、図12-1,図12-2に示した算出部1211が、特定した周波数のそれぞれを対象として、対象の周波数を無線通信装置110に設定した場合に、無線通信装置110の予測経路において発生する周波数の切替の予測回数を算出する。そして、算出部1211は、特定した周波数と、特定した周波数ごとに算出した予測回数を選択部124へ通知する。選択部124は、算出部1211から通知された予測回数に基づいて、算出部1211から通知された周波数の中から無線通信装置110が使用する周波数を選択する。
(実施の形態3にかかる通信システムの適用例)
 図20は、実施の形態3にかかる通信システムの適用例を示す図である。図20において、図2または図10に示した部分と同様の部分については同一の符号を付して説明を省略する。図20に示す例では、アクセスポイント231が無線通信に使用し得る周波数は周波数f1~f3であるとする。周波数f1~f3は互いに異なる周波数である。
 図20に示す例では、通過ポイントp1は、エリア221に含まれず、エリア1011に含まれている。このため、アクセスポイント231は、通過ポイントp1においては周波数f1,f2が使用可能である。通過ポイントp2~p7は、エリア221,1011に含まれている。このため、アクセスポイント231は、通過ポイントp2~p7においては周波数f1を使用可能である。通過ポイントp8は、エリア1011に含まれず、エリア221に含まれている。このため、アクセスポイント231は、通過ポイントp8においては周波数f1,f3が使用可能である。
 境界ポイントpAは、予測経路L1においてアクセスポイント231がエリア221へ侵入する位置である。境界ポイントpBは、予測経路L1においてアクセスポイント231がエリア1011から出る位置である。
 たとえば、アクセスポイント231が通過ポイントp1に位置している場合は、アクセスポイント231が使用可能な周波数は周波数f1,f2である。通過ポイントp1においてアクセスポイント231に周波数f1を設定させた場合は、予測経路L1においてアクセスポイント231の周波数の切替の予測回数が0回となる。また、通過ポイントp1においてアクセスポイント231に周波数f2を設定させた場合は、アクセスポイント231の周波数の切替の予測回数が境界ポイントpAでの1回となる。
 したがって、WSデータベースサーバ240は、通過ポイントp1においてアクセスポイント231が使用可能な周波数f1~f3のうちの、周波数の切替の予測回数が少ない周波数f1をアクセスポイント231に設定させる。これにより、アクセスポイント231における周波数の切り替えを少なくすることができる。
(通信システムの各構成)
 図20に示したアクセスポイント231およびWSデータベースサーバ240は、たとえば図3-1,図3-2と同様である。ただし、WSデータベースサーバ240の周波数選択部323は、特定した使用可能周波数ごとに、アクセスポイント231に設定させた場合に予測経路L1においてアクセスポイント231の周波数の切り替えが発生する予測回数を算出する。そして、周波数選択部323は、アクセスポイント231の使用可能周波数の中から、算出した予測回数が最も大きい使用周波数を、アクセスポイント231の使用周波数として選択する。
(実施の形態3にかかる通信システムの動作例)
 図21は、図20に示した通信システムの動作例を示すシーケンス図である。図20に示した通信システム200は、たとえば図21に示す各ステップのように動作する。まず、アクセスポイント231が、アクセスポイント231の予測経路情報をWSデータベースサーバ240へ送信する(ステップS2101)。
 つぎに、WSデータベースサーバ240が、ステップS2101によって送信された予測経路情報と、対応情報と、に基づいて、アクセスポイント231の現在位置に対応する使用可能周波数を特定する(ステップS2102)。つぎに、WSデータベースサーバ240が、アクセスポイント231に設定させた場合に予測経路L1において周波数の切り替えが生じる予測回数を、ステップS2102によって特定した使用可能周波数ごとに算出する(ステップS2103)。
 つぎに、WSデータベースサーバ240が、ステップS2102によって特定した使用可能周波数の中から、ステップS2103によって算出した予測回数が最小の周波数を選択する(ステップS2104)。つぎに、WSデータベースサーバ240が、ステップS2104によって選択した周波数を示す使用周波数情報をアクセスポイント231へ送信する(ステップS2105)。
 つぎに、アクセスポイント231が、ステップS2105によって送信された使用周波数情報が示す周波数を、アクセスポイント231が無線通信に用いる周波数に設定し(ステップS2106)、一連の動作を終了する。
 以上の各ステップにより、アクセスポイント231の現在位置においてアクセスポイント231が使用可能な周波数のうちの、予測経路L1において周波数の切り替えが生じる予測回数が少ない周波数をアクセスポイント231に設定させることができる。これにより、アクセスポイント231における周波数の切り替えを少なくすることができる。
 図21に示した動作は、たとえばアクセスポイント231の電源投入時に実行される。ただし、図21に示した動作を実行するタイミングはこれに限らない。
(予測経路の各位置における使用可能な周波数)
 図22は、図20に示した予測経路の各位置における使用可能な周波数の一例を示す図である。図20に示したWSデータベースサーバ240の周波数選択部323は、通信部322から出力された予測経路情報と、WSデータベース321に記憶された対応情報と、に基づく演算によりたとえば図22に示すテーブル2200を作成する。
 テーブル2200においては、図7に示したテーブル700と同様に、予測経路情報が示す予測経路に基づくアクセスポイント231の通過ポイントごとに、アクセスポイント231が使用可能な周波数が対応付けられている。
 図22に示す例では、アクセスポイント231に周波数f1を設定した場合は、予測経路L1には周波数f1が使用不可となった履歴がないため、予測経路L1における周波数の切り替えの予測回数は0回である。アクセスポイント231に周波数f2を設定した場合は、予測経路L1のうちの通過ポイントp2における周波数f2が使用不可となった履歴があるため、予測経路L1において周波数の切り替えの予測回数は1回である。
 したがって、周波数選択部323は、特定した周波数f1,f2のうちの、予測経路L1における周波数の切り替えの予測回数が最も少ない周波数f1をアクセスポイント231の使用周波数として選択する。
 このように、実施の形態3によれば、無線通信装置の位置において無線通信装置が使用可能な周波数のうちの、予測経路において周波数の切り替えが生じる予測回数が少ない周波数を無線通信装置に設定することができる。これにより、無線通信装置における周波数の切り替えを少なくすることができる。
(実施の形態4)
 実施の形態4において、実施の形態2と異なる部分について説明する。
(実施の形態4にかかる通信システム)
 実施の形態4にかかる通信システム100は、たとえば図12-1,図12-2に示した通信システム100と同様である。ただし、無線通信装置110の取得部111は、無線通信装置110の位置を含む所定範囲における、無線通信装置110が無線通信に使用する周波数の切り替えの履歴を示す履歴情報を取得する。取得部111は、取得した履歴情報を算出部1211へ出力する。
 算出部1211は、取得部111から出力された履歴情報に基づいて、受信部113から出力された周波数情報が示す周波数のそれぞれを対象に、対象の周波数から他の周波数への切り替えが所定範囲において発生した回数を算出する。そして、算出部1211は、周波数情報が示す周波数と、周波数情報が示す周波数ごとに算出した回数を選択部124へ通知する。
 選択部124は、算出部1211から通知された回数に基づいて、算出部1211から通知された周波数の中から無線通信装置110が使用する周波数を選択する。そして、選択部124は、選択した周波数を通信部114へ通知する。
(実施の形態4にかかる通信システムの適用例)
 図23は、実施の形態4にかかる通信システムの適用例を示す図である。図23において、図2に示した部分と同様の部分については同一の符号を付して説明を省略する。実施の形態4にかかる通信システム100は、たとえば図23に示す通信システム200に適用することができる。図2に示す車両2310にはアクセスポイント231が搭載されている。実施の形態4にかかる無線通信装置110は、たとえばアクセスポイント231に適用することができる。実施の形態4にかかる通信制御装置120は、たとえばWSデータベースサーバ240に適用することができる。
 所定範囲2311は、アクセスポイント231の位置を含む所定範囲である。たとえば、所定範囲2311は、アクセスポイント231を中心とする所定半径の円に囲まれる範囲である。所定半径は、たとえばアクセスポイント231の移動速度によって決定される。たとえば、アクセスポイント231の移動速度(たとえば平均移動速度)がv[km/h]であるとすると、所定範囲2311は、アクセスポイント231を中心とし、半径がa・v(aは定数)の円に囲まれる範囲である。
 たとえば、アクセスポイント231の移動速度は30[km/h]とし、定数a=1とする。この場合は、所定範囲2311は、アクセスポイント231の現在位置を中心とする半径30[km]の円となる。
 図23に示す切替履歴2321~2327は、過去にアクセスポイント231において周波数の切り替えが発生した位置と、切替前後の周波数と、を示す履歴のうちの、所定範囲2311に含まれる位置に対応する切替履歴である。アクセスポイント231は、切替履歴2321~2327を取得する。たとえば、アクセスポイント231は、記憶している履歴の中から、履歴に対応する位置とアクセスポイント231の現在位置との間の距離が所定半径以下である履歴を抽出することによって切替履歴2321~2327を取得する。
 たとえば、アクセスポイント231の現在位置においてアクセスポイント231が使用可能な周波数が周波数f1~f3であるとする。アクセスポイント231は、周波数f1~f3のそれぞれを対象に、切替履歴2321~2327のうちの、対象の周波数から他の周波数への切替履歴を含む履歴の数を算出する。
 図23に示す例では、切替履歴2321~2327のうちの、周波数f1から他の周波数への切替履歴を含む履歴の数が最も少ない(0個)。このため、アクセスポイント231は、アクセスポイント231の現在位置においてアクセスポイント231が使用可能な周波数f1~f3のうちの周波数f1を設定する。これにより、アクセスポイント231における周波数の切り替えを少なくすることができる。
(通信システムの各構成)
 図24-1は、図23に示した通信システムの各構成の一例を示す図である。図24-2は、図24-1に示した通信システムにおける信号の流れの一例を示す図である。図24-1,図24-2において、図14-1,図14-2に示した部分と同様の部分については同一の符号を付して説明を省略する。
<アクセスポイントの構成例>
 図24-1,図24-2に示すように、アクセスポイント231は、たとえば、図14-1,図14-2に示した経路取得部311に代えて範囲取得部2411を備える。範囲取得部2411は、アクセスポイント231の現在位置を示す現在位置情報を取得する。そして、範囲取得部2411は、取得した現在位置情報を通信部312へ出力する。また、範囲取得部2411は、アクセスポイント231の予測範囲情報を取得する。予測範囲情報は、たとえば図23に示した所定範囲2311を示す情報である。そして、範囲取得部2411は、取得した予測範囲情報を周波数選択部1412へ出力する。
 周波数選択部1412は、範囲取得部2411から出力された予測範囲情報と、通信部312から出力された使用可能周波数情報と、切替履歴記憶部1411から出力された切替履歴情報に基づいて、アクセスポイント231が使用する周波数を選択する。
 実施の形態4にかかる取得部111は、たとえば範囲取得部2411によって実現することができる。
(通信システムの動作例)
 図25は、図23に示した通信システムの動作例を示すシーケンス図である。図23に示した通信システム200は、たとえば図25に示す各ステップのように動作する。まず、アクセスポイント231が、アクセスポイント231の現在位置を示す現在位置情報をWSデータベースサーバ240へ送信する(ステップS2501)。
 つぎに、WSデータベースサーバ240が、ステップS2501によって送信された現在位置情報が示す位置においてアクセスポイント231が使用可能な周波数を示す使用可能周波数情報をアクセスポイント231へ送信する(ステップS2502)。
 つぎに、アクセスポイント231が、アクセスポイント231の予測範囲情報および切替履歴情報を取得する(ステップS2503)。つぎに、アクセスポイント231が、切替履歴情報に基づいて、予測範囲情報が示す予測範囲に含まれる切替履歴の数を、ステップS2502によって送信された使用可能周波数情報が示す使用可能周波数ごとに算出する(ステップS2504)。
 つぎに、アクセスポイント231が、ステップS2502によって送信された使用可能周波数情報が示す使用可能周波数の中から、ステップS2504によって算出した数が最小の周波数を選択する(ステップS2505)。つぎに、アクセスポイント231が、無線通信に使用する周波数を、ステップS2505によって選択した周波数に設定し(ステップS2506)、一連の動作を終了する。
 以上の各ステップにより、アクセスポイント231の予測範囲に含まれる切替履歴の数が少ない周波数をアクセスポイント231に設定させることができる。これにより、アクセスポイント231における周波数の切り替えを少なくすることができる。
 図25に示した動作は、たとえばアクセスポイント231の電源投入時に実行される。ただし、図25に示した動作を実行するタイミングはこれに限らない。
(履歴の位置と現在位置との間の距離)
 図26は、履歴の位置と現在位置との間の距離の一例を示す図である。アクセスポイント231の周波数選択部1412は、範囲取得部2411から出力された予測範囲情報と、切替履歴記憶部1411に記憶された切替履歴情報と、に基づいて、たとえば図26に示すテーブル2600を作成する。テーブル2600においては、たとえば図17に示した切替履歴情報1700の各履歴に対して、履歴の位置(緯度及び経度)とアクセスポイント231の現在位置との間の距離が対応付けられている。
 たとえば、図23に示した所定範囲2311がアクセスポイント231の現在位置を中心とする半径30[km]の円であるとする。この場合は、テーブル2600のうちのレコード2602は、距離が35[km]であり所定範囲2311の範囲外である。これに対して、アクセスポイント231は、テーブル2600のうちの、所定範囲2311に含まれる位置に対応するレコード2601に基づいて周波数を選択する。
 図26に示す例では、レコード2601において、周波数f1から他の周波数への切り替えの履歴は0個である。また、レコード2601において、周波数f2から他の周波数への切り替えの履歴は4個である。また、レコード2601において、周波数f3から他の周波数への切り替えの履歴は3個である。
 したがって、周波数選択部1412は、周波数f1~f3のうちの、所定範囲2311に含まれる履歴の数が最も少ない周波数f1をアクセスポイント231の使用周波数として選択する。
(所定範囲の他の例)
 所定範囲2311がアクセスポイント231を中心とする所定半径の円に囲まれる範囲である場合について説明したが、所定範囲2311はこれに限らない。たとえば、アクセスポイント231の進行方向に基づいて決定されてもよい。
 図27は、所定範囲の他の例を示す図である。図27において、アクセスポイント231のX軸方向の平均移動速度をVx、アクセスポイント231のY軸方向の平均移動速度をVyとする。また、アクセスポイント231の現在位置を(Px,Py)とする。この場合は、所定範囲2311を下記(1)式により表される範囲とすることができる。下記(1)式において、aは0≦a<1の範囲を取る実数値である。
 (X-Px-a・Vx)2+(Y-Py-a・Vy)2
 =Vx2+Vy2                    …(1)
 これにより、アクセスポイント231の現在位置より、アクセスポイント231の進行方向にずれた位置を中心とする円を所定範囲2311とすることができる。したがって、アクセスポイント231の移動先となる可能性が高い位置についての履歴情報に基づいて周波数を選択することができる。このため、無線通信装置における周波数の切り替えがより少なくなりやすい周波数を選択することができる。
 このように、実施の形態4によれば、無線通信装置が使用可能な周波数のうちの、無線通信装置の位置を含む所定範囲における、対象の周波数から他の周波数への切り替えの履歴の数が少ない周波数を無線通信装置に設定することができる。これにより、無線通信装置における周波数の切り替えを少なくすることができる。
 たとえば、アクセスポイント231の予測移動範囲をアクセスポイント231の移動速度などから算出し、算出した予測移動範囲において生じた周波数の切り替えの履歴を数えることによって周波数を選択することができる。これにより、無線通信装置における周波数の切り替えが少なくなる可能性が高い周波数を選択することができる。
(履歴の重み付け)
 さらに、アクセスポイント231は、対象の周波数から他の周波数への切り替えの履歴を、対応する切り替えが発生した位置のアクセスポイント231からの距離に応じて重み付けして計数した値に基づいて周波数を選択してもよい。たとえば、履歴の重みは、対応する切り替えが発生した位置のアクセスポイント231からの距離が小さいほど大きくなる。これにより、アクセスポイント231の移動先となる可能性が高い位置についての履歴の重みを大きくして周波数を選択することができる。このため、無線通信装置における周波数の切り替えがより少なくなりやすい周波数を選択することができる。
 たとえば、履歴の重みw(r)は、たとえば下記(2)式に示す単調減少関数によって算出することができる。下記(2)式において、Rは所定範囲2311の半径を示している。rは履歴に対応する切り替えが発生した位置のアクセスポイント231からの距離を示している。
 w(r)=1-r/R   …(2)
 これにより、履歴の重みを、対応する切り替えが発生した位置のアクセスポイント231からの距離が小さいほど大きくすることができる。また、所定範囲2311の境界における履歴の重さを0とすることができる。
 周波数fからの他の周波数への切り替えが生じたi番目の位置までのアクセスポイント231からの距離をrf(i)とすると、周波数fから他の周波数への切替回数Nfは、たとえば下記(3)式によって算出することができる。
Figure JPOXMLDOC01-appb-M000001
 上記(3)式において、nfは、周波数fについて所定範囲2311において切り替えが生じた位置の数を示す。たとえば図26に示した例では、周波数f1についての切替回数Nf(Nf1)は0となる。また、周波数f2についての切替回数Nf(Nf2)は下記(4)式のようになる。また、周波数f3についての切替回数Nf(Nf3)は下記(5)式のようになる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
(実施の形態5)
 実施の形態5について、実施の形態1と異なる部分について説明する。
(実施の形態5にかかる通信システム)
 図28-1は、実施の形態5にかかる通信システムの一例を示す図である。図28-2は、図28-1に示した通信システムにおける信号の流れの一例を示す図である。図28-1,図28-2において、図1-1,図1-2に示した部分と同様の部分については同一の符号を付して説明を省略する。
