WO2010109526A1 - チャネル設定パターン提示プログラムおよびチャネル設定パターン提示装置 - Google Patents

チャネル設定パターン提示プログラムおよびチャネル設定パターン提示装置 Download PDF

Info

Publication number
WO2010109526A1
WO2010109526A1 PCT/JP2009/001339 JP2009001339W WO2010109526A1 WO 2010109526 A1 WO2010109526 A1 WO 2010109526A1 JP 2009001339 W JP2009001339 W JP 2009001339W WO 2010109526 A1 WO2010109526 A1 WO 2010109526A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
setting pattern
channel setting
point
identifier
Prior art date
Application number
PCT/JP2009/001339
Other languages
English (en)
French (fr)
Inventor
鈴木規之
山本充彦
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2011505658A priority Critical patent/JP5003842B2/ja
Priority to PCT/JP2009/001339 priority patent/WO2010109526A1/ja
Priority to BRPI0924758A priority patent/BRPI0924758A2/pt
Publication of WO2010109526A1 publication Critical patent/WO2010109526A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/173Analogue secrecy systems; Analogue subscription systems with two-way working, e.g. subscriber sending a programme selection signal
    • H04N7/17309Transmission or handling of upstream communications
    • H04N7/17318Direct or substantially direct transmission and handling of requests
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/53Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers
    • H04H20/57Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for mobile receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/35Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users
    • H04H60/38Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying broadcast time or space
    • H04H60/41Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying broadcast time or space for identifying broadcast space, i.e. broadcast channels, broadcast stations or broadcast areas
    • H04H60/43Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying broadcast time or space for identifying broadcast space, i.e. broadcast channels, broadcast stations or broadcast areas for identifying broadcast channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H60/00Arrangements for broadcast applications with a direct linking to broadcast information or broadcast space-time; Broadcast-related systems
    • H04H60/35Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users
    • H04H60/49Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying locations
    • H04H60/50Arrangements for identifying or recognising characteristics with a direct linkage to broadcast information or to broadcast space-time, e.g. for identifying broadcast stations or for identifying users for identifying locations of broadcast or relay stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/25Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
    • H04N21/258Client or end-user data management, e.g. managing client capabilities, user preferences or demographics, processing of multiple end-users preferences to derive collaborative data
    • H04N21/25808Management of client data
    • H04N21/25841Management of client data involving the geographical location of the client
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/414Specialised client platforms, e.g. receiver in car or embedded in a mobile appliance
    • H04N21/41422Specialised client platforms, e.g. receiver in car or embedded in a mobile appliance located in transportation means, e.g. personal vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/434Disassembling of a multiplex stream, e.g. demultiplexing audio and video streams, extraction of additional data from a video stream; Remultiplexing of multiplex streams; Extraction or processing of SI; Disassembling of packetised elementary stream
    • H04N21/4345Extraction or processing of SI, e.g. extracting service information from an MPEG stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/438Interfacing the downstream path of the transmission network originating from a server, e.g. retrieving encoded video stream packets from an IP network
    • H04N21/4383Accessing a communication channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/45Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
    • H04N21/4508Management of client data or end-user data
    • H04N21/4524Management of client data or end-user data involving the geographical location of the client
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • H04N21/8126Monomedia components thereof involving additional data, e.g. news, sports, stocks, weather forecasts

