WO2011016570A1 - プレコート金属板用下地処理剤、それを塗布した塗装下地処理金属板、及びそれを使用した塗膜の加工密着性に優れるプレコート金属板 - Google Patents

プレコート金属板用下地処理剤、それを塗布した塗装下地処理金属板、及びそれを使用した塗膜の加工密着性に優れるプレコート金属板 Download PDF

Info

Publication number
WO2011016570A1
WO2011016570A1 PCT/JP2010/063435 JP2010063435W WO2011016570A1 WO 2011016570 A1 WO2011016570 A1 WO 2011016570A1 JP 2010063435 W JP2010063435 W JP 2010063435W WO 2011016570 A1 WO2011016570 A1 WO 2011016570A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment agent
metal sheet
coated
agent
surface treatment
Prior art date
Application number
PCT/JP2010/063435
Other languages
English (en)
French (fr)
Inventor
博康 古川
浩平 植田
彰 高橋
広正 野村
芳夫 木全
康弘 木下
賢輔 水野
知義 小西
Original Assignee
新日本製鐵株式会社
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社, 日本パーカライジング株式会社 filed Critical 新日本製鐵株式会社
Priority to IN1356DEN2012 priority Critical patent/IN2012DN01356A/en
Priority to KR1020127002998A priority patent/KR101362990B1/ko
Priority to CN201080034443.2A priority patent/CN102471892B/zh
Priority to JP2011505715A priority patent/JP5858782B2/ja
Publication of WO2011016570A1 publication Critical patent/WO2011016570A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/51One specific pretreatment, e.g. phosphatation, chromatation, in combination with one specific coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds

Definitions

  • the present invention relates to a pretreatment metal plate pretreatment metal plate that does not contain chromium, which is considered to be toxic, a coated pretreatment metal plate coated with the same, and a precoat metal plate excellent in processing adhesion of a coating film using the pretreatment metal plate.
  • pre-coated metal sheets that have been pre-coated with colored organic films are used for processing without the need for painting.
  • the pre-coated metal plate is obtained by coating an organic film on a metal plate and a plated metal plate that have undergone a base treatment, and has characteristics that it has good workability and good corrosion resistance while having an aesthetic appearance.
  • Patent Document 1 discloses a technique for obtaining a pre-coated steel sheet excellent in workability, stain resistance, and hardness by defining the structure of the film.
  • Patent Document 2 discloses a precoated steel sheet having improved end face corrosion resistance by using a specific chromate treatment solution.
  • Patent Document 3 discloses a treatment technique using an aqueous solution containing thiourea and tannin or tannic acid.
  • Patent Document 4 discloses a technique for improving white rust resistance and paint adhesion by surface treatment with an aqueous solution containing tannic acid and a silane coupling agent. The required processing adhesion cannot be ensured.
  • Patent Document 5 discloses a pretreatment metal plate pretreatment agent that contains tannin or tannic acid, a silane coupling agent, and fine silica at the same time. It is offered to.
  • a treatment agent containing a polyester resin component in addition to the above essential components is also described, and it is explained that the addition of the polyester resin contributes to the improvement in processing adhesion of the precoated metal sheet.
  • JP-A-8-168723 Japanese Patent Laid-Open No. 3-100180 JP-A-53-9238 JP 59-116381 A JP 2001-89868 A
  • the present inventors have a treatment containing a polyester resin in addition to the essential components of Patent Document 5 (tannin or tannic acid, silane coupling agent, and fine silica)
  • a problem was encountered that precipitation occurred in the treatment agent during long-term use in a steady state.
  • the deposit deposited in the paint pan is scooped up by the roll coater together with the treatment agent and applied to the metal plate, or the treatment agent mixed with the precipitate is applied by spraying, so that the solid matter is removed from the metal plate. It adheres and the appearance is poor (commercial value is significantly impaired).
  • sticky precipitates adhere to the surface of the roll coater or cause clogging of the spray, so that it is necessary to frequently perform roll replacement and spray maintenance, and workability is significantly reduced.
  • the component ratio of the “supernatant” liquid (actual treatment agent) is greatly changed from that of the original treatment agent, and the original performance as a treatment agent cannot be exhibited.
  • An object of the present invention is to provide a pretreatment metal plate base treatment agent that can solve the above-described problems in the prior art. Another object of the present invention is that, in addition to tannin or tannic acid, a silane coupling agent, and fine silica, a polyester resin that contributes to an improvement in processing adhesion of the precoated metal sheet can be contained. It is an object of the present invention to provide a stable precoat metal plate surface treatment agent that does not cause precipitation in actual operation in a steady state over a long period of time. It is a further object of the present invention to provide a painted base metal sheet coated with such a treatment agent, and a precoated metal sheet excellent in processing adhesion of a coating film using the same.
  • the inventor of the present application combines a polyester resin having a specific solid component, a specific particle size, a glass transition temperature (Tg), and a hydroxyl value in water, It has been found that setting a specific pH range as the treatment agent is extremely effective in solving the above problems.
  • the present invention is based on the above findings, and more specifically, Polyester having a particle size of 50 to 150 nm, a glass transition temperature (Tg) of 0 to 30 ° C., and a hydroxyl value of 5 to 13 together with tannin or tannic acid, a silane coupling agent, and fine silica as solids in water
  • a pretreatment metal plate pretreatment agent comprising a resin and having a pH of 2.0 to 6.5 as a treatment agent.
  • the treatment agent described in Patent Document 5 containing a polyester resin that is described to contribute to improvement in processing adhesion of the precoated metal sheet.
  • the inventors of the present application who faced the problem that precipitation occurs in the treatment agent when used in a steady state for a long period of time when subjected to actual operation of pre-coated metal sheet production, have conducted extensive research and examination, and have Obtained knowledge.
  • Patent Document 5 In the production of a pre-coated metal plate, when using the surface treatment agent in a continuous line, it is common to circulate the treatment agent and apply it onto the metal plate with a roll coater or spray. Since the treatment agent of the above-mentioned prior art (Patent Document 5) exhibits an acidity of about pH 4, when the operation takes a long time, for example, when it is applied on a galvanized steel sheet, zinc is gradually eluted from the surface of the metal sheet. However, the zinc concentration in the circulating treatment agent increases.
  • the temperature of the metal plate at the time of entering the coating process is generally high, and the temperature of the treatment liquid gradually increases.
  • the treatment agent is applied and consumed on the metal plate at a constant rate, and a new treatment agent in an amount corresponding to the treatment agent is supplied to the circulation system. Therefore, when these are balanced, the contamination concentration and temperature of the metal in the treatment agent are It becomes a steady value.
  • the temperature is generally a maximum of 40 ° C.
  • the concentration of metal contamination in the case of zinc
  • the treatment agent in order not to cause precipitation when using a treatment agent containing a polyester resin, the treatment agent does not cause precipitation under the above-mentioned steady-state metal contamination or elevated temperature.
  • the present inventor has found that it is extremely important that is stable.
  • Precipitation in the treatment agent containing polyester causes metal ions eluted from the metal plate to have a coordinating ability such as a silane coupling agent or tannic acid in the treatment agent as the temperature rises in the presence of metal contamination.
  • the present inventor considered that it would be difficult to exist stably in the treating agent and precipitate together with the polyester resin. However, as the research progressed, the present inventor found that there is a difference in the likelihood of precipitation depending on the type of polyester resin.
  • the present inventor presumes the mechanism of precipitation generation in the treatment agent based on the combination of the above findings.
  • the silane coupling agent and tannic acid are highly reactive compounds, some of them react in the treatment agent to form a reaction product having poor solubility, which associates and precipitates as an aggregate.
  • the Zn ions and the reaction product react with each other, and the charge of the reaction product is further lost, so that the solubility further decreases and the occurrence of precipitation is promoted. Is done.
  • this reaction product is adsorbed on the hydrophobic part of the polyester resin emulsion by hydrophobic interaction, preventing the reaction products from aggregating and aggregating. Precipitation is suppressed.
  • the degree of precipitation suppression effect of the polyester resin depends on the compatibility of the reaction product with the polyester resin (ease of adsorption by hydrophobic interaction) and the stability of the polyester resin emulsion in the liquid.
  • the present inventor further accumulated verification experiments, and as a polyester resin, the inventor has a particle diameter of 50 to 150 nm, a glass transition temperature (Tg) of 0 to 30 ° C., a hydroxyl group. Based on such knowledge, the present invention having the above-described configuration was found to have a value of 5 to 13 and a pH of 2.0 to 6.5 as a treating agent. It came to complete the base coat agent for precoat metal plates.
  • the present invention can include, for example, the following aspects.
  • a pretreatment metal plate pretreatment agent comprising 13 polyester resin and having a pH of 2.0 to 6.5 as a treatment agent.
  • the solid content of the precoat metal sheet base treatment agent according to any one of (1) to (5) is 10 to 500 mg / m 2.
  • a pre-coated metal sheet comprising an upper film layer on the coated ground-treated metal sheet according to (6) or (7).
  • It has a coating layer containing a rust preventive pigment as a lower coating layer on the coated ground-treated metal plate according to (6) or (7), and further has an upper coating layer on the coating layer.
  • Pre-coated metal plate Pre-coated metal plate.
  • a polyester resin having a particle size of 50 to 150 nm, Tg of 0 to 30 ° C., and a hydroxyl value of 5 to 13 is contained.
  • the pretreatment metal plate surface treatment agent of the present invention uses a combination of tannin or tannic acid in combination with a silane coupling agent and fine silica, so that the surface treatment film has a performance comparable to that of a precoat metal plate subjected to a chromate surface treatment. It is possible to provide a precoated metal plate having the above-mentioned properties, and it is possible to produce a stable precoated metal plate for a long period of time by using the specific polyester resin as described above in combination.
  • the pretreatment metal plate surface treatment agent of the present invention has a particle size of 50 to 150 nm and a glass transition temperature (Tg) in water, in addition to tannin or tannic acid, a silane coupling agent, and fine silica as solids. It contains a polyester resin having a hydroxyl value of 5 to 13 at 0 to 30 ° C., and has a pH of 2.0 to 6.5 as a treating agent.
  • Tg glass transition temperature
  • the tannin or tannic acid, silane coupling agent, and fine silica used in the precoat metal plate surface treatment agent of the present invention may be those conventionally used in precoat metal plate surface treatment agents.
  • Tannin or tannic acid may be hydrolyzable tannin or condensed tannin, or a part of them may be decomposed. Tannin and tannic acid are not particularly limited, such as Hamametatannin, pentaploid tannin, gallic tannin, milobalan tannin, dibibi tannin, argaroviran tannin, valonia tannin, catechin, etc. From the viewpoint, “tannic acid: AL” (manufactured by Fuji Chemical Industry) is preferable.
  • silane coupling agent examples include ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltriethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldiethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -methacrylic Roxypropyltriethoxysilane, ⁇ -methacryloxypropylmethyldiethoxysilane, N- ⁇ - (N-vinylbenzylaminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (N-
  • silane coupling agent having a glycidyl ether group for example, ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -glycidoxypropyltriethoxysilane having a glycidyl ether group
  • Work adhesion is particularly improved.
  • a triethoxy type silane coupling agent is used, the storage stability of the base treatment material can be improved. This is thought to be because triethoxysilane is relatively stable in an aqueous solution and the polymerization rate is slow.
  • the mass concentration ratio of tannin or tannic acid in the treatment agent to the silane coupling agent is preferably 1:40 to 40: 1. If it deviates from this range, even when either component is large, the processing adhesion and rust preventive effect of the coating film are lowered.
  • the mass concentration ratio of tannin or tannic acid to the silane coupling agent is preferably 1:35 to 35: 1, more preferably 1:30 to 30: 1, and most preferably 1:20 to 20: 1.
  • fine silica is a general term for silica that has a fine particle size and can stably maintain a water dispersion state when dispersed in water.
  • the fine silica include “Snowtex N”, “Snowtex C”, “Snowtex UP”, “Snowtex PS” (all manufactured by Nissan Chemical Industries), “Adelite AT-20Q” (manufactured by Asahi Denka Kogyo) ) Or commercially available silica gel, or powdered silica such as Aerosil # 300 (manufactured by Nippon Aerosil Co., Ltd.) can be used.
  • the fine silica may be appropriately selected according to the required performance.
  • the storage stability of the base treatment agent can be improved. This is considered to be because the pH of the chemical solution can be adjusted to 4 or more, so that the reaction of the silane coupling agent having high reactivity at low pH can be suppressed.
  • the merit of using silica that is stable at a pH of 4 or more is storage stability. Therefore, there is no contradiction with setting the liquid to pH 2 to 6.5 for operational stability.
  • the total mass concentration of tannin or tannic acid and the silane coupling agent is preferably in the range of 1:10 to 20: 1 with respect to the mass concentration of fine silica in the treatment agent. If it is less than 1:10, the cohesive force of the ground treatment layer is reduced and the work adhesion of the coating film is lowered, and if it exceeds 20: 1, the work adhesion of the coating film is inferior.
  • the ratio of the total mass concentration of tannin or tannic acid and silane coupling agent to the mass concentration of fine silica is more preferably 2:10 to 15: 1, and most preferably 4:10 to 10: 1.
  • the polyester resin used in the pretreatment metal plate pretreatment agent of the present invention needs to have a particle size of 50 to 150 nm, a glass transition temperature (Tg) of 0 to 30 ° C., and a hydroxyl value of 5 to 13. Due to the presence of such a polyester resin in the base treatment agent, the silane coupling agent, which is a highly reactive compound, and a reaction product inferior in solubility resulting from the reaction of a part of tannic acid are associated with each other. Aggregation is prevented and precipitation is suppressed. The effect of suppressing the precipitation by the specific polyester resin having a particle diameter of 50 to 150 nm, a glass transition temperature (Tg) of 0 to 30 ° C.
  • the polyester resin emulsion particles are in the glass state, have firmness, and do not have fluidity in themselves. Therefore, even if emulsion particles collide with each other, they are not fused and stably dispersed. However, when the temperature reaches Tg or higher, the emulsion particles become rubbery or liquid, and when the emulsion particles collide, they are aggregated and fused. In particular, since there is evaporation of moisture on the surface of the treatment agent that has entered the paint pan, the emulsion concentrates and agglomerates (fuses) to solidify.
  • the emulsion particles have a charge on the surface, and the particles repel each other and are stably dispersed. However, this charge is neutralized by the Zn ions in the treatment agent, and the repulsive force is reduced, causing aggregation. , Easy to fuse. That is, the skinning phenomenon is likely to occur.
  • the particle diameter of the polyester resin is outside the proper range, the skinning phenomenon will occur. If the particle diameter is less than 50 nm, the number of adjacent particles increases, the viscosity is high, and the movement of the particles themselves becomes dull, so that they tend to aggregate, resulting in skinning. On the other hand, when the particle diameter exceeds 150 nm, the area of the particles exposed to the air layer is large at the outermost surface of the treatment liquid, and the evaporation of moisture is promoted at that portion, so that the particles easily aggregate and become skinned. . Similarly, as a result, the stability of the polyester resin in the treatment agent is lowered, and the above-described precipitation suppressing effect is lost, and precipitation is likely to occur.
  • the performance after film formation does not appear (the work adhesion of the film of the pre-coated metal plate is lower than that of the polyester resin having a Tg within the above preferred range).
  • Patent Document 5 describes that a pretreatment metal plate pretreatment agent containing polyester resin together with tannin or tannic acid, silane coupling agent, and fine silica is effective in improving the processing adhesion of the coating film. Nevertheless, when the present inventors have put such a treatment agent into actual operation, it has already been mentioned that, in the long-term use in a steady state, the problem of precipitation occurring in the treatment agent was encountered. That's right. At this time, the inventors of the present application used a polyester resin (Finetex ES-650 (manufactured by Dainippon Ink & Chemicals)) described in Examples of Patent Document 5.
  • a polyester resin Feinetex ES-650 (manufactured by Dainippon Ink & Chemicals)
  • the polyester resin had a particle diameter of 50 to 150 nm, Tg of 0 to 30 ° C. as described above, and It was found that a specific hydroxyl group having a hydroxyl value of 5 to 13 must be used.
  • the polyester resin (Finetex ES-650 (manufactured by Dainippon Ink and Chemicals)) of the example of Patent Document 5 was measured by the method described in this specification, the particle diameter was 300 nm, and the glass transition temperature ( Tg) was 40 to 50 ° C.
  • Patent Document 5 Since the example of Patent Document 5 was mainly focused on the verification of the adhesion of the coating film to the metal plate subjected to the ground treatment, although the "storage" stability of the treatment agent was confirmed, The presence or absence of precipitation that occurs in the treatment agent during long-term operation has not been confirmed. This indicates that at the time of filing of Patent Document 5, the phenomenon that precipitation occurs in the treatment agent during a long-term operation was not recognized.
  • the Tg of the polyester resin is more preferably 1 to 28 ° C., further preferably 3 to 25 ° C., and most preferably 15 to 25 ° C.
  • the improvement in the “storage” stability of the treatment agent described in Patent Document 5 is due to the use of a triethoxysilane type silane coupling agent or fine silica stable at pH 4 or higher.
  • the storage stability of the treatment agent depends on the reaction between the highly reactive components (silane coupling agent, fine silica, tannic acid) during storage of the treatment agent (before actual use as the treatment agent). Is. Accordingly, the storage stability of the treatment agent is a characteristic before the treatment agent is actually used.
  • the problem of precipitation that occurs when the treatment agent is used for a long time using the treatment agent, which is solved by the present invention is encountered during actual use of the treatment agent after storage. Sex is another dimension.
  • the hydroxyl value of the polyester resin when the hydroxyl value of the polyester resin is less than 5, the surface of the emulsion particles is insufficiently charged, and the stability (dispersibility) in the liquid is reduced, so that precipitation easily occurs. And the effect of sufficient precipitation suppression cannot be exhibited.
  • the hydroxyl value of the polyester resin is more than 13, hydrophobic interaction is difficult to obtain, so that the reaction product cannot be adapted (adsorbed) to the polyester resin, and precipitation occurs.
  • Any polyester resin can be used as the polyester resin in the precoat metal sheet surface treating agent of the present invention as long as the above-mentioned particle diameter, Tg and hydroxyl value conditions are satisfied.
  • a product satisfying the conditions can be selected from a series such as “Vaironal” manufactured by Toyobo, “Finetex” manufactured by Dainippon Ink & Chemicals, “NT” manufactured by Kao, and the like.
  • the mass concentration of the polyester resin in the treatment agent is preferably 0.1 to 10 times the total mass concentration of tannin or tannic acid and the silane coupling agent. If it is less than 0.1 times, the effect of adding a polyester resin is not observed, and if it exceeds 10 times, the work adhesion of the coating film is lowered. More preferably, it is 0.15 to 5 times, and most preferably 0.2 to 2 times.
  • the total mass concentration of tannin or tannic acid, silane coupling agent, fine silica, and polyester resin is preferably 10 to 200 g / L.
  • the total mass concentration is less than 10 g / L, it is difficult to obtain a desired adhesion amount.
  • the concentration is too high and the stability of the ground treatment agent (storage stability, storage and operation stability operation). (Stability) becomes inferior.
  • the pH of the ground treatment agent of the present invention is preferably 2.0 to 6.5, more preferably 3.0 to 6.0.
  • the pH is less than 2.0, the elution of Zn increases, and the Zn concentration in the treatment liquid increases, so that precipitation is likely to occur.
  • the neutral region exceeding 6.5 the stability of the fine particle silica is lowered and gelation is likely to occur.
  • the base treatment agent of the present invention desirably has an increase in pH of 1.5 or less when 100 ppm of zinc ions are mixed.
  • a treatment agent having a pH increase fluctuation of more than 1.5 when zinc ion is uniformly dissolved at 100 ppm is inferior in pH buffering capacity. Therefore, a local extreme pH increase is likely to occur in the treatment agent during operation. Often adversely affects time stability.
  • the mass concentration (TA) of tannin or tannic acid during treatment is 5 g / L or more. This is considered to be due to the pH buffering effect due to proton dissociation of tannin or tannic acid.
  • the presence or absence of precipitation during Zn contamination was determined by the following method.
  • a predetermined amount of zinc powder (particle size: about 0.3 to 1.5 mm (14 to 50 mesh ASTM) was added to the treatment liquid and stirred and dissolved at 40 ° C. for 3 hours to prepare a 100 ppm zinc solution.
  • 300 ml of this solution was placed in a plastic bottle with attached, and allowed to stand in a constant temperature bath at 40 ° C. for 3 days, then filtered through # 300 mesh to collect the precipitate, washed with pure water, and the precipitate was placed in an oven at 110 ° C. After sufficiently drying (approximately 2 hours), the weight was measured after returning to room temperature in a desiccator, and when the weight of the precipitate was less than 1 mg, it was determined that there was no precipitation.
  • Tg was measured by the DSC method.
  • a polyester resin is placed in a 50 mm ⁇ Teflon (registered trademark) petri dish. This is placed in an oven at 50 ° C. for 2 hours to evaporate water.
  • the sample is left for 24 hours in a vacuum desiccator to prepare a dry sample.
  • This sample is pulverized and about 10 mg is taken into an aluminum cup for a thermal analyzer.
  • about 10 mg is similarly sampled in an aluminum cup using alumina powder as a standard substance. This is set in a thermal analyzer and the measurement is started after cooling to ⁇ 50 ° C. The heating rate during this measurement was 20 ° C./min.
  • Plastics-Polyurethane raw material polyol test method-Part 1 Method for obtaining hydroxyl value, A-acetylation method.
  • the measurement sample used was a sample obtained by evaporating water at 50 ° C. in the same manner as the measurement of Tg, followed by drying for 24 hours in a vacuum desiccator. Further, the end point was determined by potentiometric titration (using AT420 manufactured by Kyoto Electronics Co., Ltd.), and the hydroxyl value was calculated by a predetermined calculation formula.
  • ⁇ Measurement method of particle diameter> Dilute with pure water so that the solid content of the polyester resin is 0.1%. About 500 g of this was put into a 1 L glass beaker, which was immersed in an ultrasonic cleaner (600 W, 40 kHz) and ultrasonically dispersed for 1 minute. This was carried out as a pretreatment for unraveling particles that were agglomerated as secondary particles. Using this as a measurement sample, the particle size was measured with a particle size distribution measuring device. The particle size was an average particle size calculated from the attached analysis software. Equipment used: Nikkiso Co., Ltd., Nanotrack UPA-EX150
  • the pH of the treatment agent was measured using a pH meter (Toa DKK Corporation, pH meter HM-30G).
  • the increase in pH when zinc ions were mixed at 100 ppm was measured by the following method. First, the initial pH of each treatment agent was measured with a pH meter. Thereafter, a predetermined amount of zinc powder (particle size: about 0.3 to 1.5 mm (14 to 50 mesh ASTM)) is added to each treatment agent, and stirred and dissolved at 40 ° C. for 3 hours to prepare a 100 ppm solution of zinc. The pH of this solution was measured with a pH meter. The initial value measured earlier was subtracted from this value to determine the increase in pH.
  • the coated surface-treated metal sheet of the present invention is characterized in that the surface-treating agent for a pre-coated metal sheet of the present invention is applied and dried on at least one surface.
  • a base treatment agent (chemical solution) is applied to the metal plate, heated and dried.
  • an acid, an alkali or the like may be added for pH adjustment within a range where the performance is not impaired.
  • the heating temperature is preferably 50 to 250 ° C. If it is less than 50 ° C., the evaporation rate of water is slow and sufficient film forming properties cannot be obtained, so that the rust prevention power is insufficient. If it exceeds 250 ° C., the organic tannic acid or the alkyl portion of the silane coupling agent is modified due to thermal decomposition or the like, and adhesion and corrosion resistance are reduced.
  • the heating temperature is more preferably 70 to 160 ° C.
  • the heating / drying method is not particularly limited. For example, hot air drying can be used, and in this case, drying for 1 second to 5 minutes is preferable.
  • the method for applying the surface treatment agent is not particularly limited, and generally known coating methods such as roll coating, air spray, airless spray, and dipping can be used.
  • the adhesion amount of the ground treatment agent of the present invention to the metal plate is preferably 10 to 500 mg / m 2 in terms of solid content. If it is less than 10 mg / m 2 , sufficient process adhesion is not ensured, and if it exceeds 500 mg / m 2 , the process adhesion decreases.
  • the pre-coated metal plate of the present invention is characterized in that it has an upper film layer on the coated substrate-treated metal plate of the present invention, on which the surface treatment agent of the present invention has been applied and dried on at least one surface.
  • the base resin of the upper film layer that is coated on the base treatment layer with the precoated metal plate of the present invention may be in any form such as water, solvent, and powder.
  • resins such as polyacrylic resins, polyolefin resins, polyurethane resins, epoxy resins, polyester resins, polybutyral resins, melamine resins, etc. are used as they are or in combination. be able to.
  • a color pigment may be added to the upper coating layer.
  • the color pigment include titanium oxide (TiO 2 ), zinc oxide (ZnO), zirconium oxide (ZrO 2 ), calcium carbonate (CaCO 3 ), barium sulfate (BaSO 4 ), alumina (Al 2 O 3 ), kaolin clay, Generally known color pigments such as inorganic pigments such as carbon black and iron oxide (Fe 2 O 3 , Fe 3 O 4 ) and organic pigments can be used.
  • a rust preventive pigment may be added to the upper coating layer as necessary.
  • the rust preventive pigment generally known ones such as (1) phosphate rust preventive pigments such as zinc phosphate, iron phosphate, and aluminum phosphate, (2) calcium molybdate, aluminum molybdate, and barium molybdate. And (3) vanadium rust preventive pigments such as vanadium oxide, (4) finely divided silica such as water-dispersible silica and fumed silica, and the like.
  • Chromate anticorrosive pigments such as strontium chromate, zinc chromate, calcium chromate, potassium chromate and barium chromate are environmentally toxic and should not be used.
  • the thickness of the upper film layer containing the color pigment and the rust preventive pigment is preferably 1 to 25 ⁇ m. If it is less than 1 ⁇ m, the corrosion resistance of the pre-coated metal plate is deteriorated, and if it exceeds 25 ⁇ m, the processability of the coating film is inferior.
  • the upper layer film is an organic or inorganic film such as a lubrication film or an anti-fingerprint film, and is used as a surface-treated metal plate for so-called post-coating or applications where no further coating is performed, Accordingly, the kind and film thickness of the upper film may be appropriately selected, and the film thickness is not particularly limited to 1 to 25 ⁇ m.
  • the upper layer film can be applied by a generally known application method such as roll coating, curtain flow coating, air spraying, airless spraying, dipping, bar coating, or brush coating.
  • a coating layer to which a rust preventive pigment is added can be provided as a lower coating layer between the base treatment layer and the upper coating layer.
  • the base resin for the lower coating layer may be in any form such as water, solvent, and powder. It may also be an adhesive layer.
  • resin types generally known ones such as polyacrylic resins, polyolefin resins, polyurethane resins, epoxy resins, polyester resins, polybutyral resins, melamine resins, etc. are used as they are or in combination. can do.
  • Arbitrary pigments can be used as the anticorrosive pigment, but generally known pigments such as (1) phosphoric acid-based anticorrosive pigments such as zinc phosphate, iron phosphate and aluminum phosphate, (2) calcium molybdate, Molybdate antirust pigments such as aluminum molybdate and barium molybdate, (3) vanadium antirust pigments such as vanadium oxide, (4) fine silica such as water-dispersed silica and fumed silica, etc. can be used. .
  • Chromate anticorrosive pigments such as strontium chromate, zinc chromate, calcium chromate, potassium chromate and barium chromate are environmentally toxic and should not be used.
  • the addition amount of the rust preventive pigment is preferably 1 to 40% by weight. If it is less than 1% by weight, the corrosion resistance effect is small, and if it exceeds 40% by weight, the processability of the coating film is lowered, which is inappropriate.
  • the thickness of the lower coating layer containing the rust preventive pigment is preferably 1 to 25 ⁇ m. When it is less than 1 ⁇ m, the rust prevention effect is insufficient, and when it exceeds 25 ⁇ m, the processability of the coating film is inferior.
  • the coating layer containing the rust preventive pigment can be applied by generally known coating methods such as roll coating, curtain flow coating, air spray, airless spray, dipping, bar coating, brush coating, and the like.
  • test plate 1.1 Test material, electrogalvanized steel sheet (EG) Plate thickness 0.6mm, zinc adhesion amount 20g / m 2 per one side (double-sided plating) ⁇ Hot galvanized steel sheet (GI) Plate thickness 0.6mm, zinc adhesion amount 60g / m 2 per side (double-sided plating) ⁇ Cold rolled steel sheet (cold rolled) Plate thickness 0.6mm
  • test material was immersed in an aqueous solution having a concentration of 20 g / L and a temperature of 60 ° C. for 10 seconds using an alkaline degreasing agent CL-N364S (manufactured by Nihon Parkerizing), washed with pure water, and then dried. .
  • CL-N364S manufactured by Nihon Parkerizing
  • Ground treatment / treatment with ground treatment agent (Examples 1 to 96, Comparative Examples 1 to 61)
  • a ground treatment agent having a composition (content is in g / L unit) shown in the column of “Primary treatment layer” in Tables 1 to 5 is applied to the test material so as to have a predetermined film thickness using a roll coater. Drying was performed in a drying furnace so that the ultimate plate temperature was 70 ° C, 150 ° C, and 220 ° C.
  • the solid content of each surface treatment agent the following were used as tannic acid, silane coupling agent, and silica.
  • Silica ST-N Snowtex N (manufactured by Nissan Chemical Industries) Aerosil: Aerosil # 300 (Nippon Aerosil) ST-C: Snowtex C (manufactured by Nissan Chemical Industries)
  • polyester resin those having Tg and hydroxyl value shown in Tables 1 to 5 were used.
  • ⁇ Coating chromate treatment (Comparative Examples 36-38) ZM-1300AN (manufactured by Nihon Parkerizing Co., Ltd.) as a coating chromate agent is applied to the test material with a roll coater so that the Cr adhesion amount is 40 mg / m 2, and the ultimate plate temperature is 70 ° C. in a hot air drying furnace. Dried.
  • Electrolytic chromate treatment (Comparative Example 39) In the bath of 50 g / L of chromic acid and 0.3 g / L of sulfuric acid, the sample was subjected to electrolytic chromate treatment by applying an electric amount so that the Cr adhesion amount was 40 mg / m 2 at a current density of 10 A / dm 2. Then, it was washed with water and dried in a hot air drying furnace so that the ultimate plate temperature was 80 ° C.
  • Polyester A Nippon Paint P641 primer paint zinc phosphite is used as a rust preventive pigment.
  • Polyester B P641 primer paint made by Nippon Paint, V / P (vanadate / phosphoric acid) system is used as a rust preventive pigment.
  • Polyester C P641 primer paint made by Nippon Paint, Mo-based is used as a rust preventive pigment.
  • Polyester D P641 primer paint made by Nippon Paint, calcium silicate system is used as a rust preventive pigment.
  • -Urethane Nippon Paint P108 primer paint zinc phosphite is used as a rust preventive pigment.
  • Epoxy Nippon Paint's P304 primer paint zinc phosphite is used as a rust preventive pigment.
  • Paint film processing adhesion test 1 The plate after painting is put in a 1 mm square grid with a cutter knife on the painted surface and extruded 7 mm with an Erichsen tester so that the painted surface becomes convex, and then described in 8.2 and 8.5 of JIS K 5400 The tape peeling test was performed according to the method. In this test, the tape peeling test was carried out twice at the same place (hereinafter referred to as “twice tape peeling”). Tape peeling is evaluated according to the example of evaluation described in 8.5 of JIS K 5400. ⁇ when the score is 10 points, ⁇ when the score is 8 or more and less than 10 points, ⁇ when the score is 6 or more and less than 8 points, 6 When it was less than the point, it was evaluated as x.
  • the evaluation of the coating film remaining state after tape peeling is ⁇ when the coating film remains on the plated steel sheet without peeling at all, and when the coating film is partially peeled off, The case where the coating film was partly severely peeled was evaluated as ⁇ , and the case where peeling of the coating film was observed over almost the entire bent portion was evaluated as x. Further, the coated steel sheet was processed by 0T, immersed in boiling water for 1 hour, taken out and left for 24 hours, and then the tape was peeled off.
  • Evaluation of the coating film remaining state is ⁇ when the coating film remains on the plated steel sheet without peeling at all, ⁇ when the coating film is partially peeled off, and the coating film is partially The case where it peeled violently was evaluated as ⁇ , and the case where peeling of the coating film was observed over almost the entire bent portion was evaluated as x.
  • a salt spray test was performed on the coated plate by the method described in 9.1 of JIS K 5400.
  • the test time was 240 h for the electrogalvanized steel sheet and 360 h for the hot dip galvanized steel sheet.
  • the evaluation of the coating film of the crosscut part is ⁇ when the maximum swelling width on one side of the crosscut is less than 1 mm, ⁇ when it is 2 mm or more and less than 3 mm, ⁇ when it is 3 mm or more and less than 5 mm, and ⁇ when it is 5 mm or more. evaluated.
  • the above-mentioned salt spray test was also performed on the flat plate prepared so that the return (burr) at the time of cutting was on the evaluation surface side of the coated steel plate (so as to be an upper burr), and the swelling width of the coating film from the end surface Is less than 2 mm, ⁇ when 2 mm or more and less than 3 mm, ⁇ when 3 mm or more and less than 5 mm, and ⁇ when it is 5 mm or more.
  • the corrosion resistance test was not performed when the original plate was a cold-rolled steel plate.
  • Zinc powder (particle size: about 0.3 to 1.5 mm (14 to 50 mesh ASTM)) was added to the solutions of the respective base treatment agents of Examples and Comparative Examples so as to have a concentration of 100 ppm. Then, 300 ml of the solution was put into a 500 ml plastic container with a lid, and allowed to stand for 3 days in a thermostatic bath at 40 ° C. The solution taken out from the thermostatic bath was filtered through a # 300 mesh, and a precipitate was obtained. After washing with pure water, the precipitate was thoroughly dried in an oven at 110 ° C. (approximately 2 hours) and then returned to room temperature in a desiccator, and then the weight was measured.
  • the solution was filtered through # 300 mesh to collect the precipitate, washed with pure water, The precipitate was fully dried (approximately 2 hours) in an oven at 110 ° C. and then returned to room temperature in a desiccator, and then the weight was measured.If the weight of the precipitate was less than 1 mg, it was judged that there was no precipitation.
  • when the solution after standing for 3 days in a thermostatic bath is not visually abnormal and there is no precipitation, ⁇ , when the solution is slightly turbid, but when there is no precipitation, ⁇ , precipitation less than 100 mg ⁇ if there is It was evaluated as ⁇ in the case where 100mg or more settling occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

水中に、固形分として、タンニン又はタンニン酸、シランカップリング剤、及び微粒シリカとともに、粒子径が50~150nm、ガラス転移温度(Tg)が0~30℃で且つ水酸基価が5~13のポリエステル樹脂を含有し、処理剤としてのpHが2.0~6.5であるプレコート金属板用下地処理剤。プレコート金属板生産の長期にわたる定常状態での実操業において沈殿が発生しない、安定なプレコート金属板用下地処理剤が提供される。

Description

プレコート金属板用下地処理剤、それを塗布した塗装下地処理金属板、及びそれを使用した塗膜の加工密着性に優れるプレコート金属板
 本発明は、有毒とされているクロムを含まないプレコート金属板用下地処理剤、それを塗布した塗装下地処理金属板、及びそれを使用した塗膜の加工密着性に優れるプレコート金属板に関する。
 加工後に塗装されていた従来のポスト塗装製品に代わって、特に家電、建材、自動車などの産業分野では、着色した有機皮膜で予め被覆したプレコート金属板を使用して、塗装を必要とせずに加工するだけ製品を製造する技術が普及してきている。プレコート金属板は、下地処理を施した金属板及びめっき金属板に有機皮膜を被覆したもので、美観を有しながら、加工性を有し、耐食性が良好であるという特性を有している。例えば、特許文献1には、皮膜の構造を規定することによって加工性と耐汚染性、硬度に優れたプレコート鋼板を得る技術が開示されている。特許文献2には、特定のクロメート処理液を用いることで端面耐食性を改善したプレコート鋼板が開示されている。
 これらのプレコート鋼板は、クロメート処理、有機皮膜の複合効果によって耐食性とともに、加工性、塗料密着性を有し、加工後塗装を省略して生産性の向上や品質の改良を目的としている。しかしながら、クロメート処理皮膜及びクロム系防錆顔料を含む有機皮膜から溶出する可能性のある6価のクロムの毒性問題から、ノンクロム防錆処理、ノンクロム有機皮膜に対する要望が高まっている。クロメート処理に代わる非クロム系防錆処理方法として、特許文献3には、チオ尿素とタンニン又はタンニン酸を含有する水溶液による処理技術が開示されているが、この防錆処理方法を用いてプレコート金属板を作製した場合、加工形状の厳しい家電用途、自動車用途などに適用すると、加工部での塗膜密着性が大きく劣る問題点がある。特許文献4には、タンニン酸とシランカップリング剤を含有する水溶液で表面処理することで、耐白錆性及び塗料密着性を向上させる技術が開示されているが、この方法でもプレコート金属板に要求される加工密着性を確保することはできない。
 特許文献5には、タンニン又はタンニン酸、シランカップリング剤、及び微粒シリカを同時に含有するプレコート金属板の下地処理剤が開示され、この下地処理剤は加工密着性を満足するものとして、現在実用に供されている。この特許文献には、上記の必須成分以外にポリエステル樹脂成分を含有する処理剤も記載され、ポリエステル樹脂の添加は、プレコート金属板の加工密着性の向上に寄与すると説明されている。
特開平8−168723号公報 特開平3−100180号公報 特開昭53−9238号公報 特開昭59−116381号公報 特開2001−89868号公報
 プレコート金属板の塗膜加工密着性の向上を目指して、本願発明者らが特許文献5の必須成分(タンニン又はタンニン酸、シランカップリング剤、及び微粒シリカ)に加えてポリエステル樹脂を含有する処理剤をプレコート金属板生産の実操業に供したところ、定常状態での長期の使用において、処理剤中に沈殿が発生するという問題に遭遇した。
 定常状態で処理剤に沈殿が発生すると、操業上種々の問題が生じる。まず、塗料パン中に堆積した沈殿物を処理剤とともにロールコーターがすくい上げて金属板上に塗布したり、沈殿物が混入した処理剤をスプレー塗布することにより、固形物が金属板上に異物となって付着し、外観不良となる(商品価値が著しく損なわれる)。また、粘着性の沈殿物がロールコーター表面に付着したり、スプレーの目詰まりを発生したりすることで、頻繁にロール交換やスプレーのメンテナンスを行う必要が生じ、作業性が著しく低下する。更に、沈殿が激しい場合には「上澄み」液(実際の処理剤)の構成成分比率が本来の処理剤のそれから大きく変化してしまい、処理剤としての本来の性能が発現できない事態に至る。
 本発明の目的は、上述した先行技術における問題点を解消することができる、プレコート金属板用下地処理剤を提供することにある。
 本発明の他の目的は、タンニン又はタンニン酸、シランカップリング剤、及び微粒シリカに加えて、プレコート金属板の加工密着性の向上に寄与するポリエステル樹脂を含有しても、プレコート金属板生産の長期にわたる定常状態での実操業において沈殿が発生しない、安定なプレコート金属板用下地処理剤を提供することにある。
 本発明の更なる目的は、このような処理剤を塗布した塗装下地処理金属板、及びそれを使用した塗膜の加工密着性に優れるプレコート金属板を提供することにある。
 本願発明者は、鋭意研究と検討の結果、水中において特定の固型分と、特定の粒子径、ガラス転移温度(Tg)、および水酸基価を有するポリエステル樹脂を組み合わせて処理剤を構成し、しかも該処理剤として特定のpH範囲に設定することが、上記課題の解決に極めて効果的なことを見出した。
 本発明は上記知見に基づくものであり、より詳しくは、
 水中に、固形分として、タンニン又はタンニン酸、シランカップリング剤、及び微粒シリカとともに、粒子径が50~150nm、ガラス転移温度(Tg)が0~30℃で且つ水酸基価が5~13のポリエステル樹脂を含有し、処理剤としてのpHが2.0~6.5であることを特徴とするプレコート金属板用下地処理剤である。
 本発明において、上記した優れた効果が得られる理由は、本発明者の知見によれば、以下のように推定される。
 すなわち、タンニン又はタンニン酸、シランカップリング剤、及び微粒シリカに加えて、プレコート金属板の加工密着性の向上に寄与すると説明されたポリエステル樹脂を含有する、特許文献5に記載された処理剤をプレコート金属板生産の実操業に供したところ、長期にわたる定常状態での使用において処理剤中に沈殿が発生するという問題に直面した本願発明者らは、鋭意研究と検討を重ね、以下のような知見を得た。
 プレコート金属板の製造に当たり、下地処理剤を連続ラインで使用する際には、処理剤を循環させ、ロールコーターやスプレーにて金属板上に塗布するのが一般的である。上述の従来技術(特許文献5)の処理剤はpHが4程度の酸性を示すため、操業が長時間にわたると、例えば亜鉛めっき鋼板上に塗布する場合には亜鉛が金属板表面から少しずつ溶出し、循環している処理剤中の亜鉛濃度が上昇していく。また、金属板は通常、脱脂・水洗・熱風乾燥工程を経た直後に下地処理剤の塗布工程に至るため、塗布工程進入時の金属板の温度は概ね高く、処理液剤の温度は徐々に上昇していく。処理剤は一定の速度で金属板上に塗布・消費され、それに見合った量の新しい処理剤が循環系に供給されるため、これらが釣り合ったところで、処理剤中の金属のコンタミ濃度や温度は定常値となる。操業条件にもよるが、定常状態において、温度は概ね最大40℃、金属コンタミ(亜鉛の場合)の濃度は概ね最大100ppmとなる。上述の知見に基づき、ポリエステル樹脂を含有する処理剤の使用時に沈殿を生じさせないようにするには、上述の定常状態程度の金属コンタミや上昇した温度のもとで沈殿を発生せず、処理剤が安定であることが極めて重要であることを、本発明者は見出した。
 また、上述のような長時間にわたる操業において、亜鉛はイオンとなって処理在中に溶解していく。亜鉛のイオン化に処理在中の水素イオンが消費されるため、亜鉛イオン濃度の上昇に伴い処理剤のpHは徐々に上昇する傾向にある。pHの値が所定の値を超えると、後述するように沈殿を生じ操業安定性に悪影響を及ぼす原因のひとつとなるため、pHが容易には変動しにくい処理剤であることが必要である。すなわち、ポリエステル樹脂を含有する処理剤の使用時に沈殿を生じさせないようにするには、上述の定常状態程度の金属コンタミではpHの変動が充分に小さいことが重要であることも、本発明者は見出した。
 ポリエステルを含有する処理剤における沈殿は、金属コンタミの存在下で高温になるに従い、処理剤中のシランカップリング剤やタンニン酸等の配位能を有する構成成分が、金属板から溶出した金属イオンと反応し、処理剤中に安定に存在し難くなり、ポリエステル樹脂とともに沈殿してくるものと、本発明者は考えた。ところが、研究を進めるにつれて、ポリエステル樹脂の種類によって沈殿の発生しやすさに差があることを、本発明者は見出した。
 このようにポリエステル樹脂の種類により沈殿の発生しやすさに差が現れる原因に関し、処理剤における沈殿発生のメカニズムについて、上記した各知見の組み合わせに基づき、本発明者は以下のように推定する。
 シランカップリング剤及びタンニン酸は反応性の高い化合物であるため、処理剤中でそれらの一部が反応して溶解性に劣る反応生成物となり、これが会合し凝集物となって沈殿する。処理剤中に溶出したZnイオンが存在する場合には、Znイオンと上記反応生成物が反応し、反応生成物の電荷が更に失われる方向に進むため、溶解度が更に低下し沈殿の発生が助長される。しかし、この系に特定のポリエステル樹脂が存在すると、この反応生成物がポリエステル樹脂エマルションの疎水性部分に疎水性相互作用にて吸着し、反応生成物どうしが会合して凝集するのを妨げるため、沈殿が抑制される。ポリエステル樹脂による沈殿抑制効果の程度は、反応生成物のポリエステル樹脂とのなじみのよさ(疎水性相互作用による吸着のしやすさ)、及びポリエステル樹脂エマルションの液中での安定性に依存すると、本発明者は推定する。すなわち、このようなメカニズムに基づき、本発明のプレコート金属板用下地処理剤は上述した優れた効果を発揮するものと推定される。
 上述した本発明者の種々の知見に基づき、更に検証実験を積み重ねることにより、本発明者は、ポリエステル樹脂としては、粒子径が50~150nm、ガラス転移温度(Tg)が0~30℃、水酸基価が5~13のものが望ましく、かつ処理剤としてのpHが2.0~6.5であることが望ましいということを突き止め、このような知見に基づいて、上述した構成を有する本発明のプレコート金属板用下地処理剤を完成するに至った。
 本発明は、例えば、以下の態様を含むことができる。
 (1)水中に、固形分として、タンニン又はタンニン酸、シランカップリング剤、及び微粒シリカとともに、粒子径が50~150nm、ガラス転移温度(Tg)が0~30℃で且つ水酸基価が5~13のポリエステル樹脂を含有し、処理剤としてのpHが2.0~6.5であることを特徴とするプレコート金属板用下地処理剤。
 (2)処理剤中のタンニン又はタンニン酸の質量濃度をTA、シランカップリング剤の質量濃度をSC、微粒シリカの質量濃度をSI、ポリエステル樹脂の質量濃度をPRとしたとき、TA:SC=1:40~40:1、(TA+SC):SI=1:10~20:1、(TA+SC):PR=1:10~10:1を同時に満たし、かつ各成分の合計の濃度(TA+SC+SI+PR)が10~200g/Lであることを特徴とする、上記(1)に記載のプレコート金属板用下地処理剤。
 (3)シランカップリング剤がグリシジルエーテル基を有することを特徴とする、上記(1)又は(2)に記載のプレコート金属板用下地処理剤。
 (4)亜鉛イオンが100ppm混入したときに沈殿を生じないことを特徴とする、上記(1)~(3)のいずれか一つに記載のプレコート金属板用下地処理剤。
 (5)亜鉛イオンが100ppm混入したときのpHの上昇変動が1.5以下であることを特徴とする、上記(1)~(4)のいずれか一つに記載のプレコート金属板用下地処理剤。
 (6)上記(1)~(5)のいずれか一つに記載のプレコート金属板用下地処理剤が、少なくとも片面の表面に塗布、乾燥されていることを特徴とする塗装下地処理金属板。
 (7)上記(1)~(5)のいずれか一つに記載のプレコート金属板用下地処理剤の固形分の付着量が10~500mg/mであることを特徴とする、上記(6)に記載の塗装下地処理金属板。
 (8)上記(6)又は(7)に記載の塗装下地処理金属板の上に上層皮膜層を有することを特徴とするプレコート金属板。
 (9)上記(6)又は(7)に記載の塗装下地処理金属板の上に防錆顔料を含む皮膜層を下層皮膜層として有し、更にその上に上層皮膜層を有することを特徴とするプレコート金属板。
 本発明によれば、タンニン又はタンニン酸、シランカップリング剤、及び微粒シリカに加えて、粒子径が50~150nm、Tgが0~30℃で且つ水酸基価が5~13のポリエステル樹脂を含有するようにすることによって、プレコート金属板生産の長期にわたる定常状態での実操業において沈殿が発生しない、安定なプレコート金属板用下地処理剤を提供することができる。
 本発明のプレコート金属板用下地処理剤は、タンニン又はタンニン酸にシランカップリング剤及び微粒シリカを組み合わせて使用することにより、クロメート下地処理したプレコート金属板と比べて遜色のない性能の下地処理膜を有するプレコート金属板の提供を可能にするとともに、上記のとおりの特定のポリエステル樹脂を併用することによって、長期間の安定したプレコート金属版の製造を可能にする。
 本発明のプレコート金属板用下地処理剤は、水中に、固形分として、タンニン又はタンニン酸、シランカップリング剤、及び微粒シリカに加えて、粒子径が50~150nm、ガラス転移温度(Tg)が0~30℃で且つ水酸基価が5~13のポリエステル樹脂を含有し、処理剤としてのpHが2.0~6.5であることを特徴とする。
 本発明のプレコート金属板用下地処理剤で使用するタンニン又はタンニン酸、シランカップリング剤、及び微粒シリカは、従来からプレコート金属板用下地処理剤で普通に用いられているものでよい。
 タンニン又はタンニン酸は、加水分解できるタンニンでも縮合タンニンでもよく、これらの一部が分解されたものでもよい。タンニン及びタンニン酸は、ハマメタタンニン、五倍子タンニン、没食子タンニン、ミロバランのタンニン、ジビジビのタンニン、アルガロビラのタンニン、バロニアのタンニン、カテキンなど特に限定するものではないが、塗膜の加工密着性向上の観点から、「タンニン酸:AL」(富士化学工業製)が好ましい。
 シランカップリング剤は、例えば、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−(2−アミノエチル)アミノプロピルトリエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジエトキシシラン、γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリエトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、ビニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルメチルジメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ヘキサメチルジシラザン、γ−アニリノプロピルトリメトキシシラン、γ−アニリノプロピルメチルジメトキシシラン、γ−アニリノプロピルトリエトキシシラン、γ−アニリノプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、オクタデシルジメチル〔3−(トリメトキシシリル)プロピル〕アンモニウムクロライド、オクタデシルジメチル〔3−(メチルジメトキシシリル)プロピル〕アンモニウムクロライド、オクタデシルジメチル〔3−(トリエトキシシリル)プロピル〕アンモニウムクロライド、オクタデシルジメチル〔3−(メチルジエトキシシリル)プロピル〕アンモニウムクロライド、γ−クロロプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシランなどを挙げることができるが、グリシジルエーテル基を有するシランカップリング剤、例えば、グリシジルエーテル基を有するγ−グリシドキシプロピルトリメトキシシラン及びγ−グリシドキシプロピルトリエトキシシランを使用すると、塗膜の加工密着性は特に向上する。更に、トリエトキシタイプのシランカップリング剤を使用すると、下地処理材の保存安定性を向上させることができる。これは、トリエトキシシランが水溶液中で比較的安定であり、重合速度が遅いためであると考えられる。
 処理剤中のタンニン又はタンニン酸とシランカップリング剤の質量濃度比は、1:40~40:1が好適である。この範囲を逸脱すると、どちらの成分が多い場合でも、塗膜の加工密着性や防錆効果が低下する。タンニン又はタンニン酸とシランカップリング剤の質量濃度比は、好ましくは1:35~35:1、より好ましくは1:30~30:1、最も好ましくは1:20~20:1である。
 本発明において微粒シリカとは、微細な粒径を持つために水中に分散させた場合に安定に水分散状態を維持できるシリカを総称して言うものである。微粒シリカとしては、例えば、「スノーテックスN」、「スノーテックスC」、「スノーテックスUP」、「スノーテックスPS」(いずれも日産化学工業製)、「アデライトAT−20Q」(旭電化工業製)など市販のシリカゲル、又はアエロジル#300(日本アエロジル製)などの粉末シリカ、などを用いることができる。微粒シリカは、必要とされる性能に応じて、適宜選択すればよい。微粒シリカとして、「スノーテックスC」のようにpHが4以上でも安定に分散できるものを使用すると、下地処理剤の保存安定性を向上させることができる。これは、薬液のpHを4以上に調整することができるため、低pHで反応性の高いシランカップリング剤の反応を抑制できるためであると考えられる。
 ここに、本発明においては、pHが4以上で安定なシリカ利用のメリットは保存安定性である。よって、操業安定性のために液をpH2~6.5にすることと矛盾はしない。
 処理剤中の微粒シリカの質量濃度に対し、タンニン又はタンニン酸及びシランカップリング剤の合計の質量濃度は、1:10~20:1の範囲にあるのが好適である。1:10未満では、下地処理層の凝集力が低下して塗膜の加工密着性が低下し、20:1を超えると、塗膜の加工密着性が劣る。微粒シリカの質量濃度に対するタンニン又はタンニン酸及びシランカップリング剤の合計の質量濃度の比は、2:10~15:1がより好ましく、4:10~10:1が最も好ましい。
 本発明のプレコート金属板用下地処理剤で使用するポリエステル樹脂は、粒子径が50~150nm、ガラス転移温度(Tg)が0~30℃で且つ水酸基価が5~13である必要がある。このようなポリエステル樹脂が下地処理剤中に存在することによって、反応性の高い化合物であるシランカップリング剤及びタンニン酸の一部が反応して生じた溶解性に劣る反応生成物どうしが会合して凝集するのが妨げられ、沈殿の発生が抑制される。粒子径が50~150nm、ガラス転移温度(Tg)が0~30℃で且つ水酸基価が5~13である特定のポリエステル樹脂による、この沈殿発生抑制効果は、シランカップリング剤とタンニン酸との反応生成物がポリエステル樹脂エマルションの疎水性部分に疎水性相互作用により吸着して、反応生成物どうしが会合して凝集するのを妨げるためと考えられる。
 先ず、ポリエステル樹脂のTgが0℃未満では、皮張り現象が起こることでポリエステル樹脂の処理剤中での安定性が低下し、結果として上述の沈殿抑制効果が失われ沈殿が生じやすくなる。
 ここで、皮張り現象について説明する。ガラス転移温度(Tg)以下ではポリエステル樹脂エマルション粒子はガラス状態であり、堅さをもち、それ自体に流動性がない。そのため、エマルション粒子どうしがぶつかったとしても、融着することはなく安定に分散している。しかし、Tg以上の温度になるとエマルション粒子はゴム状態あるいは液体となり、エマルション粒子どうしがぶつかれば凝集し融着する。特に、塗料パンに入った処理剤の表面では水分の蒸発があるため、エマルションが濃縮し、そして凝集(融着)して、凝固していく。その結果、処理剤の液表面にポリエステル樹脂が皮を張ったような状況(皮張り現象)になってしまう。更に、エマルション粒子は表面に電荷をもっており、粒子どうしが反発しあって安定に分散しているが、処理剤中のZnイオンにより、この電荷が中和され、反発する力が減少して、凝集、融着し易くなる。つまり、皮張り現象が起こり易くなるのである。
 ポリエステル樹脂の粒子径が適正範囲外であるとやはり皮張り現象が起こる。粒子径が50nm未満では、隣り合う粒子の数が多くなるため粘度が高く、粒子自体の動きが鈍くなるため凝集し易く、その結果、皮張りとなる。一方、粒子径が150nmを超えると処理液の最表面では空気層に曝される粒子の面積が大きく、その部分では水分の蒸発が促進されるため、結果として凝集し易くなり、皮張りとなる。結果として同様に、ポリエステル樹脂の処理剤中での安定性が低下し、上述の沈殿抑制効果が失われ沈殿が生じやすくなる。
 ポリエステル樹脂のTgが30℃超では、成膜後の性能が出ない(プレコート金属板の皮膜の加工密着性が、Tgが上記の好ましい範囲内にあるポリエステル樹脂の場合に比べて低下する)。
 特許文献5には、タンニン又はタンニン酸、シランカップリング剤、及び微粒シリカとともに、ポリエスエステル樹脂を含有するプレコート金属板用下地処理剤が、塗膜の加工密着性向上に有効と記載されているにもかかわらず、本願発明者らがそのような処理剤を実操業に供したところ、定常状態での長期の使用において、処理剤中に沈殿が発生するという問題に直面したことは、既に述べたとおりである。このとき、本願発明者らは、特許文献5の実施例に記載されたポリエステル樹脂(ファインテックスES−650(大日本インキ化学工業製))を使用した。
 その後、本願発明者らは、上記問題の解決を目指して種々の実験を試み、検討を重ねた結果、ポリエステル樹脂としては、上述のとおり粒子径が50~150nm、Tgが0~30℃で且つ水酸基価が5~13の特定のものを使用しなければならないことを突き止めた。ちなみに、特許文献5の実施例のポリエステル樹脂(ファインテックスES−650(大日本インキ化学工業製))を本明細書中に記載した方法にて測定したところ、粒子径は300nm、ガラス転移温度(Tg)は40~50℃であった。特許文献5の実施例は、下地処理した金属板への塗装皮膜の密着性の検証に主眼を置いたものであったことから、処理剤の「保存」安定性までは確認しているものの、長期の操業で処理剤中に生じる沈殿の有無までは確認されていない。これは、特許文献5の出願時には長期の操業で処理剤中に沈殿が生じる現象が認識されていなかったことを示している。
 本願発明において、ポリエステル樹脂のTgは、より好ましくは1~28℃、更に好ましくは3~25℃、最も好ましくは15~25℃である。
 なお、特許文献5に記載された処理剤の「保存」安定性の向上は、トリエトキシシラン型のシランカップリング剤や、pH4以上で安定な微粒シリカを使用することによるものである。処理剤の保存安定性は、処理剤の保存時(処理剤として実際に使用する前)における、反応性の高い構成成分(シランカップリング剤、微粒シリカ、タンニン酸)どうしの反応に左右されるものである。従って、処理剤の保存安定性とは、処理剤の実使用以前の特性である。それに対し、本発明が解決を図った、処理剤を使用して長期間操業する際に発生する沈殿の問題は、保存後の処理剤の実使用時に遭遇するものであり、処理剤の保存安定性とは別次元の問題である。
 本発明のプレコート金属板用下地処理剤では、ポリエステル樹脂の水酸基価が5未満であると、エマルション粒子表面の電荷が不足し、液中での安定性(分散性)が低下するため容易に沈殿を生じてしまい、充分な沈殿抑制の効果が発現できない。ポリエステル樹脂の水酸基価が13超では、疎水性相互作用が得られにくいため、反応生成物がポリエステル樹脂になじむ(吸着する)ことができず、沈殿が生じるに至る。
 本発明のプレコート金属板用下地処理剤におけるポリエステル樹脂としては、上述の粒子径、Tg及び水酸基価の条件を満たす限り、任意のものを使用することができる。市販品を使用する場合は、例えば東洋紡績製の「バイロナール」、大日本インキ化学工業製「ファインテックス」、花王製「NT」等のシリーズから、条件を満たすものを選択して使用できる。
 処理剤中のポリエステル樹脂の質量濃度は、タンニン又はタンニン酸及びシランカップリング剤の合計の質量濃度に対して0.1~10倍であることが好ましい。0.1倍未満では、ポリエステル樹脂添加の効果が見られず、10倍を越えると、塗膜の加工密着性がかえって低下する。より好ましくは、0.15~5倍、最も好ましくは0.2~2倍である。
 本発明の下地処理剤においては、タンニン又はタンニン酸、シランカップリング剤、微粒シリカ、及びポリエステル樹脂の合計の質量濃度が10~200g/Lであることが好ましい。合計質量濃度が10g/L未満では、所望の付着量が得られ難く、一方、200g/Lを超えると、濃度が高すぎて下地処理剤の安定性(保存安定性、保存及び操業安定性操業安定性)が劣るようになる。
 本発明の下地処理剤は、pHが2.0~6.5であることが好ましく、3.0~6.0であることがより好ましい。pH2.0未満であるとZnの溶出が多くなり、処理液中のZn濃度が高まるため沈殿も生じやすくなる。一方、6.5を超えた中性領域では微粒子シリカの安定性が低下し、ゲル化を起こしやすくなる。
 本発明の下地処理剤は、亜鉛イオンが100ppm混入したときのpHの上昇変動が1.5以下であることが望ましい。亜鉛イオンを均一に100ppm溶解したときのpHの上昇変動が1.5を越える処理剤は、pH緩衝能力に劣るため、操業中の処理剤中に局部的に極度なpH上昇が起こりやすく、操業時の安定性に悪影響を及ぼすことが多い。pHの上昇変動を1.5以下にするためには、処理在中のタンニンまたはタンニン酸の質量濃度(TA)が5g/L以上とすることが有効である。これは、タンニンまたはタンニン酸のプロトン解離によるpH緩衝効果によるものと考えられる。
 操業時の安定性の評価として、Znコンタミ時の沈殿発生の有無は、以下の方法で判定した。処理液中に所定量の亜鉛粉末(粒径: 約0.3~1.5mm(14~50 mesh ASTM)を添加し40℃で3時間攪拌溶解し、亜鉛100ppm溶液を作製した。500mlのふた付きポリ瓶にこの液を300ml入れ、40℃恒温槽中で3日間静置した。その後、#300メッシュで濾過し沈殿物を回収し、純水で洗浄後、沈殿物を110℃オーブン中で充分に(概ね2時間)乾燥ののち、デシケーター中で常温まで戻したあと重量を測定した。沈殿物の重量が1mg未満のとき、沈殿無しと判定した。
 次に、本発明の下地処理剤に用いるポリエステル樹脂(固形分20%の水分散型ポリエステル樹脂エマルション)の、Tg、水酸基価、及び粒子径の測定方法について述べる。
<Tgの測定方法>
樹脂にはTg(ガラス転移温度)付近で状態の変化と共に比熱が変化する性質が有る。それを利用し、標準物質と測定サンプルを同一昇温条件で加熱していった時に生じる測定サンプルの比熱変化(Tg付近で吸熱する)を測定するのがDSC法である。本発明ではDSC法によりTgを測定した。
 まず、ポリエステル樹脂1g程度を50mmΦのテフロン(登録商標)シャーレに取る。これを50℃雰囲気のオーブンに2時間入れて水分を蒸発させる。次いで、減圧デシケーターにて24時間放置して乾燥サンプルを作る。このサンプルを粉砕して、熱分析装置用のアルミ製カップに約10mg取る。また標準物質としてアルミナ粉末を用い、同様にアルミ製カップに約10mg採取する。これを熱分析装置にセットし、−50℃に冷却してから測定をスタートする。この測定時の昇温速度は20℃/minで行った。この間の吸発熱データーを収集し、得られたデーターを解析(熱変化を生じたところの温度を読み取る:装置付属の解析ソフト)し、樹脂のTg(℃)を求めた。
使用熱分析装置:セイコー電子株式会社、DSC−210。
<水酸基価の測定方法>
JIS K1557−1 プラスチック−ポリウレタン原料ポリオール試験方法−第1部:水酸基価の求め方、に記載されているA法−アセチル化法に準じて測定した。測定サンプルはTgの測定と同様に50℃で水分を蒸発させ、更に減圧デシケーターで24時間放置して乾燥したものを使用した。また、滴定は電位差滴定(京都電子製AT420を使用)で終点を求め、所定の計算式にて水酸基価を算出した。
<粒子径の測定方法>
ポリエステル樹脂の固形分が0.1%になるように純水で希釈する。これを1Lガラスビーカーに500g程度入れ、これを超音波洗浄器(600W、40kHz)中に浸して1分間超音波分散した。これは2次粒子的に凝集した粒子を解すための前処理として実施した。これを測定サンプルとして粒度分布測定装置にて、粒径測定を行った。粒径は付属の解析ソフトより算出される平均粒径とした。
使用装置:日機装株式会社製、ナノトラックUPA−EX150
 処理剤のpHは、pHメーター(東亜ディーケーケー株式会社、pHメーター HM−30G)を用いて測定した。
<Znイオン混入時のpH変動>
 亜鉛イオンが100ppm混入したときのpHの上昇変動は、以下の方法で測定した。
 先ず、各処理剤の初期のpHをpHメーターにて測定した。その後、各処理剤に所定量の亜鉛粉末(粒径:約0.3~1.5mm(14~50mesh ASTM))を添加し、40℃で3時間攪拌溶解し、亜鉛100ppm溶液を作製し、この溶液のpHをpHメーターで測定した。この値から先に測定した初期値を引き、pHの上昇変動とした。
 本発明の塗装下地処理金属板は、本発明のプレコート金属板用下地処理剤が、少なくとも片面の表面に塗布、乾燥されていることを特徴とする。
 本発明の下地処理剤を用いて金属板に下地処理層を形成するには、下地処理剤(薬液)を金属板に塗布し、加熱、乾燥する。薬液中には、その性能が損なわれない範囲内で、pH調整のために酸、アルカリ等を添加してもよい。加熱温度としては、50~250℃がよい。50℃未満では、水分の蒸発速度が遅く充分な成膜性が得られないので、防錆力が不足する。250℃を超えると、有機物であるタンニン酸やシランカップリング剤のアルキル部分が熱分解等のため変性を起こし、密着性や耐食性が低下する。加熱温度は70~160℃がより好ましい。加熱・乾燥の方法は特に限定されない。例えば、熱風乾燥を利用することができ、この場合は1秒~5分間の乾燥が好ましい。
 下地処理剤の塗布方法は、特に限定されず、一般に公知の塗装方法、例えば、ロールコート、エアースプレー、エアーレススプレー、浸漬などを利用する方法が可能である。
 本発明の下地処理剤の金属板への付着量は、固形分にして10~500mg/mであるのが好ましい。10mg/m未満では充分な加工密着性が確保されず、500mg/mを超えるとかえって加工密着性は低下する。
 本発明のプレコート金属板は、本発明の下地処理剤が少なくとも片面の表面に塗布、乾燥された本発明の塗装下地処理金属板の上に、上層皮膜層を有することを特徴とする。
 本発明のプレコート金属板で、下地処理層上に被覆する上層皮膜層のベース樹脂は、水系、溶剤系、粉体系等のいずれの形態のものでもよい。樹脂の種類としては一般に公知のもの、例えば、ポリアクリル系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、ポリブチラール系樹脂、メラミン系樹脂等をそのまま、あるいは組み合わせて使用することができる。
 上層皮膜層には、着色顔料を添加してもよい。着色顔料としては、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化ジルコニウム(ZrO)、炭酸カルシウム(CaCO)、硫酸バリウム(BaSO)、アルミナ(Al)、カオリンクレー、カーボンブラック、酸化鉄(Fe、Fe)等の無機顔料や、有機顔料などの、一般に公知の着色顔料を用いることができる。
 上層被膜層には、前述の着色顔料以外に、必要に応じて防錆顔料を添加してもよい。防錆顔料としては、一般に公知のもの、例えば、(1)リン酸亜鉛、リン酸鉄、リン酸アルミニウムなどのリン酸系防錆顔料、(2)モリブデン酸カルシウム、モリンブデン酸アルミニウム、モリブデン酸バリウムなどのモリブデン酸系防錆顔料、(3)酸化バナジウムなどのバナジウム系防錆顔料、(4)水分散性シリカ、フュームドシリカなどの微粒シリカ、などを用いることができる。ストロンチウムクロメート、ジンクロメート、カルシウムクロメート、カリウムクロメート、バリウムクロメートなどのクロメート系防錆顔料は、環境上有毒であるため使用しないことが望ましい。
 着色顔料や防錆顔料を含む上層皮膜層の厚さは1~25μmが好適である。1μm未満であるとプレコート金属板の耐食性が悪くなり、25μm超では塗膜の加工性が劣る。ただし、上層皮膜を潤滑性皮膜、耐指紋性皮膜等の有機あるいは無機皮膜とし、いわゆるポストコート用、あるいはそれ以上の塗装を行わない用途の表面処理金属板として使用する場合は、その使用目的に応じて上層皮膜の種類や膜厚を適当に選択すればよく、膜厚を特に1~25μmに限定するものではない。
 上層皮膜の塗布は、一般に公知の塗布方法、例えば、ロールコート、カーテンフローコート、エアースプレー、エアーレススプレー、浸漬、バーコート、刷毛塗りなどの方法で行うことができる。
 本発明のプレコート金属板では、下地処理層と上層皮膜層との間に、防錆顔料を添加した皮膜層を下層皮膜層として設けることができる。
 下層皮膜層のベース樹脂は、水系、溶剤系、粉体系等のいずれの形態のものでもよい。また、接着剤層であってもよい。樹脂の種類としては、一般に公知のもの、例えば、ポリアクリル系樹脂、ポリオレフィン系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、ポリエステル系樹脂、ポリブチラール系樹脂、メラミン系樹脂等をそのまま、あるいは組み合わせて使用することができる。防錆顔料としては任意のものを使用できるが、一般に公知のもの、例えば、(1)リン酸亜鉛、リン酸鉄、リン酸アルミニウムなどのリン酸系防錆顔料、(2)モリブデン酸カルシウム、モリンブデン酸アルミニウム、モリブデン酸バリウムなどのモリブデン酸系防錆顔料、(3)酸化バナジウムなどのバナジウム系防錆顔料、(4)水分散シリカ、ヒュームドシリカなどの微粒シリカ、などを用いることができる。ストロンチウムクロメート、ジンクロメート、カルシウムクロメート、カリウムクロメート、バリウムクロメートなどのクロメート系防錆顔料は、環境上有毒であるため使用しないことが望ましい。防錆顔料の添加量は1~40重量%が好適である。1重量%未満であると耐食性効果が少なく、40重量%を超えると塗膜の加工性が低下して不適である。
 防錆顔料を含む下層皮膜層の厚さは1~25μmが好適である。1μm未満であると防錆効果が不充分であり、25μmを超えると塗膜の加工性が劣る。防錆顔料を含む皮膜層の塗布は、一般に公知の塗布方法、例えば、ロールコート、カーテンフローコート、エアースプレー、エアーレススプレー、浸漬、バーコート、刷毛塗りなどで行うことができる。
 以下に本発明の実施例及び比較例を挙げて、本発明を具体的に説明する。
1. 試験板の作製
1.1 供試材
・電気亜鉛めっき鋼板(EG)
 板厚0.6mm、亜鉛付着量片面当たり20g/m(両面めっき)
・溶融亜鉛めっき鋼板(GI)
 板厚0.6mm、亜鉛付着量片面当たり60g/m(両面めっき)
・冷間圧延鋼板(冷延)
 板厚0.6mm
1.2 前処理
 供試材をアルカリ脱脂剤のCL−N364S(日本パーカライジング製)を用いて、濃度20g/L、温度60℃の水溶液に10秒間浸漬し、純水で水洗した後、乾燥した。
1.3 下地処理
・下地処理剤での処理(実施例1~96、比較例1~61)
 表1~5の「下地処理層」の欄に示す組成(含有量はg/L単位)の下地処理剤を、ロールコーターにて所定の膜厚となるように供試材に塗布し、熱風乾燥炉で到達板温度が70℃、150℃、220℃になるように乾燥した。各下地処理剤の固形分のうち、タンニン酸、シランカップリング剤、シリカとしては、次のものを使用した。
 (a)タンニン酸
 タンニン酸AL(富士化学工業製)
 (b)シランカップリング剤
 シランカップリング剤A: γ−グリシドキシプロピルトリメトキシシラン
 シランカップリング剤B: γ−メルカプトプロピルトリメトキシシラン
 シランカップリング剤C: メチルトリクロロシラン
 シランカップリング剤D: γ−グリシドキシプロピルトリエトキシシラン
 (c)シリカ
 ST−N:  スノーテックスN(日産化学工業製)
 アエロジル: アエロジル#300(日本アエロジル製)
 ST−C:  スノーテックスC(日産化学工業製)
ポリエステル樹脂としては、表1~5に示したTgと水酸基価のものを使用した。
・塗布クロメート処理(比較例36~38)
 塗布クロメート薬剤としてZM−1300AN(日本パーカライジング製)をロールコーターにてCr付着量が40mg/mとなるように供試材に塗布し、熱風乾燥炉で到達板温が70℃となるように乾燥した。
・電解クロメート処理(比較例39)
 クロム酸50g/L、硫酸0.3g/Lの浴中で電流密度10A/dmでCr付着量が40mg/mとなるように電気量を通電して供試材に電解クロメート処理を施した後、水洗し、熱風乾燥炉で到達板温が80℃となるように乾燥した。
1.4 下層皮膜処理
 下地処理した供試材に、プライマー塗料として以下に示す塗料をロールコーターで所定の膜厚になるように塗布し、熱風を吹き込んだ誘導加熱炉で到達板温が220℃になるように硬化乾燥して、下層皮膜層を形成した。
・ポリエステルA
 日本ペイント製P641プライマー塗料、防錆顔料として亜リン酸亜鉛系を使用。
・ポリエステルB
 日本ペイント製P641プライマー塗料、防錆顔料としてV/P(バナジン酸/リン酸)系を使用。
・ポリエステルC
 日本ペイント製P641プライマー塗料、防錆顔料としてMo系を使用。
・ポリエステルD
 日本ペイント製P641プライマー塗料、防錆顔料としてカルシウムシリケート系を使用。
・ウレタン
 日本ペイント製P108プライマー塗料、防錆顔料として亜リン酸亜鉛系を使用。
・エポキシ
 日本ペイント製P304プライマー塗料、防錆顔料として亜リン酸亜鉛系を使用。
1.5 上層皮膜処理
 下層皮膜処理した供試材に、日本ペイント製FL100HQ(ポリエステル系、色は白)をロールコーターで所定の膜厚となるように塗布し、熱風を吹き込んだ誘導過熱炉で到達板温が220℃となるように硬化乾燥して、上層皮膜層を形成した。
2. 評価
2.1 塗膜加工密着性試験1
 塗装後の板を、塗装面に1mm角の碁盤目をカッターナイフで入れ、塗装面が凸となるようにエリクセン試験機で7mm押し出した後に、JIS K 5400の8.2及び8.5記載の方法に準じてテープ剥離試験に供した。なお、本試験では同じ場所で2回続けてテープ剥離試験を実施している(以降「2回テープ剥離」と称す)。テープ剥離の評価はJIS K 5400の8.5記載の評価の例の図によって行い、評点10点の時に◎、8点以上10点未満の時に○、6点以上8点未満の時に△、6点未満の時に×と評価した。
2.2 塗膜加工密着性試験2
 塗装後の板に180℃折り曲げ加工(20℃雰囲気で、0T加工)を施し、加工部の塗膜を20倍ルーペで観察し、塗膜の割れの有無を調べた。また、加工部に粘着テープを貼り付け、これを勢い良く剥離した時の塗膜残存状態を目視にて観察した。なお、本試験においても2回テープ剥離を実施した。塗膜の割れの評価は、塗膜割れの全くない時を◎、塗膜に極小さな割れ1~3個程度ある時を○、塗膜に極小さな割れが全面にある時を△、塗膜に目視でも明確な大きな割れが加工部全面にある時を×として評価した。また、テープ剥離後の塗膜残存状態の評価は、塗膜が全く剥離せずにめっき鋼板上に残存している場合を◎、塗膜が部分的に僅かに剥離している場合を○、塗膜が部分的に激しく剥離している場合を△、折り曲げ加工部のほぼ全面にわたって塗膜の剥離が認められる場合を×と評価した。さらに、塗装鋼板を0T加工した後、沸騰水に1時間浸漬し、取り出して24時間放置後に塗膜のテープ剥離を行った。塗膜残存状態の評価は、塗膜が全く剥離せずにめっき鋼板上に残存している場合を◎、塗膜が部分的に僅かに剥離している場合を○、塗膜が部分的に激しく剥離している場合を△、折り曲げ加工部のほぼ全面にわたって塗膜の剥離が認められる場合を×として評価した。
2.3 耐食性試験
 塗装後の板に対し、JIS K 5400の9.1記載の方法で塩水噴霧試験を実施した。試験時間は、電気亜鉛めっき鋼板の場合には240h、溶融亜鉛めっき鋼板の場合には360hとした。クロスカット部の塗膜の評価は、クロスカット片側の最大膨れ幅が1mm未満の場合に◎、2mm以上3mm未満の場合に○、3mm以上5mm未満の場合に△、5mm以上の場合に×と評価した。
 また、切断時の返り(バリ)が塗装鋼板の評価面側にくるように(上バリとなるように)作製した平板についても、前述の塩水噴霧試験を実施し、端面から塗膜の膨れ幅が2mm以内の場合には◎、2mm以上3mm未満の場合には○、3mm以上5mm未満の場合には△、5mm以上の場合には×と評価した。なお、原板が冷延鋼板の場合については耐食性試験を行わなかった。
2.4 下地処理剤の保存安定性試験
 各実施例に使用する下地処理剤を40℃オーブン中で所定時間保管した後、これを用いて該実施例の条件で各塗装金属板を作製し、2.2に示した塗装加工密着性試験2を行った。新鮮な下地処理剤を使用した場合と比較して、塗膜加工密着性能の低下が見られない最大の保管時間を、その下地処理剤の保存安定性として評価した。
2.5 下地処理剤の操業安定性試験(1)
 実施例及び比較例の各下地処理剤の溶液に、亜鉛粉末(粒径: 約0.3~1.5mm(14~50 mesh ASTM)を濃度が100ppmとなるように添加し、40℃で3時間攪拌して溶解した。その後、溶液300mlを500mlのふた付きポリ容器に入れて、40℃の恒温槽中で3日間静置した。恒温槽から取り出した溶液を#300メッシュで濾過し沈殿物を回収し、純水で洗浄後、沈殿物を110℃オーブン中で充分に(概ね2時間)乾燥したのち、デシケーター中で常温まで戻したあと重量を測定した。沈殿物の重量が1mg未満のとき、沈殿無しと判定した。評価は、恒温槽中で3日間静置後の溶液に目視で異常がなく、かつ沈殿無しの場合には◎、溶液に若干の濁りが見られるが沈殿無しの場合には○、100mg未満の沈殿がある場合には△、100mg以上の沈殿が発生した場合には×と評価した。
2.6 下地処理剤の操業安定性試験(2)
(操業時に下地処理剤の配管中での循環が充分でなく、滞留が発生した場合を想定。)
 2.5の試験方法において、亜鉛粉末を40℃で3時間攪拌しながら溶解する工程を省略した。すなわち、実施例及び比較例の各下地処理剤の溶液300mlを500mlのふた付きポリ容器に入れ、亜鉛粉末(粒径: 約0.3~1.5mm(14~50 mesh ASTM)を濃度が100ppmとなるように添加し、そのまま静かに40℃の恒温槽中で3日間静置した。恒温槽から取り出したのち、溶液を#300メッシュで濾過し沈殿物を回収し、純水で洗浄後、沈殿物を110℃オーブン中で充分に(概ね2時間)乾燥したのち、デシケーター中で常温まで戻したあと重量を測定した。沈殿物の重量が1mg未満のとき、沈殿無しと判定した。評価は、恒温槽中で3日間静置後の溶液に目視で異常がなく、かつ沈殿無しの場合には◎、溶液に若干の濁りが見られるが沈殿無しの場合には○、100mg未満の沈殿がある場合には△、100mg以上の沈殿が発生した場合には×と評価した。
 評価結果を表6~10に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010

Claims (9)

  1.  水中に、固形分として、タンニン又はタンニン酸、シランカップリング剤、及び微粒シリカとともに、粒子径が50~150nm、ガラス転移温度(Tg)が0~30℃で且つ水酸基価が5~13のポリエステル樹脂を含有し、処理剤としてのpHが2.0~6.5であることを特徴とするプレコート金属板用下地処理剤。
  2.  処理剤中のタンニン又はタンニン酸の質量濃度をTA、シランカップリング剤の質量濃度をSC、微粒シリカの質量濃度をSI、ポリエステル樹脂の質量濃度をPRとしたとき、TA:SC=1:40~40:1、(TA+SC):SI=1:10~20:1、(TA+SC):PR=1:10~10:1を同時に満たし、かつ各成分の合計の濃度(TA+SC+SI+PR)が10~200g/Lであることを特徴とする、請求項1に記載のプレコート金属板用下地処理剤。
  3.  シランカップリング剤がグリシジルエーテル基を有することを特徴とする、請求項1又は2に記載のプレコート金属板用下地処理剤。
  4.  亜鉛イオンが100ppm混入したときに沈殿を生じないことを特徴とする、請求項1~3のいずれか一つに記載のプレコート金属板用下地処理剤。
  5.  亜鉛イオンが100ppm混入したときのpHの上昇変動が1.5以下であることを特徴とする、請求項1~4のいずれか一つに記載のプレコート金属板用下地処理剤。
  6.  請求項1~5のいずれか一つに記載のプレコート金属板用下地処理剤が、少なくとも片面の表面に塗布、乾燥されていることを特徴とする塗装下地処理金属板。
  7.  請求項1~5のいずれか一つに記載のプレコート金属板用下地処理剤の固形分の付着量が10~500mg/mであることを特徴とする、請求項5に記載の塗装下地処理金属板。
  8.  請求項6又は7に記載の塗装下地処理金属板の上に、上層皮膜層を有することを特徴とするプレコート金属板。
  9.  請求項6又は7に記載の塗装下地処理金属板の上に、防錆顔料を含む皮膜層を下層皮膜層として有し、更にその上に上層皮膜層を有することを特徴とするプレコート金属板。
PCT/JP2010/063435 2009-08-04 2010-08-02 プレコート金属板用下地処理剤、それを塗布した塗装下地処理金属板、及びそれを使用した塗膜の加工密着性に優れるプレコート金属板 WO2011016570A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
IN1356DEN2012 IN2012DN01356A (ja) 2009-08-04 2010-08-02
KR1020127002998A KR101362990B1 (ko) 2009-08-04 2010-08-02 프리코트 금속판용 하지 처리제, 그것을 도포한 도장 하지 처리 금속판 및 그것을 사용한 도막의 가공 밀착성이 우수한 프리코트 금속판
CN201080034443.2A CN102471892B (zh) 2009-08-04 2010-08-02 预涂金属板用基底处理剂、涂布有该处理剂的涂装基底处理金属板、及使用该处理剂的涂膜加工粘附性优良的预涂金属板
JP2011505715A JP5858782B2 (ja) 2009-08-04 2010-08-02 プレコート金属板用下地処理剤、それを塗布した塗装下地処理金属板、及びそれを使用した塗膜の加工密着性に優れるプレコート金属板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-181645 2009-08-04
JP2009181645 2009-08-04

Publications (1)

Publication Number Publication Date
WO2011016570A1 true WO2011016570A1 (ja) 2011-02-10

Family

ID=43544464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063435 WO2011016570A1 (ja) 2009-08-04 2010-08-02 プレコート金属板用下地処理剤、それを塗布した塗装下地処理金属板、及びそれを使用した塗膜の加工密着性に優れるプレコート金属板

Country Status (7)

Country Link
JP (1) JP5858782B2 (ja)
KR (1) KR101362990B1 (ja)
CN (1) CN102471892B (ja)
IN (1) IN2012DN01356A (ja)
MY (1) MY158450A (ja)
TW (1) TWI431160B (ja)
WO (1) WO2011016570A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210340407A1 (en) * 2018-09-28 2021-11-04 Nippon Steel Corporation Adhesively joined structure and component for a vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104059410B (zh) * 2013-05-03 2016-06-22 攀钢集团攀枝花钢铁研究院有限公司 抗锈转化层形成剂及其制备方法和用途
JP5710058B1 (ja) * 2014-08-05 2015-04-30 日新製鋼株式会社 塗装鋼板および外装建材
KR20230000429U (ko) 2021-08-20 2023-02-28 송철한 칫솔모 캡

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179458A (ja) * 1991-12-28 1993-07-20 Nkk Corp 耐すり疵性に優れた絶縁被膜を有する電磁鋼板およびその製造方法
JP2000129455A (ja) * 1998-10-23 2000-05-09 Nippon Steel Corp 被膜特性に優れた無方向性電磁鋼板
JP2001089868A (ja) * 1999-07-16 2001-04-03 Nippon Steel Corp プレコート金属板用下地処理剤、それを塗布した塗装下地処理金属板、及びそれを使用した塗膜の加工密着性に優れるプレコート金属板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006321957A (ja) * 2005-05-20 2006-11-30 Nippon Parkerizing Co Ltd 環境対応型プレコート金属材料用水系表面処理剤及び表面処理方法
JP2007169397A (ja) * 2005-12-20 2007-07-05 Nippon Bee Chemical Co Ltd 水性一液型塗料組成物及び塗装物品
JP4448511B2 (ja) * 2006-12-26 2010-04-14 株式会社神戸製鋼所 プレコート金属板およびプレコート金属板の製造方法
JP5179458B2 (ja) * 2009-11-11 2013-04-10 八千代工業株式会社 圧力容器のシール構造

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179458A (ja) * 1991-12-28 1993-07-20 Nkk Corp 耐すり疵性に優れた絶縁被膜を有する電磁鋼板およびその製造方法
JP2000129455A (ja) * 1998-10-23 2000-05-09 Nippon Steel Corp 被膜特性に優れた無方向性電磁鋼板
JP2001089868A (ja) * 1999-07-16 2001-04-03 Nippon Steel Corp プレコート金属板用下地処理剤、それを塗布した塗装下地処理金属板、及びそれを使用した塗膜の加工密着性に優れるプレコート金属板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210340407A1 (en) * 2018-09-28 2021-11-04 Nippon Steel Corporation Adhesively joined structure and component for a vehicle
US12110428B2 (en) * 2018-09-28 2024-10-08 Nippon Steel Corporation Adhesively joined structure and component for a vehicle

Also Published As

Publication number Publication date
TW201120244A (en) 2011-06-16
CN102471892A (zh) 2012-05-23
IN2012DN01356A (ja) 2015-06-05
TWI431160B (zh) 2014-03-21
JPWO2011016570A1 (ja) 2013-01-17
KR101362990B1 (ko) 2014-02-14
JP5858782B2 (ja) 2016-02-10
MY158450A (en) 2016-10-14
CN102471892B (zh) 2014-02-12
KR20120032023A (ko) 2012-04-04

Similar Documents

Publication Publication Date Title
EP2620524B1 (en) Surface treatment fluid for zinc-plated steel sheet, zinc-plated steel sheet, and manufacturing method for same
WO2004009870A1 (ja) 耐白錆性に優れた表面処理鋼板及びその製造方法
WO2011105101A1 (ja) 亜鉛系めっき鋼板用の表面処理液ならびに亜鉛系めっき鋼板およびその製造方法
JP5431721B2 (ja) 亜鉛系めっき鋼板又はアルミニウム系めっき鋼板用表面処理組成物及び表面処理鋼板
EP2418301A1 (en) Surface-treating agent, process for manufacturing plated steel sheet using the surface-treating agent, and plated steel sheet
JP4935103B2 (ja) 表面処理鋼板
JP2001335955A (ja) 耐食性に優れた有機被覆鋼板
JP2002053979A (ja) 耐食性に優れた有機被覆鋼板およびその製造方法
JP2001089868A (ja) プレコート金属板用下地処理剤、それを塗布した塗装下地処理金属板、及びそれを使用した塗膜の加工密着性に優れるプレコート金属板
JP5858782B2 (ja) プレコート金属板用下地処理剤、それを塗布した塗装下地処理金属板、及びそれを使用した塗膜の加工密着性に優れるプレコート金属板
JP2001335964A (ja) 耐食性に優れた有機被覆鋼板
JP5677337B2 (ja) プレコート金属板用下地処理剤、それを塗布した塗装下地処理金属板、及びそれを使用したプレコート金属板
JP4832023B2 (ja) 耐熱性を備える表面処理鋼板
JP4509425B2 (ja) 塗装下地処理剤、表面処理方法、金属材、加工方法、及び金属製品
JP2002363766A (ja) 耐食性と導電性に優れた有機被覆鋼板
JP2006321957A (ja) 環境対応型プレコート金属材料用水系表面処理剤及び表面処理方法
JP5097311B2 (ja) 表面処理鋼板及び有機樹脂被覆鋼板
JP5490656B2 (ja) 高耐食性表面処理鋼板
JP2002363768A (ja) 高温多湿環境下での耐食性に優れた有機被覆鋼板
JP6323424B2 (ja) 耐食性に優れた表面処理溶融亜鉛めっき鋼板
JP4123702B2 (ja) 耐食性に優れた有機被覆鋼板
JP4246689B2 (ja) 耐食性に優れるプレコート金属板
JP4916913B2 (ja) 表面処理鋼板及び有機樹脂被覆鋼板
JP5442346B2 (ja) 化成処理鋼板の製造方法
JP4125950B2 (ja) 非クロム型処理亜鉛系めっき鋼板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034443.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011505715

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806569

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127002998

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1201000475

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1356/DELNP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 10806569

Country of ref document: EP

Kind code of ref document: A1