WO2011021454A1 - 太陽電池および太陽電池装置 - Google Patents

太陽電池および太陽電池装置 Download PDF

Info

Publication number
WO2011021454A1
WO2011021454A1 PCT/JP2010/062036 JP2010062036W WO2011021454A1 WO 2011021454 A1 WO2011021454 A1 WO 2011021454A1 JP 2010062036 W JP2010062036 W JP 2010062036W WO 2011021454 A1 WO2011021454 A1 WO 2011021454A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
carbon nanotubes
transparent electrode
type semiconductor
carbon nanotube
Prior art date
Application number
PCT/JP2010/062036
Other languages
English (en)
French (fr)
Inventor
和志 平岡
杉本 巖生
俊夫 滝谷
浩二 ▲高▼鍋
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to DE112010003304T priority Critical patent/DE112010003304T5/de
Priority to CN2010800314649A priority patent/CN102473752A/zh
Priority to US13/390,530 priority patent/US20120145230A1/en
Publication of WO2011021454A1 publication Critical patent/WO2011021454A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0549Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising spectrum splitting means, e.g. dichroic mirrors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell using carbon nanotubes and a solar cell device using the solar cell.
  • Solar cells are mainly made of silicon based on single crystal, polycrystal, and amorphous silicon, and are becoming widespread in homes and offices, but have a drawback of low energy conversion efficiency.
  • One of the causes of low energy conversion efficiency is that a normal solar cell has only one band gap, and cannot convert photoelectrically long wavelength light having energy less than the band gap, and conversely exceeds the band gap.
  • Patent Document 1 in order to improve the energy conversion efficiency, as shown in Patent Document 1, it can be considered to have two or more band gaps, in other words, to reduce the band gap.
  • the band gap is fixed depending on the element selection method, including compound semiconductors, and it is difficult to obtain an arbitrary band gap. It was not possible to improve.
  • the upper solar cell absorbs and scatters solar rays, and the light necessary for the lower solar cell is attenuated.
  • an object of the present invention is to provide a solar cell and a solar cell device capable of improving the energy conversion efficiency.
  • the first aspect of the present invention is the opposite of the transparent electrode, the plurality of carbon nanotubes juxtaposed on the surface of the transparent electrode and perpendicular to the surface, and the transparent electrodes of these carbon nanotubes.
  • the transparent electrode in the solar cell of the first aspect is formed of an n-type semiconductor, and the carbon nanotube is doped with an atom of Group 3 element periodic table to form the carbon.
  • a nanotube is a p-type semiconductor.
  • the carbon nanotube of the solar cell of the first aspect is doped with a Group 5 atom of the periodic table of elements on the transparent electrode side to make an n-type semiconductor.
  • a metal electrode side portion is doped with a Group 3 element atom to form a p-type semiconductor.
  • the carbon nanotube in the solar cell of the first aspect is doped with an atom of Group 5 element periodic table to make the carbon nanotube an n-type semiconductor, Further, a p-type semiconductor layer is disposed between the metal electrode and the carbon nanotube.
  • the fifth aspect of the present invention is a solar cell device using the solar cell of the first aspect, A spectroscope that separates sunlight rays is disposed on the surface of the transparent electrode of the solar cell, and a voltage regulator that adjusts the electricity obtained from each carbon nanotube in the solar cell to a predetermined voltage is provided.
  • the carbon nanotubes are arranged between the transparent electrode and the metal electrode, and the diameter of the carbon nanotubes is sequentially changed stepwise. , Carbon nanotubes corresponding to the respective wavelengths, that is, having an arbitrary band gap can be formed. Therefore, since it is possible to perform photoelectric conversion over a wide wavelength range of sunlight, it is possible to provide a solar cell and a solar cell device with excellent energy conversion efficiency, that is, excellent photoelectric conversion efficiency.
  • the basic configuration of the solar cell is a transparent electrode, a plurality of carbon nanotubes juxtaposed on the surface of the transparent electrode and perpendicular to the surface, and the carbon nanotubes disposed on the opposite side of the transparent electrode.
  • a metal electrode as a counter electrode, and the diameter of the juxtaposed carbon nanotubes is changed stepwise from one side to the other side.
  • an n-type semiconductor and a p-type semiconductor are disposed between a pair of electrodes, and at least one of these semiconductors is composed of carbon nanotubes (CNT).
  • CNT carbon nanotubes
  • the carbon nanotubes are perpendicular to the electrode surface (so-called vertical alignment) and many (here, three or more, and may be referred to as “three or more plurals” depending on the wording). For example, it is divided into a large number of regions and arranged in a row, and the diameter of each region is sequentially changed.
  • tube rows five regions (hereinafter also referred to as tube rows) made of a large number of carbon nanotubes are provided (arranged in parallel) with five (three or more, that is, three or more rows) in parallel.
  • the diameter of the carbon nanotube is changed stepwise for each tube row, and for example, the thickest to the thinner are provided in order.
  • electrodes are formed on the upper and lower surfaces of the carbon nanotubes in each tube row.
  • At least one semiconductor is composed of carbon nanotubes means that one electrode is formed as a semiconductor or a semiconductor layer is formed on one electrode side, and the carbon nanotube is formed as a semiconductor, and the carbon nanotube itself. Considering the configuration of forming an n-type semiconductor and a p-type semiconductor.
  • the solar cell 1 has a rectangular plate shape and an n-type semiconductor transparent electrode 2 and a lower surface of the transparent electrode 2 (up and down are defined based on FIG. (Of course, it may be upside down, and may simply be referred to as the surface of a transparent electrode.)
  • the carbon nanotubes 3 will be described as having three or more (many) rows, and here, they are formed in five rows.
  • a spectroscope such as a prism (also referred to as a spectroscopic element) 12 for spectrally guiding the solar light to the solar cell 1 into five wavelength regions and a row of carbon nanotubes 3 of the solar cell 1
  • the solar cell device 11 is configured by including a voltage regulator (also a voltage output circuit) 14 for guiding the obtained electricity through the electrical wiring 13 and adjusting it to a predetermined voltage. Will be described later.
  • a condensing lens portion 15 that collects sunlight is disposed in front of the spectroscope 12.
  • the condensing lens unit 15 for example, cylindrical lenses having different diameters are used. That is, the condensing lens unit 15 is composed of a first cylindrical lens 15a having a large diameter and a second cylindrical lens 15b having a small diameter, and the installation interval L between the first cylindrical lens 15a and the focal length f1 of the first cylindrical lens 15a.
  • the width of the emitted parallel light beam should be as narrow (thin) as possible.
  • the parallel light is made incident on the solar cell 1 (precisely on the transparent electrode 2) as a spectral light by the spectroscope 12. Further, it is desirable that the distance between the spectroscope 12 and the solar cell 1 is such that the size of the solar cell 1 can be smaller than that of the first cylindrical lens 15a.
  • the condensing lens part 15 can arrange
  • a metal as a catalyst by a method such as sputtering on the surface of a transparent electrode (FTO, ZnO, ITO, FTO / ITO, GZO, AZO, etc.) 2 made into an n-type semiconductor
  • a transparent electrode FTO, ZnO, ITO, FTO / ITO, GZO, AZO, etc.
  • the fine particles 10 are formed by making cuts in the vertical and horizontal directions with an electron beam and adjusting the interval when making the cuts.