Definitions

  • the present invention relates to a technique for presenting broadcast channel setting patterns.
  • a technique for recognizing a channel capable of receiving broadcast radio waves in a wireless communication system is known.
  • a technique for recognizing a channel that is, a free channel
  • the empty channel can be reused efficiently.
  • a channel list distribution server has been disclosed that enables a viewer to quickly present a broadcast program that the viewer wants to view using a channel list even when the broadcast reception areas are different.
  • the channel list distribution server includes list group storage means for storing a channel list for each predetermined area.
  • the channel list distribution server also includes list request receiving means for receiving position information and terminal reception channel information indicating at least one receivable channel from the broadcast receiving terminal as a list request.
  • the channel list distribution server further includes correspondence list search means for searching for a channel list corresponding to the position information in the list group storage means. Then, when the terminal reception channel information is not included in the channel list corresponding to the position information, the nearest list search means for searching the channel list that includes the terminal reception channel information and is closest to the position indicated by the position information, The channel list distribution server is provided.
  • the mobile communication system includes empty channel information sharing means for sharing use information of empty call channels of each base station between a plurality of adjacent base stations. Then, when any one of a plurality of adjacent base stations receives a channel assignment request signal for requesting assignment of a call channel from a mobile station existing at a position where the cover area overlaps, A base station is selected as follows. That is, a base station that assigns a call channel to the mobile station from a plurality of adjacent base stations based on use information of a free call channel shared by the free channel information sharing means. Selected.
  • the channel management means aggregates and manages the channels of each PHS (Personal Handy-phone System) base station based on control results such as call control and switching connection control of the call control means.
  • the display data control means counts the number of empty channels of a plurality of PHS base stations having a common display in the radio zone.
  • a display control part controls said common display, and alert
  • the terminal report control unit controls the PHS base station detected by the channel fluctuation base station detecting means and having a fluctuation in the number of empty channels, and information on the number of empty channels for the PHS terminals in each radio zone. Send.
  • the transmitter includes a receiving unit that sequentially scans a plurality of channels to identify an empty channel, a channel control unit that sets a channel of the transmitting unit to the identified empty channel, and data using the set channel. And a transmission unit for transmitting.
  • the transmitter temporarily suspends data transmission during data transmission and monitors the free state of the channel used for the data transmission. If the channel is not empty, the transmitter sequentially scans the plurality of channels of the reception unit to identify other empty channels, and sets the channel of the transmission unit to the identified other empty channels, Data is transmitted using the other free channel. Therefore, the transmitter for unidirectional wireless communication can automatically identify an empty channel and transmit data, and automatically continue communication even when interference occurs during communication. Can do.
  • the wireless communication system includes a plurality of wireless base stations that can use a plurality of wireless channels, and wireless terminals that are located in a wireless zone that is an area where communication with each wireless base station is possible.
  • the wireless communication system selects a wireless channel used for communication from a plurality of wireless channels between the wireless base station and the wireless terminal.
  • the wireless communication system measures a determination parameter of an empty channel, and selects a wireless channel to be used for communication from wireless channels in which the measurement result is less than or equal to a threshold value.
  • the threshold value is determined by an empty channel determination function calculated based on the history of interference and the channel usage status. Therefore, the inefficiency that occurs when the idle channel determination level is fixed is removed in an autonomous and distributed manner.
  • the following technique for searching for a free channel at high speed without increasing the amount of calculation or the circuit scale even when the number of channels in the system band is large is also disclosed. That is, at the time of searching for an empty channel, a received signal from the antenna is sampled by a sampler at a sampling frequency that is less than twice the cutoff frequency of the band limiting filter. Then, from the output signal of the sampler, first empty channel information indicating empty channels in the return band is obtained by the detector. Also, the first free channel information is developed into second free channel information indicating a free channel in the system band by a free channel expander. Then, according to the second vacant channel information, the communication channel setting unit sets a communication channel for the transceiver. JP 2007-67771 A JP 2002-271830 A Japanese Patent Laid-Open No. 10-210529 JP 2000-196490 A JP-A-8-237732 JP 2007-19978 A
  • the situation regarding free channels which are channels that can be used for new communications, is affected by various factors.
  • One of the main factors is the location of the receiver. Therefore, in the content distribution service in the vehicle, the situation regarding the empty channel may change as the vehicle moves.
  • an object of the present invention is to present a channel setting pattern suitable for content distribution by radio in a vehicle in order to reduce the problem predicted as described above.
  • a channel setting pattern presentation program that causes a computer to execute a reference step, a narrowing step, and a presentation step is provided.
  • the reference step is a step of referring to the storage means.
  • the storage means associates each of the plurality of channels at each of the plurality of points with a point identifier for identifying a plurality of points on a route along which the vehicle moves and a channel identifier for identifying a plurality of channels of the broadcast radio wave.
  • a point identifier for identifying a plurality of points on a route along which the vehicle moves
  • a channel identifier for identifying a plurality of channels of the broadcast radio wave.
  • the narrowing-down step is a step of narrowing down a plurality of potentially possible channel setting patterns.
  • Each of the plurality of channel setting patterns is a combination pattern in which the channel identifier is associated with each of the plurality of point identifiers representing the plurality of points.
  • one or more channels in a channel identifier tuple in which the channel identifiers respectively associated with at least some of the plurality of point identifiers are arranged according to the order in the path of each point represented by each point identifier Narrowing is performed based on the distribution of identifiers and the availability level read by the reference step.
  • the presenting step is a step of presenting one or more channel setting patterns obtained as a result of the narrowing step.
  • a channel setting pattern presenting apparatus including the same storage means, narrowing-down means, and presenting means as in the first aspect.
  • the narrowing-down means narrows down a plurality of potentially possible channel setting patterns by executing narrowing similar to the narrowing-down step of the first mode.
  • the presenting means presents one or more channel setting patterns obtained as a result of narrowing by the narrowing means.
  • an appropriate channel setting pattern is presented based on the distribution of channel identifiers and the availability level. Therefore, a transmitter that performs content distribution operates according to the presented channel setting pattern, so that it is possible to provide a content distribution service in a vehicle without imposing a heavy burden on the user.
  • FIG. 1 is a configuration diagram of a broadcasting system in the first embodiment.
  • a broadcasting system 100 includes a local TV (television) transmitter 110, a TV-equipped mobile terminal 140, and a channel setting pattern presentation device 150.
  • the local TV transmitter 110 is loaded on a vehicle that moves along a specific route such as a bus, a train, or a regular route ship, and performs local TV broadcasting in the vehicle.
  • the local TV transmitter 110 includes a plurality of antennas (only antennas 111 and 112 are representatively shown in FIG. 1), a TV transmission device 113, a TV reception device 114, and a content storage unit 115.
  • the plurality of antennas include antennas for transmitting and receiving TV broadcasts. There may also be an antenna for wireless communication with the channel setting pattern presentation device 150.
  • the TV transmission device 113 transmits radio waves for TV broadcasting.
  • the TV receiver 114 performs an empty channel search process which will be described later with reference to FIG.
  • the content storage unit 115 stores content data distributed by TV broadcasting.
  • the mobile terminal 140 with TV is a terminal such as a mobile phone held by a passenger of a vehicle on which the local TV transmitter 110 is loaded, and has a function of receiving TV broadcasts. Although only one mobile terminal 140 with TV is shown in FIG. 1, there may be a plurality of mobile terminals 140 with TV.
  • the TV-equipped mobile terminal 140 includes a plurality of antennas (only antennas 141 and 142 are shown as representative in FIG. 1), a TV receiver 143, a display 144, and a speaker 145.
  • the multiple antennas include antennas for receiving TV radio waves.
  • the plurality of antennas include a call antenna.
  • the TV receiver 143 is an apparatus that receives TV broadcast radio waves via an antenna.
  • the display 144 displays an image of the content received by the TV receiving device 143, and the speaker 145 outputs the sound of the content received by the TV receiving device 143.
  • the channel setting pattern presentation device 150 presents a channel setting pattern that is a combination pattern of where and which channel the local TV transmitter 110 uses to broadcast.
  • the channel setting pattern presentation device 150 may be loaded in the same vehicle as the local TV transmitter 110 or the mobile terminal 140 with TV, as long as data communication with the local TV transmitter 110 is possible. It may be located away from the vehicle.
  • the channel setting pattern presentation device 150 is connected to a storage device 151 that stores various types of information used to determine a channel setting pattern to be presented. As will be described later, the storage device 151 stores data collected from various devices.
  • 1Seg broadcasting is terrestrial digital broadcasting, which is mainly for mobiles such as mobile phones.
  • ISDB-T Integrated Services Digital Broadcasting for Terrestrial
  • 50 physical channels of channel 13 to channel 62 are provided.
  • the frequency band of each physical channel is divided into 13 segments.
  • One-segment broadcasting is performed using one central segment among the 13 segments.
  • the TV transmitter 113 provided in the local TV transmitter 110 of FIG. 1 is a local broadcast transmitter.
  • the radio wave transmitted from the TV transmission device 113 via the antenna is weak, the weak radio wave is sufficient for broadcasting intended for passengers on the bus on which the local TV transmitter 110 is loaded.
  • the local TV transmitter 110 may broadcast content such as store advertisements along the bus route for passengers.
  • the content to be broadcast is stored in the content storage unit 115.
  • channel 13 out of 50 physical channels (hereinafter simply referred to as “channels”) of ISDB-T is used by a licensed broadcasting station. Then, in order to perform local broadcasting with weak radio waves in the area, it is necessary to use an empty channel other than the channel 13.
  • the channel 13 is not used by the broadcasting station, and the channel 14 may be used instead. That is, the same channel 13 may be an empty channel or not an empty channel depending on the region. Therefore, when the bus moves across a plurality of regions, it is desirable that the TV transmission device 113 performs broadcasting using an appropriate channel according to the location where the bus is traveling.
  • empty channel refers to a channel that can obtain sufficient reception quality in local broadcasting.
  • an empty channel at a certain location refers to a channel at which the reception level of radio waves from other broadcast stations or other noise sources is so low that it can be ignored.
  • Local broadcast radio waves are weak, and are susceptible to noise from electromagnetic waves generated by surrounding electrical equipment.
  • which channel is susceptible to noise from the surrounding environment also changes as the bus moves. Therefore, it is desirable that the TV transmitter 113 performs broadcasting using a channel corresponding to the current location of the bus, not only from the viewpoint of the channel used by the broadcasting station but also from the viewpoint of the surrounding environment.
  • the first embodiment makes it possible to select an appropriate channel so as to reduce the burden on passengers and to increase the time during which sufficient reception quality can be obtained while traveling on a bus. For the purpose.
  • the channel setting pattern presentation device 150 narrows down a number of potentially possible channel setting patterns and presents one or more appropriate channel setting patterns obtained as a result of the narrowing down. To do. Then, the local TV transmitter 110 performs local broadcasting according to the presented channel setting pattern.
  • each “channel setting pattern” is a combination pattern representing how to switch channels used for local broadcasting as the bus travels.
  • FIG. 2 is a block diagram showing the configuration of the local TV transmitter 110.
  • the local TV transmitter 110 includes a GPS (Global Positioning System) / WLAN (Wireless Local Area Network) / BT (Bluetooth) processing unit 116 (Bluetooth is a registered trademark).
  • the local TV transmitter 110 includes a TV transmission / reception unit 117 and a communication RF (Radio Frequency) processing unit 118.
  • the local TV transmitter 110 further includes a CPU (Central Processing Unit) / DSP (Digital Signal Processor) 119 and an RTC (Real Time Clock) 120.
  • the CPU / DSP 119 includes a general-purpose CPU and a DSP for performing specific processing such as wireless communication including broadcasting.
  • the local TV transmitter 110 includes an AIU (Audio Interface Unit) 121, a speaker 122, a microphone 123, a numeric keypad 124, a display 125, and a memory area 126.
  • AIU Audio Interface Unit
  • Each of the GPS / WLAN / BT processing unit 116, the TV transmission / reception unit 117, and the communication RF processing unit 118 includes an antenna, is connected to the CPU / DSP 119, and operates according to control by the CPU / DSP 119.
  • the GPS / WLAN / BT processing unit 116 implements a GPS function for specifying the position of the local TV transmitter 110, and communicates with other devices (for example, the channel setting pattern presentation device 150) using the WLAN or BT. To realize.
  • the TV transmission / reception unit 117 corresponds to the TV transmission device 113 and the TV reception device 114 in FIG.
  • the TV transmission / reception unit 117 realizes a function of transmitting a radio wave for local broadcasting and a function of receiving a radio wave for an empty channel search process described later.
  • the communication RF processing unit 118 realizes a function of performing wireless communication with other devices such as the channel setting pattern presentation device 150 according to an appropriate wireless communication standard.
  • the CPU / DSP 119 generates a CPU clock based on the time of the RTC 120 and operates according to the CPU clock. Data used by the CPU / DSP 119 for various processes is stored in the memory area 126.
  • the memory area 126 includes, for example, both a nonvolatile storage device and a volatile storage device for a work area.
  • the nonvolatile storage device also functions as the content storage unit 115 in FIG.
  • the CPU / DSP 119 is connected to the numeric key 124, receives an input from the numeric key 124, and operates according to the input.
  • the local TV transmitter 110 may include other input devices such as a keyboard and a pointing device instead of or together with the numeric keypad 124.
  • the display 125 is also connected to the CPU / DSP 119, and the CPU / DSP 119 controls the display 125 so as to display processing results and messages to the operator.
  • the speaker 122 and the microphone 123 are connected to the CPU / DSP 119 via the AIU 121.
  • the CPU / DSP 119 can receive an input from the microphone 123 via the AIU 121.
  • the CPU / DSP 119 may operate according to an input from the microphone 123. Further, the CPU / DSP 119 may control the speaker 122 so as to audibly output a processing result or a message to the operator via the AIU 121.
  • FIG. 3 is a hardware configuration diagram of the local TV transmitter 110.
  • the local TV transmitter 110 includes a CPU / DSP 119, an RTC 120, a TV receiver 114, and a TV transmitter 113.
  • the local TV transmitter 110 further includes a ROM (Read Only Memory) 127, a RAM (Random Access Memory) 128, a nonvolatile storage device 129, and an external interface 130. 3 are connected to each other via a bus 131.
  • the CPU / DSP 119 controls the entire local TV transmitter 110 by operating in accordance with a program stored in the ROM 127 or the nonvolatile storage device 129 while using the RAM 128 as a work area.
  • the program may be provided by being stored in various types of storage media (not shown) such as an optical disc such as a CD (Compact Disc) or a DVD (Digital Versatile Disc), a magneto-optical disc, a magnetic disc, or a nonvolatile semiconductor memory. Good. Then, the program may be read from the storage medium by a storage medium driving device (not shown) and copied to the nonvolatile storage device 129. Alternatively, the program may be downloaded from the network to the nonvolatile storage device 129.
  • storage media such as an optical disc such as a CD (Compact Disc) or a DVD (Digital Versatile Disc), a magneto-optical disc, a magnetic disc, or a nonvolatile semiconductor memory.
  • the program may be read from the storage medium by a storage medium driving device (not shown) and copied to the nonvolatile storage device 129. Alternatively, the program may be downloaded from the network to the nonvolatile storage device 129.
  • Fig. 1 and Fig. 3 The relationship between Fig. 1 and Fig. 3 is as follows.
  • the TV transmitter 113 and TV receiver 114 of FIG. 1 are also shown in FIG.
  • the content storage unit 115 in FIG. 1 is specifically realized by the ROM 127 or the nonvolatile storage device 129 in FIG.
  • the nonvolatile storage device 129 may be a nonvolatile RAM such as a flash memory or a magnetic storage device such as a hard disk device.
  • FIG. 2 the relationship between FIG. 2 and FIG. 3 is as follows.
  • the CPU / DSP 119 and RTC 120 of FIG. 2 are also shown in FIG.
  • the AIU 121 in FIG. 2 is an example of the external interface 130 in FIG. 3 includes an interface not shown in FIG. 2 for connecting the numeric keypad 124 and the display 125 of FIG. 2 to the CPU / DSP 119.
  • the memory area 126 in FIG. 2 is specifically realized by the ROM 127, the RAM 128, and the nonvolatile storage device 129 in FIG. 2 is realized by the TV transmission device 113 and the TV reception device 114 of FIG. In FIG. 3, portions corresponding to the GPS / WLAN / BT processing unit 116 and the communication RF processing unit 118 of FIG. 2 are omitted.
  • FIG. 4 is a configuration diagram of a computer that implements the channel setting pattern presentation device 150 and the storage device 151.
  • the channel setting pattern presentation device 150 and the storage device 151 in FIG. 1 can be realized by a general-purpose computer 160 as shown in FIG.
  • the computer 160 includes a CPU 161, a ROM 162, a RAM 163, a communication interface 164, an input device 165, an output device 166, a storage device 167, and a drive device 168 for the portable storage medium 170. These units included in the computer 160 are connected to each other via a bus 169.
  • the computer 160 is connected to the network 171 via the communication interface 164.
  • the network 171 is an arbitrary network such as a LAN (Local Area Network) or the Internet.
  • a local TV transmitter 110 may be connected to the network 171.
  • the local TV transmitter 110 can communicate with the computer 160 that implements the channel setting pattern presentation device 150 via the network 171.
  • a part of the network 171 may be a WLAN, for example.
  • a part of the network 171 may include a wired network.
  • the CPU 161 loads the program into the RAM 163 and executes the program while using the RAM 163 as a work area, thereby causing the computer 160 to function as the channel setting pattern presentation device 150 in FIG. That is, the computer 160 functions as the channel setting pattern presentation device 150 by the CPU 161 executing the processing of FIG. 11 according to the program.
  • the CPU 161 functions as a narrowing means for narrowing down a plurality of potentially possible channel setting patterns. Further, the CPU 161 functions as a presentation unit that presents one or more channel setting patterns obtained as a result of narrowing down in cooperation with the output device 166 or the communication interface 164.
  • a program that causes the computer 160 to function as the channel setting pattern presentation device 150 may be stored in the ROM 162 or the storage device 167 in advance. Alternatively, the program may be provided from the program provider 172 via the network 171 and stored in the storage device 167.
  • the program may be stored in the portable storage medium 170, loaded from the portable storage medium 170 set in the driving device 168 to the RAM 163, and executed by the CPU 161.
  • the portable storage medium 170 various types of storage media such as an optical disk such as a CD and a DVD, a magneto-optical disk, a magnetic disk, and a nonvolatile semiconductor memory can be used.
  • the input device 165 is a pointing device such as a mouse or a keyboard.
  • the output device 166 is a display device such as a liquid crystal display, but may include a speaker or a printer.
  • the storage device 167 may be a magnetic disk device such as a hard disk device or another type of storage device. The storage device 167 can implement the storage device 151 of FIG.
  • the local TV transmitter 110 may also serve as the channel setting pattern presentation device 150.
  • the CPU / DSP 119 of the local TV transmitter 110 in FIG. 3 functions as the channel setting pattern presentation device 150 in FIG. 1 by loading the program stored in the ROM 127 or the nonvolatile storage device 129 into the RAM 128 and executing it. May be.
  • the local TV transmitter 110 also serves as the channel setting pattern presentation device 150
  • the nonvolatile storage device 129 in FIG. 3 functions as the storage device 151 in FIG.
  • the local TV transmitter 110 and the channel setting pattern presentation device 150 do not need to communicate via a network. Therefore, in FIG. 2, the communication RF processing unit 118 may be omitted, and the communication function by WLAN or BT may be omitted among the functions of the GPS / WLAN / BT processing unit 116.
  • the CPU / DSP 119 functions as a narrowing means for narrowing down a plurality of potentially possible channel setting patterns. Further, the CPU / DSP 119 functions as a presentation unit that presents one or more channel setting patterns obtained as a result of narrowing down in cooperation with the display 125 or the speaker 122.
  • the configuration of the broadcasting system 100 has been described above with reference to FIGS.
  • the mobile terminal 140 with TV in FIG. 1 is, for example, a known mobile phone with a one-segment function, and a detailed description thereof will be omitted.
  • the empty channel search process is a process for acquiring empty channel measurement information used by the channel setting pattern presentation device 150 to present an appropriate channel setting pattern.
  • various information related to the empty channel search process will be described first, and then the contents of the process will be described.
  • FIG. 5 is a diagram illustrating an example of an empty channel measurement information table 201 that stores empty channel measurement information.
  • the free channel measurement information table 201 is stored in the storage device 151 of FIG.
  • the free channel measurement information is added to and stored in the free channel measurement information table 201 by the process shown in FIG. Also, the empty channel measurement information is information that associates “clear level” (level) with the point ID and the channel ID.
  • the point ID is a specific example of a point identifier for identifying a plurality of points on the route on which the bus travels.
  • the channel ID is a specific example of a channel identifier that identifies a plurality of channels of broadcast radio waves that may be used for local broadcasting.
  • the “clear level” of the channel X at a certain point is a level representing the availability at the point of the channel X, in other words, at the point of local broadcasting using the channel X. This is a level representing reception quality. If a licensed broadcasting station is performing one-segment broadcasting using channel X, or if channel X is greatly affected by the surrounding environment, and the local broadcasting is performed using channel X, the reception quality is Expected to be low. Therefore, in this case, the clear level of channel X is low. Conversely, when channel X is not used for one-segment broadcasting by a broadcasting station and there are no nearby noise sources that have a large influence on channel X, the clear level of channel X is high.
  • the reception strength of the channel X (more precisely, the reception strength of the central segment used for local broadcasting, which is one-segment broadcasting by the weak radio wave among the 13 segments of the channel X) is strong, The clear level of X is low. Conversely, if the reception intensity of channel X is weak, the clear level of channel X is high.
  • the clear level corresponding to good reception quality is represented as “3”
  • the clear level corresponding to normal reception quality is represented as “2”
  • the clear level corresponding to poor reception quality is represented as “1”. ".
  • the above “good”, “normal”, and “poor” are defined in advance by a predetermined standard according to the embodiment.
  • the clear level can be defined as follows using two threshold values T 1 and T 2 (T 1 ⁇ T 2 ).
  • the clear level is represented by a discrete value of 1 to 3, but, of course, the specific definition of the clear level varies depending on the embodiment.
  • the clear level may be represented by a discrete value of two stages, a discrete value of four or more stages, or a continuous value.
  • the continuous reception intensity itself can be used instead of the clear level.
  • the free channel measurement information stored in the free channel measurement information table 201 in FIG. 5 is information that associates the clear level of each channel at each point with the point ID and the channel ID.
  • the empty channel measurement information of the first embodiment uses the clear level as well as the time. Corresponds.
  • a unique measurement number (hereinafter referred to as “measurement No”) is assigned to each row of the empty channel measurement information table 201 in FIG.
  • Each row represents empty channel measurement information corresponding to measurement performed collectively at one point.
  • Each line includes a “point ID” indicating a point where the measurement is performed and a “measurement time” when the measurement is performed.
  • Each row includes a set of channel ID and clear level for each of a plurality of channels.
  • the clear level of each channel at each point is associated with the point ID and the channel ID, and also associated with the measurement time in the above-described format.
  • the row where the measurement number is “1” represents the result of the measurement performed at 9 o'clock at the point where the point ID is “P1” (hereinafter referred to as “point P1”). Yes.
  • This row includes a set of channel ID “13” and clear level “3”, a set of channel ID “14” and clear level “2”, and the like. The number of sets of channel ID and clear level included in this row depends on the number of one-seg broadcasting channels that can be satisfactorily received at the point P1.
  • the other rows in FIG. 5 include a unique measurement number, a point ID, and a measurement time, and further include a plurality of sets of channel IDs and clear levels.
  • the free channel measurement information table 201 further includes a column for measurement day of the week. It may be.
  • the free channel measurement information table 201 may have a column for recording the weather.
  • the empty channel measurement information table 201 may not include the measurement time column.
  • FIG. 6 is a diagram illustrating an example of the spot information table 202 that stores spot information.
  • the point information table 202 is created in advance and stored in the storage device 151 of FIG.
  • the point represented by the point ID is a point that represents a two-dimensionally expanding area.
  • the point information is information that associates each point ID with an area.
  • each area is a rectangle, and the area is defined by two points on a diagonal line of the rectangle.
  • start point and end point”.
  • the point represented by the point ID “P1” is representative of the starting point of north latitude 35.531328 degrees and east longitude 139.669689 degrees and north latitude 35.5561522 degrees and east longitude 139.716182 degrees.
  • This is a rectangular area defined by the end point of.
  • an area is defined by point information that associates two pairs of latitude and longitude with a point ID, and the correspondence between the area and the point is managed.
  • the point represented by the point ID that is, the point representing the area is specifically the center point of the rectangular area. In some embodiments, points other than the center point may represent the area. In the first embodiment, the areas are defined so as not to overlap with each other. However, the areas may overlap in some embodiments.
  • the shape of the area may be a circle, an ellipse, a triangle, or another polygon.
  • the point information may include the latitude and longitude of the center point represented by the point ID and the radius of the circle.
  • each area is desirably a range that can be regarded as having the same free channel status or a smaller range.
  • the size of each area corresponding to each point ID defines the granularity of the channel setting pattern. If the situation regarding an empty channel greatly differs between two points in the area corresponding to one point ID, the possibility that an appropriate channel setting pattern is not presented increases. Therefore, it is preferable to determine an appropriate size of the area from a preliminary experiment, for example.
  • the sizes of the plurality of areas may be different or the same.
  • a relatively small area may be defined in an area where there are many artifacts.
  • the situation of an empty channel rarely changes rapidly as the bus travels, so a relatively large area may be defined.
  • FIG. 7 is a diagram illustrating an example of an operation information table 203 that stores operation information.
  • the operation information table 203 is also created in advance and stored in the storage device 151 of FIG.
  • the operation information table 203 since it is assumed that the bus operates according to the same timetable every day, the operation information table 203 includes a “route ID” column, a “passing point ID” column, and a “point passing scheduled time” column. Including.
  • the route ID in the first embodiment is an identifier that identifies a bus route (that is, a route; hereinafter, also simply referred to as “route”) and also identifies a plurality of flights running on the same route.
  • a bus route that is, a route; hereinafter, also simply referred to as “route”
  • the operation information table 203 in FIG. 7 has four rows with a route ID “1”. These four lines indicate that the route identified by the route ID “1” is “a route that departs from the point P1 and arrives at the point P8 via the points P2 and P7”. These four lines indicate that the flight identified by the route ID “1” “departs from point P1 at 9:00, passes through point P2 at 9:00:50, and passes through point P7 at 9:00 It also indicates that the flight is scheduled to pass at 20 minutes and 20 seconds and arrive at the point P8 at 9: 3: 20.
  • the route ID is a set of a point ID of a passing point (including a starting point and an ending point of the operating route) on the bus operating route and a scheduled time when the bus passes the passing point.
  • Each flight is defined by a plurality of lines that correspond to.
  • a part of two operation routes identified by route IDs “1” and “2” that is, between the points P1 and P2 is common.
  • some of the plurality of operation routes may overlap.
  • the format of the operation information table 203 may be appropriately changed according to the way of bus operation. For example, when a bus operates according to different timetables on weekdays (Monday to Friday) and holidays (Saturday and Sunday), the operation information table 203 may further include a flag column for distinguishing between weekdays and holidays. .
  • FIG. 8 is a diagram illustrating an example of the influence range information table 204 that stores the influence range information.
  • the influence range information table 204 is also created in advance and stored in the storage device 151 of FIG.
  • the influence range information is information that associates time and distance with the point ID.
  • the influence range information table 204 includes a “passage point ID” column, a “reception influence time” column, and a “reception influence distance” column.
  • each point ID is a point representing an area having a two-dimensional extent.
  • the influence range information is information representing the area size by time and distance.
  • the travel time and travel distance of each area are also the travel time or travel distance in which the environment where the influence on the reception of the local broadcast is almost constant continues.
  • the width of each area is represented by time and distance by the “reception influence time” column and the “reception influence distance” column.
  • the reception influence time and the reception influence distance of the row having the passage point ID “P1” are 25 seconds and 250 m, respectively.
  • This line takes 25 seconds for the bus to travel in the area defined by the line whose point ID is “P1” in the point information table 202 of FIG. 6, and in that 25 seconds the bus follows the route within the area. It shows that the vehicle travels a distance of 250 m (that is, a journey). In other words, the same situation regarding the empty channel continues for 25 seconds while the bus is traveling in the area represented by the point P1, during which the bus travels 250 meters in the area. Run.
  • the ratio between the reception influence time and the reception influence distance is constant by chance.
  • the ratio of the reception influence time and the reception influence distance may be different for each point ID depending on road conditions such as traffic jams.
  • both the influence range information table 204 in FIG. 8 and the point information table 202 in FIG. 6 are tables that store information that associates other information with the point ID. It may be grouped into two tables.
  • FIG. 9 is a flowchart of empty channel search processing in the first embodiment.
  • the vacant channel search process includes a process of measuring a clear level by receiving broadcast radio waves on a plurality of channels at each of a plurality of points on the route.
  • the local TV transmitter 110 loaded on the bus executes the processing of FIG. Specifically, the process of FIG. 9 is started immediately before the bus departs from the start point of a certain operation route.
  • step S101 the CPU / DSP 119 (see FIGS. 2 to 3) of the local TV transmitter 110 (see FIGS. 1 to 3) determines the point ID of each measurement point on the route on which the bus is to travel from now on. Area information is acquired and stored in the memory area 126 of FIG.
  • the “measurement point” is a point at which measurement is performed to check the status of an empty channel. Specifically, the “measurement point” is a point represented by the point ID described with reference to FIGS.
  • a route ID for identifying a route on which the bus is scheduled to travel and a flight are input from the bus driver via the numeric keypad 124 in FIG.
  • the CPU / DSP 119 receives the input route ID from the numeric keypad 124.
  • the CPU / DSP 119 displays a plurality of point IDs associated with the input route IDs in the operation information table 203 in the storage device 151 via the channel setting pattern presentation device 150 in FIG. 1 (see FIG. 7). Read from.
  • the local TV transmitter 110 and the channel setting pattern presentation device 150 are connected by WLAN, BT, or other wireless communication network, and can exchange data with each other. it can. Therefore, the CPU / DSP 119 can acquire data from the storage device 151 by communicating with the channel setting pattern presentation device 150 via the GPS / WLAN / BT processing unit 116 or the communication RF processing unit 118 of FIG. it can. Similarly, the CPU / DSP 119 can write data in the storage device 151 by communicating with the channel setting pattern presentation device 150 via the GPS / WLAN / BT processing unit 116 or the communication RF processing unit 118.
  • step S101 when the route ID “1” is input, in step S101, the CPU / DSP 119 causes “P1” and “P2” associated with the route ID “1” from the operation information table 203 of FIG. , “P7” and “P8” are acquired.
  • the CPU / DSP 119 stores the acquired four spot IDs in the memory area 126.
  • the CPU / DSP 119 also acquires a scheduled point passage time corresponding to each point ID from the operation information table 203 for the convenience of the process in step S103 described later. Then, the CPU / DSP 119 stores the acquired spot IDs in the memory area 126 in order according to the scheduled spot passing time. According to the example of FIG. 7, “P1” is the first, “P2” is the second, “P7” is the third, and “P8” is the fourth.
  • the CPU / DSP 119 stores the area information of the four areas represented by the acquired four point IDs “P1”, “P2”, “P7”, and “P8” in the storage device 151 in FIG. Is acquired from the point information table 202.
  • the area information is also acquired through communication with the channel setting pattern presentation device 150 via the GPS / WLAN / BT processing unit 116 or the communication RF processing unit 118.
  • the CPU / DSP 119 stores the acquired area information in the memory area 126.
  • step S102 the CPU / DSP 119 activates the tuner. That is, the CPU / DSP 119 activates the reception function (that is, the function realized by the TV reception device 114) of the TV transmission / reception unit 117 in FIG. 2 by activating the TV reception device 114 shown in FIGS.
  • Step S103 to S106 are repeatedly executed. Further, the CPU / DSP 119 continues to monitor the current location of the bus loaded with the local TV transmitter 110 by the GPS function of the GPS / WLAN / BT processing unit 116 of FIG. 2 while repeating the processing of steps S103 to S106. For example, the CPU / DSP 119 controls the GPS / WLAN / BT processing unit 116 to perform positioning at a predetermined interval (for example, every 1 second) that is sufficiently shorter than the reception influence time (see FIG. 8) of any area. May be.
  • a predetermined interval for example, every 1 second
  • step S103 the CPU / DSP 119 determines whether the bus has arrived at the next measurement point based on the current position of the bus. Step S103 is repeated until the CPU / DSP 119 determines that the bus has arrived at the next measurement point. If the CPU / DSP 119 determines that the bus has arrived at the next measurement point, the process proceeds to step S104.
  • step S103 is executed for the first time. Specifically, the following processing is performed.
  • step S101 since the area information represented by the point P1 is obtained, the CPU / DSP 119 calculates the latitude and longitude of the point P1, which is the center point of the rectangle defined by the area information, based on the area information. can do.
  • step S103 is executed for the first time, the bus is located at the starting point P1. Therefore, by comparing the calculated latitude and longitude of the point P1 with the latitude and longitude of the current position recognized as a result of monitoring by the GPS / WLAN / BT processing unit 116, the CPU / DSP 119 indicates that the current bus is “next”. It is recognized that it is located at the point P1, which is a “measurement point”. Therefore, the process proceeds to step S104.
  • step S104 the TV receiver 114 measures the clear level for each channel to be searched according to the control by the CPU / DSP 119.
  • the search target channel is predetermined according to each measurement point.
  • the one-segment broadcasting from the broadcasting station can be received with good reception quality at the point P1 through seven specific channels.
  • the search target at the point P1 may be 43 channels other than the specific seven channels among the 50 channels.
  • all 50 channels may be searched.
  • step S104 the TV receiver 114 measures the radio wave reception intensity of each channel. Then, CPU / DSP119 is measured numerical, and using the threshold T 1 and T 2 was illustrated with respect to FIG. 5, to determine the clearing level for each channel.
  • the CPU / DSP 119 allows the TV transmitting device 113 and the TV receiving device 114 as follows. Can be controlled.
  • the TV transmission device 113 currently performs local broadcasting using channel A. Also assume that channel B is the channel to be searched.
  • the CPU / DSP 119 performs different control in the following cases (1) and (2).
  • the CPU / DSP 119 causes the TV transmission apparatus to perform one-segment broadcasting on channel A using weak radio waves. 113, and the TV receiver 114 is controlled to receive the radio wave of channel B.
  • the control method of the TV receiver 114 in the case of (1) may be a known method.
  • the TV receiver 114 reports the reception intensity (specifically, the amplitude level) of the radio wave on channel B to the CPU / DSP 119.
  • the CPU / DSP 119 determines the clear level of the channel B based on the reported reception strength of the channel B and a predetermined threshold value.
  • the CPU / DSP 119 performs the same control as in the case of (1) above, the radio wave itself broadcast by the TV transmission device 113 is also received by the TV reception device 114. The level cannot be measured accurately. Therefore, the CPU / DSP 119 performs the following control in order to accurately measure the clear level by distinguishing between the radio wave broadcast from the TV transmitter 113 and the radio wave from other broadcast stations and noise sources.
  • the CPU / DSP 119 causes the TV transmission device 113 to perform local broadcasting by erasing a specific part of the 432 carriers used for channel A one-segment broadcasting. Control.
  • the specific part of the carrier is located near the center of the frequency band of the channel A.
  • the CPU / DSP 119 receives the radio wave of channel B (that is, channel A) and reports the reception intensity (specifically, the amplitude level) of the specific carrier.
  • the TV receiver 114 is controlled.
  • the reception intensity reported from the TV receiver 114 in this way is the reception intensity of the carrier that the TV transmitter 113 does not use for broadcasting, so it is not affected by the broadcast of the TV transmitter 113, and other broadcast stations or It accurately represents only the influence of interference from noise sources. Therefore, the CPU / DSP 119 can accurately determine the clear level of the channel B based on, for example, the reception intensity reported from the TV receiver 114 and a predetermined threshold value.
  • step S105 is subsequently executed.
  • the CPU / DSP 119 transmits measurement data in which the point ID, the channel ID, the clear level, and the measurement time are associated to the channel setting pattern presentation device 150 via the network.
  • the point ID in the measurement data is the point ID of the point determined as “arrived” in step S103.
  • the measurement data includes a set of channel ID and clear level for each of a plurality of channels to be searched in step S104.
  • the measurement time is acquired from the CPU clock when the process of step S104 is completed, for example.
  • the channel setting pattern presentation device 150 that has received the measurement data operates as follows. That is, the channel setting pattern presentation device 150 generates a new unique measurement number, and adds the received measurement data to the free channel measurement information table 201 in the storage device 151 as free channel measurement information together with the generated measurement number. To do.
  • step S106 the CPU / DSP 119 determines whether or not the clear level has been measured at all measurement points on the currently traveling route. If the clear level has already been measured corresponding to all the point IDs stored in the memory area 126 in step S101, the CPU / DSP 119 determines that “measurement has been completed at all measurement points”, and the process is step. The process proceeds to S107. Conversely, if there remains a measurement point where the clear level has not been measured, the process returns to step S103.
  • step S107 the CPU / DSP 119 stops the tuner. That is, the CPU / DSP 119 stops the reception function (that is, the function realized by the TV reception device 114) of the TV transmission / reception unit 117 of FIG. 2 by stopping the TV reception device 114 shown in FIGS. Then, the process of FIG. 9 ends.
  • step S101 when four point IDs “P1,” “P2,” “P7,” and “P8” are acquired corresponding to the route ID “1” as described above, the steps S103 to S106 are performed.
  • a specific example of the repetition will be described as follows.
  • step S103 is executed for the first time is as described above. Thereafter, the clear level is measured at the point P1 in step S104, the measurement data is transmitted in step S105, and the process returns from step S106 to step S103.
  • step S103 is executed again.
  • the “next measurement point” is the point P2. Therefore, the CPU / DSP 119 determines in step S103 whether the bus has arrived at the point P2.
  • CPU / DSP119 for example a step S103, if GPS / WLAN / BT processor within the threshold T d where the straight line distance is predetermined between the current position and the point P2 of the bus obtained by 116, the "next It may be determined that the user has arrived at the point P2 that is the measurement point of ".”
  • step S104 a clear level is measured at point P2 (or a nearby point whose linear distance from the point P2 is within the threshold value Td ) at step S104, measurement data is transmitted at step S105, and the process from step S106 to step S106. Return to S103.
  • steps S103 to S106 are executed again, and the process returns to step S103.
  • steps S103 to S106 are executed again.
  • the process proceeds from step S106 to step S107, and the entire process of FIG. 9 is completed.
  • the empty channel measurement information is accumulated in the empty channel measurement information table 201 of FIG. 5 by the processing of FIG. 9 described above. Also, as shown in FIG. 7, when a part of a plurality of routes overlaps, the result of the processing of FIG. 9 performed separately on each route is stored in the free channel measurement information table 201, respectively. It may be accumulated.
  • the vacant channel measurement information may further include information on the date on which the clear level measurement was performed. Then, the channel setting pattern presentation device 150 periodically checks the old entry (entry) from the empty channel measurement information table 201 (for example, the date when the measurement was performed is one month or more based on the date information). The previous entry) may be deleted.
  • processing of FIG. 9 may be executed every time the bus is operated.
  • the process of FIG. 9 may be performed at intervals based on a rule such as “perform the process of FIG. 9 only on a bus that operates in the second week of each month”.
  • the process of FIG. 9 may be executed at irregular intervals.
  • the local TV transmitter 110 can perform only the processing of FIG. 9 without performing local broadcasting.
  • the clear level may be measured using a known method for detecting the reception intensity.
  • the empty channel search process does not necessarily have to be performed as shown in FIG.
  • the process of FIG. 10 may be performed instead of the process of FIG. 9, or the process of FIG. 9 and the process of FIG. 10 may be used in combination.
  • FIG. 10 is a flowchart of empty channel search processing in a modification of the first embodiment.
  • the local TV transmitter 110 similar to that loaded on the bus is also installed at a point represented by a certain point ID.
  • the local TV transmitter 110 may be installed at a bus stop whose position is represented by a certain point ID.
  • the local TV transmitter 110 installed at the bus stop may perform local broadcasting for passengers waiting for the bus at the bus stop. It is assumed that the location ID of the location where the local TV transmitter 110 is installed is stored in the memory area 126 in advance.
  • step S201 the CPU / DSP 119 of the local TV transmitter 110 activates the tuner. Since step S201 is the same as step S102 of FIG. 9, detailed description thereof is omitted.
  • step S202 the TV receiver 114 measures the clear level for each channel to be searched according to the control by the CPU / DSP 119.
  • Step S202 is the same as step S104 in FIG.
  • step S203 the CPU / DSP 119 transmits measurement data in which the point ID, the channel ID, the clear level, and the measurement time are associated to the channel setting pattern presentation device 150 via the network.
  • Step S203 is the same as step S105 in FIG.
  • step S204 the CPU / DSP 119 controls the TV receiver 114 to wait until a predetermined time elapses, and when the predetermined time elapses, the process returns to step S202.
  • the clear level is periodically measured.
  • the “predetermined time” may be appropriately determined based on a result of a preliminary experiment or the like according to a cycle in which the clear level varies, or may be a fixedly predetermined value.
  • the GPS function of the GPS / WLAN / BT processing unit 116 may be omitted.
  • a measurement device (not shown) that does not perform broadcasting (for example, a device in which the TV transmission device 113 is deleted from the local TV transmitter 110 in FIG. 3) can perform the processing in FIG. 10 instead of the local TV transmitter 110.
  • the measuring instrument may measure the clear level using a known method for detecting the reception intensity.
  • FIG. 10 shows a process of periodically measuring the clear level.
  • the clear level is measured irregularly according to an irregular instruction from the channel setting pattern presentation device 150 connected via the network. It may be broken.
  • the channel setting pattern presentation device 150 uses the free channel measurement information stored in the free channel measurement information table 201 in FIG. To select and present the channel setting pattern.
  • FIG. 11 is a flowchart of pattern presentation processing in the first embodiment.
  • the channel setting pattern presentation device 150 refers to a storage device such as a RAM as a storage unit that stores the clear level in association with the spot ID and the channel ID, and a plurality of potential configurations are possible. Narrow down the channel setting pattern. Then, the channel setting pattern presentation device 150 presents one or more channel setting patterns obtained as a result of narrowing down.
  • the route ID is input to the channel setting pattern presentation device 150.
  • the route ID may be input via the input device 165 in FIG. 4.
  • the route ID may be input via the numeric keypad 124 of FIG.
  • step S302 the channel setting pattern presentation device 150 extracts the passage point ID, the reception influence time, the reception influence distance, and the point passage scheduled time based on the route ID input in step S301, and develops it as a route information table. .
  • the channel setting pattern presentation device 150 extracts a passing point ID and a scheduled passing time corresponding to the input route ID from the operation information table 203 in FIG. Moreover, the channel setting pattern presentation apparatus 150 extracts the reception influence time and the reception influence distance respectively corresponding to the plurality of passage point IDs extracted from the operation information table 203 from the influence range information table 204 of FIG. Then, the channel setting pattern presentation device 150 associates the extracted passage point ID with the reception influence time, the reception influence distance, and the point passage scheduled time, and develops them in a format as shown in FIG. To do.
  • FIG. 12 is a diagram illustrating an example of the developed route information table 205.
  • FIG. 12 is an example when the route ID “1” is input in step S301 of FIG. As shown in FIG. 7, the route ID “1” corresponds to four passage point IDs “P1”, “P2”, “P7”, and “P8”. Therefore, in step S302 of FIG. 11, these four passage point IDs and respective point passage scheduled times are extracted from the operation information table 203. Further, the reception influence time and the reception influence distance corresponding to these four passage point IDs are extracted from the influence range information table 204 of FIG.
  • the channel setting pattern presentation device 150 receives the spot ID “P1”, the reception influence time “25 seconds”, the reception influence distance “250 m”, and “9: 00: 00: 00”. Is associated with the scheduled passage time. Further, the channel setting pattern presentation device 150 performs similar association for the other three point IDs “P2”, “P7”, and “P8”. Then, the channel setting pattern presentation device 150 expands the associated information in a format such as the route information table 205 in FIG. 12, for example, and stores it in a RAM such as the RAM 163 in FIG.
  • the route information table 205 in FIG. 12 implies the following bus schedule. ⁇ The bus departs from P1 at 9:00. ⁇ The bus travels 250 m in the first area represented by the point P1 over 25 seconds, and at 9:00:25, the boundary between the second area represented by the point P2 and the first area Pass through.
  • the bus passes through point P7 at 9:01:20, 15 seconds after passing the boundary. ⁇
  • the bus arrives at the start point P8, which is the end point, at 9:03:20, 60 seconds after passing the boundary. That is, for 60 seconds from 9:02:20 to 9:03:20, the bus travels 600 m in the fourth area.
  • the extracted reception influence time and reception influence distance are proportional as described above.
  • the reception influence time and the reception influence distance are not proportional to each other due to differences in road conditions at various points on the route.
  • step S105 in FIG. 9 is for the channel setting pattern presentation device 150 to write the measured clear level in the path information table 205 in association with the point ID of the point to be measured and the channel ID of the channel to be measured.
  • the channel setting pattern presentation device 150 can write the measured clear level in the path information table 205 in association with the point ID of the point to be measured and the channel ID of the channel to be measured.
  • it is preparation.
  • the channel setting pattern presentation device 150 sets the clear level at each passing point based on the operation information table 203 in FIG. 7 and the empty channel measurement information table 201 in FIG. Expands as a channel information table 206a.
  • the free channel information table 206a is developed on a RAM such as the RAM 163 in FIG.
  • FIG. 13A is a diagram showing a first example of the developed empty channel information table.
  • the route information table 205 of FIG. 12 is also displayed for convenience of reference.
  • channels other than channels 13 to 16 are not free channels among the 50 physical channels. It shall be.
  • the search target is the channels 13 to 16 at any of the points P1, P2, P7, and P8.
  • a channel used by a broadcasting station is an example of a channel that has been previously determined not to be a free channel.
  • each row corresponds to each channel to be searched, and each column corresponds to each point ID.
  • Each cell in the free channel information table 206a represents a clear level. For example, in FIG. 13A, a clear level of “3” corresponds to a set of “13” and “P1”.
  • step S303 of FIG. 11 the channel setting pattern presentation device 150 performs the following processing in order to obtain such an empty channel information table 206a and store it in the memory area 126.
  • the channel setting pattern presentation device 150 searches the empty channel measurement information table 201 of FIG. 5 using the extracted passing point ID and the estimated passing time as search keys.
  • the channel setting pattern presentation device 150 searches the empty channel measurement information table 201 for an entry having the point ID “P1” and the measurement time close to “9:00:00”. If the processing of FIG. 9 has already been appropriately performed for each flight of each route so that a sufficient amount of free channel measurement information is accumulated in the free channel measurement information table 201 of FIG. One entry is obtained. Incidentally, if the absolute value of the difference between the two is the threshold T n less than or equal to a predetermined, two times are close to each other, shall be defined as.
  • an entry whose measurement number is “1” has a point ID “P1” and a measurement time “9:00”. Therefore, as a result of the search corresponding to the set of the passing point ID “P1” and the scheduled passing time of “9: 00: 00: 00”, at least an entry whose measurement number is “1” is obtained.
  • Value and the threshold value T n depending on the content of the idle channel measurement information stored in the idle channel measurement information table 201, sometimes still another entry obtained as a result of the search.
  • the entry whose measurement number is “2” has the point ID “P2” and the measurement time “9:10:00”. Therefore, if the value of, for example, the threshold T n is 15 minutes, as a passing point ID and the result of the search corresponding to the combination of spot passage estimated time of "9:00:50" as “P2”, the measurement No "2 Is obtained. Conversely, if the value of, for example, the threshold T n is 5 minutes, it is determined that "9:00:50" and two times of "9:10:00” is "not close", a result of the search, An entry whose measurement number is “2” cannot be obtained.
  • the channel setting pattern presentation device 150 When only one entry is obtained as a result of the search of the free channel measurement information table 201, the channel setting pattern presentation device 150 reads a set of channel ID and clear level from the obtained entry. Then, the channel setting pattern presentation device 150 writes the read clear level value in the free channel information table 206a of FIG. 13A.
  • the channel setting pattern presentation device 150 writes the clear level “3” in the cell where the column “P1” and the row “13” intersect in the free channel information table 206a.
  • the channel setting pattern presentation device 150 When a plurality of entries are obtained as a result of the search, the channel setting pattern presentation device 150 reads, for each channel ID, the clear level corresponding to the channel ID from each entry obtained as a result of the search. Then, the channel setting pattern presentation device 150 determines the clear level to be written in the empty channel information table 206a based on the read multiple clear levels.
  • the channel setting pattern presentation device 150 reads the clear level corresponding to the channel ID “13” in each of the three entries.
  • the channel setting pattern presentation device 150 performs a predetermined process based on the three values “1”, “2”, and “2”, and sets a clear level to be written in the empty channel information table 206a, for example, “ 2 ”.
  • the above “predetermined processing” may be, for example, processing for obtaining a mode value, or other statistical processing such as obtaining a median value, a maximum value, a minimum value, or an average value. Then, the channel setting pattern presentation device 150 writes the determined value (“2” in the above example) in the cell where the column “P2” and the row “13” intersect in the empty channel information table 206a.
  • the channel setting pattern presentation device 150 searches the free channel measurement information table 201 for each point ID, and each row of the free channel information table 206a is based on one or more entries obtained as a result of the search. Write a value to the cell.
  • an empty channel information table 206a as shown in FIG. 13A, for example, is generated and expanded in the memory area 126 or the like.
  • FIG. 13B is a diagram showing a second example of the developed empty channel information table.
  • the empty channel information table 206b in FIG. 13B is the same as the empty channel information table 206a in FIG.
  • the route information table 205 is also displayed in FIG. 13B for convenience of reference.
  • the channel setting pattern presentation device 150 determines whether or not there are continuous free channels over all points on the route specified by the route ID.
  • step S301 when a route ID “1” is input in step S301, as shown in FIG. 7, “all points” are four points, point P1, point P2, point P7, and point P8.
  • the clear level is represented by three levels of discrete values. “2” represents “normal” and “3” represents “good”. Therefore, a channel that can obtain a clear level of “normal” or higher is regarded as an empty channel. Further, it is assumed that the free channel information table 206a is expanded as shown in FIG. 13A as a result of step S303.
  • step S304 the channel setting pattern presentation device 150 determines the channel that remains an empty channel over the four columns “P1”, “P2”, “P7”, and “P8” in the empty channel information table 206a of FIG. 13A. Judgment of existence.
  • the channel setting pattern presentation device 150 determines that the channel 14 is an empty channel that is continuous over all points.
  • step S301 when a route ID “1” is input in step S301, depending on the contents of the empty channel measurement information table 201 in FIG. 5, the empty channel information table 206b is expanded as shown in FIG. 13B as a result of step S303. It may be.
  • step S304 channel setting pattern presentation apparatus 150 determines that there are no free channels that are continuous over all points. This is because, in FIG. 13B, there is no row in which the clear level of “2” or higher continues over four columns.
  • step S304 whether or not a plurality of (four in the above example) channel setting patterns that associate the N channel IDs with the same channel ID continues with a clear level of “2” or higher over all points. It is evaluated from the viewpoint. If there are continuous free channels over all points, the process proceeds to step S305, and if there are no continuous free channels over all points, the process proceeds to step S309.
  • step S305 the channel setting pattern presentation device 150 determines whether there are a plurality of channels determined in step S304 as being free channels that are continuous over all points.
  • the channel setting pattern PAT that associates the channel X with all points on the designated route can continue local broadcasting with good reception quality without changing the channel from the start point to the end point of the route.
  • This is a channel setting pattern that is expected to be possible. Therefore, the channel setting pattern PAT is suitable for performing local broadcasting without imposing a burden on passengers on the bus.
  • step S305 the channel setting pattern presentation device 150 determines whether there are a plurality of channel setting patterns expected to be able to continue local broadcasting while maintaining good reception quality without changing the channel. Judgment. If it is determined that there is only one channel setting pattern as described above, the process proceeds to step S306. If there are a plurality of channel setting patterns as described above, the process proceeds to step S307.
  • step S306 the channel setting pattern presentation device 150 selects the one channel setting pattern found in step S305 as a channel setting pattern to be presented. Then, the process proceeds to step S308.
  • step S307 the channel setting pattern presentation device 150 calculates a score for each of the plurality of channel setting patterns found in step S305. Then, the channel setting pattern presentation device 150 selects the channel setting pattern with the highest score as the channel setting pattern to be presented, and the process proceeds to step S308.
  • the score calculated in step S307 is an evaluation value based on the clear level, and a specific calculation formula is arbitrary depending on the embodiment.
  • the score of the channel setting pattern the sum of the clear levels corresponding to the set of the spot ID and the channel ID associated with the channel setting pattern is used. That is, it is as follows if formally defined.
  • the route R is represented by an N-tuple including N point IDs as in Expression (1).
  • each p j (1 ⁇ j ⁇ N) is a point ID
  • the N point IDs are ordered in the N tuple according to the order on the route.
  • the channel setting pattern PAT related to the path R can be represented by an N tuple including N channel IDs as in Expression (2).
  • the j-th channel ID ⁇ c i (j ) in equation (2) is associated with the j-th point ID ⁇ p j in equation (1) by being the j-th element of the N tuple. That is, the channel setting pattern PAT is a combination pattern that associates channel IDs with N point IDs.
  • a route identified by a route ID “1” (hereinafter referred to as “R1”) is represented by a 4-tuple (P1, P2, P7, P8) from FIG. 7 and Expression (1).
  • a channel setting pattern (hereinafter referred to as “PATa”) that associates the channel 14 that is an empty channel continuous over all points in the empty channel information table 206a of FIG. 13A with each point ID is expressed by (14, 14, 14, 14).
  • the score of the channel setting pattern PATa is specifically the sum of the four values in the row of the channel ID “14” in the empty channel information table 206a. It is calculated as follows.
  • the channel setting pattern presentation device 150 calculates a score based on the clear level for each of the plurality of channel setting patterns corresponding to the plurality of empty channels found in step S304. And the channel setting pattern presentation apparatus 150 selects the channel setting pattern with the highest score as a presentation target.
  • the channel setting pattern presentation device 150 may select only one of them based on criteria other than the score, or two or more channels with the highest score. All setting patterns may be selected. In addition, depending on the embodiment, the channel setting pattern presentation device 150 may select all the plurality of channel setting patterns corresponding to the plurality of empty channels found in step S304 without calculating the score in step S307. . When channel setting pattern presentation device 150 selects one or more channel setting patterns, the process proceeds to step S308.
  • step S308 the channel setting pattern presentation device 150 transfers information on the channel setting pattern selected as the presentation target to the local TV transmitter 110. Transfer to the local TV transmitter 110 is an example of a specific method for presenting a channel setting pattern.
  • the channel setting pattern presentation device 150 when the channel setting pattern presentation device 150 is realized by the computer 160 of FIG. 4, the CPU 161 transmits information on the channel setting pattern selected as a presentation target to the local TV transmitter via the communication interface 164 and the network 171. 110. That is, the communication interface 164 as a data transmission device may be used for presenting a channel setting pattern.
  • the CPU 161 When the channel setting pattern presentation device 150 is realized by the computer 160 in FIG. 4, the CPU 161 further outputs the channel setting pattern to the output device 166 so that the selected channel setting pattern is visually or audibly heard. May be presented.
  • the output device 166 is a display, a printer, a speaker, or the like.
  • the local TV transmitter 110 may also serve as the channel setting pattern presentation device 150.
  • the CPU / DSP 119 of the local TV transmitter 110 shown in FIG. 2 may visually or audibly present the selected channel setting pattern on the display 125 or the speaker 122.
  • the presented channel setting pattern may be automatically set in the local TV transmitter 110.
  • the channel setting pattern presented by the channel setting pattern presentation device 150 may be output to the display 125 or the speaker 122 of the local TV transmitter 110.
  • an operator such as a bus driver or a conductor confirms the output channel setting pattern, and the channel setting presented by the channel setting pattern presentation device 150 via an input device such as the numeric keypad 124 of FIG. You may perform input which approves a pattern.
  • the CPU / DSP 119 may set the approved channel setting pattern as a channel setting pattern for controlling the TV transmission device 113.
  • the local TV transmitter 110 can perform local broadcasting by the TV transmitter 113 of FIGS. 1 and 3 according to the channel setting pattern set as described above. According to the set channel setting pattern, for example, the conductor may notify the passenger verbally about the channel switching. Therefore, according to the first embodiment, it is possible to provide a content distribution service based on local broadcasting in a moving bus without placing a heavy burden on the passengers of the bus.
  • step S309 includes processing for generating all combinable channel setting patterns, evaluating each of the generated channel setting patterns based on the clear level, and selecting a channel setting pattern with high evaluation.
  • step S309 the channel setting pattern presentation device 150 creates a channel setting pattern table based on the empty channel information table developed in step S303.
  • the empty channel information table 206b of FIG. 13B is obtained in step S303 will be described as an example.
  • FIG. 14 is a diagram showing an example of a channel setting pattern table.
  • each row corresponds to one channel setting pattern.
  • the channel setting pattern table 207 is created on a RAM such as the RAM 163 in FIG.
  • Equation (7) the total number of channel setting patterns that can be combined is as shown in Equation (7).
  • step S309 in FIG. 11 256 channel setting patterns are generated by the channel setting pattern presentation device 150, and the channel setting pattern table 207 is displayed. Is remembered. In FIG. 14, some lines are omitted for the sake of space.
  • the channel setting pattern table 207 includes columns of channel IDs and clear levels respectively corresponding to the four point IDs that define the route R1. Further, the channel setting pattern table 207 includes a score column calculated in step S310 described later, and a channel change count, the same channel continuous time, and the same channel total time calculated in step S311 described later.
  • the channel setting pattern presentation device 150 In step S309 of FIG. 11, the channel setting pattern presentation device 150 generates a channel setting pattern table 207 by writing values in the four sets of channel IDs and clear levels for each of the 256 channel setting patterns.
  • the channel setting pattern PAT01 shown in FIG. 14 can be expressed as Equation (8) by the notation of Equation (2).
  • PAT01 (13, 13, 14, 13)
  • the clear level corresponding to the set of the first point ID “P1” on the route R1 and the channel ID “13” which is the first element of the 4-tuple of Expression (8) is “3”. It is.
  • the clear level corresponding to the set of the second point ID “P2” on the route R1 and the channel ID “13” that is the second element of the 4-tuple of Expression (8) is “3”.
  • the clear level corresponding to the set of the third point ID “P7” on the route R1 and the channel ID “14” that is the third element of the 4-tuple of Expression (8) is “3”. Furthermore, the clear level corresponding to the set of the fourth point ID “P8” on the route R1 and the channel ID “3” which is the fourth element of the four tuples of the equation (8) is “3”.
  • the channel setting pattern presentation device 150 generates a channel setting pattern PAT01, and values “13”, “13”, “14”, and “13” are respectively displayed in the cells of the four channel ID columns in the row of the channel setting pattern PAT01. Write. Further, the channel setting pattern presentation device 150 writes the four values read from the empty channel information table 206b (all values “3”) into the cells in the four clear level columns of the row of the channel setting pattern PAT01.
  • the channel setting pattern presenting apparatus 150 refers to the empty channel information table 206b to set values in the first to eighth cells of the channel setting pattern table 207. Write.
  • the ninth column to the twelfth column will be described later.
  • step S310 the channel setting pattern presentation device 150 calculates a score based on the clear level for each channel setting pattern generated in step S309. Then, the channel setting pattern presentation device 150 writes the calculated score in the ninth column (that is, the “score” column) of the channel setting pattern table 207 of FIG.
  • step S310 the score defined by equation (3) is calculated as in step S307.
  • the score of the channel setting pattern PAT01 is calculated by the following equation (9).
  • the channel setting pattern presentation device 150 calculates the score by the equation (9) using the four clear level values written in the row of the channel setting pattern PAT01 of the channel setting pattern table 207 in step S309, and calculates “score In the column. Similarly, the channel setting pattern presentation apparatus 150 calculates a score based on Expression (3) for the other 255 channel setting patterns and writes it in the “score” column.
  • step S311 the channel setting pattern presentation device 150 calculates the following (a) to (c) for each channel setting pattern generated in step S309, and the cells in the 10th to 12th columns of the channel setting pattern table 207 are calculated. Write the calculation results in each.
  • the channel setting pattern presentation device 150 counts the number of channel changes in (a). Attention is paid to a pair of two adjacent channel IDs under the condition that the clear level corresponding to the ID is equal to or greater than a threshold value. Then, the channel setting pattern presentation device 150 counts the number of locations where the two channel IDs of interest are different. The counted result is the number of channel changes. In the first embodiment, “2” is used as the threshold value.
  • the clear levels corresponding to the four channel IDs are “3”, “3”, “1” and “3”, respectively. Therefore, the first, second and fourth channel IDs in the four tuples (13, 13, 15, 13) apply to the condition that “the clear level corresponding to the channel ID is equal to or greater than the threshold”. Therefore, the two sets of adjacent channel IDs under the above conditions are the following two sets.
  • the channel setting pattern presentation device 150 counts the number of times the channel is changed on the condition that “the clear level corresponding to the channel ID is equal to or greater than the threshold” as follows.
  • a tuple in which values written in the four “clear level” columns of the channel setting pattern table 207 are arranged according to the order of the corresponding points on the route is referred to as a “clear level tuple”. It is represented by 4 tuples (generally N tuples).
  • the TV transmission device 113 performs local broadcasting on the channel 15, but the reception quality is predicted to be poor. This is because the third element of the clear level tuple is “1”.
  • the local TV transmitter 110 suspends the local broadcast in an area where only a clear level less than “2” that is the threshold is obtained based on the adopted channel setting pattern. . This is because even if broadcasting, if the reception quality is poor, the meaning of broadcasting is weak.
  • the channel setting pattern presentation device 150 counts the number of channel changes, the condition that “the clear level corresponding to the channel ID is equal to or greater than the threshold” is set.
  • the local TV transmitter 110 can perform local broadcasting according to the adopted channel setting pattern even if the clear level is “1”. In that case, the definition of the number of channel changes may be different from the above.
  • the channel setting pattern presentation device 150 may count the number of locations where different channel IDs are adjacent to each other in the N tuple of spot IDs representing the channel setting pattern without providing the above conditions.
  • the channel setting pattern presentation device 150 calculates the length of the same channel ID that satisfies the same condition as above, “the clear level corresponding to the channel ID is equal to or greater than the threshold”, using the reception influence time. As will be described below, one or more calculation results are obtained for each channel setting pattern, and the maximum value of the obtained calculation results is the same channel continuous time.
  • the clear level tuple of the channel setting pattern PAT07 (13, 13, 13, 13) is (3, 3, 1, 3). Therefore, there are the following two sections in which the same channel ID is continued under the condition that the clear level is “2” or more.
  • Sections corresponding to the first to second channel IDs that is, sections corresponding to the first and second areas represented by the points P1 and P2, respectively
  • Section corresponding to the fourth channel ID that is, section corresponding to the fourth area represented by the point P8
  • the channel setting pattern presentation device 150 reads the reception influence time corresponding to each point from the route information table 205 of FIG. 12 that has been expanded in step S302 of FIG. And the channel setting pattern presentation apparatus 150 performs each addition as needed, and acquires each length of (1) and (2).
  • the channel setting pattern presentation device 150 aggregates the corresponding reception influence times for each channel ID under the same condition as described above that “the clear level corresponding to the channel ID is equal to or greater than the threshold”. The maximum value of the total results is the same channel total time.
  • the channel setting pattern presentation device 150 reads the reception influence time corresponding to each point from the route information table 205 of FIG. 12 that has been expanded in step S302 of FIG. Then, channel setting pattern presentation apparatus 150 performs addition as necessary to obtain the sum of reception influence times corresponding to (1) to (3).
  • the same channel continuous distance may be calculated instead of (b) using the reception affected distance instead of the reception affected time, and the same channel total distance may be calculated instead of (c). It may be calculated.
  • the channel setting pattern presentation device 150 determines a criterion that is given priority as a criterion for selecting a channel setting pattern.
  • the priority reference may be set in the channel setting pattern presentation device 150 in advance, or may be designated via an input device (such as the input device 165 in FIG. 4) in step S312.
  • the channel setting pattern presentation device 150 can determine a priority reference by reading preset content or input content. In the first embodiment, there are (a) the number of times of channel change, (b) the same channel continuous time, and (c) the same channel total time as options for the priority reference.
  • step S313 When the priority criterion is the number of channel changes, the process proceeds to step S313.
  • the priority reference is the same channel continuous time, the process proceeds to step S314.
  • the priority reference is the same channel total time, the process proceeds to step S315.
  • step S314 the channel setting pattern presentation device 150 extracts the channel setting pattern having the highest score from the t channel setting patterns included in the channel setting pattern table 207. Furthermore, the channel setting pattern presentation device 150 extracts the channel setting pattern with the highest score from the channel having the longest same channel continuous time and selects it as a presentation target. Then, the process proceeds to step S308.
  • step S315 the channel setting pattern presentation device 150 extracts the channel setting pattern having the highest score from the t channel setting patterns included in the channel setting pattern table 207. Furthermore, the channel setting pattern presentation device 150 extracts the channel setting pattern with the highest score from the longest same channel total time and selects it as a presentation target. Then, the process proceeds to step S308.
  • the criteria that can be selected in step S312 may be arbitrary depending on the embodiment, and can be appropriately determined according to the preference of the provider or passenger who performs the content distribution service by the local TV transmitter 110.
  • the channel setting pattern presentation device 150 may select the channel setting pattern to be presented based on a combination of two or more of the channel change count, the same channel continuous time, and the same channel total time.
  • step S311 instead of selecting all the references (a) to (c) in step S311, and then selecting the reference in step S312, as described above, the reference is selected first, and only the calculation related to the selected reference is performed. May be performed by the channel setting pattern presentation device 150.
  • the extraction in steps S313 to S315 may vary depending on the embodiment.
  • the channel setting pattern presentation device 150 may extract a channel setting pattern having a score equal to or higher than the threshold T s instead of first extracting the channel setting pattern having the highest score as described above.
  • channel setting pattern presentation apparatus 150 may first extract a channel setting pattern whose score falls within the upper T u % based on the distribution of scores in the generated t channel setting patterns. .
  • the value of the T u may be be predetermined, may be designated by an input such as from the operator.
  • the channel setting pattern presentation device 150 may extract a channel setting pattern that falls in T f % from the channel setting pattern with the highest score from the one with the smallest number of channel changes.
  • the value of Tf may be determined in advance or may be designated by input from an operator or the like.
  • the channel setting pattern presentation device 150 may extract a plurality of channel setting patterns having relatively long identical channel continuous time or identical channel total time.
  • steps S312 to S315 can be variously modified.
  • each channel setting pattern is evaluated based on the clear level corresponding to each set of the point ID and the channel ID associated with each other in each generated channel setting pattern and the threshold value “2” indicating the allowable level. Both are common.
  • the distribution of the clear level can be represented by, for example, the number of channel changes, the same channel continuous time, the same channel total time, the same channel continuous distance, or the same channel total distance. Note that the number of channel changes, the same channel continuous time, and the same channel continuous distance are in terms of the degree to which the same channel ID corresponding to a clear level of “2” or higher continues in the N tuple of equation (2) indicating the channel setting pattern. It is an index showing the distribution.
  • the channel setting pattern presentation device 150 not only transfers the selected one or more channel setting patterns to the local TV transmitter 110 in step S308 of FIG. 11, but also displays a display (for example, the output device of FIG. 4). 166).
  • the local TV transmitter 110 that has received the channel setting pattern information from the channel setting pattern presentation device 150 may display the channel setting pattern on the display 125 of FIG.
  • the display 125 of FIG. 2 may display one or more selected channel setting patterns in step S308 of FIG.
  • FIG. 15A is a diagram illustrating a first display example.
  • FIG. 15A is a display example when the free channel information table 206a of FIG. 13A is obtained in step S303 of FIG.
  • a channel setting pattern in which the channel ID “14” is associated with each of the spot IDs “P1”, “P2”, “P7”, and “P8” is selected in step S306 in FIG.
  • the selected channel setting pattern is displayed as a display example 208a in FIG. 15A, for example. That is, next to the channel ID “14”, four clear levels “2”, “2”, “3” and “3” respectively associated with the four spot IDs are displayed. That is, the display example 208a is an excerpt of the line of the channel ID “14” in the empty channel information table 206a of FIG. 13A.
  • FIG. 15B is a diagram showing a second display example.
  • FIG. 15B shows a case where the free channel information table 206b of FIG. 13B is obtained in step S303 of FIG. 11, the channel setting pattern table 207 of FIG. 14 is obtained in steps S309 to S311, and the number of channel changes is selected in step S312. Is a display example.
  • the number of channel changes is two.
  • the channel setting patterns PAT05 to PAT06 all have three channel change times. Accordingly, channel setting patterns PAT01 to PAT04 are selected in step S313.
  • the display example 208b in FIG. 15B has a table format, and each row corresponds to one channel setting pattern. Corresponding to the selected channel setting patterns PAT01 to PAT04, four lines are displayed in the display example 208b.
  • the pattern ID for identifying the channel setting pattern is displayed in the first column of the display example 208b, and the four spot IDs “P1,” “P2,” “P7,” and “P8” are displayed in the second to fifth columns.
  • the channel ID associated with each is displayed.
  • the background of the cell differs depending on the channel ID.
  • the number of channel changes in the channel setting pattern represented by each row is displayed as “2 times”.
  • FIG. 15C is a diagram showing a third display example. 15C, the free channel information table 206b of FIG. 13B is obtained in step S303 of FIG. 11, the channel setting pattern table 207 of FIG. 14 is obtained in steps S309 to S311, and the same channel continuous time is selected in step S312. This is a display example.
  • step S314 of FIG. 11 two channel setting patterns PAT03 and PAT04 having the longest continuous time for the same channel are selected from the six channel setting patterns having the highest score.
  • the display example 208c in FIG. 15C is also in a table format, and each row corresponds to one channel setting pattern.
  • two lines corresponding to the selected channel setting patterns PAT03 and PAT04 are displayed.
  • the pattern ID for identifying the channel setting pattern is displayed in the first column of the display example 208c, and four point IDs “P1,” “P2,” “P7,” and “P8” are displayed in the second to fifth columns.
  • the channel IDs respectively associated with the channel IDs are displayed together with the background unique to each channel ID.
  • the same channel continuous time in the channel setting pattern represented by each row is displayed on the right side outside the table frame.
  • FIG. 15D is a diagram showing a fourth display example.
  • the free channel information table 206b of FIG. 13B is obtained in step S303 of FIG. 11
  • the channel setting pattern table 207 of FIG. 14 is obtained in steps S309 to S311, and the same total channel time is selected in step S312.
  • This is a display example.
  • FIG. 15D is also a display example when the subsequent processing of step S315 is different from the above example.
  • the channel setting pattern 208d in FIG. 15D also has a table format, and each row corresponds to one channel setting pattern. In the display example 208d, rows are arranged in the sorted order using the same channel total time as a sort key. For the sake of space, only one of the 16 channel setting patterns (*, 14, 14, *) with a score of 8 or more is shown, and the rest are omitted.
  • the pattern ID for identifying the channel setting pattern is displayed in the first column, and the four point IDs “P1”, “P2”, “P7”, and “P8” are displayed in the second to fifth columns.
  • Each associated channel ID is displayed with a background specific to each channel ID. Further, on the right side outside the frame of the table, the same channel total time in the channel setting pattern represented by each row is displayed.
  • the first embodiment described above with reference to FIGS. 1 to 15D has an aspect of a combination optimization problem that combines a point ID and a channel ID.
  • the algorithm of FIG. 11 determines whether there is a trivial preferred solution in step S304, and if no trivial preferred solution is found, it performs brute-force search in step S309 and thereafter. It is an algorithm to do.
  • ⁇ Forced search is also called exhaustive search, and an optimal solution is always obtained when a solution exists. That is, according to the processing of FIG. 11, it is guaranteed that one or more optimum channel setting patterns are presented among all possible channel setting patterns.
  • a combined explosion occurs depending on the size of the problem. That is, depending on the case, the total number t of channel setting patterns represented by Expression (7) becomes enormous, and the process of FIG. 11 may not be completed in a practical time.
  • the channel setting pattern presentation device 150 can present an appropriate channel setting pattern to some extent in a practical time even when the total number t of possible channel setting patterns becomes enormous by performing a heuristic search.
  • FIG. 16 is a flowchart of pattern determination processing in the second embodiment.
  • the channel setting pattern presentation device 150 generates a channel setting pattern suitable for local broadcasting in the bus by executing the process of FIG. 16 instead of the process of FIG. 11 in the first embodiment. To do. Then, the channel setting pattern presentation device 150 presents the generated channel setting pattern.
  • the specific method of presentation is various as in the first embodiment.
  • the channel setting pattern presentation device 150 receives the input of the route ID in step S401, and expands the route information table and the free channel information table based on the route ID in step S402. Details of steps S401 and S402 are the same as steps S301 to S303 in FIG.
  • step S404 the channel setting pattern presentation device 150 checks the length of the “deemed continuous free section” from the point of interest for each channel in the developed free channel information table 206b.
  • the deemed continuous vacant section may be a section defined by time or a section defined by distance according to the embodiment. In the second embodiment, it is assumed that the deemed continuous vacant section is defined by time.
  • FIG. 17 is a diagram for explaining a “deemed continuous empty section” defined in the second embodiment.
  • the vertical axis represents the clear level
  • the horizontal axis represents time.
  • a channel having a clear level of “2” or higher is regarded as an empty channel. That is, the clear level is a level indicating the availability that can be used for local broadcasting, and the value “2” is a threshold that indicates an allowable level for using for local broadcasting.
  • the clear level is less than 2 between times AB, 2 or more between times BC, less than 2 between times CD, 2 or more between times DE, and between times EF Less than 2, 2 or more between times FG, and less than 2 between times GH.
  • Each of the times A to H includes two adjacent point IDs pj and pj + 1 in the N tuple (p 1 , p 2 ,..., P N ) of the expression (1) representing the designated route. This corresponds to the time when the bus is scheduled to pass through the boundary between the representative areas. In FIG. 17, the boundary between areas is represented by a vertical dotted line.
  • the length between time AB is that the bus passes through two areas that are adjacent on the route and that are represented by two point IDs corresponding to the clear level of “1”. This corresponds to the length of time it takes. That is, the length between the times A and B is the sum of the reception influence times corresponding to the two point IDs.
  • the length between times BC corresponds to the length of time it takes for the bus to pass through five areas each represented by five consecutive spot IDs on the route.
  • the clear levels corresponding to the five point IDs are “2”, “3”, “2”, “3”, and “2” in order, as shown in FIG.
  • the length between time BC is the sum of the reception influence time corresponding to each of the five point IDs.
  • the length between the time points CD corresponds to the length of time it takes for the bus to pass through the area represented by one point ID corresponding to the clear level “1”. This corresponds to the length of the reception influence time corresponding to the point ID.
  • the lengths between the times DE, EF, and FG correspond to the length of the reception influence time corresponding to one point ID.
  • the length between time GH is the sum of the reception influence time each corresponding to three point ID.
  • the “deemed continuous free section” is a section in which a certain channel can be considered as a continuous free channel. That is, the assumed continuous empty section is based on the assumption that when the clear level falls below “2” for a short time equal to or less than the threshold value T t , the clear level of “2” or higher is considered to be continuous. This is a section in which clear levels of “2” or higher continue.
  • the value of the threshold value Tt represents, for example, the length of time that does not make passengers uncomfortable even if the reception quality temporarily decreases. It is assumed that the value of the threshold value T t is appropriately determined based on a preliminary experiment or the like.
  • the length between time AB and the length between time GH is longer than the threshold Tt , and the length between time CD and the length between time EF are less than or equal to the threshold Tt. It is. Therefore, when the point representing the first area among the five areas corresponding to the time BC is the point of interest, the deemed continuous free section is the section between the times BG.
  • the length of the deemed continuous free section is 0. .
  • the length of the assumed continuous empty section is the length between the time periods DG.
  • the channel setting pattern presentation device 150 checks the length of the continuous free section only from the point of interest for each channel in the free channel information table 206b as described above. That is, the channel setting pattern presentation device 150 checks the length of the assumed continuous free section that starts corresponding to the area represented by the point of interest for each channel.
  • step S405 the channel setting pattern presentation device 150 selects the channel having the longest continuous continuous section examined in step S404.
  • step S406 the channel setting pattern presentation device 150 grows the channel setting pattern by associating the selected channel with the point ID of each point in the deemed continuous empty section (including both ends).
  • the channel setting pattern PAT related to the route R defined by the N point IDs is represented by an N tuple of channel IDs.
  • the process of FIG. 16 is a process of sequentially determining N channel IDs from the front.
  • step S406 it is assumed that the jth element (0 ⁇ j ⁇ N ⁇ 1) has been determined in the N tuple representing the channel setting pattern PAT.
  • step S406 it is assumed that the length of the assumed continuous empty section determined as “longest” in step S405 is the sum of reception influence times corresponding to k (1 ⁇ k ⁇ N) point IDs. Then, the channel ID selected in step S405 is set as c sel .
  • the processing in step S406 is processing for determining c sel from the (j + 1) th element to the (j + k) th element of the N tuple representing the channel setting pattern PAT.
  • the channel setting pattern PAT grows from a state where only the jth element is determined to a state where the (j + k) th element is determined.
  • step S407 the channel setting pattern presentation device 150 determines whether the growth in step S406 has reached a range that can be regarded as arrival at the end point. That is, the channel setting pattern presentation device 150 determines whether or not a channel used for local broadcast has been determined in the range from the start point of the route to the end point of the route or a point that can be regarded as the vicinity of the end point.
  • the threshold T e2 may be a value obtained by multiplying the sum of reception influence times corresponding to each of the N point IDs by 0.9 (here, the value “0.9” is merely an example).
  • the channel setting pattern presentation device 150 associates an arbitrary channel ID (for example, c sel ) with each of the (j + k + 1) th element to the Nth element of the channel setting pattern PAT, and displays the channel setting pattern PAT. Can be completed.
  • an arbitrary channel ID for example, c sel
  • step S408 the third point P7 is set as a new point of interest, and in step S405, the channel 14 is selected. As a result, in step S406, the third element of the channel setting pattern is determined to be the channel ID “14”.
  • step S408 the fourth point P8 is set as a new point of interest.
  • step S405 only the empty continuous sections of channel 13 and channel 16 are the longest (60 seconds), and the clear levels of channel 13 and channel 16 are also equal. Therefore, the channel setting pattern presentation device 150 selects, for example, a channel ID “13” that increases the total time of the same channel.
  • step S406 the fourth element of the channel setting pattern is determined to be a channel ID “13”. That is, the channel setting pattern grows to (13, 13, 14, 13), and the channel setting pattern PAT01 shown in FIG. Then, in step S407, it is determined that “the growth in step S406 has reached a range that can be regarded as arrival at the end point”, and the processing in FIG. 16 ends.
  • the channel setting pattern presentation device 150 presents a relatively appropriate channel setting pattern without causing a combination explosion. can do. Therefore, in the second embodiment, when the number N of the point IDs that define the route is large because the granularity of the area is fine or the route is long, or the number m j (1 ⁇ 1) of the search target channels at each point. This is suitable when j ⁇ N) is large.
  • the channel setting pattern presentation device 150 grows the channel setting pattern incrementally from the start point to the end point of the path. However, in some embodiments, the channel setting pattern presentation device 150 may grow the channel setting pattern incrementally from the end point of the path to the starting point.
  • the channel setting pattern presentation device 150 may select a point near the center of the route as the first point of interest. Then, the channel setting pattern presentation device 150 may grow the channel setting pattern toward the start point and grow the channel setting pattern toward the end point.
  • a part of the N points that are continuous on the route passes.
  • a channel ID is associated with one or more point IDs corresponding to the partial route.
  • the channel setting pattern presentation apparatus 150 produces
  • a point adjacent to a partial route that has already been associated with a point ID and a channel ID is set as a point of interest.
  • the lengths of sections in which the clear level of the same one channel at each of one or more points starting from the attention point satisfies a predetermined criterion are compared between the plurality of channels.
  • the “predetermined standard” is a standard that defines, for example, a deemed continuous empty section.
  • the greedy method is used as an example of the heuristic search.
  • the channel setting pattern presentation device 150 generates one or a plurality of channel setting patterns using another heuristic search algorithm. May be.
  • the channel setting pattern presentation device 150 can present the generated one or more channel setting patterns.
  • the channel setting pattern presentation apparatus 150 may select the upper U (U> 1) channels from among the channels whose assumed continuous empty sections are not zero in step S405 according to the predetermined upper limit value U. Good. That is, a maximum of U channels with relatively long assumed continuous idle intervals may be selected.
  • the channel setting pattern presentation device 150 may cause the growth in U ways at the maximum for each of the one or more channel setting patterns in the middle of the growth. Further, the channel setting pattern presentation device 150 may narrow down the plurality of channel setting patterns grown in step S406 based on the clear level, the distribution of channel IDs, and the like.
  • the channel setting pattern presentation device 150 refers to the free channel measurement information table 201 of the storage device 151, narrows down a plurality of potentially possible channel setting patterns, and presents the narrowing down result. Yes.
  • step S309 in FIG. 11 a process for generating all potentially possible channel setting patterns, and each of the generated channel setting patterns are evaluated and selected based on the evaluation result.
  • Processing steps S310 to S315).
  • step S405 of FIG. 16 in the second embodiment is pruning in search, and is a process of narrowing down a plurality of potentially possible channel setting patterns. Therefore, in the second embodiment, only one channel setting pattern may be actually generated by incremental growth, but in the sense of narrowing down a plurality of potentially possible channel setting patterns, the two embodiments are It is common.
  • the channel ID distribution in the tuple of channel IDs in which the channel IDs associated with at least a part of the N point IDs according to the order on the route of each point represented by each point ID are The common point is that it is based on the clear level.
  • the distribution of channel IDs in the N tuple of Expression (2) is represented by an index such as the number of channel changes, the same channel continuous time, or the same channel total time.
  • Each channel setting pattern is evaluated by these indices and a score that is a sum of clear levels.
  • the deemed continuous vacant section in the second embodiment associates one or more consecutive spot IDs (that is, at least a part of N spot IDs) starting from a point of interest with one identical channel ID. It is also an index to evaluate. In other words, the evaluation of a specific type of distribution, ie, the continuation of the same channel ID, is performed according to the length of the deemed continuous empty section. Further, the deemed continuous empty section is defined by the clear level. Therefore, also in the second embodiment, narrowing down is performed based on the distribution of channel IDs associated with at least some of the N point IDs and the clear level.
  • the present invention is not limited to the above-described embodiment, and can be implemented with various modifications.
  • various types of information are expressed in a table format, but a data format other than the table format may be employed.
  • the channel setting pattern presenting apparatus 150 may present a channel setting pattern in the same manner for other broadcasting systems that can use a plurality of channels. it can.
  • the channel setting pattern may be evaluated based on the score, the number of channel changes, the same channel continuous time, and the same channel total time as described above, or other criteria may be used. .
  • the method of combining various evaluation criteria is arbitrary depending on the embodiment.
  • the channel ID in the above embodiment is an identifier for identifying a physical channel.
  • the user of the mobile terminal with TV 140 generally selects a channel using another identifier called “remote control number” instead of the channel ID of the physical channel.
  • the storage device 151 may store a correspondence table of channel IDs and remote control numbers. Then, channel setting pattern presentation apparatus 150 may calculate the sum of the absolute values of the differences between the remote control numbers at each location where the channel is switched in the channel setting pattern, and use the calculated sum for the evaluation of the channel setting pattern. .
  • the same channel continuous time in the first embodiment may be replaced with a continuous continuous free space as in the second embodiment.
  • the deemed continuous vacant section may be defined and calculated based on the reception influence time as in the second embodiment, or may be defined and calculated based on the reception influence distance.
  • the channel setting pattern presentation device 150 considers not only the length of the section in which the clear level temporarily falls below the allowable level, but also the continuous continuous free section based on the frequency at which the clear level temporarily falls below the allowable level. You may judge the length of.
  • a channel setting pattern for broadcasting on a vehicle that travels on a predetermined route according to a predetermined timetable such as a bus or a train
  • a predetermined timetable such as a bus or a train
  • an embodiment relating to a vehicle that may travel on an arbitrary route at an arbitrary time such as a taxi or a private car is also possible.
  • a local TV transmitter 110 that also serves as the channel setting pattern presentation device 150 and a car navigation system are loaded on a taxi.
  • the car navigation system can receive a destination input from a driver and set a route.
  • the route may be defined as a tuple of point IDs indicating the positions of intersections.
  • the local TV transmitter 110 While the taxi travels along the set route, the local TV transmitter 110 performs a process similar to that shown in FIG. 9 for a plurality of points on the route (for example, each intersection on the route), so that the empty channel of FIG. In the measurement information table 201, empty channel measurement information is accumulated.
  • the car navigation system may set a route based on a destination input from a driver, and may instruct the set route to the channel setting pattern presentation device 150.
  • the channel setting pattern presentation device 150 may present a channel setting pattern based on the instructed route, and the local TV transmitter 110 may perform local broadcasting according to the presented channel setting pattern.
  • the channel setting pattern presentation device 150 can present a channel setting pattern suitable for local broadcasting in a vehicle traveling on the expressway by referring to the accumulated vacant channel measurement information. Therefore, on the highway, the local TV transmitter 110 mounted on an arbitrary vehicle can perform local broadcasting while maintaining good reception quality according to the presented channel setting pattern.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Computer Graphics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

 コンピュータは、乗り物が移動する経路上の複数の地点を識別する地点識別子と、放送電波の複数のチャネルを識別するチャネル識別子に対応付けて、複数の地点それぞれにおける複数のチャネルそれぞれの利用可能性レベルを記憶する記憶手段を参照する。そして、コンピュータは、潜在的に可能な複数のチャネル設定パターンを絞り込む。ここで、各チャネル設定パターンは、複数の地点を表す複数の地点識別子にそれぞれチャネル識別子を対応付ける組み合わせパターンである。また、絞り込みは、複数の地点識別子の少なくとも一部にそれぞれ対応付けられるチャネル識別子を、各地点識別子が表す各地点の経路における順序にしたがって並べたチャネル識別子タプルにおける1つ以上のチャネル識別子の分布と、読み出された利用可能性レベルとに基づく。そして、コンピュータは、絞り込みの結果得られた1つ以上のチャネル設定パターンを提示する。

Description

チャネル設定パターン提示プログラムおよびチャネル設定パターン提示装置
 本発明は、放送チャネルの設定パターンを提示する技術に関する。
 従来、無線通信システムにおいて、放送電波を受信することが可能なチャネルを認識する技術が知られている。逆に、現在使用されていないので新たな通信要求に割り当てて使用することが可能なチャネル(すなわち空きチャネル)を認識する技術も知られている。空きチャネルを検出することで、空きチャネルを効率よく再利用することも可能となる。
 例えば、放送の受信エリアが異なる場合であっても、チャネルリストを用いて、素早く視聴者が視聴したい放送番組を提示することを可能にしたチャネルリスト配信サーバが開示されている。
 上記チャネルリスト配信サーバは、所定領域ごとにチャネルリストを記憶するリスト群記憶手段を備える。また、放送受信端末から、位置情報と、受信可能な少なくとも1つのチャネルを示す端末受信チャネル情報とを、リスト要求として受信するリスト要求受信手段をも、上記チャネルリスト配信サーバは備えている。さらに、上記チャネルリスト配信サーバは、位置情報に対応するチャネルリストをリスト群記憶手段において検索する対応リスト検索手段を備える。そして、位置情報に対応したチャネルリストに端末受信チャネル情報が含まれていない場合に、端末受信チャネル情報を含み、位置情報で示される位置に最も近いチャネルリストを検索する直近リスト検索手段を、上記チャネルリスト配信サーバは備えている。
 また、相互にカバーエリア(coverage area)がオーバーラップする形式で隣接している複数の基地局を備えた移動通信システムにおいて、通話チャネル資源の利用効率を高める次のような技術も開示されている。
 上記移動通信システムは、隣接している複数の基地局間で、各基地局の空き通話チャネルの使用情報を共有する空きチャネル情報共有手段を備える。そして、隣接している複数の基地局の内いずれかの基地局が、カバーエリアがオーバーラップしている位置に存在する移動局から通話チャネルの割り当てを要求するチャネル割当て要求信号を受信した場合、次のように基地局が選択される。すなわち、空きチャネル情報共有手段が共有している空き通話チャネルの使用情報をもとに、隣接している複数の基地局の中から、当該移動局に対して通話チャネルの割り当てを行う基地局が選択される。
 また、ユーザに対して、発信が可能なエリアに関する情報を提供して、回線の有効利用を促進することが可能な基地局制御装置も開示されている。
 具体的には、呼制御手段の発着信制御および交換接続制御などの制御結果に基づいて、チャネル管理手段が各PHS(Personal Handy-phone System)基地局のチャネルを集計管理する。そして、この管理結果に基づいて、表示器データ制御手段が、共通の表示器を無線ゾーンに持つ複数のPHS基地局の空チャネル数を集計する。また、この集計結果に基づいて、表示器制御部が、上記の共通の表示器を制御し、ユーザに対して、空チャネルを有する無線ゾーンを報知する。さらに、チャネル変動基地局検出手段によって検出された、空チャネル数に変動のあったPHS基地局を、端末通報制御部が制御して、各無線ゾーン内のPHS端末に対して空チャネル数の情報を送信する。
 また、安定した単方向無線通信を行うための次のような送信機も開示されている。
 上記送信機は、複数のチャネルを順次走査して空きチャネルを識別する受信部と、識別された空きチャネルに、送信部のチャネルを設定するチャネル制御部と、設定されたチャネルを使用してデータを送信する送信部とを備える。そして、上記送信機は、データ送信中にデータ送信を一時中断して、当該データ送信に使用しているチャネルの空き状態を監視する。そして、当該チャネルが空きでなければ、上記送信機は、受信部の複数のチャネルを順次走査して他の空きチャネルを識別し、識別した当該他の空きチャネルに送信部のチャネルを設定し、当該他の空きチャネルを使用してデータを送信する。よって、単方向無線通信のための上記送信機は、自動的に空きチャネルを識別してデータを送信することができ、通信中に混信等が発生したときにも自動的に通信を継続することができる。
 また、検出した空きチャネルを用いる処理だけではなく、空きチャネルの検出自体にも、様々な手法がある。
 例えば、無線通信システムにおける次のような技術が知られている。
 上記無線通信システムは、複数の無線チャネルが使用可能な複数の無線基地局と、各無線基地局と通信可能な地域である無線ゾーンに位置する無線端末とを備える。また、上記無線通信システムは、無線基地局と無線端末との間で、複数の無線チャネルの中から、通信に使用される無線チャネルを選択する。具体的には、上記無線通信システムは、空きチャネルの判定パラメータを測定し、当該測定結果が閾値以下または閾値以上の結果が得られた無線チャネルの中から、通信に使用される無線チャネルを選択する。ここで、上記閾値は、干渉の履歴およびチャネル使用状況に基づいて算出される、空きチャネル判定関数によって定められる。よって、空きチャネル判定レベルを固定した場合に生じる非効率性が自律分散的に取り除かれる。
 また、システム帯域内のチャネル数が多い場合でも演算量や回路規模の増大を伴うことなく高速に空きチャネルを検索するための次のような技術も開示されている。
 すなわち、空きチャネル検索時に、アンテナからの受信信号が、サンプラ(sampler)により、帯域制限用フィルタの遮断周波数の2倍未満のサンプリング周波数でサンプリングされる。そして、サンプラの出力信号から、検出器により、折り返し帯域内の空きチャネルを示す第1空きチャネル情報が求められる。また、第1空きチャネル情報は、空きチャネル展開器によって、システム帯域内の空きチャネルを示す第2空きチャネル情報に展開される。そして、第2空きチャネル情報にしたがって、通信チャネル設定器により、送受信機に対して通信チャネルが設定される。
特開2007-67771号公報 特開2002-271830号公報 特開平10-210529号公報 特開2000-196490号公報 特開平8-237732号公報 特開2007-19978号公報
 携帯端末の普及に伴い、乗り物に乗っている利用者の携帯端末に、乗り物に積載された送信機から無線通信によりコンテンツを配信するサービスに対する需要も今後高まってゆくと考えられる。しかしながら、そのような乗り物内でのコンテンツ配信サービスにおいては、従来は想定されていない、次のような問題が予測される。
 新たな通信のために利用することが可能なチャネルである空きチャネルに関する状況は様々な要因の影響を受けるが、主要な要因の1つは、受信機が存在する場所である。したがって、乗り物内でのコンテンツ配信サービスでは、乗り物が移動するにつれて、空きチャネルに関する状況も変化しうる。
 空きチャネルに関する状況が変化すれば、例えば、「同一チャネルを使って品質を保ちながらコンテンツ配信サービスを続けることが困難になる」といった問題が生じうる。しかし、空きチャネルに関する状況が変化するたびに配信のためのチャネルを切り替え、サービスの利用者に携帯端末の受信チャネルを変更するよう要求することは、利用者に不便を強いることであり、好ましいことではない。よって、たとえサービスの途中でチャネルの切り替えが生じるとしても、利用者にかける不便を少なくすることが望ましい。
 そこで本発明の目的は、上記のように予測される問題を軽減するために、乗り物内での無線によるコンテンツ配信に適したチャネル設定パターンを提示することである。
 開示の技術の第1の態様によれば、コンピュータに参照ステップと絞り込みステップと提示ステップを実行させるチャネル設定パターン提示プログラムが提供される。
 前記参照ステップは記憶手段を参照するステップである。前記記憶手段は、乗り物が移動する経路上の複数の地点を識別する地点識別子と、放送電波の複数のチャネルを識別するチャネル識別子に対応付けて、前記複数の地点それぞれにおける前記複数のチャネルそれぞれの利用可能性レベルを記憶する。
 前記絞り込みステップは、潜在的に可能な複数のチャネル設定パターンを絞り込むステップである。前記複数のチャネル設定パターンの各々は、前記複数の地点を表す複数の前記地点識別子にそれぞれ前記チャネル識別子を対応付ける組み合わせパターンである。前記絞り込みステップでは、前記複数の地点識別子の少なくとも一部にそれぞれ対応付けられる前記チャネル識別子を、各地点識別子が表す各地点の前記経路における順序にしたがって並べたチャネル識別子タプルにおける1つ以上の前記チャネル識別子の分布と、前記参照ステップにより読み出される前記利用可能性レベルとに基づく絞り込みが行われる。
 前記提示ステップは、絞り込みステップの結果得られた1つ以上のチャネル設定パターンを提示するステップである。
 開示の技術の第2の態様によれば、第1の態様と同様の記憶手段と、絞り込み手段と、提示手段とを備えるチャネル設定パターン提示装置が提供される。
 前記絞り込み手段は、第1の態様の絞り込みステップと同様の絞り込みを実行することで、潜在的に可能な複数のチャネル設定パターンを絞り込む。前記提示手段は、前記絞り込み手段による絞り込みの結果得られた1つ以上のチャネル設定パターンを提示する。
 開示の技術によれば、いずれの態様においても、チャネル識別子の分布と利用可能性レベルとに基づいて適切なチャネル設定パターンが提示される。よって、コンテンツ配信を行う送信機が、提示されたチャネル設定パターンにしたがって動作することで、利用者に大きな負担をかけずに、乗り物内でのコンテンツ配信サービスを提供することができる。
第1実施形態における放送システムの構成図である。 ローカルTV送信機の構成を示すブロック図である。 ローカルTV送信機のハードウェア構成図である。 チャネル設定パターン提示装置と記憶装置を実現するコンピュータの構成図である。 空きチャネル計測情報を記憶する空きチャネル計測情報テーブルの例を示す図である。 地点情報を記憶する地点情報テーブルの例を示す図である。 運行情報を記憶する運行情報テーブルの例を示す図である。 影響範囲情報を記憶する影響範囲情報テーブルの例を示す図である。 第1実施形態における空きチャネルサーチ処理のフローチャートである。 第1実施形態の変形例における空きチャネルサーチ処理のフローチャートである。 第1実施形態におけるパターン提示処理のフローチャートである。 展開された経路情報テーブルの例を示す図である。 展開された空きチャネル情報テーブルの第1の例を示す図である。 展開された空きチャネル情報テーブルの第2の例を示す図である。 チャネル設定パターンテーブルの例を示す図である。 第1の表示例を示す図である。 第2の表示例を示す図である。 第3の表示例を示す図である。 第4の表示例を示す図である。 第2実施形態におけるパターン決定処理のフローチャートである。 第2実施形態で定義される「みなし連続空き区間」について説明する図である。
 以下では、図1~図15Dを参照して第1実施形態および第1実施形態の変形例について説明し、図16~図17を参照して第2実施形態について説明する。
 図1は、第1実施形態における放送システムの構成図である。図1において、放送システム100は、ローカルTV(television)送信機110とTV付き携帯端末140とチャネル設定パターン提示装置150を備える。
 ローカルTV送信機110は、バス、列車、定期航路船などの、特定の経路に沿って移動する乗り物に積載され、乗り物内でのローカルなTV放送を行う。ローカルTV送信機110は、複数のアンテナ(図1には代表としてアンテナ111と112のみを図示してある)と、TV送信装置113と、TV受信装置114と、コンテンツ記憶部115を備える。
 複数のアンテナは、TV放送の送信および受信のためのアンテナを含む。また、チャネル設定パターン提示装置150との無線通信のためのアンテナがあってもよい。TV送信装置113は、TV放送の電波を送信する。TV受信装置114は、図9とともに後述する空きチャネルサーチ処理を行う。コンテンツ記憶部115は、TV放送で配信するコンテンツのデータを記憶する。
 TV付き携帯端末140は、ローカルTV送信機110が積載された乗り物の乗客が持つ携帯電話などの端末であり、TV放送を受信する機能がある。図1には1台のTV付き携帯端末140のみが図示されているが、複数のTV付き携帯端末140があってもよい。TV付き携帯端末140は、複数のアンテナ(図1には代表としてアンテナ141と142のみを図示してある)と、TV受信装置143と、ディスプレイ144と、スピーカ145を備える。
 複数のアンテナは、TV電波の受信のためのアンテナを含む。また、例えばTV付き携帯端末140が携帯電話であれば、複数のアンテナには通話用のアンテナも含まれる。TV受信装置143はアンテナを介してTV放送の電波を受信する装置である。ディスプレイ144は、TV受信装置143が受信したコンテンツの画像を表示し、スピーカ145は、TV受信装置143が受信したコンテンツの音声を出力する。
 チャネル設定パターン提示装置150は、ローカルTV送信機110がどこでどのチャネルを使って放送を行うかという組み合わせパターンであるチャネル設定パターンを提示する。チャネル設定パターン提示装置150は、ローカルTV送信機110との間でのデータ通信が可能であれば、ローカルTV送信機110やTV付き携帯端末140と同じ乗り物内に積載されていてもよいし、乗り物とは離れた場所にあってもよい。
 また、チャネル設定パターン提示装置150は、提示するチャネル設定パターンを決めるために用いる各種情報を記憶する記憶装置151と接続されている。後述のように、記憶装置151には、様々な装置から収集されたデータが蓄積される。
 具体的な乗り物の種類や、放送システム100において採用されるTV放送の規格は任意であるが、第1実施形態では、バス内でワンセグ(1seg)放送が行われるものとして説明する。また、チャネル設定パターン提示装置150はローカルTV送信機110と同じバス内に積載されているとする。
 ワンセグ放送は、地上デジタル放送で、主に携帯電話などの移動体向けに行われている。地上デジタル放送で使用される規格であるISDB-T(Integrated Services Digital Broadcasting for Terrestrial)では、チャネル13~チャネル62の50個の物理チャネルが設けられている。また、各物理チャネルの周波数帯域は13個のセグメントに分割されている。ワンセグ放送は、13個のセグメントのうち中央の1つのセグメントを用いて行われる。
 日本では一般に、電波法による免許を受けた放送局がワンセグ放送を行っている。しかし、電波法による免許を必要としない微弱電波を使えば、放送局以外の送信機からのワンセグ放送も合法的である。微弱電波を受信することができる範囲は限られているが、微弱電波を使うことには利点もある。例えば、微弱電波を使えば、店舗が免許を受けることなく店舗の都合に合わせて自由に店舗内で商品情報を放送する、といったコンテンツ配信サービスが可能となる。
 以下では、微弱電波を用いたワンセグ放送を便宜上「ローカル放送」という。図1のローカルTV送信機110が備えるTV送信装置113は、ローカル放送の送信装置である。TV送信装置113からアンテナを介して送信される電波は微弱であるが、ローカルTV送信機110が積載されたバスの乗客を対象とする放送には、微弱な電波で十分である。ローカルTV送信機110は、乗客を対象として、例えば、バスの運行経路沿いの店舗の広告などのコンテンツを放送してもよい。放送するコンテンツは、コンテンツ記憶部115に記憶されている。
 ここで、ある地域においては、ISDB-Tの50個の物理チャネル(以下、単に「チャネル」という)のうち、例えばチャネル13が、免許を受けた放送局により使われているとする。すると、当該地域において微弱電波によりローカル放送を行うには、チャネル13以外の空きチャネルを用いる必要がある。
 また、隣接する別の地域では、チャネル13は放送局によって使われておらず、代わりにチャネル14が使われているかもしれない。つまり、同じチャネル13が、地域によって空きチャネルであったり空きチャネルでなかったりする可能性がある。したがって、バスが複数の地域をまたいで移動する場合、TV送信装置113は、バスが走行中の場所に応じた適切なチャネルを用いて放送を行うことが望ましい。
 なお、以下で「空きチャネル」とは、ローカル放送において十分な受信品質が得られるチャネルを指す。換言すれば、ある場所での空きチャネルとは、当該場所において、他の放送局またはその他のノイズ源からの電波の受信レベルが、無視してもかまわない程度に低いチャネルを指す。
 ローカル放送の電波は、微弱なので、周囲の電気機器などが発生する電磁波によるノイズの影響も受けやすい。どのチャネルが周囲の環境によるノイズの影響を受けやすいかという点も、当然、バスの移動にしたがって変化する。したがって、放送局により使われているチャネルという観点だけでなく、周囲の環境という観点からも、TV送信装置113は、バスの現在地に応じたチャネルを用いて放送を行うことが望ましい。
 しかしながら、バス内でのローカル放送において、放送に用いるチャネルをバスの走行につれて何度も変更すると、コンテンツ配信サービスの利用者である乗客に、受信チャネルの変更操作という負担を強要することになる。よって、乗客の利便性という観点からは、チャネルの変更回数が少ないことが望ましい。また、乗客に対して頻繁に受信チャネルの変更操作を要求することを避けるために、チャネルの変更間隔は、長い方が望ましい。
 そこで、第1実施形態は、乗客にかける負担を少なくしつつ、かつ、バスの走行中に十分な受信品質が得られる時間がより長くなるように、適切なチャネルを選択することを可能にすることを目的とする。
 目的を達成するため、第1実施形態では、チャネル設定パターン提示装置150が、潜在的に可能な多数のチャネル設定パターンを絞り込み、絞り込みの結果得られた適切な1つ以上のチャネル設定パターンを提示する。そして、ローカルTV送信機110が、提示されたチャネル設定パターンにしたがってローカル放送を行う。なお、詳しくは後述するが、個々の「チャネル設定パターン」は、ローカル放送に用いるチャネルをバスの走行につれてどのように切り替えるかを表す組み合わせパターンである。
 以下では、まず、図2~図4を参照してローカルTV送信機110とチャネル設定パターン提示装置150の構成を説明し、図5~図10を参照して空きチャネル計測情報テーブルの作成について説明する。その後、適切なチャネル設定パターンを提示する処理について図11~図15Dを参照して説明する。
 図2は、ローカルTV送信機110の構成を示すブロック図である。
 ローカルTV送信機110は、GPS(Global Positioning System)/WLAN(Wireless Local Area Network)/BT(Bluetooth)処理部116を備える(Bluetoothは登録商標)。また、ローカルTV送信機110は、TV送受信部117と通信用RF(Radio Frequency)処理部118を備える。ローカルTV送信機110はさらに、CPU(Central Processing Unit)/DSP(Digital Signal Processor)119とRTC(Real Time Clock)120を備える。CPU/DSP119は、汎用的なCPUと、放送を含む無線通信などの特定の処理を行うためのDSPとを含む。
 さらに、ローカルTV送信機110は、AIU(Audio Interface Unit)121、スピーカ122、マイク123、テンキー(numeric keypad)124、ディスプレイ125およびメモリ領域126を備えている。
 GPS/WLAN/BT処理部116、TV送受信部117および通信用RF処理部118のそれぞれは、アンテナを備えており、CPU/DSP119と接続され、CPU/DSP119による制御にしたがって動作する。
 GPS/WLAN/BT処理部116は、ローカルTV送信機110の位置を特定するGPS機能を実現するとともに、WLANまたはBTを用いて他の装置(例えばチャネル設定パターン提示装置150)と通信を行う機能を実現する。
 TV送受信部117は図1のTV送信装置113とTV受信装置114に対応する。TV送受信部117は、ローカル放送のために電波を送信する機能を実現するとともに、後述の空きチャネルサーチ処理のために電波を受信する機能を実現する。
 通信用RF処理部118は、適宜の無線通信規格にしたがって、チャネル設定パターン提示装置150などの他の装置と無線通信を行う機能を実現する。
 なお、CPU/DSP119は、RTC120の時刻に基づいてCPUクロックを生成し、CPUクロックにしたがって動作する。CPU/DSP119が各種処理に利用するデータはメモリ領域126に記憶される。メモリ領域126は、例えば、不揮発性記憶装置と、ワークエリア用の揮発性記憶装置の双方を含む。不揮発性記憶装置は、図1のコンテンツ記憶部115としても機能する。
 また、CPU/DSP119はテンキー124と接続されており、テンキー124から入力を受け取り、入力にしたがって動作する。ローカルTV送信機110は、テンキー124の代わりに、またはテンキー124とともに、キーボードやポインティングデバイスなど他の入力装置を備えていてもよい。ディスプレイ125もCPU/DSP119と接続されており、CPU/DSP119は、処理結果や操作者へのメッセージなどを表示するよう、ディスプレイ125を制御する。
 また、スピーカ122とマイク123は、AIU121を介してCPU/DSP119と接続されている。CPU/DSP119は、AIU121を介してマイク123からの入力を受け取ることができる。CPU/DSP119は、マイク123からの入力にしたがって動作してもよい。また、CPU/DSP119はAIU121を介して、処理結果や操作者へのメッセージなどを聴覚的に出力するよう、スピーカ122を制御してもよい。
 図3は、ローカルTV送信機110のハードウェア構成図である。
 図3に示すように、ローカルTV送信機110は、CPU/DSP119、RTC120、TV受信装置114およびTV送信装置113を備える。ローカルTV送信機110はさらに、ROM(Read Only Memory)127、RAM(Random Access Memory)128、不揮発性記憶装置129および外部インタフェイス130を備える。また、図3に示した上記各部は、バス131で互いに接続されている。
 CPU/DSP119は、RAM128をワークエリアとして用いながら、ROM127または不揮発性記憶装置129に記憶されたプログラムにしたがって動作することで、ローカルTV送信機110全体を制御する。
 なお、プログラムは、CD(Compact Disc)やDVD(Digital Versatile Disk)などの光ディスク、光磁気ディスク、磁気ディスク、不揮発性半導体メモリなど様々な形式の不図示の記憶媒体に記憶されて提供されてもよい。そして、プログラムは、不図示の記憶媒体駆動装置によって記憶媒体から読み取られ、不揮発性記憶装置129にコピーされてもよい。または、ネットワークからプログラムが不揮発性記憶装置129にダウンロードされてもよい。
 図1と図3の関係は次のとおりである。図1のTV送信装置113とTV受信装置114は、図3にも示されている。また、図1のコンテンツ記憶部115は、具体的には、図3のROM127または不揮発性記憶装置129により実現される。不揮発性記憶装置129は、例えばフラッシュメモリなどの不揮発性RAMでもよいし、ハードディスク装置などの磁気記憶装置でもよい。
 また、図2と図3の関係は次のとおりである。図2のCPU/DSP119とRTC120は図3にも示されている。図2のAIU121は図3の外部インタフェイス130の一例である。また、図3の外部インタフェイス130は、図2のテンキー124やディスプレイ125をCPU/DSP119と接続する、図2には示していないインタフェイスを含む。
 図2のメモリ領域126は、具体的には、図3のROM127、RAM128および不揮発性記憶装置129により実現される。図2のTV送受信部117は、図3のTV送信装置113とTV受信装置114により実現される。図3では、図2のGPS/WLAN/BT処理部116と通信用RF処理部118に対応する部分は省略してある。
 図4は、チャネル設定パターン提示装置150と記憶装置151を実現するコンピュータの構成図である。
 図1のチャネル設定パターン提示装置150と記憶装置151は、例えば図4に示すような汎用的なコンピュータ160により実現することができる。コンピュータ160は、CPU161、ROM162、RAM163、通信インタフェイス164、入力装置165、出力装置166、記憶装置167および可搬型記憶媒体170の駆動装置168を備える。コンピュータ160が備えるこれら各部は、バス169により互いに接続されている。
 また、コンピュータ160は通信インタフェイス164を介してネットワーク171に接続されている。ネットワーク171はLAN(Local Area Network)やインターネットなどの任意のネットワークである。ネットワーク171にはローカルTV送信機110が接続されていてもよい。ローカルTV送信機110は、チャネル設定パターン提示装置150を実現するコンピュータ160と、ネットワーク171を介して互いに通信することができる。ネットワーク171の一部は例えばWLANでもよい。ネットワーク171の一部に有線ネットワークが含まれていてもよい。
 CPU161はRAM163にプログラムをロードし、RAM163をワークエリアとしても用いながらプログラムを実行することにより、コンピュータ160を図1のチャネル設定パターン提示装置150として機能させる。すなわち、CPU161がプログラムにしたがって図11の処理を実行することにより、コンピュータ160はチャネル設定パターン提示装置150として機能する。
 具体的には、CPU161は、潜在的に可能な複数のチャネル設定パターンを絞り込む絞り込み手段として機能する。また、CPU161は、出力装置166または通信インタフェイス164と協働して、絞り込みの結果得られた1つ以上のチャネル設定パターンを提示する提示手段として機能する。
 コンピュータ160をチャネル設定パターン提示装置150として機能させるプログラムは、ROM162または記憶装置167に予め記憶されていてもよい。または、上記プログラムは、ネットワーク171を介してプログラム提供者172から提供され、記憶装置167に記憶されてもよい。
 あるいは、上記プログラムは、可搬型記憶媒体170に記憶され、駆動装置168にセットされた可搬型記憶媒体170からRAM163にロードされ、CPU161により実行されてもよい。可搬型記憶媒体170として、CDやDVDなどの光ディスク、光磁気ディスク、磁気ディスク、不揮発性半導体メモリなど様々な形式の記憶媒体を使用することができる。
 入力装置165は、マウスなどのポインティングデバイスやキーボードである。出力装置166は、例えば液晶ディスプレイなどの表示装置であるが、スピーカまたはプリンタを含んでもよい。記憶装置167は、ハードディスク装置などの磁気ディスク装置でもよく、他の種類の記憶装置でもよい。記憶装置167は図1の記憶装置151を実現することができる。
 なお、実施形態によっては、ローカルTV送信機110がチャネル設定パターン提示装置150を兼ねてもよい。例えば、図3においてローカルTV送信機110のCPU/DSP119が、ROM127または不揮発性記憶装置129に記憶されたプログラムをRAM128にロードして実行することにより、図1のチャネル設定パターン提示装置150として機能してもよい。
 ローカルTV送信機110がチャネル設定パターン提示装置150を兼ねる場合、例えば図3の不揮発性記憶装置129が、図1の記憶装置151として機能する。また、この場合は、ローカルTV送信機110とチャネル設定パターン提示装置150がネットワークを介して通信する必要がない。したがって、図2において通信用RF処理部118は省略されてもよく、GPS/WLAN/BT処理部116の機能のうちWLANまたはBTによる通信機能は省略されてもよい。
 また、ローカルTV送信機110がチャネル設定パターン提示装置150を兼ねる場合は、CPU/DSP119が、潜在的に可能な複数のチャネル設定パターンを絞り込む絞り込み手段として機能する。また、CPU/DSP119は、ディスプレイ125またはスピーカ122と協働して、絞り込みの結果得られた1つ以上のチャネル設定パターンを提示する提示手段として機能する。
 以上、図1~図4を参照して放送システム100の構成について説明した。なお、図1のTV付き携帯端末140は、例えばワンセグ機能付きの公知の携帯電話などであるため、詳しい説明は省略する。
 続いて、空きチャネルサーチ処理について説明する。空きチャネルサーチ処理は、適切なチャネル設定パターンを提示するためにチャネル設定パターン提示装置150が用いる空きチャネル計測情報を取得するための処理である。以下では、空きチャネルサーチ処理に関わる各種情報について先に説明してから、処理の内容を説明する。
 図5は、空きチャネル計測情報を記憶する空きチャネル計測情報テーブル201の例を示す図である。空きチャネル計測情報テーブル201は図1の記憶装置151に記憶される。
 空きチャネル計測情報は、後述の図9の処理により空きチャネル計測情報テーブル201に追加され、蓄積されてゆく。また、空きチャネル計測情報は、地点IDとチャネルIDに「クリアレベル」(clearness level)を対応付ける情報である。
 ここで、地点IDは、バスが移動する経路上の複数の地点を識別する地点識別子の具体例である。そして、チャネルIDは、ローカル放送に使用される可能性のある、放送電波の複数のチャネルを識別するチャネル識別子の具体例である。
 また、以下の説明において、ある地点におけるチャネルXの「クリアレベル」とは、チャネルXの当該地点における利用可能性を表すレベルであり、換言すれば、チャネルXを使ったローカル放送の当該地点における受信品質を表すレベルである。免許を受けた放送局がチャネルXを使ってワンセグ放送を行っていたり、チャネルXが周囲の環境から大きな影響を受けたりする場合に、チャネルXを用いてローカル放送を行うとすると、受信品質は低いと予測される。よって、この場合はチャネルXのクリアレベルは低い。逆に、チャネルXが放送局によるワンセグ放送に使われておらず、チャネルXに大きな影響を与えるノイズ源も近くにない場合、チャネルXのクリアレベルは高い。
 換言すれば、チャネルXの受信強度(より正確には、チャネルXの13のセグメントのうち、微弱電波によるワンセグ放送であるローカル放送に用いられる中央のセグメントの電波の受信強度)が強ければ、チャネルXのクリアレベルは低い。逆に、チャネルXの受信強度が弱ければ、チャネルXのクリアレベルは高い。
 第1実施形態では、良好な受信品質に対応するクリアレベルを「3」と表し、普通の受信品質に対応するクリアレベルを「2」と表し、劣悪な受信品質に対応するクリアレベルを「1」と表す。上記の「良好」・「普通」・「劣悪」は、実施形態に応じた所定の基準によって予め定義されている。例えば、2つの閾値TとT(T<T)を用いて次のようにクリアレベルを定義することができる。
  ・チャネルXの受信強度がT未満のとき、クリアレベルは3である。
  ・チャネルXの受信強度がT以上T未満のとき、クリアレベルは2である。
  ・チャネルXの受信強度がT以上のとき、クリアレベルは1である。
 第1実施形態ではクリアレベルが1~3の離散値により表されるが、もちろん、クリアレベルの具体的な定義は実施形態に応じて様々である。例えば、クリアレベルは、2段階の離散値または4段階以上の離散値により表されてもよいし、連続値により表されてもよい。例えば、連続値の受信強度自体をクリアレベルの代わりに利用することもできる。
 図5の空きチャネル計測情報テーブル201に記憶される空きチャネル計測情報は、個々の地点における個々チャネルのクリアレベルを、地点IDとチャネルIDに対応付ける情報である。クリアレベルが場所だけでなく時間帯にも依存して変動する場合にも適切なチャネル設定パターンを提示することができるように、第1実施形態の空きチャネル計測情報は、クリアレベルを時刻にも対応付けている。
 具体的には、図5の空きチャネル計測情報テーブル201の各行には、一意な計測番号(以下「計測No」と表記する)が割り当てられている。また、各行は、1つの地点においてまとめて行われる計測に対応する空きチャネル計測情報を表している。
 各行は、計測が行われた地点を表す「地点ID」を含むとともに、計測が行われた「測定時刻」を含む。そして、各行は、複数のチャネルそれぞれについてのチャネルIDとクリアレベルの組を含む。第1実施形態では、以上のような形式により、個々の地点における個々チャネルのクリアレベルが、地点IDとチャネルIDに対応付けられ、また、測定時刻にも対応付けられている。
 なお、上記のようにISDB-Tでは、チャネル13~チャネル62の50個のチャネルがあるが、実施形態によっては、空きチャネル計測情報テーブル201の各行は、チャネルIDとクリアレベルの組を50個含まなくてもよい。例えば、バスが運行しているどの地域でも、少なくとも5つ以上のチャネルで放送局からのワンセグ放送が十分な受信品質で受信可能な場合、計測の対象はどの地点でも45(=50-5)組以下でよい。この場合、図5においてM=45として、空きチャネル計測情報テーブル201は、各行がチャネルIDとクリアレベルの組を最大で45組含むことのできる形式でもよい。
 図5の例では、計測Noが「1」の行は、地点IDが「P1」の地点(以下「地点P1」のように表記する)で9時ちょうどに行われた計測の結果を表している。この行は、チャネルID「13」とクリアレベル「3」の組や、チャネルID「14」とクリアレベル「2」の組などを含む。この行に含まれるチャネルIDとクリアレベルの組の数は、地点P1で良好に受信することが可能な、放送局によるワンセグ放送のチャネル数による。
 例えば、地点P1では、特定の7つのチャネルで放送局からのワンセグ放送を良好な受信品質で受信することが可能であることが予め判明しているとする。換言すれば、当該特定の7つのチャネルの受信強度が一定以上であることが予め判明しているとする。この場合、当該特定の7つのチャネルは、クリアレベルを計測するまでもなく、ローカル放送に使うには明らかに不適切である。したがって、この場合、計測Noが「1」の行は、チャネルIDとクリアレベルの組を43(=50-7)個だけ含んでもよい。もちろん、上記特定の7つのチャネルを含む50個のチャネルすべてについて計測が行われてもよい。
 図5の中の他の行も同様に、一意な計測Noと、地点IDと、測定時刻とを含み、さらに、チャネルIDとクリアレベルの組を複数含む。
 なお、例えば、クリアレベルが曜日にも依存して変動する場合にも適切なチャネル設定パターンを提示することができるようにするために、空きチャネル計測情報テーブル201がさらに測定曜日の列を有していてもよい。同様に、クリアレベルが天候に応じて変動する場合は、空きチャネル計測情報テーブル201は天候を記録する列を有していてもよい。逆に、時間帯に起因するクリアレベルの変動が無視しても問題ない程度に小さい場合には、空きチャネル計測情報テーブル201には測定時刻の列がなくてもよい。
 続いて、上記の地点IDに関連する各種情報について図6~図8を参照して説明する。
 図6は、地点情報を記憶する地点情報テーブル202の例を示す図である。地点情報テーブル202は、予め作成されて図1の記憶装置151に記憶される。
 地点IDにより表される地点は、2次元的に広がるエリア(area)を代表する点である。地点情報は、各地点IDとエリアを対応付ける情報である。第1実施形態では、各エリアは矩形であり、矩形の対角線上の2点によりエリアが定義される。以下、便宜的に、矩形の対角線上の2点を「始点」および「終点」という。
 例えば、図6の例では、「P1」という地点IDで表される点が代表するのは、北緯35.531328度・東経139.696899度の始点と北緯35.561522度・東経139.716182度の終点により定義される矩形のエリアである。このように、図6の地点情報テーブル202では、2組の緯度と経度の組を地点IDと対応付ける地点情報により、エリアが定義され、エリアと地点の対応関係が管理される。
 なお、第1実施形態では、地点IDにより表される点、すなわちエリアを代表する点は、具体的には矩形のエリアの中心点であるとする。実施形態によっては、中心点以外の点がエリアを代表してもよい。また、第1実施形態ではエリア同士が互いに重ならないよう定義されているものとするが、実施形態によってはエリア同士の重なりがあってもよい。
 さらに、実施形態によっては、エリアの形状は、円形、楕円形、三角形、その他の多角形などでもよい。例えば円形のエリアが採用される実施形態では、地点情報は、地点IDにより表される中心点の緯度と経度と円の半径を含んでもよい。
 なお、各エリアは、空きチャネルの状況が同じであると見なすことのできる範囲、またはそれよりも小さな範囲であることが望ましい。理由は、個々の地点IDに対応する個々のエリアの大きさがチャネル設定パターンの粒度を規定しているためである。1つの地点IDに対応するエリア内の2点間で空きチャネルに関する状況が大きく異なると、適切なチャネル設定パターンが提示されない可能性が高まる。よって、例えば予備実験などからエリアの適切な大きさを定めることが好ましい。
 また、複数のエリアの大きさは各々異なっていてもよいし、同じでもよい。例えば、ノイズ源となる人工物が多数ある地域では、多数の人工物から様々に異なるノイズの影響を受ける可能性があるので、バスが少し走っただけで空きチャネルの状況が大きく変わる可能性がある。よって、人工物が多数ある地域では比較的小さなエリアが定義されてもよい。逆に、人工物のあまりない道路上では、バスの走行につれて空きチャネルの状況が急激に変動することは少ないので、比較的大きなエリアが定義されてもよい。
 以下、第1実施形態の説明においては、適切な大きさのエリアが定義されているものと仮定する。
 図7は、運行情報を記憶する運行情報テーブル203の例を示す図である。運行情報テーブル203も、予め作成されて図1の記憶装置151に記憶される。第1実施形態では、バスが毎日同じ時刻表にしたがって運行するものと仮定しているので、運行情報テーブル203は「経路ID」列と「通過地点ID」列と「地点通過予定時刻」列を含む。
 第1実施形態における経路IDは、バスの運行経路(つまり路線。以下では単に「経路」ともいう)を識別するとともに、1つの同じ路線を走る複数の便をも識別する識別子である。
 例えば、図7の運行情報テーブル203には、経路IDが「1」の行が4行ある。これら4行は、経路IDの「1」により識別される経路が、「地点P1を出発し、地点P2と地点P7を経由し、地点P8に到着する経路」であることを示している。また、これら4行は、経路IDの「1」により識別される便が、「地点P1を9時ちょうどに出発し、地点P2を9時0分50秒に通過し、地点P7を9時1分20秒に通過し、地点P8に9時3分20秒に到着する予定の便」であることも示している。
 このように、第1実施形態では、バスの運行経路上にある通過地点(運行経路の始点と終点を含む)の地点IDと、当該通過地点をバスが通過する予定時刻との組を経路IDに対応付ける複数の行により、個々の便が定義されている。また、図7の例では、「1」と「2」という経路IDで識別される2つの運行経路の一部(つまり地点P1から地点P2の間)が共通である。このように、複数の運行経路の一部が重なっていてもよい。
 なお、バスの運行の仕方に応じて、運行情報テーブル203の形式は適宜変更されてもよい。例えば、平日(月曜日~金曜日)と休日(土曜日と日曜日)で異なる時刻表にしたがってバスが運行する場合には、運行情報テーブル203は、さらに、平日と休日を区別するフラグの列を含んでもよい。
 図8は、影響範囲情報を記憶する影響範囲情報テーブル204の例を示す図である。影響範囲情報テーブル204も、予め作成されて図1の記憶装置151に記憶される。
 影響範囲情報は、地点IDに時間と距離を対応付ける情報である。具体的には、影響範囲情報テーブル204は、「通過地点ID」列と「受信影響時間」列と「受信影響距離」列を有する。
 図6に関して説明したように、各地点IDにより表される地点は、2次元的な広がりを持ったエリアを代表する点である。影響範囲情報はエリアの広さを時間と距離により表す情報である。
 エリアが適切な大きさに定義されているという上記の仮定から、1つのエリアをバスが走行する間、ローカル放送の受信に影響を与える環境(例えば、放送局からのワンセグ放送電波や、その他の人工物から放射される電波の受信強度)はほぼ一定であると見なせる。よって、各エリアの走行時間と走行距離は、ローカル放送の受信への影響がほぼ一定な環境が持続する走行時間または走行距離でもある。
 そこで、第1実施形態では、図8に示すように「受信影響時間」列および「受信影響距離」列により、各エリアの広さが時間と距離で表される。
 例えば、図8において、通過地点IDが「P1」である行の受信影響時間と受信影響距離は、それぞれ25秒と250mである。この行は、図6の地点情報テーブル202において地点IDが「P1」の行で定義されたエリアをバスが走行するのに25秒かかり、その25秒間にバスは当該エリア内で経路に沿って250mの距離(つまり道程)を走行することを示している。換言すれば、空きチャネルに関してほぼ同じ状況が続くのは、地点P1により代表されるエリアをバスが走行している間の25秒間であり、その25秒間にバスは当該エリア内で250mの道程を走行する。
 なお、図8の例では受信影響時間と受信影響距離の比は、偶然、一定である。しかし、渋滞などの道路の状況により、地点IDごとに、受信影響時間と受信影響距離の比が異なることもある。
 また、図8の影響範囲情報テーブル204と図6の地点情報テーブル202は、いずれも地点IDに他の情報を対応付ける情報を記憶するテーブルであるから、実施形態によっては、この2つのテーブルが1つのテーブルにまとめられていてもよい。
 以上、図5~図8を参照して、空きチャネルサーチ処理に関連する各種情報について説明したので、続いて空きチャネルサーチ処理について具体的に説明する。
 図9は、第1実施形態における空きチャネルサーチ処理のフローチャートである。空きチャネルサーチ処理は、経路上の複数の地点のそれぞれにおいて複数のチャネルでそれぞれ放送電波を受信してクリアレベルを計測する処理を含む。
 第1実施形態においては、バスが通常の運行をする際に、バスに積載されたローカルTV送信機110が図9の処理を実行する。具体的には、バスがある運行経路の始点を出発する直前に図9の処理が開始される。
 ステップS101で、ローカルTV送信機110(図1~図3を参照)のCPU/DSP119(図2~図3を参照)は、これからバスが走行する予定の経路上の各計測地点の地点IDとエリア情報を取得し、図2のメモリ領域126に記憶する。なお、「計測地点」とは、空きチャネルの状況を調べるための計測を行う地点であり、具体的には、図5~図8に関して説明した地点IDにより表される地点である。
 例えば、バスが出発する前に、これからバスが走行する予定の経路および便を識別する経路IDが、バスの運転手から図2のテンキー124を介して入力される。CPU/DSP119は、入力された経路IDをテンキー124から受け取る。
 そして、CPU/DSP119は、入力された経路IDと対応付けられた複数の地点IDを、図1のチャネル設定パターン提示装置150を介して記憶装置151内の運行情報テーブル203(図7を参照)から読み出す。
 なお、図1に太い矢印で示すように、ローカルTV送信機110とチャネル設定パターン提示装置150は、WLAN、BT、またはその他の無線通信網により接続されており、相互にデータを交換することができる。よって、CPU/DSP119は、図2のGPS/WLAN/BT処理部116または通信用RF処理部118を介してチャネル設定パターン提示装置150と通信することにより、記憶装置151からデータを取得することができる。同様に、CPU/DSP119は、GPS/WLAN/BT処理部116または通信用RF処理部118を介してチャネル設定パターン提示装置150と通信することにより、記憶装置151にデータを書き込むこともできる。
 例えば、「1」という経路IDが入力されると、ステップS101では、CPU/DSP119が、図7の運行情報テーブル203から、「1」という経路IDに対応付けられた「P1」、「P2」、「P7」および「P8」という地点IDを取得する。CPU/DSP119は、取得した4つの地点IDをメモリ領域126に記憶する。
 なお、第1実施形態では、後述のステップS103の処理の都合上、CPU/DSP119は、運行情報テーブル203から各地点IDに対応する地点通過予定時刻も取得する。そして、CPU/DSP119は、取得した地点IDを、地点通過予定時刻にしたがって順序付けてメモリ領域126に記憶する。図7の例によれば、「P1」が1番目、「P2」が2番目、「P7」が3番目、「P8」が4番目である。
 そして、CPU/DSP119は、取得した「P1」、「P2」、「P7」および「P8」という4つの地点IDがそれぞれ代表する4つのエリアのエリア情報を、記憶装置151に記憶された図6の地点情報テーブル202から取得する。エリア情報の取得も、GPS/WLAN/BT処理部116または通信用RF処理部118を介したチャネル設定パターン提示装置150との通信を通して行われる。CPU/DSP119は、取得したエリア情報をメモリ領域126に記憶する。
 続いて、ステップS102でCPU/DSP119はチューナを起動する。すなわち、CPU/DSP119は、図1と図3に示すTV受信装置114を起動することで、図2のTV送受信部117の受信機能(つまりTV受信装置114により実現される機能)を稼働させる。
 続くステップS103~S106は繰り返し実行される。また、CPU/DSP119は、ステップS103~S106の処理を繰り返す間、図2のGPS/WLAN/BT処理部116のGPS機能により、ローカルTV送信機110が積載されたバスの現在地を監視し続ける。例えば、CPU/DSP119は、どのエリアの受信影響時間(図8参照)と比べても十分に短い所定の間隔(例えば1秒間隔)で測位を行うよう、GPS/WLAN/BT処理部116を制御してもよい。
 ステップS103でCPU/DSP119は、バスが次の計測地点に到着したか否かをバスの現在位置に基づいて判断する。バスが次の計測地点に到着したとCPU/DSP119が判断するまで、ステップS103は繰り返される。バスが次の計測地点に到着したとCPU/DSP119が判断すると、処理はステップS104に進む。
 例えば、ステップS101で上記のように「1」という経路IDに対応して「P1」、「P2」、「P7」および「P8」という4つの地点IDが取得された場合にステップS103が初めて実行されるとき、具体的には次のような処理が行われる。
 上記のように「P1」、「P2」、「P7」および「P8」という4つの地点IDは順序づけられてメモリ領域126に記憶されており、1番目の地点IDは「P1」である。よって、初めてステップS103が実行されるときの「次の計測地点」は地点P1である。また、ステップS101では地点P1が代表するエリア情報が得られているので、CPU/DSP119は、エリア情報で定義される矩形の中心点である地点P1の緯度と経度を、エリア情報に基づいて計算することができる。
 また、図9の処理はバスが出発する直前に開始されるので、初めてステップS103が実行されるとき、バスは出発点である地点P1に位置する。よって、計算した地点P1の緯度と経度を、GPS/WLAN/BT処理部116による監視の結果として認識した現在位置の緯度と経度と比較することにより、CPU/DSP119は、現在バスが「次の計測地点」である地点P1に位置することを認識する。したがって、処理はステップS104に移行する。
 ステップS104~S106が実行された後に再びステップS103が実行される場合の具体例については後述する。
 ステップS104では、CPU/DSP119による制御にしたがって、TV受信装置114が、サーチ対象の各チャネルについてクリアレベルを計測する。ここで、サーチ対象のチャネルは、各計測地点に応じて予め決められている。
 例えば、図5に関して例示したように、地点P1では、特定の7つのチャネルで、放送局からのワンセグ放送を良好な受信品質で受信することが可能であるとする。この場合、地点P1でのサーチ対象は、50個のチャネルのうち上記の特定の7つのチャネルを除く43個のチャネルでもよい。もちろん、実施形態によっては50個のチャネルすべてがサーチ対象であってもよい。
 ステップS104では、TV受信装置114が各チャネルの電波の受信強度を計測する。そして、CPU/DSP119が、計測された数値、ならびに図5に関して例示した閾値TおよびTを用いて、各チャネルのクリアレベルを判断する。
 また、バスの走行中には、図9の処理が行われるだけでなく、ローカルTV送信機110からTV付き携帯端末140へのローカル放送が並行して行われてもよい。このように放送を行いながらクリアレベルを計測するためには、本出願人により出願された国際出願PCT/JP2008/053873号において開示されている方法を利用することができる。
 すなわち、ISDB-T規格では複数のキャリアを用いたOFDM(Orthogonal Frequency-Division Multiplexing)が採用されていることを利用して、CPU/DSP119は、次のようにTV送信装置113とTV受信装置114を制御することができる。
 現在TV送信装置113はチャネルAを使ってローカル放送を行っているとする。また、チャネルBがサーチ対象のチャネルであるとする。CPU/DSP119は、下記の(1)と(2)の場合で異なる制御を行う。
   (1)チャネルAとチャネルBが異なる場合
   (2)チャネルAとチャネルBが等しい場合
 上記(1)の場合、CPU/DSP119は、微弱電波を用いてチャネルAでワンセグ放送を行うようTV送信装置113を制御するとともに、チャネルBの電波を受信するようTV受信装置114を制御する。上記(1)の場合のTV受信装置114の制御方法は、周知の方法でもよい。また、TV受信装置114は、チャネルBの電波の受信強度(具体的には振幅レベル)をCPU/DSP119に報告する。CPU/DSP119は、例えば、報告されたチャネルBの受信強度と予め決められた閾値に基づいて、チャネルBのクリアレベルを判定する。
 他方、上記(2)の場合は、仮に上記(1)の場合と同様の制御をCPU/DSP119が行うと、TV送信装置113が放送する電波自体もTV受信装置114により受信されるため、クリアレベルを的確に計測することができなくなってしまう。そこで、TV送信装置113から放送される電波と、他の放送局やノイズ源からの電波を区別して的確にクリアレベルを計測するため、CPU/DSP119は次のような制御を行う。
 すなわち、上記(2)の場合、CPU/DSP119は、チャネルAのワンセグ放送に使われる432本のキャリアのうち、特定の一部のキャリアを消去してローカル放送を行うよう、TV送信装置113を制御する。より的確なクリアレベルの計測のためには、上記の特定の一部のキャリアは、チャネルAの周波数帯域の中心付近に位置するものであることが好ましい。
 また、上記(2)の場合、CPU/DSP119は、チャネルB(すなわちチャネルA)の電波を受信して上記の特定の一部のキャリアの受信強度(具体的には振幅レベル)を報告するよう、TV受信装置114を制御する。こうしてTV受信装置114から報告される受信強度は、TV送信装置113が放送に用いていないキャリアの受信強度であるから、TV送信装置113の放送の影響を受けておらず、他の放送局やノイズ源からの干渉の影響のみを的確に表す。よって、CPU/DSP119は、例えば、TV受信装置114から報告される受信強度と予め決められた閾値に基づいて、チャネルBのクリアレベルを的確に判定することができる。
 以上のようにして、サーチ対象のすべてのチャネルについてステップS104でクリアレベルが計測されると、続いてステップS105が実行される。ステップS105では、CPU/DSP119が、地点ID、チャネルID、クリアレベルおよび測定時刻を関連付けた測定データを、ネットワーク経由でチャネル設定パターン提示装置150に送信する。
 なお、測定データにおける地点IDは、ステップS103で「到着した」と判断された地点の地点IDである。また、測定データには、ステップS104におけるサーチ対象の複数のチャネルそれぞれについての、チャネルIDとクリアレベルの組が含まれる。また、測定時刻は、例えばステップS104の処理が終了したときにCPUクロックから取得される。
 なお、図9には表現されていないが、測定データを受け取ったチャネル設定パターン提示装置150は次のように動作する。すなわち、チャネル設定パターン提示装置150は、新しい一意な計測Noを生成し、受信した測定データを、生成した計測Noとともに、空きチャネル計測情報として、記憶装置151内の空きチャネル計測情報テーブル201に追加する。
 続いて、ステップS106でCPU/DSP119は、現在走行中の経路上のすべての計測地点でクリアレベルの計測が済んだか否かを判断する。ステップS101でメモリ領域126に記憶されたすべての地点IDに対応してクリアレベルの計測が既に行われていれば、CPU/DSP119は「すべての計測地点で計測済み」と判断し、処理はステップS107に移行する。逆に、まだクリアレベルの計測が行われていない計測地点が残っていれば、処理はステップS103に戻る。
 ステップS107では、CPU/DSP119がチューナを停止する。すなわち、CPU/DSP119は、図1と図3に示すTV受信装置114を停止することで、図2のTV送受信部117の受信機能(つまりTV受信装置114により実現される機能)を停止する。そして、図9の処理は終了する。
 なお、ステップS101で上記のように「1」という経路IDに対応して「P1」、「P2」、「P7」および「P8」という4つの地点IDが取得された場合のステップS103~S106の繰り返しの具体例を説明すると、次のとおりである。
 初めてステップS103が実行される場合については既に説明したとおりである。その後、地点P1でのクリアレベルの計測がステップS104で行われ、測定データがステップS105で送信され、処理はステップS106からステップS103に戻る。
 すると、再度ステップS103が実行される。このとき、「次の計測地点」は地点P2である。したがって、CPU/DSP119は、バスが地点P2に到着したか否かをステップS103で判断する。
 なお、上記の前提によれば、エリアが適切な大きさに定義されており、1つのエリアの中では空きチャネルに関する状況がほぼ同じである。よって、CPU/DSP119は、ステップS103で例えば、GPS/WLAN/BT処理部116により得られたバスの現在位置と地点P2との直線距離が予め決められた閾値T以内であれば、「次の計測地点である地点P2に到着した」と判断してもよい。
 続いて、地点P2(または地点P2からの直線距離が閾値T以内の近傍点)でのクリアレベルの計測がステップS104で行われ、測定データがステップS105で送信され、処理はステップS106からステップS103に戻る。
 同様にして地点P7(または地点P7からの直線距離が閾値T以内の近傍点)にバスが到着すると、再度ステップS103~S106が実行され、処理はステップS103に戻る。
 そして、地点P8(または地点P8からの直線距離が閾値T以内の近傍点)にバスが到着すると、再度ステップS103~S106が実行される。ここで、地点P8は、「1」という経路IDの経路の終点なので、処理はステップS106からステップS107に移行し、図9の処理全体が完了する。
 以上説明した図9の処理により、空きチャネル計測情報が図5の空きチャネル計測情報テーブル201に蓄積される。また、図7に示すように、複数の経路の一部が重複している場合には、それぞれの経路上で別々に行われた図9の処理の結果が、それぞれ空きチャネル計測情報テーブル201に蓄積されてもよい。
 なお、空きチャネル計測情報がさらに、クリアレベルの測定が行われた年月日の情報を含んでもよい。そして、チャネル設定パターン提示装置150は、年月日の情報に基づいて、定期的に、空きチャネル計測情報テーブル201から古いエントリ(entry)(例えば、測定が行われた年月日が1ヶ月以上前のエントリ)を削除してもよい。
 また、図9の処理は、バスが運行するたびに実行されてもよい。あるいは、例えば「毎月第2週に運行するバスでのみ図9の処理を実行する」などの規則に基づいて、間隔をおいて図9の処理が実行されてもよい。不定期の間隔で図9の処理が実行されてもよい。
 また、バスの回送時などにおいて、ローカルTV送信機110が、ローカル放送を行うことなく図9の処理のみを行うことも可能である。その場合、受信強度の検出のための公知の手法を利用してクリアレベルが計測されてもよい。
 ところで、空きチャネルサーチ処理は、必ずしも図9のように行われる必要はない。第1実施形態の変形例では、図9の処理の代わりに図10の処理が行われてもよく、または図9の処理と図10の処理が併用されてもよい。
 図10は、第1実施形態の変形例における空きチャネルサーチ処理のフローチャートである。
 図10の変形例においては、ある地点IDで表される地点にも、バスに積載されているのと同様のローカルTV送信機110が設置される。例えば、ローカルTV送信機110は、ある地点IDにより位置が表されるバス停に設置されてもよい。バス停に設置されたローカルTV送信機110は、バス停でバスを待っている乗客を対象としたローカル放送を行ってもよい。なお、メモリ領域126には、ローカルTV送信機110が設置されている地点の地点IDが予め記憶されているものとする。
 ある地点IDで表される地点にローカルTV送信機110が設置された後、ローカルTV送信機110の運用開始とともに図10の処理が開始される。すると、ステップS201でローカルTV送信機110のCPU/DSP119はチューナを起動する。ステップS201は図9のステップS102と同様なので詳しい説明は省略する。
 そして、ステップS202では、CPU/DSP119による制御にしたがって、TV受信装置114がサーチ対象の各チャネルについてクリアレベルを計測する。ステップS202は図9のステップS104と同様なので詳しい説明は省略する。
 すると、ステップS203では、CPU/DSP119が、地点ID、チャネルID、クリアレベルおよび測定時刻を関連付けた測定データを、ネットワーク経由でチャネル設定パターン提示装置150に送信する。ステップS203は図9のステップS105と同様なので詳しい説明は省略する。
 その後、ステップS204でCPU/DSP119は所定の時間が経過するまで待機するようTV受信装置114を制御し、所定の時間が経過すると処理はステップS202に戻る。以上のようにして、定期的にクリアレベルの測定が行われる。なお、上記の「所定の時間」は、クリアレベルが変動する周期に応じて予備実験の結果などに基づいて適宜定められていてもよいし、固定的に予め決められた値でもよい。
 なお、既知の位置に固定されたローカルTV送信機110では、GPS/WLAN/BT処理部116のGPS機能は省略されていてもよい。
 また、放送を行わない不図示の計測機(例えば図3のローカルTV送信機110からTV送信装置113を削除した装置)が、ローカルTV送信機110の代わりに図10の処理を行うこともできる。計測機は、受信強度を検出する公知の方法を用いてクリアレベルを計測してもよい。
 また、図10は定期的にクリアレベルを計測する処理を示すが、例えばネットワークを介して接続されたチャネル設定パターン提示装置150からの不定期の指示にしたがって、不定期にクリアレベルの計測が行われてもよい。
 ここで第1実施形態の説明に戻ると、チャネル設定パターン提示装置150は、上記のようにして図5の空きチャネル計測情報テーブル201に蓄積された空きチャネル計測情報を用いて、以下のようにしてチャネル設定パターンを選んで提示する。
 図11は、第1実施形態におけるパターン提示処理のフローチャートである。図11のパターン提示処理により、チャネル設定パターン提示装置150は、地点IDとチャネルIDに対応付けてクリアレベルを記憶する記憶手段としての、RAMなどの記憶装置を参照し、潜在的に可能な複数のチャネル設定パターンを絞り込む。そして、チャネル設定パターン提示装置150は、絞り込みの結果得られた1つ以上のチャネル設定パターンを提示する。
 ステップS301では、経路IDがチャネル設定パターン提示装置150に入力される。例えば、図4のコンピュータ160によりチャネル設定パターン提示装置150が実現される場合、図4の入力装置165を介して経路IDが入力されてもよい。あるいは、ローカルTV送信機110がチャネル設定パターン提示装置150を兼ねる場合、図2のテンキー124を介して経路IDが入力されてもよい。
 ステップS302でチャネル設定パターン提示装置150は、ステップS301で入力された経路IDに基づいて、通過地点ID、受信影響時間、受信影響距離、および地点通過予定時刻を抽出して経路情報テーブルとして展開する。
 具体的には、チャネル設定パターン提示装置150は、図7の運行情報テーブル203から、入力された経路IDに対応する通過地点IDと地点通過予定時刻を抽出する。また、チャネル設定パターン提示装置150は、運行情報テーブル203から抽出した複数の通過地点IDにそれぞれ対応する受信影響時間と受信影響距離を、図8の影響範囲情報テーブル204から抽出する。そして、チャネル設定パターン提示装置150は、抽出した各通過地点IDに受信影響時間と受信影響距離と地点通過予定時刻を対応付けて、例えば図12のような形式に展開し、メモリ領域126に記憶する。
 図12は、展開された経路情報テーブル205の例を示す図である。図12は、図11のステップS301で「1」という経路IDが入力された場合の例である。
 図7に示すように、「1」という経路IDには、「P1」、「P2」、「P7」および「P8」という4つの通過地点IDが対応している。よって、図11のステップS302ではこれら4つの通過地点IDとそれぞれの地点通過予定時刻が運行情報テーブル203から抽出される。また、図8の影響範囲情報テーブル204からは、これら4つの通過地点IDに対応する受信影響時間と受信影響距離が抽出される。
 よって、チャネル設定パターン提示装置150は、図11のステップS302で、「P1」という地点IDと、「25秒」という受信影響時間と、「250m」という受信影響距離と、「9:00:00」という地点通過予定時刻を対応付ける。また、チャネル設定パターン提示装置150は「P2」、「P7」および「P8」という他の3つの地点IDについても同様の対応付けを行う。そして、チャネル設定パターン提示装置150は対応付けた情報を、例えば図12の経路情報テーブル205のような形式に展開し、図4のRAM163などのRAM上に記憶する。
 図12の経路情報テーブル205は、次のようなバスの運行予定を含意している。
   ・バスは、地点P1を9:00:00に出発する。
   ・バスは、地点P1により代表される第1のエリア内の250mを25秒かけて走行し、9:00:25に、地点P2により代表される第2のエリアと第1のエリアとの境界を通過する。
   ・バスは、境界を通過した25秒後の9:00:50に、地点P2を通過する。
   ・バスはさらに15(=40-25)秒間、第2のエリア内を走行し、9:01:05に、地点P7により代表される第3のエリアと第2のエリアとの境界を通過する。つまり、9:00:25から9:01:05までの40秒間に、バスは第2のエリア内の400mを走行する。
   ・バスは、境界を通過した15秒後の9:01:20に、地点P7を通過する。
   ・バスはさらに60(=75-15)秒間、第3のエリア内を走行し、9:02:20に、地点P8により代表される第4のエリアと第3のエリアとの境界を通過する。つまり、9:01:05から9:02:20までの75秒間に、バスは第3のエリア内の750mを走行する。
   ・バスは、境界を通過した60秒後の9:03:20に、終点である始点P8に到着する。つまり、9:02:20から9:03:20までの60秒間に、バスは第4のエリア内の600mを走行する。
 なお、図12には、説明の便宜上、4つの地点IDにそれぞれ対応する受信影響時間の合計値である200秒(200=25+40+75+60)も表示されている。また、図12には、4つの地点IDにそれぞれ対応する受信影響距離の合計値である2000秒(2000=250+400+750+600)も表示されている。
 また、抽出された受信影響時間と受信影響距離が比例しているのは、上記のとおり偶然である。経路上の様々な地点における道路の状態の違いなどによっては、受信影響時間と受信影響距離は比例しない。
 なお、以上のように、経路情報テーブル205は、図5の空きチャネル計測情報テーブル201に基づいて作成されるので、間接的には図9または図10の処理によって作成されるとも言える。例えば、図9のステップS105は、計測されたクリアレベルを、計測対象の地点の地点IDと計測対象のチャネルのチャネルIDに対応付けてチャネル設定パターン提示装置150が経路情報テーブル205に書き込むための準備である、という見方もできる。
 ここで図11の説明に戻る。次のステップS303で、チャネル設定パターン提示装置150は、図7の運行情報テーブル203と図5の空きチャネル計測情報テーブル201に基づいて、各通過地点でのクリアレベルを、図13Aのような空きチャネル情報テーブル206aとして展開する。空きチャネル情報テーブル206aは、例えば図4のRAM163などのRAM上に展開される。
 図13Aは、展開された空きチャネル情報テーブルの第1の例を示す図である。なお、図13Aには参照の便宜のため、図12の経路情報テーブル205もあわせて表示してある。
 以下、説明の便宜上、地点P1、地点P2、地点P7および地点P8によりそれぞれ代表されるエリアが存在する地域では、50の物理チャネルのうちチャネル13~16以外は、空きチャネルでないことが予め判明しているものとする。換言すれば、地点P1、地点P2、地点P7および地点P8のいずれにおいても、サーチ対象はチャネル13~16であるとする。なお、例えば放送局により使われているチャネルは、空きチャネルでないことが予め判明しているチャネルの例である。
 図13Aの空きチャネル情報テーブル206aでは、各行がサーチ対象の各チャネルに対応し、各列が各地点IDに対応する。空きチャネル情報テーブル206aの各セルはクリアレベルを表す。例えば、図13Aでは、「13」と「P1」の組に対して「3」というクリアレベルが対応している。
 図11のステップS303では、このような空きチャネル情報テーブル206aを得てメモリ領域126に記憶するため、チャネル設定パターン提示装置150が以下のような処理を行う。
 ステップS301で入力された経路IDに対応する「P1」、「P2」、「P7」および「P8」という4つの通過地点IDとそれぞれの地点通過予定時刻は、既にステップS302で図7の運行情報テーブル203から抽出されている。これら抽出された通過地点IDと地点通過予定時刻を検索キーにして、チャネル設定パターン提示装置150は図5の空きチャネル計測情報テーブル201を検索する。
 例えば、図7において「P1」という通過地点IDは「9:00:00」という地点通過予定時刻と対応する。そこで、チャネル設定パターン提示装置150は、地点IDが「P1」で、かつ、測定時刻が「9:00:00」に近いエントリを、空きチャネル計測情報テーブル201から検索する。図5の空きチャネル計測情報テーブル201に十分な量の空きチャネル計測情報が蓄積されるように、各経路の各便で適切に図9の処理が既に行われていれば、検索の結果、少なくとも1つのエントリが得られる。なお、2つの時刻の差の絶対値が予め決められた閾値T以下であれば、2つの時刻は互いに近い、と定義されるものとする。
 例えば、図5において計測Noが「1」のエントリは、地点IDが「P1」であり、測定時刻が「9:00:00」である。よって、「P1」という通過地点IDと「9:00:00」という地点通過予定時刻の組に対応する検索の結果として、少なくとも計測Noが「1」のエントリが得られる。上記閾値Tの値や、空きチャネル計測情報テーブル201に蓄積された空きチャネル計測情報の内容によっては、さらに別のエントリが検索の結果得られることもある。
 また、図5において計測Noが「2」のエントリは、地点IDが「P2」であり、測定時刻が「9:10:00」である。よって、例えば閾値Tが15分間という値であれば、「P2」という通過地点IDと「9:00:50」という地点通過予定時刻の組に対応する検索の結果として、計測Noが「2」のエントリが得られる。逆に、例えば閾値Tが5分間という値であれば、「9:00:50」と「9:10:00」という2つの時刻は「近くない」と判断されるので、検索の結果、計測Noが「2」のエントリは得られない。
 空きチャネル計測情報テーブル201の検索の結果として1つのエントリのみが得られた場合は、チャネル設定パターン提示装置150は、得られたエントリからチャネルIDとクリアレベルの組を読み取る。そして、チャネル設定パターン提示装置150は、読み取ったクリアレベルの値を、図13Aの空きチャネル情報テーブル206aに書き込む。
 例えば、検索の結果、図5において計測Noが「1」のエントリのみが得られたとする。このエントリには、「13」というチャネルIDと「3」というクリアレベルの組がある。よって、チャネル設定パターン提示装置150は、空きチャネル情報テーブル206aにおいて「P1」の列と「13」の行が交差するセルに、「3」というクリアレベルを書き込む。
 検索の結果として複数のエントリが得られた場合は、チャネル設定パターン提示装置150は、各チャネルIDについて、当該チャネルIDに対応するクリアレベルを、検索の結果得られた各エントリから読み出す。そして、チャネル設定パターン提示装置150は、読み出した複数のクリアレベルに基づいて、空きチャネル情報テーブル206aに書き込むクリアレベルを決定する。
 例えば、「P2」という地点IDと「9:00:50」という地点通過予定時刻の組に対応する検索の結果、3つのエントリが得られたとする。すると、チャネル設定パターン提示装置150は3つのエントリそれぞれにおいて、「13」というチャネルIDに対応するクリアレベルを読み出す。
 例えば、3つのエントリから読み出されたクリアレベルがそれぞれ「1」と「2」と「2」であったとする。すると、チャネル設定パターン提示装置150は、「1」と「2」と「2」という3つの値に基づいて、予め決められた処理を行い、空きチャネル情報テーブル206aに書き込むクリアレベルを、例えば「2」と決定する。
 上記の「予め決められた処理」とは、例えば、最頻値を求めるという処理でもよいし、中央値、最大値、最小値、または平均値を求めるなど、他の統計処理でもよい。そして、チャネル設定パターン提示装置150は、決定した値(上記の例では「2」)を、空きチャネル情報テーブル206aの、「P2」の列と「13」の行が交差するセルに書き込む。
 以上のようにして、各地点IDについて、チャネル設定パターン提示装置150は空きチャネル計測情報テーブル201を検索し、検索の結果得られた1つ以上のエントリに基づいて、空きチャネル情報テーブル206aの各行のセルに値を書き込む。その結果として、例えば図13Aに示すような空きチャネル情報テーブル206aが生成され、メモリ領域126などに展開される。
 図13Bは、展開された空きチャネル情報テーブルの第2の例を示す図である。図13Bの空きチャネル情報テーブル206bは、各クリアレベルの値以外は図13Aの空きチャネル情報テーブル206aと同じなので詳しい説明は省略する。また、図13Bにも参照の便宜のために経路情報テーブル205があわせて表示してある。
 ここで図11の説明に戻ると、次のステップS304で、チャネル設定パターン提示装置150は、経路IDにより指定された経路上の全地点にわたり連続する空きチャネルがあるか否かを判断する。
 例えば、ステップS301で「1」という経路IDが入力された場合、図7に示すように、「全地点」とは、地点P1、地点P2、地点P7および地点P8という4つの地点である。また、第1実施形態ではクリアレベルが3段階の離散値により表されており、「2」が「普通」を表し、「3」が「良好」を表す。そこで、「普通」以上のクリアレベルが得られるチャネルを、空きチャネルと見なすことにする。また、ステップS303の結果、図13Aのように空きチャネル情報テーブル206aが展開されたとする。
 すると、ステップS304でチャネル設定パターン提示装置150は、図13Aの空きチャネル情報テーブル206aにおいて、「P1」、「P2」、「P7」および「P8」の4つの列にわたって空きチャネルであり続けるチャネルの存否を判断する。
 図13Aの例では、4列とも「2」以上のクリアレベルが書き込まれている行はチャネルID「14」の行のみである。よって、チャネル設定パターン提示装置150は、チャネル14が、全地点にわたり連続する空きチャネルであると判断する。
 または、ステップS301で「1」という経路IDが入力された場合に、図5の空きチャネル計測情報テーブル201の内容によっては、ステップS303の結果として図13Bのように空きチャネル情報テーブル206bが展開されるかもしれない。すると、ステップS304においてチャネル設定パターン提示装置150は、全地点にわたり連続する空きチャネルはない、と判断する。なぜなら、図13Bにおいて、「2」以上のクリアレベルが4列にわたって続く行はないからである。
 以上のように、ステップS304では、N個の地点IDにすべて同じチャネルIDを対応付ける複数(上記の例では4通り)のチャネル設定パターンが、全地点にわたって「2」以上のクリアレベルが続くかという観点から評価される。そして、全地点にわたり連続する空きチャネルがあれば処理はステップS305に移行し、全地点にわたり連続する空きチャネルがなければ処理はステップS309に移行する。
 ステップS305において、チャネル設定パターン提示装置150は、全地点にわたり連続する空きチャネルであるとステップS304で判断されたチャネルが複数あるか否かを判断する。
 ここで、あるチャネルXが、全地点にわたり連続する空きチャネルであるとする。すると、指定された経路上の全地点にチャネルXを対応付けるチャネル設定パターンPATは、経路の始点から終点まで1度もチャネルを変更することなく良好な受信品質を保ってローカル放送を続行することが可能だと期待されるチャネル設定パターンである。したがって、上記チャネル設定パターンPATは、バスの乗客に負担をかけることなくローカル放送を行うのに適している。
 つまり、ステップS305でチャネル設定パターン提示装置150は、1度もチャネルを変更することなく良好な受信品質を保ってローカル放送を続行することが可能だと期待されるチャネル設定パターンが複数あるか否かを判断している。判断の結果、上記のようなチャネル設定パターンが1つしかなければ、処理はステップS306に移行し、上記のようなチャネル設定パターンが複数あれば、処理はステップS307に移行する。
 ステップS306では、ステップS305で見つかった当該1つのチャネル設定パターンを、チャネル設定パターン提示装置150が、提示対象のチャネル設定パターンとして選択する。そして処理はステップS308に移行する。
 また、ステップS307では、ステップS305で見つかった複数のチャネル設定パターンのそれぞれについて、チャネル設定パターン提示装置150がスコアを算出する。そして、チャネル設定パターン提示装置150が、スコアが最高のチャネル設定パターンを、提示対象のチャネル設定パターンとして選択し、処理はステップS308に移行する。
 ステップS307で算出されるスコアは、クリアレベルに基づく評価値であり、具体的な計算式は実施形態により任意である。第1実施形態では、チャネル設定パターンのスコアとして、当該チャネル設定パターンで対応付けられている地点IDとチャネルIDの組に対応するクリアレベルの総和が用いられる。すなわち、形式的に定義すれば下記のとおりである。
 経路Rは、式(1)のように、N個の地点IDを含むNタプル(N-tuple)により表される。式(1)において、各p(1≦j≦N)は地点IDであり、N個の地点IDは、経路上の順序にしたがってNタプル内で順序付けられている。
   R=(p,p,……,p)               (1)
 経路Rに関するチャネル設定パターンPATは、式(2)のように、N個のチャネルIDを含むNタプルで表すことができる。式(2)におけるj番目のチャネルID・ci(j)は、Nタプルのj番目の要素であることによって、式(1)におけるj番目の地点ID・pに対応付けられている。つまり、チャネル設定パターンPATは、N個の地点IDにそれぞれチャネルIDを対応付ける組み合わせパターンである。
   PAT=(ci(1),ci(2),……,ci(N))    (2)
 以下、ステップS303で展開された空きチャネル情報テーブル(例えば図13Bの空きチャネル情報テーブル206b)において、チャネルID・ci(j)と地点ID・pとの組に対応するクリアレベルを「ai(j),j」と表記する。すると、第1実施形態におけるチャネル設定パターンPATのスコアは式(3)で定義される。
Figure JPOXMLDOC01-appb-M000001
 例えば、「1」という経路IDで識別される経路(以下「R1」と表記する)は、図7と式(1)より、(P1,P2,P7,P8)という4タプルで表される。また、図13Aの空きチャネル情報テーブル206aにおいて全地点にわたり連続する空きチャネルであるチャネル14を各地点IDに対応付けるチャネル設定パターン(以下「PATa」と表記する)は、式(2)より(14,14,14,14)という4タプルで表される。また、図13Aと式(3)より、チャネル設定パターンPATaのスコアは、具体的には空きチャネル情報テーブル206aにおけるチャネルID「14」の行の4つの値の総和であるから、式(4)のように計算される。
   s(PATa)=2+2+3+3=10         (4)
 もちろん、実施形態に応じてスコアの定義は任意である。例えば、「1」というクリアレベルは劣悪な受信品質に対応するので、ai(j),j=1というクリアレベルがスコアに影響しないように、式(3)の代わりに式(5)を用いてもよい。
Figure JPOXMLDOC01-appb-M000002
 以上説明したように、ステップS307では、ステップS304で見つかった複数の空きチャネルに対応する複数のチャネル設定パターンのそれぞれについて、チャネル設定パターン提示装置150がクリアレベルに基づくスコアを算出する。そして、チャネル設定パターン提示装置150は、スコアが最高のチャネル設定パターンを、提示対象として選択する。
 スコアが最高のチャネル設定パターンが2つ以上ある場合、チャネル設定パターン提示装置150は、スコア以外の基準に基づいてそのうち1つだけを選択してもよいし、スコアが最高の2つ以上のチャネル設定パターンをすべて選択してもよい。また、実施形態によっては、チャネル設定パターン提示装置150は、スコアの算出を行わずに、ステップS304で見つかった複数の空きチャネルに対応する複数のチャネル設定パターンすべてをステップS307で選択してもよい。チャネル設定パターン提示装置150が1つまたは複数のチャネル設定パターンを選択すると、処理はステップS308に移行する。
 ステップS308でチャネル設定パターン提示装置150は、提示対象として選択されたチャネル設定パターンの情報をローカルTV送信機110に転送する。ローカルTV送信機110への転送は、チャネル設定パターンを提示する具体的方法の一例である。
 例えば、チャネル設定パターン提示装置150が図4のコンピュータ160により実現される場合、CPU161は、提示対象として選択されたチャネル設定パターンの情報を、通信インタフェイス164とネットワーク171を介してローカルTV送信機110に転送する。つまり、データ送信装置としての通信インタフェイス164がチャネル設定パターンの提示に使われてもよい。
 また、チャネル設定パターン提示装置150が図4のコンピュータ160により実現される場合、CPU161は、さらに出力装置166にチャネル設定パターンを出力することで、選択されたチャネル設定パターンを視覚的または聴覚的に提示してもよい。出力装置166は、具体的にはディスプレイ、プリンタまたはスピーカなどである。
 あるいは、上記のように、ローカルTV送信機110がチャネル設定パターン提示装置150を兼ねていてもよい。その場合、図2に示すローカルTV送信機110のCPU/DSP119は、ディスプレイ125またはスピーカ122に、選択されたチャネル設定パターンを視覚的または聴覚的に提示してもよい。
 ステップS308でチャネル設定パターンが提示されると、図11の処理は終了する。
 なお、提示されたチャネル設定パターンは、自動的にローカルTV送信機110に設定されてもよい。あるいは、チャネル設定パターン提示装置150により提示されたチャネル設定パターンは、ローカルTV送信機110のディスプレイ125またはスピーカ122に出力されてもよい。そして、バスの運転手または車掌などの操作者が、出力されたチャネル設定パターンを確認し、例えば図2のテンキー124などの入力装置を介して、チャネル設定パターン提示装置150により提示されたチャネル設定パターンを承認する入力を行ってもよい。そして、CPU/DSP119が、承認されたチャネル設定パターンを、TV送信装置113の制御のためのチャネル設定パターンとして設定してもよい。
 ローカルTV送信機110は、上記のようにして設定されたチャネル設定パターンにしたがって、図1および図3のTV送信装置113によりローカル放送を行うことができる。設定されたチャネル設定パターンにしたがって、例えば車掌がチャネルの切り替えについて口頭で乗客に通知してもよい。よって、第1実施形態によれば、移動するバスの中において、バスの乗客に大きな負担をかけることなく、ローカル放送によるコンテンツ配信サービスを提供することが可能となる。
 ここで、ステップS304の分岐の説明に戻る。全地点にわたり連続する空きチャネルがステップS304で見つからなかった場合、処理はステップS309に移行する。ステップS309以下の処理は、組み合わせ可能なすべてのチャネル設定パターンを生成し、生成されたチャネル設定パターンの各々をクリアレベルに基づいて評価し、評価の高いチャネル設定パターンを選択する処理を含む。
 具体的には、ステップS309でチャネル設定パターン提示装置150は、ステップS303で展開した空きチャネル情報テーブルに基づき、チャネル設定パターンテーブルを作成する。以下、ステップS303で図13Bの空きチャネル情報テーブル206bが得られた場合を例にして説明する。
 図14はチャネル設定パターンテーブルの例を示す図である。図14のチャネル設定パターンテーブル207において、各行は1つのチャネル設定パターンに対応する。チャネル設定パターンテーブル207は、例えば図4のRAM163などのRAM上に作成される。
 ここで、図13Bの空きチャネル情報テーブル206bは、上記の経路R1=(P1,P2,P7,P8)に関するテーブルである。よって、図13Bの空きチャネル情報テーブル206bに基づいて生成される図14のチャネル設定パターンテーブル207も、経路R1に関するテーブルである。
 図13Aと同様に図13Bも、「地点P1、地点P2、地点P7および地点P8のいずれにおいても、サーチ対象はチャネル13~16の4つのチャネルである」という例を示している。したがって、経路R1上の地点IDの数をNとし、サーチ対象のチャネル数をMとすると、N=4かつM=4である。よって、組み合わせ可能なチャネル設定パターンの総数は式(6)のように表される。
   t=M=4=256                 (6)
 なお、より一般的には、式(1)の経路RにおけるN個の地点IDがそれぞれ表すN個の地点で、サーチ対象のチャネル数が同じ値であるとは限らない。そこで、地点ID・p(1≦j≦N)が表すj番目の地点でのサーチ対象のチャネル数をmとすると、組み合わせ可能なチャネル設定パターンの総数は、式(7)のように表される。式(6)は、式(7)において、1≦j≦Nであるすべてのjについてm=Mの場合を示す式である。
Figure JPOXMLDOC01-appb-M000003
 式(6)に示されるように、図13Bの空きチャネル情報テーブル206bに基づいて図11のステップS309では、256個のチャネル設定パターンがチャネル設定パターン提示装置150により生成され、チャネル設定パターンテーブル207に記憶される。図14では紙面の都合上、一部の行を省略している。
 また、図14に示すように、チャネル設定パターンテーブル207は、経路R1を規定する4個の地点IDにそれぞれ対応するチャネルIDとクリアレベルの列がある。さらにチャネル設定パターンテーブル207には、後述のステップS310で算出されるスコアの列と、後述のステップS311で算出されるチャネル変更回数、同一チャネル連続時間および同一チャネル総時間の列がある。
 図11のステップS309では、チャネル設定パターン提示装置150が、256個のチャネル設定パターンについてそれぞれ、4組のチャネルIDとクリアレベルの列に値を書き込むことで、チャネル設定パターンテーブル207を生成する。
 例えば、図14に示したチャネル設定パターンPAT01は、式(2)の記法により式(8)のように表せる。
   PAT01=(13,13,14,13)         (8)
 図13Bを参照すると、経路R1上の1番目の地点ID「P1」と、式(8)の4タプルの第1要素であるチャネルID「13」の組に対応するクリアレベルは、「3」である。また、経路R1上の2番目の地点ID「P2」と、式(8)の4タプルの第2要素であるチャネルID「13」の組に対応するクリアレベルは、「3」である。そして、経路R1上の3番目の地点ID「P7」と、式(8)の4タプルの第3要素であるチャネルID「14」の組に対応するクリアレベルは、「3」である。さらに、経路R1上の4番目の地点ID「P8」と、式(8)の4タプルの第4要素であるチャネルID「3」の組に対応するクリアレベルは、「3」である。
 チャネル設定パターン提示装置150は、チャネル設定パターンPAT01を生成し、チャネル設定パターンPAT01の行の4つのチャネルIDの列のセルにそれぞれ「13」、「13」、「14」および「13」という値を書き込む。また、チャネル設定パターン提示装置150は、チャネル設定パターンPAT01の行の4つのクリアレベルの列のセルに、空きチャネル情報テーブル206bから読み取った4つの値(いずれも「3」という値)を書き込む。
 他の255個のチャネル設定パターンについても同様にして、チャネル設定パターン提示装置150は、空きチャネル情報テーブル206bを参照することにより、チャネル設定パターンテーブル207の1列目~8列目のセルに値を書き込む。9列目~12列目については後述する。
 ここで図11の説明に戻る。ステップS309に続いて、ステップS310では、チャネル設定パターン提示装置150が、ステップS309で生成した各チャネル設定パターンについて、クリアレベルに基づくスコアを算出する。そして、チャネル設定パターン提示装置150は、算出したスコアを図14のチャネル設定パターンテーブル207の9列目(すなわち「スコア」列)に書き込む。
 第1実施形態では、ステップS310において、ステップS307と同様に式(3)で定義されるスコアが算出される。例えば、上記のとおりチャネル設定パターンPAT01では、各地点IDとチャネルIDの組に対応する4つのクリアレベルがいずれも「3」である。したがって、チャネル設定パターンPAT01のスコアは次の式(9)により算出される。
   s(PAT01)=3+3+3+3=12         (9)
 つまり、チャネル設定パターン提示装置150は、ステップS309でチャネル設定パターンテーブル207のチャネル設定パターンPAT01の行に書き込んだ4つのクリアレベルの値を用いて、式(9)によりスコアを算出して「スコア」列に書き込む。また、チャネル設定パターン提示装置150は、他の255個のチャネル設定パターンについても同様にして、式(3)に基づいてスコアを算出して「スコア」列に書き込む。
 続いて、ステップS311でチャネル設定パターン提示装置150は、ステップS309で生成した各チャネル設定パターンについて、下記(a)~(c)を算出し、チャネル設定パターンテーブル207の10~12列目のセルにそれぞれ算出結果を書き込む。
   (a)チャネル変更回数
   (b)同一チャネル連続時間
   (c)同一チャネル総時間
 チャネル設定パターン提示装置150は、(a)のチャネル変更回数を数えるため、チャネル設定パターンを表すNタプルにおいて、「チャネルIDに対応するクリアレベルが閾値以上である」という条件下で隣接する2つのチャネルIDの組に注目する。そして、チャネル設定パターン提示装置150は、注目した2つのチャネルIDが異なる箇所の数を数える。数えた結果がチャネル変更回数である。なお、第1実施形態では、閾値として「2」が用いられる。
 例えば、PAT01=(13,13,14,13)に関しては、図14に示すように、4つのチャネルIDにそれぞれ対応するクリアレベルはいずれも「2」以上である。したがって、「チャネルIDに対応するクリアレベルが閾値以上である」という条件下で隣接する2つのチャネルIDの組は、下記の3組である。
   (1)1番目のチャンネルID「13」と2番目のチャネルID「13」の組
   (2)2番目のチャンネルID「13」と3番目のチャネルID「14」の組
   (3)3番目のチャンネルID「14」と4番目のチャネルID「13」の組
 上記3つの組のうちで、(2)と(3)の組では、2つのチャネルIDが異なる。したがって、チャネル設定パターンPAT01のチャネル変更回数は「2」であり、チャネル設定パターン提示装置150はチャネル設定パターンPAT01の行の「チャネル設定パターン」列に「2」と書き込む。
 また、図14にはPAT09=(13,13,15,13)というチャネル設定パターンも示されている。チャネル設定パターンPAT09に関しては、図14に示すように、4つのチャネルIDにそれぞれ対応するクリアレベルは、「3」、「3」、「1」および「3」である。よって、「チャネルIDに対応するクリアレベルが閾値以上である」という条件に当てはまるのは、(13,13,15,13)という4タプルにおいて1番目、2番目および4番目のチャネルIDである。したがって、上記条件下で隣接する2つのチャネルIDの組は、下記の2組である。
   (1)1番目のチャンネルID「13」と2番目のチャネルID「13」の組
   (2)2番目のチャンネルID「13」と4番目のチャネルID「13」の組
 上記2つの組のいずれにおいても、2つのチャネルID同士は等しい。したがって、チャネル設定パターンPAT07のチャネル変更回数は「0」である。
 このように、「チャネルIDに対応するクリアレベルが閾値以上である」という条件を設けた上で、チャネルが変更される回数をチャネル設定パターン提示装置150が数える理由は次のとおりである。
 ここで、説明の便宜上、チャネル設定パターンテーブル207の4つの「クリアレベル」列に書き込まれた値を、対応する地点の経路上での順序にしたがって並べたタプルを「クリアレベルタプル」といい、4タプル(一般にはNタプル)で表すことにする。
 仮に、チャネル設定パターンPAT09が採用されると仮定すると、1番目と2番目のエリア(すなわち地点P1とP2によりそれぞれ代表されるエリア)では、チャネル13でローカルTV送信機110のTV送信装置113がローカル放送を行う。チャネル設定パターンPAT09のクリアレベルタプルは(3,3,1,3)なので、1番目と2番目のエリアでは良好な受信品質が予測される。
 他方、チャネル設定パターンPAT09によれば、3番目のエリア(すなわち地点P7により代表されるエリア)では、チャネル15でTV送信装置113がローカル放送を行うが、受信品質が悪いと予測される。なぜなら、上記クリアレベルタプルの3番目の要素は「1」だからである。
 よって、第1実施形態では、ローカルTV送信機110は、採用したチャネル設定パターンに基づいて、閾値である「2」未満のクリアレベルしか得られないエリアでは、ローカル放送を休止するものと仮定する。放送しても受信品質が悪いならば放送する意味が薄いからである。
 すると、乗客にとっては、3番目のエリアに入るときに、わざわざ手間をかけて、現在設定されている受信チャネル(すなわちチャネル13)からチャネル15に受信チャネルを変更する意味がないことになる。そのため、上記のように、チャネル設定パターン提示装置150がチャネル変更回数を数える際には、「チャネルIDに対応するクリアレベルが閾値以上である」という条件が設けられる。
 なお、実施形態によっては、採用したチャネル設定パターンにしたがって、たとえクリアレベルが「1」であってもローカルTV送信機110がローカル放送を行うこともできる。その場合に上記とはチャネル変更回数の定義が異なっていてもよい。例えば、チャネル設定パターン提示装置150は、チャネル設定パターンを表す地点IDのNタプルにおいて、上記のような条件を設けることなく、異なるチャネルID同士が隣接する箇所の数を数えてもよい。
 続いて、ステップS311で算出される上記(b)の同一チャネル連続時間について説明する。チャネル設定パターン提示装置150は、「チャネルIDに対応するクリアレベルが閾値以上である」という上記と同じ条件を満たし、かつ同じチャネルIDが連続する長さを、受信影響時間を用いて算出する。以下に説明するように、個々のチャネル設定パターンについて1つ以上の算出結果が得られ、得られた算出結果のうちの最大値が同一チャネル連続時間である。
 図14のとおり、例えば、チャネル設定パターンPAT07=(13,13,13,13)のクリアレベルタプルは(3,3,1,3)である。よって、クリアレベルが「2」以上であるという条件を満たして同じチャネルIDが連続する区間は次の2つである。
   (1)1番目~2番目のチャネルIDに対応する区間(つまり、地点P1と地点P2によりそれぞれ代表される1番目と2番目のエリアに対応する区間)
   (2)4番目のチャネルIDに対応する区間(つまり、地点P8により代表される4番目のエリアに対応する区間)
 チャネル設定パターン提示装置150は、図11のステップS302で展開済みの図12の経路情報テーブル205から、各地点に対応する受信影響時間を読み取る。そして、チャネル設定パターン提示装置150は必要に応じて加算を行うことで、(1)と(2)それぞれの長さを得る。
 その結果、(1)の長さとして65(=25+40)秒が得られ、(2)の長さとして60秒が得られる。よって、これら2つの結果のうちで最大の65秒が、チャネル設定パターンPAT07の同一チャネル連続時間として得られ、チャネル設定パターン提示装置150により図14のチャネル設定パターンテーブル207の11列目に書き込まれる。
 続いて、さらにステップS311で算出される上記(c)の同一チャネル総時間について説明する。チャネル設定パターン提示装置150は、「チャネルIDに対応するクリアレベルが閾値以上である」という上記と同じ条件のもとで、対応する受信影響時間をチャネルIDごとに集計する。集計結果のうちの最大値が同一チャネル総時間である。
 図14のとおり、例えば、チャネル設定パターンPAT02=(13,13,14,16)のクリアレベルタプルは(3,3,3,3)である。よって、クリアレベルが「2」以上であるという条件のもとでチャネルIDごとに経路R1上の地点を分類すると、地点は以下の3つに分類される。
   (1)チャネル13に対応する地点P1と地点P2
   (2)チャネル14に対応する地点P7
   (3)チャネル16に対応する地点P8
 チャネル設定パターン提示装置150は、図11のステップS302で展開済みの図12の経路情報テーブル205から、各地点に対応する受信影響時間を読み取る。そして、チャネル設定パターン提示装置150は必要に応じて加算を行うことで、(1)~(3)それぞれに対応する受信影響時間の和を得る。
 その結果、(1)に対応して65(=25+40)秒が得られ、(2)に対応して75秒が得られ、(3)に対応して60秒が得られる。よって、これら3つの結果のうちで最大の75秒が、チャネル設定パターンPAT02の同一チャネル総時間として得られ、チャネル設定パターン提示装置150によりチャネル設定パターンテーブル207の12列目に書き込まれる。
 以上のようにして、ステップS311では、チャネル設定パターン提示装置150がt(=256)個のチャネル設定パターンのすべてについて上記(a)~(c)を算出してチャネル設定パターンテーブル207に書き込む。なお、実施形態によっては、受信影響時間の代わりに受信影響距離を用いて、上記(b)の代わりに同一チャネル連続距離が算出されてもよく、上記(c)の代わりに同一チャネル総距離が算出されてもよい。
 続いて、ステップS312においてチャネル設定パターン提示装置150は、チャネル設定パターンを選択する基準として優先する基準を判断する。優先する基準は、予めチャネル設定パターン提示装置150に設定されていてもよいし、ステップS312で入力装置(図4の入力装置165など)を介して指定されてもよい。チャネル設定パターン提示装置150は、予め設定された内容あるいは入力された内容を読み取ることで、優先する基準を判断することができる。第1実施形態では、優先する基準の選択肢として、上記の(a)チャネル変更回数、(b)同一チャネル連続時間および(c)同一チャネル総時間がある。
 優先する基準がチャネル変更回数のとき、処理はステップS313に移行する。優先する基準が同一チャネル連続時間のとき、処理はステップS314に移行する。また、優先する基準が同一チャネル総時間のとき、処理はステップS315に移行する。
 ステップS313では、チャネル設定パターン提示装置150が、チャネル設定パターンテーブル207に含まれるt(=256)個のチャネル設定パターンの中から、スコアが最高のチャネル設定パターンを抽出する。さらに、チャネル設定パターン提示装置150は、スコアが最高のチャネル設定パターンの中で、チャネル変更回数が最小のものを抽出し、提示対象として選択する。そして処理は、上記で説明したステップS308に移行する。
 ステップS314では、チャネル設定パターン提示装置150が、チャネル設定パターンテーブル207に含まれるt個のチャネル設定パターンの中から、スコアが最高のチャネル設定パターンを抽出する。さらに、チャネル設定パターン提示装置150は、スコアが最高のチャネル設定パターンの中で、同一チャネル連続時間が最長のものを抽出し、提示対象として選択する。そして処理はステップS308に移行する。
 ステップS315では、チャネル設定パターン提示装置150が、チャネル設定パターンテーブル207に含まれるt個のチャネル設定パターンの中から、スコアが最高のチャネル設定パターンを抽出する。さらに、チャネル設定パターン提示装置150は、スコアが最高のチャネル設定パターンの中で、同一チャネル総時間が最長のものを抽出し、提示対象として選択する。そして処理はステップS308に移行する。
 なお、ステップS312で選択可能な基準は、実施形態によって任意であってよく、ローカルTV送信機110によるコンテンツ配信サービスを行う事業者や乗客の好みに応じて、適宜定めることができる。例えば、チャネル変更回数と同一チャネル連続時間と同一チャネル総時間のうち2つ以上を組み合わせた基準によってチャネル設定パターン提示装置150が提示対象のチャネル設定パターンを選択してもよい。
 また、上記のようにステップS311で先に(a)~(c)すべての算出を行ってからステップS312で基準を選択する代わりに、先に基準を選択して、選択された基準に関する計算のみをチャネル設定パターン提示装置150が行ってもよい。
 また、ステップS313~S315における抽出は、実施形態によって様々であってよい。
 例えば、ステップS313~S315においてチャネル設定パターン提示装置150は、上記のようにスコアが最高のチャネル設定パターンを最初に抽出する代わりに、スコアが閾値T以上であるチャネル設定パターンを抽出してもよい。閾値Tは、ステップS301で選択された経路の長さ(すなわち経路を規定する地点IDの数N)に応じて予め決められていてもよい。例えば、「普通」を表すクリアレベルが「2」なので、T=2Nでもよいし、T=2.5Nなどと決められていてもよい。
 または、ステップS313~S315においてチャネル設定パターン提示装置150は、生成されたt個のチャネル設定パターンにおけるスコアの分布に基づいて、スコアが上位T%に入るチャネル設定パターンをまず抽出してもよい。上記Tの値は、予め決められていてもよいし、操作者などからの入力により指定されてもよい。
 また、例えばステップS313において、チャネル設定パターン提示装置150は、スコアが最高のチャネル設定パターンの中で、チャネル変更回数が少ない方からT%に入るチャネル設定パターンを抽出してもよい。上記Tの値は、予め決められていてもよいし、操作者等からの入力により指定されてもよい。
 同様に、ステップS314やS315においても、必ずしも、同一チャネル連続時間または同一チャネル総時間が最長のチャネル設定パターンのみに限定した抽出が行われる必要はない。チャネル設定パターン提示装置150は、相対的に同一チャネル連続時間または同一チャネル総時間が長い複数のチャネル設定パターンを抽出してもよい。
 このように、ステップS312~S315は様々に変形可能である。しかし、生成された各チャネル設定パターンで互いに対応付けられている地点IDとチャネルIDの各組に対応するクリアレベルと、許容レベルを示す「2」という閾値に基づいて各チャネル設定パターンが評価されるという点はいずれも共通である。
 つまり、チャネル設定パターンが、クリアレベルタプルにおける「2」という閾値以上のクリアレベルの分布を表す指標により評価される点は、上記で例示した様々な変形において共通である。なお、クリアレベルの分布は、例えば、チャネル変更回数、同一チャネル連続時間、同一チャネル総時間、同一チャネル連続距離または同一チャネル総距離により表すことができる。なお、チャネル変更回数、同一チャネル連続時間および同一チャネル連続距離は、チャネル設定パターンを示す式(2)のNタプルにおいて「2」以上のクリアレベルと対応する同一のチャネルIDが連続する度合いという観点から分布を示す指標である。
 続いて、図11の処理により提示されたチャネル設定パターンの表示例について説明する。
 例えば、チャネル設定パターン提示装置150は、図11のステップS308において、選択された1つ以上のチャネル設定パターンを、ローカルTV送信機110に転送するだけでなく、さらにディスプレイ(例えば図4の出力装置166)に表示してもよい。あるいは、チャネル設定パターン提示装置150からチャネル設定パターンの情報を受信したローカルTV送信機110は、図2のディスプレイ125にチャネル設定パターンを表示してもよい。また、ローカルTV送信機110がチャネル設定パターン提示装置150を兼ねる場合、図11のステップS308において図2のディスプレイ125が、選択された1つまたは複数のチャネル設定パターンを表示してもよい。
 図15Aは、第1の表示例を示す図である。図15Aは、図11のステップS303で図13Aの空きチャネル情報テーブル206aが得られた場合の表示例である。
 図13Aに示すとおり、空きチャネル情報テーブル206aにおいて全地点にわたり連続する空きチャネルはチャネル14の1つのみである。よって、地点ID「P1」、「P2」、「P7」および「P8」のそれぞれにチャネルID「14」を対応付けるチャネル設定パターンが、図11のステップS306で選択される。選択されたチャネル設定パターンは、例えば図15Aの表示例208aのように表示される。すなわち、「14」というチャンネルIDの横に、4つの地点IDにそれぞれ対応付けられた4つのクリアレベル「2」、「2」、「3」および「3」が表示される。つまり、表示例208aは、図13Aの空きチャネル情報テーブル206aにおけるチャネルID「14」の行の抜粋である。
 図15Bは、第2の表示例を示す図である。図15Bは、図11のステップS303で図13Bの空きチャネル情報テーブル206bが得られ、ステップS309~S311で図14のチャネル設定パターンテーブル207が得られ、ステップS312でチャネル変更回数が選択された場合の表示例である。
 この場合、ステップS301で選択された経路R1=(P1,P2,P7,P8)は4つの地点IDを含み、クリアレベルの最高値は3なので、スコアは理論上、最高でも12(=3×4)である。そしてスコアが実際に12となるのは、図13Bより、次の6つのチャネル設定パターンである。
   PAT01=(13,13,14,13)
   PAT02=(13,13,14,16)
   PAT03=(13,14,14,13)
   PAT04=(13,14,14,16)
   PAT05=(13,16,14,13)
   PAT06=(13,16,14,16)
 また、チャネル設定パターンPAT01~PAT04は、いずれも、チャネル変更回数が2回である。他方、チャネル設定パターンPAT05~PAT06は、いずれも、チャネル変更回数が3回である。したがって、ステップS313ではチャネル設定パターンPAT01~PAT04が選択される。
 図15Bの表示例208bはテーブル形式であり、各行が1つのチャネル設定パターンに対応する。選択されたチャネル設定パターンPAT01~PAT04に対応して、表示例208bには4行が表示されている。
 また、表示例208bの1列目にはチャネル設定パターンを識別するパターンIDが表示され、2~5列目には「P1」、「P2」、「P7」および「P8」という4つの地点IDにそれぞれ対応付けられたチャネルIDが表示される。チャネルが変更される箇所を強調するため、表示例208bでは、チャネルIDに応じてセルの背景が異なる。また、テーブルの枠の外の右側には、各行が表すチャネル設定パターンにおけるチャネル変更回数が「2回」と表示されている。
 図15Cは、第3の表示例を示す図である。図15Cは、図11のステップS303で図13Bの空きチャネル情報テーブル206bが得られ、ステップS309~S311で図14のチャネル設定パターンテーブル207が得られ、ステップS312で同一チャネル連続時間が選択された場合の表示例である。
 図15Bに関して説明したとおり、図14の256個のチャネル設定パターンのうちでスコアが最高なのは、チャネル設定パターンPAT01~PAT06の6つである。また、同一チャネル連続時間の定義より、チャネル設定パターンPAT01、PAT02、PAT05およびPAT06の同一チャネル連続時間はいずれも75秒である。他方、チャネル設定パターンPAT03とPAT04の同一チャネル連続時間はいずれも115(=40+75)秒である。
 したがって、図11のステップS314では、スコアが最高の6つのチャネル設定パターンの中から、同一チャネル連続時間が最長の2つのチャネル設定パターンPAT03とPAT04が選択される。
 図15Cの表示例208cもテーブル形式であり、各行が1つのチャネル設定パターンに対応する。表示例208cには、選択されたチャネル設定パターンPAT03とPAT04に対応する2行が表示されている。また、表示例208cの1列目にはチャネル設定パターンを識別するパターンIDが表示され、2~5列目には「P1」、「P2」、「P7」および「P8」という4つの地点IDにそれぞれ対応付けられたチャネルIDが、各チャネルIDに固有の背景とともに表示される。なお、テーブルの枠の外の右側には、各行が表すチャネル設定パターンにおける同一チャネル連続時間が表示されている。
 図15Dは、第4の表示例を示す図である。図15Dは、図11のステップS303で図13Bの空きチャネル情報テーブル206bが得られ、ステップS309~S311で図14のチャネル設定パターンテーブル207が得られ、ステップS312で同一チャネル総時間が選択された場合の表示例である。また、図15Dは、その後のステップS315の処理が上記の例示と異なる場合の表示例でもある。
 具体的には、チャネル設定パターン提示装置150は、ステップS315の処理の代わりに、次の処理を行ってもよい。すなわち、チャネル設定パターン提示装置150は、256個のチャネル設定パターンの中から、スコアが閾値(例えば2N=8)以上のチャネル設定パターンを抽出してもよい。そして、チャネル設定パターン提示装置150は、抽出したチャネル設定パターンの中で同一チャネル総時間が閾値(例えば110秒)以上のものを提示対象として選択してもよい。ここで、「*」がドントケア(don't care)を表すものとすると、下記の2種類のチャネル設定パターンが選択される。
   ・同一チャネル総時間が125(=25+40+60)秒となる(13,13,*,13)というチャネル設定パターン
   ・同一チャネル総時間が115(=40+75)秒となる(*,14,14,*)というチャネル設定パターン
 図15Dの表示例208dもテーブル形式であり、各行が1つのチャネル設定パターンに対応する。なお、表示例208dでは、同一チャネル総時間をソートキーとしてソートされた順に行が並んでいる。また、紙面の都合上、スコアが8以上の(*,14,14,*)という16個のチャネル設定パターンについては、1つのみを図示し、残りは省略してある。
 図15Dにおいても、1列目にはチャネル設定パターンを識別するパターンIDが表示され、2~5列目には「P1」、「P2」、「P7」および「P8」という4つの地点IDにそれぞれ対応付けられたチャネルIDが、各チャネルIDに固有の背景とともに表示される。また、テーブルの枠の外の右側には、各行が表すチャネル設定パターンにおける同一チャネル総時間が表示されている。
 ところで、図1~図15Dを参照して上記のとおり説明した第1実施形態は、地点IDとチャネルIDを組み合わせる組み合わせ最適化問題という側面を持つ。組み合わせ最適化問題の側面から検討すると、図11のアルゴリズムは、ステップS304で自明な好ましい解の有無を判断し、自明な好ましい解が見つからなければ、ステップS309以降で力任せ探索(brute-force search)を行うというアルゴリズムである。
 力任せ探索は、網羅的探索(exhaustive search)とも呼ばれ、解が存在する場合は必ず最適解が得られる。つまり、図11の処理によれば、すべての可能なチャネル設定パターンの中で最適な1つまたは複数のチャネル設定パターンが提示されることが保証される。しかし、力任せ探索では、問題の大きさによっては組み合わせ爆発が生じる。すなわち、場合によっては、式(7)により表されるチャネル設定パターンの総数tが莫大になり、実用的な時間では図11の処理が終了しない可能性がある。
 そこで、チャネル設定パターンの総数tが莫大になる可能性がある場合には、ヒューリスティック探索(heuristic search)によって適切なチャネル設定パターンを得てもよい。チャネル設定パターン提示装置150は、ヒューリスティック探索を行うことで、可能なチャネル設定パターンの総数tが莫大になる場合でも、実用的な時間で、ある程度は適切なチャネル設定パターンを提示することができる。
 ヒューリスティック探索には様々な種類があるが、以下では、一例として、貪欲法(greedy algorithm)を利用した第2実施形態について図16~図17を参照しながら説明する。なお、放送システム100の構成および空きチャネルサーチ処理に関しては、第2実施形態は第1実施形態と共通であるので、説明を省略する。
 図16は、第2実施形態におけるパターン決定処理のフローチャートである。第2実施形態では、チャネル設定パターン提示装置150が、第1実施形態における図11の処理の代わりに図16の処理を実行することで、バス内でのローカル放送に適したチャネル設定パターンを生成する。そして、チャネル設定パターン提示装置150は、生成したチャネル設定パターンを提示する。提示の具体的方法は、第1実施形態と同様に様々である。
 図16に示すように、チャネル設定パターン提示装置150は、ステップS401で経路IDの入力を受け取り、ステップS402で経路IDを元に経路情報テーブルと空きチャネル情報テーブルを展開する。ステップS401およびS402の詳細は、図11のステップS301~S303と同様なので、説明を省略する。
 続いてステップS403でチャネル設定パターン提示装置150は、ステップS401で指定された経路の開始点を「注目点」として設定する。
 例えば、ステップS401で「1」という経路IDが入力され、ステップS402で図12の経路情報テーブル205と図13Bの空きチャネル情報テーブル206bが展開されたとする。この場合、「1」という経路IDで識別される経路R1=(P1,P2,P7,P8)の開始点は地点P1である。よって、ステップS403でチャネル設定パターン提示装置150は、地点P1を注目点として設定する。
 そして、ステップS404でチャネル設定パターン提示装置150は、展開された空きチャネル情報テーブル206bにおける各チャネルについて、注目点からの「みなし連続空き区間」の長さを調べる。みなし連続空き区間は、実施形態により、時間により規定される区間であってもよく、距離により規定される区間であってもよい。第2実施形態では、みなし連続空き区間が時間により定義されるものとして説明する。
 図17は第2実施形態で定義される「みなし連続空き区間」について説明する図である。図17において、縦軸はクリアレベルであり、横軸は時間である。第1実施形態と同様に第2実施形態でも「2」以上のクリアレベルのチャネルが空きチャネルと見なされる。すなわち、クリアレベルは、ローカル放送に用いることができる利用可能性を示すレベルであり、「2」という値は、ローカル放送に用いるための許容レベルを示す閾値である。
 図17において、クリアレベルは、時刻A‐B間で2未満、時刻B‐C間で2以上、時刻C‐D間で2未満、時刻D‐E間で2以上、時刻E‐F間で2未満、時刻F‐G間で2以上、時刻G‐H間で2未満である。また、時刻A~Hのそれぞれは、指定された経路を表す式(1)のNタプル(p,p,……,p)において隣接する2つの地点ID・pとpj+1がそれぞれ代表するエリア同士の境界をバスが通過する予定の時刻に相当する。図17ではエリア同士の境界を縦方向の点線で表している。
 例えば、図17では、時刻A‐B間の長さは、経路上で隣接しており「1」というクリアレベルと対応する2つの地点IDがそれぞれ代表する2つのエリアを、バスが通過するのにかかる時間の長さに相当する。すなわち、時刻A‐B間の長さは、当該2つの地点IDにそれぞれ対応する受信影響時間の和である。
 また、時刻B‐C間の長さは、経路上で連続する5個の地点IDがそれぞれ代表する5つのエリアをバスが通過するのにかかる時間の長さに相当する。当該5個の地点IDに対応するクリアレベルは、図17に示すように、順に「2」、「3」、「2」、「3」および「2」である。時刻B‐C間の長さは、当該5つの地点IDにそれぞれ対応する受信影響時間の和である。
 そして、時刻C‐D間の長さは、「1」というクリアレベルと対応する1つの地点IDが代表するエリアをバスが通過するのにかかる時間の長さに相当し、すなわち、当該1つの地点IDに対応する受信影響時間の長さに相当する。
 同様に、時刻D‐E間、時刻E‐F間および時刻F‐G間それぞれの長さも、1つの地点IDに対応する受信影響時間の長さに相当する。また、図17に示すように、時刻G‐H間の長さは、3つの地点IDにそれぞれ対応する受信影響時間の和である。
 「みなし連続空き区間」は、あるチャネルが連続して空きチャネルであると見なすことが可能な区間である。すなわち、みなし連続空き区間は、クリアレベルが閾値T以下の短い時間だけ「2」未満に落ち込む場合については、「2」以上のクリアレベルが連続していると見なすという想定のもとで、「2」以上のクリアレベルが連続する区間である。
 閾値Tの値は、例えば、一時的に受信品質が落ちても乗客が不愉快にならない程度の時間の長さを表す。閾値Tの値は、予備実験などに基づいて適切に定められているものとする。
 図17の例では、時刻A‐B間の長さと時刻G‐H間の長さは閾値Tより長く、時刻C‐D間の長さと時刻E‐F間の長さは閾値T以下である。したがって、時刻B‐C間に対応する5つのエリアのうちで1番目のエリアを代表する地点が注目点である場合、みなし連続空き区間は時刻B‐G間の区間である。
 また、以上の定義から、例えば、時刻A‐B間に対応する2つのエリアのうち前の方のエリアを代表する地点が注目点である場合は、みなし連続空き区間の長さは0である。また、時刻D‐E間に対応するエリアを代表する地点が注目点である場合は、みなし連続空き区間の長さは、時刻D‐G間の長さである。
 ここで図16の説明に戻ると、ステップS404でチャネル設定パターン提示装置150は、上記のとおり、空きチャネル情報テーブル206bにおける各チャネルについて、注目点からのみなし連続空き区間の長さを調べる。つまり、チャネル設定パターン提示装置150は、各チャネルについて、注目点により代表されるエリアに対応して始まるみなし連続空き区間の長さを調べる。
 続いてステップS405でチャネル設定パターン提示装置150は、ステップS404で調べたみなし連続空き区間が最長のチャネルを選択する。
 そして、ステップS406でチャネル設定パターン提示装置150は、みなし連続空き区間内(両端を含む)の各点の地点IDに、選択したチャネルを対応付けて、チャネル設定パターンを成長させる。
 式(2)に示すように、N個の地点IDにより規定される経路Rに関するチャネル設定パターンPATは、チャネルIDのNタプルで表される。図16の処理は、N個のチャネルIDを前から順に決定していく処理である。
 現在、チャネル設定パターンPATを表すNタプルにおいて第j要素(0≦j≦N-1)までが決定されているとする。ステップS406が1回目に実行されるときはj=0である。また、ステップS405で「最長」と判定されたみなし連続空き区間の長さは、k個(1≦k≦N)の地点IDに対応する受信影響時間の和であるとする。そして、ステップS405で選択されたチャネルIDをcselとする。
 このとき、ステップS406の処理は、チャネル設定パターンPATを表すNタプルの第(j+1)要素から第(j+k)要素までを、cselと決定する処理である。その結果、チャネル設定パターンPATは、第j要素までしか決定されていない状態から、第(j+k)要素まで決定された状態へと成長する。
 そして、ステップS407でチャネル設定パターン提示装置150は、ステップS406による成長が、終了点への到着と見なすことのできる範囲に到達しているか否かを判断する。つまり、チャネル設定パターン提示装置150は、経路の始点から、経路の終点または終点の近傍と見なせる地点までの範囲で、ローカル放送に用いるチャネルが決定済みか否かを判断する。
 例えば、チャネル設定パターン提示装置150は、閾値Te1(1<Te1≦N)を用いて、「Te1≦(j+k)ならば、ステップS406による成長は、終了点への到着と見なすことのできる範囲に到達している」と判断してもよい。例えば、Te1=N-1などと決められていてもよい。
 あるいは、チャネル設定パターン提示装置150は、閾値Te2を用いて、「ステップS401で指定された経路R=(p,p,……,p)上の、1番目の地点ID・pから(j+k)番目の地点ID・pj+kまでの各々に対応する受信影響時間の和がTe2以上ならば、ステップS406による成長は、終了点への到着と見なすことのできる範囲に到達している」と判断してもよい。例えば、閾値Te2は、N個の地点IDの各々に対応する受信影響時間の総和に0.9を掛けた値などでもよい(ここで「0.9」という値は単なる例示である)。
 「ステップS406による成長が、終了点への到着と見なすことのできる範囲に到達している」と判断されると、図16の処理は終了する。なお、この場合、チャネル設定パターン提示装置150は、チャネル設定パターンPATの第(j+k+1)要素から第N要素までのそれぞれに任意のチャネルID(例えばcsel)を対応付けて、チャネル設定パターンPATを完成させることができる。
 逆に、「ステップS406による成長が、終了点への到着と見なすことのできる範囲に到達していない」と判断されると、処理はステップS408に移行する。
 ステップS408でチャネル設定パターン提示装置150は、ステップS405で選択したチャネルでみなし連続空き区間が終了する地点の次の地点を、新たな注目点として設定する。すなわち、チャネル設定パターン提示装置150は、ステップS401で指定された経路R=(p,p,……,p)上の(j+k+1)番目の地点ID・pj+k+1により表される地点を、新たな注目点として設定する。そして、処理はステップS404に戻る。
 以上説明した図16の処理によれば、ステップS402で例えば図13Bの空きチャネル情報テーブル206bが得られたとすると、まずステップS403で地点P1が注目点として設定される。そして、閾値Tが例えば15秒だとすると、チャネル13とチャネル15でのみなし連続空き区間がともに最長(つまり、25+40=65秒)である。よって、チャネル設定パターン提示装置150は、例えばクリアレベルの高い方のチャネル13をステップS405で選択する。その結果、ステップS406でチャネル設定パターンの第1要素と第2要素が「13」というチャネルIDに決定される。
 そして、ステップS408で3番目の地点P7が新たな注目点として設定され、ステップS405でチャネル14が選択される。その結果、ステップS406で、チャネル設定パターンの第3要素が「14」というチャネルIDに決定される。
 そして、ステップS408で4番目の地点P8が新たな注目点として設定される。ステップS405では、チャネル13とチャネル16のみなし連続空き区間がともに最長(60秒)であり、チャネル13とチャネル16のクリアレベルも等しい。そこで、チャネル設定パターン提示装置150は、例えば、同一チャネル総時間が長くなる方の「13」というチャネルIDを選択する。
 その結果、ステップS406で、チャネル設定パターンの第4要素が「13」というチャネルIDに決定される。つまりチャネル設定パターンは(13,13,14,13)と成長し、図14などに示したチャネル設定パターンPAT01が得られる。すると、ステップS407では「ステップS406による成長が、終了点への到着と見なすことのできる範囲に到達している」と判断され、図16の処理が終了する。
 以上のように、第2実施形態によれば、最適のチャネル設定パターンが得られる保証はないが、チャネル設定パターン提示装置150は、組み合わせ爆発を起こすことなく、比較的適切なチャネル設定パターンを提示することができる。したがって、第2実施形態は、エリアの粒度が細かかったり経路が長かったりするために経路を規定する地点IDの数Nが大きい場合や、各地点でのサーチ対象のチャネル数m(1≦j≦N)が大きい場合に好適である。
 なお、図16の例では、チャネル設定パターン提示装置150は、チャネル設定パターンを経路の開始点から終了点に向かってインクリメンタル(incremental)に成長させている。しかし、実施形態によっては、チャネル設定パターン提示装置150は、チャネル設定パターンを経路の終了点から開始点に向かってインクリメンタルに成長させてもよい。
 あるいは、チャネル設定パターン提示装置150は、経路の中心付近の地点を最初の注目点としてが選択してもよい。そして、チャネル設定パターン提示装置150は、開始点へ向かってチャネル設定パターンを成長させるとともに、終了点へ向かってチャネル設定パターンを成長させてもよい。
 例えば、図13Bの例において、最初に経路の中心付近の地点P7が注目点として選択されてもよい。すると、開始点へ向かってチャネル設定パターンを成長させる処理によって「14」というチャネルIDが地点P7と地点P2に対応付けられ、「13」というチャネルIDが地点P1に対応付けられる。また、終了点へ向かってチャネル設定パターンを成長させる処理によって、例えば「13」というチャネルIDが地点P8に対応付けられる。その結果、図15Cなどに示したチャネル設定パターンPAT03=(13,14,14,13)が得られ、提示される。
 このように、第2実施形態では、N個の地点のうち経路上で連続した一部の地点(例えば開始点から始まる一部、終了点から始まる一部、あるいは中央付近の一部)を通る部分経路に対応する1つ以上の地点IDにチャネルIDが対応付けられる。そして、チャネル設定パターン提示装置150は、部分経路に対応する1つ以上の地点IDにそれぞれチャネルIDを対応付けるパターンをインクリメンタルに成長させることで、最終的な提示対象であるチャネル設定パターンを生成する。
 また、第2実施形態によれば、ステップS403とステップS408に示すように、既に地点IDとチャネルIDの対応付けが済んでいる部分経路に隣接する地点が注目点として設定される。そして、ステップS404のように、注目点から始まる1つ以上の地点それぞれにおける同じ1つのチャネルのクリアレベルが所定の基準を満たす区間の長さが、複数のチャネル間で比較される。「所定の基準」は、具体的には、例えば、みなし連続空き区間を規定する基準である。
 また、第2実施形態では、ヒューリスティック探索の一例として貪欲法が利用されているが、チャネル設定パターン提示装置150は、他のヒューリスティック探索アルゴリズムを利用して、1つまたは複数のチャネル設定パターンを生成してもよい。チャネル設定パターン提示装置150は、生成した1つまたは複数のチャネル設定パターンを提示することができる。
 例えば、チャネル設定パターン提示装置150は、予め決められた上限値Uにしたがって、ステップS405において、みなし連続空き区間がゼロでないチャネルの中から上位U個(U>1)のチャンネルを選択してもよい。つまり、みなし連続空き区間が相対的に長い、最大でU個のチャネルが選択されてもよい。
 そして、チャネル設定パターン提示装置150はステップS406で、成長途中の1つまたは複数のチャネル設定パターンのそれぞれについて、最大でU通りの成長をさせてもよい。また、チャネル設定パターン提示装置150は、ステップS406で成長させた複数のチャネル設定パターンを、クリアレベルやチャネルIDの分布などに基づいて絞り込んでもよい。
 なお、上記の第1実施形態と第2実施形態の共通点について説明すると次のとおりである。
 どちらの実施形態においても、チャネル設定パターン提示装置150は、記憶装置151の空きチャネル計測情報テーブル201を参照して、潜在的に可能な複数のチャネル設定パターンを絞り込み、絞り込みの結果を提示している。
 つまり、第1実施形態は、潜在的に可能なすべてのチャネル設定パターンを生成する処理(図11のステップS309)と、生成したチャネル設定パターンの各々を評価して評価の結果に基づいて選択する処理(ステップS310~S315)を含む。他方、第2実施形態における図16のステップS405は、探索における枝刈り(pruning)であり、潜在的に可能な複数のチャネル設定パターンを絞り込む処理である。よって、第2実施形態においてはインクリメンタルな成長により実際に生成されるチャネル設定パターンは1つだけかもしれないが、潜在的に可能な複数のチャネル設定パターンを絞り込むという意味では、2つの実施形態は共通である。
 また、絞り込みが、N個の地点IDのうち少なくとも一部に対応付けられるチャネルIDを、各地点IDが表す各地点の経路上での順序にしたがって並べたチャネルIDのタプルにおけるチャネルIDの分布と、クリアレベルとに基づくという点も共通点である。
 すなわち、第1実施形態では、式(2)のNタプルにおけるチャネルIDの分布が、チャネル変更回数、同一チャネル連続時間または同一チャネル総時間といった指標により表される。そして、各チャネル設定パターンは、これらの指標と、クリアレベルの総和であるスコアによって評価される。
 また、第2実施形態におけるみなし連続空き区間は、注目点から始まる1つ以上の連続した地点ID(すなわちN個の地点IDのうち少なくとも一部)と1つの同一のチャネルIDとの対応付けを評価する指標でもある。つまり、みなし連続空き区間の長さによって、同一のチャネルIDの連続という、特定の種類の分布についての評価が行われる。また、みなし連続空き区間はクリアレベルにより定義される。よって、第2実施形態においても、N個の地点IDのうち少なくとも一部に対応付けられるチャネルIDの分布とクリアレベルに基づいて、絞り込みが行われている。
 なお、本発明は上記の実施形態に限られるものではなく、様々に変形して実施することが可能である。
 例えば、上記の実施形態では説明の便宜上、各種の情報がテーブル形式で表現されているが、テーブル形式以外のデータ形式が採用されてもよい。また、上記の実施形態は微弱電波によるワンセグ放送に関する実施形態であるが、複数のチャネルが利用可能な他の放送方式に関しても、同様にチャネル設定パターン提示装置150がチャネル設定パターンを提示することができる。
 また、空きチャネルとしての利用可能性を示す値として、上記に例示したクリアレベルの代わりに、例えば受信電波強度が用いられてもよい。
 さらに、チャネル設定パターンの評価は、上記で例示したスコア、チャネル変更回数、同一チャネル連続時間および同一チャネル総時間の一部または全部により行われてもよいし、その他の基準が利用されてもよい。様々な評価基準の組み合わせ方も実施形態により任意である。
 例えば、上記実施形態におけるチャネルIDは物理チャネルを識別する識別子である。しかし、TV付き携帯端末140の利用者は、物理チャネルのチャネルIDではなく、「リモコン番号」と呼ばれる別の識別子を用いてチャネルを選択することが一般的である。
 そこで、例えば、記憶装置151がチャネルIDとリモコン番号の対応テーブルを記憶してもよい。そして、チャネル設定パターン提示装置150は、チャネル設定パターン内でチャネルが切り替わる各箇所でのリモコン番号の差の絶対値の総和を計算し、計算した総和を当該チャネル設定パターンの評価に用いてもよい。
 また、第1実施形態における同一チャネル連続時間は、第2実施形態と同様のみなし連続空き区間に置き換えられてもよい。逆に、第2実施形態において、みなし連続空き区間の代わりに同一チャネル連続時間が用いられてもよい(つまり、閾値T=0でもよい)。
 もちろん、みなし連続空き区間は、上記第2実施形態のように受信影響時間に基づいて定義されて算出されてもよいし、受信影響距離に基づいて定義されて算出されてもよい。また、チャネル設定パターン提示装置150は、クリアレベルが許容レベル以下に一時的に落ち込む区間の長さだけでなく、クリアレベルが許容レベル以下に一時的に落ち込む頻度にも基づいて、みなし連続空き区間の長さを判断してもよい。
 ところで、上記の実施形態では、バスや電車などの、予め決められた経路を予め決められた時刻表にしたがって走行する乗り物における放送のためのチャネル設定パターンが提示される。しかし、タクシーや自家用車など、任意の経路を任意の時刻に走行する可能性のある乗り物に関する実施形態も可能である。
 例えば、タクシーに、チャネル設定パターン提示装置150を兼ねるローカルTV送信機110と、カーナビゲーションシステムとが積載されているとする。カーナビゲーションシステムは、例えば運転手から目的地の入力を受け付け、経路を設定することができる。例えば、経路は、交差点の位置を示す地点IDのタプルとして定義されていてもよい。
 設定された経路に沿ってタクシーが走行する間、経路上の複数の地点(例えば経路上の各交差点)に関してローカルTV送信機110が図9と類似の処理を行うことにより、図5の空きチャネル計測情報テーブル201には空きチャネル計測情報が蓄積される。
 多数のタクシーにおいて上記の処理が行われれば、データスパースネス(data sparseness)問題を無視することができる程度に、十分な数の地点について様々な計測時刻における空きチャネル計測情報が蓄積されると期待される。カーナビゲーションシステムは、例えば運転手から入力される目的地に基づいて経路を設定し、設定した経路をチャネル設定パターン提示装置150に指示してもよい。チャネル設定パターン提示装置150は、指示された経路に基づいてチャネル設定パターンを提示し、ローカルTV送信機110は、提示されたチャネル設定パターンにしたがってローカル放送を行ってもよい。
 また、高速道路に進入する任意の車両は、高速道路という特定の経路に沿って走行することが明らかである。そして、ローカルTV送信機110を積載する車両が高速道路を走るのと同時に、当該車両に積載されたローカルTV送信機110が図9の処理を行うことで、高速道路沿いの複数の地点に関する空きチャネル計測情報が、空きチャネル計測情報テーブル201に蓄積される。
 すると、チャネル設定パターン提示装置150は、蓄積された空きチャネル計測情報を参照することにより、当該高速道路を走行する車両内でのローカル放送に適したチャネル設定パターンを提示することができる。よって、高速道路上では、任意の車両に積載されるローカルTV送信機110が、提示されたチャネル設定パターンにしたがって良好な受信品質を保ちながらローカル放送を行うことができる。

Claims (10)

  1.  コンピュータに、
     乗り物が移動する経路上の複数の地点を識別する地点識別子と、放送電波の複数のチャネルを識別するチャネル識別子に対応付けて、前記複数の地点それぞれにおける前記複数のチャネルそれぞれの利用可能性レベルを記憶する記憶手段を参照する参照ステップと、
     各々が、前記複数の地点を表す複数の前記地点識別子にそれぞれ前記チャネル識別子を対応付ける組み合わせパターンである、潜在的に可能な複数のチャネル設定パターンを絞り込むステップであって、前記複数の地点識別子の少なくとも一部にそれぞれ対応付けられる前記チャネル識別子を、各地点識別子が表す各地点の前記経路における順序にしたがって並べたチャネル識別子タプルにおける1つ以上の前記チャネル識別子の分布と、前記参照ステップにより読み出される前記利用可能性レベルとに基づく絞り込みを実行する絞り込みステップと、
     前記絞り込みステップの結果得られた1つ以上のチャネル設定パターンを提示する提示ステップと、
     実行させることを特徴とするチャネル設定パターン提示プログラム。
  2.  前記絞り込みステップが、前記複数の地点それぞれの前記地点識別子に同じ第1のチャネル識別子を対応付ける第1のチャネル設定パターンと、前記複数の地点それぞれの前記地点識別子に同じ第2のチャネル識別子を対応付ける第2のチャネル設定パターンとを評価する第1の評価ステップを含む
     ことを特徴とする請求項1に記載のチャネル設定パターン提示プログラム。
  3.  前記絞り込みステップが、
     前記複数のチャネル設定パターンを生成する第1の生成ステップと、
     前記第1の生成ステップによって生成された前記複数のチャネル設定パターンの各々を、当該チャネル設定パターンで互いに対応付けられている前記地点識別子と前記チャネル識別子の各組に対応して前記記憶手段に記憶されている各利用可能性レベルと、許容レベルを示す第1の閾値とに基づいて評価する第2の評価ステップと、
     生成された前記複数のチャネル設定パターンの一部を、前記第2の評価ステップの結果に基づいて選択する選択ステップと、
     を含むことを特徴とする請求項1または2に記載のチャネル設定パターン提示プログラム。
  4.  前記第2の評価ステップにおいて、評価対象のチャネル設定パターンは、当該チャネル設定パターンで互いに対応付けられている前記地点識別子と前記チャネル識別子の各組に対応して前記記憶手段に記憶されている各利用可能性レベルを、対応する前記複数の地点の前記経路上での順序にしたがって並べた利用可能性レベルタプルにおける、前記第1の閾値以上の利用可能性レベルの分布に基づいて評価される
     ことを特徴とする請求項3に記載のチャネル設定パターン提示プログラム。
  5.  前記第2の評価ステップにおいて、評価対象のチャネル設定パターンは、前記第1の閾値以上の前記利用可能性レベルと対応する同じチャネル識別子が、当該チャネル設定パターンに対応する前記チャネル識別子タプルにおいて連続する度合いを示す、同一チャネル連続度が高いほど、高く評価される、
     ことを特徴とする請求項3または4に記載のチャネル設定パターン提示プログラム。
  6.  前記同一チャネル連続度は、対応する前記利用可能性レベルが前記第1の閾値以上であるという条件下で前記チャネル識別子タプルにおいて隣接する2つの前記チャネル識別子が異なっている箇所の個数、または、前記チャネル識別子タプルにおいて前記条件下で同じチャネル識別子が連続する区間の長さに基づいて定義される、
     ことを特徴とする請求項5に記載のチャネル設定パターン提示プログラム。
  7.  前記同一チャネル連続度は、前記区間の前記長さに加えてさらに、前記チャネル識別子タプルにおいて、前記第1の閾値以上の前記利用可能性レベルに対応する2つの同じチャネル識別子の間に、前記第1の閾値未満の前記利用可能性レベルに対応する前記同じチャネル識別子または別のチャネル識別子が挟まっている部分区間の長さにも基づいて定義される、
     ことを特徴とする請求項6に記載のチャネル設定パターン提示プログラム。
  8.  前記第2の評価ステップにおいて、評価対象の前記チャネル設定パターンは、
     当該チャネル設定パターンにおいて1つの同じチャネル識別子と対応付けられているとともに前記第1の閾値以上の前記利用可能性レベルと対応する、1つ以上の前記地点識別子により識別される1つ以上の地点が、それぞれ代表する1つ以上のエリアを、前記乗り物が通過するのにかかる時間の合計、または前記1つ以上のエリアで前記乗り物が走行する距離の合計が長いほど高く評価される、
     ことを特徴とする請求項3から7のいずれか1項に記載のチャネル設定パターン提示プログラム。
  9.  前記コンピュータが前記乗り物に積載されて前記経路上を移動するとき、前記コンピュータにさらに、
     前記複数の地点のそれぞれにおいて前記複数のチャネルでそれぞれ前記放送電波を受信して前記利用可能性レベルを計測する計測ステップと、
     計測した前記利用可能性レベルを、計測対象の当該地点の前記地点識別子と前記計測対象の当該チャネルの前記チャネル識別子に対応付けて前記記憶手段に書き込むための書き込みステップと、
     を実行させることを特徴とする請求項1から8のいずれか1項に記載のチャネル設定パターン提示プログラム。
  10.  乗り物が移動する経路上の複数の地点を識別する地点識別子と、放送電波の複数のチャネルを識別するチャネル識別子に対応付けて、前記複数の地点それぞれにおける前記複数のチャネルそれぞれの利用可能性レベルを記憶する記憶手段と、
     各々が、前記複数の地点を表す複数の前記地点識別子にそれぞれ前記チャネル識別子を対応付ける組み合わせパターンである、潜在的に可能な複数のチャネル設定パターンを絞り込む絞り込み手段と、
     前記絞り込み手段による絞り込みの結果得られた1つ以上のチャネル設定パターンを提示する提示手段とを備え、
     前記絞り込み手段は、前記複数の地点識別子の少なくとも一部にそれぞれ対応付けられる前記チャネル識別子を、各地点識別子が表す各地点の前記経路における順序にしたがって並べたチャネル識別子タプルにおける1つ以上の前記チャネル識別子の分布と、前記記憶手段に記憶されている前記利用可能性レベルとに基づいて絞り込みを実行する、
     ことを特徴とするチャネル設定パターン提示装置。
PCT/JP2009/001339 2009-03-25 2009-03-25 チャネル設定パターン提示プログラムおよびチャネル設定パターン提示装置 WO2010109526A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011505658A JP5003842B2 (ja) 2009-03-25 2009-03-25 チャネル設定パターン提示プログラムおよびチャネル設定パターン提示装置
PCT/JP2009/001339 WO2010109526A1 (ja) 2009-03-25 2009-03-25 チャネル設定パターン提示プログラムおよびチャネル設定パターン提示装置
BRPI0924758A BRPI0924758A2 (pt) 2009-03-25 2009-03-25 programa de apresentação de padrão para atribuição de canal e aparelho de apresentação de padrão para a atribuição de canal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/001339 WO2010109526A1 (ja) 2009-03-25 2009-03-25 チャネル設定パターン提示プログラムおよびチャネル設定パターン提示装置

Publications (1)

Publication Number Publication Date
WO2010109526A1 true WO2010109526A1 (ja) 2010-09-30

Family

ID=42780241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001339 WO2010109526A1 (ja) 2009-03-25 2009-03-25 チャネル設定パターン提示プログラムおよびチャネル設定パターン提示装置

Country Status (3)

Country Link
JP (1) JP5003842B2 (ja)
BR (1) BRPI0924758A2 (ja)
WO (1) WO2010109526A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023614A (ja) * 2010-07-15 2012-02-02 Nippon Television Network Corp 送信装置及び放送方法
JP2012085099A (ja) * 2010-10-12 2012-04-26 Japan Radio Co Ltd エリアワンセグ放送システム
JP2012129703A (ja) * 2010-12-14 2012-07-05 Toshiba Corp 送信機管理プログラムおよび送信機管理装置
WO2014102891A1 (ja) * 2012-12-25 2014-07-03 富士通株式会社 通信システム、通信制御装置、無線通信装置および通信方法
JP2014155026A (ja) * 2013-02-07 2014-08-25 Denso Corp 無線通信装置、および無線通信方法
JP2017085576A (ja) * 2016-11-09 2017-05-18 富士通株式会社 通信システム、無線通信装置および通信方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252815A (ja) * 1992-10-26 1994-09-09 Yagi Antenna Co Ltd 車内映像再送信装置
JP2003250180A (ja) * 2002-02-22 2003-09-05 Sharp Corp 無線ネットワークシステム及び端末装置
JP2004166078A (ja) * 2002-11-14 2004-06-10 Sharp Corp デジタル放送に関連するサービス情報配信システム
JP2005130182A (ja) * 2003-10-23 2005-05-19 Toshiba Corp 鉄道車両用放送サービス提供システム
JP2005252965A (ja) * 2004-03-08 2005-09-15 Sharp Corp デジタル放送受信機、受信チャンネル設定システム、受信チャンネル設定方法及び受信チャンネル設定プログラムを記録した記録媒体
JP2006033173A (ja) * 2004-07-13 2006-02-02 Nippon Hoso Kyokai <Nhk> 地上デジタル放送測定システム
JP2007295341A (ja) * 2006-04-26 2007-11-08 Area Portal Kk 放送方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252815A (ja) * 1992-10-26 1994-09-09 Yagi Antenna Co Ltd 車内映像再送信装置
JP2003250180A (ja) * 2002-02-22 2003-09-05 Sharp Corp 無線ネットワークシステム及び端末装置
JP2004166078A (ja) * 2002-11-14 2004-06-10 Sharp Corp デジタル放送に関連するサービス情報配信システム
JP2005130182A (ja) * 2003-10-23 2005-05-19 Toshiba Corp 鉄道車両用放送サービス提供システム
JP2005252965A (ja) * 2004-03-08 2005-09-15 Sharp Corp デジタル放送受信機、受信チャンネル設定システム、受信チャンネル設定方法及び受信チャンネル設定プログラムを記録した記録媒体
JP2006033173A (ja) * 2004-07-13 2006-02-02 Nippon Hoso Kyokai <Nhk> 地上デジタル放送測定システム
JP2007295341A (ja) * 2006-04-26 2007-11-08 Area Portal Kk 放送方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023614A (ja) * 2010-07-15 2012-02-02 Nippon Television Network Corp 送信装置及び放送方法
JP2012085099A (ja) * 2010-10-12 2012-04-26 Japan Radio Co Ltd エリアワンセグ放送システム
JP2012129703A (ja) * 2010-12-14 2012-07-05 Toshiba Corp 送信機管理プログラムおよび送信機管理装置
WO2014102891A1 (ja) * 2012-12-25 2014-07-03 富士通株式会社 通信システム、通信制御装置、無線通信装置および通信方法
CN104885495A (zh) * 2012-12-25 2015-09-02 富士通株式会社 通信系统、通信控制装置、无线通信装置及通信方法
JPWO2014102891A1 (ja) * 2012-12-25 2017-01-12 富士通株式会社 通信システム、通信制御装置、無線通信装置および通信方法
JP2014155026A (ja) * 2013-02-07 2014-08-25 Denso Corp 無線通信装置、および無線通信方法
JP2017085576A (ja) * 2016-11-09 2017-05-18 富士通株式会社 通信システム、無線通信装置および通信方法

Also Published As

Publication number Publication date
BRPI0924758A2 (pt) 2016-01-26
JPWO2010109526A1 (ja) 2012-09-20
JP5003842B2 (ja) 2012-08-15

Similar Documents

Publication Publication Date Title
US8014792B2 (en) Information receiving terminal and information distributing system
JP4539666B2 (ja) 渋滞状況演算システム
JP5003842B2 (ja) チャネル設定パターン提示プログラムおよびチャネル設定パターン提示装置
US6615130B2 (en) Real time vehicle guidance and traffic forecasting system
US8965670B2 (en) Method and system for automatically selecting and displaying traffic images
US20060195239A1 (en) System for limiting received audio
US20030028312A1 (en) Road traffic information output apparatus
EP0935227A2 (en) Map information providing method and terminal device used therein
TW201330667A (zh) 使用預測技術以明智地選擇通訊
CN107421555B (zh) 确定导航路径的方法和装置
JP7154831B2 (ja) 車両管理システムおよび車両管理方法
CN112352391A (zh) 无线电台推荐
CN113424250B (zh) 广告接触判断系统、广告接触判断装置以及程序
WO2005055170A1 (ja) 経路案内用データ作成装置、経路案内用データ作成方法および経路案内配信装置
JP2006146645A (ja) プローブデータ収集システム及びプローブデータ収集方法等
CN104969031B (zh) 交通信息提供系统
JP4755491B2 (ja) 施設混雑情報予測装置、施設混雑情報予測方法およびカーナビゲーションシステム
US8666645B2 (en) Method of selecting a traffic pattern for use by a navigation system
JP6652326B2 (ja) コンテンツ起動制御装置、コンテンツ起動方法、およびコンテンツ起動システム
CN108121725B (zh) 一种搜索方法及装置
JP2010039952A (ja) 情報提供装置、及び受信情報の選択出力方法
JP2009250942A (ja) 渋滞予測装置及びそれを用いた経路案内装置
JP2006301819A (ja) 情報提供システム、情報処理装置、情報端末装置、情報処理プログラム、情報通知プログラム
JP2010044435A (ja) 情報提供装置、受信情報のフィルタリング出力方法及びそのプログラム
WO2024004176A1 (ja) 通信継続性のための、ナビゲーションシステム、制御装置及びナビゲーション方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011505658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842144

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924758

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924758

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110920