 無線通信装置2830は、無線通信装置110と同様に、無線通信装置2830の位置において無線通信装置2830が使用可能な周波数を選択して無線通信を行う。また、無線通信装置110および無線通信装置2830における位置と使用可能な周波数との対応情報は共通である。無線通信装置2830は、周波数の切り替えが生じた場合に切替情報を通信制御装置120へ送信する。切替情報には、たとえば、周波数の切り替えが生じた時間および位置と、切替前後の周波数と、を示す情報が含まれる。また、無線通信装置2830は複数存在していてもよい。
<通信制御装置>
 実施の形態5にかかる通信制御装置120は、図1-1,図1-2に示した構成に加えて、受信部2821と、記憶部2822と、を備える。受信部2821は、無線通信装置2830によって送信された切替情報を受信する。そして、受信部2821は、受信した切替情報を記憶部2822に記憶させる。
 算出部123は、記憶部2822に記憶された切替情報に基づいて、特定した周波数のそれぞれを対象に、受信部121から出力された経路情報が示す予測経路において、対象の周波数から他の周波数への切り替えが発生した回数を算出する。そして、算出部123は、特定した周波数と、特定した周波数ごとに算出した回数と、を選択部124へ通知する。
 もしくは、算出部123は、記憶部2822に記憶された切替情報に基づいて、特定した周波数のそれぞれを対象に、受信部121から出力された経路情報が示す予測経路において、対象の周波数から他の周波数への切り替えが発生するまでの時間もしくは距離を算出する。そして、算出部123は、特定した周波数と、特定した周波数ごとに算出した切り替えまでに要する時間もしくは距離を選択部124へ通知する。
 選択部124は、算出部123から通知された回数もしくは切り替えまでに要する時間ないし距離に基づいて、算出部123から通知された周波数の中から無線通信装置110が使用する周波数を選択する。たとえば、選択部124は、算出部123から通知された周波数のうちの、算出部123から通知された回数が多い周波数を優先的に選択する。通知された情報が切替までに要する時間ないし距離の場合は、時間が長い、もしくは距離が最も遠い周波数を選択する。
 実施の形態5にかかる通信システム100により、無線通信装置110の位置において無線通信装置110が使用可能な周波数のうちの、予測経路において他の周波数への切り替えが発生した回数が少ない周波数、もしくは切り替えまでに要する時間ないし距離が最も長い周波数、を無線通信装置110に設定させることができる。
 図28-3は、図28-1に示した通信システムにおける信号の流れの別の例を示す図である。図28-3において、図28-2に示した部分と同様の部分については同一の符号を付して説明を省略する。図28-3に示すように、無線通信装置110の取得部111は、無線通信装置110の位置を含む所定範囲を示す範囲情報を取得する。所定範囲は、たとえば実施の形態4において説明した所定範囲(予測移動範囲)と同様である。そして、取得部111は、取得した範囲情報を送信部112へ出力する。送信部112は、取得部111から出力された範囲情報を通信制御装置120へ送信する。
 通信制御装置120の受信部121は、無線通信装置110から送信された範囲情報を受信する。そして、受信部121は、受信した範囲情報を算出部123へ出力する。算出部123は、記憶部2822に記憶された切替情報に基づいて、特定した周波数のそれぞれを対象に、受信部121から出力された範囲情報が示す所定範囲において、対象の周波数から他の周波数への切り替えが発生した回数を算出する。
 図28-3に示した通信システム100により、無線通信装置110の位置において無線通信装置110が使用可能な周波数のうちの、所定範囲において他の周波数への切り替えが発生した回数が少ない周波数を無線通信装置110に設定させることができる。これにより、無線通信装置110における周波数の切り替えを少なくすることができる。
 また、無線通信装置2830と同様に無線通信装置110も、周波数の切り替えが生じた場合に切替情報を通信制御装置120へ送信してもよい。受信部2821は、無線通信装置2830によって送信された切替情報を受信し、受信した切替情報を記憶部2822に記憶させる。これにより、無線通信装置110および無線通信装置2830において他の周波数への切り替えが発生した回数が少ない周波数を無線通信装置110に設定させることができる。
(実施の形態5にかかる通信システムの適用例)
 図29は、実施の形態5にかかる通信システムの適用例を示す図である。図29において、図2に示した部分と同様の部分については同一の符号を付して説明を省略する。図1-1,図1-2に示した通信システム100は、たとえば図29に示す通信システム200に適用することができる。バス車両2920にはアクセスポイント2921が搭載されている。バス車両2930にはアクセスポイント2931が搭載されている。図28-1,図28-2に示した無線通信装置2830は、たとえばアクセスポイント2921,2931のそれぞれに適用することができる。
 アクセスポイント231,2921,2931は、周波数の切り替えが発生すると、周波数の切り替えが生じた位置と、切替前後の周波数と、を示す切替情報を切替履歴データベースサーバ2910へ送信する。切替履歴データベースサーバ2910は、アクセスポイント231,2921,2931から送信された切替情報を記憶する。
 このように、複数のWS機器からの周波数の切替情報を切替履歴データベースサーバ2910に集約し、集約した切替情報に基づいてアクセスポイント231が使用する周波数を選択することができる。また、切替履歴データベースサーバ2910に集約した切替情報に基づいてアクセスポイント2921,2931が使用する周波数も選択してもよい。
(通信システムの構成)
 図30-1は、図29に示した通信システムの構成の一例を示す図である。図30-2は、図30-1に示した通信システムの構成における信号の流れの一例を示す図である。図30-1,図30-2において、図3-1,図3-2に示した部分と同様の部分については同一の符号を付して説明を省略する。
<切替履歴データベースサーバ>
 図30-1,図30-2に示すように、切替履歴データベースサーバ2910は、通信部3011と、切替履歴データベース3012と、周波数選択部3013と、を備える。通信部3011は、アクセスポイント231,2921,2931との間で無線通信を行う。たとえば、通信部3011は、アクセスポイント2921,2931から送信される切替情報を受信する。そして、通信部3011は、受信した切替情報を切替履歴データベース3012に記憶させる。
 また、通信部3011は、アクセスポイント231から送信された予測経路情報を受信する。そして、通信部3011は、受信した予測経路情報を周波数選択部3013へ出力する。また、通信部3011は、受信した予測経路情報が示すアクセスポイント231の現在位置を示す現在位置情報をWSデータベースサーバ240へ送信する。
 また、通信部3011は、WSデータベースサーバ240から送信された使用可能周波数情報を受信する。そして、通信部3011は、受信した使用可能周波数情報を周波数選択部3013へ出力する。また、通信部3011は、周波数選択部3013から出力された使用周波数情報をアクセスポイント231へ送信する。
 周波数選択部3013は、通信部3011から出力された予測経路情報および使用可能周波数情報と、切替履歴データベース3012に記憶された切替情報と、に基づいて、アクセスポイント231が使用する周波数を選択する。そして、周波数選択部3013は、選択した周波数を示す使用周波数情報を通信部3011へ出力する。
<WSデータベースサーバの構成例>
 図30-1,図30-2に示すように、WSデータベースサーバ240は、WSデータベース321と、通信部322と、を備える。通信部322は、切替履歴データベースサーバ2910との間で有線通信を行う。たとえば、通信部322は、切替履歴データベースサーバ2910から送信された現在位置情報を受信する。そして、通信部322は、受信した現在位置情報が示すアクセスポイント231の現在位置と、WSデータベース321に記憶された対応情報と、に基づいてアクセスポイント231の使用可能周波数を特定する。通信部322は、特定した使用可能周波数を示す使用可能周波数情報を切替履歴データベースサーバ2910へ送信する。
 図28-1,図28-2に示した受信部121,2821および送信部125は、たとえば通信部3011によって実現することができる。図28-1,図28-2に示した取得部122は、たとえばWSデータベースサーバ240によって実現することができる。図28-1,図28-2に示した算出部123および選択部124は、たとえば周波数選択部3013によって実現することができる。図28-1,図28-2に示した記憶部2822は、たとえば切替履歴データベース3012によって実現することができる。
(切替履歴データベースサーバのハードウェア構成)
 切替履歴データベースサーバ2910は、たとえば図3-4に示した情報処理装置340によって実現することができる。通信部3011は、たとえば図3-4に示した有線通信インタフェース344および無線通信インタフェース345によって実現することができる。切替履歴データベース3012は、たとえば図3-4に示したメモリ342によって実現することができる。周波数選択部3013は、たとえば図3-4に示したCPU341によって実現することができる。
(通信システムの動作例)
 図31は、図29に示した通信システムの動作例を示すシーケンス図である。図29に示した通信システム200は、たとえば図31に示す各ステップのように動作する。まず、アクセスポイント231が、アクセスポイント231の現在位置および予測経路を示す予測経路情報を切替履歴データベースサーバ2910へ送信する(ステップS3101)。つぎに、切替履歴データベースサーバ2910が、ステップS3101によって送信された予測経路情報が示すアクセスポイント231の現在位置を示す現在位置情報をWSデータベースサーバ240へ送信する(ステップS3102)。
 つぎに、WSデータベースサーバ240が、ステップS3102によって送信された現在位置情報が示す位置において使用可能な周波数を示す使用可能周波数情報を切替履歴データベースサーバ2910へ送信する(ステップS3103)。