  • the iron catalyst fine particles 10 are sized according to the diameter of the carbon nanotube 3 in each tube row. For example, the diameter is increased from the smaller to the smaller from the left side to the right side of the drawing. That is, the diameter of the catalyst fine particles 10A on the left side is increased, and the diameters of the catalyst fine particles 10B to 10E are gradually reduced toward the right side.
  • the thickness of the thin film formed by a method such as sputtering may be reduced from the left to the right.
  • the thickness of the thin film can be changed depending on sputtering conditions (sputtering time / distance between the sputtering source and the thin film forming surface).
  • the thickness of the thin film can be continuously changed by continuously changing the distance between the sputtering source and the thin film forming surface, the diameter of the carbon nanotube 3 can also be continuously changed.
  • carbon nanotubes 3 are formed on the iron catalyst fine particles 10 by a thermal CVD (chemical vapor deposition) method.
  • the diameter that is, the thickness of the carbon nanotube 3 formed on the upper surface thereof is determined according to the size of the catalyst fine particles 10.
  • the carbon nanotubes 3 are doped with atoms of Group 3 atoms of the periodic table of the elements (note that a gas containing Group 3 atoms is mixed with a small amount when grown by the thermal CVD method). May be)
  • the electrode boundary portion is masked, and the metal electrode 4 is formed on the upper surface of each tube row by the PVD (physical vapor deposition) method.
  • iron catalyst fine particles are formed on the substrate of the transparent electrode, and carbon nanotubes are grown by introducing the raw material gas in a high temperature atmosphere using the catalyst fine particles as nuclei.
  • catalyst fine particles Ni, Co, or the like may be used instead of Fe.
  • a solution of a compound such as these metals or their complexes is applied to the transparent electrode substrate with a spray or brush, or is applied to the transparent electrode substrate with a cluster gun, dried, and heated if necessary. To form a film.
  • the film thickness is preferably in the range of 1 to 100 nm because it is difficult to form particles by heating if the film is too thick.
  • iron catalyst fine particles having a diameter of about 0.1 to 50 nm are formed.
  • the method for forming the catalyst fine particles may be a method by sputtering as described above.
  • the carbon nanotube source gas aliphatic hydrocarbons such as acetylene, methane, and ethylene can be used, and acetylene is particularly preferable.
  • carbon nanotubes having a thickness of 0.4 to 38 nm are formed in a brush shape on the transparent electrode with iron catalyst fine particles as nuclei.
  • the formation temperature of the carbon nanotube is preferably in the range of 650 to 800 ° C., and the formation time by the thermal CVD method (hereinafter referred to as CVD time) is in the range of 1 to 30 minutes.
  • the PVD method for forming the metal electrode 4 a vacuum deposition method or a sputtering method is used.
  • the spectroscope 12 is arranged so that the tube rows 3A to 3E of the solar cell 1 are irradiated with the sunlight rays, and the dispersed light beams are transparent in the tube rows 3A to 3E corresponding to the respective wavelengths. It is guided on the electrode 2.
  • a voltage regulator 14 is connected to each metal electrode 4 via an electric wiring 13 so that a predetermined voltage can be obtained.
  • the voltage regulator 14 includes a DC / DC converter 16 connected to the tube row 3 via an electric wiring 13, and a power adding unit 18 connected to the DC / DC converter 16 via an electric wiring 17.
  • the power of a predetermined voltage is output.
  • the DC / DC converter 16 is for adjusting (converting) the voltage extracted from the tube rows 3A to 3E to be the same (predetermined voltage).
  • the photoelectric conversion capability that is, the energy band gap when the diameters of the carbon nanotubes 3 are different will be described.
  • the value of each band gap will be different, so that carbon nanotubes with a diameter equal to the energy h ⁇ of the dispersed solar rays will be made as a p-type or n-type semiconductor. Just keep it.
  • the band gap is Eg 1 to Eg n , where Eg n-1 ⁇ Eg n
  • Eg 1 solar cell when there are n carbon nanotubes having different band gaps (the band gap is Eg 1 to Eg n , where Eg n-1 ⁇ Eg n ), light having an energy smaller than Eg 2 and greater than Eg 1 Light is received by the Eg 1 solar cell and subjected to photoelectric conversion. Further, light having energy smaller than Eg 3 and equal to or higher than Eg 2 is received by a solar cell having a band gap Eg 2 and subjected to photoelectric conversion.
  • the band gap Eg n for light having a maximum energy of up to ultraviolet, photoelectric conversion is performed is received by the solar cell with a bandgap of Eg n.
  • the amount of energy that can be photoelectrically converted by using the solar cell having such a configuration is shown in the graph of FIG. 3A.
  • a conventional ordinary tandem solar cell is shown in FIG. 3B. From these graphs, it can be seen that the amount of energy that can be obtained by sequentially changing the diameter of the carbon nanotubes, that is, the amount of energy that can be photoelectrically converted, is remarkably excellent.
  • the carbon nanotubes are arranged between the transparent electrode and the metal electrode, and the diameters of the carbon nanotubes are sequentially changed stepwise.
  • carbon nanotubes having band gaps corresponding to the respective wavelengths can be formed. Therefore, since photoelectric conversion can be performed over a wide wavelength range of sunlight, a solar cell having excellent energy conversion efficiency, that is, excellent photoelectric conversion efficiency can be provided.
  • the diameter of the carbon nanotube is adjusted according to the size of the catalyst fine particles, but the diameter can also be controlled by adjusting the CVD time, for example.
  • the solar cell 21 includes a transparent electrode (for example, an FTO electrode is used) 22 made of an n-type semiconductor, and a plurality of surfaces on the lower surface (front surface) of the transparent electrode 22 and perpendicular to the lower surface.
  • the carbon nanotubes 23 arranged side by side, and a metal electrode 24 as a counter electrode disposed on the lower surface (surface) opposite to the transparent electrode 22 of each of the carbon nanotubes 23 are provided.
  • the diameter is gradually changed from one side to the other side, and the carbon nanotubes 23 are doped with atoms of Group 3 element periodic table to form p-type semiconductors.
  • iron (Fe) catalyst fine particles may be fine particles such as Pt and Co
  • the size is provided in five stages, that is, in five rows.
  • the catalyst fine particles There are two types of methods for forming the catalyst fine particles by changing the particle size. (1). After forming a metal thin film as a catalyst on the transparent electrode, a cut is made in the vertical and horizontal directions by an electron beam, and when the cut is made, the interval is adjusted to form catalyst fine particles. In adjusting the interval, the particle size and shape are adjusted by heating. (2). A metal thin film relating to the catalyst is formed on the surface of the transparent electrode by sputtering. When this thin film is formed, catalyst fine particles having different diameters are formed by changing the distance between the metal source and the transparent electrode.
  • carbon nanotubes 23 are formed on the catalyst fine particles formed on the surface of the transparent electrode 22 by a thermal CVD method. That is, the carbon nanotube 23 is grown.
  • the carbon nanotubes 23 grow from the catalyst fine particles.
  • the diameter (thickness) of the growing carbon nanotube 23 depends on the size of the catalyst fine particles.
  • the CVD time may be changed in addition to changing the size of the catalyst fine particles. That is, when the CVD time is short, the carbon nanotubes become thin with a low number of layers, and when the CVD time is long, the carbon nanotubes become thick with multiple layers. Thus, the thickness of the carbon nanotube can be adjusted by the CVD time.
  • the thick carbon nanotube has a multilayer structure, the band gap of the outermost carbon nanotube is used.
  • the carbon nanotubes 23 are doped with atoms (B, Al, Ga, In, Ti, etc.) belonging to Group 3 of the periodic table to form P-type semiconductors.
  • atoms B, Al, Ga, In, Ti, etc.
  • a gas such as diborane (B 2 H 6 ) containing Group 3 atoms is thermally decomposed and sprayed onto the carbon nanotubes 23. Note that in the process of generating the carbon nanotubes 23, a trace amount of a gas containing Group 3 atoms may be mixed into the hydrocarbon gas.
  • the metal electrode 24 is formed for each carbon nanotube 23 having a different diameter, that is, for each tube row, the solar cell 21 is obtained.
  • a metal such as Cu, Au, Ag, or Al is adhered to the upper end of the carbon nanotube 23 where the mask is not covered by the PVD method.
  • thermal vacuum vapor deposition, electron beam vapor deposition, sputtering, or the like may be used.
  • Example 2 corresponding to claim 2 of the present invention
  • this solar cell 31 includes a transparent substrate 32 formed of silicon dioxide (SiO 2 ), and a transparent electrode disposed on the lower surface (front surface) of the transparent substrate 32 and made an n-type semiconductor. 33 (for example, an FTO electrode is used), a plurality of carbon nanotubes 34 juxtaposed on the lower surface (front surface) of the transparent electrode 33 and perpendicular to the lower surface, and the opposite side of the transparent electrode 33 of each carbon nanotube 34 And a metal electrode 35 as a counter electrode disposed on the lower surface (front surface) of the carbon nanotube 34, and the diameter of the juxtaposed carbon nanotubes 34 is changed stepwise from one side to the other side, for example, narrowed.
  • These carbon nanotubes 34 are doped with atoms from Group 3 of the periodic table to form p-type semiconductors.
  • an n-type semiconductor transparent electrode 33 is formed on the surface of a transparent substrate 32 made of silicon dioxide.
  • fine catalyst particles such as Fe, Pt, and Co having different sizes are formed on the surface of the transparent electrode 33.
  • catalyst fine particles having different sizes are formed in five stages, that is, in five rows.
  • carbon nanotubes 34 are formed on the catalyst fine particles formed on the surface of the transparent electrode 33 by a thermal CVD method in the same manner as in Example 1.
  • the carbon nanotubes 34 are doped with Group 3 atoms such as B, Al, Ga, In, and Ti to form a P-type semiconductor.
  • the metal electrode 35 is formed by the sputtering method etc. for every tube row from which a diameter differs, the solar cell 31 will be obtained.
  • the diameter of a plurality of carbon nanotubes changes stepwise from one side to the other side on the surface of a transparent electrode made into an n-type semiconductor and perpendicular to the surface.
  • a transparent electrode may be formed by sputtering on the end face of a carbon nanotube prepared in advance.
  • Example 3 corresponding to claim 3 of the present invention
  • the solar cell 41 includes a transparent substrate 42 formed of silicon dioxide (SiO 2 ), and a transparent electrode (n-type semiconductor) disposed on the lower surface (front surface) of the transparent substrate 42.
  • a FTO electrode is used) 43, a plurality of carbon nanotubes 44 juxtaposed on the lower surface (front surface) of the transparent electrode 43 and perpendicular to the surface, and the transparent electrodes 43 on the opposite side of the respective carbon nanotubes 44
  • the p-type semiconductor is formed by doping the metal electrode side portion 44b with an atom of group 3 of the periodic table, and the juxtaposed carbon nanotubes 4 of the diameter from one side toward the other side, in which the graduated.
  • the transparent electrode 43 is formed on the surface of the transparent substrate 42 made of silicon dioxide by sputtering.
  • Fe catalyst fine particles are formed on the surface of the transparent electrode 43 by sputtering.
  • carbon nanotubes 44 are formed on the catalyst fine particles by, for example, a thermal CVD method. At this time, a small amount of phosphine (PH 3 ) or the like is added to make the transparent electrode side portion 44a of the carbon nanotube 44 an n-type semiconductor.
  • phosphine PH 3
  • a p-type carbon nanotube 44b is formed on the end face of the n-type carbon nanotube 44a.
  • a small amount of diborane (B 2 H 6 ) or the like is added to form a p-type semiconductor. That is, the metal electrode side portion 44b of the carbon nanotube 44 is made a p-type semiconductor.
  • the metal electrode 45 may be formed of Al or the like for each carbon nanotube 44 having a different diameter, that is, for each tube row.
  • the transparent electrode 43 has been described as being disposed on the surface of the transparent substrate 42. However, of course, only the transparent electrode may be used.
  • this solar cell manufacturing method includes a plurality of carbon nanotubes between one transparent electrode and the other metal electrode and perpendicular to the surface of the electrodes, the diameter of which is from one side to the other side.
  • the transparent electrode side portion of the carbon nanotube is doped with Group 5 element atoms to form an n-type semiconductor
  • the carbon nanotube metal electrode side portion is doped with Group 3 atom atoms. This is a method of forming a p-type semiconductor.
  • the solar cell 51 includes a metal electrode 52 made of SUS (stainless steel JIS symbol) and the like, and boron (B) arranged on the surface of the metal electrode 52 and group 3 of the periodic table of elements.
  • a p-type semiconductor substrate (p-type semiconductor layer) 53 doped with atoms such as carbon nanotubes 54 juxtaposed on the surface of the p-type semiconductor substrate 53 and perpendicular to the surface, and the carbon nanotubes 54.
  • the carbon nanotubes 53 are doped with atoms such as phosphorus (P) of group 5 of the periodic table. It is obtained by the n-type semiconductor Te.
  • a metal electrode 52 formed of rectangular plate-shaped stainless steel (SUS) or the like is doped with atoms such as boron (B) of Group 3 of the periodic table on a substrate such as silicon (Si).
  • a p-type semiconductor substrate 53 is formed.
  • catalyst fine particles of Fe (Pt, Co, etc.) having different sizes are formed on the surface of the p-type semiconductor substrate 53.
  • catalyst fine particles having different sizes are provided in five stages, that is, in five rows.
  • carbon nanotubes 54 are formed by thermal CVD on the catalyst fine particles formed on the surface of the p-type semiconductor substrate 53 by the same method as in Example 1.
  • carbon nanotubes 54 are doped with Group 5 atoms of the periodic table of elements such as P to form an n-type semiconductor.
  • the transparent electrode 55 is formed by the sputtering method etc. for every tube row from which a diameter differs, the solar cell 51 will be obtained.
  • Example 4 since the transparent electrode 55 is formed after the carbon nanotube 54 is formed, ITO or the like that is difficult to apply at a high temperature in the thermal CVD method can also be used.
  • a p-type semiconductor layer is formed on the surface of a metal electrode, and then a plurality of carbon nanotubes having a diameter of one side are formed on the surface of the p-type semiconductor layer and perpendicular to the surface. Are formed in parallel so as to change stepwise from one side to the other, and then these carbon nanotubes are doped with atoms of Group 5 element periodic table to form n-type semiconductors.
  • a transparent electrode is formed on the end face.
  • the solar cell 61 can also be obtained using.
  • the carbon nanotubes are arranged between the transparent electrode and the metal electrode, and the diameters of the carbon nanotubes are sequentially changed step by step.
  • the carbon nanotubes are arranged between the transparent electrode and the metal electrode, and the diameters of the carbon nanotubes are sequentially changed step by step.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 n型半導体にされた透明電極(2)と、この透明電極(2)の下面に且つ当該下面に垂直に複数並置されたカーボンナノチューブ(3)と、これら各カーボンナノチューブ(3)の透明電極(2)とは反対側の下面に配置された金属電極(4)とを具備し、上記並置されたカーボンナノチューブ(3)の直径を一方側から他方側に向かって段階的に変化させ、さらにこれら各カーボンナノチューブ(3)に第3族の原子をドーピングしてp型半導体にした太陽電池。

Description

太陽電池および太陽電池装置
 本発明は、カーボンナノチューブを用いた太陽電池およびこの太陽電池を用いた太陽電池装置に関するものである。
 太陽電池は、単結晶、多結晶、アモルファスシリコンからなるシリコン系のものが主流であり、住宅や事業所などに普及しつつあるが、エネルギーの変換効率が低いという欠点がある。エネルギーの変換効率が低い要因の一つとして、通常の太陽電池は、バンドギャップが1つしかなく、バンドギャップ未満のエネルギーを有する長波長光線については光電変換できず、逆に、バンドギャップを超えるエネルギーを有する短波長光線については、バンドギャップ分のエネルギーしか光電変換できなかった。
 このような欠点に対処するものとして、2つ以上の異なるバンドギャップを有する太陽電池が提案されている(例えば、日本国の特開2003-197930号公報参照)。
 上述したように、エネルギーの変換効率を向上させるためには、特許文献1に示すように、2つ以上のバンドギャップを有するように、言い換えれば、バンドギャップを細かくすることが考えられる。
 しかし、シリコン等の結晶を利用した半導体では、化合物半導体も含めて、元素の選択の仕方により、バンドギャップが固定されてしまい、任意のバンドギャップを得ることが困難であり、したがってエネルギーの変換効率の向上を図ることができなかった。また、タンデムタイプおよびそれ以上の重ね合わせタイプでは、上層の太陽電池が太陽光線を吸収および散乱させることになり、下部の太陽電池に必要な光が減衰してしまう。
 そこで、本発明は、エネルギーの変換効率の向上を図り得る太陽電池および太陽電池装置を提供することを目的とする。
 上記課題を解決するため、本発明の第1の側面は、透明電極と、この透明電極の表面に且つ当該表面に垂直に複数並置されたカーボンナノチューブと、これら各カーボンナノチューブの透明電極とは反対側に配置された金属電極とを具備し、
 上記並置されたカーボンナノチューブの直径を一方側から他方側に向かって段階的に変化させた太陽電池である。
 また、本発明の第2の側面は、上記第1の側面の太陽電池における透明電極をn型半導体にて形成するとともに、カーボンナノチューブに元素周期表第3族の原子をドーピングして、当該カーボンナノチューブをp型半導体にしたものである。
 また、本発明の第3の側面は、上記第1の側面の太陽電池のカーボンナノチューブを、その透明電極側部分に元素周期表第5族の原子をドーピングしてn型半導体にするとともに、その金属電極側部分に元素周期表第3族の原子をドーピングしてp型半導体にしたものである。
 また、本発明の第4の側面は、上記第1の側面の太陽電池におけるカーボンナノチューブに元素周期表第5族の原子をドーピングして当該カーボンナノチューブをn型半導体となし、
 さらに上記金属電極と上記カーボンナノチューブとの間にp型半導体層を配置したものである。
 さらに、本発明の第5の側面は、上記第1の側面の太陽電池を用いた太陽電池装置であって、
 太陽電池の透明電極の表面に、太陽光線を分光させる分光器を配置するとともに、この太陽電池における各カーボンナノチューブにて得られた電気を所定電圧に調整する電圧調整器を具備したものである。
 上記太陽電池および太陽電池装置の構成によると、透明電極と金属電極との間にカーボンナノチューブを配置するとともに、このカーボンナノチューブの直径を、順次、段階的に変化させるようにしたので、例えば太陽光線を分光させた際に、それぞれの波長に応じた、つまり任意のバンドギャップを有するカーボンナノチューブを形成しておくことができる。したがって、太陽光線の広範囲の波長領域に亘って光電変換を行うことができるので、エネルギーの変換効率が優れた、すなわち光電変換効率が優れた太陽電池および太陽電池装置を提供することができる。
本発明の実施の形態に係る太陽電池および太陽電池装置の概略構成を示す斜視図である。 同太陽電池の製造方法を説明する斜視図である。 同太陽電池の製造方法を説明する斜視図である。 同太陽電池の製造方法を説明する斜視図である。 同太陽電池の製造方法を説明する斜視図である。 本発明の実施の形態に係る同太陽電池における光電変換効率を説明するグラフである。 通常のタンデム型の太陽電池における光電変換効率を説明するグラフである。 本発明の実施例1に係る太陽電池の概略構成を示す斜視図である。 本発明の実施例2に係る太陽電池の概略構成を示す斜視図である。 本発明の実施例3に係る太陽電池の概略構成を示す斜視図である。 本発明の実施例4に係る太陽電池の概略構成を示す斜視図である。 本発明の実施例4に係る太陽電池の変形例の概略構成を示す斜視図である。
 以下、本発明の実施の形態に係る太陽電池および太陽電池装置について説明する(クレーム1およびクレーム5に対応する)。
 まず、本実施の形態に係る太陽電池およびこの太陽電池を用いた太陽電池装置の基本的構成について説明する。
 すなわち、太陽電池の基本的な構成は、透明電極と、この透明電極の表面に且つ当該表面に垂直に複数並置されたカーボンナノチューブと、これら各カーボンナノチューブの透明電極とは反対側に配置された対向電極としての金属電極とを具備し、上記並置されたカーボンナノチューブの直径を一方側から他方側に向かって段階的に変化させたものである。
 この基本的な構成をもう少し詳しく説明すると、一対の電極同士間にn型半導体およびp型半導体が配置されるとともに、これら両半導体のうち、少なくとも、一方の半導体をカーボンナノチューブ(CNT)で構成したものである。また、このカーボンナノチューブについては、電極表面に対して垂直(所謂、垂直配向である)に且つ多数(ここでは、3つ以上であり、言い方によっては、「3つ以上の複数」と呼ぶこともできる)並列に設けられたもので、例えば多数の領域で且つ列状に分けられるとともにこれら各領域毎にその直径が順次変化されている。
 具体的には、多数のカーボンナノチューブからなる領域(以下、チューブ列ともいう)が5つ(3つ以上、すなわち3列以上であればよい)並列に設けられる(並置される)とともに、これらのカーボンナノチューブの直径をチューブ列毎に段階的に変化させたもので、例えば太いものから細いものが順番に設けられている。
 そして、これら各チューブ列におけるカーボンナノチューブの上下面に、電極が形成されたものである。
 ところで、上述したカーボンナノチューブの形成方向である「垂直」には、当然ながら許容範囲があり、カーボンナノチューブの根元と先端とを結ぶ直線が、電極表面の垂線に対して、例えば90±10°の範囲内であればよい。この意味では、「略垂直」と言い換えることもできる。
 なお、上記「少なくとも一方の半導体をカーボンナノチューブで構成した」という意味は、一方の電極を半導体にまたは一方の電極側に半導体層を形成するとともに、カーボンナノチューブを半導体にする構成、およびカーボンナノチューブ自体にn型半導体とp型半導体とを形成する構成を考慮したものである。
 以下、上記基本的構成に係る太陽電池の製造方法を、図1および図2A~図2Dに基づき説明する。
 まず、図1に基づき太陽電池の具体的な構成について説明しておく。
 この太陽電池1は、長方形の板状にされるとともにn型半導体にされた透明電極2と、この透明電極2の下面(図1に基づき上下を規定したもので、具体的には、太陽光線の入射側を上側として説明する。勿論、上下を逆にしたものでもよく、したがって単に、透明電極の表面ということもできる。)に垂直に並置された多数のカーボンナノチューブ3と、これらカーボンナノチューブ3の下端面(表面ともいえる)に配置された対向電極としての金属電極4とから構成されている。なお、具体的には、カーボンナノチューブ3は3つ以上(多数)の列状でもって、ここでは、5つの列状で形成されているものとして説明する。
 そして、上記太陽電池1に太陽光線を、5つの波長領域に分光して導くためのプリズムなどの分光器(分光素子と呼ぶこともできる)12と、太陽電池1の列状のカーボンナノチューブ3により得られた電気を電気配線13を介して導き所定電圧に調整するための電圧調整器(電圧出力回路でもある)14とを具備することで、太陽電池装置11が構成されており、その詳細については後述する。なお、分光器12の手前には、太陽光線を集める集光用レンズ部15が配置される。
 ところで、この集光用レンズ部15としては、例えば、径の大きさが異なるシリンドリカルレンズが用いられている。すなわち、この集光用レンズ部15は、径が大きい第1シリンドリカルレンズ15aと径が小さい第2シリンドリカルレンズ15bとから構成され、互いの設置間隔Lは、第1シリンドリカルレンズ15aの焦点距離f1と第2シリンドリカルレンズ15bの焦点距離f2とを合わせた距離(L=f1+f2)にされている。したがって、第1シリンドリカルレンズ15aに平行な太陽光線が入射されると、太陽光線は一度焦点を結んだ後、第2シリンドリカルレンズ15bに入射して再び平行光線で出射することになる。このとき、出射した太陽光線である平行光線の幅はf2/f1に縮小されている。なお、この出射した平行光線の幅はできるだけ狭い(細い)ほうがよい。
 そして、この平行光線を分光器12により、分光光線として太陽電池1(正確には透明電極2上)に入射させる。また、分光器12と太陽電池1との距離は、第1シリンドリカルレンズ15aより、太陽電池1の大きさが小さくて済むような距離にすることが望ましい。なお、集光用レンズ部15は、シリンドリカルレンズを平面上に複数配置することで、太陽光線を無駄なく太陽電池1側に導くことができるが、レンズの形状についてはこれに限定されず、円形レンズであってもよい。
 次に、図2A~図2Dに基づき、上記太陽電池1の製造方法を概略的に説明する。
 まず、図2Aに示すように、n型半導体にされた透明電極(FTO,ZnO,ITO,FTO/ITO,GZO,AZOなどが用いられる)2の表面にスパッタリングなどの方法により触媒としての金属[例えば、鉄(Fe)]の薄膜を形成した後、電子ビームにより縦横に切れ目を入れるとともにこの切れ目を入れる際の間隔を調整して触媒微粒子10を形成する。この鉄の触媒微粒子10については、チューブ列毎におけるカーボンナノチューブ3の直径に応じた大きさにされている。例えば、図面の左側から右側に向かって、直径が大きいものから小さいものにされている。すなわち、左側の触媒微粒子10Aの直径が大きくされて、右側に行くにしたがって触媒微粒子10B~10Eの直径が段階的に小さくされている。
 なお、触媒微粒子10をカーボンナノチューブ3の直径に応じた大きさにする方法として、スパッタリングなどの方法により形成する薄膜の厚みを左側から右側に行くにしたがって薄くしてもよい。スパッタリングを用いる場合は、スパッタ条件(スパッタ時間・スパッタ源と薄膜形成面との距離)により薄膜の厚みを変えることができる。また、スパッタ源と薄膜形成面との距離を連続的に変えることにより、薄膜の厚みを連続的に変化させることができるため、やはり、カーボンナノチューブ3の直径を連続的に変化させることができる。
 次に、図2Bに示すように、熱CVD(化学気相成長)法により、鉄の触媒微粒子10上にカーボンナノチューブ3を形成する。このとき、触媒微粒子10の大きさに応じて、その上面に形成されるカーボンナノチューブ3の直径つまり太さが決まる。
 次に、図2Cに示すように、カーボンナノチューブ3に元素周期表第3族の原子をドーピングする(なお、熱CVD法を行う時に第3族原子を含むガスを微量に混ぜて成長させるようにしてもよい)。
 次に、図2Dに示すように、電極境界部分にマスクをして、各チューブ列の上面に金属電極4をPVD(物理気相成長)法により形成する。
 ここで、熱CVD法について、少し具体的に説明しておく。
 すなわち、透明電極の基板上に鉄の触媒微粒子を形成し、この触媒微粒子を核として高温雰囲気下で原料ガスを導きカーボンナノチューブを成長させる。なお、触媒微粒子としては、Feの代わりに、Ni、Coなどを用いてもよい。
 具体的には、これらの金属またはその錯体等の化合物の溶液をスプレーや刷毛で透明電極の基板に塗布し、またはクラスター銃で透明電極の基板に打ち付けた後、乾燥させ、必要であれば加熱して皮膜を形成する。
 皮膜の厚みは、厚過ぎると加熱による粒子化が困難になるので、好ましくは1~100nmの範囲とされる。
 次に、この皮膜を、好ましくは減圧下または非酸化雰囲気中にて、650~800℃の範囲で加熱すると、直径0.1~50nm程度の鉄の触媒微粒子が形成される。なお、触媒微粒子の形成方法については、上述したように、スパッタリングによる方法であってもよい。また、カーボンナノチューブの原料ガスとしては、アセチレン、メタン、エチレンなどの脂肪族炭化水素を使用することができ、特に、アセチレンが好ましい。アセチレンの場合、太さ0.4~38nmのカーボンナノチューブが鉄の触媒微粒子を核として透明電極上にブラシ状に形成される。カーボンナノチューブの形成温度は、好ましくは650~800℃の範囲で、また熱CVD法による形成時間(以下、CVD時間という)は1~30分の範囲である。
 また、金属電極4を形成するPVD法としては、真空蒸着法またはスパッタリング法が用いられる。
 次に、上記太陽電池1を用いた太陽電池装置11について説明する。
 すなわち、太陽電池1の各チューブ列3A~3Eに太陽光線の分光が照射されるように、分光器12を配置し、分光された光線が、それぞれの波長に対応するチューブ列3A~3Eの透明電極2上に導かれるようにする。
 そして、各金属電極4に電気配線13を介して電圧調整器14が接続されて、それぞれ所定の電圧が得られるようにされている。なお、この電圧調整器14は、チューブ列3に電気配線13を介して接続されたDC/DCコンバータ16と、これらDC/DCコンバータ16に電気配線17を介して接続された電力加算部18とから構成されて、所定電圧の電力が出力される。なお、DC/DCコンバータ16は、各チューブ列3A~3Eから取り出される電圧が同一(所定電圧)となるように調整(変換)するためのものである。
 ここで、カーボンナノチューブ3の直径が異なる場合の光電変換能力、すなわちエネルギーのバンドギャップについて説明しておく。
 カーボンナノチューブの直径が異なると、それぞれのバンドギャップの値が異なり、したがって分光された太陽光線が持っているエネルギーhνと等しいバンドギャップを持った直径のカーボンナノチューブをp型またはn型半導体として作っておけばよい。
 すなわち、バンドギャップの異なるカーボンナノチューブ(バンドギャップがEg~Eg、但し、Egn-1<Eg)がn個ある場合、Egより小さくEg以上のエネルギーをもった光はバンドギャップEgの太陽電池で受光されて光電変換が行われる。また、Egより小さくEg以上のエネルギーをもった光については、バンドギャップEgの太陽電池で受光されて光電変換が行われる。以下、同様に、バンドギャップEgを越え、紫外線までの最大エネルギーを有する光については、Egのバンドギャップを持った太陽電池で受光して光電変換が行われる。
 このような構成の太陽電池を用いることにより、光電変換し得るエネルギー量を図示すると、図3Aのグラフのようになる。なお、比較例として、従来からの通常のタンデム型の太陽電池の場合を図3Bに示しておく。これらのグラフから、カーボンナノチューブの直径を順次段階的に変化させることにより得られる、つまり光電変換し得るエネルギー量が格段に優れていることが分かる。
 すなわち、この太陽電池の構成によると、透明電極と金属電極との間にカーボンナノチューブを配置するとともに、このカーボンナノチューブの直径を、順次、段階的に変化させるようにしたので、例えば太陽光線を分光させた際に、それぞれの波長に応じたバンドギャップを有するカーボンナノチューブを形成しておくことができる。したがって、太陽光線の広範囲の波長領域に亘って光電変換を行うことができるので、エネルギーの変換効率が優れた、すなわち光電変換効率が優れた太陽電池を提供することができる。
 なお、上記太陽電池装置においては、一つの太陽電池を用いた構成として説明したが、勿論、上記太陽電池を多数設けることにより、大きい発電電力が得られることは言うまでもない。この場合、電圧調整器を例えば一つに纏めることもできる。
 また、上記説明においては、カーボンナノチューブの直径を触媒微粒子の大きさにより調整するようにしたが、例えばCVD時間を調節するようにしても、その直径を制御することができる。
 ところで、この太陽電池の具体例、すなわち実施例としては、下記に示すようなものがある。
 以下、本発明の実施例1(クレーム1およびクレーム2に対応する)に係る太陽電池について説明する。
 図4に示すように、この太陽電池21は、n型半導体にされた透明電極(例えば、FTO電極が用いられる)22と、この透明電極22の下面(表面)に且つ当該下面に垂直に複数並置されたカーボンナノチューブ23と、これら各カーボンナノチューブ23の透明電極22とは反対側の下面(表面)に配置された対向電極としての金属電極24とを具備し、上記並置されたカーボンナノチューブ23の直径を一方側から他方側に向かって段階的に変化させるとともに、これら各カーボンナノチューブ23に元素周期表第3族の原子をドーピングしてp型半導体にしたものである。
 この太陽電池21の製造方法について説明する。
 まず、n型半導体の透明電極22の表面に、大きさが異なる鉄(Fe)の触媒微粒子(Pt,Coなどの微粒子でもよい)を形成する。なお、大きさとしては、上述したように、5段階で、すなわち5列でもって設けられる。
 なお、触媒微粒子の粒径を変化させて形成する方法としては下記に示すような2種類の方法がある。
(1).透明電極に触媒としての金属の薄膜を形成した後、電子ビームにより、縦横に切れ目を入れるとともに、この切れ目を入れる際にその間隔を調整して触媒微粒子を形成する。間隔の調整に際し、加熱してその粒径および形状を整える。
(2).透明電極の表面に、スパッタリングにより触媒に係る金属の薄膜を形成する。この薄膜を形成する際に、金属源と透明電極との間の距離を変化させることにより、直径の異なる触媒微粒子が形成される。
 次に、上記透明電極22の表面に形成された触媒微粒子上に、カーボンナノチューブ23を熱CVD法により形成する。つまり、カーボンナノチューブ23を成長させる。
 例えば、透明電極22を高温にして、熱分解したC,CHなどの炭化水素ガスを供給すると、触媒微粒子からカーボンナノチューブ23が成長する。勿論、成長するカーボンナノチューブ23の直径(太さ)は、触媒微粒子の大きさに依存する。
 また、上述したように、カーボンナノチューブの直径を変えるのに、触媒微粒子の大きさを変える以外に、CVD時間を変えるようにしてもよい。すなわち、CVD時間が短い場合には、カーボンナノチューブは低層数で細くなり、CVD時間が長い場合には、多層で太くなる。このように、CVD時間によりカーボンナノチューブの太さを調節することができる。なお、太いカーボンナノチューブは多層構造になっているが、最外殻のカーボンナノチューブのバンドギャップを利用することになる。
 次に、カーボンナノチューブ23に元素周期表第3族の原子(B,Al,Ga,In,Ti等)をドーピングしてP型半導体にする。具体的には、第3族原子を含んだジボラン(B)などのガスを熱分解してカーボンナノチューブ23に吹き付ける。なお、カーボンナノチューブ23の生成工程において、炭化水素ガスに第3族の原子を含んだガスを微量に混入させるようにしてもよい。
 次に、直径の異なるカーボンナノチューブ23毎に、つまりチューブ列毎に金属電極24を形成すれば、太陽電池21が得られる。
 すなわち、チューブ列毎に区切るためのマスクを被せた後、マスクが被せられないカーボンナノチューブ23の上端に、PVD法により、Cu,Au,Ag,Alなどの金属を付着させる。なお、PVD法の代わりに、熱式真空蒸着、電子ビームによる蒸着、スパッタリングなどを用いてもよい。
 以下、本発明の実施例2(クレーム2に対応する)に係る太陽電池について説明する。
 図5に示すように、この太陽電池31は、二酸化ケイ素(SiO)により形成された透明基板32と、この透明基板32の下面(表面)に配置されるとともにn型半導体にされた透明電極(例えば、FTO電極が用いられる)33と、この透明電極33の下面(表面)に且つ当該下面に垂直に複数並置されたカーボンナノチューブ34と、これら各カーボンナノチューブ34の透明電極33とは反対側の下面(表面)に配置された対向電極としての金属電極35とを具備し、上記並置されたカーボンナノチューブ34の直径を一方側から他方側に向かって、段階的に変化させる、例えば細くするとともに、これら各カーボンナノチューブ34に元素周期表第3族の原子をドーピングしてp型半導体にしたものである。
 この太陽電池31の製造方法について説明する。
 この製造方法は、基本的には実施例1と同様であるため、概略的に説明する。
 まず、二酸化ケイ素により形成された透明基板32の表面に、n型半導体の透明電極33を形成する。
 次に、この透明電極33の表面に、大きさが異なるFe,Pt,Coなどの触媒微粒子を形成する。なお、大きさとしては、上述したように、5段階に、すなわち大きさが異なる触媒微粒子が5列でもって形成される。
 次に、実施例1と同様の方法により、透明電極33の表面に形成された触媒微粒子上に、カーボンナノチューブ34を熱CVD法により形成する。
 次に、カーボンナノチューブ34に、B,Al,Ga,In,Tiなどの第3族の原子をドーピングしてP型半導体にする。
 そして、直径が異なるチューブ列毎に金属電極35をスパッタリング法などで形成すれば、太陽電池31が得られる。
 この製造方法を簡単に述べると以下のようになる。
 すなわち、この太陽電池の製造方法は、n型半導体にされた透明電極の表面に且つ当該表面に垂直に、複数のカーボンナノチューブを、その直径が一方側から他方側に向かって段階的に変化するように並列に形成し、次にこれらのカーボンナノチューブに元素周期表第3族の原子をドーピングしてp型半導体となし、次にこのカーボンナノチューブの端面に金属電極を形成する方法である。なお、上記とは逆に、予め作っておいたカーボンナノチューブの端面上にスパッタリングにより透明電極を形成してもよい。
 以下、本発明の実施例3(クレーム3に対応する)に係る太陽電池について説明する。
 図6に示すように、この太陽電池41は、二酸化ケイ素(SiO)により形成された透明基板42と、この透明基板42の下面(表面)に配置されたn型半導体にされた透明電極(例えば、FTO電極が用いられる)43と、この透明電極43の下面(表面)に且つ当該表面に垂直に複数並置されたカーボンナノチューブ44と、これら各カーボンナノチューブ44の透明電極43とは反対側の下面(表面)に配置された対向電極としての金属電極45とを具備し、これら各カーボンナノチューブ44における透明電極側部分44aに元素周期表第5族の原子をドーピングしてn型半導体にするとともに、金属電極側部分44bに元素周期表第3族の原子をドーピングしてp型半導体となし、さらに上記並置されたカーボンナノチューブ44の直径を一方側から他方側に向かって、段階的に変化させたものである。
 次に、この太陽電池41の製造方法について説明する。
 まず、二酸化ケイ素よりなる透明基板42の表面に、スパッタリングにより透明電極43を形成する。
 次に、この透明電極43の表面に、Feの触媒微粒子をスパッタリングにより形成する。
 次に、この触媒微粒子上に、例えば熱CVD法によりカーボンナノチューブ44を形成する。このとき、ホスフィン(PH)などが微量に添加されて、カーボンナノチューブ44の透明電極側部分44aがn型半導体にされる。
 そして、さらにこのn型のカーボンナノチューブ44aの端面上に、p型のカーボンナノチューブ44bを形成する。このとき、ジボラン(B)などが微量に添加されてp型半導体にされる。すなわち、カーボンナノチューブ44の金属電極側部分44bがp型半導体にされる。
 次に、直径の異なるカーボンナノチューブ44毎に、つまりチューブ列毎にAlなどにより金属電極45を形成すればよい。
 なお、本実施例3では、透明基板42の表面に透明電極43を配置するように説明したが、勿論、透明電極だけであってもよい。
 この製造方法を簡単に述べると以下のようになる。
 すなわち、この太陽電池の製造方法は、一方の透明電極と他方の金属電極との間で且つこれら電極表面に対して垂直に複数のカーボンナノチューブを、その直径が一方側から他方側に向かって段階的に変化するように並列に形成し、
 次に上記カーボンナノチューブの透明電極側部分に元素周期表第5族の原子をドーピングしてn型半導体にするとともに、カーボンナノチューブの金属電極側部分に元素周期表第3族の原子をドーピングしてp型半導体にする方法である。
 以下、本発明の実施例4(クレーム4に対応する)に係る太陽電池について説明する。
 図7に示すように、この太陽電池51は、SUS(ステンレスのJIS記号)などよりなる金属電極52と、この金属電極52の表面に配置されるとともに元素周期表第3族のボロン(B)などの原子がドーピングされてなるp型半導体基板(p型半導体層)53と、このp型半導体基板53の表面に且つ当該表面に垂直に複数並置されたカーボンナノチューブ54と、これら各カーボンナノチューブ54の金属電極52とは反対側の表面に形成された対向電極としての透明電極(例えば、FTO電極が用いられる)55とを具備し、上記並置されたカーボンナノチューブ54の直径を一方側から他方側に向かって段階的に変化させるとともに、これら各カーボンナノチューブ53に元素周期表第5族のリン(P)などの原子をドーピングしてn型半導体にしたものである。
 この太陽電池51の製造方法について説明する。
 この製造方法は、基本的には実施例1と同様であるため、概略的に説明する。
 例えば、長方形の板状にされたステンレス(SUS)などにより形成された金属電極52の表面に、シリコン(Si)などの基板に元素周期表第3族のボロン(B)などの原子をドーピングしてp型半導体基板53を形成する。
 次に、このp型半導体基板53の表面に、大きさが異なるFe(Pt,Coなどでもよい)の触媒微粒子を形成する。なお、大きさとしては、上述したように、5段階に、すなわち大きさが異なる触媒微粒子が5列でもって設けられる。
 次に、実施例1と同様の方法により、p型半導体基板53の表面に形成された触媒微粒子上に、カーボンナノチューブ54を熱CVD法により形成する。
 次に、カーボンナノチューブ54に、Pなどの元素周期表第5族原子をドーピングしてn型半導体にする。
 そして、直径が異なるチューブ列毎に透明電極55をスパッタリング法などで形成すれば、太陽電池51が得られる。
 本実施例4では、上述したとおり、カーボンナノチューブ54を形成した後に、透明電極55を形成するため、熱CVD法における高温下では適用が困難なITOなども用いることができる。
 この製造方法を簡単に述べると以下のようになる。
 すなわち、この太陽電池の製造方法は、金属電極の表面にp型半導体層を形成し、次にこのp型半導体層の表面に且つ当該表面に垂直に、複数のカーボンナノチューブを、その直径が一方側から他方側に向かって段階的に変化するように並列に形成し、次にこれらのカーボンナノチューブに元素周期表第5族の原子をドーピングしてn型半導体となし、次にこのカーボンナノチューブの端面に透明電極を形成する方法である。
 なお、上記実施例4に係る太陽電池の金属電極52およびp型半導体基板53の代わりに、図8に示すように、Moなどにより形成されたCuなどにより形成された金属電極62および金属基板63を用いて、太陽電池61を得ることもできる。
 ところで、上記各実施例においては、電極の表面にバンドギャップが異なる(つまり直径が異なる)カーボンナノチューブ群を順番に形成するように説明したが、異なるバンドギャップ毎にカーボンナノチューブ群を電極表面に予め形成したものを、後で、順番に組み合わせることにより、太陽電池を製造するようにしてもよい。
 本発明は、透明電極と金属電極との間にカーボンナノチューブを配置するとともに、このカーボンナノチューブの直径を、順次、段階的に変化させるようにしたので、例えば太陽光線を分光させた際に、それぞれの波長に応じた、つまり任意のバンドギャップを有するカーボンナノチューブを形成しておくことができる。したがって、太陽光線の広範囲の波長領域に亘って光電変換を行うことができるので、エネルギーの変換効率が優れた太陽電池を提供することができる。

Claims (5)

  1.  透明電極と、この透明電極の表面に且つ当該表面に垂直に複数並置されたカーボンナノチューブと、これら各カーボンナノチューブの透明電極とは反対側に配置された金属電極とを具備し、
     上記並置されたカーボンナノチューブの直径を一方側から他方側に向かって段階的に変化させたことを特徴とする太陽電池。
  2.  透明電極をn型半導体にて形成するとともに、カーボンナノチューブに元素周期表第3族の原子をドーピングしてp型半導体にしたことを特徴とする請求項1に記載の太陽電池。
  3.  カーボンナノチューブにおける透明電極側部分に元素周期表第5族の原子をドーピングしてn型半導体にするとともに、金属電極側部分に元素周期表第3族の原子をドーピングしてp型半導体にしたことを特徴とする請求項1に記載の太陽電池。
  4.  カーボンナノチューブに元素周期表第5族の原子をドーピングしてn型半導体となし、
     さらに上記金属電極と上記カーボンナノチューブとの間にp型半導体層を配置したことを特徴とする請求項1に記載の太陽電池。
  5.  請求項1乃至4のいずれか一項に記載の太陽電池を用いた太陽電池装置であって、
     太陽電池の透明電極の表面に、太陽光線を分光させる分光器を配置するとともに、この太陽電池における各カーボンナノチューブにて得られた電気を所定電圧に調整する電圧調整器を具備したことを特徴とする太陽電池装置。
PCT/JP2010/062036 2009-08-20 2010-07-16 太陽電池および太陽電池装置 WO2011021454A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112010003304T DE112010003304T5 (de) 2009-08-20 2010-07-16 Solarzelle und Solarzellenvorrichtung
CN2010800314649A CN102473752A (zh) 2009-08-20 2010-07-16 太阳能电池和太阳能电池装置
US13/390,530 US20120145230A1 (en) 2009-08-20 2010-07-16 Solar cell and solar cell device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-190559 2009-08-20
JP2009190559A JP5582744B2 (ja) 2009-08-20 2009-08-20 太陽電池およびその製造方法並びに太陽電池装置

Publications (1)

Publication Number Publication Date
WO2011021454A1 true WO2011021454A1 (ja) 2011-02-24

Family

ID=43606909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062036 WO2011021454A1 (ja) 2009-08-20 2010-07-16 太陽電池および太陽電池装置

Country Status (6)

Country Link
US (1) US20120145230A1 (ja)
JP (1) JP5582744B2 (ja)
KR (1) KR20120041694A (ja)
CN (1) CN102473752A (ja)
DE (1) DE112010003304T5 (ja)
WO (1) WO2011021454A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225987A1 (ja) * 2019-05-07 2020-11-12 パナソニックIpマネジメント株式会社 撮像装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5383443B2 (ja) * 2009-11-16 2014-01-08 日立造船株式会社 太陽電池およびその製造方法並びに太陽電池装置
WO2013031665A1 (ja) * 2011-08-29 2013-03-07 日立造船株式会社 太陽電池および太陽電池装置
MY156988A (en) * 2011-09-09 2016-04-15 Mimos Berhad A solar cell and method of fabricating thereof
JP5936186B2 (ja) * 2012-03-14 2016-06-15 日立造船株式会社 太陽電池の製造方法
JP5896378B2 (ja) * 2012-08-30 2016-03-30 日立造船株式会社 Cnt太陽電池
JP6021104B2 (ja) * 2012-08-30 2016-11-02 日立造船株式会社 太陽電池の発電層およびその製造方法並びに太陽電池
CN105554185B (zh) * 2015-11-27 2019-02-01 努比亚技术有限公司 太阳能充电系统和移动终端
CN107731934A (zh) * 2017-11-22 2018-02-23 国家纳米科学中心 一种光电转换器及其转换方法
JP7343425B2 (ja) * 2020-03-13 2023-09-12 日立造船株式会社 カーボンナノチューブの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510236A (ja) * 1999-09-23 2003-03-18 コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション パターン化されたカーボンナノチューブ
JP2003285299A (ja) * 2002-03-27 2003-10-07 Sony Corp 機能材料又は機能素子、及びその製造方法
JP2006342040A (ja) * 2005-05-09 2006-12-21 Kumamoto Univ 筒状分子構造およびその製造方法、並びに前処理基板およびその製造方法
JP2007043150A (ja) * 2005-07-29 2007-02-15 Interuniv Micro Electronica Centrum Vzw 細長いナノ構造体を有する波長センシティブ検出器
JP2007096136A (ja) * 2005-09-29 2007-04-12 Univ Nagoya カーボンナノ構造体を用いた光起電力素子
JP2008053730A (ja) * 2006-08-25 2008-03-06 General Electric Co <Ge> 単一コンフォーマル接合のナノワイヤ光起電力装置
US20090183770A1 (en) * 2008-01-18 2009-07-23 Eloret Corporation Carbon nanotube patterning on a metal substrate

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148985A (ja) * 1974-10-24 1976-04-27 Sharp Kk
JPS5680177A (en) * 1979-12-04 1981-07-01 Nec Corp Power generator by solar ray
DE3005914A1 (de) * 1980-02-16 1981-09-10 Werner H. Prof. Dr.-Ing. 7065 Winterbach Bloss Solarzellenanordnung
JPS5877262A (ja) * 1981-10-20 1983-05-10 ビクト−ル・フオスカノウイツチ・アフイアン 太陽電池
JPH04296060A (ja) * 1991-03-26 1992-10-20 Hitachi Ltd 太陽電池
JP3269668B2 (ja) * 1992-09-18 2002-03-25 株式会社日立製作所 太陽電池
JP2002033193A (ja) * 2000-07-13 2002-01-31 Hitachi Ltd 有機発光素子
JP3723125B2 (ja) 2001-12-21 2005-12-07 三菱重工業株式会社 タンデム型太陽電池の製造方法
JP2003333757A (ja) * 2002-05-14 2003-11-21 Sony Corp 電源装置
JP4514402B2 (ja) * 2002-10-28 2010-07-28 シャープ株式会社 半導体素子及びその製造方法
JP2005067976A (ja) * 2003-08-27 2005-03-17 Matsushita Electric Ind Co Ltd ナノチューブの製造方法
JP2005322897A (ja) * 2004-04-05 2005-11-17 Nippon Telegr & Teleph Corp <Ntt> レーザ装置,発光素子及びその製造方法
US20060207647A1 (en) * 2005-03-16 2006-09-21 General Electric Company High efficiency inorganic nanorod-enhanced photovoltaic devices
KR20080013979A (ko) * 2005-05-03 2008-02-13 유니버시티 오브 델라웨어 초고효율 태양 전지
EP1748494B1 (en) * 2005-07-29 2008-04-09 Interuniversitair Microelektronica Centrum Wavelength-sensitive detector with elongate nanostructures
JP5116961B2 (ja) * 2005-09-29 2013-01-09 国立大学法人名古屋大学 カーボンナノウォールを用いたダイオード
US20080314438A1 (en) * 2007-06-20 2008-12-25 Alan Anthuan Tran Integrated concentrator photovoltaics and water heater
KR100935322B1 (ko) * 2008-01-02 2010-01-06 삼성전기주식회사 고효율 태양전지 및 이의 제조방법
JP2010114316A (ja) * 2008-11-07 2010-05-20 Toyota Motor Corp 光起電力素子およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510236A (ja) * 1999-09-23 2003-03-18 コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション パターン化されたカーボンナノチューブ
JP2003285299A (ja) * 2002-03-27 2003-10-07 Sony Corp 機能材料又は機能素子、及びその製造方法
JP2006342040A (ja) * 2005-05-09 2006-12-21 Kumamoto Univ 筒状分子構造およびその製造方法、並びに前処理基板およびその製造方法
JP2007043150A (ja) * 2005-07-29 2007-02-15 Interuniv Micro Electronica Centrum Vzw 細長いナノ構造体を有する波長センシティブ検出器
JP2007096136A (ja) * 2005-09-29 2007-04-12 Univ Nagoya カーボンナノ構造体を用いた光起電力素子
JP2008053730A (ja) * 2006-08-25 2008-03-06 General Electric Co <Ge> 単一コンフォーマル接合のナノワイヤ光起電力装置
US20090183770A1 (en) * 2008-01-18 2009-07-23 Eloret Corporation Carbon nanotube patterning on a metal substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225987A1 (ja) * 2019-05-07 2020-11-12 パナソニックIpマネジメント株式会社 撮像装置

Also Published As

Publication number Publication date
US20120145230A1 (en) 2012-06-14
CN102473752A (zh) 2012-05-23
JP2011044511A (ja) 2011-03-03
JP5582744B2 (ja) 2014-09-03
KR20120041694A (ko) 2012-05-02
DE112010003304T5 (de) 2012-06-21

Similar Documents

Publication Publication Date Title
JP5582744B2 (ja) 太陽電池およびその製造方法並びに太陽電池装置
Stuckelberger et al. Progress in solar cells from hydrogenated amorphous silicon
JP5156379B2 (ja) シリコン系薄膜光電変換装置、及びその製造方法
JP5379801B2 (ja) 薄膜光電変換装置およびその製造方法
CN108217607B (zh) Bi2OxSe纳米片、其制备方法及用途
JP2010521800A (ja) ダイヤモンドライクカーボン多層ドーピング成長の方法及びデバイス
WO2013167282A1 (en) Silicon-based solar cells with improved resistance to light-induced degradation
Sohrabi et al. Optimization of third generation nanostructured silicon-based solar cells
WO2011105160A1 (ja) 薄膜光電変換装置およびその製造方法
CN101567404A (zh) 一种具有多结结构的硅基薄膜太阳能电池结构及其工艺
JP5400322B2 (ja) シリコン系薄膜太陽電池およびその製造方法
JP2013542317A (ja) 太陽電池を製造するための基板をコーティングする方法
JP5383443B2 (ja) 太陽電池およびその製造方法並びに太陽電池装置
JP6047494B2 (ja) 薄膜光電変換装置およびその製造方法
WO2015156233A1 (ja) 光電変換装置
JP5393345B2 (ja) 太陽電池および太陽電池装置
KR100925123B1 (ko) 태양 전지 및 이의 제조 방법
CN109950353B (zh) 类金刚石薄膜太阳能电池及其制造方法
JP2003142705A (ja) 光起電力素子
KR101149768B1 (ko) 실리콘 기판 기반의 나노 ⅲ-ⅴ화합물 태양 전지의 제조 방법
Dey et al. Effect of Si incorporation to produce Ge-rich nc-SixGe1-x absorber layer for nc-Si solar cells
WO2013031665A1 (ja) 太陽電池および太陽電池装置
TWI407578B (zh) Chemical vapor deposition process
JP2013041955A (ja) 光電変換素子およびその製造方法
Ishak et al. Structural Properties Of P-Type Boron Doped Carbon Film From Hydrocarbon Palm Oil For Photovoltaic Heterojunction Solar Cell Device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080031464.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117029912

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 124/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13390530

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010003304

Country of ref document: DE

Ref document number: 1120100033048

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809799

Country of ref document: EP

Kind code of ref document: A1