WO2011001529A1 - 内燃機関の吸気制御装置 - Google Patents

内燃機関の吸気制御装置 Download PDF

Info

Publication number
WO2011001529A1
WO2011001529A1 PCT/JP2009/062178 JP2009062178W WO2011001529A1 WO 2011001529 A1 WO2011001529 A1 WO 2011001529A1 JP 2009062178 W JP2009062178 W JP 2009062178W WO 2011001529 A1 WO2011001529 A1 WO 2011001529A1
Authority
WO
WIPO (PCT)
Prior art keywords
intake air
air amount
amount
intake
control
Prior art date
Application number
PCT/JP2009/062178
Other languages
English (en)
French (fr)
Inventor
フィッシャー ミハエル
安井 裕司
中島 幸一
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2011520719A priority Critical patent/JP5560275B2/ja
Priority to DE112009005032.8T priority patent/DE112009005032B4/de
Priority to PCT/JP2009/062178 priority patent/WO2011001529A1/ja
Publication of WO2011001529A1 publication Critical patent/WO2011001529A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1405Neural network control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an intake air control apparatus for an internal combustion engine, and more particularly to an apparatus for controlling the opening degree of an intake air control valve using a neural network.
  • Patent Document 1 a neural network that inputs parameters indicating an operating state of an internal combustion engine, for example, an engine speed, an intake air amount, a control valve opening degree, and the like is used to input a cylinder inflow air amount, fuel injection amount, engine output.
  • a method for calculating torque, air-fuel ratio, and the like is shown.
  • the cylinder inflow air amount is calculated, and the opening of the intake control valve that controls the intake air amount is calculated so that the calculated cylinder inflow air amount matches the target value.
  • the intake air amount control can be performed.
  • An object of the present invention is to provide an intake control device for an internal combustion engine that can reduce the load on the arithmetic device while maintaining the above.
  • the invention described in claim 1 includes a target intake air amount calculating means for calculating a target intake air amount (GAIRCMD) of the internal combustion engine, and the engine according to the target intake air amount (GAIRCMD).
  • GAIRCMD target intake air amount
  • an intake control device for an internal combustion engine that controls the opening degree (TH) of the intake control valve (3) of the engine, engine operating parameters (PB, PI, NE) indicating the operating state of the engine and the target intake air amount (GAIRCMD)
  • PB, PI, NE engine operating parameters
  • GAIRCMD target intake air amount
  • a control amount calculation means for calculating the control amount (THCMD) of the intake control valve using a neural network that outputs the control amount (THCMD) of the intake control valve, and the target intake air amount (GAIRCMD) ) Is equal to or greater than the determined intake air amount (GAIRTH)
  • the calculation of the control amount (THCMD) by the control amount calculation means is stopped, and the control amount Characterized in that
  • the engine operation parameter indicating the engine operating state and the target intake air amount are input, and the control amount of the intake control valve is calculated using the neural network that outputs the control amount of the intake control valve, and the target
  • the control amount of the intake control valve is set to a predetermined amount.
  • the intake air amount is large, the actual intake air amount does not change even if the opening of the intake control valve is changed. Therefore, when the target intake air amount is greater than or equal to the determined intake air amount, the control amount is set to a predetermined amount. By doing so, the calculation load can be reduced while maintaining the required calculation accuracy of the intake control valve opening.
  • the predetermined amount is a control amount (THMAX) for fully opening the intake control valve.
  • the control amount of the intake control valve is set to the fully open control amount. Therefore, pumping loss can be reduced and the efficiency of the engine can be increased.
  • the determined intake air amount (GAIRTH) is calculated based on a maximum intake air amount (GAIRMAX) of the engine.
  • the determined intake air amount is set to the maximum intake air amount.
  • the predetermined amount is a control amount of the intake control valve that realizes a maximum intake air amount (GAIRMAX) of the engine.
  • the minimum control amount (THSTB) is set.
  • the predetermined amount is set to the minimum control amount among the intake control valve control amounts that realize the maximum intake air amount of the engine.
  • FIG. 1 is a diagram showing a configuration of an internal combustion engine and a control device thereof according to an embodiment of the present invention.
  • An internal combustion engine (hereinafter referred to as “engine”) 1 is a diesel engine that directly injects fuel into a cylinder, and a fuel injection valve 9 is provided in each cylinder.
  • the fuel injection valve 9 is electrically connected to an electronic control unit (hereinafter referred to as “ECU”) 20. It is controlled by the ECU 20.
  • ECU electronice control unit
  • the engine 1 includes an intake pipe 2, an exhaust pipe 4, and a turbocharger 8.
  • the turbocharger 8 includes a turbine 11 having a turbine wheel 10 that is rotationally driven by the kinetic energy of exhaust, and a compressor 16 having a compressor wheel 15 connected to the turbine wheel 10 via a shaft 14.
  • the compressor wheel 15 pressurizes (compresses) air sucked into the engine 1.
  • the turbine 11 has a plurality of variable vanes 12 (only two are shown) that are driven to change the flow rate of exhaust gas blown to the turbine wheel 10, and an actuator (not shown) that drives the variable vanes to open and close.
  • the flow rate of the exhaust gas blown to the turbine wheel 10 can be changed by changing the opening degree of the variable vane 12 (hereinafter referred to as “vane opening degree”) ⁇ vgt so that the rotational speed of the turbine wheel 10 can be changed. It is configured.
  • the actuator that drives the variable vane 12 is connected to the ECU 20, and the vane opening degree ⁇ vgt is controlled by the ECU 20. More specifically, the ECU 20 supplies a control signal with a variable duty ratio to the actuator, thereby controlling the vane opening ⁇ vgt.
  • the configuration of a turbocharger having a variable vane is widely known, and is disclosed in, for example, Japanese Patent Laid-Open No. 1-208501.
  • An intercooler 18 is provided on the downstream side of the compressor 16 in the intake pipe 2, and a throttle valve 3 is provided on the downstream side of the intercooler 18.
  • the throttle valve 3 is configured to be opened and closed by an actuator 19, and the actuator 19 is connected to the ECU 20.
  • the ECU 20 controls the opening degree of the throttle valve 3 via the actuator 19.
  • the exhaust gas recirculation passage 5 is provided with an exhaust gas recirculation control valve (hereinafter referred to as “EGR valve”) 6 for controlling the exhaust gas recirculation amount (EGR amount).
  • the EGR valve 6 is an electromagnetic valve having a solenoid, and the valve opening degree is controlled by the ECU 20.
  • the EGR valve 6 is provided with a lift sensor 7 for detecting the valve opening degree (valve lift amount) LACT, and the detection signal is supplied to the ECU 20.
  • the exhaust gas recirculation passage 5 and the EGR valve 6 constitute an exhaust gas recirculation device.
  • the intake pipe 2 includes an intake air flow rate sensor 21 that detects an intake air flow rate GA, a boost pressure sensor 22 that detects an intake pressure (supercharge pressure) PB downstream of the compressor 16, and an intake air temperature that detects an intake air temperature TI.
  • a sensor 23 and an intake pressure sensor 24 for detecting the intake pressure PI are provided. These sensors 21 to 24 are connected to the ECU 20, and detection signals from the sensors 21 to 25 are supplied to the ECU 20.
  • a lean NOx catalyst 31 that is a NOx purification device that purifies NOx contained in the exhaust, and particulate matter (mainly composed of soot) contained in the exhaust are collected.
  • a particulate matter filter 32 is provided.
  • the lean NOx catalyst 31 captures NOx in a state where the oxygen concentration in the exhaust is relatively high, that is, in a state where the concentration of the reducing components (HC, CO) is relatively low, and captures in a state where the concentration of the reducing component in the exhaust is high. NOx is reduced by the reducing component and released.
  • a rotation speed sensor 28 is connected to the ECU 20, and detection signals from these sensors are supplied to the ECU 20.
  • the engine speed sensor 28 supplies the ECU 20 with a crank angle pulse generated at every predetermined crank angle (for example, 6 degrees) and a TDC pulse generated in synchronization with the timing at which the piston of each cylinder of the engine 1 is located at the top dead center. To do.
  • the ECU 20 shapes input signal waveforms from various sensors, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, a central processing unit (hereinafter referred to as “CPU”).
  • CPU central processing unit
  • the ECU 20 performs an engine operation state (mainly, fuel injection control by the fuel injection valve 9, exhaust gas recirculation control by the EGR valve 6, supercharging pressure control by the variable vane 12 in accordance with the engine speed NE and the engine load target value Pmecmd).
  • the engine load target value Pmecmd is calculated according to the accelerator pedal operation amount AP, and is set to increase as the accelerator pedal operation amount AP increases.
  • the ECU 20 calculates the target throttle valve opening THCMD according to the target intake air amount GAIRCMD [g / sec] using a neural network to which the self-organizing map algorithm is applied (hereinafter simply referred to as “self-organizing map”).
  • the actuator 19 is driven so that the detected throttle valve opening TH matches the target throttle valve opening THCMD.
  • An input data vector xj composed of N elements is defined by the following equation (1), and a weight vector wi of each neuron constituting the self-organizing map is defined by the following equation (2).
  • the number of neurons is M. That is, the parameter i takes a value from 1 to M.
  • the initial value of the weight vector wi is given using a random number.
  • the Euclidean distance DWX
  • between the input data vector xj and the corresponding neuron weight vector wi is calculated, and the neuron with the smallest distance DWX is defined as the winner neuron.
  • the Euclidean distance DWX is calculated by the following formula (3).
  • the weight vector wi of the neuron included in the winner neuron and its neighboring neuron set Nc is updated by the following equation (4).
  • ⁇ (t) is a learning coefficient
  • t is the number of learnings.
  • the neuron weight vector wi not included in the neuron set Nc maintains the previous value as shown in the following equation (5).
  • wi (t + 1) wi (t) (5)
  • the neuron set Nc is also a function of the learning count t, and is set so that the neighborhood range is narrowed as the learning count t increases.
  • the weight vectors of the winner neuron and the neighboring neurons are corrected so as to approach the input data vector.
  • the arrangement of M neurons reflects the distribution state of the input data vectors.
  • the input data vector is represented as a two-dimensional vector for the sake of simplicity and the arrangement is represented on a plane, and the input data vector is uniformly distributed on the plane, the neuron arrangement after learning is flat. Distributed uniformly on the top.
  • the distribution of input data vectors is biased (dense / dense), the distribution state of neurons is the same biased distribution state.
  • the self-organizing map obtained in this way may be made to have a more appropriate arrangement of neurons by further applying a learning vector quantization (LVQ) algorithm.
  • LVQ learning vector quantization
  • FIG. 2 shows a self-organizing map for calculating the target throttle valve opening THCMD in this embodiment as a two-dimensional map.
  • This two-dimensional map is defined by a target intake air amount GAIRCMD and a supercharging pressure PB, which are two input parameters that are the most dominant factors.
  • the input data vector xTH is defined by the following formula (10). That is, the input parameters are the target intake air amount GAIRCMD, the supercharging pressure PB, the intake pressure PI, and the engine speed NE.
  • xTH (GAIRCMD, PB, PI, NE) (10)
  • each region RNR i Is defined.
  • the map shown in FIG. 2 is obtained by performing learning corresponding to a standard engine (a new engine and an engine having an average operating characteristic).
  • the input data applied to learning is plotted with black circles.
  • the target throttle valve opening THCMD is calculated by applying the weight coefficient vector Ci and the input data vector xTH associated with the above to the following equation (12).
  • THCMD C1i x GAIRCMD + C2i x PB + C3i * PI + C4i * NE + C0i (12)
  • FIG. 3 is a diagram showing the relationship between the intake air amount GAIR [g / sec] and the throttle valve opening TH, and the curves L1 to L5 indicate that the engine speed NE is 1000, 1500, 2000, 2500, and This corresponds to the state of 3000 rpm.
  • the target intake air amount GAIRCMD set according to the accelerator pedal operation amount AP and the engine speed NE is obtained by multiplying the maximum intake air amount GAIRMAX by a predetermined threshold coefficient KTH (for example, 0.95).
  • the target throttle valve opening THCMD is set to the maximum opening THMAX (for example, “90 degrees”). Thereby, the calculation load of the CPU of the ECU 20 can be reduced without impairing the controllability of the intake air amount.
  • the target throttle valve opening THCMD is calculated using the above-described self-organizing map (hereinafter referred to as “SOM”). As a result, the optimum throttle valve opening can be set for controlling the actual intake air amount GAIR to the target intake air amount GAIRCMD.
  • FIG. 4 is a flowchart of a process for calculating the target throttle valve opening THCMD, and this process is executed by the CPU of the ECU 20 every predetermined time.
  • a GAIRCMD map (not shown) is searched according to the accelerator pedal operation amount AP and the engine speed NE to calculate a target intake air amount GAIRCMD.
  • the GAIRCMD map is set so that the target intake air amount GAIRCMD increases as the accelerator pedal operation amount AP increases, and the target intake air amount GAIRCMD increases as the engine speed NE increases.
  • step S12 a GAIRMAX map (not shown) is searched according to the engine speed NE and the boost pressure PB, and the maximum intake air amount GAIRMAX is calculated.
  • the GAIRMAX map is set so that the maximum intake air amount GAIRMAX increases as the engine speed NE increases, and the maximum intake air amount GAIRMAX increases as the boost pressure PB increases.
  • step S13 the determination threshold GAIRTH is calculated by multiplying the maximum intake air amount GAIRMAX by a predetermined threshold coefficient KTH.
  • step S14 it is determined whether or not the target intake air amount GAIRCMD is smaller than the determination threshold value GAIRTH. If the answer to step S14 is affirmative (YES), the target throttle valve opening THCMD is calculated using SOM (step S15). ).
  • step S14 when the target intake air amount GAIRCMD is equal to or larger than the determination threshold GAIRTH, the target throttle valve opening THCMD is set to the maximum opening THMAX.
  • the target intake air amount GAIRCMD when the target intake air amount GAIRCMD is smaller than the determination threshold GAIRTH, the target intake air amount GAIRCMD, the supercharging pressure PB, the intake pressure PI, and the engine speed NE are input, and the target throttle valve
  • the target throttle valve opening THCMD is calculated using the SOM that outputs the opening THCMD.
  • the target intake air amount GAIRCMD is equal to or larger than the determination threshold GAIRTH
  • the target throttle valve opening THCMD reaches the maximum opening THMAX. The calculation of the target throttle valve opening THCMD using the SOM is stopped. Therefore, it is possible to reduce the calculation load of the CPU in an operation state where the target intake air amount GAIRCMD is large while maintaining the required calculation accuracy of the target throttle valve opening THCMD.
  • the target throttle valve opening THCMD is set to the fully opened opening THMAX, so that the pumping loss can be reduced and the engine efficiency can be increased.
  • the throttle valve 3 corresponds to an intake control valve
  • the ECU 20 constitutes a target intake air amount calculation means, a control amount calculation means, and a calculation switching means.
  • step S11 in FIG. 4 corresponds to the target intake air amount calculation means
  • step S15 corresponds to the control amount calculation means
  • steps S12 to S14 and S16 correspond to the calculation switching means.
  • FIG. 5 is a flowchart showing a modification of the process shown in FIG. This process is obtained by replacing step S16 in FIG. 4 with steps S16a and 16b.
  • step S16a a THSTB table indicated by a solid line in FIG. 6 is retrieved according to the maximum intake air amount GAIRMAX, and the minimum saturation opening THSTB, which is the minimum throttle valve opening that realizes the maximum intake air amount GAIRMAX, is set.
  • the THSTB table is set such that the minimum saturation opening THSTB increases as the maximum intake air amount GAIRMAX increases.
  • the curves L1 to L5 shown in FIG. 3 are indicated by broken lines for reference.
  • the minimum saturation opening THSTB is the minimum throttle valve opening at which the intake air amount is saturated under the condition that the engine speed NE is constant.
  • step S16b the target throttle valve opening THCMD is set to the minimum saturation opening THSTB.
  • steps S12 to S14, S16a, and S16b in FIG. 5 correspond to calculation switching means.
  • the present invention is not limited to the above-described embodiment, and various modifications are possible.
  • the self-organizing map is used as the neural network in the above-described embodiment, the present invention is not limited to this, and a neural network known as a so-called perceptron may be used.
  • the predetermined threshold coefficient KTH may be set to “1.0”, and the determination threshold GAIRTH may be set to the maximum intake air amount GAIRMAX.
  • the present invention can also be applied to the control of a marine vessel propulsion engine such as an outboard motor having a vertical crankshaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

 必要な空気量を内燃機関に供給するための吸気制御弁の制御量演算を、ニューラルネットワークを適切に使用して実行し、必要な算出精度を維持しつつ、演算装置の負荷を軽減することができる吸入空気量制御装置が提供される。内燃機関の目標吸入空気量に応じて吸気制御弁の開度が制御される。機関の運転状態を示す機関運転パラメータ及び目標吸入空気量が入力され、吸気制御弁の制御量を出力するニューラルネットワークを用いて、吸気制御弁の制御量が算出される。目標吸入空気量が判定吸気量以上であるときは、ニューラルネットワークを用いた制御量の算出が停止され、吸気制御弁の制御量が所定量に設定される。

Description

内燃機関の吸気制御装置
 本発明は内燃機関の吸気制御装置に関し、特にニューラルネットワークを用いて吸気制御弁の開度を制御するものに関する。
 特許文献1には、内燃機関の運転状態を示すパラメータ、例えば機関回転数、吸入空気量、制御弁開度などを入力パラメータするニューラルネットワークを用いて、気筒流入空気量、燃料噴射量、機関出力トルク、空燃比などを算出する手法が示されている。
特開平11-351045号公報
 特許文献1に示された手法を用いて、例えば気筒流入空気量を算出し、算出した気筒流入空気量が目標値と一致するように、吸入空気量を制御する吸気制御弁の開度を算出する吸入空気量制御を行うことができる。
 しかしながら、ニューラルネットワークを実現するための演算量は、通常の制御演算の演算量に比べて大きいため、演算装置(CPU)の負荷が増加し、演算能力の低い装置では、リアルタイムでの制御演算が困難となる、若しくは算出結果の精度が低下するといった課題があり、演算能力の高い演算装置を採用すると、コストが増加するという課題がある。
 本発明はこの点に着目してなされたものであり、必要な空気量を機関に供給するための吸気制御弁の制御量演算を、ニューラルネットワークを適切に使用して実行し、必要な算出精度を維持しつつ、演算装置の負荷を軽減することができる内燃機関の吸気制御装置を提供することを目的とする。
 上記目的を達成するため請求項1に記載の発明は、内燃機関の目標吸入空気量(GAIRCMD)を算出する目標吸入空気量算出手段を備え、前記目標吸入空気量(GAIRCMD)に応じて前記機関の吸気制御弁(3)の開度(TH)を制御する、内燃機関の吸気制御装置において、前記機関の運転状態を示す機関運転パラメータ(PB,PI,NE)及び前記目標吸入空気量(GAIRCMD)が入力され、前記吸気制御弁の制御量(THCMD)を出力するニューラルネットワークを用いて、前記吸気制御弁の制御量(THCMD)を算出する制御量算出手段と、前記目標吸入空気量(GAIRCMD)が判定吸気量(GAIRTH)以上であるときは、前記制御量算出手段による前記制御量(THCMD)の算出を停止し、前記制御量(THCMD)を所定量(THMAX)に設定する算出切換手段とを備えることを特徴とする。
 この構成によれば、機関の運転状態を示す機関運転パラメータ及び目標吸入空気量が入力され、吸気制御弁の制御量を出力するニューラルネットワークを用いて、吸気制御弁の制御量が算出され、目標吸入空気量が判定吸気量以上であるときは、ニューラルネットワークを用いた制御量の算出が停止され、吸気制御弁の制御量が所定量に設定される。吸入空気量が大きい状態では、吸気制御弁の開度を変化させても実際の吸入空気量が変化しなくなるので、目標吸入空気量が判定吸気量以上であるときに制御量が所定量に設定することにより、吸気制御弁開度の必要な算出精度を維持しつつ、演算負荷を軽減することができる。
 請求項2に記載の発明は、請求項1に記載の内燃機関の吸気制御装置において、前記所定量は、前記吸気制御弁を全開とする制御量(THMAX)であることを特徴とする。
 この構成によれば、目標吸入空気量が判定吸気量以上であるときは、吸気制御弁の制御量が全開制御量に設定される。これにより、ポンピング損失を低減し、機関の効率を高めることができる。
 請求項3に記載の発明は、請求項1に記載の内燃機関の吸気制御装置において、前記判定吸気量(GAIRTH)は、前記機関の最大吸入空気量(GAIRMAX)に基づいて算出されることを特徴とする。
 この構成によれば、吸気制御弁開度を変化させても吸入空気量が変化しなくなる吸入空気量は、機関運転状態によって決まる最大吸入空気量に依存するため、判定吸気量を最大吸入空気量に基づいて算出することにより、制御の切換を適切に行うことができる。
 請求項4に記載の発明は、請求項1に記載の内燃機関の吸気制御装置において、前記所定量は、前記機関の最大吸入空気量(GAIRMAX)を実現する前記吸気制御弁の制御量の内、最小の制御量(THSTB)に設定されることを特徴とする。
 この構成によれば、所定量は、機関の最大吸入空気量を実現する吸気制御弁制御量の内、最小の制御量に設定される。これにより、目標吸入空気量が判定吸気量以上の値から判定吸気量より小さい値に変化したときに、吸気制御弁の閉弁方向への駆動に伴う応答遅れに起因するむだ時間を最小限に抑制し、吸入空気量の減量を迅速に行って排気特性や機関運転性を向上させることができる。
本発明の一実施形態にかかる内燃機関及びその制御装置の構成を示す図である。 自己組織化マップを説明するための図である。 吸入空気量(GAIR)とスロットル弁開度(TH)との関係を示す図である。 スロットル弁の目標開度(THCMD)を算出する処理のフローチャートである。 図4に示す処理の変形例を示すフローチャートである。 図5の処理で参照されるテーブルを示す図である。
 以下本発明の実施の形態を図面を参照して説明する。
 図1は本発明の一実施形態にかかる内燃機関、及びその制御装置の構成を示す図である。内燃機関(以下「エンジン」という)1は、シリンダ内に燃料を直接噴射するディーゼルエンジンであり、各気筒に燃料噴射弁9が設けられている。燃料噴射弁9は、電子制御ユニット(以下「ECU」という)20に電気的に接続されており、燃料噴射弁9の開弁時期及び開弁時間は、すなわち燃料噴射時期及び燃料噴射量は、ECU20により制御される。
 エンジン1は、吸気管2,排気管4、及びターボチャージャ8を備えている。ターボチャージャ8は、排気の運動エネルギにより回転駆動されるタービンホイール10を有するタービン11と、タービンホイール10とシャフト14を介して連結されたコンプレッサホイール15を有するコンプレッサ16とを備えている。コンプレッサホイール15は、エンジン1に吸入される空気の加圧(圧縮)を行う。
 タービン11は、タービンホイール10に吹き付けられる排気ガスの流量を変化させるべく開閉駆動される複数の可変ベーン12(2個のみ図示)及び該可変ベーンを開閉駆動するアクチュエータ(図示せず)を有しており、可変ベーン12の開度(以下「ベーン開度」という)θvgtを変化させることにより、タービンホイール10に吹き付けられる排気ガスの流量を変化させ、タービンホイール10の回転速度を変更できるように構成されている。可変ベーン12を駆動するアクチュエータは、ECU20に接続されており、ベーン開度θvgtは、ECU20により制御される。より具体的には、ECU20は、デューティ比可変の制御信号をアクチュエータに供給し、これによってベーン開度θvgtを制御する。なお、可変ベーンを有するターボチャージャの構成は広く知られており、例えば特開平1-208501号公報に示されている。
 吸気管2のコンプレッサ16の下流側にはインタークーラ18が設けられ、さらにインタークーラ18の下流側には、スロットル弁3が設けられている。スロットル弁3は、アクチュエータ19により開閉駆動可能に構成されており、アクチュエータ19はECU20に接続されている。ECU20は、アクチュエータ19を介して、スロットル弁3の開度制御を行う。
 排気管4と吸気管2との間には、排気ガスを吸気管2に還流する排気還流通路5が設けられている。排気還流通路5には、排気還流量(EGR量)を制御するための排気還流制御弁(以下[EGR弁」という)6が設けられている。EGR弁6は、ソレノイドを有する電磁弁であり、その弁開度はECU20により制御される。EGR弁6には、その弁開度(弁リフト量)LACTを検出するリフトセンサ7が設けられており、その検出信号はECU20に供給される。排気還流通路5及びEGR弁6より、排気還流装置が構成される。
 吸気管2には、吸入空気流量GAを検出する吸入空気流量センサ21、コンプレッサ16の下流側の吸気圧(過給圧)PBを検出する過給圧センサ22、吸気温TIを検出する吸気温センサ23、及び吸気圧PIを検出する吸気圧センサ24が設けられている。これらのセンサ21~24は、ECU20と接続されており、センサ21~25の検出信号は、ECU20に供給される。
 排気管4の、タービン11の下流側には、排気中に含まれるNOxを浄化するNOx浄化装置であるリーンNOx触媒31と、排気中に含まれる粒子状物質(主としてすすからなる)を捕集する粒子状物質フィルタ32とが設けられている。リーンNOx触媒31は、排気中の酸素濃度が比較的高い状態、すなわち還元成分(HC、CO)の濃度が比較的低い状態でNOxが捕捉され、排気中の還元成分濃度が高い状態で捕捉したNOxが還元成分により還元されて放出されるように構成されている。
 エンジン1により駆動される車両のアクセルペダル(図示せず)の踏み込み量(以下「アクセルペダル操作量」という)APを検出するアクセルセンサ27、、及びエンジン回転数(回転速度)NEを検出するエンジン回転数センサ28がECU20に接続されており、これらのセンサの検出信号は、ECU20に供給される。エンジン回転数センサ28は、所定クランク角度(例えば6度)毎に発生するクランク角度パルス及びエンジン1の各気筒のピストンが上死点に位置するタイミングに同期して発生するTDCパルスをECU20に供給する。
 ECU20は、各種センサからの入力信号波形を整形し、電圧レベルを所定レベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路、中央演算処理ユニット(以下「CPU」という)、CPUで実行される各種演算プログラム及び演算結果等を記憶する記憶回路、タービン11の可変ベーン12を駆動するアクチュエータ、燃料噴射弁9、EGR弁6、スロットル弁3を駆動するアクチュエータ19などに駆動信号を供給する出力回路から構成される。
 ECU20は、エンジン運転状態(主としてエンジン回転数NE及びエンジン負荷目標値Pmecmdに応じて燃料噴射弁9による燃料噴射制御、EGR弁6による排気還流制御、可変ベーン12による過給圧制御などを行う。エンジン負荷目標値Pmecmdは、アクセルペダル操作量APに応じて算出され、アクセルペダル操作量APが増加するほど増加するように設定される。
 ECU20は、自己組織化マップアルゴリズムが適用されるニューラルネットワーク(以下単に「自己組織化マップ」という)を用いて、目標吸入空気量GAIRCMD[g/sec]に応じた目標スロットル弁開度THCMDの算出を行い、検出されるスロットル弁開度THが目標スロットル弁開度THCMDと一致するようにアクチュエータ19を駆動する。
 以下自己組織化マップについて詳細に説明する。
 N個の要素からなる入力データベクトルxjを下記式(1)で定義し、自己組織化マップを構成する各ニューロンの重みベクトルwiを下記式(2)で定義する。ニューロンの数はM個とする。すなわち、パラメータiは、1からMまでの値をとる。重みベクトルwiの初期値は乱数を用いて与えられる。
 xj=(xj1,xj2,…,xjN)         (1)
 wi=(wi1,wi2,…,wiN)         (2)
 M個のニューロンについて、入力データベクトルxjと対応するニューロンの重みベクトルwiとのユークリッド距離DWX=|wi-xj|を算出し、距離DWXが最小となるニューロンを勝者ニューロンとする。ユークリッド距離DWXは、下記式(3)により算出される。
Figure JPOXMLDOC01-appb-M000001
 次に勝者ニューロン及びその近傍のニューロン集合Ncに含まれるニューロンの重みベクトルwiを下記式(4)により、更新する。式(4)のα(t)は、学習係数であり、tは学習回数である。学習係数α(t)は、例えば初期値が「0.8」に設定され、学習回数tの増加とともに減少するように設定される。
 wi(t+1)=wi(t)+α(t)(xj-wi(t))     (4)
 ニューロン集合Ncに含まれないニューロンの重みベクトルwiは下記式(5)で示すように前の値を維持する。
 wi(t+1)=wi(t)                (5)
 なお、ニューロン集合Ncも学習回数tの関数であり、学習回数tが増加するほど、近傍の範囲を狭くするように設定される。式(4)による重みベクトルの更新により、勝者ニューロン及びその近傍のニューロンの重みベクトルは、入力データベクトルに近づくように修正される。
 上述した学習規則にしたがった演算を多数の入力データベクトルについて実行すると、M個のニューロンの配置は、入力データベクトルの分布状態を反映したものとなる。例えば、入力データベクトルを簡単のために2次元ベクトルとして、その配置を平面上に表したとき、入力データベクトルが平面上に一様に分布しているときは、学習後のニューロンの配置は平面上に一様に分布する。また入力データベクトルの分布に偏り(粗密)があるときには、ニューロンの分布状態は、同様の偏りのある分布状態となる。
 このようにして得られた自己組織化マップは、学習ベクトル量子化(LVQ)アルゴリズムをさらに適用することにより、ニューロンの配置をより適切なものとするようにしてもよい。
 図2は、本実施形態における目標スロットル弁開度THCMDを算出する自己組織化マップを2次元マップとして示す。この2次元マップは、最も支配的な要因となる2つの入力パラメータである目標吸入空気量GAIRCMD及び過給圧PBによって定義されている。入力データベクトルxTHは下記式(10)で定義される。すなわち、入力パラメータは目標吸入空気量GAIRCMD、過給圧PB、吸気圧PI、及びエンジン回転数NEである。
 xTH=(GAIRCMD,PB,PI,NE)      (10)
 図2に示すマップは複数の領域RNRi(i=1~M,M=36)に分割されており、各領域に1つのニューロンNRi(「*」でプロットされている)が含まれる。多数の入力データベクトルxTHによる学習を予め行うことによって、各ニューロンNRiの位置(重みベクトルwi)が決定され、さらに隣接するニューロンとの位置関係を考慮して境界線を引くことにより、各領域RNRiが定義されている。学習の際に適用する入力データベクトルxTHの分布を、実際のエンジン運転中の出現分布と一致させておくことにより、エンジン運転中に出現頻度の高い運転状態に対応する領域においては、ニューロンNRiの分布が密になる。これにより、出現頻度の高い運転状態における目標スロットル弁開度THCMDの算出精度を高めることができる。図2に示すマップは、標準的なエンジン(新品でかつ作動特性が平均的なエンジン)に対応する学習を行うことにより得られたものである。なお、図2には黒丸で学習に適用した入力データがプロットされている。
 自己組織化マップの学習中においては、入力データベクトルxTHと、その入力データベクトルxTHに対応するスロットル弁開度THとを用いて、下記式(11)で示す重み係数ベクトルCi(i=1~M)が算出され、記憶される。重み係数ベクトルCiは、各ニューロンNRiに対応して算出され、記憶される。
 Ci=(C0i,C1i,C2i,C3i,C4i)        (11)
 実際の制御演算においては、入力データベクトルxTHの要素である目標吸入空気量GAIRCMD及び過給圧PBによって決まるその時点のマップ上の動作点を含む領域RNRiが選択され、領域RNRiを代表するニューロンNRiに対応付けられた重み係数ベクトルCi及び入力データベクトルxTHを下記式(12)に適用して、目標スロットル弁開度THCMDが算出される。
 THCMD=C1i×GAIRCMD+C2i×PB
            +C3i×PI+C4i×NE+C0i (12)
 図3は、吸入空気量GAIR[g/sec]と、スロットル弁開度THとの関係を示す図であり、曲線L1~L5は、それぞれエンジン回転数NEが1000,1500,2000,2500,及び3000rpmである状態に対応する。
 この図から明らかなように、エンジン回転数NEが一定という条件の下で、スロットル弁開度THを増加させていくと、吸入空気量GAIRが増加するが一定値(飽和レベル)で飽和し、スロットル弁開度THを変化させても、吸入空気量GAIRは変化しない。すなわち、吸入空気量GAIRが飽和レベル(以下「最大吸入空気量GAIRMAX」という)に達すると、スロットル弁開度THの変更は吸入空気量GAIRに影響を与えない。そこで、本実施形態では、アクセルペダル操作量AP及びエンジン回転数NEに応じて設定される目標吸入空気量GAIRCMDが、最大吸入空気量GAIRMAXに所定閾値係数KTH(例えば0.95)を乗算することにより得られる判定閾値GARTH以上であるときは、目標スロットル弁開度THCMDを最大開度THMAX(例えば「90度」)に設定するようにしている。これにより、吸入空気量の制御性を損なうこと無く、ECU20のCPUの演算負荷を軽減することができる。一方、目標吸入空気量GAIRCMDが最大吸入空気量GAIRMAXより小さいときは、上述した自己組織化マップ(以下「SOM」という)を用いて、目標スロットル弁開度THCMDを算出するようにしている。これにより、実際の吸入空気量GAIRを目標吸入空気量GAIRCMDに制御する上で最適のスロットル弁開度の設定を行うことができる。
 図4は、目標スロットル弁開度THCMDを算出する処理のフローチャートであり、この処理はECU20のCPUで所定時間毎に実行される。
 ステップS11では、アクセルペダル操作量AP及びエンジン回転数NEに応じてGAIRCMDマップ(図示せず)を検索し、目標吸入空気量GAIRCMDを算出する。GAIRCMDマップは、アクセルペダル操作量APが増加するほど目標吸入空気量GAIRCMDが増加し、かつエンジン回転数NEが増加するほど目標吸入空気量GAIRCMDが増加するように設定されている。
 ステップS12では、エンジン回転数NE及び過給圧PBに応じてGAIRMAXマップ(図示せず)を検索し、最大吸入空気量GAIRMAXを算出する。GAIRMAXマップは、エンジン回転数NEが増加するほど最大吸入空気量GAIRMAXが増加し、かつ過給圧PBが増加するほと最大吸入空気量GAIRMAXが増加するように設定されている。
 ステップS13では、最大吸入空気量GAIRMAXに所定閾値係数KTHを乗算することにより、判定閾値GAIRTHを算出する。ステップS14では、目標吸入空気量GAIRCMDが判定閾値GAIRTHより小さいか否かを判別し、この答が肯定(YES)であるときは、SOMを用いて目標スロットル弁開度THCMDを算出する(ステップS15)。
 ステップS14で、目標吸入空気量GAIRCMDが判定閾値GAIRTH以上であるときは、目標スロットル弁開度THCMDを最大開度THMAXに設定する。
 以上のように本実施形態では、目標吸入空気量GAIRCMDが判定閾値GAIRTHより小さいときは、目標吸入空気量GAIRCMD,過給圧PB,吸気圧PI,及びエンジン回転数NEが入力され、目標スロットル弁開度THCMDを出力するSOMを用いて、目標スロットル弁開度THCMDが算出される一方、目標吸入空気量GAIRCMDが判定閾値GAIRTH以上であるときは、目標スロットル弁開度THCMDが最大開度THMAXに設定され、SOMを用いた目標スロットル弁開度THCMDの算出が停止される。したがって、目標スロットル弁開度THCMDの必要な算出精度を維持しつつ、目標吸入空気量GAIRCMDが大きい運転状態におけるCPUの演算負荷を軽減することができる。
 また目標吸入空気量GAIRCMDが判定閾値GAIRTH以上であるときは、目標スロットル弁開度THCMDが全開開度THMAXに設定されるので、ポンピング損失を低減し、エンジンの効率を高めることができる。
 また吸入空気量GAIRが、図3に示すように最大吸入空気量GAIRMAXに達すると、スロットル弁開度THを変化させても吸入空気量GAIRが変化しなくなるので、最大吸入空気量GAIRMAXに所定閾値係数KTHを乗算して判定閾値GAIRTHを算出することにより、制御の切換を適切に行うことができる。
 本実施形態では、スロットル弁3が吸気制御弁に相当し、ECU20が目標吸入空気量算出手段、制御量算出手段、及び算出切換手段を構成する。具体的には、図4のステップS11が目標吸入空気量算出手段に相当し、ステップS15が制御量算出手段に相当し、ステップS12~S14及びS16が算出切換手段に相当する。
 [変形例]
 図5は、図4に示す処理の変形例を示すフローチャートである。この処理は、図4のステップS16をステップS16a及び16bに代えたものである。
 ステップS16aでは、最大吸入空気量GAIRMAXに応じて図6に実線で示すTHSTBテーブルを検索し、最大吸入空気量GAIRMAXを実現する最小のスロットル弁開度である最小飽和開度THSTBに設定する。THSTBテーブルは、最大吸入空気量GAIRMAXが増加するほど、最小飽和開度THSTBが増加するように設定されている。図6には参考のために図3に示す曲線L1~L5が破線で示されている。最小飽和開度THSTBは、換言すれば、エンジン回転数NEが一定の条件の下で、吸入空気量が飽和する最小のスロットル弁開度である。
 ステップS16bでは、目標スロットル弁開度THCMDを最小飽和開度THSTBに設定する。
 この変形例によれば、目標吸入空気量GAIRCMDが判定吸気量GARITH以上の値から判定吸気量GAIRTHより小さい値に変化したときに、スロットル弁3の閉弁方向への駆動に伴う応答遅れに起因するむだ時間を最小限に抑制し、吸入空気量GAIRの減量を迅速に行って排気特性や機関運転性を向上させることができる。
 この変形例では、図5のステップS12~S14、S16a、及びS16bが算出切換手段に相当する。
 なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。例えば、上述した実施形態ではニューラルネットワークとして、自己組織化マップを用いたが、これに限るものではなく、いわゆるパーセプトロンとして知られるニューラルネットワークを使用するようにしてもよい。
 また所定閾値係数KTHを「1.0」とし、判定閾値GAIRTHを最大吸入空気量GAIRMAXに設定するようにしてもよい。
 また本発明は、クランク軸を鉛直方向とした船外機などのような船舶推進機用エンジンなどの制御にも適用が可能である。
 1 内燃機関
 2 吸気管
 3 スロットル弁(吸気制御弁)
 20 電子制御ユニット(目標吸入空気量算出手段、制御量算出手段、算出切換手段)
 22 過給圧センサ
 24 吸気圧センサ
 27 アクセルセンサ
 28 エンジン回転数センサ

Claims (4)

  1.  内燃機関の目標吸入空気量を算出する目標吸入空気量算出手段を備え、前記目標吸入空気量に応じて前記機関の吸気制御弁の開度を制御する、内燃機関の吸気制御装置において、
     前記機関の運転状態を示す機関運転パラメータ及び前記目標吸入空気量が入力され、前記吸気制御弁の制御量を出力するニューラルネットワークを用いて、前記吸気制御弁の制御量を算出する制御量算出手段と、
     前記目標吸入空気量が判定吸気量以上であるときは、前記制御量算出手段による前記制御量の算出を停止し、前記制御量を所定量に設定する算出切換手段とを備えることを特徴とする内燃機関の吸気制御装置。
  2.  前記所定量は、前記吸気制御弁を全開とする制御量であることを特徴とする請求項1に記載の内燃機関の吸気制御装置。
  3.  前記判定吸気量は、前記機関の最大吸入空気量に基づいて算出されることを特徴とする請求項1に記載の内燃機関の吸気制御装置。
  4.  前記所定量は、前記機関の最大吸入空気量を実現する前記吸気制御弁の制御量の内、最小の制御量に設定されることを特徴とする請求項1に記載の内燃機関の吸気制御装置。
PCT/JP2009/062178 2009-07-03 2009-07-03 内燃機関の吸気制御装置 WO2011001529A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011520719A JP5560275B2 (ja) 2009-07-03 2009-07-03 内燃機関の吸気制御装置
DE112009005032.8T DE112009005032B4 (de) 2009-07-03 2009-07-03 Regelungs-/Steuerungssystem für Ansaugluft für einen Verbrennungsmotor
PCT/JP2009/062178 WO2011001529A1 (ja) 2009-07-03 2009-07-03 内燃機関の吸気制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/062178 WO2011001529A1 (ja) 2009-07-03 2009-07-03 内燃機関の吸気制御装置

Publications (1)

Publication Number Publication Date
WO2011001529A1 true WO2011001529A1 (ja) 2011-01-06

Family

ID=43410627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062178 WO2011001529A1 (ja) 2009-07-03 2009-07-03 内燃機関の吸気制御装置

Country Status (3)

Country Link
JP (1) JP5560275B2 (ja)
DE (1) DE112009005032B4 (ja)
WO (1) WO2011001529A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11459962B2 (en) * 2020-03-02 2022-10-04 Sparkcognitton, Inc. Electronic valve control

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129440A (ja) * 1984-11-26 1986-06-17 Mazda Motor Corp エンジンのスロツトル弁制御装置
JPH03156601A (ja) * 1989-11-15 1991-07-04 Honda Motor Co Ltd 車両制御方法
JPH0874636A (ja) * 1994-09-09 1996-03-19 Matsushita Electric Ind Co Ltd 空燃比制御装置
JPH08200130A (ja) * 1995-01-27 1996-08-06 Matsushita Electric Ind Co Ltd 空燃比制御装置
JPH08232749A (ja) * 1995-02-27 1996-09-10 Honda Motor Co Ltd 内燃機関の吸入空気量推定装置
JPH09170472A (ja) * 1995-12-21 1997-06-30 Matsushita Electric Ind Co Ltd 空燃比制御システム診断装置
JPH11351045A (ja) * 1998-06-09 1999-12-21 Hitachi Ltd エンジンの状態を示す量の推定方法
JP2004156456A (ja) * 2002-11-01 2004-06-03 Honda Motor Co Ltd 内燃機関の吸入空気量推定方法、推定装置、吸入空気量制御方法および制御装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01208501A (ja) * 1988-02-12 1989-08-22 Honda Motor Co Ltd 可変容量タービン
JPH11294231A (ja) * 1998-04-10 1999-10-26 Yamaha Motor Co Ltd エンジンの燃料噴射制御装置
JPH11327606A (ja) * 1998-05-14 1999-11-26 Yamaha Motor Co Ltd 総合制御方式
JP2004257317A (ja) * 2003-02-26 2004-09-16 Toyota Motor Corp 内燃機関の吸入空気量制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61129440A (ja) * 1984-11-26 1986-06-17 Mazda Motor Corp エンジンのスロツトル弁制御装置
JPH03156601A (ja) * 1989-11-15 1991-07-04 Honda Motor Co Ltd 車両制御方法
JPH0874636A (ja) * 1994-09-09 1996-03-19 Matsushita Electric Ind Co Ltd 空燃比制御装置
JPH08200130A (ja) * 1995-01-27 1996-08-06 Matsushita Electric Ind Co Ltd 空燃比制御装置
JPH08232749A (ja) * 1995-02-27 1996-09-10 Honda Motor Co Ltd 内燃機関の吸入空気量推定装置
JPH09170472A (ja) * 1995-12-21 1997-06-30 Matsushita Electric Ind Co Ltd 空燃比制御システム診断装置
JPH11351045A (ja) * 1998-06-09 1999-12-21 Hitachi Ltd エンジンの状態を示す量の推定方法
JP2004156456A (ja) * 2002-11-01 2004-06-03 Honda Motor Co Ltd 内燃機関の吸入空気量推定方法、推定装置、吸入空気量制御方法および制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11459962B2 (en) * 2020-03-02 2022-10-04 Sparkcognitton, Inc. Electronic valve control

Also Published As

Publication number Publication date
DE112009005032T5 (de) 2012-08-09
DE112009005032B4 (de) 2017-05-11
JP5560275B2 (ja) 2014-07-23
JPWO2011001529A1 (ja) 2012-12-10

Similar Documents

Publication Publication Date Title
JP4615573B2 (ja) 内燃機関の制御装置
JP4757886B2 (ja) 内燃機関の制御装置
EP2397673B1 (en) Internal combustion engine control device
JP6028925B2 (ja) 内燃機関の制御装置
US8820297B2 (en) Control device for internal combustion engine
JP5169439B2 (ja) 内燃機関制御装置及び内燃機関制御システム
JP5000539B2 (ja) 内燃機関の排気浄化装置
JP5397567B1 (ja) 内燃機関の制御装置
JP5590234B2 (ja) 内燃機関の制御装置
JP2009121381A (ja) Egr装置の異常判定装置
JP2007100509A (ja) エンジンの燃料制御装置
JP4503506B2 (ja) 内燃機関吸気系の異常検出装置
EP2211044B1 (en) EGR controller and EGR control method for internal combustion engine
JP2006188999A (ja) 内燃機関の過給圧制御装置
CN109072823B (zh) 内燃机的egr控制装置和egr控制方法
JP5212552B2 (ja) 内燃機関の制御装置
EP2570644A1 (en) Control device for internal combustion engine
JP5560275B2 (ja) 内燃機関の吸気制御装置
JP5377655B2 (ja) 内燃機関の制御装置
JP5377656B2 (ja) 内燃機関の制御装置
JP4546390B2 (ja) 内燃機関の燃料供給制御装置
JP2012007541A (ja) 内燃機関の制御装置
JP6576190B2 (ja) 内燃機関の制御装置
JP2001090525A (ja) 内燃機関の制御装置
JP2009209780A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09846822

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520719

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112009005032

Country of ref document: DE

Ref document number: 1120090050328

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09846822

Country of ref document: EP

Kind code of ref document: A1