 つぎに、切替履歴データベースサーバ2910が、予測経路情報が示す予測経路に含まれる切替履歴の数を、ステップS3103によって送信された使用可能周波数情報が示す使用可能周波数ごとに算出する(ステップS3104)。つぎに、切替履歴データベースサーバ2910が、使用可能周波数情報が示す使用可能周波数のうちの、ステップS3104によって算出した数が最小の周波数を選択する(ステップS3105)。
 つぎに、切替履歴データベースサーバ2910が、ステップS3105によって選択した周波数を示す使用周波数情報をアクセスポイント231へ送信する(ステップS3106)。つぎに、アクセスポイント231が、ステップS3106によって送信された使用周波数情報が示す周波数を、アクセスポイント231が無線通信に用いる周波数に設定し(ステップS3107)、一連の動作を終了する。
 以上の各ステップにより、アクセスポイント231の現在位置においてアクセスポイント231が使用可能な周波数のうちの、予測経路に含まれる切替履歴の数が少ない周波数をアクセスポイント231に設定させることができる。これにより、アクセスポイント231における周波数の切り替えを少なくすることができる。
 図31に示した動作は、たとえばアクセスポイント231の電源投入時に実行される。ただし、図31に示した動作を実行するタイミングはこれに限らない。たとえば、アクセスポイント231の移動にともなってアクセスポイント231が使用中の周波数が使用不可となるごとに図31に示した動作が実行されてもよい。これにより、電源投入時に限らず、アクセスポイント231における周波数の切り替えを少なくすることができる。
 または、アクセスポイント231の予測経路L1が変化するごとに図31に示した動作が実行されてもよい。または、周期的に図31に示した動作が実行されてもよい。これにより、リルート等によってアクセスポイント231の予測経路L1が変化しても、アクセスポイント231における周波数の切り替えを少なくすることができる。
(切替情報)
 図32は、切替情報の一例を示す図である。アクセスポイント231,2921,2931は、周波数の切り替えが発生すると、たとえば図32に示す切替情報3200を切替履歴データベースサーバ2910へ送信する。切替情報3200においては、周波数の切り替えが発生した位置と、切替情報と、が対応付けられている。切替情報は、切替前後の周波数を示している。
 たとえば、切替情報3200の一つ目のレコードは、緯度(36[°]、38’55”)かつ経度(140[°]、33’20”)において周波数が周波数f2から周波数f3に切り替わったことを示している。
 このように、実施の形態5によれば、無線通信装置の位置において無線通信装置が使用可能な周波数のうちの、予測経路において他の周波数への切り替えが発生した回数が少ない周波数を無線通信装置に設定させることができる。これにより、無線通信装置における周波数の切り替えを少なくすることができる。
(実施の形態6)
 実施の形態6について、上記の各実施の形態と異なる部分について説明する。上記の各実施の形態においては、アクセスポイント231などのWS機器によるネットワークが一つのみの場合について説明したが、複数のネットワークが存在する場合は相互干渉について考慮した構成としてもよい。
 たとえば、WSデータベースサーバ240においてそれぞれのネットワークに属するWS機器の使用周波数を管理し、隣接するネットワーク間で異なる周波数を使用することにより、相互干渉を避けることができる。
 また、移動するアクセスポイント231から予測経路を受信したWSデータベースサーバ240は、アクセスポイント231が通る経路において他のWS機器との干渉を抑えるように周波数使用を管理する。
 たとえば、アクセスポイント231に対する周波数の割り当ては先着順に行われる。アクセスポイント231の使用周波数を選択するにあたり、アクセスポイント231の予測経路の付近に位置する他のWS機器の周波数の使用状況も考慮する。
 または、上記の各実施の形態において説明した方法によって選択した周波数が、アクセスポイント231の予測経路の付近に位置する他のWS機器によって使用されていた場合は、他のWS機器に周波数を変更させてもよい。
(実施の形態6の通信システムの適用例)
 図33は、実施の形態6の通信システムの適用例を示す図である。図33において、図10に示した部分と同様の部分については同一の符号を付して説明を省略する。
 図33に示す例では、通過ポイントp2は、エリア1021に含まれず、エリア221,1011に含まれている。このため、アクセスポイント231は、通過ポイントp2においては周波数f1,f4が使用可能である。通過ポイントp3~p6は、エリア221,1011,1021に含まれている。このため、アクセスポイント231は、通過ポイントp3~p6においては周波数f1を使用可能である。通過ポイントp7は、エリア1011に含まれず、エリア221,1021に含まれている。このため、アクセスポイント231は、通過ポイントp7においては周波数f1,f3が使用可能である。
 ただし、アクセスポイント231の予測経路L1の付近にはWS機器3310が位置し、WS機器3310は周波数f1を使用して無線通信を行っているとする。エリア3311は、WS機器3310による周波数f1を使用した無線通信との干渉が生じるエリアである。この場合は、アクセスポイント231がたとえば境界ポイントpAから通過ポイントp2の間で周波数f1を使用するとWS機器3310との間で干渉が生じる。
 アクセスポイント231およびWS機器3310は、周波数を二次的に利用するWS機器であることから、テレビ局220,1010,1020のように免許が割り当てられたシステムと異なり、割り当てに関する優先度は設定されていない。しかし、アクセスポイント231およびWS機器3310は、同じ周波数を用いない方が望ましい。
 一例としては、アクセスポイント231およびWS機器3310が選択した周波数も用いて使用可能な周波数を示すテーブルを更新し、更新したテーブルを用いてアクセスポイント231およびWS機器3310の周波数を選択することができる。
(予測経路の各位置における使用可能な周波数)
 図34は、図33に示した予測経路における使用可能な周波数の一例を示す図である。図33に示したWSデータベースサーバ240の周波数選択部323は、通信部322から出力された予測経路情報と、WSデータベース321に記憶された対応情報と、に基づく演算によりたとえば図33に示すテーブル3400を作成する。
 テーブル3400においては、図7に示したテーブル700と同様に、予測経路情報が示す予測経路に基づくアクセスポイント231の通過ポイントごとに、アクセスポイント231が使用可能な周波数が対応付けられている。
(使用可能な周波数を示すテーブルの更新)
 図35は、使用可能な周波数を示すテーブルの更新結果の一例を示す図である。WS機器3310が周波数f1を使用中の場合は、境界ポイントpAから通過ポイントp2においてアクセスポイント231は周波数f1が使用できない。このため、テーブル3400においては、境界ポイントpAおよび通過ポイントp2に対応する周波数として周波数f1が除外されている。したがって、この場合は、アクセスポイント231が使用する周波数として、たとえば、周波数f1,f2,f4のうち境界ポイントpBまで切り替えが生じない周波数f4が選択される。
 図36は、使用可能な周波数を示すテーブルの更新結果の他の例を示す図である。たとえばWS機器3310が周波数を周波数f1から周波数f4に切り替えられた場合は、境界ポイントpAから通過ポイントp2においてアクセスポイント231は周波数f4が使用できなくなる。また、境界ポイントpAから通過ポイントp2においてアクセスポイント231は周波数f1が使用できるようになる。
 このため、テーブル3400においては、境界ポイントpAおよび通過ポイントp2に対応する周波数として周波数f4が除外されている。したがって、この場合は、アクセスポイント231が使用する周波数として、たとえば、周波数f1,f2,f4のうち切り替えが生じない周波数f1が選択される。
 以上説明したように、通信システム、通信制御装置、無線通信装置および通信方法によれば、周波数の切替回数を低減することができる。このため、たとえば周波数の切り替えに伴う通信量を低減することができる。
 100,200 通信システム
 110,2830 無線通信装置
 111,122 取得部
 112,125 送信部
 113,121,2821 受信部
 114,312,314,322,911,921,3011 通信部
 120 通信制御装置
 123,1211 算出部
 124 選択部
 p1~p8 通過ポイント
 210,220,1010,1020 テレビ局
 211,221,1011,1021,3311 エリア
 230,2920,2930 バス車両
 231,2921,2931 アクセスポイント
 240 WSデータベースサーバ
 311 経路取得部
 313 周波数設定部
 321 WSデータベース
 323,1412,3013 周波数選択部
 330,340 情報処理装置
 331,341 CPU
 332,342 メモリ
 333,343 ユーザインタフェース
 334,345 無線通信インタフェース
 335 GPSモジュール
 339,349 バス
 344 有線通信インタフェース
 500 予測経路情報
 600 対応情報
 700,1100,1800,2200,2600,3400 テーブル
 810 周波数管理装置
 1221 特定部
 1301~1304,2321~2327 切替履歴
 1411 切替履歴記憶部
 1600 使用可能周波数情報
 1700 切替履歴情報
 2310 車両
 2311 所定範囲
 2411 範囲取得部
 2601,2602 レコード
 2822 記憶部
 2910 切替履歴データベースサーバ
 3012 切替履歴データベース
 3200 切替情報
 3310 WS機器

Claims (39)

  1.  無線通信装置および通信制御装置を含む通信システムであって、
     前記無線通信装置は、
     前記無線通信装置の位置および前記無線通信装置の予測経路を示す経路情報を前記通信制御装置へ送信する送信部を備え、
     前記通信制御装置は、
     前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報と、前記無線通信装置によって送信された経路情報と、に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数のそれぞれを対象に、対象の周波数を前記無線通信装置が使用不可となるまでの予測時間または予測移動距離を算出する算出部と、
     前記算出部によって算出された予測時間または予測移動距離に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を示す周波数情報を前記無線通信装置へ送信する送信部と、
     を備え、
     前記無線通信装置は、
     前記通信制御装置によって送信された周波数情報が示す周波数を使用して無線通信を行う通信部を備える、
     ことを特徴とする通信システム。
  2.  前記算出部は、前記対応情報に基づいて、前記経路情報が示す前記無線通信装置の位置において前記無線通信装置が使用可能な周波数を特定し、特定した周波数のそれぞれを対象に、前記対応情報と、前記経路情報が示す前記無線通信装置の予測経路と、に基づいて、前記予測時間または予測移動距離を算出することを特徴とする請求項1に記載の通信システム。
  3.  前記無線通信に使用中の周波数が使用不可となるごとに、
     前記無線通信装置の前記送信部は前記経路情報を前記通信制御装置へ送信し、
     前記無線通信装置の前記通信部は前記通信制御装置によって送信された周波数情報が示す周波数を使用して無線通信を行う、
     ことを特徴とする請求項1または2に記載の通信システム。
  4.  前記予測経路が変化するごとに、
     前記無線通信装置の前記送信部は前記経路情報を前記通信制御装置へ送信し、
     前記無線通信装置の前記通信部は前記通信制御装置によって送信された周波数情報が示す周波数を使用して無線通信を行う、
     ことを特徴とする請求項1または2に記載の通信システム。
  5.  周期的に、
     前記無線通信装置の前記送信部は前記経路情報を前記通信制御装置へ送信し、
     前記無線通信装置の前記通信部は前記通信制御装置によって送信された周波数情報が示す周波数を使用して無線通信を行う、
     ことを特徴とする請求項1または2に記載の通信システム。
  6.  前記算出部は、さらに、前記選択された周波数を前記無線通信装置が使用不可となる位置において前記無線通信装置が使用可能な周波数のそれぞれを対象に、前記選択された周波数を前記無線通信装置が使用不可となってから、対象の周波数を前記無線通信装置が使用不可となるまでの予測時間または予測移動距離を算出し、
     前記選択部は、算出した予測時間または予測移動距離に基づいて、前記使用不可となる位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択し、
     前記通信制御装置の前記送信部は、前記無線通信装置の位置について前記選択部によって選択された第1周波数と、前記使用不可となる位置について前記選択部によって選択された第2周波数と、を示す周波数情報を前記無線通信装置へ送信し、
     前記通信部は、前記通信制御装置によって送信された周波数情報が示す前記第1周波数を使用して無線通信を行い、前記第1周波数が使用不可となると前記周波数情報が示す前記第2周波数を使用して無線通信を行う、
     ことを特徴とする請求項1~5のいずれか一つに記載の通信システム。
  7.  前記経路情報は、前記予測経路に含まれる各位置と、前記各位置を通過する予測時刻と、を示す情報を含み、
     前記算出部は、前記対応情報と、前記経路情報が示す前記各位置および前記予測時刻と、に基づいて、前記対象の周波数を前記無線通信装置が使用不可となるまでの予測時間を算出することを特徴とする請求項1~6のいずれか一つに記載の通信システム。
  8.  前記経路情報は、前記予測経路に含まれる各位置を示す情報を含み、
     前記算出部は、前記対応情報と、前記経路情報が示す前記各位置と、に基づいて、前記対象の周波数を前記無線通信装置が使用不可となるまでの予測移動距離を算出することを特徴とする請求項1~6のいずれか一つに記載の通信システム。
  9.  無線通信装置の位置および前記無線通信装置の予測経路を示す経路情報を前記無線通信装置から受信する受信部と、
     前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報と、前記受信部によって受信された経路情報と、に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数のそれぞれを対象に、対象の周波数を前記無線通信装置が使用不可となるまでの予測時間または予測移動距離を算出する算出部と、
     前記算出部によって算出された予測時間または予測移動距離に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を示す周波数情報を前記無線通信装置へ送信する送信部と、
     を備えることを特徴とする通信制御装置。
  10.  無線通信装置から受信した前記無線通信装置の位置および前記無線通信装置の予測経路を示す経路情報と、前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報と、に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数のそれぞれを対象に、対象の周波数を前記無線通信装置が使用不可となるまでの予測時間または予測移動距離を算出し、算出した予測時間または予測移動距離に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択する通信制御装置へ、自装置の位置および自装置の予測経路を示す経路情報を送信する送信部と、
     前記通信制御装置によって選択された周波数を示す周波数情報を前記通信制御装置から受信する受信部と、
     前記受信部によって受信された周波数情報が示す周波数を使用して無線通信を行う通信部と、
     を備えることを特徴とする無線通信装置。
  11.  無線通信装置および通信制御装置を含む通信システムの通信方法であって、
     前記無線通信装置が、
     前記無線通信装置の位置および前記無線通信装置の予測経路を示す経路情報を前記通信制御装置へ送信し、
     前記通信制御装置が、
     前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報と、前記無線通信装置によって送信された経路情報と、に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数のそれぞれを対象に、対象の周波数を前記無線通信装置が使用不可となるまでの予測時間または予測移動距離を算出し、
     算出した予測時間または予測移動距離に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択し、
     選択した周波数を示す周波数情報を前記無線通信装置へ送信し、
     前記無線通信装置が、
     前記通信制御装置によって送信された周波数情報が示す周波数を使用して無線通信を行う、
     ことを特徴とする通信方法。
  12.  無線通信装置および通信制御装置を含む通信システムであって、
     前記無線通信装置は、
     前記無線通信装置の位置を示す位置情報を前記通信制御装置へ送信する送信部を備え、
     前記通信制御装置は、
     前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報に基づいて、前記無線通信装置によって送信された位置情報が示す位置において前記無線通信装置が使用可能な周波数を示す周波数情報を送信する送信部を備え、
     前記無線通信装置は、
     前記無線通信装置が無線通信に使用する周波数の、前記無線通信装置の予測経路に含まれる位置における切り替えの履歴を示す履歴情報を取得する取得部と、
     前記取得部によって取得された履歴情報に基づいて、前記通信制御装置によって送信された周波数情報が示す周波数のそれぞれを対象に、対象の周波数を前記無線通信装置が使用不可となるまでの予測時間または予測移動距離を算出する算出部と、
     前記算出部によって算出された予測時間または予測移動距離に基づいて、前記位置情報が示す位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を使用して無線通信を行う通信部と、
     を備える、
     ことを特徴とする通信システム。
  13.  前記履歴情報は、前記予測経路において周波数の切り替えが発生した位置および切り替え前の周波数を示す情報を含み、
     前記算出部は、前記対応情報と、前記履歴情報が示す位置および周波数と、に基づいて、前記対象の周波数を前記無線通信装置が使用不可となるまでの予測時間を算出することを特徴とする請求項12に記載の通信システム。
  14.  前記履歴情報は、前記無線通信装置が無線通信に使用する周波数の、前記予測経路に含まれる位置と、前記予測経路に含まれる位置を前記無線通信装置が通過した方向と、の組み合わせに対応する切り替えの履歴を含み、
     前記算出部は、前記履歴情報が示す前記組み合わせに基づいて、前記対象の周波数を前記無線通信装置が使用不可となるまでの予測時間または予測移動距離を算出することを特徴とする請求項12または13に記載の通信システム。
  15.  自装置の位置において自装置が使用可能な周波数を示す周波数情報を取得する第1取得部と、
     自装置が無線通信に使用する周波数の、自装置の予測経路に含まれる位置における切り替えの履歴を示す履歴情報を取得する第2取得部と、
     前記第2取得部によって取得された履歴情報に基づいて、前記第1取得部によって取得された周波数情報が示す周波数のそれぞれを対象に、対象の周波数を自装置が使用不可となるまでの予測時間または予測移動距離を算出する算出部と、
     前記算出部によって算出された予測時間または予測移動距離に基づいて、前記周波数情報が示す周波数の中から自装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を使用して無線通信を行う通信部と、
     を備えることを特徴とする無線通信装置。
  16.  無線通信装置および通信制御装置を含む通信システムの通信方法であって、
     前記無線通信装置が、
     前記無線通信装置の位置を示す位置情報を前記通信制御装置へ送信し、
     前記通信制御装置が、
     前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報に基づいて、前記無線通信装置によって送信された位置情報が示す位置において前記無線通信装置が使用可能な周波数を示す周波数情報を送信し、
     前記無線通信装置が、
     前記無線通信装置が無線通信に使用する周波数の、前記無線通信装置の予測経路に含まれる位置における切り替えの履歴を示す履歴情報を取得し、
     取得した履歴情報に基づいて、前記通信制御装置によって送信された周波数情報が示す周波数のそれぞれを対象に、対象の周波数を前記無線通信装置が使用不可となるまでの予測時間または予測移動距離を算出し、
     算出した予測時間または予測移動距離に基づいて、前記位置情報が示す位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択し、
     選択した周波数を使用して無線通信を行う、
     ことを特徴とする通信方法。
  17.  無線通信装置および通信制御装置を含む通信システムであって、
     前記無線通信装置は、
     前記無線通信装置の位置および前記無線通信装置の予測経路を示す経路情報を前記通信制御装置へ送信する送信部を備え、
     前記通信制御装置は、
     前記無線通信装置によって送信された経路情報と、前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報と、に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数のそれぞれを対象に、対象の周波数を前記無線通信装置に設定した場合に前記予測経路において発生する、前記無線通信装置が無線通信に使用する周波数の切り替えの予測回数を算出する算出部と、
     前記算出部によって算出された予測回数に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を示す周波数情報を前記無線通信装置へ送信する送信部と、
     を備え、
     前記無線通信装置は、
     前記通信制御装置によって送信された周波数情報が示す周波数を使用して無線通信を行う通信部を備える、
     ことを特徴とする通信システム。
  18.  無線通信装置の位置および前記無線通信装置の予測経路を示す経路情報を前記無線通信装置から受信する受信部と、
     前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報と、前記受信部によって受信された経路情報と、に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数のそれぞれを対象に、対象の周波数を前記無線通信装置に設定した場合に前記予測経路において発生する、前記無線通信装置が無線通信に使用する周波数の切り替えの予測回数を算出する算出部と、
     前記算出部によって算出された予測回数に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を示す周波数情報を前記無線通信装置へ送信する送信部と、
     を備えることを特徴とする通信制御装置。
  19.  無線通信装置から受信した前記無線通信装置の位置および前記無線通信装置の予測経路を示す経路情報と、前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報と、に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数のそれぞれを対象に、対象の周波数を前記無線通信装置に設定した場合に前記予測経路において発生する、前記無線通信装置が無線通信に使用する周波数の切り替えの予測回数を算出し、算出した予測回数に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択する通信制御装置へ、自装置の位置および自装置の予測経路を示す経路情報を送信する送信部と、
     前記通信制御装置によって選択された周波数を示す周波数情報を前記通信制御装置から受信する受信部と、
     前記受信部によって受信された周波数情報が示す周波数を使用して無線通信を行う通信部と、
     を備えることを特徴とする無線通信装置。
  20.  無線通信装置および通信制御装置を含む通信システムの通信方法であって、
     前記無線通信装置が、
     前記無線通信装置の位置および前記無線通信装置の予測経路を示す経路情報を前記通信制御装置へ送信し、
     前記通信制御装置が、
     前記無線通信装置によって送信された経路情報と、前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報と、に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数のそれぞれを対象に、対象の周波数を前記無線通信装置に設定した場合に前記予測経路において発生する、前記無線通信装置が無線通信に使用する周波数の切り替えの予測回数を算出し、
     算出した予測回数に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択し、
     選択した周波数を示す周波数情報を前記無線通信装置へ送信し、
     前記無線通信装置が、
     前記通信制御装置によって送信された周波数情報が示す周波数を使用して無線通信を行う、
     ことを特徴とする通信方法。
  21.  無線通信装置および通信制御装置を含む通信システムであって、
     前記無線通信装置は、
     前記無線通信装置の位置を示す位置情報を前記通信制御装置へ送信する送信部を備え、
     前記通信制御装置は、
     前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報に基づいて、前記無線通信装置によって送信された位置情報が示す位置において前記無線通信装置が使用可能な周波数を示す周波数情報を送信する送信部を備え、
     前記無線通信装置は、
     前記無線通信装置が無線通信に使用する周波数の、前記無線通信装置の予測経路に含まれる位置における切り替えの履歴を示す履歴情報を取得する取得部と、
     前記取得部によって取得された履歴情報に基づいて、前記通信制御装置によって送信された周波数情報が示す周波数のそれぞれを対象に、対象の周波数を前記無線通信装置に設定した場合に前記予測経路において発生する、前記無線通信装置が無線通信に使用する周波数の切り替えの予測回数を算出する算出部と、
     前記算出部によって算出された予測回数に基づいて、前記位置情報が示す位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を使用して無線通信を行う通信部と、
     を備える、
     ことを特徴とする通信システム。
  22.  自装置の位置において自装置が使用可能な周波数を示す周波数情報を取得する第1取得部と、
     自装置が無線通信に使用する周波数の、自装置の予測経路に含まれる位置における切り替えの履歴を示す履歴情報を取得する第2取得部と、
     前記第2取得部によって取得された履歴情報に基づいて、前記第1取得部によって取得された周波数情報が示す周波数のそれぞれを対象に、対象の周波数を自装置に設定した場合に前記予測経路において発生する、自装置が無線通信に使用する周波数の切り替えの予測回数を算出する算出部と、
     前記算出部によって算出された予測回数に基づいて、自装置の位置において自装置が使用可能な周波数の中から自装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を使用して無線通信を行う通信部と、
     を備えることを特徴とする無線通信装置。
  23.  無線通信装置および通信制御装置を含む通信システムの通信方法であって、
     前記無線通信装置は、
     前記無線通信装置の位置を示す位置情報を前記通信制御装置へ送信し、
     前記通信制御装置は、
     前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報に基づいて、前記無線通信装置によって送信された位置情報が示す位置において前記無線通信装置が使用可能な周波数を示す周波数情報を送信し、
     前記無線通信装置は、
     前記無線通信装置が無線通信に使用する周波数の、前記無線通信装置の予測経路に含まれる位置における切り替えの履歴を示す履歴情報を取得し、
     取得した履歴情報に基づいて、前記通信制御装置によって送信された周波数情報が示す周波数のそれぞれを対象に、対象の周波数を前記無線通信装置に設定した場合に前記予測経路において発生する、前記無線通信装置が無線通信に使用する周波数の切り替えの予測回数を算出し、
     算出した予測回数に基づいて、前記位置情報が示す位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択し、
     選択した周波数を使用して無線通信を行う、
     ことを特徴とする通信方法。
  24.  無線通信装置および通信制御装置を含む通信システムであって、
     前記無線通信装置は、
     前記無線通信装置の位置を示す位置情報を前記通信制御装置へ送信する送信部を備え、
     前記通信制御装置は、
     前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報に基づいて、前記無線通信装置によって送信された位置情報が示す位置において前記無線通信装置が使用可能な周波数を示す周波数情報を前記無線通信装置へ送信する送信部を備え、
     前記無線通信装置は、
     前記無線通信装置が無線通信に使用する周波数の、前記無線通信装置の位置を含む所定範囲における切り替えの履歴を示す履歴情報を取得する取得部と、
     前記取得部によって取得された履歴情報に基づいて、前記通信制御装置によって送信された周波数情報が示す周波数のそれぞれを対象に、前記所定範囲における、対象の周波数から他の周波数への切り替えの履歴の数に応じた値を算出する算出部と、
     前記算出部によって算出された値に基づいて、前記位置情報が示す位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を使用して無線通信を行う通信部と、
     を備える、
     ことを特徴とする通信システム。
  25.  前記所定範囲は、前記無線通信装置の移動速度に応じた広さの範囲であることを特徴とする請求項24に記載の通信システム。
  26.  前記所定範囲は、前記無線通信装置の進行方向に応じた範囲であることを特徴とする請求項24または25に記載の通信システム。
  27.  前記算出部は、前記対象の周波数から他の周波数への切り替えの履歴を、対応する切り替えが発生した位置の前記無線通信装置からの距離に応じて重み付けして計数した値を算出し、
     前記選択部は、前記算出部によって算出された値に基づいて、前記無線通信装置が使用する周波数を選択する、
     ことを特徴とする請求項24~26のいずれか一つに記載の通信システム。
  28.  自装置の位置において自装置が使用可能な周波数を示す周波数情報を取得する第1取得部と、
     自装置が無線通信に使用する周波数の、自装置の位置を含む所定範囲における切り替えの履歴を示す履歴情報を取得する第2取得部と、
     前記第2取得部によって取得された履歴情報に基づいて、前記第1取得部によって取得された周波数情報が示す周波数のそれぞれを対象に、前記所定範囲における、対象の周波数から他の周波数への切り替えの履歴の数を算出する算出部と、
     前記算出部によって算出された数に基づいて、自装置の位置において自装置が使用可能な周波数の中から自装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を使用して無線通信を行う通信部と、
     を備えることを特徴とする無線通信装置。
  29.  無線通信装置および通信制御装置を含む通信システムの通信方法であって、
     前記無線通信装置が、
     前記無線通信装置の位置を示す位置情報を前記通信制御装置へ送信し、
     前記通信制御装置が、
     前記無線通信装置の位置と前記無線通信装置が使用可能な周波数との対応情報に基づいて、前記無線通信装置によって送信された位置情報が示す位置において前記無線通信装置が使用可能な周波数を示す周波数情報を前記無線通信装置へ送信し、
     前記無線通信装置が、
     前記無線通信装置が無線通信に使用する周波数の、前記無線通信装置の位置を含む所定範囲における切り替えの履歴を示す履歴情報を取得し、
     取得した履歴情報に基づいて、前記通信制御装置によって送信された周波数情報が示す周波数のそれぞれを対象に、前記所定範囲における、対象の周波数から他の周波数への切り替えの履歴の数を算出し、
     算出した数に基づいて、前記位置情報が示す位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択し、
     選択した周波数を使用して無線通信を行う、
     ことを特徴とする通信方法。
  30.  第1無線通信装置、第2無線通信装置および通信制御装置を含む通信システムであって、
     前記第1無線通信装置および前記第2無線通信装置は、
     同一の対応情報において自装置の位置と対応付けられた周波数を使用可能であり、
     前記第2無線通信装置は、
     前記第2無線通信装置が無線通信に使用する周波数の切り替えの履歴を示す履歴情報を前記通信制御装置へ送信する送信部を備え、
     前記第1無線通信装置は、
     前記第1無線通信装置の位置および前記第1無線通信装置の位置を含む所定範囲を示す範囲情報を前記通信制御装置へ送信する送信部を備え、
     前記通信制御装置は、
     前記対応情報に基づいて、前記第1無線通信装置によって送信された範囲情報が示す位置において前記第1無線通信装置が使用可能な周波数を特定し、前記第2無線通信装置によって送信された履歴情報に基づいて、特定した周波数のそれぞれを対象に、前記範囲情報が示す所定範囲における、対象の周波数から他の周波数への切り替えの履歴の数を算出する算出部と、
     前記算出部によって算出された数に基づいて、前記範囲情報が示す位置において前記第1無線通信装置が使用可能な周波数の中から前記第1無線通信装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を示す周波数情報を前記第1無線通信装置へ送信する送信部と、
     を備え、
     前記第1無線通信装置は、
     前記通信制御装置によって送信された周波数情報が示す周波数を使用して無線通信を行う通信部を備える、
     ことを特徴とする通信システム。
  31.  前記第1無線通信装置は、前記第1無線通信装置が無線通信に使用する周波数の切り替えの履歴を示す履歴情報を前記通信制御装置へ送信し、
     前記通信制御装置は、前記第1無線通信装置および前記第2無線通信装置によって送信された各履歴情報に基づいて、特定した周波数のそれぞれを対象に、前記範囲情報が示す所定範囲における、対象の周波数から他の周波数への切り替えの履歴の数を算出する、
     ことを特徴とする請求項30に記載の通信システム。
  32.  複数の前記第2無線通信装置を含むことを特徴とする請求項30または31に記載の通信システム。
  33.  第1無線通信装置、第2無線通信装置および通信制御装置を含み、前記第1無線通信装置および前記第2無線通信装置が同一の対応情報において自装置の位置と対応付けられた周波数を使用可能な通信システムの前記通信制御装置であって、
     前記第1無線通信装置の位置および前記第1無線通信装置の位置を含む所定範囲を示す範囲情報を前記第1無線通信装置から受信する受信部と、
     前記第2無線通信装置が無線通信に使用する周波数の切り替えの履歴を示す履歴情報を取得する取得部と、
     前記対応情報に基づいて、前記受信部によって受信された範囲情報が示す位置において前記第1無線通信装置が使用可能な周波数のそれぞれを対象に、前記取得部によって取得された履歴情報に基づいて、前記範囲情報が示す所定範囲における、対象の周波数から他の周波数への切り替えの履歴の数を算出する算出部と、
     前記算出部によって算出された数に基づいて、前記範囲情報が示す位置において前記第1無線通信装置が使用可能な周波数の中から前記第1無線通信装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を示す周波数情報を前記第1無線通信装置へ送信する送信部と、
     を備えることを特徴とする通信制御装置。
  34.  第1無線通信装置、第2無線通信装置および通信制御装置を含み、前記第1無線通信装置および前記第2無線通信装置が同一の対応情報において自装置の位置と対応付けられた周波数を使用可能な通信システムの前記第1無線通信装置であって、
     前記対応情報と、無線通信装置から受信した前記無線通信装置の位置および前記無線通信装置の位置を含む所定範囲を示す範囲情報と、に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数のそれぞれを対象に、前記第2無線通信装置が無線通信に使用する周波数の切り替えの履歴を示す履歴情報に基づいて、前記範囲情報が示す所定範囲における、対象の周波数から他の周波数への切り替えの履歴の数を算出し、算出した数に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択する前記通信制御装置へ、自装置の位置を含む前記所定範囲を示す範囲情報を送信する送信部と、
     前記通信制御装置によって選択された周波数を示す周波数情報を前記通信制御装置から受信する受信部と、
     前記受信部によって受信された周波数情報が示す周波数を使用して無線通信を行う通信部と、
     を備えることを特徴とする無線通信装置。
  35.  第1無線通信装置、第2無線通信装置および通信制御装置を含む通信システムの通信方法であって、
     前記第1無線通信装置および前記第2無線通信装置は、
     同一の対応情報において自装置の位置と対応付けられた周波数を使用可能であり、
     前記第2無線通信装置が、
     前記第2無線通信装置が無線通信に使用する周波数の切り替えの履歴を示す履歴情報を前記通信制御装置へ送信し、
     前記第1無線通信装置が、
     前記第1無線通信装置の位置および前記第1無線通信装置の位置を含む所定範囲を示す範囲情報を前記通信制御装置へ送信し、
     前記通信制御装置が、
     前記対応情報に基づいて、前記第1無線通信装置によって送信された範囲情報が示す位置において前記第1無線通信装置が使用可能な周波数を特定し、
     前記第2無線通信装置によって送信された履歴情報に基づいて、特定した周波数のそれぞれを対象に、前記範囲情報が示す所定範囲における、対象の周波数から他の周波数への切り替えの履歴の数を算出し、
     算出した数に基づいて、前記範囲情報が示す位置において前記第1無線通信装置が使用可能な周波数の中から前記第1無線通信装置が使用する周波数を選択し、
     選択した周波数を示す周波数情報を前記第1無線通信装置へ送信し、
     前記第1無線通信装置が、
     前記通信制御装置によって送信された周波数情報が示す周波数を使用して無線通信を行う、
     ことを特徴とする通信方法。
  36.  第1無線通信装置、第2無線通信装置および通信制御装置を含む通信システムであって、
     前記第1無線通信装置および前記第2無線通信装置は、
     同一の対応情報において自装置の位置と対応付けられた周波数を使用可能であり、
     前記第2無線通信装置は、
     前記第2無線通信装置が無線通信に使用する周波数の切り替えの履歴を示す履歴情報を前記通信制御装置へ送信する送信部を備え、
     前記第1無線通信装置は、
     前記第1無線通信装置の位置および前記第1無線通信装置の予測経路を示す経路情報を前記通信制御装置へ送信する送信部を備え、
     前記通信制御装置は、
     前記対応情報に基づいて、前記第1無線通信装置によって送信された経路情報が示す位置において前記第1無線通信装置が使用可能な周波数を特定し、前記第2無線通信装置によって送信された履歴情報に基づいて、特定した周波数のそれぞれを対象に、前記経路情報が示す予測経路における、対象の周波数から他の周波数への切り替えの履歴の数を算出する算出部と、
     前記算出部によって算出された数に基づいて、前記経路情報が示す位置において前記第1無線通信装置が使用可能な周波数の中から前記第1無線通信装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を示す周波数情報を前記第1無線通信装置へ送信する送信部と、
     を備え、
     前記第1無線通信装置は、
     前記通信制御装置によって送信された周波数情報が示す周波数を使用して無線通信を行う通信部を備える、
     ことを特徴とする通信システム。
  37.  第1無線通信装置、第2無線通信装置および通信制御装置を含み、前記第1無線通信装置および前記第2無線通信装置が同一の対応情報において自装置の位置と対応付けられた周波数を使用可能な通信システムの前記通信制御装置であって、
     前記第1無線通信装置の位置および前記第1無線通信装置の予測経路を示す経路情報を前記第1無線通信装置から受信する受信部と、
     前記第2無線通信装置が無線通信に使用する周波数の切り替えの履歴を示す履歴情報を取得する取得部と、
     前記対応情報に基づいて、前記受信部によって受信された経路情報が示す位置において前記第1無線通信装置が使用可能な周波数のそれぞれを対象に、前記取得部によって取得された履歴情報に基づいて、前記経路情報が示す予測経路における、対象の周波数から他の周波数への切り替えの履歴の数を算出する算出部と、
     前記算出部によって算出された数に基づいて、前記経路情報が示す位置において前記第1無線通信装置が使用可能な周波数の中から前記第1無線通信装置が使用する周波数を選択する選択部と、
     前記選択部によって選択された周波数を示す周波数情報を前記第1無線通信装置へ送信する送信部と、
     を備えることを特徴とする通信制御装置。
  38.  第1無線通信装置、第2無線通信装置および通信制御装置を含み、前記第1無線通信装置および前記第2無線通信装置が同一の対応情報において自装置の位置と対応付けられた周波数を使用可能な通信システムの前記第1無線通信装置であって、
     前記対応情報と、無線通信装置から受信した前記無線通信装置の位置および前記無線通信装置の予測経路を示す経路情報と、に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数のそれぞれを対象に、前記第2無線通信装置が無線通信に使用する周波数の切り替えの履歴を示す履歴情報に基づいて、前記経路情報が示す予測経路における、対象の周波数から他の周波数への切り替えの履歴の数を算出し、算出した数に基づいて、前記無線通信装置の位置において前記無線通信装置が使用可能な周波数の中から前記無線通信装置が使用する周波数を選択する前記通信制御装置へ、自装置の位置および自装置の予測経路を示す経路情報を送信する送信部と、
     前記通信制御装置によって選択された周波数を示す周波数情報を前記通信制御装置から受信する受信部と、
     前記受信部によって受信された周波数情報が示す周波数を使用して無線通信を行う通信部と、
     を備えることを特徴とする無線通信装置。
  39.  第1無線通信装置、第2無線通信装置および通信制御装置を含む通信システムの通信方法であって、
     前記第1無線通信装置および前記第2無線通信装置は、
     同一の対応情報において自装置の位置と対応付けられた周波数を使用可能であり、
     前記第2無線通信装置が、
     前記第2無線通信装置が無線通信に使用する周波数の切り替えの履歴を示す履歴情報を前記通信制御装置へ送信し、
     前記第1無線通信装置が、
     前記第1無線通信装置の位置および前記第1無線通信装置の予測経路を示す経路情報を前記通信制御装置へ送信し、
     前記通信制御装置が、
     前記対応情報に基づいて、前記第1無線通信装置によって送信された経路情報が示す位置において前記第1無線通信装置が使用可能な周波数を特定し、
     前記第2無線通信装置によって送信された履歴情報に基づいて、特定した周波数のそれぞれを対象に、前記経路情報が示す予測経路における、対象の周波数から他の周波数への切り替えの履歴の数を算出し、
     算出した数に基づいて、前記経路情報が示す位置において前記第1無線通信装置が使用可能な周波数の中から前記第1無線通信装置が使用する周波数を選択し、
     選択した周波数を示す周波数情報を前記第1無線通信装置へ送信し、
     前記第1無線通信装置が、
     前記通信制御装置によって送信された周波数情報が示す周波数を使用して無線通信を行う、
     ことを特徴とする通信方法。
PCT/JP2012/083394 2012-12-25 2012-12-25 通信システム、通信制御装置、無線通信装置および通信方法 WO2014102891A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2012/083394 WO2014102891A1 (ja) 2012-12-25 2012-12-25 通信システム、通信制御装置、無線通信装置および通信方法
KR1020157016744A KR101709425B1 (ko) 2012-12-25 2012-12-25 통신 시스템, 통신 제어 장치, 무선 통신 장치 및 통신 방법
CA2947952A CA2947952A1 (en) 2012-12-25 2012-12-25 Communications system, communications control apparatus, radio communications apparatus, and communications method
JP2014553905A JPWO2014102891A1 (ja) 2012-12-25 2012-12-25 通信システム、通信制御装置、無線通信装置および通信方法
CN201280078007.4A CN104885495A (zh) 2012-12-25 2012-12-25 通信系统、通信控制装置、无线通信装置及通信方法
EP12890760.7A EP2941034B1 (en) 2012-12-25 2012-12-25 Communication system, communication control apparatus, wireless communication apparatus, and communication method
CA2896289A CA2896289A1 (en) 2012-12-25 2012-12-25 Communications system, communications control apparatus, radio communications apparatus, and communications method
US14/741,887 US20150282182A1 (en) 2012-12-25 2015-06-17 Communications system, communications control apparatus, radio communications apparatus, and communications method
US15/794,499 US20180049205A1 (en) 2012-12-25 2017-10-26 Communications system, communications control apparatus, radio communications apparatus, and communications method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/083394 WO2014102891A1 (ja) 2012-12-25 2012-12-25 通信システム、通信制御装置、無線通信装置および通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/741,887 Continuation US20150282182A1 (en) 2012-12-25 2015-06-17 Communications system, communications control apparatus, radio communications apparatus, and communications method

Publications (1)

Publication Number Publication Date
WO2014102891A1 true WO2014102891A1 (ja) 2014-07-03

Family

ID=51020052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083394 WO2014102891A1 (ja) 2012-12-25 2012-12-25 通信システム、通信制御装置、無線通信装置および通信方法

Country Status (7)

Country Link
US (2) US20150282182A1 (ja)
EP (1) EP2941034B1 (ja)
JP (1) JPWO2014102891A1 (ja)
KR (1) KR101709425B1 (ja)
CN (1) CN104885495A (ja)
CA (2) CA2896289A1 (ja)
WO (1) WO2014102891A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184796A (ja) * 2015-03-25 2016-10-20 Necプラットフォームズ株式会社 無線lan通信装置、無線チャネル決定方法及びプログラム
US10999775B2 (en) 2017-07-18 2021-05-04 Panasonic Corporation Communication device, communication system, connection destination control method, and transmission rate control method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6508338B2 (ja) * 2015-08-05 2019-05-08 日本電気株式会社 通信システム、通信制御装置、通信制御方法、及び通信プログラム
US20170257885A1 (en) * 2016-03-01 2017-09-07 Qualcomm Incorporated Ftm protocol enhancements to support sbs/dbs mode
KR101861522B1 (ko) * 2017-08-08 2018-05-29 이노넷 주식회사 이동형 tvws를 이용한 버스 통신망 무선백홀 시스템 및 운용 방법
CN113271163B (zh) * 2021-07-20 2021-11-05 深圳市万联航通电子科技有限公司 无人机自适应选频方法、装置、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109526A1 (ja) * 2009-03-25 2010-09-30 富士通株式会社 チャネル設定パターン提示プログラムおよびチャネル設定パターン提示装置
JP2012054799A (ja) 2010-09-02 2012-03-15 Mitsubishi Electric Corp 通信装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011041229A (ja) * 2009-08-18 2011-02-24 Sony Corp 送信装置、受信装置、無線装置および送信装置における伝送モード制御方法
US10172114B2 (en) * 2009-12-11 2019-01-01 Nokia Technologies Oy Apparatus and associated methods for determining available channels based on predicted movement
US20110310867A1 (en) * 2010-06-22 2011-12-22 Richard Howard Kennedy Methods and apparatus to predict routing to maintain connectivity over a geographic area

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010109526A1 (ja) * 2009-03-25 2010-09-30 富士通株式会社 チャネル設定パターン提示プログラムおよびチャネル設定パターン提示装置
JP2012054799A (ja) 2010-09-02 2012-03-15 Mitsubishi Electric Corp 通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2941034A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016184796A (ja) * 2015-03-25 2016-10-20 Necプラットフォームズ株式会社 無線lan通信装置、無線チャネル決定方法及びプログラム
US10999775B2 (en) 2017-07-18 2021-05-04 Panasonic Corporation Communication device, communication system, connection destination control method, and transmission rate control method
US11445427B2 (en) 2017-07-18 2022-09-13 Panasonic Holdings Corporation Communication device, communication system, connection destination control method, and transmission rate control method

Also Published As

Publication number Publication date
CA2947952A1 (en) 2014-07-03
EP2941034B1 (en) 2017-07-05
CN104885495A (zh) 2015-09-02
EP2941034A1 (en) 2015-11-04
US20150282182A1 (en) 2015-10-01
EP2941034A4 (en) 2015-12-30
JPWO2014102891A1 (ja) 2017-01-12
CA2896289A1 (en) 2014-07-03
KR20150090165A (ko) 2015-08-05
US20180049205A1 (en) 2018-02-15
KR101709425B1 (ko) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2014102891A1 (ja) 通信システム、通信制御装置、無線通信装置および通信方法
US20210168564A1 (en) Methods, devices, systems, and computer-readable storage mediums for location positioning
JP5769882B2 (ja) 無線通信装置
US7650162B2 (en) Mobile terminal and wireless communication system
US9763121B2 (en) Communications apparatus, mobile communications apparatus, communications system, and communication method
CN111133688A (zh) 被动收集空对地网络参数用于网络规划和控制
CN113615251B (zh) 基站、通信系统、通信方法以及存储介质
JP7144599B2 (ja) 端末装置、通信システム、通信方法、及びプログラム
JP2017085576A (ja) 通信システム、無線通信装置および通信方法
CN113574927A (zh) 控制装置、控制方法、以及程序
Ghozlani et al. Stochastic geometry-based analysis of joint radar and communication-enabled cooperative detection systems
JP7285918B2 (ja) 端末装置、通信システム、通信方法、及びプログラム
EP3952404B1 (en) Base station, communication system, communication method, and program
Lim et al. Reliable safety message dissemination in NLOS intersections using TV white spectrum
KR102105693B1 (ko) TVWS(television white space) 대역을 통해 데이터 통신을 제공하는 통신 시스템
US20200068586A1 (en) Communication terminal and communication method
CN106850105B (zh) 一种适用于车载短距离通信网络的协作频谱检测方法
CN110581728A (zh) 无线通信装置
US11159913B2 (en) Position estimation system
CN112312567B (zh) 蓝牙定位方法、装置、计算机设备和存储介质
WO2024004176A1 (ja) 通信継続性のための、ナビゲーションシステム、制御装置及びナビゲーション方法
JP6194587B2 (ja) 無線通信装置、および無線通信方法
JP5857915B2 (ja) 無線通信装置、および無線通信方法
CN117119372A (zh) 基于aoa的低延时高精度的三维室内定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553905

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012890760

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012890760

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2896289

Country of ref document: CA

Ref document number: 20157016744

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE