WO2011001677A1 - 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、過酸化水素分解用触媒 - Google Patents

貴金属コロイド粒子及び貴金属コロイド溶液、並びに、過酸化水素分解用触媒 Download PDF

Info

Publication number
WO2011001677A1
WO2011001677A1 PCT/JP2010/004316 JP2010004316W WO2011001677A1 WO 2011001677 A1 WO2011001677 A1 WO 2011001677A1 JP 2010004316 W JP2010004316 W JP 2010004316W WO 2011001677 A1 WO2011001677 A1 WO 2011001677A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
colloid
amount
noble metal
colloidal particles
Prior art date
Application number
PCT/JP2010/004316
Other languages
English (en)
French (fr)
Inventor
吉井哲朗
堀口治子
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2011520789A priority Critical patent/JPWO2011001677A1/ja
Priority to EP10793850.8A priority patent/EP2450133A4/en
Priority to US13/381,547 priority patent/US20120122675A1/en
Publication of WO2011001677A1 publication Critical patent/WO2011001677A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Definitions

  • the present invention relates to a noble metal colloid particle, a noble metal colloid solution, and a hydrogen peroxide decomposition catalyst.
  • Hydrogen peroxide water is widely used industrially for wastewater treatment and semiconductor cleaning, and is also used for disinfection of contact lenses in general households.
  • waste liquid containing hydrogen peroxide is discarded as it is, it may adversely affect river ecosystems. Therefore, it is necessary to decompose and remove hydrogen peroxide remaining in the waste liquid.
  • hydrogen peroxide remains on the contact lens after disinfection, and there is a risk of causing serious eye damage if used as it is. Therefore, the hydrogen peroxide remaining on the contact lens must be completely decomposed and removed.
  • Patent Document 1 Patent Document 1
  • Non-Patent Document 1 Patent Document 1
  • the present invention has been made to solve the above problems, and provides a noble metal colloid particle and a noble metal colloid solution capable of efficiently decomposing hydrogen peroxide while keeping the amount of Pt low. Is an issue. Furthermore, another object of the present invention is to provide a hydrogen peroxide catalyst using such noble metal colloidal particles.
  • the present invention is a noble metal colloidal particle comprising Pd colloidal particles and Pt supported on the surface of the Pd colloidal particles, which is substantially free of protective colloids and has an average particle size of 7 to Noble metal colloidal particles having a Pt amount of 0.5 to 2 atomic layers when the amount of the Pt supported on the surface of the Pd colloidal particles is 20 nm and indicated by the number of atomic layers of Pt atoms. provide.
  • the present invention also provides a noble metal colloid solution comprising a solvent and the noble metal colloid particles of the present invention dispersed in the solvent.
  • the present invention also provides a catalyst for decomposing hydrogen peroxide, which contains the above-described noble metal colloid particles of the present invention.
  • the amount of Pt contained in the noble metal colloidal particles of the present invention is small because it may be an amount that can be supported on the surface of the Pd colloidal particles in the range of 0.5 to 2 atomic layers. Furthermore, although the noble metal colloidal particles of the present invention have a very small amount of Pt compared to colloidal particles of simple Pt, higher catalytic performance for hydrogen peroxide decomposition can be realized. Thus, the noble metal colloidal particles of the present invention can decompose hydrogen peroxide efficiently while keeping the amount of Pt low. Similarly, a noble metal colloid solution containing such noble metal colloid particles and a catalyst for decomposing hydrogen peroxide can also efficiently decompose hydrogen peroxide while keeping the amount of Pt low.
  • the noble metal colloidal particles of the present invention are formed by supporting Pt on the surface of Pd colloidal particles.
  • the noble metal colloidal particles of the present invention may have a core-shell structure in which Pd is a core and Pt is a shell.
  • the amount of Pt supported on the surface of the Pd colloidal particles is 0.5 to 2 atomic layers in terms of the number of atomic layers of Pt atoms.
  • the “number of atomic layers” means that Pd colloidal particles are assumed to be spheres, and Pt having a thickness corresponding to n (n is a positive number) atomic layers exists on the surface. ing.
  • the thickness of one atomic layer is the diameter of Pt atoms (0.276 nm), and the thickness of the two atomic layers is (1 + 3 1/2 / 2) ⁇ Pt atoms.
  • Diameter, 3 atomic layer thickness is (1 + 3 1/2 ) ⁇ Pt atom diameter
  • atomic layer thickness is (1+ (m ⁇ 1) ⁇ 3 1/2 / 2) ) ⁇ Pt atom diameter.
  • the amount of Pt when the number of atomic layers is smaller than 1 is calculated based on the amount of Pt when Pt is one atomic layer. For example, when the number of atomic layers is 0.5, the amount of Pt is a value obtained by first obtaining the amount of Pt for one atomic layer and multiplying that value by 0.5.
  • the noble metal colloidal particles of the present invention sufficient catalytic activity can be obtained by setting the number of Pt atomic layers to 0.5 or more.
  • Pt substantially covers the entire surface of the Pd colloidal particles, for example, supported on the surface of the Pd colloidal particles.
  • the amount of Pt is preferably 0.75 atomic layer or more.
  • the proportion of Pt that does not come into contact with the reaction raw material (hydrogen peroxide to be decomposed in this embodiment) increases, so the amount of catalytic activity per unit weight of Pt Will fall. That is, when it exceeds 2 atomic layers, it becomes difficult to efficiently exhibit the function of Pt as a catalyst.
  • the amount of Pt is preferably 1 atomic layer or less.
  • the average particle diameter of Pd colloidal particles is 7 to 20 nm. If the average particle size of the Pd colloidal particles is smaller than 7 nm, the crystallinity of Pd is poor and the crystallinity of Pt supported on the surface of the Pd colloidal particles is poor. Furthermore, the exchange of electrons between Pt and the core Pd is not performed smoothly, and the catalytic performance of Pt cannot be effectively exhibited. On the other hand, if the average particle size of the Pd colloidal particles is larger than 20 nm, the surface area per unit weight of the Pd colloidal particles becomes small, so the number of particles for obtaining the same amount of surface area, that is, the concentration of the Pd colloidal particles increases. .
  • the average particle size of the Pd colloidal particles is set to 7 to 20 nm.
  • the particle diameter of the Pd colloidal particles is measured using a dynamic scattering method. Specifically, the non-contact backscattering intensity was measured using a light scattering photometer (DLS-2000, manufactured by Otsuka Electronics Co., Ltd.), the intensity reference particle size distribution was obtained, and the position where the volume accumulation was 50% was defined as the average particle diameter. did.
  • the precious metal colloid particles of the present invention are substantially free of protective colloid.
  • “substantially free of protective colloid” means that when the content of the protective colloid-forming agent in the noble metal colloid solution is indicated by the amount of carbon contained in the protective colloid-forming agent, It means that the total carbon concentration is about 200 ppm by mass or less.
  • proteins and polymer substances are used as the protective colloid forming agent, and therefore the amount of the protective colloid forming agent contained in the noble metal colloid solution can be expressed by the total carbon concentration in the noble metal colloid solution.
  • the protective colloid forming agent will be described later.
  • the noble metal colloidal particles of the present invention do not substantially contain protective colloid, so that a sufficient contact area between the reaction raw material (hydrogen peroxide to be decomposed in this embodiment) and Pt is secured. And can effectively function as a catalyst.
  • the noble metal colloidal particles of the present invention have a configuration in which Pt is supported on the surface of Pd colloidal particles. In Pd and Pt, Pt becomes electron richer than Pd due to the relationship of redox potential. For this reason, the noble metal colloidal particles of the present invention have a reducing power stronger than that of a single Pt colloidal particle, and can obtain high catalytic activity.
  • a Pd salt solution is prepared.
  • Pd salt and reducing agent are added to the solvent.
  • This Pd salt solution is heated to reduce Pd ions contained in the Pd salt to obtain a dispersion of Pd colloidal particles (Pd colloid solution).
  • a Pt salt is added to the Pd colloid solution in order to deposit Pt on the surface of the Pd colloid particles.
  • a reducing agent or a reaction accelerator may be further added. This solution is heated, Pt ions contained in the Pt salt are reduced, and Pt is deposited on the surface of the Pd colloidal particles.
  • ion exchange is performed with an ion exchange resin to obtain a noble metal colloidal solution in which Pt is supported on the surface of Pd colloidal particles.
  • the Pd salt and Pt salt used in the above method are not particularly limited as long as they are sufficiently dissolved in a solvent and reduced by a reducing agent.
  • Pd and Pt chlorides, nitrates, sulfates and metal complex compounds can be used.
  • the solvent is not particularly limited as long as it can dissolve the Pd salt, Pt salt, reducing agent, and reaction accelerator.
  • Water, alcohols, ketones and ethers can be used as the solvent. From the viewpoint of sufficiently dissolving the Pd salt and the Pt salt, water and alcohol are preferably used. Note that it is desirable to remove oxygen present in the solvent by boiling the solvent sufficiently before adding the reducing agent or by blowing an inert gas such as nitrogen into the solvent. When a Pd salt and a Pt salt are added to a solvent in which oxygen is present, the reduction reaction of Pd and Pt does not proceed easily, and colloidal particles are not easily formed.
  • the reducing agent is not particularly limited as long as it is dissolved in a solvent and reduces Pd salt and Pt salt.
  • Citric acids, alcohols, carboxylic acids, ketones, ethers, aldehydes, esters and the like can be used as the reducing agent. Two or more of these may be used in combination.
  • citric acids include citric acid and citrates such as sodium citrate, potassium citrate, and ammonium citrate.
  • Examples of alcohols include methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, glycerin and the like.
  • carboxylic acids include formic acid, acetic acid, fumaric acid, malic acid, succinic acid, aspartic acid, gallic acid, ascorbic acid, and their carboxylates.
  • Tannic acid which is a dehydrated form of gallic acid and sugar, is also preferably used.
  • ketones include acetone and methyl ethyl ketone.
  • ethers include diethyl ether.
  • aldehydes include formaldehyde and acetaldehyde.
  • the esters include methyl formate, methyl acetate, and ethyl acetate.
  • tannic acid, gallic acid, sodium citrate, ascorbic acid and salts thereof, which are highly reducible and easy to handle, are particularly preferable.
  • reaction accelerator for example, alkali carbonates such as potassium carbonate, alkali hydrogen carbonates such as sodium hydrogen carbonate, and alkali hydroxides such as lithium hydroxide can be used.
  • the precious metal colloidal particles of the present invention substantially contain no protective colloid, and thus are produced without using a protective colloid-forming agent.
  • the protective colloid-forming agent is a substance that is conventionally contained in a colloid solution to maintain the dispersion stability of the colloidal particles, and adheres to the surface of the colloidal particles to form a protective colloid.
  • a protective colloid-forming agent include water-soluble polymer substances such as polyvinyl alcohol, polyvinyl pyrrolidone and gelatin, surfactants and polymer chelating agents. Since the noble metal colloidal particles of the present invention have negative charges on the surfaces and have electric repulsion with each other, they can maintain dispersion stability even though they do not contain protective colloids.
  • the noble metal colloid particles and the noble metal colloid solution of the present invention can be obtained.
  • the hydrogen peroxide decomposition catalyst of the present invention includes the noble metal colloidal particles of the present invention.
  • the noble metal colloidal particles of the present invention may be dispersed in a solvent and used as a catalyst for decomposing hydrogen peroxide in the state of a colloidal solution.
  • the noble metal colloidal particles of the present invention can be supported on carbon, oxide particles, ion exchange resin, ion exchange membrane or the like and used as a catalyst for hydrogen peroxide decomposition.
  • Example 1 First, a palladium chloride solution was prepared. After dissolving 1.68 g of palladium chloride (powder) in a mixed solution of 3.65 wt% (1 mol / L) hydrochloric acid aqueous solution (20 mL) and pure water (500 mL), the volume was adjusted to 1 L with pure water. This was used as a 1 g / L palladium raw material solution (1 g / L-Pd raw material).
  • sodium citrate and tannic acid were used as the reducing agent. Specifically, a sodium citrate solution in which sodium citrate was diluted to 10 wt% with pure water and a tannic acid solution in which tannic acid was diluted to 1.43 wt% with pure water were used. Potassium carbonate was used as a reaction accelerator. Specifically, a potassium carbonate solution in which potassium carbonate was diluted with pure water to 13.82 wt% (1 mol / L) was used.
  • ion exchange is performed with 70 g of an ion exchange resin (Amberlite MB-1 (manufactured by Organo Corp.)), whereby a colloidal solution of Pd colloidal particles that becomes the core part of Pd—Pt colloidal particles is obtained.
  • an ion exchange resin Amberlite MB-1 (manufactured by Organo Corp.)
  • the particle size of the obtained Pd colloidal particles was measured using a dynamic scattering method, and the average particle size was determined. Specifically, the non-contact backscattering intensity was measured using a light scattering photometer (DLS-2000, manufactured by Otsuka Electronics Co., Ltd.), the intensity reference particle size distribution was obtained, and the position where the volume accumulation was 50% was defined as the average particle diameter. did.
  • the average particle size of the Pd colloidal particles of this example was 10 nm.
  • the total amount of the Pd colloid solution prepared as described above--ion exchanged was placed in a 1 L flask and boiled and refluxed for 30 minutes while stirring with a stir bar.
  • 4.14 g of 4 wt% chloroplatinic acid aqueous solution was added as a raw material of Pt forming the shell portion.
  • 14 g of 10 wt% sodium citrate solution was added, and the mixture was further boiled and refluxed for 1 hour. Thereafter, the flask was placed in water and cooled to room temperature.
  • ion exchange was performed with 36 g of an ion exchange resin (Amberlite MB-1 (manufactured by Organo Corporation)) to obtain a Pd—Pt colloidal solution.
  • the Pt weight concentration was determined so that the number of Pt atomic layers in the Pt—Pd colloidal particles contained in the Pd—Pt colloid solution was 1. Specifically, the number of Pd colloid particles was determined from the Pd concentration, and the weight was determined by multiplying the weight of Pt supported per Pd colloid particle by the number of Pd colloid particles. Details are as follows.
  • V Pd volume of the Pd colloidal particles
  • V Pd volume of the Pd colloidal particles
  • the Pd concentration (M Pd ) in this example was 200 mg / L.
  • ⁇ Pt weight concentration> The volume of Pd—Pt colloid particles (in terms of sphere) was obtained by adding the thickness of Pt to the radius of the Pd colloid particles, and the volume of Pt colloid particles was subtracted from the obtained volume to obtain the volume of Pt alone.
  • the Pt weight was determined by multiplying the Pt volume by the density of Pt to determine the weight of Pt required per Pd—Pt colloidal particle, and by multiplying the number of Pd colloidal particles per liter of the solution. The specific method is as follows.
  • a Pd—Pt colloidal solution was prepared so that the weight concentration of Pt was 62.4 mg / L.
  • the catalytic performance (hydrogen peroxide decomposition activity) of hydrogen peroxide decomposition was measured for the obtained Pd—Pt colloid solution.
  • 10 mL of 30 wt% hydrogen peroxide solution was placed in a 50 mL Erlenmeyer flask and stirred with a stirrer for 5 minutes while heating to 50 ° C. in a warm bath.
  • 100 ⁇ L of the prepared Pd—Pt colloidal solution was added, and the amount of oxygen generated in 45 seconds was measured using a flow meter.
  • the oxygen generation amount was 0.17L. This corresponds to an oxygen generation amount 2.8 times that of a Pt colloid solution (Comparative Example 1 described later) having the same Pt weight.
  • Example 2 Except that the amount of pure water when preparing the Pd colloidal solution was 713.36 g, the Pt raw material solution (chloroplatinic acid aqueous solution) was 8.09 g, and the amount of sodium citrate solution used during Pt reduction was 27.3 g.
  • a Pd—Pt colloidal solution was prepared by the same production method as in Example 1.
  • the ion exchange resins used after preparing the Pd colloid solution and after supporting Pt on the Pd colloid particles were 70 g and 68 g, respectively.
  • the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
  • the weight concentration of Pt in the Pd—Pt colloidal solution was determined so that the number of atomic layers of Pt was two atomic layers.
  • the Pt weight concentration was determined by the same procedure as in Example 1.
  • the thickness of Pt in the two atomic layers was (1 + 3 1/2 / 2) ⁇ the diameter of Pt atoms (0.276 nm).
  • the hydrogen peroxide decomposition activity of the obtained Pd—Pt colloid solution was measured in the same manner as in Example 1.
  • the amount of the Pd—Pt colloid solution used for the measurement was 51 ⁇ L.
  • the amount of oxygen generated in 45 seconds was 0.13L. This corresponds to an oxygen generation amount 2.2 times that of a Pt colloid solution (Comparative Example 1 described later) having the same Pt weight.
  • Example 3 The amount of pure water during preparation of the Pd colloidal solution is 744.94 g, the amount of sodium citrate solution used during Pd reduction is 10 g, the amount of Pt raw material solution (chloroplatinic acid aqueous solution) is 2.01 g, and during Pt reduction.
  • a Pd—Pt colloid solution was prepared by the same production method as in Example 1 except that the amount of sodium citrate solution used was 6.8 g.
  • the ion exchange resins used after the preparation of the Pd colloid solution and after the Pt was supported on the Pd colloid particles were 55 g and 18 g, respectively.
  • the average particle size of the Pd colloidal particles in this example was 20 nm.
  • the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was one atomic layer.
  • the weight concentration of Pt was determined by the same procedure as in Example 1.
  • the hydrogen peroxide decomposition activity of the obtained Pd—Pt colloid solution was measured in the same manner as in Example 1.
  • the amount of the Pd—Pt colloid solution used at the time of measurement was 206 ⁇ L.
  • the amount of oxygen generated in 45 seconds was 0.12L. This corresponds to an oxygen generation amount 2.0 times that of a Pt colloid solution (Comparative Example 1 described later) having the same Pt weight.
  • Example 4 The amount of pure water at the time of preparation of the Pd colloidal solution is 496.22 g, the amount of Pd raw material solution (palladium chloride solution) is 400 g, the amount of sodium citrate solution used at the time of Pd reduction is 30 g, and carbonic acid as a reaction accelerator. Implementation was performed except that the amount of potassium solution used was 2.5 g, the amount of Pt raw material solution (chloroplatinic acid aqueous solution) was 8.28 g, and the amount of sodium citrate solution used during Pt reduction was 28.0 g.
  • a Pd—Pt colloidal solution was prepared by the same production method as in Example 1.
  • the ion exchange resins used after preparing the Pd colloid solution and after supporting Pt on the Pd colloidal particles were 149 g and 70 g, respectively.
  • the average particle size of the Pd colloidal particles in this example was 10 nm.
  • the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was one atomic layer. The weight concentration of Pt was determined by the same procedure as in Example 1.
  • the hydrogen peroxide decomposition activity of the obtained Pd—Pt colloid solution was measured in the same manner as in Example 1.
  • the amount of the Pd—Pt colloid solution used for the measurement was 50 ⁇ L.
  • the amount of oxygen generated in 45 seconds was 0.15 L. This corresponds to an oxygen generation amount 2.7 times that of a Pt colloid solution (Comparative Example 1 described later) having the same Pt weight.
  • Example 5 The amount of pure water when preparing the Pd colloidal solution was 739.74 g, the amount of Pt raw material solution (chloroplatinic acid aqueous solution) used was 2.01 g, and the amount of sodium citrate solution used during Pt reduction was 7.0 g.
  • the ion exchange resins used after the preparation of the Pd colloid solution and after the Pt was supported on the Pd colloid particles were 70 g and 18 g, respectively.
  • the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
  • the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 0.5 atomic layers.
  • the Pt weight concentration when the number of atomic layers was 1 was determined by the same procedure as in Example 1.
  • the Pt weight concentration in the case of 1 atomic layer was multiplied by 0.5, and the obtained value was used as the Pt weight concentration necessary for the 0.5 atomic layer number.
  • the hydrogen peroxide decomposition activity of the obtained Pd—Pt colloid solution was measured in the same manner as in Example 1.
  • the amount of the Pd—Pt colloid solution used for the measurement was 200 ⁇ L.
  • the amount of oxygen generated in 45 seconds was 0.12L. This corresponds to an oxygen generation amount 2.0 times that of a Pt colloid solution (Comparative Example 1 described later) having the same Pt weight.
  • Example 6 The amount of pure water when preparing the Pd colloidal solution was 735.14 g, the amount of Pt raw material solution (chloroplatinic acid aqueous solution) used was 3.11 g, and the amount of sodium citrate solution used during Pt reduction was 10.5 g.
  • the ion exchange resins used after preparation of the Pd colloid solution and after Pt was supported on the Pd colloid particles were 70 g and 26 g, respectively.
  • the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
  • the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 0.75 atomic layers.
  • the Pt weight concentration when the number of atomic layers was 1 was determined by the same procedure as in Example 1.
  • the Pt weight concentration in the case of 1 atomic layer number was multiplied by 0.75, and the obtained value was set as the Pt weight concentration necessary for the 0.75 atomic layer number.
  • the hydrogen peroxide decomposition activity of the obtained Pd—Pt colloid solution was measured in the same manner as in Example 1.
  • the amount of the Pd—Pt colloid solution used at the time of measurement was 133 ⁇ L.
  • the amount of oxygen generated in 45 seconds was 0.19L. This corresponds to an oxygen generation amount 3.2 times that of a Pt colloid solution (Comparative Example 1 described later) having the same Pt weight.
  • Example 7 The amount of pure water at the time of preparing the Pd colloidal solution was 733.25 g, 50 g of 2 wt% gallic acid solution was used as a reducing agent at the time of Pd reduction, 1.0 g of potassium carbonate solution as a reaction accelerator was used, and a Pt raw material solution ( A Pd—Pt colloidal solution was prepared in the same manner as in Example 1 except that the amount of chloroplatinic acid aqueous solution was 4.14 g and that 10 g of 8.1 wt% gallic acid solution was used as the reducing agent during Pt reduction.
  • the ion exchange resins used after the preparation of the Pd colloid solution and after the Pt was supported on the Pd colloid particles were 23 g and 15 g, respectively.
  • the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
  • the Pt weight concentration in the Pd—Pt colloidal solution was determined in the same procedure as in Example 1 so that the number of atomic layers of Pt was one atomic layer.
  • the hydrogen peroxide decomposition activity of the obtained Pd—Pt colloid solution was measured in the same manner as in Example 1.
  • the amount of the Pd—Pt colloid solution used for the measurement was 100 ⁇ L.
  • the amount of oxygen generated in 45 seconds was 0.15 L. This corresponds to an oxygen generation amount 2.7 times that of a Pt colloid solution (Comparative Example 1 described later) having the same Pt weight.
  • the hydrogen peroxide decomposition activity of the Pt colloid solution of Comparative Example 1 thus obtained was measured in the same manner as in Example 1.
  • the Pt colloid solution used at the time of measurement was 19 ⁇ L.
  • the amount of oxygen generated in 45 seconds was 0.06L.
  • Example 2 After adding sodium citrate solution for Pt reduction and boiling and refluxing for 30 minutes, 624 mg of PVP (polyvinylpyrrolidone: average molecular weight 40,000) was dissolved in 2 mL of pure water and added to the reaction system during boiling and refluxing, The mixture was boiled and refluxed for 30 minutes.
  • the other methods were the same as in Example 1.
  • the average particle diameter of the Pd colloid particles was determined in the same manner as in Example 1, the average particle diameter of the Pd colloid particles was 10 nm.
  • the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was one atomic layer. The Pt weight concentration was determined by the same procedure as in Example 1.
  • the hydrogen peroxide decomposition activity of the obtained Pd—Pt colloid solution was measured in the same manner as in Example 1.
  • the amount of the Pd—Pt colloid solution used for the measurement was 100 ⁇ L.
  • the amount of oxygen generated in 45 seconds was 0.06L. This corresponds to an oxygen generation amount 1.0 times that of a Pt colloid solution (Comparative Example 1) having the same Pt weight.
  • the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 3 atomic layers.
  • the Pt weight concentration was determined by the same procedure as in Example 1.
  • the thickness of Pt of the triatomic layer was (1 + 3 1/2 ) ⁇ Pt atom diameter (0.276 nm).
  • the hydrogen peroxide decomposition activity of the obtained Pd—Pt colloid solution was measured in the same manner as in Example 1.
  • the amount of the Pd—Pt colloid solution used for the measurement was 33 ⁇ L.
  • the amount of oxygen generated in 45 seconds was 0.08L. This corresponds to an oxygen generation amount 1.3 times that of the Pt colloid solution (Comparative Example 1) having the same Pt weight.
  • the average particle diameter of the Pd colloid particles was determined in the same manner as in Example 1, the average particle diameter of the Pd colloid particles was 5 nm.
  • the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was one atomic layer.
  • the Pt weight concentration was determined by the same procedure as in Example 1.
  • the hydrogen peroxide decomposition activity of the obtained Pd—Pt colloid solution was measured in the same manner as in Example 1.
  • the amount of the Pd—Pt colloid solution used for the measurement was 47 ⁇ L.
  • the amount of oxygen generated in 45 seconds was 0.10 L. This corresponds to an oxygen generation amount 1.7 times that of the Pt colloid solution (Comparative Example 1) having the same Pt weight.
  • the amount of pure water during preparation of the Pd colloidal solution is 600.33 g
  • the amount of sodium citrate solution used during Pd reduction is 60 g
  • the amount of tannic acid solution used is 70 g
  • the Pt raw material solution chloroplatinic acid aqueous solution
  • a Pd—Pt colloidal solution was prepared by the same production method as in Example 1 except that the amount was 15.62 g and the amount of sodium citrate solution used during Pt reduction was 52.8 g.
  • the ion exchange resins used after the preparation of the Pd colloidal particles and after the Pt colloidal particles were supported were 280 g and 135 g, respectively.
  • the average particle diameter of the Pd colloid particles was determined in the same manner as in Example 1, the average particle diameter of the Pd colloid particles was 3 nm.
  • the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was one atomic layer.
  • the Pt weight concentration was determined by the same procedure as in Example 1.
  • the hydrogen peroxide decomposition activity of the obtained Pd—Pt colloid solution was measured in the same manner as in Example 1.
  • the amount of the Pd—Pt colloid solution used for the measurement was 27 ⁇ L.
  • the amount of oxygen generated in 45 seconds was 0.07L. This corresponds to an oxygen generation amount 1.2 times that of the Pt colloid solution (Comparative Example 1) having the same Pt weight.
  • the average particle diameter of the Pd colloid particles was determined by the same method as in Example 1, the average particle diameter of the Pd colloid particles was 25 nm.
  • the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was one atomic layer.
  • the Pt weight concentration was determined by the same procedure as in Example 1.
  • the hydrogen peroxide decomposition activity of the obtained Pd—Pt colloid solution was measured in the same manner as in Example 1.
  • the amount of the Pd—Pt colloid solution used for the measurement was 259 ⁇ L.
  • the amount of oxygen generated in 45 seconds was 0.04 L. This corresponds to an oxygen generation amount 0.7 times that of a Pt colloid solution (Comparative Example 1) having the same Pt weight.
  • the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 0.25 atomic layers.
  • the Pt weight concentration when the number of atomic layers was 1 was determined by the same procedure as in Example 1.
  • the Pt weight concentration in the case of 1 atomic layer number was multiplied by 0.25, and the obtained value was set as the Pt weight concentration necessary for the 0.25 atomic layer number.
  • the hydrogen peroxide decomposition activity of the obtained Pd—Pt colloid solution was measured in the same manner as in Example 1.
  • the amount of the Pd—Pt colloid solution used for the measurement was 400 ⁇ L.
  • the amount of oxygen generated in 45 seconds was 0.10 L. This corresponds to an oxygen generation amount 1.7 times that of the Pt colloid solution (Comparative Example 1) having the same Pt weight.
  • the hydrogen peroxide decomposition activity was compared between Examples 1 to 7 and Comparative Examples 1 to 7.
  • the Pd—Pt colloid solution of Comparative Example 2 containing the protective colloid has the same average particle diameter and number of Pt atomic layers as the Pd—Pt colloid solution of Example 1 and Example 4 and Pd colloid particles. Nevertheless, only low activity was obtained compared to these. This is presumably because Comparative Example 1 contained protective colloid, so that sufficient contact between hydrogen peroxide and Pt could not be obtained, and efficient catalytic activity could not be exhibited. Further, the Pd—Pt colloidal solution of Comparative Example 3 in which the number of atomic layers of Pt is 3 atomic layers cannot exhibit efficient catalytic activity because the number of atomic layers of Pt exceeds 2.
  • the noble metal colloid particles and the noble metal colloid solution of the present invention can realize high catalytic activity efficiently with a small amount of Pt, and thus can be used as a catalyst for hydrogen peroxide decomposition in various fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

 本発明の貴金属コロイド粒子は、Pdコロイド粒子と、前記Pdコロイド粒子の表面に担持されたPtとを含む貴金属コロイド粒子であって、実質的に保護コロイドを含まず、前記Pdコロイド粒子の平均粒径が7~20nmであり、前記Pdコロイド粒子の表面に担持された前記Ptの量をPt原子の原子層数で示した場合に、前記Ptの量が0.5~2原子層である。本発明の貴金属コロイド溶液は、このような本発明の貴金属コロイド粒子を溶媒に分散させることによって得ることができる。

Description

貴金属コロイド粒子及び貴金属コロイド溶液、並びに、過酸化水素分解用触媒
 本発明は、貴金属コロイド粒子及び貴金属コロイド溶液と、過酸化水素分解用触媒とに関する。
 過酸化水素水は、廃水処理や半導体の洗浄等のように工業的に広く利用されており、また、一般家庭でも、コンタクトレンズの消毒等に利用されている。しかし、過酸化水素が残留している廃液をそのまま廃棄すると、河川の生態系に悪影響を及ぼすことがある。そのため、廃液中に残留する過酸化水素を分解除去することが必要となる。また、消毒後のコンタクトレンズには過酸化水素が残留しており、そのまま使用すると眼に重大な障害をもたらす危険性がある。そのため、コンタクトレンズに残留する過酸化水素を、完全に分解除去しなければならない。
 従来、過酸化水素を分解する方法として種々の方法が提案されているが、その一例として、白金(Pt)コロイド触媒を利用する方法が広く知られている(例えば、特許文献1及び非特許文献1参照)。
特開2004-100040号公報
多羅間公雄編、「触媒光学講座2 触媒物性論」、地人書館、昭和41年、P.271
 Ptは希少で高価であるので、その使用量を減らすことが望まれる。しかしながら、Pt単体では、Pt本来の触媒性能以上の性能を実現することが出来ないため、単にPt量を減らすと過酸化水素を確実に分解することが出来ないという問題があった。
 本発明は、上記問題点を解決するためになされたものであり、Pt量を低く抑えつつ、かつ効率良く過酸化水素を分解することが可能な、貴金属コロイド粒子及び貴金属コロイド溶液を提供することを課題とする。さらに、本発明は、このような貴金属コロイド粒子を用いた過酸化水素用触媒を提供することも課題とする。
 本発明は、Pdコロイド粒子と、前記Pdコロイド粒子の表面に担持されたPtとを含む貴金属コロイド粒子であって、実質的に保護コロイドを含まず、前記Pdコロイド粒子の平均粒径が7~20nmであり、前記Pdコロイド粒子の表面に担持された前記Ptの量をPt原子の原子層数で示した場合に、前記Ptの量が0.5~2原子層である、貴金属コロイド粒子を提供する。
 また、本発明は、溶媒と、前記溶媒に分散した上記本発明の貴金属コロイド粒子とを含む貴金属コロイド溶液も提供する。
 さらに、本発明は、上記本発明の貴金属コロイド粒子を含む、過酸化水素分解用触媒も提供する。
 本発明の貴金属コロイド粒子に含まれるPt量は、Pdコロイド粒子の表面に0.5~2原子層の範囲で担持される程度の量でよいため、少量である。さらに、本発明の貴金属コロイド粒子は、Pt単体のコロイド粒子と比較して、Pt量は非常に少ないものの、より高い過酸化水素分解の触媒性能を実現できる。このように、本発明の貴金属コロイド粒子は、Pt量を低く抑えつつ、かつ効率良く過酸化水素を分解できる。また、このような貴金属コロイド粒子を含む貴金属コロイド溶液及び過酸化水素分解用触媒も、同様に、Pt量を低く抑えつつ、かつ効率良く過酸化水素を分解できる。
 本発明の貴金属コロイド粒子は、Pdコロイド粒子の表面にPtが担持されることによって形成されている。
 Ptは、Pdコロイド粒子の表面に部分的に設けられていてもよいし、Pdコロイド粒子の表面全体を被覆するPt層として設けられていてもよい。すなわち、本発明の貴金属コロイド粒子は、PdがコアでPtがシェルのコア-シェル構造を有していてもよい。Pdコロイド粒子の表面に担持されるPtの量は、Pt原子の原子層数で示した場合に、0.5~2原子層である。なお、ここでの「原子層数」とは、Pdコロイド粒子を球体と仮定し、その表面にn(nは正数)原子層分の厚さのPtが存在しているということを意味している。Pt原子が立方最密充填されることを考慮すると、1原子層の厚さはPt原子の直径(0.276nm)、2原子層の厚さは(1+31/2/2)×Pt原子の直径、3原子層の厚さは(1+31/2)×Pt原子の直径、m(mは1以上の整数)原子層の厚さは(1+(m-1)×31/2/2)×Pt原子の直径、となる。なお、原子層数が1よりも小さい場合のPtの量は、Ptが1原子層の場合のPtの量を基準として算出される。例えば、原子層数が0.5の場合のPtの量とは、まず1原子層分のPtの量を求めて、その値に0.5を乗じた値となる。
 本発明の貴金属コロイド粒子では、Ptの原子層数を0.5以上とすることにより、充分な触媒活性を得ることができる。本発明の貴金属コロイド粒子がPtの触媒性能を効果的に発揮するためには、PtがPdコロイド粒子の表面全体をほぼ被覆していることが好ましく、例えば、Pdコロイド粒子の表面に担持されるPtの量が0.75原子層以上であることが好ましい。また、原子層数が2原子層を超えると、反応原料(本実施の形態では、分解する対象である過酸化水素)と接触しないPtの割合が増加するので、Pt単位重量当たりの触媒活性量が低下してしまう。すなわち、2原子層を超えると、Ptの触媒としての機能を効率的に発揮させることが困難となる。Ptの触媒としての機能をより効率的に発揮させるためには、Ptの量を1原子層以下とすることが好ましい。
 Pdコロイド粒子は、その平均粒径が7~20nmである。Pdコロイド粒子の平均粒径が7nmよりも小さいと、Pdの結晶性が悪く、Pdコロイド粒子の表面に担持されたPtの結晶性が悪くなる。さらに、PtとコアとなるPdとの間での電子のやり取りがスムーズに行われずに、Ptの触媒性能が効果的に発揮できない。一方、Pdコロイド粒子の平均粒径が20nmよりも大きいと、Pdコロイド粒子の単位重量当たりの表面積が小さくなるため、同量の表面積を得るための粒子数、すなわちPdコロイド粒子の濃度が増加する。そのため、コロイドの分散安定性が低下する。このように、Pdコロイド粒子の結晶性と分散性との両方を満足するために、Pdコロイド粒子の平均粒径を7~20nmとする。なお、ここでのPdコロイド粒子の粒径とは、動的散乱法を用いて測定したものである。具体的には、光散乱光度計(大塚電子社製 DLS-2000)を用いて非接触後方散乱強度を測定し、強度基準粒度分布を求めて、その体積累積50%の位置を平均粒径とした。
 本発明の貴金属コロイド粒子は、実質的に保護コロイドを含んでいない。ここで、「実質的に保護コロイドを含まない」とは、当該貴金属コロイド溶液中の保護コロイド形成剤の含有量を保護コロイド形成剤に含まれる炭素量で示した場合に、貴金属コロイド溶液中の全炭素濃度が200質量ppm以下程度であることを意味する。一般的に、保護コロイド形成剤にはタンパク質や高分子物質が用いられるため、貴金属コロイド溶液中の全炭素濃度によって、貴金属コロイド溶液に含まれる保護コロイド形成剤量の程度を表すことができる。なお、保護コロイド形成剤については後述する。このように、本発明の貴金属コロイド粒子は、実質的に保護コロイドを含んでいないので、反応原料(本実施の形態では、分解する対象である過酸化水素)とPtとの接触面積を充分確保でき、触媒としての機能を効率的に発揮できる。
 本発明の貴金属コロイド粒子は、Pdコロイド粒子の表面にPtを担持した構成を有する。PdとPtとでは、酸化還元電位の関係によりPtがPdよりも電子リッチとなる。そのため、本発明の貴金属コロイド粒子は、Pt単体のコロイド粒子よりも還元力が強くなり、高い触媒活性を得ることができる。
 次に、本発明の貴金属コロイド粒子の製造方法の一例について説明する。ここでは、貴金属コロイド粒子を溶媒に分散させた貴金属コロイド溶液を得る方法の一例を説明する。
 まず、Pd塩溶液を作製する。Pd塩及び還元剤を、溶媒に添加する。さらに、Pd塩の還元反応を促進する反応促進剤を溶媒に添加してもよい。このPd塩溶液を加熱し、Pd塩に含まれるPdイオンを還元して、Pdコロイド粒子の分散液(Pdコロイド溶液)を得る。
 その後、得られたPdコロイド溶液から不純物を除去するために、イオン交換樹脂でPdコロイド溶液のイオン交換を行う。
 次に、Pdコロイド粒子の表面にPtを析出させるために、Pdコロイド溶液にPt塩を添加する。この時、還元剤や反応促進剤をさらに添加してもよい。この溶液を加熱し、Pt塩に含まれるPtイオンを還元して、Pdコロイド粒子の表面にPtを析出させる。
 その後、得られたコロイド溶液から不純物を除去するためにイオン交換樹脂でイオン交換を行い、Pdコロイド粒子の表面にPtが担持された貴金属コロイド溶液を得る。
 上記の方法で用いるPd塩及びPt塩は、溶媒に充分溶解し、還元剤によって還元されるものであれば、特に限定されない。例えば、Pd及びPtの塩化物、硝酸塩、硫酸塩及び金属錯化合物等を用いることができる。
 溶媒は、Pd塩、Pt塩、還元剤及び反応促進剤を溶解できるものであれば、特には限定されない。水、アルコール類、ケトン類及びエーテル類を溶媒として用いることができる。Pd塩及びPt塩を充分に溶解するという観点から、水及びアルコールが好適に用いられる。なお、還元剤を加える前に溶媒を充分に煮沸しておいたり、溶媒に窒素等の不活性ガスを吹き込んでおく等して、溶媒中に存在する酸素を除去しておくことが望ましい。酸素が存在している溶媒にPd塩及びPt塩を添加すると、PdやPtの還元反応が進みにくく、コロイド粒子が形成されにくい。
 還元剤は、溶媒に溶解し、Pd塩及びPt塩を還元するものであればよく、特には限定されない。クエン酸類、アルコール類、カルボン酸類、ケトン類、エーテル類、アルデヒド類及びエステル類等を還元剤として用いることができる。これらを2種類以上組み合わせて用いてもよい。クエン酸類としては、クエン酸や、クエン酸ナトリウム、クエン酸カリウム及びクエン酸アンモニウム等のクエン酸塩が例示される。アルコール類としては、メタノール、エタノール、1-プロパノール、2-プロパノール、エチレングリコール、グリセリン等が例示される。カルボン酸類としては、ぎ酸、酢酸、フマル酸、リンゴ酸、コハク酸、アスパラギン酸、没食子酸、アスコルビン酸及びそれらのカルボン酸塩等が例示される。また、没食子酸と糖の脱水体であるタンニン酸も好適に用いられる。ケトン類としては、アセトン、メチルエチルケトン等が例示される。エーテル類としては、ジエチルエーテル等が例示される。アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド等が例示される。エステル類としては、ぎ酸メチル、酢酸メチル、酢酸エチルなどが例示される。これらの中でも、還元性が高く、取り扱いも容易なタンニン酸、没食子酸、クエン酸ナトリウム、アスコルビン酸及びその塩が特に好ましい。
 反応促進剤としては、例えば、炭酸カリウムなどの炭酸アルカリ類、炭酸水素ナトリウムなどの炭酸水素アルカリ類、水酸化リチウムなどの水酸化アルカリ類を用いることができる。
 なお、本発明の貴金属コロイド粒子は、実質的に保護コロイドを含まないため、実質的に保護コロイド形成剤を用いずに作製される。ここで、保護コロイド形成剤とは、従来、コロイド粒子の分散安定性を保持するためにコロイド溶液に含有されているもので、コロイド粒子表面に付着して保護コロイドを形成する物質のことである。このような保護コロイド形成剤としては、例えばポリビニルアルコール、ポリビニルピロリドン、ゼラチンなどの水溶性高分子物質、界面活性剤及び高分子キレート化剤等が挙げられる。本発明の貴金属コロイド粒子は、表面に負の電荷を有し、お互いに電気的反発力をもっているため、保護コロイドを含んでいないのにもかかわらず分散安定性を維持できる。
 以上のような方法により、本発明の貴金属コロイド粒子及び貴金属コロイド溶液を得ることができる。
 次に、本発明の過酸化水素分解用触媒について説明する。本発明の過酸化水素分解用触媒は、本発明の貴金属コロイド粒子を含んでいる。本発明の貴金属コロイド粒子を溶媒に分散させて、コロイド溶液の状態で過酸化水素分解用触媒として用いてもよい。さらに、カーボンや酸化物粒子、または、イオン交換樹脂やイオン交換膜等に本発明の貴金属コロイド粒子を担持して、過酸化水素分解用触媒として用いることもできる。
 以下、本発明について実施例を用いてさらに詳細に説明するが、本発明は、本発明の要旨を超えない限り、以下の実施例に限定されるものではない。
 (実施例1)
 まず、塩化パラジウム溶液を作製した。塩化パラジウム(粉末)1.68gを3.65wt%(1mol/L)の塩酸水溶液20mLと純水500mLとの混合液に溶解した後、1Lになるように純水でメスアップした。これを、1g/Lのパラジウム原料溶液(1g/L-Pd原料)として使用した。
 還元剤には、クエン酸ナトリウムとタンニン酸を用いた。具体的には、クエン酸ナトリウムを純水で10wt%に希釈したクエン酸ナトリウム溶液と、タンニン酸を純水で1.43wt%に希釈したタンニン酸溶液とを用いた。反応促進剤として、炭酸カリウムを用いた。具体的には、炭酸カリウムを純水で13.82wt%(1mol/L)に希釈した炭酸カリウム溶液を用いた。
 1Lの丸底フラスコに1g/Lのパラジウム原料溶液200gと純水730.61gとを混合した。このとき、3.65wt%(1mol/L)塩酸溶液を少量添加して、pH値が2.3となるように調整した。これを1時間煮沸還流した。ここに、クエン酸ナトリウム溶液15g、タンニン酸溶液35g、炭酸カリウム溶液1.25gを混合して投入した。これらの溶液を投入して10分間煮沸還流した後、フラスコを氷水中に入れ室温まで冷却した。その後、不純物イオンを除去するためにイオン交換樹脂(アンバーライトMB-1(オルガノ株式会社製))70gでイオン交換することで、Pd-Ptコロイド粒子のコア部分となるPdコロイド粒子のコロイド溶液を調製した。得られたPdコロイド粒子の粒径を動的散乱法を用いて測定し、平均粒径を求めた。具体的には、光散乱光度計(大塚電子社製 DLS-2000)を用いて非接触後方散乱強度を測定し、強度基準粒度分布を求めて、その体積累積50%の位置を平均粒径とした。本実施例のPdコロイド粒子の平均粒径は、10nmであった。
 上記のように調製-イオン交換したPdコロイド溶液を全量1Lフラスコに入れ、攪拌子で攪拌しながら30分間煮沸還流した。ここに、シェル部分を形成するPtの原料として、4wt%の塩化白金酸水溶液4.14gを添加した。塩化白金酸水溶液添加後、再煮沸させた後に、10wt%クエン酸ナトリウム溶液14gを添加し、さらに1時間煮沸還流した。その後、フラスコを水中に入れ室温まで冷却した。次に、不純物イオンを除去するためにイオン交換樹脂(アンバーライトMB-1(オルガノ株式会社製))36gでイオン交換することで、Pd-Ptコロイド溶液を得た。
 本実施例では、Pd-Ptコロイド溶液に含まれるPt-Pdコロイド粒子におけるPtの原子層数が1となるように、Pt重量濃度を決定した。具体的には、Pd濃度からPdコロイド粒子の個数を求め、Pdコロイド粒子1個当たりに担持されるPtの重量にPdコロイド粒子の個数を乗ずることによって決定した。詳しくは、以下のとおりである。
 <コア(Pd)コロイド粒子の個数>
 まず、Pdコロイド粒子の濃度をPdコロイド粒子1個当たりの重さで除することによって、溶液1L当たりのPdコロイド粒子の個数を求めた。具体的な求め方は、以下のとおりである。
(1)Pdコロイド粒子を球とみなして、平均粒径10nmを用いてPdコロイド粒子の体積(VPd)を算出した。VPd=5.24×10-253/個であった。
(2)Pdの密度(dPd)とPdコロイド粒子の体積(VPd)とから、Pdコロイド粒子1個の重さmPdを算出した。dPd=12030kg/m3を用いたところ、mPd=6.30×10-21kg/個であった。
(3)1L当たりのPdコロイド粒子の個数(NPd)は、Pd濃度(MPd)をPdコロイド粒子1個当たりの重さ(mPd)で除して、NPd=MPd/mPd=3.18×1016個/Lであった。なお、本実施例におけるPd濃度(MPd)は、200mg/Lであった。
 <Pt重量濃度>
 Pdコロイド粒子の半径にPtの厚みを足してPd-Ptコロイド粒子の体積(球換算)を求め、得られた体積からPdコロイド粒子の体積を引いて、Ptのみの体積を求めた。このPtの体積にPtの密度を乗じてPd-Ptコロイド粒子1個当たりに必要なPtの重量を求め、さらに溶液1L当たりのPdコロイド粒子の個数を乗じてPt重量濃度を決定した。具体的な求め方は、以下のとおりである。
(1)本実施例ではPtの原子層数を1としたため、Pdコロイド粒子の平均粒径10nmとPt原子の直径0.276nm(2.76×10-10m)とを用いて、Pd-Ptコロイド粒子の体積(VPd-Pt)を求めた。VPd-Pt=6.15×10-253/個であった。
(2)Pd-Ptコロイド粒子の体積(VPd-Pt)からPdコロイド粒子の体積(VPd)を引いて、Ptのみの体積(VPt)を求めた。VPt=9.16×10-263/個であった。
(3)Ptの体積(VPt)にPtの密度(dPt)を乗じて、Pd-Ptコロイド粒子1個当たりに必要なPtの重量(mPt)を求めた。dPt=21450kg/m3を用いたところ、mpt=1.96×10-21kg/個であった。
(4)Pd-Ptコロイド粒子1個当たりのPtの重量(mPt)に1L当たりのPtコロイド粒子の個数(NPd)乗じ、必要なPt重量濃度(MPt)を求めた。Mpt=6.24×10-5kg/L=62.4mg/Lであった。
 そこで、本実施例では、Ptの重量濃度が62.4mg/Lとなるように、Pd-Ptコロイド溶液を調製した。
 得られたPd-Ptコロイド溶液について、過酸化水素分解の触媒性能(過酸化水素分解活性)を測定した。まず、30wt%過酸化水素水10mLを50mL三角フラスコに入れ、温浴中で50℃に加熱しながらスターラーで5分間攪拌した。その後、作製したPd-Ptコロイド溶液100μLを添加し、45秒間に発生する酸素量を流量計を用いて測定した。その結果、酸素発生量は0.17Lであった。これは、Pt重量が同じであるPtコロイド溶液(後述の比較例1)の2.8倍の酸素発生量に相当する。
 (実施例2)
 Pdコロイド溶液調製時の純水量を713.36gとし、Pt原料液(塩化白金酸水溶液)を8.09gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を27.3gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、68gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が2原子層となるように、Pd-Ptコロイド溶液におけるPtの重量濃度を決定した。Pt重量濃度は、実施例1と同様の手順で決定した。ただし、2原子層のPtの厚さは、(1+31/2/2)×Pt原子の直径(0.276nm)とした。
 また、得られたPd-Ptコロイド溶液について、実施例1と同様の方法で過酸化水素分解活性を測定した。ただし、測定時に用いたPd-Ptコロイド溶液の量は、51μLとした。その結果、45秒間に発生した酸素発生量は0.13Lであった。これは、Pt重量が同じであるPtコロイド溶液(後述の比較例1)の2.2倍の酸素発生量に相当する。
 (実施例3)
 Pdコロイド溶液調製時の純水量を744.94gとし、Pd還元時のクエン酸ナトリウム溶液の使用量を10gとし、Pt原料液(塩化白金酸水溶液)の使用量を2.01gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を6.8gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ55g、18gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は20nmであった。また、本実施例では、Ptの原子層数が1原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Ptの重量濃度は、実施例1と同様の手順で決定した。
 また、得られたPd-Ptコロイド溶液について、実施例1と同様の方法で過酸化水素分解活性を測定した。ただし、測定時に用いたPd-Ptコロイド溶液の量は、206μLとした。その結果、45秒間に発生した酸素発生量は0.12Lであった。これは、Pt重量が同じであるPtコロイド溶液(後述の比較例1)の2.0倍の酸素発生量に相当する。
 (実施例4)
 Pdコロイド溶液調製時の純水量を496.22gとし、Pd原料液(塩化パラジウム溶液)の使用量を400gとし、Pd還元時のクエン酸ナトリウム溶液の使用量を30gとし、反応促進剤としての炭酸カリウム溶液の使用量を2.5gとし、Pt原料液(塩化白金酸水溶液)の使用量を8.28gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を28.0gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ149g、70gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が1原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Ptの重量濃度は、実施例1と同様の手順で決定した。
 また、得られたPd-Ptコロイド溶液について、実施例1と同様の方法で過酸化水素分解活性を測定した。ただし、測定時に用いたPd-Ptコロイド溶液の量は、50μLとした。その結果、45秒間に発生した酸素発生量は0.15Lであった。これは、Pt重量が同じであるPtコロイド溶液(後述の比較例1)の2.7倍の酸素発生量に相当する。
 (実施例5)
 Pdコロイド溶液調製時の純水量を739.74gとし、Pt原料液(塩化白金酸水溶液)の使用量を2.01gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を7.0gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、18gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が0.5原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。まず、実施例1と同様の手順で原子層数が1の場合のPt重量濃度を決定した。次に、原子層数1の場合のPt重量濃度に0.5を乗じて、得られた値を0.5原子層数に必要なPt重量濃度とした。
 また、得られたPd-Ptコロイド溶液について、実施例1と同様の方法で過酸化水素分解活性を測定した。ただし、測定時に用いたPd-Ptコロイド溶液の量は、200μLとした。その結果、45秒間に発生した酸素発生量は0.12Lであった。これは、Pt重量が同じであるPtコロイド溶液(後述の比較例1)の2.0倍の酸素発生量に相当する。
 (実施例6)
 Pdコロイド溶液調製時の純水量を735.14gとし、Pt原料液(塩化白金酸水溶液)の使用量を3.11gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を10.5gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、26gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が0.75原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。まず、実施例1と同様の手順で原子層数が1の場合のPt重量濃度を決定した。次に、原子層数1の場合のPt重量濃度に0.75を乗じて、得られた値を0.75原子層数に必要なPt重量濃度とした。
 また、得られたPd-Ptコロイド溶液について、実施例1と同様の方法で過酸化水素分解活性を測定した。ただし、測定時に用いたPd-Ptコロイド溶液の量は、133μLとした。その結果、45秒間に発生した酸素発生量は0.19Lであった。これは、Pt重量が同じであるPtコロイド溶液(後述の比較例1)の3.2倍の酸素発生量に相当する。
 (実施例7)
 Pdコロイド溶液調製時の純水量を733.25gとし、Pd還元時の還元剤として2wt%没食子酸溶液を50g使用し、反応促進剤としての炭酸カリウム溶液を1.0g使用し、Pt原料液(塩化白金酸水溶液)の使用量を4.14gとし、Pt還元時に還元剤として8.1wt%没食子酸溶液を10g使用した以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ23g、15gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が1原子層となるように、実施例1と同様の手順でPd-Ptコロイド溶液におけるPt重量濃度を決定した。
 また、得られたPd-Ptコロイド溶液について、実施例1と同様の方法で過酸化水素分解活性を測定した。ただし、測定時に用いたPd-Ptコロイド溶液の量は、100μLとした。その結果、45秒間に発生した酸素発生量は0.15Lであった。これは、Pt重量が同じであるPtコロイド溶液(後述の比較例1)の2.7倍の酸素発生量に相当する。
 (比較例1)
 4wt%塩化白金酸26.6gを1Lの丸底フラスコに入れ、純水を加えて951.8gとした。これに冷却管を付けてマントルヒーターで加熱しながら60分間煮沸還流した。これに10wt%クエン酸ナトリウム水溶液48.2gを加えて煮沸還流を続けると、5分程度で、薄い橙色の溶液が急激に黒くなった。その後さらに1時間還流し、Ptコロイド溶液を作製した。このように作製されたPtコロイド溶液を、イオン交換樹脂(アンバーライトMB-1(オルガノ株式会社製))によってイオン交換し、不純物を取り除いた。このようにして得られた比較例1のPtコロイド溶液について、実施例1と同様の方法で過酸化水素分解活性を測定した。ただし、測定時に用いたPtコロイド溶液は、19μLであった。その結果、45秒間に発生した酸素発生量は0.06Lであった。
 (比較例2)
 Pt還元用のクエン酸ナトリウム溶液を添加して30分間煮沸還流した後、PVP(ポリビニルピロリドン:平均分子量4万)624mgを2mLの純水に溶解して、煮沸還流中の反応系に添加し、さらに30分間煮沸還流した。それ以外の方法は、実施例1と同様とした。本比較例においても、Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、Pdコロイド粒子の平均粒径は10nmであった。また、本比較例では、Ptの原子層数が1原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Pt重量濃度は、実施例1と同様の手順で決定した。
 また、得られたPd-Ptコロイド溶液について、実施例1と同様の方法で過酸化水素分解活性を測定した。ただし、測定時に用いたPd-Ptコロイド溶液の量は、100μLとした。その結果、45秒間に発生した酸素発生量は0.06Lであった。これは、Pt重量が同じであるPtコロイド溶液(比較例1)の1.0倍の酸素発生量に相当する。
 (比較例3)
 Pdコロイド溶液調製時の純水量を692.45gとし、Pt原料液(塩化白金酸水溶液)の使用量を12.4gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を41.9gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、105gであった。本比較例においても、Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、Pdコロイド粒子の平均粒径は10nmであった。また、本比較例では、Ptの原子層数が3原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Pt重量濃度は、実施例1と同様の手順で決定した。ただし、3原子層のPtの厚さは、(1+31/2)×Pt原子の直径(0.276nm)とした。
 また、得られたPd-Ptコロイド溶液について、実施例1と同様の方法で過酸化水素分解活性を測定した。ただし、測定時に用いたPd-Ptコロイド溶液の量は、33μLとした。その結果、45秒間に発生した酸素発生量は0.08Lであった。これは、Pt重量が同じであるPtコロイド溶液(比較例1)の1.3倍の酸素発生量に相当する。
 (比較例4)
 Pdコロイド溶液調製時の純水量を695.51gとし、Pd還元時のクエン酸ナトリウム溶液の使用量を30gとし、Pt原料液(塩化白金酸水溶液)の使用量を8.74gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を29.5gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド粒子調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ140g、75gであった。本比較例においても、Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、Pdコロイド粒子の平均粒径は5nmであった。また、本比較例では、Ptの原子層数が1原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Pt重量濃度は、実施例1と同様の手順で決定した。
 また、得られたPd-Ptコロイド溶液について、実施例1と同様の方法で過酸化水素分解活性を測定した。ただし、測定時に用いたPd-Ptコロイド溶液の量は、47μLとした。その結果、45秒間に発生した酸素発生量は0.10Lであった。これは、Pt重量が同じであるPtコロイド溶液(比較例1)の1.7倍の酸素発生量に相当する。
 (比較例5)
 Pdコロイド溶液調製時の純水量を600.33gとし、Pd還元時のクエン酸ナトリウム溶液の使用量を60gとし、タンニン酸溶液の使用量を70gとし、Pt原料液(塩化白金酸水溶液)の使用量を15.62gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を52.8gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド粒子調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ280g、135gであった。本比較例においても、Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、Pdコロイド粒子の平均粒径は3nmであった。また、本比較例では、Ptの原子層数が1原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Pt重量濃度は、実施例1と同様の手順で決定した。
 また、得られたPd-Ptコロイド溶液について、実施例1と同様の方法で過酸化水素分解活性を測定した。ただし、測定時に用いたPd-Ptコロイド溶液の量は、27μLとした。その結果、45秒間に発生した酸素発生量は0.07Lであった。これは、Pt重量が同じであるPtコロイド溶液(比較例1)の1.2倍の酸素発生量に相当する。
 (比較例6)
 Pdコロイド溶液調製時の純水量を748.75gとし、Pd還元時のクエン酸ナトリウム溶液の使用量を8gとし、Pt原料液(塩化白金酸水溶液)の使用量を1.6gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を5.4gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド粒子調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ40g、15gであった。本比較例においても、Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、Pdコロイド粒子の平均粒径は25nmであった。また、本比較例では、Ptの原子層数が1原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Pt重量濃度は、実施例1と同様の手順で決定した。
 また、得られたPd-Ptコロイド溶液について、実施例1と同様の方法で過酸化水素分解活性を測定した。ただし、測定時に用いたPd-Ptコロイド溶液の量は、259μLとした。その結果、45秒間に発生した酸素発生量は0.04Lであった。これは、Pt重量が同じであるPtコロイド溶液(比較例1)の0.7倍の酸素発生量に相当する。
 (比較例7)
 Pdコロイド溶液調製時の純水量を744.24gとし、Pt原料液(塩化白金酸水溶液)の使用量を1.01gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を3.5gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、18gであった。本比較例においても、Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、Pdコロイド粒子の平均粒径は10nmであった。また、本比較例では、Ptの原子層数が0.25原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。まず、実施例1と同様の手順で原子層数が1の場合のPt重量濃度を決定した。次に、原子層数1の場合のPt重量濃度に0.25を乗じて、得られた値を0.25原子層数に必要なPt重量濃度とした。
 また、得られたPd-Ptコロイド溶液について、実施例1と同様の方法で過酸化水素分解活性を測定した。ただし、測定時に用いたPd-Ptコロイド溶液の量は、400μLとした。その結果、45秒間に発生した酸素発生量は0.10Lであった。これは、Pt重量が同じであるPtコロイド溶液(比較例1)の1.7倍の酸素発生量に相当する。
 以上、実施例1~7及び比較例1~7の結果を、表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~7及び比較例1~7間で、過酸化水素分解活性を比較した。保護コロイドが含まれている比較例2のPd-Ptコロイド溶液は、実施例1や実施例4のPd-Ptコロイド溶液とPdコロイド粒子の平均粒径及びPt原子層数が同じであるにもかかわらず、これらと比較して低い活性しか得られなかった。これは、比較例1には保護コロイドが含まれているため、過酸化水素とPtとの充分な接触が得られず、効率的な触媒活性を発揮できなかったためであると考えられる。また、Ptの原子層数が3原子層である比較例3のPd-Ptコロイド溶液は、Ptの原子層数が2を超えていたため、効率的な触媒活性を発揮できなかった。比較例4~6は、Pdコロイド粒子の平均粒径が7~20nmの範囲外であったため、Pt単位重量当たりの酸素発生量が低かった。また、比較例7で効率的な触媒活性を発揮できなかった理由は定かではないが、Pdコロイド表面上、Ptに被覆されていない部分が過酸化水素分解に対して負の効果を示したものと思われる。一方、実施例1~7のPd-Ptコロイド溶液では、Pdコロイド粒子の平均粒径が7~20nmであり、かつPtの原子層数が0.5~2原子層の範囲を満たしているので、活性比が2.0以上であり、高い触媒活性を発揮することが確認された。また、実施例1~7のPd-Ptコロイド溶液は、Pt単体のコロイド溶液である比較例1の場合よりも、高い触媒活性が得られた。
 本発明の貴金属コロイド粒子及び貴金属コロイド溶液は、少ないPt量で効率良く高い触媒活性を実現できるので、種々の分野において過酸化水素分解用の触媒として利用できる。

Claims (3)

  1.  Pdコロイド粒子と、前記Pdコロイド粒子の表面に担持されたPtとを含む貴金属コロイド粒子であって、
     実質的に保護コロイドを含まず、
     前記Pdコロイド粒子の平均粒径が7~20nmであり、
     前記Pdコロイド粒子の表面に担持された前記Ptの量をPt原子の原子層数で示した場合に、前記Ptの量が0.5~2原子層である、
    貴金属コロイド粒子。
  2.  溶媒と、前記溶媒に分散した貴金属コロイド粒子とを含む貴金属コロイド溶液であって、
     前記貴金属コロイド粒子が請求項1に記載の貴金属コロイド粒子である、貴金属コロイド溶液。
  3.  請求項1に記載の貴金属コロイド粒子を含む、過酸化水素分解用触媒。
PCT/JP2010/004316 2009-07-01 2010-06-30 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、過酸化水素分解用触媒 WO2011001677A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011520789A JPWO2011001677A1 (ja) 2009-07-01 2010-06-30 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、過酸化水素分解用触媒
EP10793850.8A EP2450133A4 (en) 2009-07-01 2010-06-30 COLLOIDAL PARTICLES OF NOBLE METAL, COLLOIDAL SOLUTION OF NOBLE METAL AND CATALYST FOR THE DECOMPOSITION OF HYDROGEN PEROXIDE
US13/381,547 US20120122675A1 (en) 2009-07-01 2010-06-30 Noble metal colloidal particles, noble metal colloidal solution, and catalyst for hydrogen peroxide decomposition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-156825 2009-07-01
JP2009156825 2009-07-01

Publications (1)

Publication Number Publication Date
WO2011001677A1 true WO2011001677A1 (ja) 2011-01-06

Family

ID=43410764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004316 WO2011001677A1 (ja) 2009-07-01 2010-06-30 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、過酸化水素分解用触媒

Country Status (4)

Country Link
US (1) US20120122675A1 (ja)
EP (1) EP2450133A4 (ja)
JP (1) JPWO2011001677A1 (ja)
WO (1) WO2011001677A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090450A1 (ja) * 2010-12-28 2012-07-05 日本板硝子株式会社 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、酸素還元用触媒
JP2016108609A (ja) * 2014-12-05 2016-06-20 田中貴金属工業株式会社 パラジウムコロイド溶液及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619040B (zh) * 2022-03-18 2024-03-26 昆明理工大学 一种铂精炼并制备铂黑的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100040A (ja) 2002-07-16 2004-04-02 Nippon Sheet Glass Co Ltd コロイド溶液の製造方法およびコロイド粒子が表面に定着した担持体
JP2008525638A (ja) * 2004-12-22 2008-07-17 ブルックヘヴン サイエンス アソシエイツ 水素吸収により誘起されるパラジウム及びパラジウム合金粒子上への金属堆積

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648938B2 (en) * 2003-12-15 2010-01-19 Nippon Sheet Glass Company, Limited Metal nanocolloidal liquid, method for producing metal support and metal support

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004100040A (ja) 2002-07-16 2004-04-02 Nippon Sheet Glass Co Ltd コロイド溶液の製造方法およびコロイド粒子が表面に定着した担持体
JP2008525638A (ja) * 2004-12-22 2008-07-17 ブルックヘヴン サイエンス アソシエイツ 水素吸収により誘起されるパラジウム及びパラジウム合金粒子上への金属堆積

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Shokubai Kogaku Koza", vol. 2, 1966, article "Shokubai Bussei-ron", pages: 271
See also references of EP2450133A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090450A1 (ja) * 2010-12-28 2012-07-05 日本板硝子株式会社 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、酸素還元用触媒
JPWO2012090450A1 (ja) * 2010-12-28 2014-06-05 日本板硝子株式会社 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、酸素還元用触媒
JP2016108609A (ja) * 2014-12-05 2016-06-20 田中貴金属工業株式会社 パラジウムコロイド溶液及びその製造方法

Also Published As

Publication number Publication date
EP2450133A1 (en) 2012-05-09
JPWO2011001677A1 (ja) 2012-12-10
US20120122675A1 (en) 2012-05-17
EP2450133A4 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
US4629709A (en) Non-noble metal catalytic microaggregates, a method for their preparation and their application in the catalysis of the photoreduction of water
JP4564263B2 (ja) 金属超微粒子含有光触媒及びその製造方法
CN105431230B (zh) 在载体上形成贵金属纳米粒子的方法
CN107537543B (zh) 一种N-Au-Ag共掺杂纳米二氧化钛光催化剂的制备方法
WO2014038504A1 (ja) 金ナノ粒子を担持してなる触媒担持体及びその製造方法
WO2010082443A1 (ja) 白金ブラック粉末及び白金ブラックのコロイド並びにそれらの製造方法
JP5243824B2 (ja) 白金コロイド溶液及びその製造方法
JP4679716B2 (ja) 金属コロイド溶液の製造方法
WO2011001677A1 (ja) 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、過酸化水素分解用触媒
JP2006297355A (ja) 触媒およびその製造方法
JP5514561B2 (ja) 貴金属系コロイド溶液およびその製造方法
US8882879B2 (en) Method for preparing nano silver particles
CN102423704A (zh) 一种直接甲酸燃料电池用钯纳米催化剂的制备方法
JP2007009267A (ja) 貴金属コロイドの製造方法
CN108933264A (zh) 一种导电炭黑负载贵金属复合材料及其制备方法和应用
WO2012090450A1 (ja) 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、酸素還元用触媒
JP4451618B2 (ja) 白金コロイド溶液の製造方法および白金コロイド粒子が表面に定着した担持体
JP4815215B2 (ja) 合金コロイド粒子、合金コロイド溶液とその製造方法および合金コロイド粒子を定着させた担持体
JP2007324092A (ja) 白金又は白金合金担持触媒の製造方法
JP7014663B2 (ja) 合金粒子分散液の製造方法
JP7014664B2 (ja) 合金粒子分散液及びその製造方法
JP5354399B2 (ja) オゾン分解除去用触媒、その製造方法、およびオゾン分解除去方法
CN113881100B (zh) Ag/Cu2O/rGO纳米复合抗菌剂、抗菌母粒及其制备方法
JP5945608B2 (ja) 導電性被膜形成用金ナノ粒子分散液およびその製造方法、およびその分散液を含む導電性塗料組成物
JP2011074496A (ja) 合金微粒子の製造方法とそれによって製造される合金微粒子および金属コロイド溶液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793850

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520789

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010793850

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010793850

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13381547

Country of ref document: US