WO2011001786A1 - 金属箔巻きシールド電線 - Google Patents

金属箔巻きシールド電線 Download PDF

Info

Publication number
WO2011001786A1
WO2011001786A1 PCT/JP2010/059481 JP2010059481W WO2011001786A1 WO 2011001786 A1 WO2011001786 A1 WO 2011001786A1 JP 2010059481 W JP2010059481 W JP 2010059481W WO 2011001786 A1 WO2011001786 A1 WO 2011001786A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal foil
drain wire
wire
foil material
measurement result
Prior art date
Application number
PCT/JP2010/059481
Other languages
English (en)
French (fr)
Inventor
小倉 広幸
ゆりえ 大山
大亮 八木
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to EP10793956.3A priority Critical patent/EP2450913A4/en
Priority to CN2010800301263A priority patent/CN102473482A/zh
Priority to US13/381,745 priority patent/US9058911B2/en
Publication of WO2011001786A1 publication Critical patent/WO2011001786A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0045Cable-harnesses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • H01B11/10Screens specially adapted for reducing interference from external sources
    • H01B11/1091Screens specially adapted for reducing interference from external sources with screen grounding means, e.g. drain wires

Definitions

  • the present invention relates to a metal foil wound shielded electric wire in which a metal foil material wound around a coated conductor and a drain wire vertically attached to the coated conductor is utilized as a shield layer.
  • shielded wires with an electromagnetic shielding layer around the inner conductor that transmits signals are used for wiring to devices that are susceptible to noise or that are likely to generate noise.
  • a commercially available shielded electric wire usually covers an inner conductor that transmits signals, an insulating layer that surrounds the inner conductor, an outer conductor that serves as a shielding layer that surrounds the outer periphery of the insulating layer, and an outer periphery of the outer conductor.
  • the insulating layer and the insulating skin are usually formed by extrusion molding.
  • Such a commercially available shielded electric wire is more expensive than a general coated conductor without a shield layer, and has a poor bending property due to its high bending rigidity.
  • a metal foil film in which a metal foil layer is formed on one side of an insulating film is used as a metal foil material.
  • the metal foil film is wound around the outer periphery of the coated conductive wire and the drain wire with the metal foil layer inside, so that the metal foil layer contacts the drain wire, and the metal foil layer and the drain wire are in a conductive state. Then, the shield layer can be easily grounded by grounding the end of the drain line extending to the end of the coated conductor.
  • the flexibility is high because it is more flexible than a commercially available shielded electric wire, and the number of core wires can be easily changed. This is suitable for the use of shielded wires for in-vehicle wire harnesses that change the number of core wires to be accommodated.
  • an object of the present invention is to provide a metal foil-wrapped shielded electric wire that has an excellent shielding performance and that can simplify the manufacturing process and reduce costs by solving the above problems. .
  • a metal foil wound shielded electric wire comprising a metal foil material that forms a shield layer covering the periphery of the drain wire
  • a metal foil-wrapped shielded electric wire in which both ends of the metal foil material located in the vicinity of both ends of the coated conductive wire or a position in the vicinity of both ends is a foil conductive connection portion that is conductively connected to the drain wire.
  • the metal foil material wound around the outer periphery of the coated conductor and the drain wire is electrically connected to the drain wire at both ends or in the vicinity of both ends. Even if the metal foil material is not in contact with the drain wire at the middle portion in the longitudinal direction of the conducting wire, it is close to the case where the metal foil material is formed in contact with the drain wire over almost the entire length of the coated conducting wire. Excellent shielding performance can be exhibited, and high-quality metal foil-wrapped shielded wires with no variation in shielding performance can be stably produced.
  • the inspection process for the presence or absence of a non-contact portion between the metal foil material and the drain wire in the longitudinal intermediate portion of the electric wire after the step of winding the metal foil material around the outer periphery of the coated conductor and the drain wire, and the conduction to the non-contact portion Since the process such as filling with the adhesive can be omitted, cost can be reduced by simplifying the manufacturing process.
  • the shield performance is affected by the reduction in the cross-sectional area of the conductor by the metal foil layer and the drain wire, as compared with the case where the drain wire extends over the entire length of the coated conductor.
  • the shielding performance obtained is relatively good and is well within the practical range.
  • the amount of drain wire used can be reduced, resulting in cost reduction, weight reduction, and cableability (reduced). (Flexibility) can also be improved.
  • FIG. 2 It is a perspective view of one embodiment of a metal foil shielded electric wire according to the present invention. It is a cross-sectional view of a simulation model of a metal foil wound shielded electric wire when evaluating the effect of the present invention.
  • the cross-sectional structure shown in FIG. 2 when the length of the coated conductor is 10 cm and the terminal is provided with a stripped part obtained by stripping the metal foil material, the degree of contact between the drain wire and the metal foil material is changed, and the shield It is a graph which shows the measurement result when performance is measured. It is a graph which shows the measurement result when measuring the influence on the shield performance of the contact resistance value in each contact point in the case of two-point both-end contact shown in FIG. In each simulation shown in FIG.
  • FIG. 1 is a perspective view of an embodiment of a metal foil shielded electric wire according to the present invention.
  • the metal foil-wrapped shielded electric wire 1 of this embodiment includes two coated conductors 3 and 4 that do not have a shield layer, drain wires 6 vertically attached to these coated conductors 3 and 4, and a covering In the configuration comprising the covered conductors 3 and 4 and the drain wire 6 and the metal foil material 8 forming a shield layer (conductive layer) covering the periphery of the covered conductors 3 and 4 and the drain wire 6, 2 Used as a core shield wire.
  • the drain wire 6 is a bare conductor having substantially the same cross-sectional area as the core wires (conductors) of the covered conductors 3 and 4, and the length is substantially the same as that of the covered conductors 3 and 4.
  • a connection terminal 9 is connected to the end of each of the covered conductive wires 3 and 4 and the end of the drain wire 6.
  • the drain wire 6 is grounded to a grounding portion of a device or the like located on the end side of each of the covered conducting wires 3 and 4.
  • the metal foil material 8 is obtained by providing a 20 ⁇ m thick aluminum foil layer on one side of a polyethylene film which is an insulating material, and the aluminum foil layer functions as a shield layer.
  • the metal foil material 8 is wound around the outer periphery of the covered conductors 3 and 4 and the drain wire 6 with the aluminum foil layer facing inward.
  • the wound metal foil material 8 becomes conductive to the drain wire 6 when the aluminum foil layer contacts the drain wire 6.
  • the winding range of the metal foil material 8 is set slightly shorter than the length of each of the coated conductors 3 and 4. Therefore, the stripped portions B1 and B2 where the covered conductors 3 and 4 are not covered with the metal foil material 8 remain at the end of the metal foil-wrapped shielded electric wire 1.
  • both end portions of the metal foil material 8 located in the vicinity of both end portions of the covered conductors 3 and 4 are foil conductive connection portions 11 that are conductively connected to the drain wire 6.
  • the foil conductive connection portion 11 holds the metal foil layer (aluminum foil layer) of the metal foil material 8 in a state of being surely in contact with the drain wire 6.
  • the foil conductive connection portion 11 is bound and fixed by the adhesive tape 13.
  • the specific means for bringing the metal foil layer into contact with the drain wire 6 is not limited to bundling and fixing with the adhesive tape 13.
  • adhesive fixing with a conductive adhesive may be used.
  • both ends of the metal foil material 8 wound around the outer periphery of the coated conductors 3 and 4 and the drain wire 6 are electrically connected to the drain wire 6. Even if the metal foil material 8 is in a non-contact state from the drain wire 6 at the intermediate portion in the longitudinal direction of the coated conductors 3 and 4, the metal foil material 8 extends over the substantially entire length of the coated conductors 3 and 4. Excellent shielding performance close to that when formed in contact with the drain wire 6 can be exhibited, and high-quality metal foil-wrapped shielded electric wires with no variation in shielding performance can be stably produced.
  • the metal foil-wrapped shielded electric wire 1A shown in FIG. 2 is a single-core metal foil-wrapped shielded electric wire except for the covered conductive wire 4 from the metal foil-wrapped shielded electric wire 1 shown in FIG.
  • the drain wire 6 in the metal foil-wrapped shielded electric wire 1A is a bare conductor that has the same nominal cross-sectional area as the core wire 3a and is not coated with an insulating coating, and the evaluation test is performed in a state where both ends are grounded.
  • the metal foil material 8 in the metal foil-wrapped shielded electric wire 1A is obtained by providing an aluminum foil layer 8b having a thickness of 20 ⁇ m on one side of a polyethylene film 8a.
  • the metal foil material 8 Since the metal foil material 8 is wound around the outer periphery of the coated conductive wire 3 and the drain wire 6, the metal foil material 8 does not actually have a perfect circle shape as shown in FIG.
  • FIG. 3 is a cross-sectional structure shown in FIG. 2 and is basically based on the case where the coated conductor 3 has a wire length of 10 cm and strips B1 and B2 (see FIG. 1) obtained by stripping the metal foil material 8 on the terminal.
  • 6 is a graph showing six types of measurement results f1 to f6 when the shielding performance is measured by changing the degree of contact between the drain wire 6 and the metal foil material 8 as conditions.
  • the measurement result f ⁇ b> 1 is a case where the metal foil material 8 wound around the covered conductor 3 and the drain wire 6 is in conductive contact with the drain wire 6 over the entire length of the range in which the metal foil material 8 is wound. It has the best shielding effect.
  • the metal foil wound shielded electric wire obtained this measurement result f1 in order to ensure the state where the entire length of the metal foil material 8 is in contact with the drain wire 6, after the end of the winding process of the metal foil material 8, The presence / absence of a non-contact portion between the metal foil layer and the drain wire is inspected, and a contact improving process is performed in which a portion where the metal foil layer is separated from the drain wire is filled with a conductive adhesive.
  • the measurement result f2 in FIG. 3 is obtained by bringing the two points on both ends of the metal foil material 8 wound around the covered conducting wire 3 and the drain wire 6 into conductive contact with the drain wire 6, and the entire range of the wound metal foil material 8 The contact improvement process for conducting the conductive connection to the drain line 6 is not performed.
  • Conductive contact with the drain wire 6 at both ends of the metal foil material 8 uses bundling and fixing with the adhesive tape 13 shown in FIG.
  • the measurement results f3 and f4 are similar to the measurement result f2 in that the two points on both ends of the metal foil material 8 are in conductive contact with the drain wire 6. However, the contact position between the metal foil material 8 and the drain wire 6 is not at both ends of the metal foil material 8, but in the case of the measurement result f3, the position moved inward by 10 mm from the end portion, and in the case of the measurement result f4, from the end portion. The position is moved 20 mm inside.
  • the measurement result f3 has a lower shielding effect than the measurement result f2, and the measurement result f4 has a lower shielding effect than the measurement result f3. That is, as the contact position between the metal foil material 8 and the drain wire 6 moves inward from both ends of the metal foil material 8, the shielding effect is reduced. Therefore, it was confirmed that the metal foil material 8 and the drain wire 6 were optimally contacted at both ends of the metal foil material 8 wound on the covered conducting wire 3 and the drain wire 6.
  • Measurement result f5 and measurement result f6 are obtained by examining the influence on the shielding effect by the presence or absence of the metal foil material 8.
  • the metal foil material 8 is simply wound around the outer periphery of the coated conducting wire 3 and the drain wire 6, and the adhesive tape 13 is used to reliably contact the metal foil material 8 and the drain wire 6. It is in a state where it is not bound at all.
  • this measurement result f5 it was confirmed that the shielding effect was significantly lower than that in the case of the measurement result f4, and that the shielding effect was insufficient by simply winding the metal foil material 8.
  • the measurement result f6 is obtained by winding only the polyethylene film 8a not having the aluminum foil layer 8b around the outer periphery of the coated conducting wire 3 and the drain wire 6, and the shielding effect is further lowered as compared with the measurement result f5.
  • the contact position between the metal foil material 8 and the drain wire 6 does not have to be strictly limited to the both end positions of the metal foil material 8 wound around the covered conducting wire 3 and the drain wire 6.
  • the metal foil material 8 can exhibit excellent shielding performance, and there is no variation in shielding performance. It was confirmed that a metal foil-wrapped shielded electric wire could be obtained.
  • the shielding effect is affected even if the intermediate portion of the metal foil material 8 is not in contact with the drain wire 6. Since it was proved that there is no contact, the contact improvement process for performing the inspection for the presence or absence of the non-contact portion with the drain wire 6 in the intermediate portion of the metal foil material 8 or filling the non-contact portion with the conductive adhesive is omitted. It has also become clear that the cost can be reduced by simplifying the manufacturing process.
  • FIG. 4 shows the measurement result f11 when the contact resistance value is set to 1 m ⁇ , the measurement result f12 when the contact resistance value is set to 10 m ⁇ , the measurement result f13 when the contact resistance value is set to 100 m ⁇ , and the contact resistance value. Shows the measurement result f14 when is set to 1 ⁇ .
  • FIG. 5 shows the shield performance measured in each simulation shown in FIG. 3 by covering the periphery of the stripped portion (B1 and B2 in FIG. 1) with a cylindrical conductor (cover) and improving the state without stripping. It is the graph which investigated the influence of the presence or absence of a peeling part.
  • the measurement result f21 in FIG. 5 is obtained by conducting the metal foil material 8 wound around the drain wire 6 over the entire length, and corresponds to the measurement result f1 in FIG.
  • the measurement result f22 is obtained by bringing the two points on both ends of the wound metal foil material 8 into conductive contact with the drain wire 6, and corresponds to the measurement result f2 in FIG.
  • the measurement result f23 is obtained by bringing the two points moved 10 mm inward from both ends of the wound metal foil material 8 into conductive contact with the drain wire 6 and corresponds to the measurement result f3 in FIG.
  • the measurement result f24 is obtained by bringing the two points moved 20 mm inward from both ends of the wound metal foil material 8 into conductive contact with the drain wire 6 and corresponds to the measurement result f4 of FIG.
  • the measurement result f25 is obtained by not bringing the wound metal foil material 8 into conductive contact with the drain wire 6, and corresponds to the measurement result f5 of FIG.
  • the stripped portions at both ends of the metal foil-wrapped shielded wire are preferably formed in a form without stripping with a cylindrical conductor.
  • FIG. 5 shows a measurement result f20 when the end of the metal foil 8 is directly grounded without using the drain wire 6.
  • This measurement result f20 shows remarkably excellent shielding efficiency even when compared with f21 in which both ends of the drain wire 6 in which the metal foil material 8 is in conductive contact over the entire length are grounded.
  • both ends of the metal foil material 8 provided on the metal foil-wrapped shielded wire should be grounded directly.
  • FIG. 6 is a graph in which a simulation with an increased number of contact points is added to the measurement result f22 shown in FIG.
  • the measurement result f22 (3) in FIG. 6 is obtained by measuring the shielding effect with the contact points between the metal foil material 8 and the drain wire 6 at three points on both ends and the center of the metal foil material 8.
  • the measurement result f22 (5) is obtained by measuring the shielding effect with five contact points between the metal foil material 8 and the drain wire 6 at three points at both ends and the middle.
  • FIG. 7 is a cross-sectional structure shown in FIG. 2, where the length of the covered conductor is 50 cm and the terminal is provided with a stripped part (5 mm) from which the metal foil material is peeled off.
  • 5 is a graph showing five types of measurement results f51 to f55 when the shielding performance is measured while changing the contact degree (contact point position).
  • each measurement result in FIG. 7 can evaluate the influence of the line length in comparison with FIG.
  • the measurement result f41 shows the case where the metal foil material 8 wound around the covered conducting wire 3 and the drain wire 6 is brought into conductive contact with the drain wire 6 over the entire length of the range in which the metal foil material 8 is wound.
  • the shielding effect is the best.
