WO2012090450A1 - 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、酸素還元用触媒 - Google Patents
貴金属コロイド粒子及び貴金属コロイド溶液、並びに、酸素還元用触媒 Download PDFInfo
- Publication number
- WO2012090450A1 WO2012090450A1 PCT/JP2011/007180 JP2011007180W WO2012090450A1 WO 2012090450 A1 WO2012090450 A1 WO 2012090450A1 JP 2011007180 W JP2011007180 W JP 2011007180W WO 2012090450 A1 WO2012090450 A1 WO 2012090450A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- colloidal particles
- particles
- colloid
- noble metal
- Prior art date
Links
- 239000002245 particle Substances 0.000 title claims abstract description 255
- 239000000084 colloidal system Substances 0.000 title claims abstract description 133
- 229910000510 noble metal Inorganic materials 0.000 title claims abstract description 55
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims description 73
- 239000001301 oxygen Substances 0.000 title claims description 73
- 229910052760 oxygen Inorganic materials 0.000 title claims description 73
- 239000003054 catalyst Substances 0.000 title claims description 50
- 230000001681 protective effect Effects 0.000 claims abstract description 20
- 239000002904 solvent Substances 0.000 claims abstract description 20
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 316
- 239000010970 precious metal Substances 0.000 claims description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 195
- 239000000243 solution Substances 0.000 description 159
- 238000006722 reduction reaction Methods 0.000 description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- 239000000446 fuel Substances 0.000 description 27
- 230000010757 Reduction Activity Effects 0.000 description 25
- 238000000034 method Methods 0.000 description 22
- 239000001509 sodium citrate Substances 0.000 description 22
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 22
- 239000003456 ion exchange resin Substances 0.000 description 19
- 229920003303 ion-exchange polymer Polymers 0.000 description 19
- 239000002994 raw material Substances 0.000 description 19
- 239000007864 aqueous solution Substances 0.000 description 18
- 239000002253 acid Substances 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 17
- 150000003839 salts Chemical class 0.000 description 16
- 230000003197 catalytic effect Effects 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 14
- 239000003638 chemical reducing agent Substances 0.000 description 12
- 239000004020 conductor Substances 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 229910052697 platinum Inorganic materials 0.000 description 11
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 10
- 239000001263 FEMA 3042 Substances 0.000 description 10
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 10
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 10
- 235000015523 tannic acid Nutrition 0.000 description 10
- 229940033123 tannic acid Drugs 0.000 description 10
- 229920002258 tannic acid Polymers 0.000 description 10
- 239000007787 solid Substances 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 6
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid group Chemical class C(CC(O)(C(=O)O)CC(=O)O)(=O)O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 230000005012 migration Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 229920001429 chelating resin Polymers 0.000 description 3
- 235000015165 citric acid Nutrition 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 235000004515 gallic acid Nutrition 0.000 description 3
- 229940074391 gallic acid Drugs 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000002576 ketones Chemical class 0.000 description 3
- -1 metal complex compounds Chemical class 0.000 description 3
- 125000000962 organic group Chemical group 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Natural products OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- TYQCGQRIZGCHNB-JLAZNSOCSA-N l-ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(O)=C(O)C1=O TYQCGQRIZGCHNB-JLAZNSOCSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 238000000790 scattering method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910018879 Pt—Pd Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002338 electrophoretic light scattering Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 229960001790 sodium citrate Drugs 0.000 description 1
- 235000011083 sodium citrates Nutrition 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0004—Preparation of sols
- B01J13/0039—Post treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0004—Preparation of sols
- B01J13/0043—Preparation of sols containing elemental metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0545—Dispersions or suspensions of nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C5/00—Alloys based on noble metals
- C22C5/04—Alloys based on a platinum group metal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8652—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8647—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
- H01M4/8657—Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/08—Fuel cells with aqueous electrolytes
- H01M8/086—Phosphoric acid fuel cells [PAFC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to noble metal colloid particles and a noble metal colloid solution, and an oxygen reduction catalyst.
- Fuel cells have attracted attention as a clean energy source.
- Fuel cells are classified into a solid polymer electrolyte type, a phosphate electrolyte type, an alkaline electrolyte type, a molten carbon salt type, and a solid oxide electrolyte type according to the type of electrolyte used.
- platinum Pt
- an electrode layer electrode catalyst in which the Pt is supported on a conductive carbon material such as carbon black. Layer
- Pt has high catalytic activity and is suitable as a catalyst for fuel cells.
- Patent Document 3 discloses a fuel cell using a palladium (Pd) alloy as a catalyst.
- Pd palladium
- an object of the present invention is to provide a noble metal colloid particle and a noble metal colloid solution capable of obtaining the same or higher catalytic activity as when Pt alone is used while keeping the amount of Pt low.
- another object of the present invention is to provide an oxygen reduction catalyst.
- the present invention is a noble metal colloidal particle comprising Pd colloidal particles and Pt supported on the surface of the Pd colloidal particles, which is substantially free of protective colloids and has an average particle size of 7 to A noble metal colloid in which the amount of Pt is 0.05 to 0.65 atomic layers when the amount of Pt supported on the surface of the Pd colloidal particles is 20 nm and is represented by the number of atomic layers of Pt atoms.
- the present invention also provides a noble metal colloid solution containing a solvent and the noble metal colloid particles of the present invention dispersed in the solvent.
- the present invention relates to an oxygen reduction catalyst including noble metal colloid particles, wherein the noble metal colloid particles include Pd colloid particles and Pt supported on the surface of the Pd colloid particles, and substantially include a protective colloid.
- the average particle diameter of the Pd colloidal particles is 7 to 20 nm and the amount of Pt supported on the surface of the Pd colloidal particles is indicated by the number of atomic layers of Pt atoms, the amount of Pt is 0.
- an oxygen reduction catalyst having a 0.05 to 0.65 atomic layer.
- the amount of Pt contained in the noble metal colloid particles of the present invention is very small because it may be supported on the surface of the Pd colloid particles in the range of 0.05 to 0.65 atomic layer.
- the precious metal colloidal particles of the present invention have a very small amount of Pt as compared with colloidal particles of Pt alone, they can realize catalytic performance equivalent to or higher than that when using Pt alone.
- the noble metal colloid solution of the present invention containing such noble metal colloid particles can also achieve catalyst performance equivalent to or higher than that when using Pt alone while keeping the amount of Pt low.
- the catalyst for oxygen reduction of the present invention contains precious metal colloidal particles that can achieve the same or higher catalyst performance as when using Pt alone while keeping the amount of Pt low. Therefore, the oxygen reduction catalyst of the present invention is lower in cost than the catalyst of simple Pt, and can reduce oxygen with the same or higher efficiency than the case of using simple Pt.
- Sectional drawing of the electrode for fuel cells provided with the electrode layer for fuel cells containing the catalyst for oxygen reduction of this invention Sectional drawing which shows one Embodiment of the fuel cell using the catalyst for oxygen reduction of this invention
- Schematic diagram of the oxygen reduction activity measuring device used in the examples The graph which shows the dissolved oxygen decreasing rate (oxygen reduction activity) measured in the Example.
- the noble metal colloidal particles of the present invention include Pd colloidal particles and Pt supported on the surface of the Pd colloidal particles.
- the amount of Pt supported on the surface of the Pd colloidal particles is 0.05 to 0.65 atomic layer when expressed by the number of atomic layers of Pt atoms.
- the “number of atomic layers” means that Pd colloidal particles are assumed to be spheres, and Pt having a thickness corresponding to n (n is a positive number) atomic layers exists on the surface. ing.
- the thickness of one atomic layer is the diameter of Pt atoms (0.276 nm).
- the number of atomic layers of Pt atoms is smaller than 1. Therefore, the number of atomic layers in the noble metal colloidal particles of the present invention is calculated on the basis of the amount of Pt when Pt is one atomic layer. For example, when the number of atomic layers is 0.5, the amount of Pt is a value obtained by first obtaining the amount of Pt for one atomic layer and multiplying that value by 0.5.
- the number of atomic layers of Pt is 0.05 or more and 0.65 or less.
- the precious metal colloidal particles of the present invention can realize not only higher catalytic activity than when only Pd colloidal particles are used, but also the same or higher catalytic performance as when only Pt is used.
- the amount of Pt in the noble metal colloidal particles of the present invention is smaller than the amount of Pt corresponding to one atomic layer. Therefore, in the noble metal colloidal particles of the present invention, the entire surface of the Pd colloidal particles is not coated with Pt. However, in order to effectively exhibit the catalytic performance of Pt, Pt is as wide as possible on the surface of the Pd colloidal particles.
- the amount of Pt supported on the surface of the Pd colloidal particles is preferably 0.1 atomic layer or more.
- the Pt content is more preferably 0.15 atomic layer or more, and most preferably set to be larger than 0.2 atomic layer.
- the catalyst performance is lowered as compared with the case where a simple substance of Pt is used as a catalyst.
- the amount of supported Pt is small, Pt is supported in the form of islands on the surface of the Pd colloidal particles.
- the amount of Pt increases, the islands of Pt are connected to each other, and the islands of Pt are considered to be connected together in the vicinity of the Pt amount of 0.65 atomic layer. If the amount of Pt further increases, the Pt particles are supported so as to fill in the gaps between the Pt islands connected to each other, so that it is considered that the catalytic performance of Pt is hardly exhibited effectively. Therefore, in order to obtain higher catalyst performance than when Pt alone is used as a catalyst, the amount of Pt is 0.65 atomic layer or less, preferably 0.5 atomic layer or less. In order to obtain a higher catalytic activity, the Pt content is more preferably set to 0.48 atomic layer or less, and most preferably 0.35 atomic layer or less.
- the average particle diameter of Pd colloidal particles is 7 to 20 nm. If the average particle size of the Pd colloidal particles is smaller than 7 nm, the crystallinity of Pd is poor and the crystallinity of Pt supported on the surface of the Pd colloidal particles is poor. Furthermore, the exchange of electrons between Pt and the core Pd is not performed smoothly, and the catalytic performance of Pt cannot be effectively exhibited. On the other hand, if the average particle size of the Pd colloidal particles is larger than 20 nm, the surface area per unit weight of the Pd colloidal particles becomes small, so the number of particles for obtaining the same amount of surface area, that is, the concentration of the Pd colloidal particles increases. .
- the average particle size of the Pd colloidal particles is set to 7 to 20 nm.
- the particle diameter of the Pd colloidal particles is measured using a dynamic scattering method. Specifically, the non-contact backscattering intensity was measured using a light scattering photometer (DLS-2000, manufactured by Otsuka Electronics Co., Ltd.), the intensity reference particle size distribution was obtained, and the position where the volume accumulation was 50% was defined as the average particle diameter. did.
- the precious metal colloid particles of the present invention are substantially free of protective colloid.
- “substantially free of protective colloid” means that when the content of the protective colloid-forming agent in the noble metal colloid solution is indicated by the amount of carbon contained in the protective colloid-forming agent, It means that the total carbon concentration is about 200 ppm by mass or less.
- proteins and polymer substances are used as the protective colloid forming agent, and therefore the amount of the protective colloid forming agent contained in the noble metal colloid solution can be expressed by the total carbon concentration in the noble metal colloid solution.
- the protective colloid forming agent will be described later.
- the noble metal colloidal particles of the present invention substantially do not contain a protective colloid, it is possible to sufficiently ensure the contact area between the reaction raw material (oxygen to be decomposed in this embodiment) and Pt, The function as a catalyst can be exhibited efficiently.
- the noble metal colloidal particles of the present invention have a configuration in which Pt is supported on the surface of Pd colloidal particles. In Pd and Pt, Pt becomes electron richer than Pd due to the relationship of redox potential. For this reason, the noble metal colloidal particles of the present invention have a reducing power stronger than that of a single Pt colloidal particle, and can obtain high catalytic activity.
- a Pd salt solution is prepared.
- Pd salt and reducing agent are added to the solvent.
- This Pd salt solution is heated to reduce Pd ions contained in the Pd salt to obtain a dispersion of Pd colloidal particles (Pd colloid solution).
- a Pt salt is added to the Pd colloid solution in order to deposit Pt on the surface of the Pd colloid particles.
- a reducing agent or a reaction accelerator may be further added. This solution is heated, Pt ions contained in the Pt salt are reduced, and Pt is deposited on the surface of the Pd colloidal particles.
- ion exchange is performed with an ion exchange resin to obtain a noble metal colloidal solution in which Pt is supported on the surface of Pd colloidal particles.
- the Pd salt and Pt salt used in the above method are not particularly limited as long as they are sufficiently dissolved in a solvent and reduced by a reducing agent.
- Pd and Pt chlorides, nitrates, sulfates and metal complex compounds can be used.
- the solvent is not particularly limited as long as it can dissolve the Pd salt, Pt salt, reducing agent, and reaction accelerator.
- Water, alcohols, ketones and ethers can be used as the solvent. From the viewpoint of sufficiently dissolving the Pd salt and the Pt salt, water and alcohol are preferably used. It is desirable to remove oxygen present in the solvent by boiling the solvent sufficiently before adding the reducing agent or blowing an inert gas such as nitrogen into the solvent. When a Pd salt and a Pt salt are added to a solvent in which oxygen is present, the reduction reaction of Pd and Pt does not proceed easily, and colloidal particles are not easily formed.
- the reducing agent is not particularly limited as long as it is dissolved in a solvent and reduces Pd salt and Pt salt.
- Citric acids, alcohols, carboxylic acids, ketones, ethers, aldehydes, esters, and the like can be used as the reducing agent. Two or more of these may be used in combination.
- citric acids include citric acid and citrates such as sodium citrate, potassium citrate and ammonium citrate.
- Examples of alcohols include methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, glycerin and the like.
- carboxylic acids include formic acid, acetic acid, fumaric acid, malic acid, succinic acid, aspartic acid, gallic acid, ascorbic acid, and carboxylates thereof.
- Tannic acid which is a dehydrated form of gallic acid and sugar, is also preferably used.
- ketones include acetone and methyl ethyl ketone.
- ethers include diethyl ether.
- aldehydes include formaldehyde and acetaldehyde.
- the esters include methyl formate, methyl acetate, and ethyl acetate.
- tannic acid, gallic acid, sodium citrate, ascorbic acid and salts thereof are particularly preferable because they are highly reducible and easy to handle.
- reaction accelerator for example, alkali carbonates such as potassium carbonate, alkali hydrogen carbonates such as sodium hydrogen carbonate, and alkali hydroxides such as lithium hydroxide can be used.
- the precious metal colloidal particles of the present invention substantially contain no protective colloid, and thus are produced without using a protective colloid-forming agent.
- the protective colloid-forming agent is a substance that is conventionally contained in a colloid solution to maintain the dispersion stability of the colloidal particles, and adheres to the surface of the colloidal particles to form a protective colloid.
- a protective colloid-forming agent include water-soluble polymer substances such as polyvinyl alcohol, polyvinyl pyrrolidone and gelatin, surfactants and polymer chelating agents. Since the noble metal colloidal particles of the present invention have negative charges on the surfaces and have electric repulsion with each other, they can maintain dispersion stability even though they do not contain protective colloids.
- the noble metal colloid particles and the noble metal colloid solution of the present invention can be obtained.
- the oxygen reduction catalyst of the present invention contains precious metal colloidal particles.
- the noble metal colloidal particles include Pd colloidal particles and Pt supported on the surface of the Pd colloidal particles, and are substantially free of protective colloids. Further, in this noble metal colloidal particle, the average particle diameter of the Pd colloidal particle is 7 to 20 nm.
- the amount of Pt supported on the surface of the Pd colloidal particles is represented by the number of atomic layers of Pt atoms, the amount of Pt is 0.05 to 0.65 atomic layers.
- the amount of Pt supported on the surface of the Pd colloid is preferably 0.1 atomic layer or more. In order to obtain a higher function as a catalyst for oxygen reduction, it is more preferable that the amount of Pt is set to be larger than the 0.2 atomic layer. In addition, as described in the first embodiment, when the amount of Pt is larger than the 0.65 atomic layer, the catalytic performance of the noble metal colloidal particles is lowered as compared with the case where a simple substance of Pt is used as a catalyst.
- the amount of Pt is 0.65 atomic layer or less, preferably 0.5 atomic layer or less. In order to obtain a higher function as an oxygen reduction catalyst, it is more preferable to set the amount of Pt to less than 0.5 atomic layers.
- the noble metal colloidal particles may be dispersed in a solvent and used as a catalyst for oxygen reduction in the state of a colloidal solution.
- the electrode layer for a fuel cell of the present embodiment can be used as an electrode of, for example, a polymer electrolyte fuel cell and a phosphoric acid fuel cell.
- the fuel cell electrode has, for example, a three-layer structure including a fuel cell electrode layer 11, a gas diffusion layer 12, and a current collector 13.
- the fuel cell electrode layer 11 includes an oxygen reduction catalyst, an electron conductor made of a conductive carbon material carrying the oxygen reduction catalyst, and a proton conductor.
- the oxygen reduction catalyst the oxygen reduction catalyst described in Embodiment 2 can be used.
- the conductive carbon material functions as a conductor for transmitting electrons generated by the oxygen reduction catalyst to an external conductor, and for example, carbon black can be used.
- As the proton conductor a material generally used as a proton conductor for the fuel cell electrode layer can be used.
- a material generally used for a gas diffusion layer of a fuel cell such as a mixture of polytetrafluoroethylene and carbon black, is used.
- the material of the current collector 13 is not particularly limited, and a material generally used for a current collector of a fuel cell can be used.
- the fuel cell according to the present embodiment is, for example, a solid polymer fuel cell.
- the cathode electrode layer 21, the anode electrode layer 22, and the cathode electrode layer 21 and the anode electrode layer 22 are interposed.
- a solid polymer membrane (electrolyte layer) 23 disposed on the substrate.
- the cathode electrode layer 21 includes an oxygen reduction catalyst, an electron conductor made of a conductive carbon material carrying the oxygen reduction catalyst, and a proton conductor.
- the anode electrode layer 22 includes a catalyst, an electron conductor made of a conductive carbon material that supports the catalyst, and a proton conductor.
- the gas diffusion layer 24 and the current collector 25 are provided on the surface of the cathode electrode layer 21 that is not in contact with the solid polymer film 23.
- a gas diffusion layer 26 and a current collector 27 are provided on the surface of the anode electrode layer 22 that is not in contact with the solid polymer film 23.
- the oxygen reduction catalyst contained in the cathode electrode layer 21 As the oxygen reduction catalyst contained in the cathode electrode layer 21, the oxygen reduction catalyst described in the second embodiment is used.
- platinum can be used as the catalyst contained in the anode electrode layer 22.
- the electron conductor and the proton conductor the same materials as those of the fuel cell electrode described in the present embodiment can be used.
- the solid polymer film 23 may be a film made of a material generally used for an electrolyte layer of a solid polymer fuel cell, and the material is not particularly limited.
- Example 1 First, a palladium chloride solution was prepared. After dissolving 1.68 g of palladium chloride (powder) in a mixed solution of 3.65 wt% (1 mol / L) hydrochloric acid aqueous solution (20 mL) and pure water (500 mL), the volume was adjusted to 1 L with pure water. This was used as a 1 g / L palladium raw material solution (1 g / L-Pd raw material).
- sodium citrate and tannic acid were used as the reducing agent. Specifically, a sodium citrate solution in which sodium citrate was diluted to 10 wt% with pure water and a tannic acid solution in which tannic acid was diluted to 1.43 wt% with pure water were used. Potassium carbonate was used as a reaction accelerator. Specifically, a potassium carbonate solution in which potassium carbonate was diluted with pure water to 13.82 wt% (1 mol / L) was used.
- ion exchange is performed with 70 g of an ion exchange resin (Amberlite MB-1 (manufactured by Organo Corp.)), whereby a colloidal solution of Pd colloidal particles that becomes the core part of Pd—Pt colloidal particles is obtained.
- an ion exchange resin Amberlite MB-1 (manufactured by Organo Corp.)
- the particle size of the obtained Pd colloidal particles was measured using a dynamic scattering method, and the average particle size was determined. Specifically, the non-contact backscattering intensity was measured using a light scattering photometer (DLS-2000, manufactured by Otsuka Electronics Co., Ltd.), the intensity reference particle size distribution was obtained, and the position where the volume accumulation was 50% was determined as the average particle diameter. did.
- the average particle size of the Pd colloidal particles of this example was 10 nm.
- the total amount of the Pd colloid solution prepared as described above--ion exchanged was placed in a 1 L flask and boiled and refluxed for 30 minutes while stirring with a stir bar.
- 0.21 g of a 4 wt% chloroplatinic acid aqueous solution was added as a raw material of Pt supported on the surface of the Pd colloidal particles.
- 0.7 g of 10 wt% sodium citrate solution was added, and the mixture was further boiled and refluxed for 1 hour. Thereafter, the flask was placed in water and cooled to room temperature.
- ion exchange was performed with 3 g of an ion exchange resin (Amberlite MB-1 (manufactured by Organo Corporation)) to obtain a Pd—Pt colloidal solution.
- the Pt weight concentration was determined so that the number of atomic layers of Pt in the Pt—Pd colloid particles contained in the Pd—Pt colloid solution was 0.05. Specifically, the number of Pd colloid particles was determined from the Pd concentration, and the weight was determined by multiplying the weight of Pt supported per Pd colloid particle by the number of Pd colloid particles. Details are as follows.
- the Pd concentration (M Pd ) in this example was 200 mg / L.
- ⁇ Pt weight concentration> The volume of Pd—Pt colloid particles (in terms of sphere) was obtained by adding the thickness of Pt to the radius of the Pd colloid particles, and the volume of Pt colloid particles was subtracted from the obtained volume to obtain the volume of Pt alone.
- the Pt weight was determined by multiplying the Pt volume by the density of Pt to determine the weight of Pt required per Pd—Pt colloidal particle, and by multiplying the number of Pd colloidal particles per liter of the solution. In this example, the amount of Pt is 0.05 with the number of atomic layers of Pt.
- the Pt weight concentration when the number of atomic layers is 1 is first determined by the following procedure, and this is multiplied by 0.05 to obtain the obtained value as the Pt weight concentration required for the number of 0.05 atomic layers.
- the specific method is as follows.
- the Pt weight concentration in the case of 1 atomic layer number was multiplied by 0.05, and the obtained value was used as the Pt weight concentration necessary for 0.05 atomic layer number.
- a Pd—Pt colloidal solution was prepared so that the weight concentration of Pt was 62.4 mg / L ⁇ 0.05 ⁇ 3.1 mg / L.
- the obtained Pd—Pt colloidal solution was evaluated for oxygen reduction activity.
- the evaluation of the oxygen reduction activity was performed by measuring the rate at which dissolved oxygen and hydrogen in the water charged with the Pd—Pt colloidal solution react. Specifically, oxygen reduction activity was measured using the apparatus shown in FIG. A beaker 32 containing 500 mL of pure water was set in the constant temperature water bath 31, and the water temperature was set to 40 ° C. The pure water in the beaker 32 was stirred using a stirrer 33 and heated until the pure water reached 40 ° C. The hydrogen gas was allowed to flow out of the glass filter (gas filter tube) 34 at a hydrogen flow rate of 10 mL / min.
- the glass filter 34 was installed in the beaker 32 so that the glass filter 34 was positioned at the upper center of the beaker 32 (directly above the stirrer 33).
- the dissolved oxygen concentration was measured using a portable dissolved oxygen meter (manufactured by HACK) 35.
- HACK portable dissolved oxygen meter
- the amount of dissolved oxygen reached about 5.5 mg / L
- 200 ⁇ L of Pd—Pt colloidal solution was put into the beaker 32 and measurement was started.
- a dissolved oxygen reduction rate (a rate of reduction [mg / L ⁇ min] for 3 minutes from when the dissolved oxygen concentration reached 4.2 mg / L) was defined.
- the activity of the Pt colloidal solution was evaluated. The evaluation results are as shown in Table 1 and the graph of FIG.
- the zeta potential is a portion of the potential difference in the electric double layer formed at the solid-liquid interface that effectively acts on the electrokinetic phenomenon, and is used as an indicator of colloidal dispersion stability. As the absolute value of the zeta potential increases, the repulsive force between the particles increases, and the stability of the particles increases. Conversely, when the absolute value of the zeta potential approaches 0, the particles are likely to aggregate.
- an electrophoretic light scattering measurement method (laser Doppler method) was used. This is a method for obtaining the potential by measuring the moving speed of the particles using the property that the particles in the electric field move at a certain speed in the electric field according to the zeta potential of the surface.
- the particles migrate (move) toward the electrode. Since this speed is proportional to the zeta potential of the particles, the zeta potential can be determined by measuring the migration speed.
- the migration speed of the particles is proportional to the amount of frequency shift in the scattered light generated by irradiating the electrophoretic particles with laser light. Therefore, by measuring the shift amount ( ⁇ v), the migration velocity (V) of the particles can be obtained using the following formula (1).
- ⁇ v ⁇ 2Vn ⁇ sin ( ⁇ / 2) ⁇ / ⁇ (1)
- n refractive index of solvent
- ⁇ wavelength of laser light
- ⁇ scattering angle
- the zeta potential ( ⁇ ) is obtained using the following formula (2).
- ⁇ ⁇ 4 ⁇ (V / E) ⁇ / ⁇ (2)
- ⁇ Viscosity of solvent
- ⁇ Dielectric constant of solvent
- E Electric field
- ELS-6000 manufactured by Otsuka Electronics Co., Ltd. was used.
- the Pd—Pt colloidal solution of this example was diluted about 5 times with pure water to obtain a measurement sample.
- the measurement was performed three times under the conditions of a temperature of 20 ° C. and a pH of 5, and the average value was taken as the zeta potential.
- Table 1 The results are shown in Table 1 and the graph of FIG.
- Example 2 Except that the pure water amount at the time of Pd colloid solution preparation was 746.9 g, the Pt raw material solution (chloroplatinic acid aqueous solution) was 0.41 g, and the amount of sodium citrate solution used at the time of Pt reduction was 1.41 g.
- a Pd—Pt colloidal solution was prepared by the same production method as in Example 1.
- the ion exchange resins used after preparation of the Pd colloid solution and after supporting Pt on the Pd colloid particles were 70 g and 4 g, respectively.
- the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
- the weight concentration of Pt in the Pd—Pt colloidal solution was determined so that the number of atomic layers of Pt was 0.1 atomic layer.
- the Pt weight concentration was determined by the same procedure as in Example 1.
- Example 3 The amount of pure water when preparing the Pd colloidal solution was 745.1 g, the amount of Pt raw material solution (chloroplatinic acid aqueous solution) used was 0.83 g, and the amount of sodium citrate solution used during Pt reduction was 2.83 g.
- the ion exchange resins used after preparing the Pd colloid solution and after supporting Pt on the Pd colloid particles were 70 g and 8 g, respectively.
- the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
- the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 0.2 atomic layers.
- the weight concentration of Pt was determined by the same procedure as in Example 1.
- Example 4 The amount of pure water when preparing the Pd colloidal solution was 744.4 g, the amount of Pt raw material solution (chloroplatinic acid aqueous solution) used was 1.00 g, and the amount of sodium citrate solution used during Pt reduction was 3.39 g.
- the ion exchange resins used after the preparation of the Pd colloid solution and after Pt was supported on the Pd colloid particles were 70 g and 9 g, respectively.
- the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
- the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 0.25 atomic layers.
- the weight concentration of Pt was determined by the same procedure as in Example 1.
- Example 5 The amount of pure water when preparing the Pd colloidal solution was 743.3 g, the amount of Pt raw material solution (chloroplatinic acid aqueous solution) used was 1.24 g, and the amount of sodium citrate solution used during Pt reduction was 4.23 g.
- the ion exchange resins used after preparing the Pd colloid solution and after supporting Pt on the Pd colloid particles were 70 g and 12 g, respectively.
- the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
- the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 0.3 atomic layers.
- the weight concentration of Pt was determined by the same procedure as in Example 1.
- Example 6 The amount of pure water when preparing the Pd colloidal solution was 741.4 g, the amount of Pt raw material solution (chloroplatinic acid aqueous solution) used was 1.66 g, and the amount of sodium citrate solution used during Pt reduction was 5.65 g.
- the ion exchange resins used after preparing the Pd colloid solution and after supporting Pt on the Pd colloid particles were 70 g and 15 g, respectively.
- the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
- the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 0.4 atomic layers.
- the weight concentration of Pt was determined by the same procedure as in Example 1.
- Example 7 The amount of pure water when preparing the Pd colloidal solution was 739.9 g, the amount of Pt raw material solution (chloroplatinic acid aqueous solution) used was 2.01 g, and the amount of sodium citrate solution used during Pt reduction was 6.84 g.
- the ion exchange resins used after the preparation of the Pd colloid solution and after the Pt was supported on the Pd colloid particles were 70 g and 18 g, respectively.
- the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
- the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 0.5 atomic layers.
- the weight concentration of Pt was determined by the same procedure as in Example 1.
- Example 8 The amount of pure water when preparing the Pd colloidal solution was 736.9 g, the amount of Pt raw material solution (chloroplatinic acid aqueous solution) used was 2.69 g, and the amount of sodium citrate solution used during Pt reduction was 9.18 g.
- the ion exchange resins used after preparing the Pd colloid solution and after supporting Pt on the Pd colloid particles were 70 g and 24 g, respectively.
- the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
- the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 0.65 atomic layers.
- the weight concentration of Pt was determined by the same procedure as in Example 1.
- Example 9 The amount of pure water at the time of preparation of the Pd colloidal solution was 740.8 g, only 35 g of tannic acid solution was used as the Pd reducing agent, 17.5 g of potassium carbonate solution as a reaction accelerator was used, and Pt raw material solution (chloroplatinic acid aqueous solution) A Pd—Pt colloidal solution was prepared in the same manner as in Example 1 except that the amount used was 1.51 g and the amount of sodium citrate solution used during Pt reduction was 5.16 g.
- the ion exchange resins used after the preparation of the Pd colloid solution and after Pt was supported on the Pd colloid particles were 100 g and 14 g, respectively.
- the average particle size of the Pd colloidal particles in this example was 7 nm.
- the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 0.25 atomic layers.
- the weight concentration of Pt was determined by the same procedure as in Example 1.
- Example 10 The amount of pure water at the time of preparing the Pd colloidal solution is 762.6 g, only 35 g of tannic acid solution is used as the Pd reducing agent, the potassium carbonate solution as the reaction accelerator is 0.15 g, and the Pt raw material solution (chloroplatinic acid aqueous solution)
- a Pd—Pt colloidal solution was prepared in the same manner as in Example 1 except that the amount used was 0.5 g and the amount of sodium citrate solution used during Pt reduction was 1.72 g.
- the ion exchange resins used after preparing the Pd colloid solution and after supporting Pt on the Pd colloid particles were 70 g and 5 g, respectively.
- the average particle size of the Pd colloidal particles in this example was 20 nm.
- the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 0.25 atomic layers.
- the weight concentration of Pt was determined by the same procedure as in Example 1.
- the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was two atomic layers.
- the thickness of Pt in the two-atom layer was set to (1 + 3 1/2 / 2) ⁇ Pt atom diameter (0.276 nm) in consideration of Pt atoms being closely packed in cubic.
- the average particle size of the Pd colloidal particles in this example was 5 nm.
- the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 0.25 atomic layers.
- the weight concentration of Pt was determined by the same procedure as in Example 1.
- Example 5 Use Pt raw material solution (chloroplatinic acid aqueous solution) with 763.6 g of pure water at the time of Pd colloid solution preparation, using only 35 g of tannic acid solution as Pd reducing agent, and not using potassium carbonate solution as a reaction accelerator.
- a Pd—Pt colloidal solution was prepared in the same manner as in Example 1 except that the amount was 0.33 g and the amount of sodium citrate solution used during Pt reduction was 1.11 g.
- the ion exchange resins used after preparation of the Pd colloid solution and after supporting Pt on the Pd colloid particles were 70 g and 4 g, respectively.
- the average particle size of the Pd colloidal particles in this example was 30 nm.
- the Pt weight concentration in the Pd—Pt colloidal solution was determined so that the number of Pt atomic layers was 0.25 atomic layers.
- the weight concentration of Pt was determined by the same procedure as in Example 1.
- the oxygen reduction activity and the zeta potential were measured in the same manner as in Example 1.
- the Pd—Pt colloidal solution of this comparative example had poor dispersibility, and aggregation and sedimentation proceeded within a short time after the adjustment, so a stable value could not be measured.
- Comparative Example 6 a Pd colloid solution in which Pt was not supported on the surface of Pd colloid particles was prepared.
- a Pd colloid solution was prepared by the same production method as in Example 1 except that the amount of pure water at the time of preparing the Pd colloid solution was 750.0 g.
- the average particle size of the Pd colloidal particles was determined in the same manner as in Example 1, the average particle size of the Pd colloidal particles in this example was 10 nm.
- Comparative Example 7 a Pt colloid solution was prepared. First, 26.6 g of 4 wt% chloroplatinic acid was put in a 1 L round bottom flask, and pure water was added to make 951.8 g. A cooling tube was attached to this, and the mixture was boiled and refluxed for 60 minutes while heating with a mantle heater. When 48.2 g of 10 wt% sodium citrate aqueous solution was added thereto and boiling reflux was continued, the pale orange solution suddenly turned black in about 5 minutes. Thereafter, the mixture was further refluxed for 1 hour to prepare a Pt colloid solution.
- the Pt colloid solution thus prepared was ion-exchanged with an ion exchange resin (Amberlite MB-1 (manufactured by Organo Corporation)) to remove impurities.
- an ion exchange resin Amberlite MB-1 (manufactured by Organo Corporation)
- Example 1 to 10 The results of Examples 1 to 10 are summarized in Table 1, and the results of Comparative Examples 1 to 7 are summarized in Table 2.
- FIG. 4 shows a graph of the rate of decrease in dissolved oxygen in Examples 1 to 10 and Comparative Examples 1 to 3.
- FIG. 5 shows a graph of zeta potentials of Examples 1 to 10 and Comparative Examples 1 to 3.
- Example 4 the Pd colloidal particles had the highest dissolved oxygen decrease rate, that is, the Pt amount (0.25 atomic layer (Example 4)) having the highest oxygen reduction activity.
- the rate of decrease in dissolved oxygen was confirmed in Example 9 (average particle diameter of Pd colloidal particles: 7 nm) and Example 10 (average particle diameter of Pd colloidal particles: 20 nm) having different average particle diameters.
- the dissolved oxygen reduction rate of Examples 9 and 10 was slightly higher than that of Example 4, but was sufficiently higher than that of Comparative Example.
- the noble metal colloid particles and the noble metal colloid solution of the present invention can realize high catalytic activity efficiently with a small amount of Pt, and therefore can be used as a catalyst for oxygen reduction in various fields such as fuel cells.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- Dispersion Chemistry (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Catalysts (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Inert Electrodes (AREA)
Abstract
Description
本発明の貴金属コロイド粒子は、Pdコロイド粒子と、Pdコロイド粒子の表面に担持されたPtとを含んでいる。
本発明の酸素還元用触媒は、貴金属コロイド粒子を含んでいる。この貴金属コロイド粒子は、Pdコロイド粒子と、前記Pdコロイド粒子の表面に担持されたPtとを含み、実質的に保護コロイドを含まない。さらに、この貴金属コロイド粒子において、Pdコロイド粒子の平均粒径は7~20nmである。Pdコロイド粒子の表面に担持されたPtの量をPt原子の原子層数で示した場合、Ptの量は0.05~0.65原子層である。
本発明の酸素還元用触媒を利用した燃料電池用電極層及び燃料電池の実施形態について説明する。
まず、塩化パラジウム溶液を作製した。塩化パラジウム(粉末)1.68gを3.65wt%(1mol/L)の塩酸水溶液20mLと純水500mLとの混合液に溶解した後、1Lになるように純水でメスアップした。これを、1g/Lのパラジウム原料溶液(1g/L-Pd原料)として使用した。
まず、Pdコロイド粒子の濃度をPdコロイド粒子1個当たりの重さで除することによって、溶液1L当たりのPdコロイド粒子の個数を求めた。具体的な求め方は、以下のとおりである。
(2)Pdの密度(dPd)とPdコロイド粒子の体積(VPd)とから、Pdコロイド粒子1個の重さmPdを算出した。dPd=12030kg/m3を用いたところ、mPd=6.30×10-21kg/個であった。
(3)1L当たりのPtコロイド粒子の個数(NPd)は、Pd濃度(MPd)をPdコロイド粒子1個当たりの重さ(mPd)で除して、NPd=MPd/mPd=3.18×1016個/Lであった。なお、本実施例におけるPd濃度(MPd)は、200mg/Lであった。
Pdコロイド粒子の半径にPtの厚みを足してPd-Ptコロイド粒子の体積(球換算)を求め、得られた体積からPdコロイド粒子の体積を引いて、Ptのみの体積を求めた。このPtの体積にPtの密度を乗じてPd-Ptコロイド粒子1個当たりに必要なPtの重量を求め、さらに溶液1L当たりのPdコロイド粒子の個数を乗じてPt重量濃度を決定した。本実施例のPt量は、Ptの原子層数が0.05である。そこで、まず以下の手順で原子層数が1の場合のPt重量濃度を決定し、これに0.05を乗じて、得られた値を0.05原子層数に必要なPt重量濃度とした。具体的な求め方は、以下のとおりである。
(2)Pd-Ptコロイド粒子の体積(VPd-Pt)からPdコロイド粒子の体積(VPd)を引いて、Ptのみの体積(VPt)を求めた。VPt=9.16×10-26m3/個であった。
(3)Ptの体積(VPt)にPtの密度(dPt)を乗じて、Pd-Ptコロイド粒子1個当たりに必要なPtの重量(mPt)を求めた。dPt=21450kg/m3を用いたところ、mpt=1.96×10-21kg/個であった。
(4)Pd-Ptコロイド粒子1個当たりのPtの重量(mPt)に1L当たりのPtコロイド粒子の個数(NPd)乗じ、必要なPt重量濃度(MPt)を求めた。Mpt=6.24×10-5kg/L=62.4mg/Lであった。
(5)原子層数1の場合のPt重量濃度に0.05を乗じて、得られた値を0.05原子層数に必要なPt重量濃度とした。
Δv={2Vn・sin(θ/2)}/λ …(1)
n:溶媒の屈折率
λ:レーザー光の波長
θ:散乱角
ζ={4πη(V/E)}/ε …(2)
η:溶媒の粘度
ε:溶媒の誘電率
E:電場
Pdコロイド溶液調製時の純水量を746.9gとし、Pt原料液(塩化白金酸水溶液)を0.41gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を1.41gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、4gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が0.1原子層となるように、Pd-Ptコロイド溶液におけるPtの重量濃度を決定した。Pt重量濃度は、実施例1と同様の手順で決定した。
Pdコロイド溶液調製時の純水量を745.1gとし、Pt原料液(塩化白金酸水溶液)の使用量を0.83gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を2.83gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、8gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が0.2原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Ptの重量濃度は、実施例1と同様の手順で決定した。
Pdコロイド溶液調製時の純水量を744.4gとし、Pt原料液(塩化白金酸水溶液)の使用量を1.00gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を3.39gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、9gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が0.25原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Ptの重量濃度は、実施例1と同様の手順で決定した。
Pdコロイド溶液調製時の純水量を743.3gとし、Pt原料液(塩化白金酸水溶液)の使用量を1.24gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を4.23gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、12gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が0.3原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Ptの重量濃度は、実施例1と同様の手順で決定した。
Pdコロイド溶液調製時の純水量を741.4gとし、Pt原料液(塩化白金酸水溶液)の使用量を1.66gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を5.65gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、15gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が0.4原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Ptの重量濃度は、実施例1と同様の手順で決定した。
Pdコロイド溶液調製時の純水量を739.9gとし、Pt原料液(塩化白金酸水溶液)の使用量を2.01gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を6.84gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、18gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が0.5原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Ptの重量濃度は、実施例1と同様の手順で決定した。
Pdコロイド溶液調製時の純水量を736.9gとし、Pt原料液(塩化白金酸水溶液)の使用量を2.69gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を9.18gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、24gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が0.65原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Ptの重量濃度は、実施例1と同様の手順で決定した。
Pdコロイド溶液調製時の純水量を740.8gとし、Pd還元剤として35gのタンニン酸溶液のみを用い、反応促進剤である炭酸カリウム溶液を17.5gとし、Pt原料液(塩化白金酸水溶液)の使用量を1.51gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を5.16gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ100g、14gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は7nmであった。また、本実施例では、Ptの原子層数が0.25原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Ptの重量濃度は、実施例1と同様の手順で決定した。
Pdコロイド溶液調製時の純水量を762.6gとし、Pd還元剤として35gのタンニン酸溶液のみを用い、反応促進剤である炭酸カリウム溶液を0.15gとし、Pt原料液(塩化白金酸水溶液)の使用量を0.5gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を1.72gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、5gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は20nmであった。また、本実施例では、Ptの原子層数が0.25原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Ptの重量濃度は、実施例1と同様の手順で決定した。
Pdコロイド溶液調製時の純水量を735.1gとし、Pt原料液(塩化白金酸水溶液)の使用量を3.11gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を10.58gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、26gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が0.75原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Ptの重量濃度は、実施例1と同様の手順で決定した。
Pdコロイド溶液調製時の純水量を730.5gとし、Pt原料液(塩化白金酸水溶液)の使用量を4.14gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を14.11gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、36gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が1原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。
Pdコロイド溶液調製時の純水量を713.1gとし、Pt原料液(塩化白金酸水溶液)の使用量を8.09gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を27.59gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、68gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。また、本実施例では、Ptの原子層数が2原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。ただし、2原子層のPtの厚さは、Pt原子が立方最密充填されることを考慮して、(1+31/2/2)×Pt原子の直径(0.276nm)とした。
Pdコロイド溶液調製時の純水量を736.1gとし、Pd還元剤として35gのタンニン酸溶液のみを用い、反応促進剤である炭酸カリウム溶液を20gとし、Pt原料液(塩化白金酸水溶液)の使用量を2.02gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を6.87gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ100g、18gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は5nmであった。また、本実施例では、Ptの原子層数が0.25原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Ptの重量濃度は、実施例1と同様の手順で決定した。
Pdコロイド溶液調製時の純水量を763.6gとし、Pd還元剤として35gのタンニン酸溶液のみを用い、反応促進剤である炭酸カリウム溶液を用いず、Pt原料液(塩化白金酸水溶液)の使用量を0.33gとし、Pt還元時のクエン酸ナトリウム溶液の使用量を1.11gとした以外は、実施例1と同じ製法でPd-Ptコロイド溶液を調製した。なお、Pdコロイド溶液調製後及びPtをPdコロイド粒子に担持させた後に使用したイオン交換樹脂は、それぞれ70g、4gであった。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は30nmであった。また、本実施例では、Ptの原子層数が0.25原子層となるように、Pd-Ptコロイド溶液におけるPt重量濃度を決定した。Ptの重量濃度は、実施例1と同様の手順で決定した。
比較例6では、PtがPdコロイド粒子の表面に担持されていないPdコロイド溶液を作製した。Pdコロイド溶液調製時の純水量を750.0gとした以外は、実施例1と同じ製法でPdコロイド溶液を調製した。Pdコロイド粒子の平均粒径を実施例1と同様の方法で求めたところ、本実施例におけるPdコロイド粒子の平均粒径は10nmであった。
比較例7では、Ptコロイド溶液を作製した。まず、4wt%塩化白金酸26.6gを1Lの丸底フラスコに入れ、純水を加えて951.8gとした。これに冷却管を付けてマントルヒーターで加熱しながら60分間煮沸還流した。これに10wt%クエン酸ナトリウム水溶液48.2gを加えて煮沸還流を続けると、5分程度で、薄い橙色の溶液が急激に黒くなった。その後さらに1時間還流し、Ptコロイド溶液を作製した。このように作製されたPtコロイド溶液を、イオン交換樹脂(アンバーライトMB-1(オルガノ株式会社製))によってイオン交換し、不純物を取り除いた。Ptコロイド粒子の平均粒径を実施例1のPdコロイド粒径と同様の方法で求めたところ、Ptコロイド粒子の平均粒径は3nmであった。
Claims (3)
- Pdコロイド粒子と、前記Pdコロイド粒子の表面に担持されたPtとを含む貴金属コロイド粒子であって、
実質的に保護コロイドを含まず、
前記Pdコロイド粒子の平均粒径が7~20nmであり、
前記Pdコロイド粒子の表面に担持された前記Ptの量をPt原子の原子層数で示した場合に、前記Ptの量が0.05~0.65原子層である、
貴金属コロイド粒子。 - 溶媒と、前記溶媒に分散した貴金属コロイド粒子とを含む貴金属コロイド溶液であって、
前記貴金属コロイド粒子が請求項1に記載の貴金属コロイド粒子である、貴金属コロイド溶液。 - 貴金属コロイド粒子を含む酸素還元用触媒であって、
前記貴金属コロイド粒子が、
Pdコロイド粒子と、前記Pdコロイド粒子の表面に担持されたPtとを含み、
実質的に保護コロイドを含まず、
前記Pdコロイド粒子の平均粒径が7~20nmであり、
前記Pdコロイド粒子の表面に担持された前記Ptの量をPt原子の原子層数で示した場合に、前記Ptの量が0.05~0.65原子層である、
酸素還元用触媒。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012550715A JPWO2012090450A1 (ja) | 2010-12-28 | 2011-12-21 | 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、酸素還元用触媒 |
US13/976,277 US20130281290A1 (en) | 2010-12-28 | 2011-12-21 | Noble metal colloid particles and noble metal colloid solution, and catalyst for oxygen reduction |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010292116 | 2010-12-28 | ||
JP2010-292116 | 2010-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012090450A1 true WO2012090450A1 (ja) | 2012-07-05 |
Family
ID=46382591
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/007180 WO2012090450A1 (ja) | 2010-12-28 | 2011-12-21 | 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、酸素還元用触媒 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20130281290A1 (ja) |
JP (1) | JPWO2012090450A1 (ja) |
WO (1) | WO2012090450A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9766132B2 (en) | 2015-02-19 | 2017-09-19 | SCREEN Holdings Co., Ltd. | Measuring apparatus and measuring method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160365585A1 (en) * | 2015-06-10 | 2016-12-15 | GM Global Technology Operations LLC | Low Temperature Atmospheric Pressure Atomic Layer Deposition (ALD) of Graphene on Stainless Steel Substrates as BPP Coating |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004149847A (ja) * | 2002-10-30 | 2004-05-27 | Toppan Forms Co Ltd | コアシェル型の金属系ナノコロイド微粒子 |
JP2007084372A (ja) * | 2005-09-21 | 2007-04-05 | Tanaka Kikinzoku Kogyo Kk | 過酸化水素の直接合成法 |
JP2008525638A (ja) * | 2004-12-22 | 2008-07-17 | ブルックヘヴン サイエンス アソシエイツ | 水素吸収により誘起されるパラジウム及びパラジウム合金粒子上への金属堆積 |
JP2008297626A (ja) * | 2007-06-04 | 2008-12-11 | Kri Inc | コアシェル型貴金属ナノコロイド |
WO2011001677A1 (ja) * | 2009-07-01 | 2011-01-06 | 日本板硝子株式会社 | 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、過酸化水素分解用触媒 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5200382A (en) * | 1991-11-15 | 1993-04-06 | Exxon Research And Engineering Company | Catalyst comprising thin shell of catalytically active material bonded onto an inert core |
US6765904B1 (en) * | 1999-08-10 | 2004-07-20 | Texas Instruments Incorporated | Packet networks |
US6686308B2 (en) * | 2001-12-03 | 2004-02-03 | 3M Innovative Properties Company | Supported nanoparticle catalyst |
JP5095909B2 (ja) * | 2003-06-24 | 2012-12-12 | ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. | 触媒組成物および析出方法 |
GB0400166D0 (en) * | 2004-01-06 | 2004-02-11 | Ic Innovations Ltd | Catalyst |
US7691780B2 (en) * | 2004-12-22 | 2010-04-06 | Brookhaven Science Associates, Llc | Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof |
US7704919B2 (en) * | 2005-08-01 | 2010-04-27 | Brookhaven Science Associates, Llc | Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof |
JP2008188542A (ja) * | 2007-02-06 | 2008-08-21 | Mitsubishi Heavy Ind Ltd | 排ガス処理用触媒、その製造方法および排ガス処理方法 |
-
2011
- 2011-12-21 JP JP2012550715A patent/JPWO2012090450A1/ja active Pending
- 2011-12-21 WO PCT/JP2011/007180 patent/WO2012090450A1/ja active Application Filing
- 2011-12-21 US US13/976,277 patent/US20130281290A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004149847A (ja) * | 2002-10-30 | 2004-05-27 | Toppan Forms Co Ltd | コアシェル型の金属系ナノコロイド微粒子 |
JP2008525638A (ja) * | 2004-12-22 | 2008-07-17 | ブルックヘヴン サイエンス アソシエイツ | 水素吸収により誘起されるパラジウム及びパラジウム合金粒子上への金属堆積 |
JP2007084372A (ja) * | 2005-09-21 | 2007-04-05 | Tanaka Kikinzoku Kogyo Kk | 過酸化水素の直接合成法 |
JP2008297626A (ja) * | 2007-06-04 | 2008-12-11 | Kri Inc | コアシェル型貴金属ナノコロイド |
WO2011001677A1 (ja) * | 2009-07-01 | 2011-01-06 | 日本板硝子株式会社 | 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、過酸化水素分解用触媒 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9766132B2 (en) | 2015-02-19 | 2017-09-19 | SCREEN Holdings Co., Ltd. | Measuring apparatus and measuring method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012090450A1 (ja) | 2014-06-05 |
US20130281290A1 (en) | 2013-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11201335B2 (en) | Noble metal nanoparticles on a support | |
Spinacé et al. | Electro-oxidation of ethanol using PtRu/C electrocatalysts prepared by alcohol-reduction process | |
Feng et al. | Promotion effects of CeO2 with different morphologies to Pt catalyst toward methanol electrooxidation reaction | |
JP2005118671A (ja) | 電極の触媒用微粒子および該電極触媒用微粒子分散液、該電極触媒用微粒子分散液の製造方法 | |
JP6086258B2 (ja) | 触媒およびこれを備える燃料電池 | |
CN102664275A (zh) | 一种燃料电池用碳载核壳型铜钯-铂催化剂及其制备方法 | |
Cheng et al. | Pd doped three-dimensional porous Ni film supported on Ni foam and its high performance toward NaBH4 electrooxidation | |
JP2002246033A (ja) | 電極、電極用組成物、それを用いた燃料電池、および電極の製造方法 | |
Yongprapat et al. | Au/C catalyst prepared by polyvinyl alcohol protection method for direct alcohol alkaline exchange membrane fuel cell application | |
Zuo et al. | Spiny-porous platinum nanotubes with enhanced electrocatalytic activity for methanol oxidation | |
Jiang et al. | Influence of preparation method on the performance of PtSn/C anode electrocatalyst for direct ethanol fuel cells | |
Wang et al. | Ethanol oxidation activity and structure of carbon-supported Pt-modified PdSn-SnO2 influenced by different stabilizers | |
WO2012090450A1 (ja) | 貴金属コロイド粒子及び貴金属コロイド溶液、並びに、酸素還元用触媒 | |
JP2013176717A (ja) | 金属酸化物触媒及びその製造方法、それを用いた燃料電池 | |
JP2008173524A (ja) | 貴金属担持電極触媒の製造方法および該製造方法により得られる貴金属担持電極触媒 | |
WO2013183704A1 (ja) | 金担持カーボン触媒及びその製造方法 | |
JP2008511098A (ja) | メタノール直接型燃料電池用の白金/ルテニウム触媒 | |
JP2008114217A (ja) | カーボン基体上に担持された貴金属粒子を含む触媒とその製造方法 | |
Rutkowska | Enhancement of oxidation of formic acid in acid medium on zirconia-supported phosphotungstate-decorated noble metal (Pd, Pt) nanoparticles | |
KR101392196B1 (ko) | 이금속성 나노와이어를 포함하는 산소-환원용 전극촉매, 및 이의 제조방법 | |
RU2324538C1 (ru) | Катализатор с наноразмерными частицами на носителе и способ его изготовления | |
Magalhães et al. | Carbon-supported PtSnCu, PtCu and PtSn electrocatalysts for ethanol oxidation in acid media | |
JP2005166409A (ja) | 電極触媒、触媒担持電極、燃料電池用meaおよび燃料電池 | |
US20120122675A1 (en) | Noble metal colloidal particles, noble metal colloidal solution, and catalyst for hydrogen peroxide decomposition | |
Feng et al. | Preparation and catalytic activity of CO-resistant catalyst core-shell Au@ Pt/C for methanol oxidation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11852875 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012550715 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13976277 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11852875 Country of ref document: EP Kind code of ref document: A1 |