WO2011001722A1 - マルトトリオシル転移酵素及びその製造方法並びに用途 - Google Patents

マルトトリオシル転移酵素及びその製造方法並びに用途 Download PDF

Info

Publication number
WO2011001722A1
WO2011001722A1 PCT/JP2010/054894 JP2010054894W WO2011001722A1 WO 2011001722 A1 WO2011001722 A1 WO 2011001722A1 JP 2010054894 W JP2010054894 W JP 2010054894W WO 2011001722 A1 WO2011001722 A1 WO 2011001722A1
Authority
WO
WIPO (PCT)
Prior art keywords
maltotriosyltransferase
enzyme
dna
sequence
seq
Prior art date
Application number
PCT/JP2010/054894
Other languages
English (en)
French (fr)
Inventor
岡田正通
山口庄太郎
長屋美穂
Original Assignee
天野エンザイム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天野エンザイム株式会社 filed Critical 天野エンザイム株式会社
Priority to US13/381,455 priority Critical patent/US8546111B2/en
Priority to EP10793893.8A priority patent/EP2450435B1/en
Priority to CA2766018A priority patent/CA2766018A1/en
Priority to BRPI1014606-7A priority patent/BRPI1014606A2/pt
Priority to DK10793893.8T priority patent/DK2450435T3/en
Priority to CN201080029335.6A priority patent/CN102510900B/zh
Priority to JP2011520814A priority patent/JP5762958B2/ja
Publication of WO2011001722A1 publication Critical patent/WO2011001722A1/ja
Priority to US14/024,277 priority patent/US20140004226A1/en
Priority to US14/024,100 priority patent/US8765434B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/06Enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to maltotriosyltransferase and use thereof. More specifically, the present invention relates to a novel maltotriosyltransferase and a method for producing the same, use of the enzyme in the production and processing of food, a microorganism producing the enzyme, and the like.
  • This application claims priority based on Japanese Patent Application No. 2009-156569 filed on Jul. 1, 2009, the entire contents of which are incorporated by reference.
  • maltotriose-producing amylases include enzymes derived from Microbacterium imperiale, enzymes derived from Streptomyces griseus, enzymes derived from Bacillus ⁇ subtilis, Natronococcus sp.
  • An enzyme derived from Streptococcus bovis is known (Non-patent Document 1). However, among them, only the enzyme derived from Streptomyces griseus has been reported for the transglycosylation reaction.
  • the enzyme catalyzes the transglycosylation reaction only under high substrate concentration conditions (the total of donor and acceptor substrates is 19%, 40% (w / v)), and the low substrate concentration (1% (w / v) In v)), only the hydrolysis reaction is catalyzed, and the transglycosylation reaction is not catalyzed (Non-Patent Documents 2 and 3). Moreover, since heat resistance is also low, it is not utilized as an enzyme for food processing.
  • glycosyltransferases used in industry include, for example, ⁇ -glucosidase used for producing isomaltoligosaccharide or nigerooligosaccharide, ⁇ -fructofuranosidase used for producing fructooligosaccharide or lactosucrose.
  • ⁇ -galactosidase used for galactooligosaccharide production ⁇ -glucosyltransferase used for palatinose production
  • cyclodextrin glucanotransferase used for cyclodextrin production or coupling sugar production for production of hyperbranched cyclic dextrin
  • An example is the branching enzyme used.
  • examples of enzymes that act on polysaccharides and oligosaccharides containing an ⁇ -1,4 bond and catalyze a transglycosylation reaction include ⁇ -glucosidase and branching enzyme.
  • ⁇ -glucosidase catalyzes monosaccharide transglycosylation
  • blanching enzyme catalyzes transglycosylation of oligosaccharides or polysaccharides with 4 or more sugars, specifically transglycosylating the trisaccharide maltotriose.
  • the enzyme is not known.
  • Non-patent Document 4 studies have been conducted to reduce aging by reducing the molecular weight of starch, and aging can be suppressed to some extent.
  • Non-patent Documents there has been a problem of losing the properties of the original starch due to the low molecular weight.
  • starch is colored by reaction with these substances when mixed with protein and amino acids due to an increase in reducing power due to decomposition and heated, and its use has been limited (Patent Documents). 1).
  • blanching enzyme which is an enzyme that decomposes ⁇ -1,4 bonds of starch and synthesizes ⁇ -1,6 bonds by transfer reaction, has been studied, but has problems such as low heat resistance, It has not yet been used as an enzyme for food processing.
  • An object of the present invention is to provide a novel glycosyltransferase that catalyzes a glycosyltransferase reaction of maltotriose units under conditions that can be used for food processing and the like, and uses thereof.
  • the present inventors have intensively studied in order to solve the above problems. As a result, it was found that microorganisms belonging to the genus Geobacillus produce maltotriosyltransferase having a desired action. In addition, the present inventors isolated and purified the maltotriosyltransferase, determined the enzyme chemical properties, and succeeded in cloning the gene encoding the enzyme (hereinafter referred to as “the present gene”). did. In addition, a method for producing maltotriosyltransferase was established by introducing this gene and a fragment of this gene into an appropriate host. The present invention has been completed based on the above-described results, and is as follows.
  • Maltotriosyltransferase having the following enzymatic chemistry: (1) Action: Acts on polysaccharides and oligosaccharides having an ⁇ -1,4 glucoside bond as a binding mode, and transfers maltotriose units to saccharides; (2) Substrate specificity: Acts on soluble starch, amylose, amylopectin, maltotetraose, maltopentaose, maltohexaose, ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, maltotriose, maltose Does not work; (3) Molecular weight: about 83,000 (SDS-PAGE).
  • a maltotriosyltransferase comprising the amino acid sequence of SEQ ID NO: 8, or a fragment thereof exhibiting maltotriosyltransferase activity.
  • a maltotriosyltransferase comprising any one of DNAs selected from the group consisting of the following (a) to (e): (a) DNA encoding the amino acid sequence of SEQ ID NO: 7 or 8; (b) DNA comprising the sequence of SEQ ID NO: 6; (c) DNA that hybridizes under stringent conditions to a sequence complementary to the sequence of SEQ ID NO: 6; (d) DNA that is a DNA sequence degenerate of the sequence of SEQ ID NO: 6; (e) DNA encoding a protein having a maltotriosyltransferase activity, comprising a sequence containing substitution, deletion, insertion, addition or inversion of one or more bases based on the sequence of SEQ ID NO: 6.
  • a recombinant vector comprising the maltotriosyltransferase gene according to [10].
  • the recombinant vector according to [11] which is an expression vector.
  • the transformant according to [13] or [14] which is a bacterial cell, yeast cell or fungal cell.
  • a method for producing a maltotriosyltransferase comprising the following steps (1) and (2) or steps (i) and (ii): (1) culturing a microorganism of the genus Geobacillus having the ability to produce maltotriosyltransferase; (2) A step of recovering maltotriosyltransferase from the culture solution and / or cells after culturing. (I) culturing the transformant according to any one of [13] to [15] under conditions for producing a protein encoded by the maltotriosyltransferase gene; (Ii) recovering the produced protein.
  • APC9669. 2 is a graph showing the optimum pH of maltotriosyltransferase derived from Geobacillus sp.
  • APC9669. 3 is a graph showing temperature stability of maltotriosyltransferase derived from Geobacillus sp.
  • APC9669. 3 is a graph showing the pH stability of maltotriosyltransferase derived from Geobacillus sp. APC9669. It is a figure which shows the result of SDS-PAGE of maltotriosyltransferase.
  • Lane 1 molecular weight marker
  • lane 2 maltotriosyltransferase. It is a figure which shows the experimental result of the softness maintenance effect of bread. It is a figure which shows the result of SDS-PAGE of the centrifugation supernatant liquid of the cell disruption product of E. coli transformant.
  • Lane M molecular weight marker
  • lane 1 centrifugal supernatant of cell disruption of E. coli vector transformant
  • lane 2 maltotriosyltransferase.
  • DNA encoding a protein refers to DNA from which the protein is obtained when expressed, that is, DNA having a base sequence corresponding to the amino acid sequence of the protein. Therefore, codon degeneracy is also considered.
  • isolated when used in relation to the enzyme of the present invention (maltotriosyltransferase) means that when the enzyme of the present invention is derived from a natural material, components other than the enzyme are substantially contained in the natural material.
  • the state which does not contain especially does not contain a contaminating protein substantially).
  • the content of contaminating protein is less than about 20%, preferably less than about 10%, more preferably less than about 5%, even more preferably in terms of weight. Is less than about 1%.
  • the term “isolated” in the case where the enzyme of the present invention is prepared by a genetic engineering technique substantially includes other components derived from the used host cell, culture medium, and the like. It means no state. Specifically, for example, in the isolated enzyme of the present invention, the content of contaminant components is less than about 20%, preferably less than about 10%, more preferably less than about 5%, even more preferably in terms of weight. Less than about 1%.
  • maltotriosyltransferase in this specification, it means “an isolated maltotriosyltransferase”. The same applies to the term “present enzyme” used in place of maltotriosyltransferase.
  • isolated when used with respect to DNA means that, in the case of naturally occurring DNA, it is typically separated from other nucleic acids that coexist in the natural state. However, some other nucleic acid components such as a nucleic acid sequence adjacent in the natural state (for example, a promoter region sequence and a terminator sequence) may be included.
  • an “isolated” state in the case of genomic DNA is preferably substantially free of other DNA components that coexist in the natural state.
  • the “isolated” state in the case of DNA prepared by genetic engineering techniques such as cDNA molecules is preferably substantially free of cell components, culture medium, and the like.
  • the “isolated” state in the case of DNA prepared by chemical synthesis is preferably substantially free of precursors (raw materials) such as dNTP, chemical substances used in the synthesis process, and the like.
  • precursors raw materials
  • dNTP chemical substances used in the synthesis process
  • DNA DNA in an isolated state.
  • the first aspect of the present invention provides a maltotriosyltransferase (hereinafter also referred to as “the present enzyme”) and its producing bacteria.
  • the present enzyme a maltotriosyltransferase
  • the present inventors have intensively studied and found that Geobacillus sp. APC9669 produces maltotriosyltransferase.
  • the inventors succeeded in separating and producing the maltotriosyltransferase, and succeeded in determining the enzyme chemical properties as shown below.
  • This enzyme is a maltotriosyltransferase and acts on polysaccharides and oligosaccharides having an ⁇ -1,4 glucoside bond as a binding mode to transfer maltotriose units to sugars.
  • Substrate specificity This enzyme acts well on soluble starch, amylose, amylopectin, maltotetraose, maltopentaose and maltohexaose. On the other hand, it does not act on ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, maltotriose or maltose.
  • the optimal temperature of this enzyme is about 50 ° C. This enzyme exhibits high activity at about 45 ° C to about 55 ° C.
  • the optimum temperature is a value calculated by measurement using a method for measuring maltotriosyltransferase activity described later (in a 10 mmol / L MES buffer (pH 6.5)).
  • Optimum pH The optimum pH of this enzyme is about 7.5. This enzyme exhibits high activity at a pH of about 6.5 to about 8.0. The optimum pH is determined based on, for example, the results measured in a universal buffer.
  • pH stability This enzyme exhibits stable activity in a wide pH range of pH 5.0 to 10.0. That is, if the pH of the enzyme solution to be treated is within this range, the activity of 85% or more is maintained after treatment at 40 ° C. for 30 minutes.
  • Isoelectric point The isoelectric point of this enzyme is about 4.5 (according to the ampholine-containing electrophoresis method).
  • the maltotriosyltransferase produced by Geobacillus sp. APC9669 has a substrate concentration of 0.67% (w / v) to 70% (w) when maltotetraose is used as a substrate. In the entire range of / v), it was found that the ratio of the production rate of maltoheptaose, a sugar transfer product, to the production rate of maltotriose, a degradation product, was 9: 1 to 10: 0.
  • the rate of the transglycosylation reaction is overwhelmingly over a wide range of substrate concentrations, and if the sum of maltoheptaose production rate and maltotriose production rate is 100%, the former is 90% or more. It was. The speed was compared based on the molar ratio of the products.
  • this enzyme As described above, the details of the properties of the enzyme that was successfully obtained were clarified. As a result, it was found that this enzyme has excellent heat resistance and substrate specificity. Therefore, this enzyme is suitable for food processing applications.
  • the enzyme is preferably a maltotriosyltransferase derived from Geobacillus sp. APC9669.
  • the term “maltotriosyltransferase derived from Geobacillus sp. APC9669” as used herein refers to maltotriosyltransferase produced by Geobacillus sp. APC9669 (which may be a wild strain or a mutant strain), or Geobacillus. -This means that it is a maltotriosyltransferase obtained by genetic engineering techniques using the maltotriosyltransferase gene of SP APC9669 (which may be a wild strain or a mutant strain).
  • a recombinant produced by a host microorganism into which a maltotriosyltransferase gene obtained from Geobacillus sp. APC9669 (or a gene modified from the gene) has been introduced is “maltotriosyltransferase derived from Geobacillus sp. APC9669”. It corresponds to.
  • Geobacillus sp. APC9669 which is the origin of this enzyme, is referred to as a producer of this enzyme.
  • the APC9669 strain is deposited with a predetermined depository as follows and can be easily obtained. Depositary: NITE Biotechnology Headquarters Patent Microbiology Deposit Center (2-5-8 Kazusa Kamashi, Kisarazu City, Chiba Prefecture 292-0818, Japan) Deposit date (Receipt date): June 2, 2009 Deposit number: NITE BP-770
  • the maltotriosyltransferase of the present invention includes the amino acid sequence of SEQ ID NO: 8 in one embodiment.
  • the amino acid sequence is obtained by removing the signal peptide portion from the amino acid sequence of SEQ ID NO: 7.
  • the amino acid sequence of SEQ ID NO: 7 is an amino acid sequence deduced from the base sequence (SEQ ID NO: 6) of the gene obtained by cloning from Geobacillus sp. APC9669.
  • the modified protein may have a function equivalent to that of the protein before modification. That is, the modification of the amino acid sequence does not substantially affect the function of the protein, and the function of the protein may be maintained before and after the modification.
  • the present invention provides, as another aspect, a protein having an amino acid sequence equivalent to the amino acid sequence shown in SEQ ID NO: 8 and having maltotriosyltransferase activity (hereinafter also referred to as “equivalent protein”).
  • the “equivalent amino acid sequence” here is partially different from the amino acid sequence shown in SEQ ID NO: 8, but the difference has a substantial effect on the function of the protein (here, maltotriosyltransferase activity).
  • “Having maltotriosyltransferase activity” means an activity that acts on polysaccharides and oligosaccharides having ⁇ -1,4 glucoside bond as a binding mode and transfers maltotriose units to saccharides.
  • the degree of activity is not particularly limited as long as it can function as a maltotriosyltransferase. However, it is preferably the same as or higher than the protein consisting of the amino acid sequence shown in SEQ ID NO: 8.
  • “Partial difference in amino acid sequence” typically means deletion or substitution of 1 to several amino acids (upper limit is 3, 5, 7, 10) constituting an amino acid sequence, Alternatively, it means that a mutation (change) has occurred in the amino acid sequence due to addition, insertion, or a combination of 1 to several amino acids (upper limit is 3, 5, 7, 10), for example.
  • the difference in the amino acid sequence here is allowed as long as the maltotriosyltransferase activity is retained (there may be some variation in activity).
  • the positions where the amino acid sequences are different are not particularly limited, and differences may occur at a plurality of positions.
  • the term “plurality” as used herein refers to, for example, a number corresponding to less than about 30% of all amino acids, preferably a number corresponding to less than about 20%, more preferably a number corresponding to less than about 10%. The number is preferably less than about 5%, and most preferably less than about 1%. That is, the equivalent protein has an amino acid sequence of SEQ ID NO: 8 of about 70% or more, preferably about 80% or more, more preferably about 90% or more, even more preferably about 95% or more, and most preferably about 99% or more. Have identity.
  • an equivalent protein is obtained by causing conservative amino acid substitutions at amino acid residues that are not essential for maltotriosyltransferase activity.
  • conservative amino acid substitution refers to substitution of a certain amino acid residue with an amino acid residue having a side chain having the same properties.
  • a basic side chain eg lysine, arginine, histidine
  • an acidic side chain eg aspartic acid, glutamic acid
  • an uncharged polar side chain eg glycine, asparagine, glutamine, serine, threonine, tyrosine
  • Cysteine eg alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan
  • ⁇ -branched side chains eg threonine, valine, isoleucine
  • aromatic side chains eg tyrosine, phenylalanine, Like tryptophan and histidine.
  • a conservative amino acid substitution is preferably a substitution between amino acid residues within the same family.
  • “Equivalent proteins” may have additional properties. Such properties include, for example, the property of being superior in stability compared to the protein consisting of the amino acid sequence shown in SEQ ID NO: 8, the property of exhibiting different functions only at low temperature and / or high temperature, and the property of different optimum pH. Etc.
  • the identity (%) of two amino acid sequences can be determined by the following procedure, for example.
  • two sequences are aligned for optimal comparison (eg, a gap may be introduced into the first sequence to optimize alignment with the second sequence).
  • a gap may be introduced into the first sequence to optimize alignment with the second sequence.
  • Gapped BLAST described in Altschul et al. (1997) Amino Acids Research 25 (17): 3389-3402 can be used.
  • the default parameters of the corresponding programs eg, XBLAST and NBLAST
  • XBLAST and NBLAST the default parameters of the corresponding programs
  • Examples of other mathematical algorithms that can be used for sequence comparison include those described in Myers and Miller (1988) Comput Appl Biosci. 4: 11-17.
  • Such an algorithm is incorporated in the ALIGN program available on, for example, the GENESTREAM network server (IGH (Montpellier, France) or the ISREC server.
  • the enzyme may be part of a larger protein (eg, a fusion protein).
  • a larger protein eg, a fusion protein
  • sequences added in the fusion protein include sequences useful for purification, such as multiple histidine residues, and additional sequences that ensure stability during recombinant production.
  • the present enzyme having the above amino acid sequence can be easily prepared by a genetic engineering technique. For example, it can be prepared by transforming a suitable host cell (for example, E. coli) with DNA encoding the present enzyme and recovering the protein expressed in the transformant. The recovered protein is appropriately prepared according to the purpose. Thus, if this enzyme is obtained as a recombinant protein, various decorations are possible. For example, if a DNA encoding this enzyme and another appropriate DNA are inserted into the same vector and a recombinant protein is produced using the vector, the peptide consists of a recombinant protein linked to any peptide or protein. This enzyme can be obtained.
  • modification may be performed so that addition of sugar chain and / or lipid, or processing of N-terminal or C-terminal may occur.
  • modification as described above, extraction of recombinant protein, simplification of purification, addition of biological function, and the like are possible.
  • the second aspect of the present invention relates to a maltotriosyltransferase gene.
  • the gene of the present invention comprises DNA encoding the amino acid sequence of SEQ ID NO: 7 or 8.
  • a specific example of this embodiment is DNA consisting of the base sequence of SEQ ID NO: 6.
  • the protein encoded by the modified DNA may have the same function as the protein encoded by the DNA before modification. That is, the modification of the DNA sequence does not substantially affect the function of the encoded protein, and the function of the encoded protein may be maintained before and after the modification. Therefore, the present invention provides, as another embodiment, a DNA (hereinafter also referred to as “equivalent DNA”) encoding a protein having a base sequence equivalent to the base sequence of SEQ ID NO: 6 and having maltotriosyltransferase activity. .
  • the “equivalent base sequence” here is partially different from the nucleic acid shown in SEQ ID NO: 6, but due to the difference, the function of the protein encoded by it (in this case, maltotriosyltransferase activity) is substantial. A base sequence that is not affected.
  • a specific example of equivalent DNA is DNA that hybridizes under stringent conditions to a base sequence complementary to the base sequence of SEQ ID NO: 6.
  • the “stringent conditions” here are conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • Such stringent conditions are known to those skilled in the art, such as Molecular Cloning (Third Edition, Cold Spring Harbor Laboratory Press, New York) and Current protocols in molecular biology (edited by Frederick M. Ausubel et al., 1987) Can be set with reference to.
  • hybridization solution 50% formamide, 10 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 5 ⁇ Denhardt solution, 1% SDS, 10% dextran sulfate, 10 ⁇ g / ml denaturation
  • 5 ⁇ Denhardt solution 1% SDS
  • 10% dextran sulfate 10 ⁇ g / ml denaturation
  • incubation at about 42 ° C to about 50 ° C using salmon sperm DNA, 50 mM phosphate buffer (pH 7.5), followed by washing at about 65 ° C to about 70 ° C using 0.1 x SSC, 0.1% SDS can be mentioned.
  • Further preferable stringent conditions include, for example, 50% formamide, 5 ⁇ SSC (0.15M NaCl, 15 mM sodium citrate, pH 7.0), 1 ⁇ Denhardt solution, 1% SDS, 10% dextran sulfate, 10 ⁇ g / ml as a hybridization solution. Of denatured salmon sperm DNA, 50 mM phosphate buffer (pH 7.5)).
  • equivalent DNA from a base sequence containing one or more (preferably 1 to several) base substitutions, deletions, insertions, additions, or inversions based on the base sequence shown in SEQ ID NO: 6 And a DNA encoding a protein having maltotriosyltransferase activity.
  • Base substitution or deletion may occur at a plurality of sites.
  • the term “plurality” as used herein refers to, for example, 2 to 40 bases, preferably 2 to 20 bases, more preferably 2 to 10 bases, although it depends on the position and type of amino acid residues in the three-dimensional structure of the protein encoded by the DNA. It is.
  • Such equivalent DNAs include, for example, restriction enzyme treatment, treatment with exonuclease and DNA ligase, position-directed mutagenesis (Molecular Cloning, Third Edition, Chapter 13, Cold Spring Harbor Laboratory Press, New York) Including mutation, introduction, mutation, and / or inversion using mutation introduction methods (Molecular Cloning, Third Edition, Chapter 13, Cold Spring Harbor Laboratory Press, New York) Thus, it can obtain by modifying DNA which has a base sequence shown to sequence number 6.
  • the equivalent DNA can also be obtained by other methods such as ultraviolet irradiation.
  • Still another example of equivalent DNA is DNA in which a base difference as described above is recognized due to a polymorphism represented by SNP (single nucleotide polymorphism).
  • the gene of the present invention was isolated by using standard genetic engineering techniques, molecular biological techniques, biochemical techniques, etc. with reference to the sequence information disclosed in this specification or the attached sequence listing. Can be prepared in a state. Specifically, an oligonucleotide probe that can specifically hybridize to the gene of the present invention from a genomic DNA library or cDNA library of Geobacillus sp. APC9669, or an intracellular extract of Geobacillus sp. APC9669. A primer can be used as appropriate. Oligonucleotide probes and primers can be easily synthesized using a commercially available automated DNA synthesizer.
  • a gene having the base sequence of SEQ ID NO: 6 can be isolated using a hybridization method using the whole base sequence or its complementary sequence as a probe. Further, it can be amplified and isolated using a nucleic acid amplification reaction (for example, PCR) using a synthetic oligonucleotide primer designed to specifically hybridize to a part of the base sequence.
  • a nucleic acid amplification reaction for example, PCR
  • a synthetic oligonucleotide primer designed to specifically hybridize to a part of the base sequence.
  • the target gene can also be obtained by chemical synthesis (Reference: Gene, 60 (1), 115-127 ( 1987)).
  • this enzyme (maltotriosyltransferase) is isolated and purified from Geobacillus sp. APC9669, and information on the partial amino acid sequence is obtained.
  • a partial amino acid sequence determination method for example, purified maltotriosyltransferase is directly analyzed according to Edman degradation method according to a conventional method [Journal of Biological Chemistry, Vol. 256, 7990-7997 (1981)]. Protein-sequencer 476A, Applied Biosystems, etc.). It is effective to carry out limited hydrolysis with the action of a protein hydrolase, separate and purify the obtained peptide fragment, and perform amino acid sequence analysis on the obtained purified peptide fragment.
  • the maltotriosyltransferase gene is cloned.
  • cloning can be performed using a hybridization method or PCR.
  • the hybridization method for example, the method described in Molecular Cloning (ThirdionEdition, Cold Spring Harbor Laboratory Press, New York) can be used.
  • a genomic DNA of a microorganism producing maltotriosyltransferase is used as a template, and a PCR reaction is performed using a synthetic oligonucleotide primer designed based on partial amino acid sequence information to obtain a target gene fragment.
  • the PCR method is performed according to the method described in PCR technology [PCR Technology, edited by Erlich HA, published by Stocktonpress, 1989].
  • the nucleotide sequence when the nucleotide sequence is determined by a method usually used for this amplified DNA fragment, for example, the dideoxy chain terminator method, it corresponds to the partial amino acid sequence of maltotriosyltransferase in addition to the synthetic oligonucleotide primer sequence in the determined sequence. And a part of the target maltotriosyltransferase gene can be obtained. By further performing a hybridization method or the like using the obtained gene fragment as a probe, a gene encoding the full length of maltotriosyltransferase can be cloned.
  • the sequence of the gene encoding maltotriosyltransferase produced by Geobacillus sp. APC9669 was determined using the PCR method.
  • SEQ ID NO: 6 shows the entire base sequence of the gene encoding maltotriosyltransferase derived from Geobacillus sp. APC9669.
  • amino acid sequence encoded by the base sequence was determined (SEQ ID NO: 7). There are a plurality of base sequences corresponding to the amino acid sequence shown in SEQ ID NO: 7 other than those shown in SEQ ID NO: 6.
  • SEQ ID NO: 6 DNA having high homology with the maltotriosyltransferase gene of SEQ ID NO: 6 can be selected from the cDNA library.
  • PCR primers can be designed. By performing a PCR reaction using this primer, a gene fragment highly homologous to the maltotriosyltransferase gene can be detected, and further the entire gene can be obtained.
  • the gene encodes a protein having maltotriosyltransferase activity by producing a protein of the obtained gene and measuring the maltotriosyltransferase activity.
  • the gene structure and homology are examined. Whether or not it encodes a protein having maltotriosyltransferase activity may be determined.
  • modified maltotriosyltransferases deletion, addition, insertion or substitution of one or more amino acid residues
  • a gene with at least one applied As a result, it is possible to obtain a gene encoding maltotriosyltransferase having maltotriosyltransferase activity but having different properties such as optimum temperature, stable temperature, optimum pH, stable pH, and substrate specificity.
  • a modified maltotriosyltransferase by genetic engineering.
  • the plan for introducing a mutation is carried out, for example, taking into account the characteristic sequence on the gene sequence.
  • Reference to a characteristic sequence can be performed, for example, by considering the three-dimensional structure of the protein and considering homology with known proteins.
  • a method for introducing random mutations as a method for chemically treating DNA, a method in which sodium bisulfite is reacted to cause a transition mutation that converts cytosine bases into uracil bases [Proceedings of the National Academy of Sciences] Sees of the USA, Vol. 79, pp. 1408-1412 (1982)], a biochemical method of generating base substitution in the process of synthesizing double strands in the presence of [ ⁇ -S] dNTP [Gene (Gene), Vol. 64, pp.
  • Examples of methods for introducing site-specific mutations include a method using an amber mutation [gapped duplex method, Nucleic Acids Research, Vol. 12, No. 24, pages 9441-9456 ( 1984)], a method using a recognition site of a restriction enzyme [Analytical Biochemistry, Vol. 200, pp. 81-88 (1992), Gene, Vol. 102, pp. 67-70 (1991)], dut ( dUTPase) and ung (uracil DNA glycosylase) mutation method (Kunkel method, Proceedings of the National Academy of Sciences of the USA, Vol. 82, pp.
  • DNA A method using amber mutation using polymerase and DNA ligase [Oligonuc-directed dual amber (Oligonuc leotide-directed Dual : Amber (ODA) method, Gene, Vol. 152, pp. 271-275 (1995), JP-A-7-289262], a method using a host in which a DNA repair system is induced (JP-A 8-70874), a method using a protein that catalyzes a DNA strand exchange reaction (Japanese Patent Laid-Open No. 8-140685), a PCR method using two types of mutagenesis primers with restriction enzyme recognition sites added (US Pat. No.
  • a site-specific mutation can be easily introduced by using a commercially available kit.
  • kits for example, Mutan (registered trademark) -G (manufactured by Takara Shuzo Co., Ltd.) using the gapped duplex method, Mutan (registered trademark) -K (manufactured by Takara Shuzo Co., Ltd.) using the Kunkel method, and ODA method were used.
  • Mutan (registered trademark) -ExpressKm manufactured by Takara Shuzo Co., Ltd.
  • QuikChangeTM Site-Directed Mutagenesis Kit using Stratagene (Pyrococcus furiosus) DNA polymerase etc.
  • TaKaRa LA PCR in vitro Mutagenesis Kit manufactured by Takara Shuzo
  • Mutan registered trademark
  • -Super Express Km manufactured by Takara Shuzo
  • maltotriosyltransferase by providing the primary structure and gene structure of maltotriosyltransferase according to the present invention, inexpensive and high-purity genetic engineering production of a protein having maltotriosyltransferase activity becomes possible.
  • a further aspect of the present invention relates to a recombinant vector containing the maltotriosyltransferase gene of the present invention.
  • the term “vector” refers to a nucleic acid molecule capable of transporting a nucleic acid molecule inserted thereinto into a target such as a cell, and the type and form thereof are not particularly limited. Accordingly, the vector of the present invention can take the form of a plasmid vector, a cosmid vector, a phage vector, or a viral vector (an adenovirus vector, an adeno-associated virus vector, a retrovirus vector, a herpes virus vector, etc.).
  • An appropriate vector is selected according to the purpose of use (cloning, protein expression) and in consideration of the type of host cell.
  • Specific examples of vectors include vectors using E. coli as a host (M13 phage or a modified product thereof, ⁇ phage or a modified product thereof, pBR322 or a modified product thereof (pB325, pAT153, pUC8, etc.)), and yeast as a host.
  • Vectors pYepSec1, pMFa, pYES2, etc.
  • vectors using insect cells as hosts pAc, pVL, etc.
  • vectors using mammalian cells as hosts pCDM8, pMT2PC, etc.
  • the recombinant vector of the present invention is preferably an expression vector.
  • “Expression vector” refers to a vector capable of introducing a nucleic acid inserted therein into a target cell (host cell) and allowing expression in the cell.
  • Expression vectors usually contain a promoter sequence necessary for expression of the inserted nucleic acid, an enhancer sequence that promotes expression, and the like.
  • An expression vector containing a selectable marker can also be used. When such an expression vector is used, the presence or absence of the expression vector (and the degree thereof) can be confirmed using a selection marker.
  • Insertion of the gene of the present invention into a vector, insertion of a selectable marker gene (if necessary), insertion of a promoter (if necessary), etc. are performed using standard recombinant DNA techniques (for example, Molecular Cloning, Third Edition, 1.84, Cold Spring Harbor Laboratory Press and New York, which can be referred to, are known methods using restriction enzymes and DNA ligases).
  • the present invention further relates to a host cell (transformant) into which the gene of the present invention has been introduced.
  • the gene of the present invention exists as an exogenous molecule.
  • the transformant of the present invention is preferably prepared by transfection or transformation using the vector of the present invention. Transfection and transformation include calcium phosphate coprecipitation, electroporation (Potter, H. et al., Proc. Natl. Acad. Sci. USA 81, 7161-7165 (1984)), lipofection (Felgner, PL et al. , Proc. Natl. Acad. Sci. USA 84,7413-7417 (1984)), microinjection (Graessmann, M.
  • Host cells are not particularly limited as long as the maltotriosyltransferase of the present invention is expressed, for example, Bacillus bacteria such as Bacillus subtillus, Bacillus likemiformis, Bacillus circulans, Lactococcus, Lactobacillus, Streptococcus, Leuconostoc, Bifidobacterium such as Bifidobacterium Other bacteria such as Escherichia and Streptomyces, yeasts such as Saccharomyces, Kluyveromyces, Candida, Torula and Torulopsis, filamentous fungi such as Aspergillus genus such as Aspergillus oryzae and Aspergillus niger, fungi such as genus Penicillium, Trichoderma genus and Fusarium genus Selected.
  • Bacillus bacteria such as Bacillus subtillus, Bacillus likemiformis, Bacillus circulans, Lactococcus, Lactobacillus, Str
  • a further aspect of the present invention provides a method for producing maltotriosyltransferase.
  • a step (step (1)) of cultivating a microorganism of the genus Geobacillus having the ability to produce the present enzyme (maltotriosyltransferase) and a culture solution and / or a cell after the culture thus, a step (step (2)) of recovering maltotriosyltransferase is performed.
  • the microorganism of the genus Geobacillus in step (1) is not particularly limited as long as it has the ability to produce this enzyme.
  • the above-mentioned Geobacillus sp. APC9669 can be used.
  • the culture method and culture conditions are not particularly limited as long as the target enzyme is produced. That is, on the condition that the present enzyme is produced, a method and culture conditions suitable for culturing the microorganism to be used can be appropriately set.
  • the culture method may be either liquid culture or solid culture, but preferably liquid culture is used. Taking liquid culture as an example, the culture conditions will be described.
  • any medium can be used as long as the microorganism to be used can grow.
  • carbon sources such as glucose, sucrose, gentiobiose, soluble starch, glycerin, dextrin, molasses, organic acid, ammonium sulfate, ammonium carbonate, ammonium phosphate, ammonium acetate, or peptone, yeast extract, corn steep liquor, casein
  • Nitrogen sources such as hydrolysates, bran and meat extracts, and further added with inorganic salts such as potassium salts, magnesium salts, sodium salts, phosphates, manganese salts, iron salts and zinc salts can be used.
  • vitamins, amino acids and the like may be added to the medium.
  • the pH of the medium is adjusted to, for example, about 3 to 10, preferably about 7 to 8, and the culture temperature is usually about 10 to 80 ° C., preferably about 30 to 65 ° C. for 1 to 7 days, preferably 2 to Incubate under aerobic conditions for about 4 days.
  • the culture method for example, a shaking culture method or an aerobic deep culture method using jar fermenter can be used.
  • maltotriosyltransferase is recovered from the culture solution or cells (step (2)).
  • the culture supernatant is filtered, centrifuged, etc. to remove insolubles, concentrated by ultrafiltration membrane, salting out such as ammonium sulfate precipitation, dialysis, ion exchange resin, etc.
  • the present enzyme can be obtained by performing separation and purification by appropriately combining various types of chromatography.
  • the enzyme when recovering from the bacterial cells, can be obtained, for example, by crushing the bacterial cells by pressure treatment, ultrasonic treatment, etc., and then separating and purifying in the same manner as described above.
  • recovering a microbial cell from a culture solution previously by filtration, a centrifugation process, etc. you may perform the said series of processes (crushing, isolation
  • the expression can also be confirmed by measuring the activity of maltotriosyltransferase.
  • maltotriosyltransferase is produced using the above transformant.
  • the above-mentioned transformant is cultured under the condition that a protein encoded by the gene introduced therein is produced (step (i)).
  • Culture conditions for transformants are known for various vector host systems, and those skilled in the art can easily set appropriate culture conditions.
  • the produced protein ie, maltotriosyltransferase
  • recovery and subsequent purification may be performed in the same manner as in the above embodiment.
  • the purity of this enzyme is not particularly limited.
  • the final form may be liquid or solid (including powder).
  • the enzyme of the present invention is provided, for example, in the form of an enzyme agent.
  • the enzyme agent may contain excipients, buffers, suspension agents, stabilizers, preservatives, preservatives, physiological saline and the like in addition to the active ingredient (enzyme of the present invention).
  • excipient starch, dextrin, maltose, trehalose, lactose, D-glucose, sorbitol, D-mannitol, sucrose, glycerol and the like can be used.
  • As the buffering agent phosphate, citrate, acetate and the like can be used.
  • As the stabilizer propylene glycol, ascorbic acid or the like can be used.
  • preservatives phenol, benzalkonium chloride, benzyl alcohol, chlorobutanol, methylparaben, and the like can be used.
  • preservatives ethanol, benzalkonium chloride, paraoxybenzoic acid, chlorobutanol and the like can be used.
  • a further aspect of the present invention provides a method for producing and processing food as a use of maltotriosyltransferase (the present enzyme).
  • the present enzyme is allowed to act on a food or a raw material containing a polysaccharide and / or oligosaccharide having an ⁇ -1,4 glucoside bond, thereby improving the functionality of the food.
  • foods include bread, cooked rice and rice cake.
  • food materials include materials containing various starches, amylose, amylopectin, and maltooligosaccharides.
  • the purity of the raw material is not particularly limited, and the present enzyme may be allowed to act on the raw material mixed with other substances. Moreover, you may decide to make this enzyme act simultaneously with respect to 2 or more types of raw materials.
  • the activity of maltotriosyltransferase was measured as follows. That is, 0.5 mL of the enzyme solution was added to 2 mL of 10 mmol / L MES buffer (pH 6.5) containing 1% maltotetraose (produced by Hayashibara Biochemical Laboratories) and left at 40 ° C. for 60 minutes. After standing, it was heated in a boiling water bath for 5 minutes and then cooled in running water. The produced glucose was quantified with Glucose CII-Test Wako (manufactured by Wako Pure Chemical Industries). Under this condition, the amount of enzyme that produces 1 ⁇ mol of glucose in 2.5 mL of the reaction solution per minute was defined as 1 unit.
  • ⁇ Maltotriosyltransferase activity confirmation method> The activity of maltotriosyltransferase was confirmed as follows together with the above ⁇ Method for measuring activity of maltotriosyltransferase>. That is, 15 ⁇ L of 1.0 u / mL enzyme solution was added to 985 ⁇ L of 5 mmol / L acetate buffer (pH 6.0) containing 10.3 mmol / L maltotetraose (produced by Hayashibara Biochemical Laboratories), and 1,2, Left for 3 hours. After standing, it was heated in a boiling water bath for 5 minutes and then cooled in running water.
  • the cooled reaction solution was appropriately desalted using a cationic resin and an anion resin, and the reaction solution was analyzed by HPLC.
  • the HPLC apparatus was “Prominence UFLC” manufactured by Shimadzu Corporation, the column was “MCI GEL CK04S” manufactured by Mitsubishi Chemical, the eluent was water at a flow rate of 0.4 mL / min, and the detection was analyzed with a differential refractometer. The area% of the obtained substrate and product was converted to a molar amount, and the consumption rate and the production rate were calculated.
  • Geobacillus sp. APC9669-derived maltotriosyltransferase Geobacillus sp. APC9669 was cultured with shaking in a liquid medium having the composition shown in Table 1 at 45 ° C. for 2 days. The obtained culture supernatant was concentrated 5 times with a UF membrane (AIP-1013D, manufactured by Asahi Kasei), and ammonium sulfate was added to a 50% saturation concentration. The precipitated fraction was redissolved in 20 mmol / L Tris-HCl buffer (pH 8.0) containing 5 mmol / L calcium chloride, and then ammonium sulfate was added to a final concentration of 0.5 mol / L.
  • Tris-HCl buffer pH 8.0
  • the column was applied to a column (manufactured by GE Healthcare), and the adsorbed maltotriosyltransferase protein was eluted with a linear ammonium sulfate concentration gradient from 0.5 mol / L to 0 mol / L.
  • the collected fractions of maltotriosyltransferase activity were concentrated on a UF membrane, and then buffer exchanged with 20 mmol / L Tris-HCl buffer (pH 8.0) containing 5 mmol / L calcium chloride.
  • the buffer exchange sample was applied to a HiLoad 26/10 Q Q Sepharose HP column (manufactured by GE Healthcare) equilibrated with 20 mmol / L Tris-HCl buffer (pH 8.0) containing 5 mmol / L calcium chloride. From 0 mol / L The adsorbed maltotriosyltransferase protein was eluted with a 1 mol / L NaCl linear gradient.
  • the buffer was changed to 50 mM phosphate buffer (pH 7.2) containing 0.15 M NaCl, and then 50 mM phosphorus containing 0.15 M NaCl.
  • the sample was applied to a HiLoad 26/60 Superdex 200pg column (manufactured by GE Healthcare) equilibrated with an acid buffer (pH 7.2) and eluted with the same buffer.
  • the fraction of maltotriosyltransferase activity was collected and desalted and concentrated with an ultrafiltration membrane to obtain a purified enzyme preparation.
  • the purified enzyme thus obtained was subjected to examination of the following properties.
  • FIG. 5 shows the results of SDS-PAGE (CBB staining) of the sample at each step in the purification process using a 10-20% gradient gel.
  • This purified enzyme preparation (lane 2) is a single protein on SDS-PAGE.
  • each buffer solution (universal buffer pH4.0, pH4.5, pH5.0, pH5.5, pH6.0, pH6.5, pH7.0, pH7.5) , PH 8.0, pH 9.0, pH 10.0, pH 11.0) under the reaction conditions of 40 ° C. for 60 minutes.
  • the relative activity was shown with the pH value indicating the maximum activity value being 100%.
  • the optimum reaction pH was around 7.5 (FIG. 2).
  • Isoelectric point The isoelectric point of this enzyme was about 4.5 as measured by isoelectric point accumulation (600V, 4 ° C, energized for 48 hours) using an ampholine.
  • Substrate specificity The maltotriosyltransferase activity for each substrate was examined.
  • substrate specificity was examined by the following method. Enzyme was added at a concentration of 0.002 u / mL with respect to 10 mmol / L of each maltooligosaccharide, and allowed to stand at 50 ° C. for 1, 2 or 3 hours. After standing, it was heated in a boiling water bath for 5 minutes and then cooled in running water. The cooled reaction solution was appropriately desalted using a cationic resin and an anion resin, and the reaction solution was analyzed by HPLC.
  • the HPLC apparatus was “Prominence UFLC” manufactured by Shimadzu Corporation, the column was “MCI GEL CK04S” manufactured by Mitsubishi Chemical, the eluent was water at a flow rate of 0.4 mL / min, and the detection was analyzed with a differential refractometer. The area% of the obtained substrate and product was converted to a molar amount, and the consumption rate and the production rate were calculated.
  • the reaction rate for each maltooligosaccharide was calculated as follows. The rate for maltotetraose was the sum of the rate of heptasaccharide production and the rate of trisaccharide production.
  • the rate for maltopentaose was the sum of the octasaccharide production rate and the trisaccharide production rate.
  • the rate for maltohexaose was calculated as 1/2 of the difference between the trisaccharide production rate and the nine sugar production rate, and the sum of the value and the nine sugar production rate. No reaction product was observed for maltose and maltotriose. It worked well against maltotetraose, maltopentaose and maltohexaose.
  • the HPLC apparatus was “Prominence UFLC” manufactured by Shimadzu Corporation, the column was “MCI GEL CK04S” manufactured by Mitsubishi Chemical, the eluent was water at a flow rate of 0.4 mL / min, and the detection was analyzed with a differential refractometer.
  • the HPLC apparatus was “Prominence UFLC” manufactured by Shimadzu Corporation, the column was “MCI GEL CK04S” manufactured by Mitsubishi Chemical, the eluent was water at a flow rate of 0.4 mL / min, and the detection was analyzed with a differential refractometer. The area% of the obtained substrate and product was converted to a molar amount, and the production rate was calculated. As a result, the transglycosylation reaction was 90% or more under all substrate concentration conditions (0.67 to 70% (w / v)).
  • the bread was sliced to a thickness of 2 cm, and the center of the bread was cut into a cylinder having a diameter of 47 mm.
  • the maximum load was measured when the bread was compressed 1.5 cm at a compression speed of 2 mm / min.
  • the results are shown in FIG.
  • the enzyme-free group and the enzyme-added group the hardnesses of the breads stored for 5 days were compared when the hardness of the breads stored for 1 day was 100%. As a result, the enzyme-added group was 125%, and compared with the non-added group (207%), the hardening of the bread was suppressed and the softness was maintained.
  • ⁇ PCR reaction solution > 10 ⁇ PCR reaction buffer (TaKaRa) 5.0 ⁇ l dNTP mixture (2.5 mM each, TaKaRa) 8.0 ⁇ l 25 mM MgCl 2 5.0 ⁇ l 50 ⁇ M sense primer 0.5 ⁇ l 50 ⁇ M antisense primer 0.5 ⁇ l Distilled water 29.5 ⁇ l Chromosomal DNA solution (100 ⁇ g / ml) 1.0 ⁇ l LA Taq DNA polymerase (TaKaRa) 0.5 ⁇ l
  • the obtained DNA fragment of about 1.1 kb was cloned into pGEM-Teasy (Promega) and the nucleotide sequence was confirmed.
  • the partial amino acid sequence was encoded immediately after the sense primer and immediately before the antisense primer. The base sequence was found. This DNA fragment was used as a DNA probe for full-length gene cloning.
  • SEQ ID NO: 6 shows the base sequence (2304 bp) encoding the Geotobacillus sp. APC9669-derived maltotriosyltransferase.
  • the amino acid sequence (767 amino acids) encoded by SEQ ID NO: 6 is shown in SEQ ID NO: 7.
  • SEQ ID NO: 1 the N-terminal region amino acid sequence (SEQ ID NO: 1) and the internal amino acid sequence (SEQ ID NO: 2, 3) determined in (b) were found.
  • SEQ ID NO: 8 The amino acid sequence obtained by removing the signal peptide from the amino acid sequence of SEQ ID NO: 7 is shown in SEQ ID NO: 8.
  • PCR reaction solution > 10 ⁇ PCR reaction buffer (TOYOBO) 5.0 ⁇ l dNTP mixture (2.5 mM each, TOYOBO) 5.0 ⁇ l 10 ⁇ M sense primer 1.5 ⁇ l 10 ⁇ M antisense primer 1.5 ⁇ l 25 mM MgSO 4 2.0 ⁇ l Distilled water 33.0 ⁇ l Chromosomal DNA solution (200 ⁇ g / ml) 1.0 ⁇ l KOD -Plus- DNA polymerase (TOYOBO) 1.0 ⁇ l ⁇ PCR reaction conditions> Stage 1: Denaturation (94 ° C, 2 minutes) 1 cycle Stage 2: Denaturation (94 ° C, 15 seconds) 30 cycles Annealing (50 ° C, 30 seconds) Elongation (68 °C, 2 minutes 30 seconds)
  • the obtained PCR product was confirmed by electrophoresis, and then desalted (84 ⁇ l) by ethanol precipitation. Subsequently, 10 ⁇ l of 10 ⁇ M buffer solution and 3 ⁇ l of SacI and 3 ⁇ l of XbaI were added, followed by enzyme treatment at 37 ° C. for 15 hours. After confirming the restriction enzyme treatment solution by electrophoresis and purifying with NucleoSpin ExtractII (Nippon Genetics), ligation to the vector pCold II DNA (Takara Bio) pretreated with SacI and XbaI was performed to express the expression plasmid pColdII-SAS. Obtained.
  • the cells were suspended in 1.0 ml of 100 mM Tris-HCl buffer (pH 6.5), 0.50 g of ⁇ 0.1 mm glass beads were added, and the cells were crushed with a multi-bead shocker (Yasui Kikai Co., Ltd.). The crushing conditions were 3.75 cycles of ON 120 seconds and OFF 60 seconds. The obtained cell free-extract was subjected to centrifugation to obtain a soluble component.
  • Table 8 shows the results of measuring the activity of the same sample according to the above-described method for measuring the activity of maltotriosyltransferase. A clear maltotriosyltransferase activity was detected as compared with the control, and the expression of the target maltotriosyltransferase was confirmed.
  • the maltotriosyltransferase of the present invention exhibits excellent heat resistance and is suitable for applications in which a reaction at a high temperature is desired.
  • the enzyme reaction can be carried out at a high temperature at which there is little fear of contamination with bacteria.
  • the starch aging inhibitory effect is recognized. Therefore, the maltotriosyltransferase of the present invention is particularly useful for food processing and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Cereal-Derived Products (AREA)

Abstract

 食品加工等に使用可能な条件下においてマルトトリオース単位の糖転移反応を触媒する新規な糖転移酵素及びその用途を提供することを課題とする。α-1,4グルコシド結合を有する多糖類及びオリゴ糖類に作用し、マルトトリオース単位を糖類に転移させる活性を有する酵素であって、マルトテトラオースを基質として作用させた場合、基質濃度が0.67%(w/v)~70%(w/v)の全範囲において、マルトヘプタオース生成速度とマルトトリオース生成速度の比が9:1~10:0となる、マルトトリオシル転移酵素が提供される。

Description

マルトトリオシル転移酵素及びその製造方法並びに用途
 本発明はマルトトリオシル転移酵素及びその用途に関する。より詳細には、新規マルトトリオシル転移酵素及びその製造方法、食品の製造・加工における当該酵素の使用、当該酵素を産生する微生物などに関する。本出願は、2009年7月1日に出願された日本国特許出願第2009-156569号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。
 現在、マルトトリオース生成アミラーゼとしては、ミクロバクテリウム インペリアル(Microbacterium imperiale)由来酵素、ストレプトマイセス グリセウス(Streptomyces griseus)由来酵素、バチルス ズブチリス(Bacillus subtilis)由来酵素、ネイトロノコッカス エスピー(Natronococcus sp.)由来酵素、ストレプトコッカス ボバイス(Streptococcus bovis)由来酵素が知られている(非特許文献1)。しかしながら、これらの中で糖転移反応について報告されているものは、ストレプトマイセス グリセウス由来酵素のみである。しかも、当該酵素は高基質濃度条件下(供与体基質と受容体基質の合計が19%、40%(w/v))でのみ糖転移反応を触媒し、低基質濃度(1%(w/v))では加水分解反応のみを触媒し、糖転移反応は触媒しない(非特許文献2、3)。また、耐熱性も低いため、食品加工用酵素として利用されていない。
 一方、産業上利用されている糖転移酵素としては、例えば、イソマルトオリゴ糖製造或いはニゲロオリゴ糖製造に使用されているα-グルコシダーゼ、フラクトオリゴ糖製造或いはラクトスクロース製造に使用されているβ-フラクトフラノシダーゼ、ガラクトオリゴ糖製造に使用されているβ-ガラクトシダーゼ、パラチノース製造に使用されているα-グルコシルトランスフェラーゼ、シクロデキストリン製造或いはカップリングシュガー製造に使用されているシクロデキストリングルカノトランスフェラーゼ、高分岐環状デキストリン製造に使用されているブランチングエンザイムが例として挙げられる。この中で、α-1,4結合を含む多糖、オリゴ糖に作用し、糖転移反応を触媒する酵素としては、α-グルコシダーゼ、ブランチングエンザイムを挙げることが出来る。しかしながら、α-グルコシダーゼは単糖の糖転移反応を、ブランチングエンザイムは4糖以上のオリゴ糖或いは多糖の糖転移反応を触媒しており、3糖類であるマルトトリオースを特異的に糖転移させる酵素は知られていない。
 デンプンを含む加工食品において、デンプンの老化は保存性の低下をもたらす等、大きな問題点となっている。その原因の大部分は、デンプンに含まれるアミロース分子の老化、即ちアミロース分子の会合、それによる不溶化に起因している(非特許文献4)。そこで、デンプンを低分子化することにより、老化を抑制する研究が行われ、ある程度老化を抑制させることができるようになった。しかしながら、低分子化により本来のデンプンが持つ性質を失うという問題が生じた。さらに、これらの方法では、分解による還元力の増加により、タンパク質やアミノ酸などと混合して加熱したとき、これら物質との反応によって、デンプンが着色するため、その用途は制限されてきた(特許文献1)。このために、これらのデンプンを低分子化することなく老化を抑制する研究が行われている。例えば、デンプンのα-1,4結合を分解し、α-1,6結合を転移反応により合成する酵素であるブランチングエンザイムが研究されているが、耐熱性が低いなどの問題点が有り、食品加工用酵素として利用されるまでには至っていない。
特開2001-294601号公報
「澱粉科学の事典」、朝倉書店、p.279-80(2003) 若生ら、澱粉科学、25(2)、p.155-61(1978) Usuiら、Carbohydr.Res. 250、57-66(1993) 岡田ら、澱粉科学、30(2)、p.223-230(1983) Saito, and Miura. Biochim. Biophys. Acta, 72, 619-629 (1963)
 本発明は食品加工等に使用可能な条件下においてマルトトリオース単位の糖転移反応を触媒する新規な糖転移酵素及びその用途を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意検討を重ねてきた。その結果、ジオバチルス(Geobacillus)属に属する微生物が、所望の作用を有するマルトトリオシル転移酵素を生産することを見出した。また、本発明者らは当該マルトトリオシル転移酵素を単離・精製し、その酵素化学的性質を決定するとともに当該酵素をコードする遺伝子(以下、「本遺伝子」という)クローニングすることにも成功した。加えて本遺伝子及び本遺伝子の断片を適当な宿主に導入することにより、マルトトリオシル転移酵素の製造法も確立した。本発明は上記成果によって完成されたものであり、次の通りである。
 [1]α-1,4グルコシド結合を有する多糖類及びオリゴ糖類に作用し、マルトトリオース単位を糖類に転移させる活性を有する酵素であって、マルトテトラオースを基質として作用させた場合、基質濃度が0.67%(w/v)~70%(w/v)の全範囲において、マルトヘプタオース生成速度とマルトトリオース生成速度の比が9:1~10:0となる、マルトトリオシル転移酵素。
 [2]マルトトリオシル転移酵素が、微生物由来の酵素である[1]に記載のマルトトリオシル転移酵素。
 [3]マルトトリオシル転移酵素が、ジオバチルス属の微生物由来の酵素である、[1]に記載のマルトトリオシル転移酵素。
 [4]ジオバチルス属の微生物がジオバチルス・エスピー APC9669(受託番号 NITE BP-770)である、[3]に記載のマルトトリオシル転移酵素。
 [5]下記の酵素化学的性質を備えるマルトトリオシル転移酵素:
(1)作用:結合様式としてα-1,4グルコシド結合を有する多糖類及びオリゴ糖類に作用し、マルトトリオース単位を糖類に転移させる;
(2)基質特異性:可溶性デンプン、アミロース、アミロペクチン、マルトテトラオース、マルトペンタオース、マルトヘキサオースに作用し、α-サイクロデキストリン、β-サイクロデキストリン、γ-サイクロデキストリン、マルトトリオース、マルトースには作用しない;
(3)分子量:約83,000(SDS-PAGE)。
 [6][1]~[5]のいずれか一項に記載のマルトトリオシル転移酵素を有効成分とする酵素剤。
 [7]ジオバチルス・エスピー APC9669(受託番号 NITE BP-770)又はその変異菌である、マルトトリオシル転移酵素産生能を有する微生物。
 [8]配列番号8のアミノ酸配列、又はマルトトリオシル転移酵素活性を示すその断片からなる、マルトトリオシル転移酵素。
 [9]配列番号6の配列を含むDNAによってコードされる、[8]に記載のマルトトリオシル転移酵素。
 [10]以下の(a)~(e)からなる群より選択されるいずれかのDNAからなるマルトトリオシル転移酵素:
 (a) 配列番号7又は8のアミノ酸配列をコードするDNA;
 (b) 配列番号6の配列を含むDNA;
 (c) 配列番号6の配列に相補的な配列に対してストリンジェントな条件下でハイブリダイズするDNA;
 (d) 配列番号6の配列のDNA配列縮重体であるDNA;
 (e) 配列番号6の配列を基準として1若しくは複数の塩基の置換、欠失、挿入、付加又は逆位を含む配列からなり、マルトトリオシル転移酵素活性を有するタンパク質をコードするDNA。
 [11][10]に記載のマルトトリオシル転移酵素遺伝子を含む組換えベクター。
 [12]発現ベクターである、[11]に記載の組換えベクター。
 [13][10]に記載のマルトトリオシル転移酵素遺伝子が導入されている形質転換体。
 [14][11]又は[12]に記載の組換えベクターが導入されている形質転換体。
 [15]細菌細胞、酵母細胞又は真菌細胞である、[13]又は[14]に記載の形質転換体。
 [16]以下のステップ(1)及び(2)、又はステップ(i)及び(ii)を含んでなる、マルトトリオシル転移酵素の製造法:
 (1)マルトトリオシル転移酵素産生能を有する、ジオバチルス属の微生物を培養するステップ;
 (2)培養後の培養液及び/又は菌体より、マルトトリオシル転移酵素を回収するステップ。
 (i)[13]~[15]のいずれか一項に記載の形質転換体を前記マルトトリオシル転移酵素遺伝子がコードするタンパク質が産生される条件下で培養するステップ;
 (ii)産生された前記タンパク質を回収するステップ。
 [17]ジオバチルス属の微生物がジオバチルス・エスピー APC9669である、[16]に記載の製造法。
 [18]α-1,4グルコシド結合を有する多糖類又はオリゴ糖類を含む食品を製造・加工するための、[1]~[5]のいずれか一項に記載の酵素又は[6]に記載の酵素剤の使用。
 [19][1]~[5]のいずれか一項に記載の酵素又は[6]に記載の酵素剤の使用によって機能性が改善した食品又は食品材料。
ジオバチルス・エスピー APC9669由来のマルトトリオシル転移酵素の至適温度を示すグラフである。 ジオバチルス・エスピー APC9669由来のマルトトリオシル転移酵素の至適pHを示すグラフである。 ジオバチルス・エスピー APC9669由来のマルトトリオシル転移酵素の温度安定性を示すグラフである。 ジオバチルス・エスピー APC9669由来のマルトトリオシル転移酵素のpH安定性を示すグラフである。 マルトトリオシル転移酵素のSDS-PAGEの結果を示す図である。レーン1:分子量マーカー、レーン2:マルトトリオシル転移酵素。 パンのソフトネス維持効果の実験結果を示す図である。 大腸菌形質転換体の細胞破砕物の遠心上清のSDS-PAGEの結果を示す図である。レーンM:分子量マーカー、レーン1:大腸菌ベクター形質転換体の細胞破砕物の遠心上清、レーン2:マルトトリオシル転移酵素。
(用語)
 本発明において「タンパク質をコードするDNA」とは、それを発現させた場合に当該タンパク質が得られるDNA、即ち、当該タンパク質のアミノ酸配列に対応する塩基配列を有するDNAのことをいう。従ってコドンの縮重も考慮される。
 本明細書において用語「単離された」は「精製された」と交換可能に使用される。本発明の酵素(マルトトリオシル転移酵素)に関して使用する場合の「単離された」とは、本発明の酵素が天然材料に由来する場合、当該天然材料の中で当該酵素以外の成分を実質的に含まない(特に夾雑タンパク質を実質的に含まない)状態をいう。具体的には例えば、本発明の単離された酵素では、夾雑タンパク質の含有量は重量換算で全体の約20%未満、好ましくは約10%未満、更に好ましくは約5%未満、より一層好ましくは約1%未満である。一方、本発明の酵素が遺伝子工学的手法によって調製されたものである場合の用語「単離された」とは、使用された宿主細胞に由来する他の成分や培養液等を実質的に含まない状態をいう。具体的には例えば、本発明の単離された酵素では夾雑成分の含有量は重量換算で全体の約20%未満、好ましくは約10%未満、更に好ましくは約5%未満、より一層好ましくは約1%未満である。尚、それと異なる意味を表すことが明らかでない限り、本明細書において単に「マルトトリオシル転移酵素」と記載した場合は「単離された状態のマルトトリオシル転移酵素」を意味する。マルトトリオシル転移酵素の代わりに使用される用語「本酵素」についても同様である。
 DNAについて使用する場合の「単離された」とは、もともと天然に存在しているDNAの場合、典型的には、天然状態において共存するその他の核酸から分離された状態であることをいう。但し、天然状態において隣接する核酸配列(例えばプロモーター領域の配列やターミネーター配列など)など一部の他の核酸成分を含んでいてもよい。例えばゲノムDNAの場合の「単離された」状態では、好ましくは、天然状態において共存する他のDNA成分を実質的に含まない。一方、cDNA分子など遺伝子工学的手法によって調製されるDNAの場合の「単離された」状態では、好ましくは、細胞成分や培養液などを実質的に含まない。同様に、化学合成によって調製されるDNAの場合の「単離された」状態では、好ましくは、dNTPなどの前駆体(原材料)や合成過程で使用される化学物質等を実質的に含まない。尚、それと異なる意味を表すことが明らかでない限り、本明細書において単に「DNA」と記載した場合には単離された状態のDNAを意味する。
(マルトトリオシル転移酵素及びその生産菌)
 本発明の第1の局面はマルトトリオシル転移酵素(以下、「本酵素」ともいう)及びその生産菌を提供する。後述の実施例に示す通り、本発明者らは鋭意検討の結果、ジオバチルス・エスピー APC9669がマルトトリオシル転移酵素を産生することを見出した。また、当該マルトトリオシル転移酵素を分離・生成することに成功するとともに、以下に示す通り、その酵素化学的性質を決定することに成功した。
(1)作用
 本酵素はマルトトリオシル転移酵素であり、結合様式としてα-1,4グルコシド結合を有する多糖類及びオリゴ糖類に作用し、マルトトリオース単位を糖類に転移させる。
(2)基質特異性
 本酵素は可溶性デンプン、アミロース、アミロペクチン、マルトテトラオース、マルトペンタオース、マルトヘキサオースに良好に作用する。これに対して、α-サイクロデキストリン、β-サイクロデキストリン、γ-サイクロデキストリン、マルトトリオース、マルトースには作用しない。
(3)分子量
 本酵素の分子量は約83,000(SDS-PAGEによる)である。
(4)至適温度
 本酵素の至適温度は約50℃である。本酵素は約45℃~約55℃において高い活性を示す。至適温度は、後述のマルトトリオシル転移酵素活性測定方法(10mmol/L MES緩衝液(pH6.5)中)による測定で算出された値である。
(5)至適pH
 本酵素の至適pHは約7.5である。本酵素はpH約6.5~約8.0において高い活性を示す。至適pHは、例えば、ユニバーサル緩衝液中で測定した結果を基に判断される。
(6)温度安定性
 本酵素は65℃以下で安定した活性を示す。10mmol/L MES緩衝液(pH6.5)中、65℃の条件で30分間処理しても、本酵素は90%以上の活性を維持する。
(7)pH安定性
 本酵素はpH5.0~10.0という広いpH域で安定した活性を示す。即ち、処理に供する酵素溶液のpHがこの範囲内にあれば、40℃、30分間の処理後、85%以上の活性を維持する。
(8)等電点
 本酵素の等電点は約4.5(アンフォライン含有電気泳動法による)である。
 尚、後述の実施例に示す通り、ジオバチルス・エスピー APC9669が産生するマルトトリオシル転移酵素は、マルトテトラオースを基質として作用させた場合、基質濃度が0.67%(w/v)~70%(w/v)の全範囲において、糖転移生成物であるマルトヘプタオースの生成速度と分解生成物であるマルトトリオースの生成速度の比が9:1~10:0になることが判明した。換言すると、広範な基質濃度範囲に亘って糖転移反応の速度の方が圧倒的に大きく、マルトヘプタオース生成速度とマルトトリオース生成速度の合計を100%とすると、前者が90%以上となった。尚、生成物のモル比を基準に速度を比較した。
 以上のように、取得に成功した本酵素の性状の詳細が明らかとなった。その結果、本酵素が耐熱性に優れること、基質特異性に優れることが判明した。従って、本酵素は食品加工用途に適したものである。
 本酵素は好ましくはジオバチルス・エスピーAPC9669(Geobacillus sp. APC9669)に由来するマルトトリオシル転移酵素である。ここでの「ジオバチルス・エスピーAPC9669に由来するマルトトリオシル転移酵素」とは、ジオバチルス・エスピーAPC9669(野生株であっても変異株であってもよい)が生産するマルトトリオシル転移酵素、或いはジオバチルス・エスピーAPC9669(野生株であっても変異株であってもよい)のマルトトリオシル転移酵素遺伝子を利用して遺伝子工学的手法によって得られたマルトトリオシル転移酵素であることを意味する。従って、ジオバチルス・エスピーAPC9669より取得したマルトトリオシル転移酵素遺伝子(又は当該遺伝子を改変した遺伝子)を導入した宿主微生物によって生産された組み換え体も、「ジオバチルス・エスピーAPC9669に由来するマルトトリオシル転移酵素」に該当する。
 本酵素の由来であるジオバチルス・エスピーAPC9669のことを、説明の便宜上、本酵素の生産菌という。APC9669株は以下の通り所定の寄託機関に寄託されており、容易に入手可能である。
 寄託機関:NITEバイオテクノロジー本部 特許微生物寄託センター(〒292-0818 日本国千葉県木更津市かずさ鎌足2-5-8)
 寄託日(受領日):2009年6月2日
 受託番号:NITE BP-770
 本発明のマルトトリオシル転移酵素は一態様において配列番号8のアミノ酸配列を含む。当該アミノ酸配列は配列番号7のアミノ酸配列からシグナルペプチド部分を除いたものである。尚、配列番号7のアミノ酸配列は、ジオバチルス・エスピーAPC9669からクローニングして得られた遺伝子の塩基配列(配列番号6)から推定されたアミノ酸配列である。ここで、一般に、あるタンパク質のアミノ酸配列の一部に改変を施した場合において改変後のタンパク質が改変前のタンパク質と同等の機能を有することがある。即ちアミノ酸配列の改変がタンパク質の機能に対して実質的な影響を与えず、タンパク質の機能が改変前後において維持されることがある。そこで本発明は他の態様として、配列番号8に示すアミノ酸配列と等価なアミノ酸配列からなり、マルトトリオシル転移酵素活性を有するタンパク質(以下、「等価タンパク質」ともいう)を提供する。ここでの「等価なアミノ酸配列」とは、配列番号8に示すアミノ酸配列と一部で相違するが、当該相違がタンパク質の機能(ここではマルトトリオシル転移酵素活性)に実質的な影響を与えていないアミノ酸配列のことをいう。「マルトトリオシル転移酵素活性を有する」とは、結合様式としてα-1,4グルコシド結合を有する多糖類及びオリゴ糖類に作用し、マルトトリオース単位を糖類に転移させる活性を意味するが、その活性の程度は、マルトトリオシル転移酵素としての機能を発揮できる限り特に限定されない。但し、配列番号8に示すアミノ酸配列からなるタンパク質と同程度又はそれよりも高いことが好ましい。
 「アミノ酸配列の一部の相違」とは、典型的には、アミノ酸配列を構成する1~数個(上限は例えば3個、5個、7個、10個)のアミノ酸の欠失、置換、若しくは1~数個(上限は例えば3個、5個、7個、10個)のアミノ酸の付加、挿入、又はこれらの組合せによりアミノ酸配列に変異(変化)が生じていることをいう。ここでのアミノ酸配列の相違はマルトトリオシル転移酵素活性が保持される限り許容される(活性の多少の変動があってもよい)。この条件を満たす限りアミノ酸配列が相違する位置は特に限定されず、また複数の位置で相違が生じていてもよい。ここでの複数とはたとえば全アミノ酸の約30%未満に相当する数であり、好ましくは約20%未満に相当する数であり、さらに好ましくは約10%未満に相当する数であり、より一層好ましくは約5%未満に相当する数であり、最も好ましくは約1%未満に相当する数である。即ち等価タンパク質は、配列番号8のアミノ酸配列と例えば約70%以上、好ましくは約80%以上、さらに好ましくは約90%以上、より一層好ましくは約95%以上、最も好ましくは約99%以上の同一性を有する。
 好ましくは、マルトトリオシル転移酵素活性に必須でないアミノ酸残基において保存的アミノ酸置換を生じさせることによって等価タンパクを得る。ここでの「保存的アミノ酸置換」とは、あるアミノ酸残基を、同様の性質の側鎖を有するアミノ酸残基に置換することをいう。アミノ酸残基はその側鎖によって塩基性側鎖(例えばリシン、アルギニン、ヒスチジン)、酸性側鎖(例えばアスパラギン酸、グルタミン酸)、非荷電極性側鎖(例えばグリシン、アスパラギン、グルタミン、セリン、スレオニン、チロシン、システイン)、非極性側鎖(例えばアラニン、バリン、ロイシン、イソロイシン、プロリン、フェニルアラニン、メチオニン、トリプトファン)、β分岐側鎖(例えばスレオニン、バリン、イソロイシン)、芳香族側鎖(例えばチロシン、フェニルアラニン、トリプトファン、ヒスチジン)のように、いくつかのファミリーに分類されている。保存的アミノ酸置換は好ましくは、同一のファミリー内のアミノ酸残基間の置換である。
 「等価タンパク質」が、付加的な性質を有していてもよい。かかる性質として、例えば、配列番号8に示すアミノ酸配列からなるタンパク質に比べて安定性に優れているという性質、低温及び/又は高温においてのみ異なる機能を発揮するという性質、至適pHが異なるという性質などが挙げられる。
 ここで、二つのアミノ酸配列の同一性(%)は例えば以下の手順で決定することができる。まず、最適な比較ができるよう二つの配列を並べる(例えば、第一の配列にギャップを導入して第二の配列とのアライメントを最適化してもよい)。第一の配列の特定位置の分子(アミノ酸残基)が、第二の配列における対応する位置の分子と同じであるとき、その位置の分子が同一であるといえる。配列同一性は、その二つの配列に共通する同一位置の数の関数であり(すなわち、同一性(%)=同一位置の数/位置の総数 × 100)、好ましくは、アライメントの最適化に要したギャップの数およびサイズも考慮に入れる。二つの配列の比較及び同一性の決定は数学的アルゴリズムを用いて実現可能である。配列の比較に利用可能な数学的アルゴリズムの具体例としては、KarlinおよびAltschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-68に記載され、KarlinおよびAltschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-77において改変されたアルゴリズムがあるが、これに限定されることはない。このようなアルゴリズムは、Altschulら (1990) J. Mol. Biol. 215:403-10に記載のNBLASTプログラムおよびXBLASTプログラム(バージョン2.0)に組み込まれている。例えば、XBLASTプログラムでscore = 50、wordlength = 3としてBLASTポリペプチド検索を行えば、同一性の高いアミノ酸配列を得ることが可能である。比較のためのギャップアライメントを得るためには、Altschulら (1997) Amino Acids Research 25(17):3389-3402に記載のGapped BLASTが利用可能である。BLASTおよびGapped BLASTを利用する場合は、対応するプログラム(例えばXBLASTおよびNBLAST)のデフォルトパラメータを使用することができる。詳しくは例えばNCBIのウェブページを参照されたい。配列の比較に利用可能な他の数学的アルゴリズムの例としては、MyersおよびMiller (1988) Comput Appl Biosci. 4:11-17に記載のアルゴリズムがある。このようなアルゴリズムは、例えばGENESTREAMネットワークサーバー(IGH Montpellier、フランス)またはISRECサーバーで利用可能なALIGNプログラムに組み込まれている。アミノ酸配列の比較にALIGNプログラムを利用する場合は例えば、PAM120残基質量表を使用し、ギャップ長ペナルティ=12、ギャップペナルティ=4とすることができる。二つのアミノ酸配列の同一性を、GCGソフトウェアパッケージのGAPプログラムを用いて、Blossom 62マトリックスまたはPAM250マトリックスを使用し、ギャップ加重=12、10、8、6、又は4、ギャップ長加重=2、3、又は4として決定することができる。
 本酵素が、より大きいタンパク質(例えば融合タンパク質)の一部であってもよい。融合タンパク質において付加される配列としては、例えば多重ヒスチジン残基のような精製に役立つ配列、組換え生産の際の安定性を確保する付加配列等が挙げられる。
 上記アミノ酸配列を有する本酵素は、遺伝子工学的手法によって容易に調製することができる。例えば、本酵素をコードするDNAで適当な宿主細胞(例えば大腸菌)を形質転換し、形質転換体内で発現されたタンパク質を回収することにより調製することができる。回収されたタンパク質は目的に応じて適宜調製される。このように組換えタンパク質として本酵素を得ることにすれば種々の装飾が可能である。例えば、本酵素をコードするDNAと他の適当なDNAとを同じベクターに挿入し、当該ベクターを用いて組換えタンパク質の生産を行えば、任意のペプチドないしタンパク質が連結された組換えタンパク質からなる本酵素を得ることができる。また、糖鎖及び/又は脂質の付加や、あるいはN末端若しくはC末端のプロセッシングが生ずるような修飾を施してもよい。以上のような修飾により、組換えタンパク質の抽出、精製の簡便化、又は生物学的機能の付加等が可能である。
(マルトトリオシル転移酵素遺伝子)
 本発明の第2の局面はマルトトリオシル転移酵素遺伝子に関する。一態様において本発明の遺伝子は、配列番号7又は8のアミノ酸配列をコードするDNAを含む。当該態様の具体例は、配列番号6の塩基配列からなるDNAである。
 ところで、一般に、あるタンパク質をコードするDNAの一部に改変を施した場合において、改変後のDNAがコードするタンパク質が、改変前のDNAがコードするタンパク質と同等の機能を有することがある。即ちDNA配列の改変が、コードするタンパク質の機能に実質的に影響を与えず、コードするタンパク質の機能が改変前後において維持されることがある。そこで本発明は他の態様として、配列番号6の塩基配列と等価な塩基配列を有し、マルトトリオシル転移酵素活性をもつタンパク質をコードするDNA(以下、「等価DNA」ともいう)を提供する。ここでの「等価な塩基配列」とは、配列番号6に示す核酸と一部で相違するが、当該相違によってそれがコードするタンパク質の機能(ここではマルトトリオシル転移酵素活性)が実質的な影響を受けていない塩基配列のことをいう。
 等価DNAの具体例は、配列番号6の塩基配列に相補的な塩基配列に対してストリンジェントな条件下でハイブリダイズするDNAである。ここでの「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。このようなストリンジェントな条件は当業者に公知であって例えばMolecular Cloning(Third Edition, Cold Spring Harbor Laboratory Press, New York)やCurrent protocols in molecular biology(edited by Frederick M. Ausubel et al., 1987)を参照して設定することができる。ストリンジェントな条件として例えば、ハイブリダイゼーション液(50%ホルムアミド、10×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、5×Denhardt溶液、1% SDS、10% デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いて約42℃~約50℃でインキュベーションし、その後0.1×SSC、0.1% SDSを用いて約65℃~約70℃で洗浄する条件を挙げることができる。更に好ましいストリンジェントな条件として例えば、ハイブリダイゼーション液として50%ホルムアミド、5×SSC(0.15M NaCl, 15mM sodium citrate, pH 7.0)、1×Denhardt溶液、1%SDS、10%デキストラン硫酸、10μg/mlの変性サケ精子DNA、50mMリン酸バッファー(pH7.5))を用いる条件を挙げることができる。
 等価DNAの他の具体例として、配列番号6に示す塩基配列を基準として1若しくは複数(好ましくは1~数個)の塩基の置換、欠失、挿入、付加、又は逆位を含む塩基配列からなり、マルトトリオシル転移酵素活性を有するタンパク質をコードするDNAを挙げることができる。塩基の置換や欠失などは複数の部位に生じていてもよい。ここでの「複数」とは、当該DNAがコードするタンパク質の立体構造におけるアミノ酸残基の位置や種類によっても異なるが例えば2~40塩基、好ましくは2~20塩基、より好ましくは2~10塩基である。以上のような等価DNAは例えば、制限酵素処理、エキソヌクレアーゼやDNAリガーゼ等による処理、位置指定突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)やランダム突然変異導入法(Molecular Cloning, Third Edition, Chapter 13 ,Cold Spring Harbor Laboratory Press, New York)による変異の導入などを利用して、塩基の置換、欠失、挿入、付加、及び/又は逆位を含むように、配列番号6に示す塩基配列を有するDNAを改変することによって得ることができる。また、紫外線照射など他の方法によっても等価DNAを得ることができる。
 等価DNAの更に他の例として、SNP(一塩基多型)に代表される多型に起因して上記のごとき塩基の相違が認められるDNAを挙げることができる。
 本発明の遺伝子は、本明細書又は添付の配列表が開示する配列情報を参考にし、標準的な遺伝子工学的手法、分子生物学的手法、生化学的手法などを用いることによって単離された状態に調製することができる。具体的には、ジオバチルス・エスピーAPC9669のゲノムDNAライブラリー又はcDNAライブラリー、或はジオバチルス・エスピーAPC9669の菌体内抽出液から、本発明の遺伝子に対して特異的にハイブリダイズ可能なオリゴヌクレオチドプローブ・プライマーを適宜利用して調製することができる。オリゴヌクレオチドプローブ・プライマーは、市販の自動化DNA合成装置などを用いて容易に合成することができる。尚、本発明の遺伝子を調製するために用いるライブラリーの作製方法については、例えばMolecular Cloning, Third Edition, Cold Spring Harbor Laboratory Press, New Yorkを参照できる。
 例えば、配列番号6の塩基配列を有する遺伝子であれば、当該塩基配列又はその相補配列の全体又は一部をプローブとしたハイブリダイゼーション法を利用して単離することができる。また、当該塩基配列の一部に特異的にハイブリダイズするようにデザインされた合成オリゴヌクレオチドプライマーを用いた核酸増幅反応(例えばPCR)を利用して増幅及び単離することができる。また、配列番号7に示すアミノ酸配列や配列番号6の塩基配列の情報を元にして、化学合成によって目的とする遺伝子を得ることもできる(参考文献:Gene,60(1), 115-127 (1987))。
 以下、本発明の遺伝子の取得法の具体例を示す。まず、ジオバチルス・エスピーAPC9669から本酵素(マルトトリオシル転移酵素)を単離・精製し、その部分アミノ酸配列に関する情報を得る。部分アミノ酸配列決定方法としては、例えば、精製したマルトトリオシル転移酵素を直接常法に従ってエドマン分解法〔ジャーナル オブ バイオロジカル ケミストリー、第256巻、第7990~7997頁(1981)〕によりアミノ酸配列分析〔プロテイン―シーケンサー476A、アプライド バイオシステムズ(Applied Biosystems)社製等〕に供する。タンパク質加水分解酵素を作用させて限定加水分解を行い、得られたペプチド断片を分離精製し、得られた精製ペプチド断片についてアミノ酸配列分析を行うのが有効である。
 このようにして得られる部分アミノ酸配列情報を基にマルトトリオシル転移酵素遺伝子をクローニングする。例えば、ハイブリダイゼーション法又はPCRを利用してクローニングを行うことができる。ハイブリダイゼーション法を利用する場合、例えば、Molecular Cloning(Third Edition, Cold Spring Harbor Laboratory Press, New York)に記載の方法を用いることができる。
 PCR法を利用する場合、以下の方法を用いることができる。まず、マルトトリオシル転移酵素を産生する微生物のゲノムDNAを鋳型とし、部分アミノ酸配列の情報を基にデザインした合成オリゴヌクレオチドプライマーを用いてPCR反応を行い、目的の遺伝子断片を得る。PCR法は、PCRテクノロジー〔PCR Technology、エルリッヒ(Erlich)HA編集、ストックトンプレス社(Stocktonpress)、1989年発行〕に記載の方法に準じて行う。更に、この増幅DNA断片について通常用いられる方法、例えば、ジデオキシチェーンターミネーター法で塩基配列を決定すると、決定された配列中に合成オリゴヌクレオチドプライマーの配列以外にマルトトリオシル転移酵素の部分アミノ酸配列に対応する配列が見出され、目的のマルトトリオシル転移酵素遺伝子の一部を取得することができる。得られた遺伝子断片をプローブとして更にハイブリダイゼーション法等を行うことによってマルトトリオシル転移酵素全長をコードする遺伝子をクローニングすることができる。
 後述の実施例では、ジオバチルス・エスピーAPC9669が産生するマルトトリオシル転移酵素をコードする遺伝子の配列をPCR法を利用して決定した。ジオバチルス・エスピーAPC9669由来のマルトトリオシル転移酵素をコードする遺伝子の全塩基配列を配列番号6に示した。また、当該塩基配列がコードするアミノ酸配列を決定した(配列番号7)。なお、配列番号7に示すアミノ酸配列に対応する塩基配列は配列番号6に記載したもの以外に複数存在する。
 全塩基配列が明らかにされたマルトトリオシル転移酵素遺伝子(配列番号6)の全体あるいは一部分をハイブリダイゼーション用のプローブとして用いることによって、他のマルトトリオシル転移酵素を産生する微生物のゲノムDNAライブラリーあるいはcDNAライブラリーから、配列番号6のマルトトリオシル転移酵素遺伝子と相同性の高いDNAを選別することができる。
 同様に、PCR用のプライマーをデザインすることができる。このプライマーを用いてPCR反応を行うことによって、上記マルトトリオシル転移酵素遺伝子と相同性の高い遺伝子断片を検出し、さらにはその遺伝子全体を得ることもできる。
 得られた遺伝子のタンパク質を製造し、そのマルトトリオシル転移酵素活性を測定することにより、マルトトリオシル転移酵素活性を有するタンパク質をコードする遺伝子であるか否かを確認することができる。また、得られた遺伝子の塩基配列(又はそれがコードするアミノ酸配列)を上記マルトトリオシル転移酵素遺伝子の塩基配列(又はそれがコードするアミノ酸配列)と比較することで遺伝子構造や相同性を調べ、マルトトリオシル転移酵素活性を有するタンパク質をコードするか否かを判定することにしてもよい。
 一次構造及び遺伝子構造が明らかとなったことから、ランダム変異あるいは部位特異的変異の導入によって改変型マルトトリオシル転移酵素(1個又は複数個のアミノ酸残基の欠失、付加、挿入若しくは置換の少なくとも1つが施された遺伝子)を得ることが可能である。これにより、マルトトリオシル転移酵素活性を有するが、至適温度、安定温度、至適pH、安定pH、基質特異性等の性質が異なるマルトトリオシル転移酵素をコードする遺伝子を得ることが可能となる。また、遺伝子工学的に改変型マルトトリオシル転移酵素を製造することが可能となる。
 ここで、変異を導入する際の計画は、例えば、遺伝子配列上の特徴的な配列を参酌して行われる。特徴的な配列の参酌は、例えば、そのタンパク質の立体構造予測、既知のタンパク質との相同性を考慮することにより行うことができる。
 ランダム変異を導入する方法を例示すると、DNAを化学的に処理する方法として、亜硫酸水素ナトリウムを作用させシトシン塩基をウラシル塩基に変換するトランジション変異を起こさせる方法〔プロシーディングズ オブ ザ ナショナル アカデミー オブ サイエンシーズ オブ ザ USA、第79巻、第1408~1412頁(1982)〕、生化学的方法として、〔α-S〕dNTP存在下、二本鎖を合成する過程で塩基置換を生じさせる方法〔ジーン(Gene)、第64巻、第313~319頁(1988)〕、PCRを用いる方法として、反応系にマンガンを加えてPCRを行い、ヌクレオチドの取り込みの正確さを低くする方法〔アナリティカル バイオケミストリー(Analytical Biochemistry)、第224巻、第347~353頁(1995)〕等である。
 部位特異的変異を導入する方法を例示すると、アンバー変異を利用する方法〔ギャップド デュプレックス(gapped duplex)法、ヌクレイック アシッズ リサーチ(Nucleic Acids Research)、第12巻、第24号、第9441~9456頁(1984)〕、制限酵素の認識部位を利用する方法〔アナリティカル バイオケミストリー、第200巻、第81~88頁(1992)、ジーン、第102巻、第67~70頁(1991)〕、dut(dUTPase)とung(ウラシルDNA グリコシラーゼ)変異を利用する方法〔クンケル(Kunkel)法、プロシーディングズ オブ ザ ナショナル アカデミー オブ サイエンシーズ オブ ザ USA、第82巻、第488~492頁(1985)〕、DNAポリメラーゼ及びDNAリガーゼを用いたアンバー変異を利用する方法〔オリゴヌクレオチド―ダイレクティッド デュアル アンバー(Oligonucleotide-directed Dual Amber:ODA)法、ジーン、第152巻、第271~275頁(1995)、特開平7-289262号公報〕、DNAの修復系を誘導させた宿主を利用する方法(特開平8-70874号公報)、DNA鎖交換反応を触媒するタンパク質を利用する方法(特開平8-140685号公報)、制限酵素の認識部位を付加した2種類の変異導入用プライマーを用いたPCRによる方法(米国特許第5,512,463号)、不活化薬剤耐性遺伝子を有する二本鎖DNAベクターと2種類のプライマーを用いたPCRによる方法〔ジーン、第103巻、第73~77頁(1991)〕、アンバー変異を利用したPCRによる方法〔国際公開WO98/02535号公報〕等である。
 市販されているキットを使用することにより、部位特異的変異を容易に導入することもできる。市販のキットとしては、例えば、ギャップド デュプレックス法を用いたMutan(登録商標)-G(宝酒造社製)、クンケル法を用いたMutan(登録商標)-K(宝酒造社製)、ODA法を用いたMutan(登録商標)-ExpressKm(宝酒造社製)、変異導入用プライマーとピロコッカス フリオサス(Pyrococcus furiosus)由来DNAポリメラーゼを用いたQuikChangeTM Site-Directed Mutagenesis Kit〔ストラタジーン(STRATAGENE)社製〕等を用いることができ、また、PCR法を利用するキットとして、TaKaRa LA PCR in vitro Mutagenesis Kit(宝酒造社製)、Mutan(登録商標)-Super Express Km(宝酒造社製)等を用いることができる。
 このように、本発明によりマルトトリオシル転移酵素の一次構造及び遺伝子構造が提供されたことにより、マルトトリオシル転移酵素活性を有するタンパク質の安価で高純度な遺伝子工学的製造が可能となる。
(組換えベクター)
 本発明のさらなる局面は本発明のマルトトリオシル転移酵素遺伝子を含有する組換えベクターに関する。本明細書において用語「ベクター」は、それに挿入された核酸分子を細胞等のターゲット内へと輸送することができる核酸性分子をいい、その種類、形態は特に限定されるものではない。従って、本発明のベクターはプラスミドベクター、コスミドベクター、ファージベクター、ウイルスベクター(アデノウイルスベクター、アデノ随伴ウイルスベクター、レトロウイルスベクター、ヘルペスウイルスベクター等)の形態をとり得る。
 使用目的(クローニング、タンパク質の発現)に応じて、また宿主細胞の種類を考慮して適当なベクターが選択される。ベクターの具体例を挙げれば、大腸菌を宿主とするベクター(M13ファージ又はその改変体、λファージ又はその改変体、pBR322又はその改変体(pB325、pAT153、pUC8など)など)、酵母を宿主とするベクター(pYepSec1、pMFa、pYES2等、昆虫細胞を宿主とするベクター(pAc、pVLなど)、哺乳類細胞を宿主とするベクター(pCDM8、pMT2PCなど)等である。
 本発明の組換えベクターは好ましくは発現ベクターである。「発現ベクター」とは、それに挿入された核酸を目的の細胞(宿主細胞)内に導入することができ、且つ当該細胞内において発現させることが可能なベクターをいう。発現ベクターは通常、挿入された核酸の発現に必要なプロモーター配列や発現を促進させるエンハンサー配列等を含む。選択マーカーを含む発現ベクターを使用することもできる。かかる発現ベクターを用いた場合には選択マーカーを利用して発現ベクターの導入の有無(及びその程度)を確認することができる。
 本発明の遺伝子のベクターへの挿入、選択マーカー遺伝子の挿入(必要な場合)、プロモーターの挿入(必要な場合)等は標準的な組換えDNA技術(例えば、Molecular Cloning, Third Edition, 1.84, Cold Spring Harbor Laboratory Press, New Yorkを参照することができる、制限酵素及びDNAリガーゼを用いた周知の方法)を用いて行うことができる。
(形質転換体)
 本発明は更に、本発明の遺伝子が導入された宿主細胞(形質転換体)に関する。本発明の形質転換体では、本発明の遺伝子が外来性の分子として存在することになる。本発明の形質転換体は、好ましくは、上記本発明のベクターを用いたトランスフェクション乃至はトランスフォーメーションによって調製される。トランスフェクション、トランスフォーメーションはリン酸カルシウム共沈降法、エレクトロポーレーション(Potter, H. et al., Proc. Natl. Acad. Sci. U.S.A. 81, 7161-7165(1984))、リポフェクション(Felgner, P.L. et al.,  Proc. Natl. Acad. Sci. U.S.A. 84,7413-7417(1984))、マイクロインジェクション(Graessmann, M. & Graessmann,A., Proc. Natl. Acad. Sci. U.S.A. 73,366-370(1976))、Hanahanの方法(Hanahan, D., J. Mol. Biol. 166, 557-580(1983))、酢酸リチウム法(Schiestl, R.H. et al., Curr. Genet. 16, 339-346(1989))、プロトプラスト-ポリエチレングリコール法(Yelton, M.M. et al., Proc. Natl. Acad. Sci. 81, 1470-1474(1984))等によって実施することができる。
 宿主細胞は、本発明のマルトトリオシル転移酵素が発現する限りにおいて特に限定されず、例えばBacillus subtillus、Bacillus likemiformis、Bacillus circulansなどのBacillus属細菌、Lactococcus、Lactobacillus、Streptococcus、Leuconostoc、Bifidobacteriumなどの乳酸菌、Escherichia、Streptomycesなどのその他の細菌、Saccharomyces、Kluyveromyces、Candida、Torula、Torulopsis、などの酵母、Aspergillus oryzae、Aspergillus nigerなどのAspergillus属、Penicillium属、Trichoderma属、Fusarium属などの糸状菌(真菌)などより選択される。
(マルトトリオシル転移酵素の製造法)
 本発明の更なる局面はマルトトリオシル転移酵素の製造法を提供する。本発明の製造法の一態様では、本酵素(マルトトリオシル転移酵素)の生産能を有する、ジオバチルス属の微生物を培養するステップ(ステップ(1))及び培養後の培養液及び/又は菌体より、マルトトリオシル転移酵素を回収するステップ(ステップ(2))が行われる。
 ステップ(1)におけるジオバチルス属の微生物は、本酵素の生産能を有する限り特に限定されない。例えば、上記のジオバチルス・エスピーAPC9669を用いることができる。培養法及び培養条件は、目的の酵素が生産されるものである限り特に限定されない。即ち、本酵素が生産されることを条件として、使用する微生物の培養に適合した方法や培養条件を適宜設定できる。培養法としては液体培養、固体培養のいずれでも良いが、好ましくは液体培養が利用される。液体培養を例にとり、その培養条件を説明する。
 培地としては、使用する微生物が生育可能な培地であれば、如何なるものでも良い。例えば、グルコース、シュクロース、ゲンチオビオース、可溶性デンプン、グリセリン、デキストリン、糖蜜、有機酸等の炭素源、更に硫酸アンモニウム、炭酸アンモニウム、リン酸アンモニウム、酢酸アンモニウム、あるいは、ペプトン、酵母エキス、コーンスティープリカー、カゼイン加水分解物、ふすま、肉エキス等の窒素源、更にカリウム塩、マグネシウム塩、ナトリウム塩、リン酸塩、マンガン塩、鉄塩、亜鉛塩等の無機塩を添加したものを用いることができる。使用する微生物の生育を促進するためにビタミン、アミノ酸などを培地に添加してもよい。培地のpHは例えば約3~10、好ましくは約7~8程度に調整し、培養温度は通常約10~80℃、好ましくは約30~65℃程度で、1~7日間、好ましくは2~4日間程度好気的条件下で培養する。培養法としては例えば振盪培養法、ジャー・ファーメンターによる好気的深部培養法が利用できる。
 以上の条件で培養した後、培養液又は菌体よりマルトトリオシル転移酵素を回収する(ステップ(2))。培養液から回収する場合には、例えば培養上清をろ過、遠心処理等することによって不溶物を除去した後、限外ろ過膜による濃縮、硫安沈殿等の塩析、透析、イオン交換樹脂等の各種クロマトグラフィーなどを適宜組み合わせて分離、精製を行うことにより本酵素を得ることができる。
 他方、菌体内から回収する場合には、例えば菌体を加圧処理、超音波処理などによって破砕した後、上記と同様に分離、精製を行うことにより本酵素を得ることができる。尚、ろ過、遠心処理などによって予め培養液から菌体を回収した後、上記一連の工程(菌体の破砕、分離、精製)を行ってもよい。
 尚、発現の確認や発現産物の確認は、マルトトリオシル転移酵素に対する抗体を用いて行うことが簡便であるが、マルトトリオシル転移酵素活性を測定することにより発現の確認を行うこともできる。
 本発明の他の態様では、上記の形質転換体を用いてマルトトリオシル転移酵素を製造する。この態様の製造法ではまず、それに導入された遺伝子によってコードされるタンパク質が産生される条件下で上記の形質転換体を培養する(ステップ(i))。様々なベクター宿主系に関して形質転換体の培養条件が公知であり、当業者であれば適切な培養条件を容易に設定することができる。培養ステップに続き、産生されたタンパク質(即ち、マルトトリオシル転移酵素)を回収する(ステップ(ii))。回収及びその後の精製については、上記態様の場合と同様に行えばよい。
 本酵素の精製度は特に限定されない。また、最終的な形態は液体状であっても固体状(粉体状を含む)であってもよい。
(酵素剤)
 本発明の酵素は例えば酵素剤の形態で提供される。酵素剤は、有効成分(本発明の酵素)の他、賦形剤、緩衝剤、懸濁剤、安定剤、保存剤、防腐剤、生理食塩水などを含有していてもよい。賦形剤としてはデンプン、デキストリン、マルトース、トレハロース、乳糖、D-グルコース、ソルビトール、D-マンニトール、白糖、グリセロール等を用いることができる。緩衝剤としてはリン酸塩、クエン酸塩、酢酸塩等を用いることができる。安定剤としてはプロピレングリコール、アスコルビン酸等を用いることができる。保存剤としてはフェノール、塩化ベンザルコニウム、ベンジルアルコール、クロロブタノール、メチルパラベン等を用いることができる。防腐剤としてはエタノール、塩化ベンザルコニウム、パラオキシ安息香酸、クロロブタノール等と用いることができる。
(マルトトリオシル転移酵素の用途)
 本発明の更なる局面はマルトトリオシル転移酵素(本酵素)の用途として食品の製造・加工方法を提供する。本発明の製造・加工方法ではα-1,4グルコシド結合を有する多糖類及び/又はオリゴ糖類を含む食品又は食品原料に本酵素を作用させ、当該食品の機能性を改善する。食品の例としてはパン、米飯、餅を挙げることができる。食品原料の例としては各種デンプン、アミロース、アミロペクチン、マルトオリゴ糖を含む原料を挙げることが出来る。原料の純度は特に限定されず、他の物質と混在した状態の原料に対して本酵素を作用させることにしてもよい。また、二種以上の原料に対して同時に本酵素を作用させることにしてもよい。
<マルトトリオシル転移酵素活性測定方法>
 マルトトリオシル転移酵素の活性は以下の通り測定した。即ち、1%マルトテトラオース(林原生物化学研究所製)を含む10mmol/L MES緩衝液(pH6.5)2mLに酵素溶液0.5mLを添加して、40℃で60分間放置した。放置後、沸騰水浴中で5分間加熱した後、流水中で冷却した。生成したグルコースをグルコース CII-テスト ワコー(和光純薬製)で定量した。本条件下、1分間に反応液2.5mL中に1μmolのグルコースを生成する酵素量を1単位とした。
<マルトトリオシル転移酵素活性確認方法>
 マルトトリオシル転移酵素の活性は上記<マルトトリオシル転移酵素活性測定方法>と共に、以下の通り確認した。即ち、10.3mmol/L マルトテトラオース(林原生物化学研究所製)を含む5mmol/L 酢酸緩衝液(pH6.0)985μLに1.0u/mL酵素溶液15μLを添加し、50℃で1,2,3時間放置した。放置後、沸騰水浴中で5分間加熱した後、流水中で冷却した。冷却した反応液をカチオン樹脂、アニオン樹脂を用いて適宜脱塩し、HPLCにて反応液の分析を行った。HPLC装置は島津製作所製「Prominence UFLC」、カラムは三菱化学製「MCI GEL CK04S」、溶離液は水を流速0.4mL/分で、検出は示差屈折計で分析した。得られた基質及び生成物の面積%をモル量に換算し、消費速度及び生成速度を計算した。精製したマルトトリオシル転移酵素の場合、例えば生成速度比が7糖:3糖=約92:約8となった。
1.ジオバチルス・エスピーAPC9669由来マルトトリオシル転移酵素の生産および精製
 ジオバチルス・エスピーAPC9669を表1に示す組成の液体培地を用いて45℃、2日間振とう培養した。得られた培養上清液をUF膜(AIP-1013D、旭化成製)にて5倍に濃縮後、50%飽和濃度になるよう硫酸アンモニウムを添加した。沈殿画分を5mmol/L 塩化カルシウムを含む20mmol/L トリス-塩酸緩衝液(pH8.0)に再度溶解し、続いて終濃度0.5mol/Lとなるように硫酸アンモニウムを添加した。生じた沈殿を遠心分離にて除去した後、0.5mol/L 硫酸アンモニウム及び5mmol/L 塩化カルシウムを含む20mmol/L トリス-塩酸緩衝液(pH8.0)にて平衡化したHiLoad 26/10 Phenyl Sepharose HPカラム(GEヘルスケア製)に供し、0.5mol/Lから0mol/Lの硫酸アンモニウム直線濃度勾配により、吸着したマルトトリオシル転移酵素タンパク質を溶離させた。
Figure JPOXMLDOC01-appb-T000001
 集めたマルトトリオシル転移酵素活性画分をUF膜にて濃縮後、5mmol/L 塩化カルシウムを含む20mmol/L トリス-塩酸緩衝液(pH8.0)にバッファー交換を行った。バッファー交換サンプルを5mmol/L 塩化カルシウムを含む20mmol/L トリス-塩酸緩衝液(pH8.0)にて平衡化したHiLoad 26/10 Q Sepharose HPカラム(GEヘルスケア製)に供し、0mol/Lから1mol/LのNaCl直線濃度勾配により、吸着したマルトトリオシル転移酵素タンパク質を溶離させた。
 さらに、集めたマルトトリオシル転移酵素活性画分をUF膜にて濃縮後、0.15MのNaClを含む50mMリン酸緩衝液(pH7.2)にバッファー交換した後、0.15MのNaClを含む50mMリン酸緩衝液(pH7.2)で平衡化したHiLoad 26/60 Superdex 200pgカラム(GEヘルスケア製)に供し、同緩衝液で溶離した。マルトトリオシル転移酵素活性画分を集め、限外ろ過膜にて脱塩濃縮をし、精製酵素標品を得た。得られた本精製酵素は下記の諸性質の検討に供した。
 なお、各段階における精製の結果を表2に示した。最終段階の比活性は粗酵素に比較して約41倍となった。図5に、精製工程における各ステップのサンプルを10-20%のグラジエントゲルにてSDS-PAGE(CBB染色)した結果を示す。本精製酵素標品(レーン2)はSDS-PAGEにおいて単一なタンパク質であることがわかる。
Figure JPOXMLDOC01-appb-T000002
2.マルトトリオシル転移酵素の諸性質
(1)至適反応温度
 上記マルトトリオシル転移酵素活性測定法に準じ、反応温度を30℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃及び75℃で反応させた。最高活性を示した温度での値を100%とした相対活性で示した。至適反応温度は50℃付近であった(図1)。
(2)至適反応pH
 上記マルトトリオシル転移酵素活性測定法に準じ、各緩衝液(ユニバーサル緩衝液pH4.0、pH4.5、pH5.0、pH5.5、pH6.0、pH6.5、pH7.0、pH7.5、pH8.0、pH9.0、pH10.0、pH11.0)中、40℃、60分間の反応条件下で測定した。最大活性値を示したpHの値を100%とした相対活性で示した。至適反応pHは約7.5付近であった(図2)。
(3)温度安定性
 6u/mLの酵素液を30℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃及び75℃の各温度下、10mmol/L MES緩衝液(pH6.5)中、30分間熱処理した後、残存活性を上記マルトトリオシル転移酵素活性測定法にて測定した。熱に対して未処理の活性を100%とした残存活性で示した。65℃、30分間の熱処理では、90%以上の残存活性を有しており、65℃まででは安定であった(図3)。
(4)pH安定性
 6u/mLの酵素液を各緩衝液(ユニバーサル緩衝液pH3.0、pH4.0、pH4.5、pH5.0、pH5.5、pH6.0、pH6.5、pH7.0、pH7.5、pH8.0、pH9.0、pH10.0、pH11.0)中、40℃で30分処理後、上記マルトトリオシル転移酵素活性測定法にて活性を測定した。pH5.0からpH10.0の範囲では、85%以上の残存活性を有しており、pH5.0からpH10.0の範囲では安定であった(図4)。
(5)SDS-PAGEによる分子量測定
 SDS-PAGEはLaemmliらの方法に従い行った。なお、用いた分子量マーカーは、Low Molecular Weight Calibration Kit for Electrophoresis(GEヘルスケア製)であり、標準タンパク質としてPhosphorylase b(97,000Da)、Albumin(66,000Da)、Ovalbumin(45,000Da)、Carbonic anhydrase(30,000Da)、Trypsin inhibitor(20,100Da)、α-Lactalbumin(14,400Da)を含んでいた。ゲル濃度10-20%のグラジエントゲル(和光純薬製)を用いて、20mA/ゲルで約80分間電気泳動を行い、分子量を求めた結果、分子量は約83kDaであった(図5)。
(6)等電点
 アンホラインを用いた等電点集積(600V、4℃、48時間通電)により測定したところ、本酵素の等電点は約4.5であった。
(7)基質特異性
 各基質に対するマルトトリオシル転移酵素活性を調べた。
a)マルトオリゴ糖に対する基質特異性
 マルトオリゴ糖類については、以下の方法により基質特異性を調べた。10mmol/Lの各マルトオリゴ糖に対して0.002u/mLとなるようにの酵素を添加し、50℃、1、2、3時間放置した。放置後、沸騰水浴中で5分間加熱した後、流水中で冷却した。冷却した反応液をカチオン樹脂、アニオン樹脂を用いて適宜脱塩し、HPLCにて反応液の分析を行った。HPLC装置は島津製作所製「Prominence UFLC」、カラムは三菱化学製「MCI GEL CK04S」、溶離液は水を流速0.4mL/分で、検出は示差屈折計で分析した。得られた基質及び生成物の面積%をモル量に換算し、消費速度及び生成速度を算出した。各マルトオリゴ糖に対する反応速度は以下のように算出した。マルトテトラオースに対する速度は、7糖生成速度と3糖生成速度の和とした。マルトペンタオースに対する速度は、8糖生成速度と3糖生成速度の和とした。マルトヘキサオースに対する速度は、3糖生成速度と9糖生成速度の差の1/2を求め、さらにその値と9糖生成速度の和とした。
Figure JPOXMLDOC01-appb-T000003
 マルトース、マルトトリオースに対しては反応生成物は認められなかった。マルトテトラオース、マルトペンタオース、マルトヘキサオースに対してはよく作用した。
b)多糖類に対する基質特異性
 シクロデキストリン、可溶性デンプン、アミロース、アミロペクチンについては、以下の方法により基質特異性を調べた。10mmol/Lの各マルトオリゴ糖に対して0.002u/mLとなるように酵素を添加し、0.1u/mLの酵素を50℃、0、1、2、3時間放置した。放置後、沸騰水浴中で5分間加熱した後、流水中で冷却した。その液200μLに対して、リゾプス由来グルコアミラーゼ(和光純薬)を1.0単位0.03mgとなるように添加し、50℃で1晩静置した。静置後、沸騰水浴中で5分間加熱した後、流水中で冷却した。冷却した反応液をカチオン樹脂、アニオン樹脂を用いて適宜脱塩し、HPLCにて反応液の分析を行った。HPLC装置は島津製作所製「Prominence UFLC」、カラムは三菱化学製「MCI GEL CK04S」、溶離液は水を流速0.4mL/分で、検出は示差屈折計で分析した。酵素(マルトトリオシル転移酵素)処理区に無処理区と比較して、3糖以上のピークに経時的な増加が認められた場合、生成物有り(+)、増加が認められない場合、生成物無し(-)と判定した。
Figure JPOXMLDOC01-appb-T000004
 シクロデキストリンについては反応生成物が認められなかった。可溶性デンプン、アミロース、アミロペクチンについては、3糖以上のピークに経時的な増加が認められた。これらの多糖類は基質となることが分かった。グルコアミラーゼはα-1,4結合、α-1,6結合を加水分解することから、これらの結合様式以外でも糖転移生成物が生成していることが分かった。
(8)基質濃度が酵素反応生成物に及ぼす影響
 基質濃度が酵素反応生成物に及ぼす影響について、マルトテトラオースを基質として調べた。0.67、1.0、3.0、10、30、70%(w/v)のマルトテトラオースに対して、3時間反応後のマルトテトラオース残存量が85%以上となるように酵素を添加し、50℃、1、2、3時間放置した。放置後、沸騰水浴中で5分間加熱した後、流水中で冷却した。冷却した反応液をカチオン樹脂、アニオン樹脂を用いて適宜脱塩し、HPLCにて反応液の分析を行った。HPLC装置は島津製作所製「Prominence UFLC」、カラムは三菱化学製「MCI GEL CK04S」、溶離液は水を流速0.4mL/分で、検出は示差屈折計で分析した。得られた基質及び生成物の面積%をモル量に換算し、生成速度を算出した。その結果、全ての基質濃度条件下(0.67~70%(w/v))で糖転移反応が90%以上であった。
Figure JPOXMLDOC01-appb-T000005
3.パンの製造
 マルトトリオシル転移酵素をパン生地に添加してパンを製造した。山形パン用基本材料(強力粉260 g;砂糖13g;食塩5.2g;ショートニング10.4g;L-アスコルビン酸0.013g;冷水192g;ドライイースト3.1g)またはこの材料にマルトトリオシル転移酵素120uを添加したものを、ナショナル自動ホームベーカリーSD-BT150(松下産業株式会社パナソニック製)に供した。焼成後、パンを26℃で1時間放冷し、次いでこれを水分蒸発を防止するためにビニール袋に入れ、そして26℃で保存した。1または5日間保存した後、パンを2cmの厚さにスライスし、パンの中央部を直径47mmの円柱状にカットした。パンの硬さを、FUDOHレオメーターNRM-2002J(サン科学レオテック製)を使用して、圧縮スピード2mm/分で1.5cm圧縮した場合の最大荷重を測定した。結果を図6に示す。酵素無添加区及び酵素添加区について、それぞれ1日保存のパンの硬さを100%とした時の5日保存のパンの硬さを比較した。その結果、酵素添加区は125%となり、無添加区(207%)と比較して、パンの硬化が抑制されており、ソフトネスが維持されていた。
4.炊飯
 米75gを水洗後、水150mL、またはこの材料にマルトトリオシル転移酵素40uを添加したものを2時間室温に静置して後、定法によりと炊飯して飯米を得た。得られた炊飯米を4℃で7日間保存した。保存前後の糊化度をBAP法で測定した。BAP法による糊化度は、酵素添加区は炊飯直後96.6%、7日後69.5%であった(表6)。それに対して、無添加区は炊飯直後95.3%、7日後59.7%であった。酵素添加区では糊化度の低下が抑制、即ち、デンプンの老化の進行が抑制された。
Figure JPOXMLDOC01-appb-T000006
5.モチの製造
 上新粉200gに水165gを加えて混合し、水蒸気で15分間蒸した。次いで、蒸したものをミキサー(キッチンエードKSM5(エフ・エム・アイ製))にとって撹拌しながら生地が約65℃になったところで、酵素添加区はマルトトリオシル転移酵素30uを添加・混合し、プラスチック製シャーレに詰めて成形し、放冷、15℃保存した。24時間保存した後、モチを10mmの厚さにスライスし、モチの中央部を直径25mmの円柱状に型抜きした。モチの硬さを、FUDOHレオメーターNRM-2002J(レオテック製)を使用して、圧縮スピード2mm/分で5mm圧縮した場合の最大荷重を測定した。酵素無添加区の24時間保存のモチの硬さを100%とした時のモチの硬さを比較した。また、モチのベタつきも確認した。その結果、酵素添加区は35%となり、モチの硬化が抑制されており、ソフトネスが維持されていた(表7)。また、モチのベタツキも無かった。
Figure JPOXMLDOC01-appb-T000007
6.ジオバチルス・エスピーAPC9669由来のマルトトリオシル転移酵素をコードする遺伝子断片の取得
(a)染色体DNAの単離
 ジオバチルス・エスピーAPC9669の菌体から斉藤・三浦の方法(非特許文献5)により染色体DNAを調製した。
(b)部分アミノ酸配列の決定
 1.で得られたマルトトリオシル転移酵素の精製標品をアミノ酸配列解析に供し、10残基のN末端アミノ酸配列(配列番号1)及び内部ペプチドアミノ酸配列(配列番号2、3)を決定した。
(c)PCRによるDNAプローブの作製
 N末端アミノ酸配列および内部アミノ酸配列をもとに2種の混合オリゴヌクレオチド(配列番号4、5)を合成し、PCRプライマーとした。これらのプライマーを用い、ジオバチルス・エスピーAPC9669の染色体DNAを鋳型として、以下の条件にてPCR反応を行った。
 <PCR 反応液>
 10×PCR反応緩衝液(TaKaRa社) 5.0μl
 dNTP混合液(それぞれ2.5 mM、TaKaRa社) 8.0μl
 25mM MgCl2 5.0μl
 50μM センス・プライマー 0.5μl
 50μM アンチセンス・プライマー 0.5μl
 蒸留水 29.5μl
 染色体DNA溶液(100μg/ml) 1.0μl
 LA Taq DNAポリメラーゼ(TaKaRa社) 0.5μl
 <PCR反応条件>
 ステージ1: 変性(95℃、5分) 1サイクル
 ステージ2: 変性(95℃、1分) 30サイクル
 アニール(50℃、1分)
 伸長(72℃、1分)
 ステージ3: 伸長(72℃、10分) 1サイクル
 得られた約1.1 kbのDNA断片をpGEM-Teasy(Promega社)にクローニング後、塩基配列を確認したところ、センス・プライマーの直後とアンチセンス・プライマーの直前に、上記の部分アミノ酸配列をコードする塩基配列が見出された。本DNA断片を全長遺伝子クローニングのためのDNAプローブとした。
(d)遺伝子ライブラリーの作製
 ジオバチルス・エスピーAPC9669の染色体DNAのサザン・ハイブリダイゼーション解析の結果、EcoRI分解物中にプローブDNAとハイブリダイズする約5.2kbのシングルバンドが確認された。この約5.2kbのEcoRIDNA断片をクローニングするため、以下の様に遺伝子ライブラリーを作製した。上記(a)で調製した染色体DNAのEcoRI処理を行った。染色体DNA50μg、10×H緩衝液40μl、蒸留水342.0μl、及びEcoRIを8.0μl混合し、37℃で15時間処理した。得られた分解物をEcoRI処理したpBluescript II KS+ベクター(Stratagene 社)にライゲーションし、遺伝子ライブラリーを得た。
(e)遺伝子ライブラリーのスクリーニング
 上記(c)で得た1.1kbのDNA断片をDIG-High Prime(Roche社)を用いてラベルした。これをDNAプローブとして、(d)で得た遺伝子ライブラリーをコロニー・ハイブリダイゼーションによりスクリーニングした。得られたポジティブコロニーからプラスミドpBlue-SASを得た。
(f)塩基配列の決定
 プラスミドpBlue-SASの塩基配列を定法に従って決定した。ジオバチルス・エスピーAPC9669由来マルトトリオシル転移酵素をコードする塩基配列(2304 bp)を配列番号6に示す。また、配列番号6によりコードされるアミノ酸配列(767アミノ酸)を配列番号7に示す。このアミノ酸配列中には、(b)で決定したN末端領域アミノ酸配列(配列番号1)及び内部アミノ酸配列(配列番号2、3)が見出された。尚、配列番号7のアミノ酸配列からシグナルペプチドを除いたアミノ酸配列を配列番号8に示す。
7.ジオバチルス・エスピーAPC9669由来のマルトトリオシル転移酵素の大腸菌での発現
(a) マルトトリオシル転移酵素の大腸菌での発現プラスミドの構築
 N末端領域アミノ酸配列及びC末端領域アミノ酸配列をコードするDNA配列をもとに、2種のオリゴヌクレオチド(配列番号9、10)を合成し、PCRプライマーとした。センス・プライマーにはSacI制限酵素認識部位を、アンチセンス・プライマーにはXbaI制限酵素認識部位を付加した。これらのプライマーと、マルトトリオシル転移酵素遺伝子を有する染色体DNAを鋳型として、以下の条件にてPCR反応を行った。
 <PCR反応液>
 10×PCR反応緩衝液(TOYOBO社) 5.0μl
 dNTP混合液(それぞれ2.5 mM、TOYOBO社) 5.0μl
 10μM センス・プライマー 1.5μl
 10μM アンチセンス・プライマー 1.5μl
 25mM MgSO4 2.0μl
 蒸留水 33.0μl
 染色体DNA溶液(200μg/ml) 1.0μl
 KOD -Plus- DNA ポリメラーゼ(TOYOBO社) 1.0μl
 <PCR反応条件>
 ステージ1: 変性(94℃、2分) 1サイクル
 ステージ2: 変性(94℃、15秒) 30サイクル
 アニール(50℃、30秒)
 伸長(68℃、2分30秒)
 得られたPCR産物を電気泳動にて確認後、エタノール沈殿により脱塩(84μl)した。続いて10μlの10×M緩衝液及びSacI 3μlとXbaI 3μlを加え、37℃で15時間酵素処理した。制限酵素処理液を電気泳動にて確認し、NucleoSpin ExtractII(日本ジェネティクス社)で精製後、予めSacIとXbaIで処理したベクターpCold II DNA(タカラバイオ社)にライゲーションして発現プラスミドpColdII-SASを得た。
(b) マルトトリオシル転移酵素の大腸菌での発現
 発現プラスミドpColdII-SASを大腸菌JM109 Competent Cells(タカラバイオ社)に導入した。アンピシリン耐性株として得られた形質転換体の中から、コロニーPCRにより目的のマルトトリオシル転移酵素遺伝子が挿入されたpColdII-SASを保有する菌株を選別した。また対照として発現ベクターpColdII DNAを有する大腸菌JM109の形質転換体も得た。これらの形質転換体を100μg/mlのアンピシリンを含有するLB培地1 mlに植菌し、37℃、170rpmでO.D600=0.4-1.0に到達するまで培養した(前培養)。続いて、前培養液300μlを100μg/mlのアンピシリンを含有するLB培地9 mlに植菌し、37℃、170rpmでO.D600=0.4-1.0に到達するまで培養した。15℃、30分放置後、0.1 M IPTGを9μl添加し、15℃、160rpmで24時間培養(本培養)、集菌した。菌体を1.0 mlの100mMトリス―塩酸緩衝液(pH 6.5)に縣濁し、φ0.1mmのガラスビーズを0.50g加え、マルチビーズショッカー(安井機械社)にて菌体を破砕した。破砕条件は、ON 120秒、OFF 60秒を 3.75 サイクル繰り返した。得られたCell free-extractを遠心分離に供し、可溶性成分を得た。
(c) マルトトリオシル転移酵素の発現確認
 取得した可溶性成分をSDS-PAGEに供した。電気泳動装置としてPhastSystem(GE Healthcare 社)を、分離ゲルとしてPhastGel Homogeneous 7.5(GE Healthcare 社)を使用した。その結果、図7に示すように、pColdII-SASでは83kDa付近にマルトトリオシル転移酵素と考えられる有意なタンパク質の生産が確認された。対照であるpColdII DNAでは同様のタンパク質の生産が確認されなかったため、本タンパク質はマルトトリオシル転移酵素遺伝子の導入に因るものと考えられた(図7)。
 また、同じサンプルについて上記マルトトリオシル転移酵素活性測定法に準じ活性測定を行った結果を以下の表8に示す。
Figure JPOXMLDOC01-appb-T000008
 対照と比べて明らかなマルトトリオシル転移酵素活性が検出され、目的のマルトトリオシル転移酵素の発現が確認された。
 本発明のマルトトリオシル転移酵素は優れた耐熱性を示し、高温下での反応が望まれる用途に好適である。本発明のマルトトリオシル転移酵素を用いれば、雑菌汚染のおそれの少ない高温下で酵素反応を実施することができる。また、デンプン含有食品に作用させた場合、デンプン老化抑制効果が認められる。従って、本発明のマルトトリオシル転移酵素は食品加工等の用途に特に有用である。
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
 本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。
 配列番号4、5、9、10:人工配列の説明:プライマー

Claims (19)

  1.  α-1,4グルコシド結合を有する多糖類及びオリゴ糖類に作用し、マルトトリオース単位を糖類に転移させる活性を有する酵素であって、マルトテトラオースを基質として作用させた場合、基質濃度が0.67%(w/v)~70%(w/v)の全範囲において、マルトヘプタオース生成速度とマルトトリオース生成速度の比が9:1~10:0となる、マルトトリオシル転移酵素。
  2.  マルトトリオシル転移酵素が、微生物由来の酵素である請求項1に記載のマルトトリオシル転移酵素。
  3.  マルトトリオシル転移酵素が、ジオバチルス属の微生物由来の酵素である、請求項1に記載のマルトトリオシル転移酵素。
  4.  ジオバチルス属の微生物がジオバチルス・エスピー APC9669(受託番号 NITE BP-770)である、請求項3に記載のマルトトリオシル転移酵素。
  5.  下記の酵素化学的性質を備えるマルトトリオシル転移酵素:
    (1)作用:結合様式としてα-1,4グルコシド結合を有する多糖類及びオリゴ糖類に作用し、マルトトリオース単位を糖類に転移させる;
    (2)基質特異性:可溶性デンプン、アミロース、アミロペクチン、マルトテトラオース、マルトペンタオース、マルトヘキサオースに作用し、α-サイクロデキストリン、β-サイクロデキストリン、γ-サイクロデキストリン、マルトトリオース、マルトースには作用しない;
    (3)分子量:約83,000(SDS-PAGE)。
  6.  請求項1~5のいずれか一項に記載のマルトトリオシル転移酵素を有効成分とする酵素剤。
  7.  ジオバチルス・エスピー APC9669(受託番号 NITE BP-770)又はその変異菌である、マルトトリオシル転移酵素産生能を有する微生物。
  8.  配列番号8のアミノ酸配列、又はマルトトリオシル転移活性を示すその断片からなる、マルトトリオシル転移酵素。
  9.  配列番号6の配列を含むDNAによってコードされる、請求項8に記載のマルトトリオシル転移酵素。
  10.  以下の(a)~(e)からなる群より選択されるいずれかのDNAからなるマルトトリオシル転移酵素:
     (a) 配列番号7又は8のアミノ酸配列をコードするDNA;
     (b) 配列番号6の配列を含むDNA;
     (c) 配列番号6の配列に相補的な配列に対してストリンジェントな条件下でハイブリダイズするDNA;
     (d) 配列番号6の配列のDNA配列縮重体であるDNA;
     (e) 配列番号6の配列を基準として1若しくは複数の塩基の置換、欠失、挿入、付加又は逆位を含む配列からなり、マルトトリオシル転移酵素活性を有するタンパク質をコードするDNA。
  11.  請求項10に記載のマルトトリオシル転移酵素遺伝子を含む組換えベクター。
  12.  発現ベクターである、請求項11に記載の組換えベクター。
  13.  請求項10に記載のマルトトリオシル転移酵素遺伝子が導入されている形質転換体。
  14.  請求項11又は請求項12に記載の組換えベクターが導入されている形質転換体。
  15.  細菌細胞、酵母細胞又は真菌細胞である、請求項13又は請求項14に記載の形質転換体。
  16.  以下のステップ(1)及び(2)、又はステップ(i)及び(ii)を含んでなる、マルトトリオシル転移酵素の製造法:
     (1)マルトトリオシル転移酵素産生能を有する、ジオバチルス属の微生物を培養するステップ;
     (2)培養後の培養液及び/又は菌体より、マルトトリオシル転移酵素を回収するステップ。
     (i) 請求項13~請求項15のいずれか一項に記載の形質転換体を前記マルトトリオシル転移酵素遺伝子がコードするタンパク質が産生される条件下で培養するステップ;
     (ii)産生された前記タンパク質を回収するステップ。
  17.  ジオバチルス属の微生物がジオバチルス・エスピー APC9669である、請求項16に記載の製造法。
  18.  α-1,4グルコシド結合を有する多糖類又はオリゴ糖類を含む食品を製造・加工するための、請求項1~5のいずれか一項に記載の酵素又は請求項6に記載の酵素剤の使用。
  19.  請求項1~5のいずれか一項に記載の酵素又は請求項6に記載の酵素剤の使用によって機能性が改善した食品又は食品材料。
PCT/JP2010/054894 2009-07-01 2010-03-20 マルトトリオシル転移酵素及びその製造方法並びに用途 WO2011001722A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US13/381,455 US8546111B2 (en) 2009-07-01 2010-03-20 Maltotriosyl transferase and use thereof
EP10793893.8A EP2450435B1 (en) 2009-07-01 2010-03-20 Maltotriosyl transferase, process for production thereof, and use thereof
CA2766018A CA2766018A1 (en) 2009-07-01 2010-03-20 Maltotriosyl transferase, process for production thereof, and use thereof
BRPI1014606-7A BRPI1014606A2 (pt) 2009-07-01 2010-03-20 Maltotriosil transferase, processo para produção e uso da mesma
DK10793893.8T DK2450435T3 (en) 2009-07-01 2010-03-20 MALTOTRIOSYL TRANSFERASE, METHOD OF PRODUCING THEREOF, AND APPLICATION THEREOF
CN201080029335.6A CN102510900B (zh) 2009-07-01 2010-03-20 麦芽三糖基转移酶及其制备方法和用途
JP2011520814A JP5762958B2 (ja) 2009-07-01 2010-03-20 マルトトリオシル転移酵素及びその製造方法並びに用途
US14/024,277 US20140004226A1 (en) 2009-07-01 2013-09-11 Maltotriosyl transferase, process for production thereof, and use thereof
US14/024,100 US8765434B2 (en) 2009-07-01 2013-09-11 Polynucleotide encoding a maltotriosyl transferase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009156569 2009-07-01
JP2009-156569 2009-07-01

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US13/381,455 A-371-Of-International US8546111B2 (en) 2009-07-01 2010-03-20 Maltotriosyl transferase and use thereof
US14/024,277 Division US20140004226A1 (en) 2009-07-01 2013-09-11 Maltotriosyl transferase, process for production thereof, and use thereof
US14/024,100 Division US8765434B2 (en) 2009-07-01 2013-09-11 Polynucleotide encoding a maltotriosyl transferase

Publications (1)

Publication Number Publication Date
WO2011001722A1 true WO2011001722A1 (ja) 2011-01-06

Family

ID=43410806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054894 WO2011001722A1 (ja) 2009-07-01 2010-03-20 マルトトリオシル転移酵素及びその製造方法並びに用途

Country Status (9)

Country Link
US (3) US8546111B2 (ja)
EP (1) EP2450435B1 (ja)
JP (2) JP5762958B2 (ja)
KR (1) KR20120103545A (ja)
CN (1) CN102510900B (ja)
BR (1) BRPI1014606A2 (ja)
CA (1) CA2766018A1 (ja)
DK (1) DK2450435T3 (ja)
WO (1) WO2011001722A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105532A1 (ja) 2011-02-04 2012-08-09 天野エンザイム株式会社 マルトトリオシル転移酵素の新規用途
US20160177356A1 (en) * 2011-02-04 2016-06-23 Amano Enzyme Inc. Novel use of maltotriosyl transferase
JP2020110121A (ja) * 2019-01-15 2020-07-27 味の素株式会社 穀類食品の製造方法および品質低下抑制方法、ならびに穀類食品の品質低下抑制剤
WO2021210626A1 (ja) * 2020-04-16 2021-10-21 味の素株式会社 血糖値上昇が抑制された米飯
JPWO2022004402A1 (ja) * 2020-07-01 2022-01-06
WO2024095954A1 (ja) * 2022-10-31 2024-05-10 天野エンザイム株式会社 米飯の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120103545A (ko) * 2009-07-01 2012-09-19 아마노 엔자임 가부시키가이샤 말토트리오실 전이효소, 그 제조 방법 및 용도
US20160264928A1 (en) * 2015-03-11 2016-09-15 Magnegas Corporation System, Method, and Apparatus for Sterilization with Additional Nutrients for Microbiological Inoculation
CN106709899B (zh) * 2015-07-15 2020-06-02 华为终端有限公司 双摄像头相对位置计算方法、装置和设备
CN105647827A (zh) * 2015-12-09 2016-06-08 天津北洋百川生物技术有限公司 麦芽三糖形成酶的高产菌株及其筛选和培养方法
US11034900B2 (en) 2017-08-08 2021-06-15 Magnegas Ip, Llc System, method, and apparatus for gasification of a solid or liquid
US20200281834A1 (en) * 2017-09-29 2020-09-10 Suntory Holdings Limited Composition for promoting expression of aquaporin 3, and use thereof
CN107648255B (zh) * 2017-10-11 2020-06-09 西南大学 一种含麦芽七糖的有机抗菌剂及其制备方法和应用
CN108220362B (zh) * 2018-03-07 2021-07-16 江南大学 一种利用环糊精水解酶制备特定聚合度麦芽低聚糖的方法
US20210403967A1 (en) * 2018-09-27 2021-12-30 Archer Daniels Midland Company Dietary fiber production using a glycosyl-transferase
US20210388406A1 (en) * 2018-10-31 2021-12-16 Amano Enzyme Inc. Maltotriose-generating amylase
JP7319823B2 (ja) * 2019-05-16 2023-08-02 オリエンタル酵母工業株式会社 パン類用品質保持剤、パン類の製造方法およびパン類の品質保持方法
JP7245715B2 (ja) * 2019-05-28 2023-03-24 オリエンタル酵母工業株式会社 パン類用品質向上剤、パン類の品質向上方法およびパン類の製造方法
KR102170296B1 (ko) * 2019-06-17 2020-10-27 대한민국(농촌진흥청장) 고중합 이소말토올리고당 제조용 당전이효소 및 상기 당전이효소를 이용하여 고중합 이소말토올리고당을 제조하는 방법
KR102320952B1 (ko) * 2019-10-28 2021-11-04 대한민국(농촌진흥청장) 고중합 이소말토올리고당 제조용 당전이효소를 이용한 이소말툴로오스 유래 올리고당 제조방법

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07289262A (ja) 1994-03-02 1995-11-07 Takara Shuzo Co Ltd 部位特異的変異導入方法
JPH0870874A (ja) 1994-09-05 1996-03-19 Takara Shuzo Co Ltd 部位特異的変異導入方法
US5512463A (en) 1991-04-26 1996-04-30 Eli Lilly And Company Enzymatic inverse polymerase chain reaction library mutagenesis
JPH08140685A (ja) 1994-11-22 1996-06-04 Takara Shuzo Co Ltd 部位特異的変異導入方法
WO1998002535A1 (fr) 1996-07-11 1998-01-22 Takara Shuzo Co., Ltd. Procede pour effectuer une mutagenese dirigee
JP2001294601A (ja) 2000-04-11 2001-10-23 Akita Prefecture 高度分岐澱粉と該高度分岐澱粉の製造方法
WO2002010361A1 (fr) * 2000-08-01 2002-02-07 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Synthase d'$g(a)-isomaltosylglucosaccharide, procede de preparation et utilisation associes
WO2008001940A1 (fr) * 2006-06-30 2008-01-03 Ajinomoto Co., Inc. Procédé de production d'un aliment contenant de l'amidon et préparation d'enzyme pour une modification d'un aliment contenant de l'amidon
JP2009156569A (ja) 2007-05-28 2009-07-16 Kao Corp 換気扇又はレンジフード用防汚フィルタ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3456756B2 (ja) * 1994-05-30 2003-10-14 天野エンザイム株式会社 パン類の品質改良組成物およびそれを用いたパン類の製造法
JPH10262661A (ja) * 1997-03-25 1998-10-06 Cci Corp 新規なα−アミラーゼおよびその単離方法
JP5096337B2 (ja) * 2005-09-02 2012-12-12 ノボザイムス ノース アメリカ,インコーポレイティド α−アミラーゼ処理によりスラッジの脱水能力を増強するための方法
WO2008092919A1 (en) * 2007-02-01 2008-08-07 Novozymes A/S Alpha-amylase and its use
KR20120103545A (ko) * 2009-07-01 2012-09-19 아마노 엔자임 가부시키가이샤 말토트리오실 전이효소, 그 제조 방법 및 용도

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512463A (en) 1991-04-26 1996-04-30 Eli Lilly And Company Enzymatic inverse polymerase chain reaction library mutagenesis
JPH07289262A (ja) 1994-03-02 1995-11-07 Takara Shuzo Co Ltd 部位特異的変異導入方法
JPH0870874A (ja) 1994-09-05 1996-03-19 Takara Shuzo Co Ltd 部位特異的変異導入方法
JPH08140685A (ja) 1994-11-22 1996-06-04 Takara Shuzo Co Ltd 部位特異的変異導入方法
WO1998002535A1 (fr) 1996-07-11 1998-01-22 Takara Shuzo Co., Ltd. Procede pour effectuer une mutagenese dirigee
JP2001294601A (ja) 2000-04-11 2001-10-23 Akita Prefecture 高度分岐澱粉と該高度分岐澱粉の製造方法
WO2002010361A1 (fr) * 2000-08-01 2002-02-07 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Synthase d'$g(a)-isomaltosylglucosaccharide, procede de preparation et utilisation associes
WO2008001940A1 (fr) * 2006-06-30 2008-01-03 Ajinomoto Co., Inc. Procédé de production d'un aliment contenant de l'amidon et préparation d'enzyme pour une modification d'un aliment contenant de l'amidon
JP2009156569A (ja) 2007-05-28 2009-07-16 Kao Corp 換気扇又はレンジフード用防汚フィルタ

Non-Patent Citations (32)

* Cited by examiner, † Cited by third party
Title
"Current protocols in molecular biology", 1987
"Denpun Kagakuno Jiten", 2003, ASAKURA PUBLISHING CO., LTD., pages: 279 - 80
"Molecular Cloning", COLD SPRING HARBOR LABORATORY PRESS
"Molecular Cloning", COLD SPRING HARBOR LABORATORY PRESS, pages: 1.84
"Oligonucleotide-directed Dual Amber: ODA", GENE, vol. 152, 1995, pages 271 - 275
"PCR Technology", 1989
ALTSCHUL ET AL., AMINO ACIDS RESEARCH, vol. 25, no. 17, 1997, pages 3389 - 3402
ALTSCHUL ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403 - 10
ANALYTICAL BIOCHEMISTRY, vol. 200, 1992, pages 81 - 88
ANALYTICAL BIOCHEMISTRY, vol. 224, 1995, pages 347 - 353
DATABASE UNIPROTKB/TREMBL 20 May 2008 (2008-05-20), "DE: SubName: Full=Alpha amylase catalytic region OS: Geobacillus sp. WCH70", XP008149823, Database accession no. B1SUY3 *
FELGNER, P.L. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 84, 1984, pages 7413 - 7417
GENE, vol. 102, 1991, pages 67 - 70
GENE, vol. 103, 1991, pages 73 - 77
GENE, vol. 60, no. 1, 1987, pages 115 - 127
GENE, vol. 64, 1988, pages 313 - 319
GRAESSMANN, M.; GRAESSMANN,A., PROC. NATL. ACAD. SCI. U.S.A., vol. 73, 1976, pages 366 - 370
HANAHAN, D., J. MOL. BIOL., vol. 166, 1983, pages 557 - 580
JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 256, 1981, pages 7990 - 7997
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2264 - 68
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873 - 77
MYERSAND MILLER, COMPUT APPL BIOSCI., vol. 4, 1988, pages 11 - 17
NUCLEIC ACIDS RESEARCH, vol. 12, 1984, pages 9441 - 9456
OKADA ET AL., JOURNAL OF THE JAPANESE SOCIETY OF STARCH SCIENCE, vol. 30, no. 2, 1983, pages 223 - 230
POTTER, H. ET AL., PROC. NATL. ACAD. SCI. U.S.A., vol. 81, 1984, pages 7161 - 7165
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 79, 1982, pages 1408 - 1412
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE USA, vol. 82, 1985, pages 488 - 492
SAITO; MIURA, BIOCHIM. BIOPHYS. ACTA, vol. 72, 1963, pages 619 - 629
SCHIESTL, R.H. ET AL., CURR. GENET., vol. 16, 1989, pages 339 - 346
USUI ET AL., CARBOHYDR. RES., vol. 250, 1993, pages 57 - 66
WAKAO ET AL., JOURNAL OF THE JAPANESE SOCIETY OF STARCH SCIENCE, vol. 25, no. 2, 1978, pages 155 - 61
YELTON, M. M. ET AL., PROC. NATL. ACAD. SCI., vol. 81, 1984, pages 1470 - 1474

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019115361A (ja) * 2011-02-04 2019-07-18 天野エンザイム株式会社 マルトトリオシル転移酵素の新規用途
JP2018061517A (ja) * 2011-02-04 2018-04-19 天野エンザイム株式会社 マルトトリオシル転移酵素の新規用途
JPWO2012105532A1 (ja) * 2011-02-04 2014-07-03 天野エンザイム株式会社 マルトトリオシル転移酵素の新規用途
US20160177356A1 (en) * 2011-02-04 2016-06-23 Amano Enzyme Inc. Novel use of maltotriosyl transferase
WO2012105532A1 (ja) 2011-02-04 2012-08-09 天野エンザイム株式会社 マルトトリオシル転移酵素の新規用途
JP2016214255A (ja) * 2011-02-04 2016-12-22 天野エンザイム株式会社 マルトトリオシル転移酵素の新規用途
US20140023748A1 (en) * 2011-02-04 2014-01-23 Amano Enzyme Inc. Novel use of maltotriosyl transferase
EP3494993A1 (en) 2011-02-04 2019-06-12 Amano Enzyme Inc. Novel use of maltotriosyl transferase
EP2671456A4 (en) * 2011-02-04 2016-12-07 Amano Enzyme Inc NEW USE OF MALTOTRIOSYL TRANSFERASE
JP2020110121A (ja) * 2019-01-15 2020-07-27 味の素株式会社 穀類食品の製造方法および品質低下抑制方法、ならびに穀類食品の品質低下抑制剤
JP7354541B2 (ja) 2019-01-15 2023-10-03 味の素株式会社 穀類食品の製造方法および品質低下抑制方法、ならびに穀類食品の品質低下抑制剤
WO2021210626A1 (ja) * 2020-04-16 2021-10-21 味の素株式会社 血糖値上昇が抑制された米飯
JPWO2022004402A1 (ja) * 2020-07-01 2022-01-06
WO2022004402A1 (ja) * 2020-07-01 2022-01-06 株式会社Mizkan Holdings 米飯、その製造方法、炊飯用調味液、米飯改良剤及びその使用方法
JP7468875B2 (ja) 2020-07-01 2024-04-16 株式会社Mizkan Holdings 米飯、その製造方法、炊飯用調味液、米飯改良剤及びその使用方法
WO2024095954A1 (ja) * 2022-10-31 2024-05-10 天野エンザイム株式会社 米飯の製造方法

Also Published As

Publication number Publication date
EP2450435B1 (en) 2017-08-16
US8765434B2 (en) 2014-07-01
US20140004226A1 (en) 2014-01-02
CN102510900B (zh) 2015-05-13
JPWO2011001722A1 (ja) 2012-12-13
US20140011257A1 (en) 2014-01-09
US8546111B2 (en) 2013-10-01
US20120100253A1 (en) 2012-04-26
JP5762958B2 (ja) 2015-08-12
JP6115921B2 (ja) 2017-04-19
DK2450435T3 (en) 2017-09-25
EP2450435A1 (en) 2012-05-09
CA2766018A1 (en) 2011-01-06
CN102510900A (zh) 2012-06-20
BRPI1014606A2 (pt) 2015-08-25
KR20120103545A (ko) 2012-09-19
EP2450435A4 (en) 2012-12-26
JP2015156861A (ja) 2015-09-03

Similar Documents

Publication Publication Date Title
JP6115921B2 (ja) マルトトリオシル転移酵素及びその製造方法並びに用途
EP2454942B1 (en) Method for improvement of foods utilizing beta-amylase
JP5528333B2 (ja) β−アミラーゼ、それをコードする遺伝子及びその製造法
US11142748B2 (en) Saccharide oxidase, and production method for same and use of same
JP7122114B2 (ja) 新規β-ガラクトシダーゼ
WO2010140435A1 (ja) バチルス・サーキュランス由来のβ-ガラクトシダーゼ
JP2018061517A (ja) マルトトリオシル転移酵素の新規用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029335.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011520814

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5054/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2766018

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13381455

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127002032

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010793893

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010793893

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014606

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014606

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111226