  • the measurement result f42 in FIG. 7 is obtained by bringing two points on both ends of the metal foil material 8 wound around the covered conducting wire 3 and the drain wire 6 into conductive contact with the drain wire 6 and is the same as in the simulation in FIG. A shielding effect substantially equivalent to the measurement result f41 in which the entire length of the metal foil material 8 is brought into contact with the drain wire 6 is obtained.
  • the measurement results f43 and f44 are in common with the measurement result f42 in that the two points on both ends of the metal foil material 8 are in conductive contact with the drain wire 6.
  • the contact position between the metal foil material 8 and the drain wire 6 is not at both ends of the metal foil material 8, but in the case of the measurement result f43, a position moved 20 mm inward from the end portion, and in the case of the measurement result f44, from the end portion. It is the position which moved 50mm inside.
  • the measurement result f43 has a lower shielding effect than the measurement result f42, and the measurement result f44 has a lower shielding effect than the measurement result f43. That is, the tendency that the shielding effect decreases as the contact position between the metal foil material 8 and the drain wire 6 moves inward from both ends of the metal foil material 8 is the same as in the simulation of FIG. Therefore, it was confirmed that the metal foil material 8 and the drain wire 6 were optimally contacted at both ends of the metal foil material 8 wound on the covered conducting wire 3 and the drain wire 6.
  • the measurement result f45 is a result of examining the influence on the shielding effect by the presence or absence of the metal foil material 8.
  • the metal foil material 8 is simply wound around the outer periphery of the coated conducting wire 3 and the drain wire 6, and the adhesive tape 13 is used to reliably contact the metal foil material 8 and the drain wire 6. It is in a state where it is not bound at all.
  • the shielding effect was significantly lower than in the case of the measurement result f44, and it was confirmed that the shielding effect was insufficient by simply winding the metal foil material 8.
  • FIG. 8 shows the shield performance measured in each simulation shown in FIG. 7 by covering the periphery of the stripped portion (B1 and B2 portion of FIG. 1) with a cylindrical conductor (cover) and improving the state without stripping. It is the graph which investigated the influence of the presence or absence of a peeling part.
  • each simulation in FIG. 8 is performed by changing the line length in each simulation shown in FIG. 5 to 50 cm.
  • the measurement result f51 of FIG. 8 is obtained by bringing the wound metal foil material 8 into conductive contact with the drain wire 6 over the entire length, and corresponds to the measurement result f41 of FIG.
  • the measurement result f52 is obtained by bringing the two ends of the wound metal foil material 8 into conductive contact with the drain wire 6 and corresponds to the measurement result f42 of FIG.
  • the measurement result f53 is obtained by bringing the two points moved 20 mm inward from both ends of the wound metal foil material 8 into conductive contact with the drain wire 6 and corresponds to the measurement result f43 in FIG.
  • the measurement result f54 is obtained by bringing the two points moved 50 mm inward from both ends of the wound metal foil material 8 into conductive contact with the drain wire 6 and corresponds to the measurement result f44 of FIG.
  • the measurement result f55 is obtained by not bringing the wound metal foil material 8 into conductive contact with the drain wire 6, and corresponds to the measurement result f45 of FIG.
  • the stripped portions at both ends of the metal foil-wrapped shielded wire are preferably formed in a form without stripping with a cylindrical conductor.
  • FIG. 8 shows a measurement result f50 when the end portion of the metal foil material 8 is directly grounded without using the drain wire 6 for reference.
  • the measurement result f50 shows remarkably excellent shielding efficiency even when compared with f51 in which both ends of the drain wire 6 in which the metal foil material 8 is in conductive contact over the entire length are grounded.
  • both ends of the metal foil material 8 provided on the metal foil-wrapped shielded wire should be grounded directly.
  • FIG. 9 is a simulation with no stripped portion shown in FIG. 8, and further examines the influence when the drain wire is provided only on both ends of the metal foil material.
  • the measurement result f51 in FIG. 9 is a measurement result in the case where the drain wire 6 is vertically attached over the entire length of the covered conducting wire 3 and the entire length of the metal foil material 8 is in contact with the drain wire 6.
  • the measurement result f51 is transcribed.
  • the measurement results f61 to f63 in FIG. 9 are obtained by limiting the installation range of the drain wire 6 to only 1 cm at both end portions of the metal foil material 8 wound around the coated conductive wire 3.
  • measurement result f61 it is a measurement result when the entire length of the 1 cm drain wire 6 provided at both ends is brought into conductive contact with the metal foil material 8, and is vertically attached to the entire range of the covered conductor 3.
  • the shield effect was reduced by about 2 dB, but it was confirmed that the shield effect was sufficiently exhibited.
  • the cause of the lowering of the shielding effect is that, in the metal foil wound shielded electric wire equipped with drain wires only at both ends, the drain wire is extended over the entire length of the covered conducting wire, It is considered that the conductor cross-sectional area due to the metal foil layer and the drain wire is reduced.
  • the measurement result f62 is a measurement result when the innermost ends of the 1 cm drain wires 6 at both ends equipped are in conductive contact with the metal foil material 8. In this case, the shield effect was further reduced by about 4 dB as compared with the measurement result f61. In this case as well, it is considered that the shield performance is sufficiently practical.
  • the measurement result f63 it is a measurement result when the equipped drain wires 6 at both ends are not in contact with the metal foil material 8, in particular. In this case, it was found that the shielding effect was remarkably lowered and the practicality was poor.
  • each drain wire 6 at both ends is brought into conductive contact with the metal foil material 8. It was found that a relatively good shielding effect can be obtained.
  • the drain wire 6 can be provided only in the range of the specified length on both ends of the coated conductor.
  • the amount of drain wire used can be reduced, resulting in cost reduction, weight reduction, and cableability (reduced). (Flexibility) can also be improved.
  • the metal foil material 8 is connected to a shell of a shield connector, a ground contact of a device board, a case, and the like.
  • a shield connector When there is no connection, there is no electric field and magnetic field shielding effect, and with one end connection, only an electric field shielding effect is obtained.
  • both ends are connected, an electric field and magnetic field shielding effect can be obtained.
  • the metal foil material 8 becomes a current path, and in the unbalanced line, a current flows in the opposite direction to the current flowing through the covered conductive wire 3 to shield the generated magnetic field. Even in the case of a balanced line such as differential transmission, unbalanced current flows through the metal foil material 8, and the magnetic field is shielded in the same manner.
  • the drain wire 6 coming out of the electric wire 1A is connected to the external conductor.
  • a current flows through the drain wire 6, but when the drain wire 6 flows as it is, the coated conductor 3 is covered.
  • the inner metal foil layer (conductor surface) 8b is in contact with the drain wire 6 reliably.
  • the present invention is not limited to the above-described embodiment, and can be appropriately modified and improved.
  • the material, shape, dimension, numerical value, form, number, arrangement location, and the like of each component in the above-described embodiment are arbitrary and are not limited as long as the present invention can be achieved.
  • the number of core wires and drain wires, the presence or absence of twists (twisting) of the core wires and drain wires, and the metal foil material winding specifications (lap winding, vertical attachment) are not particularly limited.
  • the metal foil shielded electric wire according to the present invention it is possible to exhibit excellent shielding performance close to the case where the metal foil material is formed in contact with the drain wire over almost the entire length of the coated conductor, It is possible to stably produce high-quality metal foil-wrapped shielded electric wires without variations.
  • the inspection process for the presence or absence of a non-contact portion between the metal foil material and the drain wire in the longitudinal intermediate portion of the electric wire after the step of winding the metal foil material around the outer periphery of the coated conductor and the drain wire, and the conduction to the non-contact portion Since the process such as filling with the adhesive can be omitted, cost can be reduced by simplifying the manufacturing process.

Landscapes

  • Insulated Conductors (AREA)

Abstract

 優れたシールド性能を備え、しかも、製造工程を簡素化してコスト低減を図ることができる金属箔巻きシールド電線を提供することを目的とする。被覆付き導線3,4と、被覆付き導線3,4に縦添えされて被覆付き導線3,4の端部で接地接続されるドレイン線6と、被覆付き導線3,4とドレイン線6の周囲に巻き付けられて被覆付き導線3,4とドレイン線6の周囲を覆うシールド層を形成する金属箔材8とを備えた金属箔巻きシールド電線1において、被覆付き導線3,4の両端部又は両端の近傍位置に、金属箔材8をドレイン線6に導通接続させた箔導通接続部11を設ける。

Description

金属箔巻きシールド電線
 本発明は、被覆付き導線と該被覆付き導線に縦添えされたドレイン線の周囲に巻き付けられた金属箔材がシールド層として活用される金属箔巻きシールド電線に関する。
 自動車内の電気配線では、ノイズの影響を受け易い、あるいはノイズを発生し易い機器への配線には、信号の伝送を行う内部導体の周囲に電磁遮蔽層を備えたシールド電線が使用される。
 市販のシールド電線は、通常、信号の伝送を行う内部導体と、この内部導体の周囲を囲む絶縁層と、この絶縁層の外周を囲うシールド層としての外部導体と、この外部導体の外周を覆う絶縁外皮とから構成されており、通常、前記絶縁層や絶縁外皮は押し出し成形により形成されている。
 このような市販のシールド電線は、シールド層を備えていない一般の被覆付き導線と比較すると、高額であり、また曲げ剛性が高いために配索性も劣る。
 そこで、車載のワイヤハーネス等の製造メーカーでは、高額な市販のシールド電線の代わりに、一般の被覆付き導線に裸導体であるドレイン線を縦添えし、これらの被覆付き導線とドレイン線の周囲に金属箔材を巻き付けて、巻き付けた金属箔材をシールド層として利用する金属箔巻きシールド電線を導入することが行われている(例えば、下記特許文献1,2参照)。
 このような金属箔巻きシールド電線では、例えば、金属箔材として、絶縁フィルムの片面に金属箔層を形成した金属箔フィルムを使用する。前記金属箔フィルムは、金属箔層を内側にして被覆付き導線及びドレイン線の外周に巻き付けることで金属箔層がドレイン線に接触し、金属箔層とドレイン線とが導通状態となる。そして、被覆付き導線の端部に延出するドレイン線の端部を接地接続することで、簡単にシールド層を接地することができる。
 このような金属箔巻きシールド電線では、市販のシールド電線と比較すると、可撓性が高いため配索性を向上させることができ、また、芯線数の変更も容易にできるため、車載の装備に応じて収容する芯線数が変わる車載のワイヤハーネスのシールド電線化に適している。
日本国特開2009-93934号公報 日本国特開2007-311045号公報
 ところが、金属箔巻きシールド電線では、被覆付き導線及びドレイン線の外周に単純に金属箔フィルムを巻き付けただけでは、電線の配索時の曲げ等によって部分的に金属箔フィルムの巻きが緩んで、金属箔層がドレイン線から離反する部分が発生し易い。そして、金属箔層が部分的にドレイン線から離反することによって、金属箔層がシールド層として有用に機能する長さにばらつきが生じ、市販のシールド電線と比較すると、シールド性能の低下や、シールド性能のばらつきが生じるという問題があった。
 このような問題を解消するために、例えば、金属箔フィルムの巻き付け工程の終了後に、金属箔層とドレイン線との非接触部の有無を検査し、金属箔層がドレイン線から離反している部分には導電性接着剤を充填することで、金属箔層とドレイン線との導通状態を安定させることが可能であるが、このような接触性改善工程を設けると、金属箔巻きシールド電線の製造工程が増えるだけでなく、導電性接着剤の使用量が増え、コストアップを招くという問題が生じた。
 そこで、本発明の目的は、上記課題を解消することに係り、優れたシールド性能を備え、しかも、製造工程を簡素化してコスト低減を図ることができる金属箔巻きシールド電線を提供することにある。
 本発明の前述した目的は、下記の構成により達成される。
 (1)被覆付き導線と、該被覆付き導線に縦添えされて前記被覆付き導線の端部で接地接続されるドレイン線と、前記被覆付き導線とドレイン線の周囲に巻き付けられて前記被覆付き導線とドレイン線の周囲を覆うシールド層を形成する金属箔材とを備えた金属箔巻きシールド電線であって、
 前記被覆付き導線の両端部付近に位置する前記金属箔材の両端部又は両端の近傍位置が前記ドレイン線に導通接続された箔導通接続部になっている金属箔巻きシールド電線。
 (2)前記ドレイン線は、前記被覆付き導線の両端部側の規定長にのみ装備された上記(1)に記載の金属箔シールド電線。
 上記(1)の構成によれば、被覆付き導線及びドレイン線の外周に巻き付けた金属箔材は、その両端部又は両端の近傍位置がドレイン線に導通接続されており、この状態では、被覆付き導線の長手方向の中間部で金属箔材がドレイン線から非接触な状態になっていても、被覆付き導線の略全長に渡って金属箔材がドレイン線に接触状態に形成された場合に近い優れたシールド性能を発揮することができ、シールド性能にばらつきのない高品質の金属箔巻きシールド電線を安定生産することができる。
 また、金属箔材を被覆付き導線及びドレイン線の外周に巻き付ける工程後の電線の長手方向中間部における金属箔材とドレイン線との非接触部の有無の検査工程や、非接触部への導電性接着剤の充填等の工程を省くことができるため、製造工程の簡素化によりコスト低減を図ることもできる。
 上記(2)の構成によれば、ドレイン線が被覆付き導線の全長に渡って延設されている場合と比較すると、金属箔層とドレイン線とによる導体断面積が減ることの影響でシールド性能に若干の低下が見られるが、得られるシールド性能は、比較的に良好であり、十分に実用範囲にある。
 そして、ドレイン線の装備範囲を被覆付き導線の両端側の規定長のみに制限した場合には、ドレイン線の使用量を低減して、使用材料の削減によるコスト削減、軽量化、配索性(可撓性)の向上を図ることもできる。
本発明に係る金属箔シールド電線の一実施形態の斜視図である。 本発明の効果を評価する際の金属箔巻きシールド電線のシミュレーションモデルの横断面図である。 図2に示した断面構造で、被覆付き導線の線長が10cm、端末に金属箔材を剥いだ剥ぎ部分を設けている場合に、ドレイン線と金属箔材との接触度合いを変えて、シールド性能を測定した時の測定結果を示すグラフである。 図3に示した2点両端接触の場合に、各接触点における接触抵抗値のシールド性能への影響を測定した時の測定結果を示すグラフである。 図3に示した各シミュレーションにおいて、剥ぎ部分の周囲を筒状導体で覆って、剥ぎ無しの状態でシールド性能を測定し、剥ぎ部分の有無の影響を調べたグラフである。 図5に示した金属箔材の両端をドレイン線に接触させたシミュレーションに、更にドレイン線と金属箔材との接触箇所を追加してシールド性能を測定した時の測定結果を示すグラフである。 図2に示した断面構造で、被覆付き導線の線長が50cm、端末に金属箔材を剥いだ剥ぎ部分を設けている場合に、ドレイン線と金属箔材との接触度合い(接触点位置)を変えて、シールド性能を測定した時の測定結果を示すグラフである。 図7に示した各シミュレーションにおいて、剥ぎ部分の周囲を筒状導体で覆って、剥ぎ無しの状態でシールド性能を測定し、剥ぎ部分の有無の影響を調べたグラフである。 図8に示した剥ぎ部分無しのシミュレーションで、更に、ドレイン線の装備範囲を金属箔材の両端部のみにした場合の影響を調べたものである。 (a)は金属箔とドレイン線が接していない状態のシールド電線の断面図、(b)は金属箔とドレイン線が接した状態のシールド電線の断面図である。
 以下、本発明に係る金属箔シールド電線の好適な実施形態について、図面を参照して詳細に説明する。
 図1は、本発明に係る金属箔シールド電線の一実施形態の斜視図である。
 この一実施形態の金属箔巻きシールド電線1は、シールド層を有していない2本の被覆付き導線3,4と、これらの被覆付き導線3,4に縦添えされたドレイン線6と、被覆付き導線3,4とドレイン線6の周囲に巻き付けられて被覆付き導線3,4とドレイン線6の周囲を覆うシールド層(導電層)を形成する金属箔材8とを備えた構成で、2芯シールド線として使用される。
 ドレイン線6は、被覆付き導線3,4の芯線(導体)と略同一断面積の裸導線で、長さが被覆付き導線3,4と略同一にされている。そして、各被覆付き導線3,4の端部、及びドレイン線6の端部には、それぞれ接続端子9が接続されている。ドレイン線6は、各被覆付き導線3,4の端部側に位置する機器等の接地部に接地接続される。
 金属箔材8は、絶縁材料であるポリエチレンフィルムの片面に、肉厚20μmのアルミニウム箔層を設けたもので、アルミニウム箔層がシールド層として機能する。金属箔材8は、アルミニウム箔層を内側に向けて、被覆付き導線3,4及びドレイン線6の外周に巻き付けられる。巻き付けられた金属箔材8は、アルミニウム箔層がドレイン線6に接触することにより、ドレイン線6に導通状態になる。
 本実施形態の場合、金属箔材8の巻き付け範囲は、各被覆付き導線3,4の長さよりも僅かに短く設定されている。そのため、金属箔巻きシールド電線1の端末には、各被覆付き導線3,4が金属箔材8によって覆われていない剥ぎ部分B1,B2が残っている。
 また、本実施形態の場合、被覆付き導線3,4の両端部付近に位置する金属箔材8の両端部が、ドレイン線6に導通接続された箔導通接続部11になっている。この箔導通接続部11は、金属箔材8の金属箔層(アルミニウム箔層)を確実にドレイン線6に接触した状態に保持するもので、本実施形態の場合は、粘着テープ13による結束固定により実施しているが、金属箔層をドレイン線6に接触させる具体的な手段は、粘着テープ13による結束固定に限らない。例えば、導電性接着剤による接着固定を利用しても良い。
 以上に説明した金属箔巻きシールド電線1では、被覆付き導線3,4及びドレイン線6の外周に巻き付けた金属箔材8は、その両端部がドレイン線6に導通接続されており、この状態では、被覆付き導線3,4の長手方向の中間部で金属箔材8がドレイン線6から非接触な状態になっていても、被覆付き導線3,4の略全長に渡って金属箔材8がドレイン線6に接触状態に形成された場合に近い優れたシールド性能を発揮することができ、シールド性能にばらつきのない高品質の金属箔巻きシールド電線を安定生産することができる。
 また、金属箔材8を被覆付き導線3,4及びドレイン線6の外周に巻き付ける工程後の電線の長手方向中間部における金属箔材8とドレイン線6との非接触部の有無の検査工程や、非接触部への導電性接着剤の充填等の工程を省くことができるため、製造工程の簡素化によりコスト低減を図ることもできる。
 以下に、上記の作用・効果を確認するために、本願発明者等が実施した多種のシールド効果評価実験(シミュレーション)の結果を示す。
 なお、実験では、上記金属箔巻きシールド電線1の代わりに、図2に示す横断面の金属箔巻きシールド電線1Aを基本の評価モデルとした。
 図2に示した金属箔巻きシールド電線1Aは、図1に示した金属箔巻きシールド電線1から被覆付き導線4を除いて、単芯の金属箔巻きシールド電線としたものである。
 図2の金属箔巻きシールド電線1Aにおける被覆付き導線3は、公称断面積が0.35mmの芯線3aの周囲が、比誘電率が2.9の絶縁被覆3bで覆われたハロゲンフリー電線である。金属箔巻きシールド電線1Aにおけるドレイン線6は、公称断面積が芯線3aと同一で、絶縁被覆が施されていない裸導体で、両端が接地接続された状態で、評価試験が行われる。
 金属箔巻きシールド電線1Aにおける金属箔材8は、ポリエチレンフィルム8aの片面に、肉厚20μmのアルミニウム箔層8bを設けたものである。
 金属箔材8は、被覆付き導線3及びドレイン線6の外周に巻き付けるため、実際は、図2のような真円状にはならない場合が多い。
 図3は、図2に示した横断面構造で、被覆付き導線3の線長が10cm、端末に金属箔材8を剥いだ剥ぎ部分B1,B2(図1参照)を設けている場合を基本条件として、ドレイン線6と金属箔材8との接触度合いを変えて、シールド性能を測定した時の6種類の測定結果f1~f6を示すグラフである。
 図3において、測定結果f1は被覆付き導線3及びドレイン線6に巻き付けている金属箔材8を、金属箔材8を巻き付けている範囲の全長に渡ってドレイン線6に導通接触させている場合のもので、シールド効果が一番優れている。なお、この測定結果f1を得た金属箔巻きシールド電線の場合は、金属箔材8の全長をドレイン線6に接触させた状態を確保するために、金属箔材8の巻き付け工程の終了後に、金属箔層とドレイン線との非接触部の有無を検査し、金属箔層がドレイン線から離反している部分には導電性接着剤を充填する接触性改善工程を実施している。
 図3の測定結果f2は、被覆付き導線3及びドレイン線6に巻き付けている金属箔材8の両端の2点をドレイン線6に導通接触させたもので、巻き付けた金属箔材8の全範囲をドレイン線6に導通接続させるための接触性改善工程は実施していない。金属箔材8の両端のドレイン線6への導通接触は、図1に示した粘着テープ13による結束固定を用いている。
 この測定結果f2の場合は、測定結果f1と比較して、シールド効果の低下は極めて微少で、測定結果f1と略同等のシールド効果が得られている。
 測定結果f3,f4は、金属箔材8の両端側の2点をドレイン線6に導通接触させている点は測定結果f2と似ている。しかし、金属箔材8とドレイン線6との接触位置は、金属箔材8の両端ではなく、測定結果f3の場合は端部から10mm内側に移動した位置、測定結果f4の場合は端部から20mm内側に移動した位置になっている。
 測定結果f3は測定結果f2よりもシールド効果が低下しており、測定結果f4は更に測定結果f3よりもシールド効果が低下している。即ち、金属箔材8とドレイン線6との接触位置が金属箔材8の両端から内側に移動するほど、シールド効果が低下するという結果を得た。従って、金属箔材8とドレイン線6との接触位置は、被覆付き導線3及びドレイン線6上に巻き付けた金属箔材8の両端が最適であることが確認できた。
 測定結果f5及び測定結果f6は、金属箔材8の有無によるシールド効果への影響を調べたものである。
 測定結果f5の場合は、金属箔材8を被覆付き導線3及びドレイン線6の外周に単純に巻き付けただけで、金属箔材8とドレイン線6とを確実に接触させるための粘着テープ13による結束等は一切していない状態である。この測定結果f5の場合は、測定結果f4の場合よりも顕著にシールド効果が低下し、金属箔材8を単純に巻き付けただけでは、シールド効果が不十分であることが確認できた。
 測定結果f6は、アルミニウム箔層8bを有しないポリエチレンフィルム8aのみを被覆付き導線3及びドレイン線6の外周に巻き付けたもので、シールド効果は測定結果f5の場合よりも更に低下している。
 図3に示した以上のシミュレーションでは、被覆付き導線3及びドレイン線6の周囲に巻き付けた金属箔材8は、両端をドレイン線6に接触(導通)させていれば、中間部がドレイン線6に非接触でも、全長をドレイン線6に接触させている場合と略同等のシールド効果を得られることが判明した。また、金属箔材8とドレイン線6との接触位置が両端から内側に移動するほど、シールド効果が低下する傾向が見られるが、両端から内側への移動量が小さい場合には、シールド効果の低下は小さい。
 従って、金属箔材8とドレイン線6との接触位置は、厳密に、被覆付き導線3及びドレイン線6の周囲に巻き付けた金属箔材8の両端位置に限定する必要はない。例えば、金属箔材8の両端位置の近傍位置(例えば両端から10mm以内など)に設定しても、金属箔材8が優れたシールド性能を発揮することができ、シールド性能にばらつきのない高品質の金属箔巻きシールド電線を得られることが確認できた。
 更に、金属箔材8の両端部又はその近傍位置がドレイン線6に接触していれば、金属箔材8の中間部がドレイン線6に非接触になっていても、シールド効果に影響を及ぼさないことが実証されたため、金属箔材8の中間部におけるドレイン線6との非接触部の有無の検査や、非接触部への導電性接着剤の充填等を行う接触性改善工程を省いて、製造工程の簡素化によりコスト低減を図ることができることも明らかになった。
 図4は、図3に示した2点両端接触の測定結果f2について、更に、各接触点における接触抵抗値を変えてシールド効果を調べることで、接触抵抗値のシールド効果への影響を調べたものである。
 図4には、接触抵抗値を1mΩに設定した時の測定結果f11、接触抵抗値を10mΩに設定した時の測定結果f12、接触抵抗値を100mΩに設定した時の測定結果f13、接触抵抗値を1Ωに設定した時の測定結果f14を示している。
 厳密には、接触抵抗値が大きくなるほどシールド効果が低下する傾向は見られるが、シミュレーションした接触抵抗値の変化範囲(1mΩ~1Ω)では、実質的なシールド効果の低下は無いに等しい。
 従って、金属箔材8の両端部を粘着テープ13による結束等でドレイン線6に接触させたときに、接触抵抗値の影響でシールド効果にばらつきが生じることはなく、本発明に係る金属箔巻きシールド電線では安定したシールド性能が得られることが明らかになった。
 図5は、図3に示した各シミュレーションにおいて、剥ぎ部分(図1のB1,2部分)の周囲を筒状導体(カバー)で覆って、剥ぎ無しの状態に改良してシールド性能を測定し、剥ぎ部分の有無の影響を調べたグラフである。
 図5の測定結果f21は、巻き付けられている金属箔材8を全長に渡ってドレイン線6に導通接触させたもので、図3の測定結果f1に対応している。測定結果f22は、巻き付けられている金属箔材8の両端の2点をドレイン線6に導通接触させたもので、図3の測定結果f2に対応している。測定結果f23は、巻き付けられている金属箔材8の両端から内側に10mm移動した2点をドレイン線6に導通接触させたもので、図3の測定結果f3に対応している。測定結果f24は、巻き付けられている金属箔材8の両端から内側に20mm移動した2点をドレイン線6に導通接触させたもので、図3の測定結果f4に対応している。測定結果f25は、巻き付けられている金属箔材8をドレイン線6に導通接触させていないもので、図3の測定結果f5に対応している。
 図5の測定結果f21、f22,f23,f34などでは、剥ぎ部分を無くしたことで、シールド効果が若干であるが改善されていることが確認できた。従って、より高いシールド性能が要求される場合には、金属箔巻きシールド電線の両端における剥ぎ部分を筒状導体で、剥ぎ無しの形態にすると良い。
 また、図5には、参考のために、ドレイン線6を介さずに、金属箔材8の端部を直接接地した場合の測定結果f20を示した。
 この測定結果f20は、金属箔材8が全長に渡って導通接触しているドレイン線6の両端を接地したf21と比較しても、顕著に、優れたシールド効率を示している。
 従って、可能ならば、金属箔巻きシールド電線に装備した金属箔材8の両端は、直接接地すると良い。
 図6は、図5に示した測定結果f22について、更に、接触点数を増やしたシミュレーションを追加したものである。
 図6の測定結果f22(3)は、金属箔材8とドレイン線6との接触箇所を、金属箔材8の両端と中央の3点にしてシールド効果を測定したものである。測定結果f22(5)は、金属箔材8とドレイン線6との接触箇所を、金属箔材8の両端と中間の3カ所の5点にしてシールド効果を測定したものである。
 測定結果f22(3),f22(5)は、測定結果f22との差異が見つからなかった。この結果からは、金属箔材8とドレイン線6との接触箇所は、上記実施形態に示した金属箔材8の両端の2カ所で十分であることが明らかになった。
 図7は、図2に示した断面構造で、被覆付き導線の線長が50cm、端末に金属箔材を剥いだ剥ぎ部分(5mm)を設けている場合に、ドレイン線と金属箔材との接触度合い(接触点位置)を変えて、シールド性能を測定した時の5種類の測定結果f51~f55を示すグラフである。
 図7おける各測定結果は、図3との比較で線長の影響を評価することができる。図7において、測定結果f41は被覆付き導線3及びドレイン線6に巻き付けている金属箔材8を、金属箔材8を巻き付けている範囲の全長に渡ってドレイン線6に導通接触させている場合のものであり、図7に示した各シミュレーションの中では、シールド効果が一番優れている。
 図7の測定結果f42は、被覆付き導線3及びドレイン線6に巻き付けている金属箔材8の両端の2点をドレイン線6に導通接触させたもので、図3のシミュレーションの場合と同様に、金属箔材8の全長をドレイン線6に接触させた測定結果f41と略同等のシールド効果が得られている。
 測定結果f43,f44は、金属箔材8の両端側の2点をドレイン線6に導通接触させている点は測定結果f42と共通している。しかし、金属箔材8とドレイン線6との接触位置は、金属箔材8の両端ではなく、測定結果f43の場合は端部から20mm内側に移動した位置、測定結果f44の場合は端部から50mm内側に移動した位置になっている。
 測定結果f43は測定結果f42よりもシールド効果が低下しており、測定結果f44は更に測定結果f43よりもシールド効果が低下している。即ち、金属箔材8とドレイン線6との接触位置が金属箔材8の両端から内側に移動するほど、シールド効果が低下するという傾向は、図3のシミュレーションの場合と同様である。従って、金属箔材8とドレイン線6との接触位置は、被覆付き導線3及びドレイン線6上に巻き付けた金属箔材8の両端が最適であることが確認できた。
 測定結果f45は、金属箔材8の有無によるシールド効果への影響を調べたものである。
 測定結果f45の場合は、金属箔材8は被覆付き導線3及びドレイン線6の外周に単純に巻き付けただけで、金属箔材8とドレイン線6とを確実に接触させるための粘着テープ13による結束等は一切していない状態である。この測定結果f5の場合は、測定結果f44の場合よりも顕著にシールド効果が低下し、金属箔材8を単純に巻き付けただけでは、シールド効果が不十分であることが確認できた。
 図7と図3との各測定結果を比較すると、金属箔材8の両端をドレイン線6に接触させていれば、線長の大小に拘わらず、金属箔材8の全長をドレイン線6に接触させた場合と略同等の優れたシールド効果が得られることが確認することができた。
 図8は、図7に示した各シミュレーションにおいて、剥ぎ部分(図1のB1,2部分)の周囲を筒状導体(カバー)で覆って、剥ぎ無しの状態に改良してシールド性能を測定し、剥ぎ部分の有無の影響を調べたグラフである。
 換言すると、図8の各シミュレーションは、図5に示した各シミュレーションにおける線長を、50cmに変更して実施したものである。
 図8の測定結果f51は、巻き付けられている金属箔材8を全長に渡ってドレイン線6に導通接触させたもので、図7の測定結果f41に対応している。測定結果f52は、巻き付けられている金属箔材8の両端の2点をドレイン線6に導通接触させたもので、図7の測定結果f42に対応している。測定結果f53は、巻き付けられている金属箔材8の両端から内側に20mm移動した2点をドレイン線6に導通接触させたもので、図7の測定結果f43に対応している。測定結果f54は、巻き付けられている金属箔材8の両端から内側に50mm移動した2点をドレイン線6に導通接触させたもので、図7の測定結果f44に対応している。測定結果f55は、巻き付けられている金属箔材8をドレイン線6に導通接触させていないもので、図7の測定結果f45に対応している。
 図8の各測定結果f51、f52,f53,f54などでは、剥ぎ部分を無くしたことで、シールド効果が若干であるが改善されていることが確認できた。従って、より高いシールド性能が要求される場合には、金属箔巻きシールド電線の両端における剥ぎ部分を筒状導体で、剥ぎ無しの形態にすると良い。
 また、図8には、参考のために、ドレイン線6を介さずに、金属箔材8の端部を直接接地した場合の測定結果f50を示した。
 この測定結果f50は、金属箔材8が全長に渡って導通接触しているドレイン線6の両端を接地したf51と比較しても、顕著に、優れたシールド効率を示している。
 従って、可能ならば、金属箔巻きシールド電線に装備した金属箔材8の両端は、直接接地すると良い。
 図9は、図8に示した剥ぎ部分無しのシミュレーションで、更に、ドレイン線の装備範囲を金属箔材の両端部のみにした場合の影響を調べたものである。
 図9の測定結果f51は、ドレイン線6が被覆付き導線3の全長に渡って縦添えされていて、金属箔材8の全長がドレイン線6に接触している場合の測定結果で、図8の測定結果f51を転記したものである。
 図9の測定結果f61~f63は、ドレイン線6の装備範囲を、被覆付き導線3に巻き付ける金属箔材8の両端部の1cmのみに制限したものである。
 但し、測定結果f61の場合は、装備した両端の1cmのドレイン線6の全長を金属箔材8に導通接触させている時の測定結果であり、被覆付き導線3の全範囲に縦添えされたドレイン線6の全長が金属箔材8に導通接触されている測定結果f51と比較すると、約2dBほどシールド効果の低下が見られたが、シールド効果は十分に発揮されていることが確認できた。
 この場合のシールド効果の低下の原因は、両端部のみにドレイン線を装備した金属箔巻きシールド電線では、ドレイン線が被覆付き導線の全長に渡って延設されている通常の場合と比較すると、金属箔層とドレイン線とによる導体断面積が低減していることにあると考えられる。
 測定結果f62の場合は、装備した両端の1cmのドレイン線6の一番内側の端部を金属箔材8に導通接触させている時の測定結果である。この場合は、測定結果f61と比較して、更に4dBほど、シールド効果の低下が見られたが、この場合も、シールド性能としては十分に実用価値があると考えられる。
 測定結果f63の場合は、装備した両端の1cmのドレイン線6を、特には、金属箔材8に接触させていない時の測定結果である。この場合は、シールド効果の顕著な低下が見られ、実用性に乏しいことが判明した。
 図9に示した各シミュレーションから、ドレイン線6の装備範囲を被覆付き導線の両端部側の規定長の範囲のみに制限した場合でも、両端の各ドレイン線6を金属箔材8に導通接触させておけば、比較的良好なシールド効果が得られることが判明した。
 従って、本発明に係る金属箔巻きシールド電線としては、ドレイン線6の装備範囲を、被覆付き導線の両端部側の規定長の範囲のみにすることも可能である。
 そして、ドレイン線の装備範囲を被覆付き導線の両端側の規定長のみに制限した場合には、ドレイン線の使用量を低減して、使用材料の削減によるコスト削減、軽量化、配索性(可撓性)の向上を図ることもできる。
 次に、ドレイン線6と金属箔材8との接触がシールド特性に影響し、両端で接触するのが有効である理由を以下に説明する。
 ドレイン線6と金属箔材8との接触がない場合、図10(a)に示すように被覆付き導線3と反対向きの電流がドレイン線6に流れるが、電流路は平行2線状態であるので、周囲への磁界漏れは防げない。また、ドレイン線6を接地接続しても、電流は遮蔽されない。
 これに対し、ドレイン線6と金属箔材8との接触がある場合、図10(b)に示すように被覆付き導線3と反対向きの電流がドレイン線6及び金属箔材8に流れる。電流路は同軸線に近くなり(金属箔材8及びドレイン6電流の重心が被覆付き導線3上に近い)、磁界の遮蔽効果が高い。また、ドレイン線6を接地接続すれば、電界も遮蔽される。
 シールド電線1Aの場合、金属箔材8はシールドコネクタのシェルや、機器の基板のグランド接点、筐体などに接続される。その接続がない場合は、電界及び磁界遮蔽効果がなく、片端接続の場合には、電界遮蔽効果しか得られない。これに対し、両端接続の場合は、電界及び磁界遮蔽効果が得られる。
 両端接続の場合、金属箔材8が電流路になり、不平衡線路では被覆付き導線3に流れる電流と反対向きに電流が流れ、発生する磁界を遮蔽する。差動伝送のような平衡線路の場合でも、不平衡分の電流が金属箔材8に流れ、同じように磁界遮蔽が行われる。
 接続を取る際、電線1Aから出たドレイン線6が外部導体と接続することになり、まずドレイン線6に電流が流れることになるが、そのままドレイン線6を流れる場合には、被覆付き導線3の周囲を覆う形で電流が流れ、遮蔽効果が高くなる。よって、シールド電線1Aの、より端末に近い部分で電流が金属箔材8を流れることができるようにすると、シールド特性が良い部分が増え、結果として線間誘導量が減る。
 この結果、シールド電線1Aの両端末でドレイン線6と金属箔材8を積極的に接触させることが最良で、そのためには、結束バンドやテープ留め等の処理を端末で行い、金属箔材8の内側の金属箔層(導体面)8bがドレイン線6と確実に接触することが好ましい。
 本発明は、上述した実施形態に限定されるものではなく、適宜、変形、改良等が自在である。その他、上述した実施形態における各構成要素の材質、形状、寸法、数値、形態、数、配置場所、等は本発明を達成できるものであれば任意であり、限定されない。
 例えば、芯線やドレイン線の数、芯線やドレイン線のツイスト(撚り)の有無、金属箔材の巻き仕様(重ね巻き、縦添え)等の構造は、特に限定されない。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年7月2日出願の日本特許出願(特願2009-157869)、に基づくものであり、その内容はここに参照として取り込まれる。
 本発明による金属箔シールド電線によれば、被覆付き導線の略全長に渡って金属箔材がドレイン線に接触状態に形成された場合に近い優れたシールド性能を発揮することができ、シールド性能にばらつきのない高品質の金属箔巻きシールド電線を安定生産することができる。
 また、金属箔材を被覆付き導線及びドレイン線の外周に巻き付ける工程後の電線の長手方向中間部における金属箔材とドレイン線との非接触部の有無の検査工程や、非接触部への導電性接着剤の充填等の工程を省くことができるため、製造工程の簡素化によりコスト低減を図ることもできる。
 1 金属箔巻きシールド電線
 1A 金属箔巻きシールド電線
 3 被覆付き導線
 3a 芯線
 3b 絶縁被覆
 4 被覆付き導線
 6 ドレイン線
 8 金属箔材
 8a ポリエチレンフィルム
 8b アルミニウム箔層(金属箔層)
 9 接続端子
 11 箔導通接続部
 13 粘着テープ
 B1,B2 剥ぎ部分

Claims (2)

  1.  被覆付き導線と、該被覆付き導線に縦添えされて前記被覆付き導線の端部で接地接続されるドレイン線と、前記被覆付き導線とドレイン線の周囲に巻き付けられて前記被覆付き導線とドレイン線の周囲を覆うシールド層を形成する金属箔材とを備えた金属箔巻きシールド電線であって、
     前記被覆付き導線の両端部付近に位置する前記金属箔材の両端部又は両端の近傍位置が前記ドレイン線に導通接続された箔導通接続部になっている金属箔巻きシールド電線。
  2.  前記ドレイン線は、前記被覆付き導線の両端部側の規定長にのみ装備された請求項1に記載の金属箔巻きシールド電線。
PCT/JP2010/059481 2009-07-02 2010-06-03 金属箔巻きシールド電線 WO2011001786A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10793956.3A EP2450913A4 (en) 2009-07-02 2010-06-03 METALLIC WOVEN FILMED SHIELDED ELECTRIC CABLE
CN2010800301263A CN102473482A (zh) 2009-07-02 2010-06-03 卷绕有金属箔的屏蔽电线
US13/381,745 US9058911B2 (en) 2009-07-02 2010-06-03 Shielded electric wire wrapped with metal foil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009157869A JP2011014391A (ja) 2009-07-02 2009-07-02 金属箔巻きシールド電線
JP2009-157869 2009-07-02

Publications (1)

Publication Number Publication Date
WO2011001786A1 true WO2011001786A1 (ja) 2011-01-06

Family

ID=43410866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059481 WO2011001786A1 (ja) 2009-07-02 2010-06-03 金属箔巻きシールド電線

Country Status (5)

Country Link
US (1) US9058911B2 (ja)
EP (1) EP2450913A4 (ja)
JP (1) JP2011014391A (ja)
CN (2) CN102473482A (ja)
WO (1) WO2011001786A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6089288B2 (ja) 2011-05-19 2017-03-08 矢崎総業株式会社 シールド電線
JP6011521B2 (ja) * 2013-09-06 2016-10-19 住友電装株式会社 ワイヤーハーネス
JP6217601B2 (ja) * 2014-11-19 2017-10-25 株式会社オートネットワーク技術研究所 ワイヤーハーネス
US10056702B2 (en) * 2015-11-04 2018-08-21 Gentherm, Inc. Crimp connection for mesh shielding material used in steering wheel with capacitive sensing
CN107768851B (zh) * 2016-08-15 2019-11-05 东莞莫仕连接器有限公司 线缆连接器
WO2018219790A1 (en) 2017-05-30 2018-12-06 Solvay Specialty Polymers Italy S.P.A. Shielded cables
JP7371505B2 (ja) * 2020-01-20 2023-10-31 住友電装株式会社 ワイヤハーネス
US11823817B2 (en) * 2020-02-04 2023-11-21 Structured Home Wiring Direct, LLC Composite hybrid cables and methods of manufacturing and installing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304917A (ja) * 2001-04-03 2002-10-18 Auto Network Gijutsu Kenkyusho:Kk シールドケーブル
JP2002319319A (ja) * 2001-04-23 2002-10-31 Sumitomo Electric Ind Ltd 平行2心シールド電線
JP2007311045A (ja) 2006-05-16 2007-11-29 Yazaki Corp シールド部材及びシールド電線
JP2009093934A (ja) 2007-10-10 2009-04-30 Yazaki Corp シールド電線及びシールド電線の製造方法
JP2009157869A (ja) 2007-12-28 2009-07-16 Glory Ltd 印刷検査装置
JP2010056080A (ja) * 2008-07-31 2010-03-11 Sumitomo Electric Ind Ltd 差動伝送ケーブル及びそれを含む複合ケーブル

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3280246A (en) * 1965-02-02 1966-10-18 Thomas & Betts Corp Ground sheath connector
US3612744A (en) * 1969-02-27 1971-10-12 Hughes Aircraft Co Flexible flat conductor cable of variable electrical characteristics
US3896261A (en) * 1974-04-15 1975-07-22 Belden Corp Coaxial cable with an undulated drain wire
US4327246A (en) * 1980-02-19 1982-04-27 Belden Corporation Electric cables with improved shielding members
US4461923A (en) * 1981-03-23 1984-07-24 Virginia Patent Development Corporation Round shielded cable and modular connector therefor
EP0068665B1 (en) * 1981-06-18 1985-05-29 AMP INCORPORATED (a New Jersey corporation) Shielded electrical cable
US4510346A (en) * 1983-09-30 1985-04-09 At&T Bell Laboratories Shielded cable
US4800236A (en) * 1986-08-04 1989-01-24 E. I. Du Pont De Nemours And Company Cable having a corrugated septum
US5110999A (en) * 1990-12-04 1992-05-05 Todd Barbera Audiophile cable transferring power substantially free from phase delays
US5208426A (en) * 1991-09-03 1993-05-04 W. L. Gore & Associates, Inc. Shielded electric signal cable having a two-layer semiconductor jacket
JPH0590739U (ja) 1992-05-14 1993-12-10 昭和電線電纜株式会社 シールドテープおよびこれを用いたシールドケーブル
US5315063A (en) * 1992-09-10 1994-05-24 Electric Motion Company, Inc. Ground connector
JP2594734Y2 (ja) * 1992-10-19 1999-05-10 住友電装株式会社 シールド付きフラットケーブル
US5416268A (en) * 1993-07-14 1995-05-16 The Whitaker Corporation Electrical cable with improved shield
JP2920901B2 (ja) 1993-10-08 1999-07-19 矢崎総業株式会社 シールド電線
US5416269A (en) * 1993-11-01 1995-05-16 Raychem Corporation Insulated cable and method of making same
US5473117A (en) * 1994-02-17 1995-12-05 Alcatel Network Systems, Inc. Flexible cable grounding scheme
JP3007035U (ja) 1994-03-02 1995-02-07 電化商事株式会社 シールド付後被覆式チューブ
US5486649A (en) * 1994-03-17 1996-01-23 Belden Wire & Cable Company Shielded cable
JP3112830B2 (ja) * 1996-05-16 2000-11-27 矢崎総業株式会社 電線のシールド構造
US6441308B1 (en) * 1996-06-07 2002-08-27 Cable Design Technologies, Inc. Cable with dual layer jacket
JPH11353952A (ja) * 1998-06-05 1999-12-24 Sumitomo Wiring Syst Ltd 電線のシールド外装構造
JPH11353951A (ja) 1998-06-05 1999-12-24 Sumitomo Wiring Syst Ltd 線材束のノイズ遮断機構
JP2000268893A (ja) * 1999-03-15 2000-09-29 Sumitomo Wiring Syst Ltd 複数のシールド線のアース接続構造
JP2001135419A (ja) * 1999-11-09 2001-05-18 Auto Network Gijutsu Kenkyusho:Kk シールドケーブルの端末処理方法及び端末処理構造
WO2002017333A1 (fr) * 2000-08-18 2002-02-28 Mitsubishi Denki Kabushiki Kaisha Cable protecteur, procede de fabrication d'un cable protecteur et dispositif d'eclairage a lampe a decharge comprenant un cable protecteur
JP2002289047A (ja) * 2001-03-23 2002-10-04 Sumitomo Electric Ind Ltd 平行2心シールド電線とその製造方法
US6831230B2 (en) * 2001-11-28 2004-12-14 Yazaki Corporation Shield processing structure for flat shielded cable and method of shield processing thereof
JP2003198178A (ja) 2001-12-26 2003-07-11 Yazaki Corp シールド電線の端末シールド構造及びシールド電線の端末シールド方法
US6977344B2 (en) * 2002-01-29 2005-12-20 Autonetworks Technologies, Ltd. Flat shield cable
CN2559079Y (zh) * 2002-04-04 2003-07-02 华为技术有限公司 连接在配线架与坐席之间的电缆
US6899562B1 (en) * 2002-10-30 2005-05-31 Garmin International, Inc. Grounding apparatus for an electronic module
US7790981B2 (en) * 2004-09-10 2010-09-07 Amphenol Corporation Shielded parallel cable
JP2008198577A (ja) * 2007-02-15 2008-08-28 Auto Network Gijutsu Kenkyusho:Kk シールド線
CN201081802Y (zh) * 2007-07-30 2008-07-02 宁波博禄德电子有限公司 扁平hdmi高清线缆
JP2011222262A (ja) * 2010-04-08 2011-11-04 Sumitomo Electric Ind Ltd シールドケーブル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002304917A (ja) * 2001-04-03 2002-10-18 Auto Network Gijutsu Kenkyusho:Kk シールドケーブル
JP2002319319A (ja) * 2001-04-23 2002-10-31 Sumitomo Electric Ind Ltd 平行2心シールド電線
JP2007311045A (ja) 2006-05-16 2007-11-29 Yazaki Corp シールド部材及びシールド電線
JP2009093934A (ja) 2007-10-10 2009-04-30 Yazaki Corp シールド電線及びシールド電線の製造方法
JP2009157869A (ja) 2007-12-28 2009-07-16 Glory Ltd 印刷検査装置
JP2010056080A (ja) * 2008-07-31 2010-03-11 Sumitomo Electric Ind Ltd 差動伝送ケーブル及びそれを含む複合ケーブル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2450913A4 *

Also Published As

Publication number Publication date
US9058911B2 (en) 2015-06-16
EP2450913A4 (en) 2014-02-19
CN103985435A (zh) 2014-08-13
CN102473482A (zh) 2012-05-23
US20120103648A1 (en) 2012-05-03
JP2011014391A (ja) 2011-01-20
EP2450913A1 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
WO2011001786A1 (ja) 金属箔巻きシールド電線
CN107833693B (zh) 平行对线缆
US8981216B2 (en) Cable assembly for communicating signals over multiple conductors
JP6188504B2 (ja) 多芯ケーブルおよび多芯ケーブルの製造方法
US6563052B2 (en) Electric installation cable
US20170301431A1 (en) Cable having two individually insulated signal cores
JP5277661B2 (ja) 遮蔽層付きケーブル
JP5461504B2 (ja) 接続ケーブル
US20180254127A1 (en) Data cable, motor vehicle having the data cable and method of producing the data cable
JP7247895B2 (ja) 二芯平行電線
JP2005032583A (ja) 自動車向け通信用シールド電線
JP2015082352A (ja) ワイヤーハーネス
JP2014103121A (ja) 金属箔巻きシールド電線
CN109979673A (zh) 一种数据线缆及其制造方法
JP5598626B2 (ja) 遮蔽層付きケーブル、及びそれを用いたモジュラープラグ付きコード
JP5644894B2 (ja) 不連続導体遮蔽テープを用いた遮蔽層付きケーブル、及びそれを用いたモジュラープラグ付きコード
JP5720842B2 (ja) 不連続導体遮蔽テープ
CN209804326U (zh) 一种非屏蔽线缆
JP5516815B2 (ja) 遮蔽層付きケーブル、及びそれを用いたモジュラープラグ付きコード
JP5598625B2 (ja) 遮蔽層付きケーブル、及びそれを用いたモジュラープラグ付きコード
CN214043123U (zh) 一种汽车用手机无线充电座电缆
JP2015022846A (ja) ツイストペア線及びハーネス
CN216623794U (zh) 食用探针专用线缆
CN211350126U (zh) 一种新型分离式双绞线
KR200359005Y1 (ko) 접지용 케이블

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080030126.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793956

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13381745

Country of ref document: US

Ref document number: 2010793956

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE