WO2011000300A1 - 空间楔合式摩擦超越离合器 - Google Patents

空间楔合式摩擦超越离合器 Download PDF

Info

Publication number
WO2011000300A1
WO2011000300A1 PCT/CN2010/074619 CN2010074619W WO2011000300A1 WO 2011000300 A1 WO2011000300 A1 WO 2011000300A1 CN 2010074619 W CN2010074619 W CN 2010074619W WO 2011000300 A1 WO2011000300 A1 WO 2011000300A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
guide
overrunning clutch
force
clutch
Prior art date
Application number
PCT/CN2010/074619
Other languages
English (en)
French (fr)
Inventor
洪涛
Original Assignee
Hong Tao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Tao filed Critical Hong Tao
Priority to JP2012516503A priority Critical patent/JP5679469B2/ja
Priority to US13/381,262 priority patent/US9476465B2/en
Priority to EP10793595.9A priority patent/EP2450589B1/en
Publication of WO2011000300A1 publication Critical patent/WO2011000300A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/063Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by moving along the inner and the outer surface without pivoting or rolling, e.g. sliding wedges

Definitions

  • the invention relates to a clutch device in the field of mechanical transmission, and a clutch device, such as a friction clutch, an electromagnetic clutch, a safety clutch, a coupling, a brake, a glider, a direction sensing device, a hinge, a wrench and a screwdriver, etc., including the clutch device, In particular, it relates to a friction overrunning clutch.
  • a clutch device such as a friction clutch, an electromagnetic clutch, a safety clutch, a coupling, a brake, a glider, a direction sensing device, a hinge, a wrench and a screwdriver, etc.
  • the friction overrunning clutch mainly has two types, a roller/bead type for wedge mechanism wedge mechanism, and a diagonal bracket type based on pure friction self-locking.
  • the two overrunning clutches are plane motion mechanisms of inner and outer double rings with excessive hollowness, and the structural characteristics naturally determine that they are suitable for internal radial motion or plane rotation, and must have due to rollers and braces.
  • Sub-springs, springs, etc. can only be structurally and motion-induced defects caused by discrete configuration/presence, and must have the mechanical defects of line contact friction pair and no-load resistance proportional to the rotational speed, which naturally determines the wedge angle/contact angle.
  • the small and radial forces are inevitably too large and their radial stiffness is insufficient.
  • the circumferential discrete distribution of radial forces not only causes the stress of the intermediate members such as rollers or diagonal braces to be very bad, but also amplifies the shortcomings of insufficient radial stiffness, resulting in radial elastic deformation and elasticity.
  • the doubleness of the force is too large, so that the actual wedge angle/contact angle is not fixed and the wedge/joining process is unreliable, the slip angle is too large, and the wedge/joining and unwrapping/disengaging becomes difficult.
  • the actual wedge angle/contact angle is extremely sensitive to and proportional to the dimensional changes caused by wear of the inner and outer rings and the rollers or diagonal braces, and the amount of elastic deformation of the inner and outer rings at the radial force points; Movements between individuals such as columns or diagonal braces and between different axial portions of the individual are not easily synchronized, are often clamped too tightly or crushed radially, and more often cause the spring/cage to deform or break. For the slanting type, it will be invalid due to the tilting of the diagonal support.
  • the present invention seeks to design a device based on a completely new technical principle to avoid the above disadvantages.
  • the space-wedge friction overrunning clutch of the present invention includes at least one traction friction mechanism that is axially coupled about an axis, having at least one intermediate member and a shaft that is swung around the axis and provided with a traction friction surface.
  • a friction member for transmitting a friction torque between the two members; at least one rotation guiding mechanism for providing an engagement force to the traction friction mechanism and rotating around the axis, having the intermediate member and rotating around the axis and providing a corresponding guiding surface
  • the guiding member when the rotating guiding mechanism is engaged, the rising angle ⁇ of the mutually resisting portion between the guiding surface of the guiding member and the intermediate member is greater than zero and less than or equal to ⁇ , that is, 0 ⁇ ⁇ ⁇ , wherein ⁇ is capable of forming The maximum value of the lift angle ⁇ of the self-locking of the guide friction pair at the abutment portion.
  • a force transmitting friction mechanism rigidly coupled to the guide member and the friction member is also included.
  • the range of the angle of appreciation ⁇ may also be: ⁇ ⁇ ⁇ ⁇ , or 0 ⁇ ⁇ ⁇ (when ⁇ > 0 ), wherein ⁇ is the self-locking capable of self-locking the guiding friction pair of the abutting portion The minimum value of the angle of appreciation ⁇ .
  • At least one force limiting element is further provided, which can be fixedly connected at most to one of the guide member, the intermediate member and the friction member and form a force-closed combination member to define the remaining two members from the axially outer end.
  • an elastic pretensioning device having at least one resilient member is provided for resiliently engaging at least the intermediate member or the rotational member fixed circumferentially with the intermediate member against the friction member.
  • the rotation guiding mechanism has a rotation guiding function, and the guiding members are each provided with a guiding surface; and, further, an intermediate member is operably defined in the phase It resists the relative rotation direction of the guide member and defines the circumferential direction corresponding to the working/guide rotation of the rotation guide mechanism.
  • Rotating guide mechanism The circumferential relative rotation is converted into a guiding mechanism comprising at least axial relative movement or movement tendency. Only the sliding/rolling spiral or partial screw mechanism, the radial pin groove mechanism, the end face wedge mechanism, the end face fitting mechanism, the end face ratchet mechanism and the cylindrical cam mechanism, which have strict and uniform spiral angles, can only obtain axial movement.
  • the integral guide mechanism also includes a discrete guide mechanism that can simultaneously obtain radial movement and has discrete members such as steel balls, truncated cones, frustoconical rollers, and diagonal braces.
  • Space wedge mechanism A mechanism consisting of a rotary guide mechanism and a traction friction mechanism. a member provided with a guide surface that rotates integrally to transmit a moment 11 therebetween, which may be located in a wedge-shaped space formed by the two members, a single member or a group of discrete members acting as a pressing force, or may be itself A force-closed single member or composite member that is subjected to an expansion force that accommodates the wedge-shaped spaces of the two members is provided.
  • the interposer can also transmit torque to the outside.
  • Wedge Also referred to as a wedge, wedge, wedge, wedge, or squeeze, a working state of a space wedge mechanism, as opposed to a wedge/de-wedge/squeeze/disengagement, referring to the passage of the intermediary
  • the latter wedge form in which the two members are integrated from the outside is unique to the present invention.
  • the superior concept of wedges, etc. including self-locking, locking or locking in the prior art, as opposed to separating, disengaging, and transcending, generally referring to the detachable mechanism being operatively coupled into a single rotating body.
  • the connection for example, corresponds to a connection in the transmitted torque state of the overrunning clutch when the space wedge mechanism is wedged.
  • the combined intermediate member 90 including the cup-shaped shell-type force-limiting member 180 is at least axially in contact with the traction friction surface 72 of the friction member 70 by its friction surface, for example, 104,
  • the resultant force of the normal pressure forming the abutment portion W is not perpendicular to the axis of revolution X of the rotary traction mechanism F1 comprising at least one set of traction friction pairs; on the other hand, through its friction surface or toward the same circumferential direction
  • the surface 94 is at least axially contacted with the corresponding guiding surface 54 of the guiding member 50 to form a resultant force of the normal pressure of the abutting portion, and a set of guiding of the rotating guiding mechanism G not perpendicular to the rotation axis X
  • the friction pair; the average value of the angle between the common tangent of the abutting portion and the plane perpendicular to the axis of rotation X is called the angle of elevation ⁇ of the abutting portion; on the
  • the guiding friction pair is in a constant self-locking state, and the traction friction pair is in a state of general static friction that is not self-locking.
  • the magnitude of the traction friction torque of the traction friction pair is only uniquely related to and the adaptive pair is equal to the acting torque between the guide member 50 and the intermediate member 90, regardless of the friction member 70. Any torque. That is, the external torque acting on the friction member 70 can be as large as the relative traction torque overload.
  • the intermediate member 90 can wedge the guide member 50 and the friction member 70 into a single rotating body, when the friction member 70 is overloaded or overdriven relative to the guide member 50, the traction friction pair can be normally transferred to the sliding friction state by the static friction state.
  • the guiding friction pair can still be stable and self-locking.
  • the space wedge mechanism is in a half-wedge state and the overrunning clutch is in a non-fully engaged state.
  • the prior art of the planar wedge mechanism corresponds to the case, ⁇ « 0 (the static friction coefficient of both friction pairs is approximately 0.1), ⁇ « 11 ° , ⁇ « 6. ⁇ 8. , ⁇ ⁇ ⁇ ⁇ . It can be seen that the physical essence of the working principle/transfer torque is friction itself rather than the friction self-locking of the two sets of friction pairs considered by the prior art bias. Therefore, when it is overloaded, it will naturally slip naturally, and there is no technical bias. The case of the self-locking failure of the traction friction pair when the non-structural deformation/destruction is considered. In addition, it is difficult to increase the structural characteristics of the (equivalent) friction coefficient of the traction friction pair in the prior art, and it is determined that there is no possibility that the following motion form "3" exists in reality.
  • the traction friction pair is in a constant self-locking state, and the guiding friction pair is in a general static friction state.
  • the intermediate member 90 has a tendency to break through the maximum static friction state/resistance of the guide friction pair and slide relative to the guide member 50, but due to the climb The tendency is prevented by the axial force of the wedge mechanism from being rigid, so that the guide friction pair is forcibly maintained in a generally static friction state equivalent to self-locking.
  • the intermediate member 90, the guide member 50 and the friction member 70 are forcibly combined into one whole body, and they do not slip and climb each other even if they are overloaded to be damaged.
  • the spatial wedge mechanism is thus in an absolute self-locking/wedge state similar to a slanted overrunning clutch.
  • the limit angle ⁇ It is not recognized by the prior art theory, nor can it be revealed, imagined or revealed by the motion relationship of the planar wedge mechanism, and cannot be derived from its structure. Therefore, the prior art that does not know the existence and physical meaning of the limit angle ⁇ can not thoroughly understand the true physical meaning of the limit angle ⁇ , ie the wedge angle, including the normality of the friction slip, and it is even less likely to find, reveal and confirm the circumferential wedge. The physical nature of the combination.
  • the guide friction pair and the traction friction pair can be in a self-locking state at the same time only when ⁇ is uniquely equal to ⁇ .
  • the first is that there is an error in manufacturing, and it is not guaranteed to be equal.
  • itself is not constant. It will change to some extent due to the complex and unsteady friction coefficient of the influencing factors and the changes in the relevant stress conditions.
  • the physical nature of the torque transmitted by the spatial wedge mechanism including the planar special case is friction and is not friction self-locking at all. Since there is always a set of non-self-locking slidable friction pairs in the mechanism, the terms describing the two states should be wedge/wedge/crush/wedge angle or wedge/wedge. Extrusion/disengagement, etc., should not be an incorrect self-locking/locking/locking/self-locking feature/self-locking angle or unlocking, etc. in the prior art.
  • the above-mentioned lifting angle ⁇ is the wedge angle of the space wedge mechanism of the present invention, which is also called the wedge angle/crowding angle, and only when 0 ⁇ ⁇ , the space wedge mechanism can be wedged, and the overrunning clutch can be engaged. .
  • the transcendental rotation and the anti-pervasive rotation are both the rotation of the rotating member on the downstream side of the torque transmission path with respect to the rotating member on the upstream side of the torque transmission path, except that the relative rotational direction of the former coincides with the direction of the circumferential force to be transmitted by the overrunning clutch, and the latter
  • the relative direction of rotation is just the opposite.
  • the circumferential angle rotated by the anti-transverse rotation is called the slip angle, the idling angle or the joint angle.
  • the overrunning clutch according to the invention has the advantages of reliable wedge, high bearing capacity, high rotation speed, long service life, good transmissibility, light opening and closing, high opening and closing sensitivity, easy adjustment and repair, high efficiency, stable performance at high frequency opening and closing, and structure. Simple, easy to manufacture and assemble, relatively low cost, and easy to control, it can easily obtain a variety of working conditions such as couplings and gliders and wider application. The objects and advantages of the invention will be apparent from the description and appended claims.
  • Figure 1 is a simplified axial cross-sectional view of a compression-loaded one-way overrunning clutch in accordance with the present invention.
  • 2 is a simplified axial cross-sectional view of an expansion-forced one-way overrunning clutch in accordance with the present invention.
  • Figure 3 is a schematic view of the interposer of Figure 1, (a) is an axial half-section of the right side view, (b) is a front view Figure.
  • Figure 4 is a partial exploded view of the radial projection of the tooth profile of the various mechanisms of Figure 1 against the same outer cylindrical surface.
  • Figure 5 is a partial exploded view of the radial projection of the tooth profile of the various mechanisms of Figure 2 against the same outer cylindrical surface.
  • Figure 6 is an axial cross-sectional view of a force-closed, simple-structure, one-way overrunning clutch in accordance with the present invention.
  • Figure 7 is an end elevational view of the bag-shaped encapsulating friction member of Figure 6 having a force closure function.
  • Figure 8 is a simplified axial cross-sectional view of a simplex one-way overrunning clutch in accordance with the present invention.
  • Figure 9 is a simplified axial cross-sectional view of a modified one-way overrunning clutch in accordance with the present invention.
  • Figure 10 is a simplified axial cross-sectional view of a multi-friction disc type one-way overrunning clutch in accordance with the present invention.
  • Figure 11 is a simplified axial cross-sectional view of a large wedge angle one-way overrunning clutch in accordance with the present invention.
  • Figure 12 is a simplified axial cross-sectional view of a two-way overrunning clutch in accordance with the present invention.
  • Figure 13 is a schematic view of the orientation mechanism shown in the expanded view of the cylindrical section Y-Y in Figure 12, wherein (a) shows the orientation relationship diagram with positive and negative working conditions, and the hollow arrow points to the positive rotation of the work.
  • the direction, (b) ⁇ (f) represents a schematic diagram of an alternative structural form that can replace the guide groove in (a); specifically, (b) corresponds to the forward working condition and the coupling working condition, (c) corresponds Forward working condition, coupling working condition and reverse working condition, (d) corresponding to forward working condition, absolute separating idle working condition and reverse working condition, (e) corresponding to absolute separation idle working condition and forward working condition And coupling condition, (f) corresponds to absolute separation idle condition, forward working condition, coupling working condition and reverse working condition.
  • Figure 14 is an axial cross-sectional view of a two-way overrunning clutch that can be used as a motor vehicle glider.
  • Figure 15 is a simplified axial cross-sectional view of an embodiment of a one-way bearing to which the present invention is applied.
  • Figure 16 is a simplified axial cross-sectional view of an embodiment of a torque converter guide wheel to which the present invention is applied.
  • Figure 17 is a simplified axial cross-sectional view of an embodiment of a loader two-shaft assembly to which the present invention is applied.
  • Fig. 18 is a simplified axial cross-sectional view showing an embodiment of a flywheel of a bicycle or the like to which the present invention is applied.
  • Figure 19 is a simplified axial cross-sectional view of an embodiment of an electric power steering wheel hub to which the present invention is applied.
  • Figure 20 is a simplified axial cross-sectional view of an embodiment of a motorcycle electric starting clutch to which the present invention is applied.
  • Embodiment 1 A wheel-shaft-transmission type one-way overrunning clutch C1 having an axial butt-type package shell As shown in FIGS. 1, 3 to 4, the one-way overrunning clutch C1 includes a rotation about an axis X and is rigidly integrated with the tubular base body 76. Friction member 70. The friction member 70 is optimally arranged to have a rotary traction The wiper surface 72 and the disc-shaped ring of the force-transmitting friction surface 74. The inner peripheral surface of the tubular base 76 is provided with, for example, a key groove 64 for coupling with a transmission shaft not shown.
  • the most annular intermediate member 90 which is sleeved outside the tubular base 76, is slidably radially displaced on the inner peripheral surface of the force-limiting member 180 by means of its outer peripheral surface 108, on the one hand
  • the traction friction surface 104 of the tooth end surface is frictionally coupled with the traction friction surface 72 to form a surface frictional contact F1 with the friction member 70, and on the other hand, a set of helical guide teeth uniformly distributed on the other end surface thereof in the circumferential direction.
  • the optimally annular guide member 50 which is provided with the helical guide teeth 52 of the complementary configuration on the inner end surface, is permanently fitted to form a one-way rotational guide mechanism G that is in surface contact.
  • the rotation guide mechanism G and the traction friction mechanism F1 together constitute a space wedge mechanism of the one-way clutch C1.
  • the cup-shaped force limiting element 180 having a central circular opening is fixedly coupled to the guide member 50 into an axial force-closed composite member.
  • the composite member is radially positioned on the outer peripheral surface of both ends of the tubular base 76 by bearings 158, and the intermediate member 90 and the friction member 70 are axially packaged in the disc-shaped annular groove enclosed therein to constitute an axial force closing system.
  • the force transmitting friction surface 58 disposed on the inner end surface of the annular radial flange type force limiting end portion 188 of the cup bottom is also frictionally connected with the force transmitting friction surface 74 to constitute a frictional torque directly transmitted by the friction member 70.
  • the outer surface of the composite member may be provided with a characteristic curved surface constituting a key groove, a circumferential belt groove, an annular radial flange-shaped friction plate mounting hub, a tooth or an end screw hole. (not shown).
  • the fixed connection manner in the above composite member may also be a thread such as riveting, welding, interference fit, thread, and having the same direction of rotation and friction self-locking between the respective inner and outer peripheral surfaces and the rotation guide mechanism G.
  • a thread such as riveting, welding, interference fit, thread, and having the same direction of rotation and friction self-locking between the respective inner and outer peripheral surfaces and the rotation guide mechanism G.
  • Any of a pair, a snap ring, a pin, a key, a mutual fitting, and a wedge for a particular structural arrangement, such as the guide member 50 of Fig. 10, which is provided with a limited force end 188, no connection is required, which is itself equivalent to a force limiting element.
  • the guide member 50 can also be circumferentially fixed to the inner peripheral surface of the force-limiting member 180 by, for example, a spline connection, and the annular end cap screwed to the inner peripheral surface of the latter by the axially outer end thereof can be axially provided.
  • the combined connection of the support and the one-way limitation achieves the purpose of closing the axial force of the clutch C1.
  • 3 to 4 show the detailed relationship and structural features of the rotary guide mechanism G and the intermediate member 90.
  • the guiding faces 54 and 94 of the complementary helical flank configuration of each pair of helical guiding teeth 52 and 92 extending in the radial direction toward a single circumferential direction and having an angle of elevation ⁇ are respectively adhered to each other to form a set of spirals Guided friction pair, here, 0 ⁇ ⁇ ⁇ .
  • the non-guide faces 56 and 96 that are optimally spaced apart are parallel to the axis X to ensure that the two sides do not cause wedges when they are circumferentially opposed.
  • the guide teeth 92 also include a tooth top surface 98 and a tooth bottom surface 102.
  • the plurality of guiding teeth 52 on the end surface of the guiding member 50 are actually wedge-shaped teeth of the space wedge mechanism, and the guiding surface 54 gradually approaches the traction friction surface 72 of the friction member 70 toward the circumferential direction, respectively, and is separated from the latter A plurality of circumferentially extending end wedge spaces are formed.
  • the plurality of guiding teeth 92 disposed in the plurality of wedge-shaped spaces are wedges, which are connected to each other to form a rigid whole, that is, annular. Intermediary 90.
  • the elastic pretensioning device is specifically disposed in the inner hole of the rotating guiding mechanism G.
  • the interposer 90 is always maintained in its quasi-wedge station at the smallest circumferential end of the wedge-shaped space, in a critical state that can be wedged at any time.
  • the guide surface 94 and the rotary friction surface 104 are always elastically simultaneously opposed to the guide surface 54 and the traction friction surface 72 which are the wedge surfaces of the space wedge mechanism.
  • the axial maximum clearance of the rotary guide mechanism G is ⁇
  • the circumferential maximum clearance/degree of freedom is ⁇
  • both gaps are optimally greater than zero.
  • the one-way overrunning clutch C1 works very simply.
  • the friction member 70 will be rotated by the idle/traction friction torque of the traction friction mechanism F1.
  • the intermediate member 90 of the guiding mechanism G is rotated and guided relative to the guiding member 50.
  • the axial movement/expansion force generated by the rotational guiding motion of the mechanism G is instantaneously wedged in the end face wedge-shaped space surrounded by the guiding surface 54 and the traction friction surface 72, that is, the intermediate member 90 will be guided.
  • the member 50 is wedged into a rotating whole body with the friction member 70, and the traction friction mechanism F1 is axially engaged, and the friction member 70 is immediately expanded on the inner end surface of the force limiting member 180, that is, the force transmitting friction surface 58, to form
  • the manner in which the axial force is closed causes the force transmitting friction mechanism F2 to also engage synchronously, and directly connects the guide member 50 and the friction member 70 into a single rotating body.
  • the overrunning clutch C1 is engaged with the wedge of the space wedge mechanism.
  • the wedge friction torque ⁇ 1 transmitted through the rotation guide mechanism G and the traction friction mechanism F1 and the force transmission friction torque M 2 transmitted directly through the force transmission friction mechanism F2 are respectively transmitted to the friction member 70 and then by the tubular base body 76 is transmitted to the drive shaft that is circumferentially fixed in its bore.
  • M. Mi + M 2 .
  • the torque can also be transmitted in the opposite path without any substantial difference.
  • the guide member 50 When the guide member 50 starts to have an initial moment/zero moment of the tendency to rotate relative to the friction member 70 in the direction indicated by the arrow R in FIG. 4, the guide member 50 will start to actuate the guide member G with respect to the intermediate member 90. The rotation. Therefore, the normal pressure between the guide faces 54 and 94 and the rotational guiding action of the rotary guide mechanism G will disappear as the two guide faces are out of contact with each other. Naturally, the two friction mechanisms F1 and F2 and the spatial wedge mechanism based on the axial movement/expansion force of the mechanism G will be separated or unwound. Thus, the clutch C1 ends the engagement and begins to override the rotation, and the intermediate member 90 follows the guide member 50 to frictionally slide relative to the friction member 70. In effect, due to the action of the spring 150, the interposer 90 will remain steadily held in its quasi-wedge station to prepare for the next rapid wedge.
  • the one-way overrunning clutch C1 having the space wedge mechanism according to the present invention not only overcomes the inertial thinking and prejudice of the prior art, but has The advanced nature and extremely significant all-round advantages, and more than all the necessary characteristics of the ideal overrunning clutch.
  • the clutch C1 can have extremely reliable wedging ability and operational reliability, thereby significantly surpassing the annular hollow structure which is subject to mechanical wear, discrete radial force, and easy radial elastic deformation. current technology.
  • the clutch C1 when ⁇ ⁇ ⁇ , if the load torque is greater than the power torque, the clutch C1 will still slip. But as pointed out in the definition of this article, it is not the result of the frictional self-locking failure or destruction that is considered by technical bias, but the normal slipping condition under the condition of the rising angle. After the overload factor is removed, Will return to non-slip conditions again. Therefore, the clutch C1 having the rising angle can also be used as an adaptive anti-overload friction type one-way safety clutch or a one-way clutch in a starter or the like. However, it has directionality and does not have this function when driving in reverse path.
  • the power torque input through the motor 4 inspection member 70 cannot be greater than the total static friction torque of the two-wheeled mechanism F1 and F2 equal to the load torque at the time of overload, it does not slip even if it is overloaded.
  • the traction friction mechanism F1 will never be frictionally self-locking, even if it is overloaded.
  • the angle range is generally not used, but for important anti-reversal applications where there is little possibility of overload, and in powertrain systems such as twin-engine helicopters, the angle of lift is preferred.
  • the present invention also has the technical means of increasing the limit angle ⁇ and ⁇ values which are not available in the prior art, in order to achieve a better load carrying capacity, wedge/solution of the clutch C1 within a greater degree of design freedom. Wedge capability, reliability, slip angle, axial force, and surface contact strength.
  • the guide faces 54 and 94 of the rotary guide mechanism G are disposed as inclined spiral faces, and at least the traction friction faces 72 of the traction friction mechanism F1 are disposed as truncated cone faces so as to guide the guide faces 54 and 94 or the traction friction faces in the axial section.
  • the angle between the 72 and the axis X is not equal to 90 degrees, but is 0 to 180 degrees as shown in Figs.
  • the traction friction mechanism F1 is set to have a multi-friction sheet structure as shown in Fig. 11.
  • the guide faces 54 and 94 are spaced by a roller/bead/drum; and a material/element having a larger coefficient of friction is attached to at least one of the friction faces 72 and 104.
  • the ⁇ and ⁇ in the clutch C1 are equal to 0 and 11.4 degrees, respectively (same as the prior art of the planar wedge mechanism), and only the traction is required. 0 ⁇ 22. 4 ⁇
  • the frictional mechanism F1 is set to a two-piece friction mechanism as shown in Figure 11, the above-mentioned limit angle can be raised to 11.
  • Type friction pair Therefore, based on the same clutch outer diameter or slewing friction outer diameter, the torque transmission capability of the clutch C1 can be at least multiplied or ten times larger than the prior art, or the outer dimensions can be significantly small based on the same load carrying capacity. And therefore have greater design freedom and greater ability to meet actual needs.
  • the number of dry and wet friction plates can be up to 10 and 30 respectively.
  • the clutch C1 can distribute the torque flow in any ratio between the wedge friction torque and the force friction torque M 2 , for example, 20% of 3 ⁇ 4 ⁇ . Therefore, on the basis of the low pair, a technical means for alleviating the contradiction between increasing the carrying capacity and reducing the contact strength of the guiding surface is obtained.
  • the dual flow drive of the clutch C1 thus also has the characteristics of a "power amplifier". 3. Unparalleled speed or power transfer advantages.
  • the friction torque or the resistance torque of the traction friction mechanism F1 and the force transmitting friction mechanism F2 are independent of the rotational speed, and by controlling the strength of the spring 150
  • the frictional resistance torque during the overrunning rotation can be made small, so that the clutch C1 can transmit a large torque which is much higher than the prior art at a high rotational speed much higher than the prior art, and the high rotational speed is almost It only depends on the strength of the relevant material. This will be very beneficial for ultra high speed power transmissions such as dual power helicopters. For the clutch C3, only the counterweight is required.
  • At least one centrifugal mechanism such as a steel ball bevel type can be disposed between the inner peripheral surface such as the intermediate member 90 and the force limiting member 180 to achieve the non-contact transcendence of the clutch C1.
  • the steel ball housed in the corresponding radial hole on the outer peripheral surface 108 of the intermediate member 90 can be pressed and placed on the inner circumference of the force limiting member 180 after the rotation of the overrun is higher than a certain set speed by the action of the centrifugal inertia force.
  • an actuating mechanism such as an orientation ring 120 similar to that of FIG. 12, is provided on the guide member 50 or force limiting member 180 to The intermediate member 90 is pulled axially directly away from or pushed away from the traction friction surface 72.
  • the light opening and closing characteristics are the portability of wedge/wedge and wedge/release. This is obvious in terms of the relative structure.
  • the engagement process of the clutch C1 is very light, and the natural friction of the traction friction mechanism F1 can be used to drive or damper the intermediate member 90. Based on the previous description, the separation/disengagement process will also be quite light and rapid. Compared with the prior art, there is almost no need to wait for the elastic deformation to be restored before the wedge can be unwound, without moving any inertial mass, and it is impossible to have a present There is a technical difficulty in unwrapping or a sudden release of the wedge.
  • the intermediate member 90 Due to the axially high stiffness of the structure and the provision of an elastic pretensioning device, the intermediate member 90 can always be held in its quasi-wedge station, while the spatial wedge mechanism
  • the wedging or unwrapping/disengaging does not require any perceptible geometric movement of the interposer 90, that is, there is no inertial mass in the clutch C1, so this determines that the mechanism has the first time to respond to the overrun or High responsiveness to anti-transverse rotation and wedge or wedge. That is, the clutch C 1 has high sensitivity of separation/disengagement and engagement, and rapidity of completing the opening and closing action.
  • the axial and circumferential high stiffness of the present invention necessarily results in the wedging station of the wedged intermediate member 90 and the quasi-wedge station before the wedging.
  • the difference in position is much smaller than the difference in position in the prior art. That is, the clutch C1 has a smaller slip angle or a higher engagement sensitivity than the prior art, and theoretically and practically the angle will tend to zero. Coupled with the extremely low wear strength, it will be easier to achieve and maintain a high precision transmission for longer. This includes an overrunning transmission that responds to a small range of circumferential swings (such as a condition in which the output speed is approximately zero in a pulsating continuously variable transmission).
  • this embodiment in addition to the spring 1 50, this embodiment can also rigidly define the theoretical maximum slip angle by controlling the circumferential gap ⁇ between the guide teeth 52 and 92, even if the radius of gyration is small. At the same time, it can be effectively controlled like the geometric accuracy.
  • this circumferential gap ⁇ based on a completely rigid geometry is easily achieved. For example, the value of the circumferential gap ⁇ is not difficult to reach the level of 0. 001 ⁇ 0. 01 ⁇ 0. 1 mm. This level of magnitude is only equivalent to a circumferential angle of 40 mm outer diameter of 10. 3 seconds ⁇ 1. 7 minutes ⁇ 17.
  • a set of end-face type helical guide teeth 52, 92 are optimally disposed circumferentially in a mutual zero gap and in the form of a single-head or multi-start thread, respectively, on respective inner and outer peripheral surfaces similar to those shown in FIG.
  • the torsion spring spring 150 is optimally provided, so that it can maintain high-precision transmission capability for a long time throughout the life cycle without any artificial adjustment or deliberate maintenance.
  • the performance is stable when the high frequency is opened and closed.
  • the size of the circumferential gap ⁇ can be easily controlled, it is ensured that the clutch C1 has extremely high responsiveness. That is, no matter how high the opening and closing frequency is, in theory and in practice, the clutch C 1 can naturally obtain the arbitrarily high responsiveness (theoretically achievable) that people need, and the inertia of the rotary guiding mechanism G can be obtained.
  • the impact/speed difference drops to near zero, which keeps the clutch performance stable even when working for long periods of time. There will be no excessive wear and severe heat generation due to wedge and wedge/release in the prior art. Like, there is no possibility that the spring 150 will break or fatigue damage.
  • the clutch C1 can easily cope with the opening and closing condition of 2000 rpm in the pulsating continuously variable transmission, and can double the lift. Torque upper limit and power upper limit for a class-type transmission.
  • the circumferential gap ⁇ can be steplessly adjusted, It can counteract the effects of wear and maintain the high precision of the drive for a long time or for life, and extend the life of each component.
  • the one-way overrunning clutch such as shown in FIGS. 10, 15-20, is provided on the respective inner and outer circumferential surfaces in the form of single-head or multi-head circumferential-type continuous helical teeth with the end-face type helical guide teeth 52, 92. .
  • the present invention does not specifically limit the rotary guide mechanism G and its end face guide teeth 52, 92, and it is not necessary to have an optimum spiral structure. Therefore, the mechanism G and its guide teeth can have any form and shape having a rotational guiding function.
  • the guide teeth can be placed on the end/circumferential surface in discrete form or on the inner/outer circumferential surface in a circumferentially continuous manner. In the latter arrangement, it may be a helical tooth having a cross-sectional shape such as a rectangle, a trapezoid, a zigzag or a triangle.
  • the rotational friction surfaces of the friction mechanisms F1 and F2 can be rotated based on any curve/busbar as long as they can be axially complementarily fitted.
  • the present invention should optimally provide the elastic pretensioning device/spring 150.
  • the purpose is to ensure that the interposer 90 is always maintained at its quasi-wedge station, in order to obtain a continuous traction friction torque, and to respond to changes in the relative rotational direction of the clutch, to ensure that the first moment of the anti-overturn rotation begins,
  • the piece 90 can be synchronized into the wedge/wedge to stop the anti-overrunning described above at the beginning, causing the slip angle to approach zero. Therefore, the spring 150 used in the present invention is not limited to one form of the torsion spring, nor is it limited to one mounting position of the inner hole. Under the premise of ensuring the purpose of setting up, Its specific form, quantity and installation location are not subject to any restrictions.
  • it may be any elastic material such as metal or rubber, such as a torsion spring, a compression spring, a tension spring, a disc spring, a diaphragm spring, a wave spring, a linear wire/plate spring elastic element; and may be mounted on the rotary guide mechanism G The inner and outer circumferential sides, the two end faces, or the inside of the mechanism.
  • a group of compression springs or linear elastic wires/pieces are partially accommodated in a set of axial counterbore of the top surface of the guide teeth 52 or 92, respectively, is the most space-saving.
  • torsion springs or axially compressible torsion springs is ideal for high-precision transmissions. It is needless to say that the no-load/traction friction torque that the interposer 90 is subjected to at this time should preferably not be large enough to overcome the circumferential reaction force of the spring 150 to cause the guide faces 94 and 54 to disengage from each other.
  • the axial force provided by the spring 150 and the corresponding no-load/traction friction torque can be sufficiently small and have little to do with the rotational speed and load carrying capacity of the clutch, and the working condition in use is hardly changed, so There are no additional requirements, and ordinary low-cost springs can do the job.
  • the friction member 70 in the clutch C1 and the tubular base 76 can be rigidly formed integrally, or can be formed into a circumferentially integrated body (equivalent to an inner ring overrunning clutch) by, for example, a spline coupling or the like, to adaptively adjust the friction member 70.
  • the axial position ensures that all axial forces are absolutely enclosed within the modular guide 50 without subjecting the bearing 158 to a slight axial force.
  • an intermediate member is disposed symmetrically between the friction member 70 and the axial direction of the force-limiting member 180, and the helical guide teeth of the complementary configuration are disposed on the force-transmitting friction surface 58 to form a common friction member.
  • the friction member is a force-closed combination member including a cup-shaped shell-type force-limiting member 180, and the guide member is rigidly integrated with the tubular base 76, and the force-limiting member 180
  • the force transmitting friction mechanism F2 is constructed, and its structure is similar to that of FIG.
  • the modified clutch can obviously also share the same guide member provided with the double-end guide teeth in the axially symmetric two intermediate members, and is also modified into an axial double-coupled one-way overrunning clutch, and the space is wedge-shaped.
  • the mechanism is also easier to unwind/disengage.
  • the clutch C1 uses an axial butt-type package for the purpose of closing the axial force and facilitating assembly, maintenance and long-term maintenance of the drive.
  • the use of a rigid integral pocket or radial butt joint The package should be the best choice.
  • the guide member 50 is provided with a tubular base body 60, which is a force-closed combination member including a cup-shaped shell-type force-limiting member 180, the slewing friction surface 104 being set to the force-limiting end portion
  • the inner end surface of the 188 and the force transmitting friction surface 58 are disposed on the toothless end surface of the guide member 50.
  • the greatest feature of the clutch C2 is the wedge mode of the intermediate member 90 and the corresponding force condition, which has been formed by the existing wedge shape.
  • the classic internal wedging mode of the mechanism in the wedge-shaped space and subject to the outward-to-inward squeezing force is changed to an external wedging mode that provides a wedge-shaped space and is subjected to an expansion force from the inside to the outside, see Figure 5.
  • the guide member 50 and the friction member 70 are directly frictionally coupled, and the clutch C2 does not substantially differ from the clutch C1.
  • the intermediate member 90 is no longer in direct or indirect contact with the friction member 70 to sense the relative rotation between the latter and the guide member 50, and the traction for the wedge/wedge is not thereby obtained. Frictional torque, but only affects the slip angle. Because the guide member 50 can still be rapidly changed by its direction of rotation relative to the intermediate member 90, so that the latter can use the inertial force to enter the wedge to transmit torque during inertial rotation. For example, a high-frequency commutated overrunning drive in a pulsating continuously variable transmission is a good example.
  • the mechanism G and the mechanism F2 in the clutch C2 can also be axially displaced from each other, that is, the guide teeth 52, 92 are only disposed between the guide member 50 and the friction member 70, so that the clutch C2 can be modified to be dependent on A bi-circumferential or single circumferential coupling that includes the operational state of the force-closed combination member of the force-limiting member 180.
  • the intermediate member 90 of the clutch C2 can be decomposed into two independent members of the intermediate member and the planar ring, and the latter is coupled with the force limiting member 180 as a force-closed combined member, and the friction member 70 still transmits torque to the outside. .
  • the structural layout type of the clutch will be identical to that shown in FIG.
  • the components of the clutches C1 to C2 are not all necessary for implementing the present invention.
  • the one-way overrunning clutch C3 in the form of a non-peripheral wedge-transmitted wheel-shaft transmission shown in Figures 6-7 includes only the three required components.
  • the outer surface of the bag-shaped annular friction member 70 for axial force sealing is provided with a characteristic surface for force transmission such as a key groove 64, a tooth, a screw/pin hole or a belt groove, and an axis of the inner circumferential surface 84 thereof.
  • a disc-shaped annular groove 78 is provided in the middle.
  • the inner surface of the annular half of the annular groove 78 preferably extends in the tangential direction H radially parallel to the outer peripheral surface of the friction member 70 and forms a quadrangular through hole 82.
  • the inner peripheral surface 80 of the annular groove 78 thus extends an inner radial surface having a U-shaped cross-sectional shape.
  • the mutually fitting guide member 50 and the intermediate member 90 can be directly incorporated into the annular groove 78 by the through hole 82 in the direction indicated by the hollow arrow.
  • the outer diameter of the intermediate member 90 should be optimally slightly larger than the guide member 50 so that it can frictionally contact the inner peripheral surface 80 in the radial cross-talk and Thereby the friction required to enter the wedge is obtained.
  • the inner peripheral surface 84 of the friction member 70 is provided with a corresponding radial gap between, for example, the spline shaft that is circumferentially fixed in the bore of the guide member 50. This setting is especially suitable for hinged devices or single-sided wrenches/screws that can be operated continuously.
  • the guide member 50 or the intermediate member 90 is directly disposed on an inner end surface of the friction member 70 in Fig. 6, or by means of a U-shaped outer peripheral surface such as a complementary structure, a spline sleeve in the hole, and an inner surface
  • a pocket-shaped guide or intermediate member having an axial force sealing function can be obtained.
  • the intermediate member or the guide member may be radially inserted, and the friction member may be placed after being axially fitted.
  • the bag-shaped member may also be a single force-limiting member, or may be sealed by a ring that is tightly fitted over the outer peripheral surface.
  • the clutch C 3 can position itself by means of, for example, a splined shaft that extends axially therethrough, but if desired, it can also be packaged and positioned in the assembly as follows. That is, in a portion of the two radial sides of the through hole 82 corresponding to the circumferential end portion 88 and the axial direction only corresponding to the guide member 50, a radially inwardly curved circumferential tongue is cut in advance, or in the through hole 82 At the radially outer ring side 86 at the center of the coplanar inner surface of the co-planar friction surface 74, an axially inwardly bendable radial tongue is pre-cut to plastically bend the guide 50 and the interposer 90 after they are assembled into position.
  • the circumferential tongue or radial tongue achieves encapsulation and positioning of the two members.
  • the force-transmitting friction mechanism F2 is not necessary.
  • the three-component overrunning clutch C4 in the form of a shaft-shaft transmission of the internal wedge mode can provide support for the clutch by two transmission shafts coaxially fixed with the guide member 50 and the friction member 70, respectively.
  • the intermediate member 90 should be optimally configured as an expanded or contracted resilient split ring.
  • the interposer 90 in the present invention does not necessarily have to have a ring-shaped integral form, which may have a plurality of discrete forms as shown in FIG. 9 so that It can move simultaneously in the axial and radial directions and deliver a corresponding force.
  • the friction member 70 is a force-closed composite member including a cup-shaped shell type force limiting member 180.
  • a plurality of interposing members 90 such as steel balls or truncated cone-shaped/taper-conical knuckles, located on the conical surface of the conical apex angle equal to ⁇ , are correspondingly received on the conical end face with a taper/tilt
  • the swivel side is both a guide surface and a friction surface.
  • the intermediate member 90 continuously opposes the inner truncated cone traction friction surface 72 by the action of the centrifugal force.
  • the prior art roller overrunning clutch is merely a special case when the ⁇ angle of the clutch C5 is equal to 0 or 180 degrees, that is, a special case in which the traction friction mechanism F1 only needs to provide radial rather than axial engagement force
  • the space wedge mechanism is simplified as a special case of a planar wedge mechanism with only radial motion due to no axial movement.
  • the clutches C 1 ⁇ C4, C7 ⁇ C9 correspond to their ⁇ angles, more precisely, when the contact angle/line of the guide friction pair of the mechanism G is located at the half cone angle of the conical surface of the cone equal to 90 degrees. Case.
  • the clutches C6 and C1 0 to C15 correspond to the case where 0 degrees ⁇ ⁇ ⁇ 180 degrees but ⁇ ⁇ 90 degrees. All of the interposers 90 are optimally interconnected to form a single rigid body/integral because they do not necessarily require radial motion and do not necessarily rotate.
  • Embodiment 2 One-way overrunning clutch C6, C7 with multi-plate friction mechanism Comparing Figures 1 and 10, it can be seen that the overrunning clutch C6 is actually a variant of the clutch C1.
  • the set of end face type helical guide teeth 52, 92 of the rotary guide mechanism G are circumferentially continuous in the form of a single-head or multi-start thread, respectively, on the inner circumferential surface of the guide member 50 and the outer circumferential surface of the intermediate member 90.
  • the guide member 50 which is rigidly integrated with the force limiting member 180, fastens the annular end cap 174 to its open end face by screws 176.
  • the undulating spring 150 is disposed between the annular end cap 174 and the interposer 90, and only elastically resists the latter against the friction member 70.
  • the force-transmitting friction mechanism F2 is provided as a multi-friction disc clutch mechanism such that the torque directly transmitted is several times that of the traction friction mechanism F1.
  • at least one of the smaller set of friction plates 156 is circumferentially fixed to the corresponding stepped outer peripheral surface of the tubular base 76 by a splined connection, and the other set of larger axially staggered with the friction plates 156
  • the friction plates 154 are circumferentially fixed to the corresponding stepped inner peripheral faces of the guide members 50 by spline connection.
  • the shaft-shaft-driven overrunning clutch C7 of Fig. 11 also has a multi-friction type force-transmitting friction mechanism F2.
  • the traction friction mechanism F1 In order to obtain larger limit angles and turns to reduce the axial force and the no-load friction torque, the traction friction mechanism F1 also employs a multi-friction disc structure, and thus has more than one set of traction. Friction pair.
  • the traction friction mechanism F1 which is not subjected to the elastic axial force, loses its function of the relative rotational direction and the driving member 90 into the wedge while its idle torque is almost reduced to zero.
  • the elastic pretensioning device includes a contraction type elastic split ring type induction member 152 fixed circumferentially by the spline and the inner peripheral surface of the intermediate member 90, which is elastically contracted to the corresponding outer peripheral surface of the tubular base body 76, It constitutes an inductive type of rotary friction pair.
  • the interposer 90 can still be pulled into the wedge/wedge by the traction friction torque and cause the clutch C7 to immediately engage to transmit torque.
  • the above design significantly reduces the wear of the traction friction mechanism F1 and the force transmitting friction mechanism F2 as well as the overall no-load resistance torque.
  • the fastener used in the combination guide 50 is replaced with a bolt 178.
  • the clutches C6 and C7 are optimally suited for the transmission of large torques and for transmissions where the transmission accuracy, engagement frequency or slip angle is not critical.
  • at least one circumferential limiting mechanism such as a pin-slot radial or axial fitting mechanism is provided between the intermediate member 90 and the guiding member 50 or the annular end cap 174, the circumferential direction of the rotating guiding mechanism G can be restricted.
  • the maximum gap ⁇ is for the purpose of high joint sensitivity and small slip angle.
  • the limiting mechanism may be constructed at least in part from an elastic material or in which a spring 150 is circumferentially disposed to actually include the elastic pretensioning device described above.
  • Embodiment 3 Shaft-axis transmission type two-way overrunning clutch C8
  • the two-way overrunning clutch C8 has the form of a main body of the clutch C7.
  • the elastic pretensioning device comprises two members, a wavy spring 150, and a full ring induction that is pressed against the traction friction surface 72 to form an inductive rotary friction pair with the latter.
  • Piece 152 In order to transmit the bidirectional torque, each pair of helical guiding teeth 52, 92 is circumferentially symmetrically provided with two helical guiding surfaces 54, 94 having a rising angle of ⁇ and having a complementary configuration, see Figures 4 ⁇ 5 and 13(a), where 0 ⁇ ⁇ ⁇ .
  • an orientation mechanism D is also provided.
  • the body of the mechanism D is an orientation ring 120 that includes a plurality of axially oriented pins 122 and a tubular section 128 that is slidably sleeved over the tubular base 60.
  • the inner radial cylindrical projection 124 disposed at the head of the orientation pin 122 passes through the axial type reference hole/groove 126 on the guide member 50, and is slidably received from the one end opening in the corresponding guide provided on the outer peripheral surface of the intermediate member 90.
  • a cylindrical cam type pin groove type fitting mechanism in which the circumferential gap is approximately zero is formed.
  • Circumferential freedom ⁇ that is, 0 ⁇ ⁇ 1 ⁇ ⁇ and 0 ⁇ ⁇ 2 ⁇ ⁇ are set, and ⁇ 1 is optimally equal to ⁇ 2 , see Fig. 13 (a).
  • the guide groove 130 as the multi-stage groove assembly axially includes a forward portion 132 in which the projection 124 is accommodated, a reverse portion 134 which is circumferentially offset from the circumferential angle ⁇ , and a transition portion connecting the two segments.
  • the working direction of the clutch C8 is positive, that is, only the torque can be transmitted in the forward direction and the over-rotation, it is equivalent to the one-way overrunning clutch Cl whose working direction is set to the counterclockwise direction.
  • the principle and structure of the orientation mechanism D can also be used for the purpose of steplessly adjusting the circumferential gap ⁇ of the one-way overrunning clutch to facilitate long-term maintenance of its transmission accuracy. Even a one-way overrunning clutch having two working directions opposite to each other, or a one-way overrunning clutch having a combined housing of the radially butted joint shown in FIG. 14 can be correspondingly rigidly integrated and shared one by one. By doubling the orientation mechanism D, a two-way overrunning clutch equal to the torque capacity of the one-way clutch can be obtained.
  • the role of the orienting mechanism D is to selectively define a circumferential rotation interval of the interposer 90 relative to the guide member 50 to allow or prevent the guide surface 54 corresponding to the set circumferential direction and
  • the manner of mutual interference causes the rotary guide mechanism G to have or does not have a rotational guiding action in the circumferential direction, thereby defining the clutch C8 as a one-way overrunning clutch of a corresponding circumferential direction for the purpose of specifying and controlling the working direction thereof. Therefore, there is no need to repeatedly explain the working process of the clutch C8 transmitting torque and overrunning in one-way operation.
  • the orientation mechanism D is provided with different defined or different defined combinations to allow or prevent the guide faces 54 and 94 corresponding to 0 to 2 circumferential directions from colliding with each other, so that the direction-controlled overrunning clutch has all Possible fixed state and corresponding working conditions.
  • Fig. 13(b) The guide groove 130 shown in (f) replaces the guide groove 130 in Fig. 13(a).
  • Fig. 13(b) is an orientation scheme suitable for a reel such as a one-way glider of a motor vehicle and a fishing rod.
  • the projection 124 is axially located within the free section 136 of the channel 130, the circumferential angle of rotation of the intermediate member 90 relative to the guide member 50 will be greater than ⁇ . Therefore, both of the guide surfaces 54 and 94 corresponding to the two circumferential directions can mutually interfere with each other and frictionally couple the shaft
  • Figure 13(c) has a reverse section 134 more than Figure 13(b) which can be used for a two-way glider of a motor vehicle. It should be noted that in order to shorten the axial distance of the reversing motion, the inner radial projections 124 in Figs. 13(c) to (f) are all changed from a cylinder to a positive octagonal cylinder.
  • the clutch C8 when ⁇ ⁇ ⁇ , the clutch C8 will slip when it is overloaded, and therefore, it will have the function of a safety clutch when it is positioned in the coupling condition. Further, for example, the orientation mechanism D, the sensing member 152 and the spring 150 in the clutch C8 are removed, the circumferential angle ⁇ is optimally set to zero, and the guide 50 is coupled to the prime mover, and the clutch C8 is modified into an overload torque and A two-way friction type safety clutch/coupling with no frictional coefficient and independent of the dynamic torque. From now on, people will no longer be bothered by how to accurately set and maintain the overload torque value for a long time. Moreover, when the present invention is used as a coupling, it also has the ability to be adaptive to any eccentricity to some extent.
  • the guide groove 130 in Fig. 13(d) is provided with a neutral segment 138 instead of the free segment 136 which is located in the center of the forward segment 132 and the reverse segment 134 in the circumferential direction.
  • the upper limits of ⁇ 1 and ⁇ 2 must be less than ⁇ /2 at this time. Therefore, when the projection 124 is axially positioned in the neutral section 138, the orientation mechanism D will cause the guide faces 54 and 94 to be incapable of resisting each other in both circumferential directions, i.e., in the zero direction. The turning guide G will therefore be in a failed condition.
  • the clutch absolutely exceeds idling in both directions and transmits torque in zero direction.
  • the overrunning clutch with the orientation scheme shown in Figure 13(d) will be particularly suitable for dual power drive systems that require power switching and on-line maintenance at any time to replace SSS synchronous clutches such as those used in large surface ships and generator sets. .
  • the orientation scheme shown in Figure 13(e) will be more suitable for surface ships.
  • the corresponding clutch can be used as a hinge that can be steplessly positioned.
  • the direction-controllable overrunning clutch can be equipped with absolute separation idle condition, forward working condition, coupling working condition and reverse working condition in the simplest way. Make it sufficient for the most complex practical needs.
  • the purpose of providing the orienting mechanism D is to define the working direction of the two-way overrunning clutch in such a manner as to selectively cancel the rotational guiding function of the turning guide mechanism G in the zero, one or two circumferential directions. Therefore, any rigid/elastic mechanism or device that can perform such a prescribed function can be used as the orientation mechanism without any other limitation. It can be located at the turning guide mechanism G In addition to the radial direction, in the radial direction, in the radial direction, or on the side of the end face, it may also directly comprise an elastic pretensioning device.
  • an axial or radial pin having at least one projection and at least one groove disposed between the intermediate member 90 and the guide member 50 or between the force limiting member 180 or the rotating shaft integrally rotating circumferentially of the two members Grooved fitting mechanism. It is a good choice to use a self-rotating eccentric pin or an eccentric groove, and it is more convenient to directly add various springs that elastically define the circumferential gap.
  • the applicant has disclosed numerous embodiments in the patent documents CN101117987A and CN101672335A, and therefore is not repeated here, but the entire contents of the two documents are incorporated herein.
  • a groove-like elastic positioning mechanism may be provided between the tubular section 128 and the tubular base 60 to maintain the stability of the working position of the orientation mechanism D and the stability of the prescribed working direction.
  • the orientation ring 120 should be optimally actuated by a resilient member such as a spring.
  • an end face force-fitting mechanism can also be directly disposed between the finger/orienting ring 120 and the guide member 50, or the finger/orientation ring 120 can be optimally connected to the guide member 50 and the intermediate member by splines.
  • the inner peripheral surface of 90 is similar to the overall structure of Fig. 14.
  • Embodiment 4 Shaft-axis transmission type bidirectional overrunning clutch C9 with radial butt-type encapsulating shell
  • the friction member 70 of the clutch C9 is a force-closed type which is rigidly integrated with the two semi-circular shell-type force limiting members 160, respectively.
  • the force-enclosed composite member is radially symmetrical and the inner end faces are respectively coplanar with two symmetrical semi-circular shell radial directions. Docked.
  • the two force-limiting members 160a and 160b which can be regarded as a substantially U-shaped solid bus bar rotating around the X-axis for a half turn, radially clamp the two bearings fitted at the ends of the tubular base 60
  • the form of 158 is butted into a circumferentially complete closed casing to rotatably enclose the guide member 50 and the intermediate member 90 and the like in the disk-shaped annular groove enclosed therein.
  • the flanges 162a and 162b, and 164a and 164b are respectively diametrically opposed to each other on the same-diameter outer peripheral surface of the two full-face end flanges, and the annular ferrules 170 and 172 are respectively fitted in an interference fit manner.
  • the two force limiting members 160a and 160b are thus fastened into a fixed unitary/combined member.
  • the clutch C9 can also be in the form of a wheel-shaft transmission, or the orientation mechanism D can be further eliminated to become a one-way overrunning clutch that transmits a large torque. This is only necessary to provide the shape and mounting position of the end flange 164 and the annular band 172 to be axially at least substantially symmetrical to the left end face flange 162 and the annular band 170.
  • the annular hoop 170 can also be disposed on the outer circumferential surface of the axially central portion of the two force-limiting members 160 by means of, for example, interference, square holes, key connections, or even a ring-shaped ring 170 can be replaced by a ring gear, or
  • the two force limiting members 160 are fastened into a fixed unit by means such as welding, riveting or screwing.
  • the tubular base 60 extending to the right of the guide member 50 can be removed as shown in Figs. 11 to 12, and the friction member 70 can be independent of the force limiting member 160 to obtain an overrunning clutch in the form of a shaft-shaft transmission.
  • the force-closed combined shell/member is composed solely of a force-limiting element, and the combined shell/member corresponds to a friction plate that transmits torque in the force-transmitting friction mechanism F2.
  • an elastically expanding split ring type sensing member 152 provided for reducing wear is elastically tensioned on the inner peripheral surface of the intermediate member 90 to constitute an inductive type of rotary friction pair.
  • the projection 153 provided at the end face thereof is movably fitted in a notch (not shown) provided between the abutting faces of the two friction members 70a and 7 Ob so as to follow the frictional member 70.
  • the orientation ring 120 of the orientation mechanism D is located radially between the inner circumferential surface of the two force limiting members 160 and the outer circumferential surface of the guide member 50 and the intermediate member 90, and the inner circumferential surface thereof.
  • Both ends are provided with protrusions 124a and 124b, respectively.
  • the projection 124a is radially received in the guide groove 130 provided in the outer peripheral surface of the guide member 50, and the projection 124b is radially received in the reference hole/groove 126 provided on the outer peripheral surface of the intermediate member 90.
  • an actuating mechanism including an actuating ring 140 and a wave spring 142 that actuates the orienting mechanism D is also provided.
  • the actuating ring 140 on which the end face is provided with a set of axial actuating pins, is slidably fitted on the respective outer peripheral faces of the two force limiting members 160, and is actuated by a corresponding set of axial holes provided on the member.
  • the ring 140 can be axially displaced to the left by the actuating pin 120 to achieve a change in direction and fixation.
  • the spring 142 disposed between the orientation ring 120 and the left inner end surface of the force limiting member 160 axially shifts the orientation ring 120 and the actuation ring 140 to the right. It will be apparent that the orientation ring 120 can also be urged by a ring that forms an end cam mechanism with the force limiting member 160.
  • Clutch C9 is optimally used as a controllable glider for motor vehicles.
  • its directional characteristic of the overload slip can ensure that the process of sudden engagement of the clutch in the large speed difference coasting state due to acceleration or braking is a flexible friction-slip type rather than a rigid setback. formula.
  • the clutches C7 to C9 can be used as the overrunning coupling.
  • Fig. 15 shows a one-way bearing/one-way overrunning clutch C10 to which the present invention is applied (a dust cover is not shown).
  • the clutch C10 includes a guide member 50 having an outer raceway and an outer race 190 having an inner raceway. And a bearing portion composed of a plurality of balls 192, and an overrunning clutch portion composed of the guide member 50, the intermediate member 90 and the friction member 70.
  • the friction member 70 which is preferably connected to the inner circumferential surface of the outer ring 190 by a straight spline, and the intermediate member 90 and the outer truncated cone flange 66 provided on the outer circumferential surface of the guide member 50 respectively form a truncated cone shape.
  • Traction friction mechanism F1 and force friction mechanism F2 to increase torque transmission capacity and enthalpy.
  • the spiral guide teeth of the rotation guide mechanism G are respectively disposed on the inner circumferential surface of the intermediate member 90 and the outer circumferential surface of the guide member 50.
  • the spring 150 is preferably specifically an axially compressible disk-shaped torsion spring having one end embedded in a corresponding axial bore of the outer end surface of the intermediate member 90 and the other end embedded in a corresponding radial bore of the outer peripheral surface of the guide member 50. .
  • the clutch C10 can obviously replace the CSK type one-way clutch of the prior art and has a larger load carrying capacity.
  • the guiding member 50 can be directly formed on the transmission shaft, the friction member 70 is directly formed on the outer ring 190, and the ball bearing 192 is replaced by a needle bearing and added to the intermediate member 90 and Between outer rings 190.
  • the inner diameter of the inner ring-free clutch that is thus obtained can be at least as small as 3 mm of the prior art, and its load carrying capacity will be significantly greater than the level of 0.2 m of the prior art relying on the line contact friction mechanism.
  • the bag-shaped encapsulation scheme shown in Figures 6-7 is more suitable for miniature and small overrunning clutches.
  • the outer ring 190 is a bag-shaped friction member 70
  • the clutch C3 is set to the right half of the clutch C10.
  • Fig. 16 shows a guide wheel embodiment C11 to which the torque converter of the present invention is applied.
  • the guide wheel 196 of the embodiment C11 rigidly integrated with the guide member 50 is rotatably fixed to the outer peripheral surface of the stationary ring 194 by a snap ring 184.
  • the friction member 70 fixed to the outer peripheral surface of the stationary ring 194 by the spline in the circumferential direction, and the inner truncated cone surface of the intermediate member 90 and the inner end surface of the guide member 50 constitute a traction friction mechanism F1 and a force friction mechanism F2, respectively.
  • the spiral guide teeth of the rotation guide mechanism G are respectively disposed on the outer circumferential surface of the intermediate member 90 and the inner circumferential surface of the guide member 50.
  • the embodiment C12 is a two-shaft assembly including the loader transmission of the present invention.
  • the large gear 204 having the gear teeth 168b is integrally formed with the guide member 50 and radially positioned by the bearing on the shaft extending toward one end of the pinion gear 200.
  • the spiral guide teeth of the rotation guide mechanism G are respectively disposed on the inner circumferential surface of the intermediate member 90 and the outer circumferential surface of the guide member 50.
  • Fig. 18 shows a flywheel embodiment C13 which is applied to the present invention such as a bicycle or an electric bicycle.
  • the flywheel outer ring 220 provided with the sprocket teeth 222 is rotatably fixed to the guide member 50 serving as the inner ring of the flywheel by the two sets of balls 192 and the flywheel cover 224.
  • the friction member 70 is optimally fixed to the inner peripheral surface of the outer ring by, for example, a spline connection.
  • the spring 150 is changed to the wave spring, and the overrunning clutch mechanism is completely the same as that shown in FIG.
  • the above-mentioned flywheel has a joint idle stroke or slip angle which is almost zero, and the load carrying capacity is at least not smaller than the ratchet type flywheel.
  • FIG 19 shows an embodiment of an electric power wheel hub C 14 to which the present invention is applied.
  • the hub shell 206 which is rigidly coupled with the guide member 50 and the force limiting member 180 about the axis X is radially fixed to the hub axle 216 via a bearing 158, in which the reducer base 214 is mounted.
  • a gear 21 0 and a shaft gear 212 that are fixed to each other are mounted in the reducer base 214.
  • the hollow output shaft gear 208 of the motor that rotates about the axis X drives the gear 21 0 that meshes therewith, and the friction member 70 that meshes with the rear is further driven by the shaft gear 212.
  • the friction member 70 is sleeved on the guide member 50, and constitutes a force transmitting friction mechanism F2 and a traction friction mechanism F1, respectively, with the inner end surface of the force limiting end portion 188 and the outer end surface of the intermediate member 90.
  • the spiral guide teeth of the rotation guide mechanism G are respectively disposed on the inner circumferential surface of the intermediate member 90 and the outer circumferential surface of the hollow shaft.
  • Fig. 20 shows a motorcycle electric starting overrunning clutch embodiment C15 to which the present invention is applied.
  • the guiding member 50 is integrally formed as an annular end face flange rigidly at one end of the starting gear plate 198, and the latter is rotatably sleeved on the tubular base body 76, and is frictionally connected with the intermediate member 90 from the two ends respectively with the friction member 70. , achieving axial positioning of each other.
  • the disk-shaped or axially compressible disk-shaped torsion spring 150 also has the function of axially defining the intermediate member 90.
  • the friction member 70 of the clutch C 3 can be directly used as the gear plate 198.
  • the prior art overrunning clutch involving a space mechanism also includes an SSS automatic synchronizing clutch having a history of at least 50 years, and the guidance disclosed by the applicant in the patent document CN1 01 672 335A.
  • Type jaw overrunning clutch More and more, since Archimedes invented the spiral water lifting tool, the history of the principle of turning and guiding the spiral has been recognized and applied for 2230 years. The history of using modern machines to manufacture threads/bolts has been more than 230 years, and its Traces are already ubiquitous. Therefore, if there is a technical suggestion and people still do not try this better technical solution under any conditions of use and any technological innovation, it is unexplained.
  • the present invention not only has great potential to replace the prior art, but also has a higher torque to drive the overrunning clutch.
  • / Power higher speeds, higher switching frequencies, larger and smaller scales, and more in the field of mechanical transmissions significantly expand the depth and breadth of their application.
  • the present invention will effectively solve various related problems that are difficult to solve in the prior art.
  • the invention can be applied to a starter of all self-driving prime movers including an aircraft engine, etc., which can optimally achieve permanent connection of the starter and the prime mover, overload protection and quick start, and completely remove the electromagnetic switch.
  • All non-essential mechanisms inside; the one-way overrunning clutch device according to the present invention is disposed between an output shaft such as an internal combustion engine and its base, and the object of preventing reverse rotation of the internal combustion engine can be realized most economically and reliably, thereby easiest way
  • all efforts and expenses that people may have to prevent the starting system or personnel from being reversed are eliminated, and the people may be excused from the possibility of removing the reversal effect in the corner measurement for the correct operation of the internal combustion engine fuel electronic injection system. All the effort and expense.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)

Description

空间楔合式摩擦超越离合器 技术领域
本发明涉及机械传动领域中的一种离合装置,以及包含该离合装置的诸 如摩擦离合器、 电磁离合器、 安全离合器、 联轴器、 制动器、 滑行器、 方向 传感装置、 铰链、 扳手和螺丝刀等, 特别涉及一种摩擦式超越离合器。 背景技术
现有技术中,摩擦式超越离合器主要具有两种型式, 一种^ ^于楔形机 构楔合作用的滚柱 /珠式, 一种是基于纯粹摩擦自锁的斜撑式。 该两种超越 离合器均为具有过大中空度的内、外双环的平面运动机构,其结构特点天然 地决定了其为应对内部的径向运动或平面转动,而必然具有因滚柱、斜撑子、 弹簧等等只能离散配置 /存在所导致的结构缺陷和运动缺陷, 以及必然具有 线接触摩擦副和空载阻力正比于转速的力学缺陷, 天然地决定了其楔角 /接 触角的过小和径向力的必然过大, 以及其径向刚度的不足。 而径向作用力的 周向离散分布, 不仅致使其滚柱或斜撑子等中介件的受力状况非常恶劣, 而 且更放大了其径向刚度不足的缺点,导致其径向弹性变形和弹性力的双重过 大,从而致使其实际楔角 /接触角不固定和楔合 /接合过程不可靠, 溜滑角过 大, 楔合 /接合与解楔 /脱开变得困难。 作为后果, 其实际楔角 /接触角极度 敏感于并正比于内外环和滚柱或斜撑子等因磨损带来的尺寸变化,以及内外 环于径向受力点的弹性变形量;其滚柱或斜撑子等个体之间以及个体的不同 轴向部位之间的动作不易同步, 经常被径向夹持得过紧或被挤碎, 更常导致 弹簧 /保持架变形或折断。 而对于斜撑式, 更会致其因斜撑子翻转而失效。
上述缺陷直接导致现有技术具有承载能力低下、可靠性差、传动效率低、 加工装配困难、 成本高、 易磨损、 应用范围小的缺点 (《超越离合器的发展 现状及趋势》, 张济政等, 第三届中日机械技术史国际学术会议, 昆明, 2002 年, 398 ~ 403 )。 由于没有更好的替代技术, 不得已, 现有技术的该类超越 离合器仍然成为分度、 超越和逆止三个应用领域中的主流技术和产品。
100 多年来, 人们一直在努力寻找一种具备较多理想特性的超越离合 器。 然而, 由于受制于现有技术的影响和技术偏见, 致使学术界和工程界对 摩擦式超越离合器中平面楔形机构的工作机理和物理本质认识不够透彻,几 乎所有相关文献均普遍地误以为其传递转矩的物理本质是摩擦自锁(并称之 为自锁条件),误以为能使楔形机构的两个摩擦副自锁,误以为非结构变形 / 破坏时的离合器打滑是因为摩擦自锁失效 /被破坏的结果。 因而导致人们不 知不觉地依照原有认识并几乎只在平面机构中寻求解决或改良的方案。在几 乎挖尽了平面摩擦机构的一切潜力之后, 其性能、 结构、 可靠性、 成本和寿 命等, 依然没有获得实质性的提升, 并最终走入死胡同。 探求比较理想的超 越离合器因此成为人们长久渴望解决的技术难题。
专利文献 CN21 75321 Y虽然公开了一种基于一个单向螺紋副和一个截锥 形回转摩擦副的非平面的摩擦式单向离合器,但该文献没有给出保证离合器 不打滑地稳定接合以传递转矩的任何有用信息或指示,只是泛泛地宣称一般 不会出现打滑现象。 因此, 该实用新型实际上不可能达到其发明的目的。
另外, 专利文献 CN2479288Y也公开了一种类似的摩擦式单向超越离合 器 ,专利文献 CN1 292464 A和 CN2728825 Y则公开了两种具有大致类似结构的 机动车滑行器。但同样地, 该三份文献也没有给出保证离合器不打滑地稳定 接合以传递转矩的任何有用信息、 指示或启示。 发明内容
本发明致力于设计基于全新技术原理的装置, 以避免上述缺点。
本发明的目的在于提供一种具有更高承载能力、更高转速、更高可靠性、 更长寿命、 更简单结构的空间楔合式摩擦超越离合器。
为达成上述发明目的, 本发明之空间楔合式摩擦超越离合器包括, 绕一 轴线回转的轴向接合的至少一个牵引摩擦机构,其具有至少一个中介件以及 绕上述轴线回转并设置有牵引摩擦面的摩擦件,以在该两构件间传递摩擦转 矩;为该牵引摩擦机构提供接合力并绕上述轴线回转的至少一个转动导向机 构, 其具有上述中介件以及绕上述轴线回转并设置有相应导向面的导向件; 当转动导向机构啮合时,导向件的导向面与中介件之间的相互抵触部位的升 角 λ大于零且小于等于 ξ , 即, 0 < λ ξ , 其中, ξ是能够令形成于该抵 触部位的导向摩擦副自锁的升角 λ的最大值。
为在导向件与摩擦件之间直接传递摩擦转矩,还包括有与导向件以及摩 擦件刚性地结合在一起的传力摩擦机构。
其中, 升角 λ的取值范围还可以是: ζ < λ ξ , 或者, 0 < λ ζ (当 ζ > 0 ),其中, ζ是能够令所述抵触部位的导向摩擦副自锁的所述升角 λ的 最小值。
改进地, 还设置有至少一个限力元件, 其可至多地固定连接至导向件、 中介件和摩擦件之一并与之形成力封闭式组合构件,以从轴向外端限定其余 两个构件。
最佳地,还设置有至少具有一个弹性元件的弹性预紧装置,其用于将中 介件或与该中介件周向固定的转动构件弹性地至少抵触在摩擦件上。
更进一步地,在两个不同的圓周方向上,转动导向机构均具有转动导向 功能, 导向件均设置有导向面; 而且, 还设置有将中介件可操作地限定在相 抵触到导向件的相对转动方向, 并规定转动导向机构的工作 /导向转动所对 应的圓周方向。
需要特别说明的是, 本申请文件所使用的相关概念或名词的含义如下: 转动导向机构:将圓周相对转动转换为至少包括轴向相对移动或移动趋 势的导向机构。 包括螺旋升角严格一致和不严格一致的滑动 /滚动式螺旋或 部分螺旋机构、 径向销槽机构、 端面楔形机构、 端面嵌合机构、 端面棘轮机 构及圓柱凸轮机构等仅可得到轴向移动的整体式导向机构,也包括还可同时 得到径向移动的且具有诸如钢球、 圓台形 /截锥形滚柱、 斜撑子之类离散构 件的离散式导向机构。
空间楔形机构: 由转动导向机构和牵引摩擦机构组成的机构。 个转动整体以在其间传递^矩11的、设置有导向面的构件 其可以 位于该两个 构件所形成的楔形空间中的受到挤压力作用的单一构件或一组离散构件 ,也 可以是自身设置有包容该两个构件的楔形空间的受到胀紧力作用的力封闭 式单一构件或组合构件。该机构作非超越离合器用时, 中介件也可对外传递 转矩。
楔合: 也称入楔、 楔合住、 楔住、 楔紧或挤住, 空间楔形机构的一种工 作状态, 与解楔 /去楔 /挤不住 /脱开相反, 指中介件通过与空间楔形机构中 的对外传递转矩的两个构件分别直接或间接地相互抵触,以居于两者之间或 之外的形式将该两个构件可驱动地结合成一个回转整体的连接。其中,从外 部将该两构件结合成一体的后一种楔合形式为本发明所独有。
接合: 楔合等的上位概念, 包括现有技术中的自锁、 锁住或锁紧等, 与 分离、 脱开、 超越相反, 泛指可分离的机构的可驱动地连成一个转动整体的 连接,如,对应于空间楔形机构楔合时的超越离合器的传递转矩状态中的连 接。
ζ和 ξ : 空间楔形机构的重要极限角, 如图 1、 4、 9所示的中介件 90 (图 4中的双点画线圓代表可替换的图 9中的圓台形 /截锥形中介件),或如 图 2、 5所示的包括杯形壳式限力元件 180的组合式中介件 90 , —方面, 通 过其摩擦面例如 104与摩擦件 70的牵引摩擦面 72至少轴向抵触,以形成抵 触部位的法向压力的合力 W不垂直于回转轴线 X的回转型牵引摩擦机构 F1 的包括至少一个的一组牵引摩擦副; 另一方面,通过其摩擦面或朝向同一圓 周方向的导向面 94 , 与导向件 50的相应导向面 54至少轴向 ·ί氏触, 以形成 抵触部位的法向压力的合力 Ν不垂直于回转轴线 X的转动导向机构 G的包括 至少一个的一组导向摩擦副;该抵触部位的公切线与垂至于回转轴线 X的平 面的夹角的平均值, 称为该抵触部位的升角 λ ; 再一方面, 通过其它表面还 可作用有诸如用于弹性预紧的其它作用力(包括作非超越离合器用时的负载 阻力), 参见图 9 ; 在转动导向机构 G的转动导向工况中, 也就是导向件 50 致使中介件 90按箭头 P所指方向以大于等于零的速度相对摩擦件 70转动的 工况中,能够确保导向摩擦副自锁的双方表面抵触部位的最小升角被定义为 ζ , 而最大升角则被定义为 。 而该两个极限角则完全界定了中介件 90相 对导向件 50向前转动、 静止不动和向后转动的一切可能的运动形式。 具体 含义如下:
1、 当 ξ < λ < 90。 时, 导向摩擦副和牵引摩擦副均不能自锁, 通过导 向摩擦副的法向压力 Ν , 或者其分力 Q和 Τ, 导向件 50可致使中介件 90相 对其向前亦即箭头 Ρ所指方向滑转 /挤出。 因此, 导向件 50与摩擦件 70不 能被中介件 90楔合成一个转动整体。 只是由于前两个构件结构上被轴向限 定, 才致使中介件 90仅被导向件 50推动着相对摩擦件 70摩擦滑转而未被 实际桥出。
2、 当 ζ < λ ξ且 λ > 0 时, 导向摩擦副处于恒定的自锁状态, 牵引 摩擦副处于不可自锁的一般静摩擦状态。 此时, 就转矩而言, 牵引摩擦副的 牵引摩擦转矩的大小仅唯一相关于和自适应对等于导向件 50 与中介件 90 之间的作用转矩, 而无关于摩擦件 70上的任何转矩。 即, 外界作用于摩擦 件 70的转矩可以大到相对牵引摩擦转矩过载的程度。 因此, 尽管中介件 90 可以将导向件 50与摩擦件 70楔合成一个转动整体, 但在摩擦件 70相对导 向件 50过载或过驱动时, 牵引摩擦副仍可由静摩擦状态正常地转入滑动摩 擦状态而导向摩擦副仍可稳定自锁。对应地 ,空间楔形机构处于半楔合状态 , 超越离合器处于非完全接合状态。
平面楔形机构的现有技术即对应于本情况, 其 ζ « 0 (两摩擦副的静摩 擦系数均近似 0. 1 ), ξ « 11 ° , λ « 6。 ~ 8。 , ζ < λ ξ。 可见, 其工 作原理 /传递转矩的物理本质就是摩擦本身而非现有技术偏见所认为的两组 摩擦副的摩擦自锁, 所以, 其过载时将自然地正常打滑, 根本不存在技术偏 见所认为的非结构变形 /破坏时的牵引摩擦副自锁失效的情况。 另外, 现有 技术难以增大其牵引摩擦副的(当量)摩擦系数的结构特点又决定了其现实 中不具有存在下述运动形式 " 3" 的可能。
3、 当 0 < λ ζ (针对 ζ > 0的情况)时, 牵引摩擦副处于恒定的自锁 状态, 导向摩擦副处于一般静摩擦状态。 与形式 " 2" 相反, 在导向件 50 相对摩擦件 70过载或过驱动时,中介件 90具有突破导向摩擦副的最大静摩 擦状态 /阻力而相对导向件 50滑转爬升的趋势,但由于该爬升趋势被楔形机 构的轴向力封闭结构刚性阻止, 因此, 导向摩擦副被强制性地维持在等同于 自锁的一般静摩擦状态。 即, 中介件 90、 导向件 50与摩擦件 70三者被强 制结合成一个转动整体, 即使过载至毁损也不相互滑转爬升。 空间楔形机构 因而处于类似斜撑式超越离合器的绝对自锁 /楔合状态。 显然, 该极限角 ζ 未被现有技术理论所认识,也不能由平面楔形机构的运动关系启示、想象或 揭示出来, 更不能由其结构推导出来。 因此, 不知道极限角 ζ的存在及物理 含义的现有技术便无法透彻地认识极限角 ξ亦即楔角的真实物理含义,包括 摩擦滑转的正常性, 更不可能发现、 揭示和证实周向楔合的物理本质。
理论上,仅当 λ唯一地等于 ζ时, 导向摩擦副和牵引摩擦副方可同时处 于自锁状态。 然而现实中, 这种同时自锁的临界状态及其对应的楔合状态根 本就不存在, 因为现实中不可能得到和维持住 λ = ζ的临界状况。首先是制 造上存在误差, 不能保证相等; 其次也是最重要的, ζ本身就不是恒定的, 它会因为影响因素复杂和不恒定的摩擦系数以及相关受力状况的变化而发 生一定程度的改变。
因此, 与径向内外摩擦副同时自锁的斜撑式超越离合器不同, 包括平面 特例的空间楔形机构传递转矩的物理本质是摩擦而根本不是摩擦自锁。由于 该机构中始终存在着一组不自锁的可滑转摩擦副, 所以,描述其两种状态的 术语应该是楔合 /楔住 /挤住 /楔合角或解楔 /楔不住 /被挤出 /脱开等,而不应 该是现有技术中不正确的自锁 /锁住 /锁紧 /自锁特性 /自锁角或解锁等等。由 此可见, 作为空间楔形机构特例的平面楔形机构(不可能具有 0 < λ ζ情 形)的传递转矩的物理本质, 只能是摩擦而绝非现有技术的偏见所认为的牵 引摩擦副的摩擦自锁。追求该机构两组摩擦副的同时自锁或该机构的可靠自 锁只能是基于错误偏见的一场徒劳。
显然地, 上述升角 λ就是本发明的空间楔形机构的楔角, 也称楔合角 / 挤住角, 并且仅在 0 < λ ξ时, 空间楔形机构方可楔合, 超越离合器方可 接合。
超越转动和反超越转动:都是转矩传递路径下游一方的转动构件相对转 矩传递路径上游一方的转动构件的转动,只是前者的相对转动方向与超越离 合器所要传递的圓周力方向一致, 而后者的相对转动方向却与之正好相反。 反超越转动所转过的圓周角, 称之为溜滑角、 空转角或接合角。
依据本发明的超越离合器具有楔合可靠,承载能力大、转速高、寿命长、 超越特性好、 开合轻便、 开合灵敏度高、 容易调节修复、 效率高、 高频开合 时性能稳定、 结构简单、 制作和装配容易、 成本相对较低, 以及控制方便, 可方便地获得联轴器、滑行器等多种工况和适用面更广等优点。借助下述实 施例的说明和附图, 本发明的目的和优点将显得更为清楚和明了。 附图说明
图 1是根据本发明的挤压受力式单向超越离合器的简化的轴向剖面图。 图 2是根据本发明的膨胀受力式单向超越离合器的简化的轴向剖面图。 图 3是图 1中中介件的示意图, (a)是右视图的轴向半剖图, (b)是主视 图。
图 4是图 1中各机构的齿廓对同一外圓柱面的径向投影的局部展开图。 图 5是图 2中各机构的齿廓对同一外圓柱面的径向投影的局部展开图。 图 6是根据本发明的力封闭式最简结构单向超越离合器的轴向剖面图。 图 7是图 6中具有力封闭功能的袋形封装壳式摩擦件的端面视图。 图 8是根据本发明的最简结构单向超越离合器的简化的轴向剖面图。 图 9是根据本发明的变劣的单向超越离合器的简化的轴向剖面图。 图 10 是根据本发明的多摩擦片式单向超越离合器的简化的轴向剖面 图。
图 11是根据本发明的大楔角式单向超越离合器的简化的轴向剖面图。 图 12是根据本发明的双向超越离合器的简化的轴向剖面图。
图 1 3是以图 12中的圓柱剖面 Y— Y的展开图表示的定向机构示意图, 其中, (a)显示的是具有正、 反向工况的定向关系图, 空心箭头指向工作转 动的正方向, (b) ~ (f)表示的是可以替换(a)中的导槽的可选结构形式示意 图; 具体地, (b)对应正向工况和联轴器工况, (c)对应正向工况、 联轴器工 况和反向工况, (d)对应正向工况、 绝对分离空转工况和反向工况, (e)对应 绝对分离空转工况、 正向工况和联轴器工况, (f )对应绝对分离空转工况、 正向工况、 联轴器工况和反向工况。
图 14是可以用作机动车滑行器的双向超越离合器的轴向剖面图。
图 15是应用本发明的单向轴承实施例的简化的轴向剖面图。
图 16是应用本发明的液力变矩器导轮实施例的简化的轴向剖面图。 图 17是应用本发明的装载机二轴总成实施例的简化的轴向剖面图。 图 18是应用本发明的自行车等的飞轮实施例的简化的轴向剖面图。 图 19是应用本发明的电动助力车轮毂实施例的简化的轴向剖面图。 图 20 是应用本发明的摩托车电起动离合器实施例的简化的轴向剖面 图。 具体实施方式
必要说明: 本说明书的正文及所有附图中,相同或相似的构件及特征部 位均釆用相同的标记符号, 并只在它们第一次出现时给予必要说明。 同样, 也不重复说明相同或类似机构的工作机理或过程。为区别设置在对称或对应 位置上的相同的构件或特征部位, 本说明书在其标记符号后面附加了字母, 而在泛指说明或无需区分时, 则不作区分也不附加任何字母。
实施例一: 具有轴向对接式封装壳的轮一轴传动式单向超越离合器 C1 如图 1、 3 ~ 4所示, 单向超越离合器 C1包括绕轴线 X回转并与管状基 体 76刚性一体的摩擦件 70。 该摩擦件 70最佳地设置成具有回转型牵引摩 擦面 72和传力摩擦面 74的盘形圓环。 管状基体 76的内周面上设置有与未 示出的传动轴联接用的例如键槽 64。 空套在管状基体 76外的最佳地呈环状 的中介件 90 , 借助其外周面 1 08可滑转地径向定位在限力元件 180的内周 面上, 一方面通过设置于其无齿端面的回转摩擦面 1 04与牵引摩擦面 72摩 擦相连而与摩擦件 70构成面接触的牵引摩擦机构 F1 , 另一方面通过最佳地 周向均布在其另一端面上的一组螺旋导向齿 92 , 与内端面上设置有互补式 构造的螺旋导向齿 52的最佳地呈环状的导向件 50恒久地嵌合,构成面接触 的单向转动导向机构 G。 转动导向机构 G和牵引摩擦机构 F1共同构成单向 超越离合器 C1的空间楔形机构。
借助螺钉 176和垫圈 186 , 具有中心圓孔的杯形壳式限力元件 180与导 向件 50 固定连接成一个轴向力封闭式组合构件。 该组合构件通过轴承 158 径向定位在管状基体 76两端的外周面上, 在将中介件 90和摩擦件 70轴向 封装于其所围成的盘形环状 槽内以构成轴向力封闭系统的同时,设置在其 杯底的环形径向凸缘式限力端部 188内端面的传力摩擦面 58还与传力摩擦 面 74摩擦相连,构成可与摩擦件 70直接传递摩擦转矩的回转型面接触传力 摩擦机构 F2。 为与外界传递转矩, 所述组合构件的外表面上可设置有构成 诸如键槽、 周向皮带槽、 环形径向凸缘状摩擦片安装盘毂、轮齿或端面螺孔 之类的特征曲面 (未示出)。
显然, 上述组合构件中的固定连接方式还可以是诸如铆接、 焊接、 过盈 配合、螺拴、设置在相应内外周面之间的与转动导向机构 G具有相同旋向且 可摩擦自锁的螺紋副、卡环、销钉、键、相互嵌合以及楔合之类的任何一种。 而对于例如图 1 0中的导向件 50本身设置有限力端部 188的特殊结构设置, 则无需任何连接, 其自身就等同于一个限力元件。 另外, 导向件 50也可借 助例如花键连接周向固定至限力元件 180的内周面,再由其轴向外端螺紋连 接至后者内周面的环状端盖为其提供轴向支撑和单向限定的组合连接方式, 达成离合器 C1轴向力封闭的目的。
图 3 ~ 4示出了转动导向机构 G以及中介件 90的详细关系和结构特征。 其中,沿径向延伸的每对螺旋导向齿 52和 92的分别朝向单一圓周方向且升 角均为 λ的具有互补式螺旋型齿面构造的导向面 54和 94相互贴合,形成一 组螺旋式导向摩擦副, 这里, 0 < λ ξ。 最佳地间隙相隔的非导向面 56 和 96平行于轴线 X , 以保证双方周向抵触时不会导致楔合。 导向齿 92还包 括齿顶面 98和齿底面 1 02。
显然,导向件 50端面上的多个导向齿 52实际上就是空间楔形机构的楔 形齿, 其导向面 54朝周向一方轴向上逐渐靠近摩擦件 70的牵引摩擦面 72 , 并与后者分别围成多个沿周向延伸的端面楔形空间。而设置在该多个楔形空 间中的多个导向齿 92就是楔合子, 其相互连接成一个刚性整体, 即环状的 中介件 90。
为最佳地致使导向面 54和 94始终具有周向相向转动的趋势,亦即致使 转动导向机构 G始终具有转动导向的趋势,弹性预紧装置具体为设置在转动 导向机构 G之内孔中的扭簧式弹簧 150 , 以及分别收容其两个端头的设置在 中介件 90内周面 106上的径向孔 1 12和导向件 50内周面上的相应径向孔。 于是, 中介件 90得以始终保持在其位于楔形空间周向最小端的准楔合工位 上, 处于可以随时楔合的临界状态中。 即, 其导向面 94和回转摩擦面 104 始终弹性地同时抵触着作为空间楔形机构楔型面的导向面 54和牵引摩擦面 72。 在这种临界状态中, 转动导向机构 G的轴向最大间隙为 δ , 周向最大间 隙 /自由度为 ε , 两间隙均最佳地大于零。
单向超越离合器 C1的工作过程非常简单。当导向件 50开始持续地具有 按图 4中箭头 Ρ所指方向相对摩擦件 70转动的趋势的初始瞬间 /零时刻,摩 擦件 70将借助牵引摩擦机构 F1的空载 /牵引摩擦转矩带动转动导向机构 G 的中介件 90相对导向件 50作转动导向运动。该机构 G的转动导向运动所产 生的轴向移动 /膨胀力, 在将导向齿 92瞬间楔紧在导向面 54和牵引摩擦面 72所围成的端面楔形空间中, 也就是中介件 90将导向件 50与摩擦件 70楔 合成一个转动整体, 牵引摩擦机构 F1因而轴向接合的同时, 还将摩擦件 70 即刻胀紧在限力元件 180的内端面也就是传力摩擦面 58上, 以形成轴向力 封闭的方式致使传力摩擦机构 F2也同步接合, 并将导向件 50与摩擦件 70 直接连接成一个转动整体。
于是,超越离合器 C1随着空间楔形机构的楔合而接合。经限力元件 180 的特征曲面传入的动力转矩 Μ。, 分成经由转动导向机构 G和牵引摩擦机构 F1传递的楔合摩擦转矩 Μ1 以及直接经由传力摩擦机构 F2传递的传力摩擦 转矩 M2 , 分别传递给摩擦件 70 , 再由管状基体 76传至周向固定于其内孔中 的传动轴。 这里, M。 = Mi + M2。 当然, 转矩也可按相反路径传递, 且不会有 任何实质差别。
而当导向件 50开始持续地具有按图 4中箭头 R所指方向相对摩擦件 70 转动的趋势的初始瞬间 /零时刻, 导向件 50将开始相对中介件 90作解除转 动导向机构 G的导向作用的转动。 因此,导向面 54与 94之间的法向压力和 转动导向机构 G 的转动导向作用将随着两导向面产生脱离接触趋势的一瞬 间而消失。 自然, 基于该机构 G的轴向移动 /膨胀力的两个摩擦机构 F1和 F2以及空间楔形机构将随即分离或解楔。 于是, 离合器 C1结束接合并开始 超越转动, 中介件 90跟随导向件 50相对摩擦件 70摩擦滑转。 实际上, 由 于弹簧 150的作用, 中介件 90仍将稳定地保持在其准楔合工位上, 以为下 一次的快速楔合做好准备。
通过上述说明不难发现, 转矩 A离合器 C1中全部经由面接触摩擦副传 递, 而且传递的路径中不存在任何离散构件或不对称的回转构件, 更不存在 任何径向力或其分力, 只有位于回转圓柱面上的轴向分力和周向分力, 而该 两个分力的作用对象又均具有极高的轴向和 /或周向刚度。 因此, 相对现有 技术, 尤其是其中的滚柱式和斜撑式超越离合器,根据本发明的具有空间楔 形机构的单向超越离合器 C1 , 不仅克服了现有技术的惯性思维和偏见, 具 有了质的先进性和极其显著的全方位优势,而且更具备了理想超越离合器所 应该具备的几乎全部应有特性。
1、 极其可靠的楔合 /自锁特性。 参见图 1、 4 , 从结构上看, 楔合状态 仅仅与组合式导向件 50、 中介件 90、摩擦件 70三个刚性构件尤其是轴向刚 度相关。 其中轴向刚度最小的具有两个环形内径向凸缘的组合式导向件 50 , 也将因为其轴向跨度远较现有技术的径向跨度为小, 具有紧固件的直接联 接, 以及轴向力作用于面而非离散的点或线的原因, 而相较现有技术的完全 中空的内外环的径向刚度远远为高。 而几何上,该三个构件的尺寸和形位精 度又是现有设计和制造技术所不难达到的普通水平。可见, 其结构上几乎不 存在可以动态改变实际楔角 /升角 λ而影响楔合可靠性的几何或力学因素。 实际使用中, 其转动导向机构 G更几乎不存在磨损的可能,其牵引摩擦机构 F1的回转型摩擦面又因为均匀磨损的天然特性而恒定地垂直于轴线 X, 即, 离合器 C1是可以磨合 /跑合并随着磨合 /跑合而提升性能的, 完全不同于现 有技术不能、 不许和不存在磨合 /跑合的情形。 于是整个寿命周期内, 其楔 角 /升角 λ可几乎保持恒定不变。 即便其 ξ值会因相关摩擦系数可能发生改 变而改变,但该改变是可以于设计制作时预测并留出安全余量的,进而可以 保证在离合器 C1的整个寿命周期内, 其楔角 /升角 λ恒定地小于极限角 ξ 。 再加上其构件数量成倍减少, 以及不存在细小的离散构件和运动副的特点。 所以, 依据本发明的离合器 C1 , 可以具有极其可靠的楔合能力和工作可靠 性, 从而显著地胜过受累于机械磨损、 离散的径向力、 以及易径向弹性变形 的环状中空结构的现有技术。
必须特别指出的是, 当 ζ < λ ξ时, 如果负载转矩大于动力转矩, 离 合器 C1将照样打滑。 但正像本文定义中指出的那样, 那不是因为技术偏见 所认为的摩擦自锁失效或被破坏的结果,而是转入该升角取值情况下正常的 滑转工况, 过载因素消除后将再次回到非滑转工况。 因此, 具有该升角的离 合器 C1还可同时用作自适应防过载的摩擦式单向安全离合器或起动机中的 单向离合器等。 但其具有方向性, 反路径传动时便不具有此功能。 因为通过 摩 4察件 70输入的动力转矩不可能大于过载时的对等于负荷转矩的两摩 4察机 构 F1和 F2的总静摩擦转矩, 故即便过载也不会打滑。 当然, 如果直接设置 成 0 < λ ζ (针对 ζ > 0的情况), 牵引摩擦机构 F1将永远不可能打滑地 摩擦自锁, 即使过载。 届时, 作为过 .载的结果, 要么迫使原动机有害性地停 转,要么造成包括原动机和工作机在内的任一构件或系统的毁损。有鉴于此, 该升角区间一般不予选用, 但对于几乎没有过载可能的重要的防逆转应用, 以及诸如双发动机直升机的动力传动系统中, 该升角则可作为首选。
应该特别强调的是,本发明还具有现有技术所没有的提升极限角 ζ和 ξ 数值的技术手段, 以在更大的设计自由度内谋求离合器 C1的更佳的承载能 力、 楔合 /解楔能力、 可靠性、 溜滑角、 轴向作用力以及表面接触强度等。 包括,将转动导向机构 G的导向面 54和 94设置成倾斜螺旋面,将牵引摩擦 机构 F1的至少牵引摩擦面 72设置成截锥面, 以致使轴截面内导向面 54和 94或牵引摩擦面 72与轴线 X的夹角不等于 90度, 而是如图 8 ~ 10、 15 ~ 19 所示的 0 ~ 180度; 将牵引摩擦机构 F1设置成具有如图 11所示的多摩擦片 式结构; 以滚锥 /珠 /鼓间隔导向面 54和 94 ; 以及, 将具备更大摩擦系数的 材料 /元件附装至摩擦面 72和 104中的至少一个上。例如,在静摩擦系数均 为 0. 1且忽略弹性预紧力时,离合器 C1中的 ζ和 ξ分别等于 0和 11. 4度(同 于平面楔形机构的现有技术), 而只需将牵引摩擦机构 F1设置成如图 11所 示的两片式摩擦机构这一个手段, 上述极限角便可分别升至 11. 0度和 22. 4 度。应在此顺便指出的是, 本说明书已经给出了关于极限角 ζ和 ξ的清晰的 文字定义和说明,无需付出任何创造性的劳动,本领域的普通技术人员均可 据此推导出其函数关系 /计算式。
2、 在轴向力封闭结构强度许可的范围内对等于动力转矩的无可比拟的 承载能力。 首先, 由于离合器 C1中的所有传力运动副均为全周向均匀或全 周向平均受力的完全面接触型摩擦副; 其次, 离合器 C1是双转矩流传动装 置, 在楔合摩擦转矩 Mi已经显著为大的情况下, 其比现有技术更多了一个 直接传递转矩的传力摩擦机构 F2 ; 再次, 两个共同传递转矩的摩擦机构 F1 和 F2更可具有如图 1 0 ~ 11所示的多摩擦片式结构,或附装具备更大摩擦系 数材料 /元件的结构, 或为图 15所示的半锥顶角均介于 0 ~ 180度之间的截 锥面型摩擦副。 所以, 基于相同的离合器外径或回转摩擦外径, 离合器 C1 的转矩传递能力至少可成倍或成十倍地大于现有技术,或者,基于相同的承 载能力,其外形尺寸可显著为小, 并因此而具有更大的设计自由度和更强的 满足实际需求的能力。 这里, 依照使用经验, 干式和湿式摩擦片的数量最多 分别可达 10个和 30个。 因此, 其承载潜力是巨大的, 可以较小外径获得至 少不低于其所对应的传动轴或传动轮的极限承载能力,并很容易超越现有技 术的一百万牛米的承载极限。 另外显然地, 离合器 C1可在楔合摩擦转矩 与传力摩擦转矩 M2之间按任意比例分配转矩流, 比如, ¾^是 的 20 %。 于 是,在低副的基础上再获得一个緩解增大承载能力与降低导向面接触强度之 间的矛盾的技术手段。 离合器 C1的双流传动也因此而具有了 "功率放大器" 的特征。 3、 无可比拟的转速或功率传递优势。 由于本发明的结构上的优越性, 主要构件上不存在非零离心惯性力, 牵引摩擦机构 F1 和传力摩擦机构 F2 的摩擦转矩或阻力转矩与转速无关,且通过控制弹簧 150的力度,可以使超 越转动时的摩擦阻力转矩很小, 因此, 离合器 C1可以在远远高于现有技术 的高转速上传递远远高于现有技术的大转矩, 而且, 该高转速几乎仅取决于 相关材料的强度。这将非常有利于诸如双动力直升飞机等的超高转速动力传 动。 而对于离合器 C3 , 只需配重即可。
另外, 本领域的技术人员自然能够想到, 还可以在诸如中介件 90与限 力元件 180的内周面之间设置至少一个诸如钢球斜面式的离心机构,以实现 离合器 C1的非接触式超越转动。比如收容在中介件 90外周面 108上相应径 向孔中的钢球,可利用其离心惯性力的作用,在超越转动高于某一设定的转 速后便压迫设置在限力元件 180内周面上的相应斜面,以借助该斜面的反力 的轴向分力克服弹簧 150的轴向力, 反推中介件 90与摩擦件 70脱离接触, 或至少使两构件之间接触压力等于零。或者,在具有诸如双动力驱动系统的 可以预知的长期超越工况的传动应用中, 设置一个诸如包括有类似图 12的 定向环 120的致动机构于导向件 50或限力元件 180上,以将中介件 90轴向 上直接拉离或推离牵引摩擦面 72。
4、 远远长于现有技术的工作寿命。 首先, 因为转动导向机构 G根本就 不存在各导向齿间摩擦接触不同步的问题, 以及影响寿命和性能的磨损, 其 更致使牵引摩擦机构 F1和传力摩擦机构 F2天然地具备了自适应补偿磨损的 能力。 其次, 因为同等作用力时面接触的摩擦强度相较线接触的远远为低。 再次, 因为摩擦机构 F1和 F2上的摩擦力绝缘于离心惯性力, 以及理论上离 合器 C1所需的弹簧 150的扭转力大于零即可。 另外, 离合器 C1也因此而具 有极好的抗冲击能力。
5、优异的超越特性。 如上所述, 得益于与离心力毫无关系的结构特性, 离合器 C1的超越转动将安静无声且空载摩擦阻力、 机械磨损及相应的生热 均很小, 弹簧 150也不存在被冲击或疲劳失效等问题。 明显地优于正好相反 的现有技术。 包括对润滑油或脂的要求等。
6、 轻便的开合特性亦即入楔 /楔合和解楔 /脱开的轻便性。 相对结构而 言这是显而易见的, 离合器 C1的接合过程非常轻巧, 仅靠牵引摩擦机构 F1 的自然的摩擦带动或阻尼中介件 90即可。基于前面的说明, 其分离 /脱开过 程也将相当轻便和迅速,相对现有技术, 几乎不存在需要等待恢复弹性变形 后才可解楔的情况,无需移动任何惯性质量, 更不可能有现有技术的解楔困 难或突然释放式解楔动作。
7、 极高的开合灵敏度和传动精度。 由于结构的轴向高刚度和设置有弹 性预紧装置, 中介件 90可以始终保持在其准楔合工位上, 而空间楔形机构 的楔合或解楔 /脱开又无需中介件 90作任何可察觉的几何运动,也就是离合 器 C1中不存在任何惯性质量, 所以, 这便决定了该机构具有第一时间响应 于超越转动或反超越转动而解楔或楔合的高响应性。 也就是离合器 C 1具有 分离 /脱开和接合的高灵敏性, 以及完成开合动作的迅速性。 而本发明的轴 向和周向上的高刚度, 或称远远小于径向的弹性变形量, 必然致使楔合后的 中介件 90的楔合工位与其楔合前的准楔合工位的位置差异, 远远小于现有 技术的位置差异。 即, 相对于现有技术, 离合器 C1具有更小的溜滑角或更 高的接合灵敏度,理论上和实际上该角都将趋于零。再加上极低的磨损强度, 其将更容易实现和更长久地保持高精度的传动。包括响应于圓周摆幅区间很 小的超越传动 (如脉动无级变速器中输出转速近似为零的工况)。
参看图 1、 3 ~ 4 , 除了弹簧 1 50 , 本实施例还可通过控制导向齿 52和 92 之间的周向间隙 ε来刚性地限定理论上的最大溜滑角, 即便在回转半径 很小之时, 也能像控制几何尺寸精度那样给与其有效控制。 在现有设计、 制 造和装配技术中,这种基于完全刚性的几何尺寸的周向间隙 ε是很容易实现 的。 比如,周向间隙 ε的数值不难达到 0. 001 ~ 0. 01 ~ 0. 1毫米的量级水平。 这一量级水平仅相当于 40毫米外径的圓周角 1 0. 3秒〜 1. 7分〜 17. 2分,而 现有技术中对应于 65毫米外径的溜滑角已高至 2度, 对应于 200毫米外径 的溜滑角也有 30分之多。 明显地, 现有技术中由于依靠弹簧预紧的周向柔 性限定模式,其为降低事关能否实现高精度传动的溜滑角而付出的代价显得 过大, 其中必然包括因加大弹性预紧力而带来的高磨损和短寿命。 而这些都 是本发明所不可能存在的现象。 由此可见, 离合器 C 1可更容易地胜任诸如 彩色印刷等的高精度传动, 而得益于极低的磨损强度,其保持这一能力的时 间也将更为长久。 如果将一组端面型螺旋导向齿 52、 92最佳地以相互零间 隙以及诸如单头或多头螺紋的形式周向延续地分别设置在类似如图 1 0所示 的相应的内外周面上, 并最佳地设置扭簧式弹簧 150 , 那么, 其更可在全寿 命周期内恒久地保持高精度的传动能力, 而无需任何人为调整或特意维护。
另外,根据常识,还可在上述摩擦机构 F 1和 F2的回转摩擦副的两个摩 擦面上或相关构件内部,例如摩擦件 70和中介件 90 ,同时或分别设置径向、 周向和轴向等贯通式通道,以利于经过其中的气体或液体带走摩擦产生的热 量, 或快速进入和离开相关摩 4察表面, 保证离合器 C1的开合灵敏度。
8、 高频开合时性能稳定。 如上所述, 由于可以方便地控制周向间隙 ε 的大小, 因此, 确保了离合器 C1具有极高的响应性。 即, 无论开合频率有 多高, 理论上和实际中, 离合器 C 1都能自然地获得人们所需要的任意高的 响应性(理论上可实现同步),都可以将转动导向机构 G的惯性冲击 /转速差 降至接近零的水平, 都可以保持离合器性能的稳定, 即便长时间工作。 而不 会出现现有技术中的因楔合和解楔 /脱开带来的过度磨损现象和严重发热现 象, 更不会有弹簧 150断裂或疲劳损坏的可能性。 即使不是将摩擦件 70而 是将导向件 50用作转矩输入构件,离合器 C1也可轻松地应对诸如脉动式无 级变速器中的 2000转 /分钟的开合工况,并可成倍提升该类变速器的转矩上 限和功率上限。
9、 效率高。 鉴于上述的相较现有技术中的更低的磨损特性、 更优异的 超越转动特性和开合轻便性, 其显而易见地具有更高的传动效率。
10、容易调节和修复。得益于转动导向机构 G的自适应轴向间距的能力 和无磨损特性,以及牵引摩擦机构 F1和传力摩擦机构 F2的回转摩擦面的均 匀磨损特性, 离合器 C1使用中的调节, 以及损坏后的更换或磨损后的修复, 均显得较为简单和容易。该更换或修复更可有针对性地单独进行, 而不涉及 匹配性或影响性能等问题,显著优于同等情况下经常必需予以整体更换的现 有技术。 比如, 可单独更换其中的任意一个构件, 可通过堆焊方式修复磨损 后的摩擦件 70或限力元件 180。 而通过调节垫圈 186的厚度的方式, 或者 设置与图 12 ~ 1 3中的定向机构 D类似的圓柱凸轮式调节机构的方式(利用 其中的过渡段可无级调节周向间隙 ε的大小 ), 可抵消磨损的影响而长久地 或终生地保持传动的高精度, 并延长各构件的寿命。
11、 无可比拟的结构、 工艺和经济优越性。 显而易见地, 离合器 C1的 极为简单的结构以及尺寸和形位关系所需要的最复杂的加工工艺,不过是现 代工业中的简单成熟的螺旋齿加工。 由此可见, 因简单的制作和积木式装配 工艺,离合器 C1必然相较现有技术具有更高的生产效率和更低的制作成本。 尤其是相对于将端面型螺旋导向齿 52、 92以单头或多头的周面型连续螺旋 齿的形式设置在相应的内外圓周面上的诸如图 10、 15 ~ 20所示的单向超越 离合器。
应顺便说明的是,如定义中所述, 本发明未对转动导向机构 G及其端面 型导向齿 52、 92作出具体限制, 其不必需具有最佳的螺旋结构。 因此, 该 机构 G及其导向齿可具有任意具备转动导向功能的形式和形状。导向齿可按 离散形式设置在端面 /周面上,也可按周向延续形式设置在内 /外周面上。 而 在后一种设置中, 其可为具有诸如矩形、梯形、锯齿形或三角形等截面形状 的螺旋齿。 同样, 只要可以轴向互补式贴合, 摩擦机构 F1和 F2的回转摩擦 面可基于任意曲线 /母线回转而成。
需要说明的是, 虽非必需, 但本发明应最佳地设置弹性预紧装置 /弹簧 150。其目的在于确保中介件 90始终保持在其准楔合工位上, 以获得持续的 牵引摩擦转矩的方式感受和响应离合器的相对转动方向的变化,确保反超越 转动开始的第一时刻, 中介件 90可以同步入楔 /楔合,从而将上述反超越转 动停止于开始时刻, 令溜滑角趋于零。 因此, 用于本发明的弹簧 150并不限 于扭簧一种形式, 也不限于内孔一个安装位置。 在保证设置目的的前提下, 它的具体形式、 数量和安装位置不受任何限制。 比如, 可以是金属或橡胶等 任意弹性材料制成的诸如扭簧, 压簧, 拉簧, 碟簧, 膜片弹簧, 波形弹簧、 直线钢丝 /片弹簧的弹性元件;可以安装在转动导向机构 G的内外周面一侧, 两端面一侧, 或者机构之内。 其中, 将一组压簧或直线弹性钢丝 /片分别部 份地收容在导向齿 52或 92齿顶面的一组轴向沉孔中的方式最节约空间。显 然, 如图 1、 3 ~ 4所示, 使用扭转弹簧或可轴向压缩的扭转弹簧非常适合于 高精度的传动。 而无需解释的是, 中介件 90此时所受到的空载 /牵引摩擦转 矩,最好不应大到足以克服弹簧 150的周向反力而致使导向面 94和 54相互 脱离抵触的程度。 另外, 弹簧 150提供的轴向力以及相应的空载 /牵引摩擦 转矩均可足够小, 并且与离合器的转速以及承载能力几乎毫无关系, 其使用 中的工作状况也几乎没有明显变化, 因此, 不存在任何额外的要求, 普通的 低成本弹簧即可胜任。
容易理解, 离合器 C1中的摩擦件 70与管状基体 76既可刚性地形成为 一体, 也可通过诸如花键联接等形成为周向一体(相当于无内环超越离合 器), 以自适应地调节其轴向位置, 确保所有轴向作用力绝对地封闭于组合 式导向件 50内, 而不使轴承 158承受些微的轴向力。 当然, 如果在其摩擦 件 70与限力元件 1 80的轴向间再对称地设置一个中介件, 并在传力摩擦面 58上设置互补式构造的螺旋导向齿, 以形成共用同一个摩擦件 70的轴向双 联的单向超越离合器, 那么, 即便摩擦件 70与管状基体 76刚性一体, 转动 导向机构 G的轴向自适应特性也可保证该离合器不对轴承 1 58施加任何轴向 作用力。 而因为具有两个轴向对称的导向面 54 , 空间楔形机构的解楔 /脱开 将更加容易。
同样不难理解的是,离合器 C1中的机构 G与机构 F1还可轴向翻转换位, 参见图 1。 也就是说在换位后的变型离合器中, 其摩擦件是包括杯形壳式限 力元件 180的力封闭式组合构件, 其导向件则与管状基体 76刚性成一体, 并与限力元件 180构成传力摩擦机构 F2 , 其结构类似图 14。 如上所述, 该 变型离合器显然也可以以轴向对称的两个中介件共用同一个设置有双端面 导向齿的导向件的形式,再变型为轴向双联的单向超越离合器,其空间楔形 机构也更容易解楔 /脱开。
必须指出的是, 为封闭轴向力和方便装配、维修和长久地保持传动的高 精度, 离合器 C1使用了轴向对接式封装壳。 但实际上, 尤其是对于非分度 的超越和逆止类传动型的应用领域,如对图 6、 14所示实施例的详细描述的 那样, 使用刚性一体的袋形封装壳或者径向对接式封装壳应该是最佳的选 择。
观察图 1不难发现, 去掉其中的弹簧 1 50 , 再将轴向上伸出于牵引摩擦 面 72的管状基体 76设置成与中介件 90形成为刚性一体, 便可得到如图 2 所示的单向超越离合器 C2。 除了具有轴一轴传动形式, 导向件 50设置有管 状基体 60, 中介件 90是一个包括杯形壳式限力元件 180的力封闭式组合构 件, 其回转摩擦面 104被设置到限力端部 188 的内端面上以及传力摩擦面 58被设置于导向件 50的无齿端面上之外, 离合器 C2的最大特点在于中介 件 90的楔合模式及相应的受力状况, 已经由现有楔形机构的位于楔形空间 中并受到由外向内的挤压力的经典内部楔合模式,改变为自身提供楔形空间 并受到由内向外的胀紧力的外部楔合模式, 参见图 5。 除了受力状况以及相 应的机构位置变更之外,例如导向件 50和摩擦件 70直接摩擦相连, 离合器 C2与离合器 C1没有任何实质的不同。 即便取消了弹性预紧装置, 中介件 90 不再和摩擦件 70始终直接或间接接触以感知后者与导向件 50之间的相对转 动, 也不能由此得到用以入楔 /楔合的牵引摩擦转矩, 但影响的只是溜滑角 而已。 因为, 导向件 50仍可借助其相对中介件 90转动方向的快速改变, 致 使后者可以在惯性转动中利用惯性力入楔以传递转矩。例如,脉动无级变速 器中高频换向的超越传动就是一个很好的实例。
类似上述说明, 离合器 C2中的机构 G与机构 F2也可轴向相互换位,也 就是将导向齿 52、 92仅仅设置在导向件 50和摩擦件 70之间, 可令离合器 C2变型为依赖于包括限力元件 180的力封闭式组合构件的工作状态的双周 向或单周向联轴器。 另外, 离合器 C2的中介件 90还可以变劣地分解成中介 件和平面环两个独立构件,后者则与限力元件 180联接成一个力封闭式组合 构件, 摩擦件 70仍对外传递转矩。 当然, 如果再去除摩擦件 70, 该离合器 的结构布局类型将等同于图 14所示。
应指出的是, 离合器 C1 ~ C2中的构件并非都是实施本发明之必需。 例 如, 图 6 ~ 7所示的非全周楔合传力的轮一轴传动形式的单向超越离合器 C3 便只包括必需的三个构件。 其中, 用于轴向力封闭的袋形环状摩擦件 70的 外表面上设置有诸如键槽 64、 轮齿、 螺 /销孔或皮带槽的传力用特征曲面, 其内周面 84的轴向中部设置有盘形环状凹槽 78。 该环状凹槽 78的正好半 周的内表面最佳地沿切线方向 H径向平行延伸至摩擦件 70的外周面并形成 四边形的通孔 82。 环状凹槽 78的内周面 80因而延伸出具有 U字形横截面 形状的内径向表面。相互嵌合的导向件 50和中介件 90可按空心箭头所指方 向由通孔 82直接纳入环状凹槽 78。 除前述周向惯性力之外, 为可靠入楔, 中介件 90的外径相较导向件 50应最佳地稍大,以使其可于径向串动中摩擦 接触到内周面 80并借此获得入楔所需的摩擦力。为此,摩擦件 70的内周面 84 与周向固定于导向件 50 内孔中的例如花键轴之间设置有相应的径向间 隙。 该设置尤其适用于铰链装置或可连续作业的单双向扳手 /螺丝刀等。
显然, 若将导向件 50或中介件 90直接设置到图 6中摩擦件 70的一个 内端面上, 或借助诸如设置互补构 i告的 U字形外周面、 孔内的花键套、 内表 面的轴 /径向销等连接方式实现直接或间接的周向固定, 便可得到具有轴向 力封闭功能的袋形导向件或中介件。装配时,可先径向置入中介件或导向件, 轴向嵌合后再置入摩擦件。 当然, 袋形构件也可是单一的限力元件, 也可由 紧套在外周面上的圓环密封。
一般地, 离合器 C 3可借助轴向贯穿于其中的例如花键轴实现自身构件 的定位, 但如果需要, 其也可按如下方式于装配中封装定位。 即, 在通孔 82两径向侧面的对应于周向端部 88且轴向只对应于导向件 50的部位, 预 先切割出一个可径向内弯曲的周向舌, 或者, 在通孔 82的与传力摩擦面 74 共面的内端面正中的径向外环侧 86处, 预先切割出一个可轴向内弯曲的径 向舌,以在导向件 50和中介件 90装配就位之后塑性弯曲该周向舌或径向舌, 实现对该二构件的封装和定位。
实际上, 传力摩擦机构 F2也不是必需的。 参见图 8 , 对于内部楔合模 式的轴一轴传动形式的三构件超越离合器 C4 , 便可由分别与导向件 50和摩 擦件 70同轴固结的二根传动轴为该离合器提供支撑力, 利用机架而非离合 器自身形成轴向力封闭系统。 为可靠入楔, 中介件 90应最佳地设置成膨胀 型或收缩型弹性开口环。
更进一步地, 本领域的技术人员也显然明白, 本发明中的中介件 90并 不必需具有环状整体形式 ,其完全可以具有如图 9所示的变劣的多个离散体 形式, 以使其可以沿轴向和径向同时运动并传递相应作用力。 其中, 摩擦件 70是一个包括杯形壳式限力元件 180的力封闭式组合构件。 位于半锥顶角 等于 β的圓锥回转面 Ζ上的多个诸如钢球或圓台状 /截锥形滚拄的一组中介 件 90对应地收容在圓锥端面上的具有锥形 /倾斜螺旋齿式导向齿 52的一组 周向齿槽内, 其回转侧面既是导向面又是摩擦面。 借助离心力的作用, 中介 件 90持续地抵触在内截锥面式牵引摩擦面 72上。 可见, 超越离合器 C5的 转动导向机构 G和牵引摩擦机构 F 1 均为点 /线接触的高副机构, 参见图 4 的双点画线圓, 尽管性能上不如离合器 C1 , 但由于仍具有轴向高刚度和传 力摩擦机构 F2等上述优点, 离合器 C5依然较现有技术显著为优。
明显地, 现有技术的滚柱式超越离合器只不过是离合器 C5的 β角等于 0或 180度时的特例, 即, 只需为牵引摩擦机构 F1提供径向而非轴向接合 力的特例,空间楔形机构因无轴向运动而简化为只有径向运动的平面楔形机 构的特例。 而离合器 C 1 ~ C4、 C7 ~ C9相应于其 β角, 更确切地说是相应于 机构 G 的导向摩擦副的接触点 /线所位于的圓锥回转面的半锥顶角等于 90 度时的情况。 离合器 C6、 C1 0 ~ C15则相应于 0度 < β < 180度但 β ≠90度 时的情况。 其中所有中介件 90因不必需径向运动和不必需自转而最佳地相 互联合成一个单一刚性体 /整体。
实施例二: 具有多片式摩擦机构的单向超越离合器 C6、 C7 对比图 1和图 10可发现,超越离合器 C6实际上是对离合器 C1的变型。 其中, 转动导向机构 G的一组端面型螺旋导向齿 52、 92以类似单头或多头 螺紋的形式, 周向延续地分别设置在导向件 50 的内圓周面以及中介件 90 的外周面上。 与限力元件 180刚性一体的导向件 50通过螺钉 176将环形端 盖 174紧固至其开口端面。 波形的弹簧 150设置在环形端盖 174与中介件 90之间, 仅将后者弹性地抵触在摩擦件 70上。 改进地, 传力摩擦机构 F2 被设置成多摩擦片式离合机构,以使其直接传递的转矩数倍于牵引摩擦机构 Fl。为此, 至少包括一个的一组较小的摩擦片 156通过花键连接方式周向固 定到管状基体 76的相应的台阶状外周面上, 与摩擦片 156轴向交错布置的 另外一组较大的摩擦片 154通过花键连接方式周向固定到导向件 50的相应 的台阶状内周面上。
与离合器 C6类似, 图 11中的轴一轴传动式超越离合器 C7也具有多摩 擦片式的传力摩擦机构 F2。 而为获得更大的极限角 ξ和 ζ以降低轴向作用 力和空载摩擦转矩, 其牵引摩擦机构 F1也釆用了多摩擦片式结构, 并因此 具有了多于一个的一组牵引摩擦副。作为同样动机的结果, 不受弹性轴向力 作用的牵引摩擦机构 F1在其空载转矩几乎降为零的同时, 其感应相对转动 方向和驱动中介件 90入楔的功能也随之丧失。 为此, 弹性预紧装置包括一 个通过花键与中介件 90 内周面周向固定的收缩型弹性开口环式的感应件 152 ,其弹性地缩紧在管状基体 76的相应外周面上, 以构成感应型的回转摩 擦副。 当反超越转动开始之际, 中介件 90依旧可被牵引摩擦转矩带动着即 刻入楔 /楔合, 并致使离合器 C7立即接合以传递转矩。 显然, 上述设计明显 地减小了牵引摩擦机构 F1和传力摩擦机构 F2的磨损以及总体的空载阻力转 矩。 另外, 组合式导向件 50使用的紧固件换成为螺栓 178。
不难理解, 离合器 C6、 C7最佳地适用于大转矩的传递, 以及对传动精 度、 接合频率或溜滑角要求不是很高的传动部位。 但只要在中介件 90与导 向件 50或环形端盖 174之间设置至少一个诸如销槽式径向或轴向嵌合机构 的周向限位机构, 即可达到限制转动导向机构 G的周向最大间隙 ε , 以具有 高接合灵敏度和微小溜滑角的目的。 另外,该限位机构也可至少部分地由弹 性材料构成或者其中周向地设置有弹簧 150 , 从而实际包括有上述弹性预紧 装置。
实施例三: 轴一轴传动式双向超越离合器 C8
参见图 12 , 双向超越离合器 C8具有离合器 C7的主体结构形式。 其中, 有别于上述所有实施例, 弹性预紧装置包括两个构件, 波形的弹簧 150 , 以 及被其压紧在牵引摩擦面 72上以与后者组成感应型回转摩擦副的整环式感 应件 152。 为传递双向转矩, 每对螺旋导向齿 52、 92均周向对称地设置有 两个升角均为 λ且呈互补式构造的螺旋型导向面 54、 94 , 参见图 4 ~ 5和图 13(a) , 这里, 0< λ ξ。 为规定离合器 C8的工作方向, 还专门设置有定 向机构 D。该机构 D的主体为一个定向环 120,其包括一组轴向型定向销 122 和可滑转地空套在管状基体 60上的管形段 128。 设置在定向销 122头部的 内径向圓柱形凸起 124穿过导向件 50上的轴向型基准孔 /槽 126, 从一端开 口处可滑动地收容于设置在中介件 90外周面的相应导槽 130中, 以构成一 个周向间隙近似为零的圓柱凸轮式的销槽式嵌合机构。 而当导向面 54和 94 在任意圓周方向 ·ί氏触时, 定向环 120在两个圓周方向上相对导向件 50的周 向自由度都大于零, 但都不大于转动导向机构 G此时的周向自由度 ε。 即, 设置有 0< δ 1 < ε和 0< δ 2< ε , δ 1最佳地等于 δ 2, 参见图 13 (a)。
为方便说明, 本说明书假定图 13(a)中箭头 P所指方向为正向, 也就是 从图 12的左侧观看时,导向件 50带动摩擦件 70逆时针转动所对应的方向。 于是对应地, 作为多段凹槽组合体的导槽 130 轴向上包括容纳有凸起 124 的正向段 132, 与其周向相错 ε圓周角的反向段 134以及连接该两段的过渡 段。 当离合器 C8的工作方向为正时, 也就是只可以在正向上传递转矩和超 越转动时, 其等同于工作方向被设定为逆时针方向的单向超越离合器 Cl。 由于受到定向机构 D的周向限制,其导向面 54b和 94b不可能抵触上。 而完 全对称地,当凸起 124随着定向环 120的轴向右移容纳于在导槽 130的反向 段 134时, 中介件 90将相对导向件 50正好转动圓周角 ε。 于是, 离合器 C8的工作方向将由正向切换成反向, 将只能在反向上传递转矩和超越转动, 等同于工作方向被设定为顺时针方向的单向超越离合器 Cl。 届时, 导向面 54a和 94a不可能 4氏触上。
显然地,定向机构 D的原理和结构也可用于无级地调节单向超越离合器 的周向间隙 ε大小的目的, 以利于长久地维持其传动精度。 甚至, 还可将两 个工作方向互反的这样的单向超越离合器, 或者具有图 14所示径向对接的 组合式外壳的单向超越离合器,以限力元件分别对应地刚性一体和共用一个 定向机构 D的方式双联,便可得到对等于单向离合器的转矩容量的双向超越 离合器。
作为本领域的普通技术人员能够清楚理解, 定向机构 D的作用,就是可 选择地限定中介件 90相对导向件 50的周向转动区间,以允许或阻止对应于 设定圓周方向的导向面 54和 94相互抵触的方式,致使转动导向机构 G在该 圓周方向上具有或不具有转动导向作用, 从而将离合器 C8限定为相应圓周 方向的单向超越离合器, 达到规定和控制其工作方向的目的。 因此, 此处无 需重复说明单向工作的离合器 C8传递转矩和超越转动等的工作过程。
更进一步地,给定向机构 D设置不同的限定或不同限定的组合, 以允许 或阻止对应于 0~ 2个圓周方向的导向面 54和 94相互抵触, 便可令方向可 控的超越离合器具备所有可能的定 ^状态和对应工况。 比如, 以图 13(b) ~ (f)所示的导槽 130取代图 13(a)中导槽 130。 其中, 图 13(b)是一个适合于 诸如机动车单向滑行器和钓鱼竿中的卷线器的定向方案。当凸起 124轴向上 位于导槽 130的自由段 136内时,中介件 90相对导向件 50的转动圓周角将 大于 ε。 于是, 双方对应于两个圓周方向的导向面 54和 94均可相互抵触而 摩擦联轴
Figure imgf000021_0001
浪造成的短暂分离所带来的有害冲击。 图 13(c)比图 13(b)多了一个反向段 134, 该方案可用于机动车的双向滑行器。 应说明的是, 为缩短换向运动的 轴向距离, 图 13(c) ~ (f)中的内径向凸起 124均由圓柱体换成为正八棱柱 体。
这里必须顺便说明的是, 由实施例一中的说明可知, 当 ζ < λ ξ时, 离合器 C8在过载时将打滑, 因此, 其定位在联轴器工况时将具有安全离合 器的功能。 更进一步地, 例如去除离合器 C8 中的定向机构 D、 感应件 152 以及弹簧 150, 将圓周角 ε最佳地设置为零, 以导向件 50耦合原动机, 离 合器 C8将变型为一个过载转矩与摩擦系数无关且精确自适应于动力转矩的 无空行程的双向摩擦式安全离合器 /联轴器。 人们从此将不再困扰于如何精 确设定和长久保持过载转矩值的问题。 而且, 本发明用作联轴器时, 还在一 定程度上具有自适应于任意偏心度的能力。
作为对图 13(c)的改进, 图 13(d)中的导槽 130设置有取代自由段 136 的空档段 138, 该段周向上位于正向段 132与反向段 134的正中央。 与之对 应, 此时的 δ 1和 δ 2的上限均必需小于 ε /2。 所以, 当凸起 124轴向上位 于空档段 138内时,定向机构 D将致使导向面 54和 94在两个圓周方向上均 无法相互抵触,也就是在零个方向上相互抵触。转动导向机构 G将因此处于 失效工况。 于是, 离合器在两个方向上均绝对超越空转并在零个方向上传递 转矩。 这样, 具有图 13(d)所示定向方案的超越离合器, 将特别适合于需要 随时进行动力切换和在线检修的双动力驱动系统,以取代诸如应用于大型水 面舰船和发电机组的 SSS同步离合器。然而显然地,由于极少用到反向传动, 图 13(e)所示定向方案将更适合于水面舰船。 而在取消该图中的正向段 132 之后, 所对应的离合器便能用作可无级定位的铰链。 另外, 釆用图 13(f)所 示的定向方案,可以最简单的方式令方向可控的超越离合器具备绝对分离空 转工况、 正向工况、 联轴器工况和反向工况, 使其足以应对最复杂的实际需 要。
如上所述,设置定向机构 D的目的,就是以选择性地取消转动导向机构 G在零个、 一个或两个圓周方向上的转动导向功能的方式, 限定双向超越离 合器的工作方向。 所以, 任何可以实现这种规定功能的刚性 /弹性机构或装 置都可以用作定向机构, 而没有其它的限制。 其可以位于转动导向机构 G 的径向之外, 径向之内, 径向同位, 或者端面一侧, 其还可以直接包括弹性 预紧装置。 比如,设置于中介件 90和导向件 50或与该二构件周向一体转动 的诸如限力元件 180 或转轴之间的具有至少一个凸起和至少一个凹槽的轴 向型或径向型销槽式嵌合机构。使用可自转的偏心销或偏心槽的常嵌合式便 是一个很好的选择,而且其中更可方便地直接加入弹性限定周向间隙的各种 弹簧。 关于这方面, 公知技术中已有很多介绍。 例如, 本申请人在专利文献 CN101117987A和 CN101672335A中就公开有众多的实施例, 因此此处不再重 复, 而是将该两份文献的全文结合于此。 当然, 也可以将图 12中的圓柱凸 轮式的销槽式嵌合机构重复地设置在管形段 128与管状基体 60之间, 只要 将定向销 122与基准孔 126/槽之间的周向自由度设置成不妨碍定向环 120 相对导向件 50的转动, 同时, 将图 1 3 (a)中的导槽 1 30变形为纯轴向的基 准导向槽, 令定向环 120相对中介件 90周向固定即可。 相关实施例, 可参 照专利文献 CN101117987A中的关于其图 47和图 48的说明。
另外, 还应该指出的是, 可以在管形段 128与管状基体 60之间设置诸 如凹槽式弹性定位机构,以保持定向机构 D工作位置的稳固和所规定工作方 向的稳定。 而且, 为保证任何时候都可以进行定向操作, 应该最佳地通过诸 如弹簧之类的弹性元件来致动定向环 120。公知技术中已有很多相关技术方 案可资利用, 此处不再详细说明, 例如, 上文所结合的专利文献 CN101117987Ao
不难想到, 将定向机构 D的设置位置移至图 1 3 (a)中的 K处, 适当加宽 导槽 1 30 的周向宽度, 并保证这样的周向间隙设置效果。 即, 相对定向环 120在两个圓周方向上的驱动转动, 反向转动的中介件 90均因为周向抵触 上定向销 122而不能入楔,离合器 C8于是变型为可在用作拨爪的定向环 120 向导向件 50传递转矩的类似现有技术中带拨爪的所谓双向超越离合器。 当 然, 也可在拨爪 /定向环 120与导向件 50之间直接设置端面传力嵌合机构, 或者, 将拨爪 /定向环 120最佳地借助花键同时连接至导向件 50和中介件 90的内周面, 并釆用类似图 14的总体结构。
实施例四: 具有径向对接式封装壳的轴一轴传动式双向超越离合器 C9 参见图 14 ,离合器 C9的摩擦件 70是一个与两个半圓壳式限力元件 160 分别刚性一体的力封闭式组合构件。 与前述实施例最大的不同在于, 为提供 最高的轴向刚度和强度以传递大转矩,该力封闭式组合构件由轴向上刚性一 体且内端面分别共面的两个对称半圓壳径向对接而成。该两个可看作是大体 呈 "U" 字形的实体母线绕 X 轴回转半周所形成的回转体的限力元件 160a 和 160b , 以径向共同夹紧套装于管状基体 60两端的两个轴承 158的形式对 接成一个周向完整的封闭壳,从而将导向件 50和中介件 90等可转动地封装 于其围成的盘形环状凹槽中。而由该两个限力元件两外端的两对半环形端面 凸缘 162a与 162b , 以及 164a与 164b分别径向对接成的两个全环形端面凸 缘的同径外周面上, 以过盈配合的方式分别套装有环形箍 170和 172。 两个 限力元件 160a和 160b因此被紧固成一个固定整体 /组合构件。
实际上, 离合器 C9也可以具有轮一轴传动形式, 或者更进一步地取消 定向机构 D 而成为传递大转矩的单向超越离合器。 这只要将端面凸缘 164 与环形箍 172 的形状和安装位置设置成轴向上至少大致对称于左端的端面 凸缘 162与环形箍 170即可。当然,环形箍 170也可以借助诸如过盈、方孔、 键连接等手段设置在两个限力元件 160轴向中部的外周面上,甚至还可以用 齿环代替某一环形箍 170 , 或者, 釆用诸如焊接、 铆接或螺拴连接等方式, 将两个限力元件 160紧固成一个固定整体。 更进一步地, 可以仿照图 11 ~ 12所示, 去掉导向件 50上向右延伸的管状基体 60 , 再将摩擦件 70独立于 限力元件 160 , 以得到轴一轴传动形式的超越离合器。 其中, 力封闭式组合 壳 /构件单一地由限力元件构成, 且该组合壳 /构件相当于传力摩擦机构 F2 中传递转矩的一个摩擦片。
继续参见图 14 , 为减小磨损而设置的弹性膨胀开口环式感应件 152 , 弹 性地张紧在中介件 90的内周面上, 以构成感应型的回转摩擦副。 设置于其 端面的凸起 153活动地嵌入设置在两个摩擦件 70a与 7 Ob对接面之间的缺口 中 (未示出), 以使其跟随摩擦件 70 —体转动。 为适应封闭壳相对导向件 50回转的特点, 定向机构 D的定向环 120径向上位于两个限力元件 160的 内周面与导向件 50以及中介件 90的外周面之间,其内周面的两端分别设置 有凸起 124a和 124b。 凸起 124a径向收容于设置在导向件 50外周面的导槽 1 30内, 凸起 124b径向收容于设置在中介件 90外周面的基准孔 /槽 126内。 相应地,还设置有致动定向机构 D的包括致动环 140和波形弹簧 142的致动 机构。其中, 端面上设置有一组轴向致动销的致动环 140可滑动地套装在两 个限力元件 160 的相应外周面上, 通过设置于该元件上的一组相应的轴向 孔, 致动环 140便可借助其致动销轴向左移定向环 120 , 以实现方向的改变 和固定。而设置在定向环 120与限力元件 160的左侧内端面之间的弹簧 142 , 可以复位方式轴向右移定向环 120和致动环 140。 显然, 定向环 120也可被 一个与限力元件 160组成端面凸轮机构的环所推动。
离合器 C9可最佳地用作机动车的可控滑行器。当以导向件 50与发动机 耦合时,其过载打滑的方向特性,正好可以确保大转速差滑行状态中的离合 器因加速或制动而突然接合的过程是柔性的摩擦滑转式而非刚性的顿挫式。 另外显然地, 离合器 C7 ~ C9均可用作超越联轴器。
典型应用实例举例
图 15示出的是应用本发明的单向轴承 /单向超越离合器 C10 (未示出防 尘盖)。该离合器 C10包括由具有外滚道的导向件 50、具有内滚道的外环 190 及一组滚珠 192组成的轴承部分, 以及由导向件 50、 中介件 90及摩擦件 70 组成的超越离合器部分。其中, 最佳地通过诸如直花键连接至外环 190内周 面的摩擦件 70 , 与中介件 90以及设置在导向件 50外周面上的外截锥面凸 缘 66分别组成截锥面型的牵引摩擦机构 F1和传力摩擦机构 F2 , 以增大转 矩传递能力和 ξ值。 转动导向机构 G的螺旋导向齿分别设置在中介件 90的 内周面与导向件 50的外周面上。 弹簧 150最佳地具体为可轴向压缩的盘形 扭簧, 其一个端头嵌入中介件 90外端面的相应轴向孔中, 另一个端头嵌入 导向件 50外周面的相应径向孔中。
基于前述优点,离合器 C10显然可取代现有技术中的 CSK型单向离合器, 且具有更大的承载能力。 而为进一步减小径向尺寸, 还可将导向件 50直接 形成在传动轴上, 将摩擦件 70直接形成在外环 190上, 且用滚针轴承替代 滚珠 192并增布于中介件 90与外环 190之间。 如此得到的无内环超越离合 器的内径至少可以小至现有技术的 3毫米,而其承载能力将显然地大于现有 技术的依靠线接触摩擦机构的 0. 2牛米的水平。容易理解,也可用径向上完 全翻转离合器 C10的方式得到其无内环的变型。 显然, 图 6 ~ 7所示的袋形 封装壳方案更适于微型和小型超越离合器。 比如, 以外环 190为袋形摩擦件 70 , 将离合器 C3设置到离合器 C10的右半边。
图 16示出了应用本发明的液力变矩器的导轮实施例 C11。该实施例 C11 的与导向件 50刚性一体的导轮 196通过卡环 184可旋转地固定在静止环 194 的外周面上。 通过花键周向固定在静止环 194外周面上的摩擦件 70 , 与中 介件 90的内截锥面以及导向件 50的内端面分别组成牵引摩擦机构 F1和传 力摩擦机构 F2。 转动导向机构 G的螺旋导向齿分别设置在中介件 90的外周 面与导向件 50的内周面上。
如图 17所示,实施例 C12是包括有本发明的装载机变速器的二轴总成。 其具有轮齿 168b的大齿轮 204与导向件 50形成为一体,并通过轴承径向定 位在小齿轮 200的向一端延伸的轴上。 通过花键与具有轮齿 168a的小齿轮 200上的环形端面凸缘 202周向固定的摩擦件 70 , 与中介件 90的外截锥面 以及大齿轮 204的端面周向凹槽的内端面分别组成牵引摩擦机构 F1和传力 摩擦机构 F2。 转动导向机构 G的螺旋导向齿分别设置在中介件 90的内周面 与导向件 50的外周面上。
图 18示出的是应用本发明的诸如自行车或电动助力车等的飞轮实施例 C1 3。 其中, 设置有链轮齿 222的飞轮外环 220 , 通过两组滚珠 192以及飞 轮盖 224可转动地固定在充当飞轮内环的导向件 50上。与实施例 C10相同, 为不对滚珠 192产生轴向力, 摩擦件 70最佳地通过诸如花键连接方式周向 固定在外环的内周面上。 而且, 除了传力摩擦机构 F2的回转型摩擦面改为 端平面, 弹簧 150改为波形弹簧外, 超越离合器机构完全同于图 15所示。 显然, 上述飞轮的接合空行程或溜滑角几近于零, 并且, 承载能力相较棘轮 式飞轮至少不为小。
图 19示出的是应用本发明的电动助力车轮毂实施例 C 14。 其中, 绕轴 线 X回转的与导向件 50和限力元件 180刚性一体的轮毂外壳 206通过轴承 158径向固定在轮毂轴 216上,其内安装有减速器基架 214。减速器基架 214 内安装有相互固定成一体的齿轮 21 0和轴齿轮 212。 绕轴线 X回转的电机的 空心输出轴齿轮 208驱动与其啮合的齿轮 21 0 , 通过轴齿轮 212再驱动与后 者啮合的摩擦件 70。 摩擦件 70空套在导向件 50上, 并与限力端部 1 88的 内端面以及中介件 90的外端面分别组成传力摩擦机构 F2和牵引摩擦机构 Fl。 转动导向机构 G的螺旋导向齿分别设置在中介件 90的内周面以及空心 轴的外周面上。
图 20示出的是应用本发明的摩托车电起动超越离合器实施例 C15。 其 中,导向件 50作为环形端面凸缘刚性一体地形成在起动齿轮盘 198的一端, 后者可转动地空套在管状基体 76上, 并与中介件 90从两端分别与摩擦件 70摩擦相连, 实现彼此的轴向定位。 这里, 盘形或可轴向压缩的盘形扭转 弹簧 150还具有轴向限定中介件 90的作用。最佳地, 可将离合器 C 3的摩擦 件 70直接用作齿轮盘 198。
显然, 若将图 15、 17 ~ 19中导向件 50和中介件 90分别比作螺栓和螺 母, 摩擦件 70比作被联接件, 则所述典型应用便相当于在 "螺栓" 与 "被 联接件"之间单向地传递转矩。 但同样显然地, 它们的工作机理和使用目的 有着本质的不同。 不经创造性的思维劳动, 仅由 "螺栓" 和 /或 "螺旋" 的 现有技术理论和常识出发, 理论上和现实中都不可能 "逻辑地"推导出或联 想出所述典型应用和 /或本发明的技术方案。 因为首先, 现有技术中没有任 何可识别的相关技术启示。 其次, 除上述背景技术的简述之外, 现有技术中 涉及空间机构的超越离合器还包括至少有 50多年历史的 SSS 自动同步离合 器, 以及本申请人在专利文献 CN1 01 672 335A中公开的导向式牙嵌超越离合 器。 而更久远地, 从阿基米德发明螺旋提水工具至今, 人们认识和应用螺旋 的转动导向原理的历史已有 2230年,使用现代机器制造螺紋 /螺栓等的历史 已超 230年, 并且其踪影早已无所不在。 因此, 如果存在相关技术启示而人 们仍然在任何使用条件下和任何技术创新中都不去尝试该更好的技术方案, 那是无法解释的。再次, 虽然有些相关文献涉及到了基于轴向力的各种空间 运动机构, 但囿于现有技术原理、 惯性思维的束缚和技术偏见, 并没有因此 真正认识到和揭示出相关空间机构和平面机构的相关摩擦副不打滑地稳定 接合的工作机理和物理本质, 因此, 也就不可能提出本发明的技术方案。
由以上说明不难发现, 凭着跨时代性质的和全方位的绝对优势,本发明 不仅具有取代现有技术的巨大潜力,而且更具有促使超越离合器向更高转矩 /功率、 更高转速、 更高变换频率、 更大和更微小尺度, 以及更多的机械传 动领域显著拓展其应用深度和广度的巨大潜力。无论是诸如大型还是微型传 动, 精确分度还是高速 /高频传动, 或者各类减速传动、 定位铰链和扳手, 本发明都将有效解决现有技术中难以解决的各种相关问题。 比如,在包括飞 机发动机等在内的所有可自驱动的原动机的起动装置中应用本发明,可最佳 地实现起动机与原动机的恒久连接、过载保护和快速起动,彻底去除包括电 磁开关在内的所有非必需机构;将依据本发明的单向超越离合装置设置在诸 如内燃机的输出轴与其机座之间,可最经济最可靠地实现防止内燃机反转的 目标,从而以最简单方式最终免除人们为防止起动系统或人员不受反转危害 而可能付出的所有努力和花费,以及最终免除人们为使内燃机燃油电子喷射 系统正确工作而在其转角测定中为去除反转影响而可能付出的所有努力和 花费。
以上仅仅是本发明针对其有限实施例给予的描述和图示,具有一定程度 的特殊性,但应该理解的是,所提及的实施例和附图都仅仅用于说明的目的, 而不用于限制本发明及其保护范围, 其各种变化、 等同、 互换以及更动结构 或各构件的布置, 都将被认为未脱离开本发明构思的精神和范围。

Claims

权利要求书
1. 一种空间楔合式摩擦超越离合器, 包括:
绕一轴线回转的轴向接合的至少一个牵引摩擦机构,其具有至少一个中 介件以及绕所述轴线回转并设置有牵引摩擦面的摩擦件,以在该两构件间传 递摩擦转矩;
为所述牵引摩擦机构提供接合力并绕所述轴线回转的至少一个转动导 向机构,其具有所述中介件以及绕所述轴线回转并设置有相应导向面的导向 件; 其特征在于:
当所述转动导向机构啮合时,所述导向件的所述导向面与所述中介件之 间的相互抵触部位的升角 λ大于零且小于等于 ξ , 即, 0< λ ξ , 其中, ξ是能够令形成于所述抵触部位的导向摩擦副自锁的所述升角 λ的最大值。
2. 按权利要求 1所述的超越离合器, 其特征在于: 还包括与所述导向 件以及所述摩擦件刚性地结合在一起的传力摩擦机构,以在该两个构件之间 直接传递摩擦转矩。
3. 按权利要求 2所述的超越离合器, 其特征在于: 所述升角 λ大于 ζ , 即, ζ < λ ξ , 其中, ζ是能够令所述导向摩擦副自锁的所述升角 λ的最 小值,也是令所述中介件与所述牵引摩擦面相抵触所形成的牵引摩擦副自锁 的所述升角 λ的最大值, ξ的含义同上。
4. 按权利要求 2所述的超越离合器, 其特征在于: 当 ζ >0时, 所述 升角 λ小于等于 ζ , 即, 0< λ ζ , 其中, ζ的含义同上。
5. 按权利要求 2所述的超越离合器, 其特征在于:
(a)还包括至少一个限力元件;
(b) 所述导向件、 所述中介件和所述摩擦件中的至多一个是通过固定 连接方式包括有所述限力元件的力封闭式组合构件,以从外端限定其余两个 所述构件的最大轴向距离。
6. 按权利要求 1 ~5任一项所述的超越离合器, 其特征在于:
(a)对应于两个不同的圓周方向, 所述转动导向机构均具有转动导向 功能, 所述导向件均设置有所述导向面;
(b)还包括定向机构, 其用于可操作地将所述中介件限定在相对所述 导向件的至少两个不同的周向区域内,以限定所述中介件可以周向抵触到所 述导向件的相对转动方向,并规定所述转动导向机构的导向转动所对应的圓 周方向。
7. 按权利要求 6所述的超越离合器, 其特征在于: 所述定向机构是销 槽式嵌合机构,其具有至少一个凸起和至少一个 iHJ槽,分别设置在所述中介 件和与该中介件周向固定的转动构件中的一个上 ,以及所述导向件和与该导 向件周向固定的转动构件中的一个上。
8. 按权利要求 6所述的超越离合器, 其特征在于: 还包括致动机构, 其用于改变所述定向机构的定向状态。
9. 按权利要求 1 ~ 5任一项所述的超越离合器, 其特征在于: 还包括至 少具有一个弹性元件的弹性预紧装置 ,其用于将所述中介件和与该中介件周 向固定的转动构件中的一个弹性地至少抵触在所述摩擦件上。
10. 按权利要求 1 ~ 5任一项所述的超越离合器, 其特征在于: 所述导 向件的所述导向面是螺旋型齿面,其设置在所述导向件的包括端面、 内周面 和外周面的一个表面上; 在轴平面内, 该螺旋型齿面与所述轴线之间的夹角 大于 0° , 小于 180° 。
11. 按权利要求 10所述的超越离合器, 其特征在于: 所述中介件是一 个绕所述轴线形成并设置有相应回转摩擦面的环状构件, 其还设置有导向 面, 该导向面是与所述导向件的所述导向面具有互补式构造的螺旋型齿面, 并对应地设置在所述中介件的端面、 外周面和内周面中的一个表面上。
12. 按权利要求 1 ~ 5任一项所述的超越离合器, 其特征在于: 所述摩 擦件和所述限力元件之一是袋形环状构件,其内周面上设置有半个周向的盘 形环状凹槽以及由该凹槽径向延伸至所述袋形环状构件外周面的通孔。
1 3. 按权利要求 10所述的超越离合器, 其特征在于: 所述螺旋型齿面 分别设置在所述导向件和所述中介件二者的相互直接面对的内周面和外周 面上, 所述导向件设置有限力端部。
14. 按权利要求 1 ~ 5任一项所述的超越离合器, 其特征在于: 所述限 力元件是具有中心圓孔的杯形壳。
15. 按权利要求 1 ~ 5任一项所述的超越离合器, 其特征在于: 所述限 力元件包括径向上至少大致对称的两个半圓壳和两个环形箍,该两个半圓壳 的形状具有这样的组合效果, 即, 二者径向对接所构成的组合壳, 设置有轴 向贯穿其中的中心圓孔, 以及设置有对称于所述轴线的内部管形腔, 其两侧 环形外端面的径向内侧部位设置有环形端面凸缘,两个所述环形箍从径向外 侧分别紧箍在该两个端面凸缘的外周面上, 以固定所述组合壳。
16. 按权利要求 1 ~ 5任一项所述的超越离合器, 其特征在于: 所述牵 ? I摩擦机构和所述传力摩擦机构中的至少一个,其两个相应摩擦面中的至少 一个是半锥顶角大于 0° 而小于 180° 的截锥面。
17. 按权利要求 1 ~ 5任一项所述的超越离合器, 其特征在于: 所述牵 引摩擦机构是多摩擦片式摩擦机构,其具有与所述摩擦件和所述中介件分别 周向固定连接的两组轴向交错排列的各至少一个摩擦片。
18. 按权利要求 1 ~ 5任一项所述的超越离合器, 其特征在于: 所述传 力摩擦机构是多摩擦片式摩擦机构,其具有与所述摩擦件和所述导向件分别 周向固定连接的两组轴向交错排列的各至少一个摩擦片。
PCT/CN2010/074619 2009-06-29 2010-06-28 空间楔合式摩擦超越离合器 WO2011000300A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012516503A JP5679469B2 (ja) 2009-06-29 2010-06-28 空間楔合摩擦オーバーランニング・クラッチ
US13/381,262 US9476465B2 (en) 2009-06-29 2010-06-28 Spatial wedging friction overrunning clutch
EP10793595.9A EP2450589B1 (en) 2009-06-29 2010-06-28 Spatial wedgeing friction overrunning clutch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910158647.6 2009-06-29
CN200910158647 2009-06-29

Publications (1)

Publication Number Publication Date
WO2011000300A1 true WO2011000300A1 (zh) 2011-01-06

Family

ID=43389852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074619 WO2011000300A1 (zh) 2009-06-29 2010-06-28 空间楔合式摩擦超越离合器

Country Status (5)

Country Link
US (1) US9476465B2 (zh)
EP (1) EP2450589B1 (zh)
JP (1) JP5679469B2 (zh)
CN (1) CN101936346B (zh)
WO (1) WO2011000300A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527748A (zh) * 2012-07-03 2014-01-22 洪涛 空间楔合式多槽传动轮和具有该传动轮的提升设备
CN104963963A (zh) * 2014-06-11 2015-10-07 洪涛 具有大楔角的空间楔合式多槽传动轮以及包括该传动轮的摩擦式提升设备
CN112041579A (zh) * 2018-02-16 2020-12-04 法雷奥摩擦材料公司 离合器的摩擦衬片和包括该摩擦衬片的离合器的摩擦盘
KR20210055527A (ko) * 2019-11-07 2021-05-17 주식회사 카펙발레오 원웨이 클러치 및 이를 구비하는 토크 컨버터

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102537025B (zh) * 2010-12-30 2016-04-13 洪涛 空间楔合式无级定位铰链
JP5803015B2 (ja) * 2011-08-31 2015-11-04 Jukiオートメーションシステムズ株式会社 搬送装置、処理装置及び搬送方法
CN102777512A (zh) * 2012-07-03 2012-11-14 洪涛 可快速动作的空间楔合式离心离合器、具有该离合器的双离合器自动变速器及其操纵方法
CN102758861A (zh) * 2012-07-03 2012-10-31 洪涛 柔性接合的自控型空间楔合式摩擦连接器
CN103527687B (zh) * 2012-07-03 2018-06-22 洪涛 空间楔合式电控离合器
CN102748454A (zh) * 2012-07-03 2012-10-24 洪涛 具有空间楔合式摩擦连接器的液力自动变速器和双离合器自动变速器
CN102758859B (zh) * 2012-07-27 2015-09-09 重庆大易用机械有限公司 摩擦式超越离合器
CN102758860B (zh) 2012-07-27 2015-04-15 重庆大易用机械有限公司 锥形面摩擦式超越离合器
DE102012020472A1 (de) * 2012-10-18 2014-04-24 Sram Deutschland Gmbh Freilaufnabe für ein Fahrrad
CN102927157B (zh) * 2012-11-14 2015-06-10 重庆大易用机械有限公司 一种具有缓冲功能的单向传动装置
WO2014127739A1 (zh) * 2013-02-22 2014-08-28 Hong Tao 空间斜撑式超越离合器、联轴器、铰链和传动轮
CN103244578B (zh) * 2013-05-15 2016-06-22 中国航空动力机械研究所 超越离合器
CN103557243A (zh) * 2013-10-13 2014-02-05 洪涛 易于解楔或解楔转矩等于零的空间楔合式摩擦超越离合器
DE102013019649A1 (de) * 2013-11-22 2015-05-28 Laudenbach Formtechnik GmbH & Co. KG Vollflächenfreilauf
JP5959556B2 (ja) 2014-03-12 2016-08-02 三菱電機株式会社 エンジン始動装置
CN103925311B (zh) * 2014-03-18 2016-06-01 龙口中宇热管理系统科技有限公司 单向离合器
KR101586060B1 (ko) * 2014-04-10 2016-01-15 백영구 무단변속기
DE102014108087A1 (de) * 2014-06-06 2015-12-17 tune U. Fahl e.K. Unidirektionale Drehmoment-Kupplung und Verfahren dazu
JP5955362B2 (ja) * 2014-09-09 2016-07-20 三菱電機株式会社 エンジン始動装置
JP6021991B1 (ja) * 2015-04-23 2016-11-09 三菱電機株式会社 エンジン始動装置
CN105299207A (zh) * 2015-11-16 2016-02-03 广西恒达电机科技有限公司 电机实验用启动脱档装置
US10006501B2 (en) 2015-12-09 2018-06-26 Schaeffler Technologies AG & Co. KG Clutch actuation device
JP2017176111A (ja) * 2016-03-31 2017-10-05 グローブライド株式会社 魚釣用リール
JP2017221112A (ja) * 2016-06-13 2017-12-21 株式会社東和電機製作所 一本釣り機
JP6715512B2 (ja) * 2016-06-15 2020-07-01 株式会社東和電機製作所 釣り機及びその制御方法
JP6184560B1 (ja) * 2016-07-15 2017-08-23 三菱電機株式会社 スタータ、及びスタータの制御方法
US11148304B2 (en) * 2016-08-02 2021-10-19 Mitsubishi Electric Corporation Torque restriction mechanism, drive device, and robot device
JP6349004B1 (ja) * 2017-03-28 2018-06-27 オリジン電気株式会社 トルクリミッタ
DE102017212060A1 (de) 2017-07-14 2019-01-17 Bayerische Motoren Werke Aktiengesellschaft Kopplungseinrichtung
US10948056B2 (en) * 2017-12-23 2021-03-16 Continental Automotive Systems, Inc. Elevation mechanism for a central input selector knob
CN110118229B (zh) * 2019-05-16 2021-06-11 海盐瑞扬五金有限公司 一种旋转轴体之间的单向式连接装置
CN111579373B (zh) * 2020-05-29 2021-04-16 浙江礼显试验仪器制造有限公司 测量抗压强度试验机
CN111911556B (zh) * 2020-07-22 2021-10-08 淮阴工学院 一种双向传动转换装置及其传动方法
IT202100003905A1 (it) * 2021-02-19 2021-05-19 Mpn S R L Freno di emergenza
CN113833786B (zh) * 2021-10-15 2024-01-30 浙江天元科技股份有限公司 盘式制动器中间隙自调机构的主调总成

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190412891A (en) * 1904-06-07 1905-05-18 Thomas Spencer Miller Improvements in Clutches
GB195307A (en) * 1922-06-08 1923-03-29 Siemens Schuckertwerke Gmbh Improvements in or relating to clutches
GB463608A (en) * 1936-08-13 1937-04-02 Schuler L Ag Improvements in or relating to friction clutches
FR2548301A1 (fr) * 1983-07-02 1985-01-04 Fichtel & Sachs Ag Embrayage a ressort diaphragme comprime, avec rattrapage automatique de l'usure dans la region du cercle de pivotement
CN85107370B (zh) * 1985-09-20 1988-08-17 梁信生 可操纵的摩擦角自锁离合器
DE3836552A1 (de) * 1987-10-31 1989-05-11 Zahnradfabrik Friedrichshafen Differentialgetriebe mit selbsttaetiger sperrkupplung
CN2175321Y (zh) * 1993-09-03 1994-08-24 孙永春 摩擦式单向离合器
US5443170A (en) * 1993-01-11 1995-08-22 Westinghouse Air Brake Company Variable angle friction clutch mechanism for a draft gear assembly
CN2212681Y (zh) * 1993-08-15 1995-11-15 高一知 离心楔块超越离合器
JPH08120652A (ja) * 1994-10-19 1996-05-14 Hokoku Kogyo Co Ltd 水門開閉装置のセルフロック機構

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2233838A1 (de) * 1972-07-10 1974-01-31 Bosch Gmbh Robert Andrehvorrichtung fuer brennkraftmaschinen
US4462272A (en) * 1981-08-19 1984-07-31 Rockwell International Corporation Limited slip differential
JPH03213751A (ja) * 1990-01-17 1991-09-19 Tochigi Fuji Ind Co Ltd 差動制限装置
EP0550261B1 (en) * 1991-12-28 1996-06-19 Itoh Electric Co. Ltd. Device for driving power transmission
JP3525711B2 (ja) 1997-11-29 2004-05-10 富士ゼロックス株式会社 画像形成装置
JP4013384B2 (ja) * 1999-02-05 2007-11-28 株式会社ジェイテクト 一方向クラッチ付きプーリユニット
CN1103412C (zh) 1999-07-04 2003-03-19 石奇文 全自动锥面滑块螺旋驱动轮式机动车滑行器
JP4023049B2 (ja) * 1999-10-14 2007-12-19 株式会社ジェイテクト クラッチ装置
CN2479288Y (zh) 2001-06-15 2002-02-27 曲秀全 锥盘摩擦单向超越离合器
JP2006038183A (ja) * 2004-07-30 2006-02-09 Koyo Seiko Co Ltd 動力伝達装置
CN2728825Y (zh) 2004-08-05 2005-09-28 贾政 全自动机动车节能滑行器
CN100582517C (zh) 2007-09-18 2010-01-20 洪涛 压合式牙嵌超越离合器
CN101672335B (zh) 2008-09-08 2015-08-26 洪涛 导向式牙嵌超越离合器
CN201747821U (zh) * 2010-04-20 2011-02-16 洪涛 空间楔合式摩擦超越离合器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190412891A (en) * 1904-06-07 1905-05-18 Thomas Spencer Miller Improvements in Clutches
GB195307A (en) * 1922-06-08 1923-03-29 Siemens Schuckertwerke Gmbh Improvements in or relating to clutches
GB463608A (en) * 1936-08-13 1937-04-02 Schuler L Ag Improvements in or relating to friction clutches
FR2548301A1 (fr) * 1983-07-02 1985-01-04 Fichtel & Sachs Ag Embrayage a ressort diaphragme comprime, avec rattrapage automatique de l'usure dans la region du cercle de pivotement
CN85107370B (zh) * 1985-09-20 1988-08-17 梁信生 可操纵的摩擦角自锁离合器
DE3836552A1 (de) * 1987-10-31 1989-05-11 Zahnradfabrik Friedrichshafen Differentialgetriebe mit selbsttaetiger sperrkupplung
US5443170A (en) * 1993-01-11 1995-08-22 Westinghouse Air Brake Company Variable angle friction clutch mechanism for a draft gear assembly
CN2212681Y (zh) * 1993-08-15 1995-11-15 高一知 离心楔块超越离合器
CN2175321Y (zh) * 1993-09-03 1994-08-24 孙永春 摩擦式单向离合器
JPH08120652A (ja) * 1994-10-19 1996-05-14 Hokoku Kogyo Co Ltd 水門開閉装置のセルフロック機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2450589A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527748A (zh) * 2012-07-03 2014-01-22 洪涛 空间楔合式多槽传动轮和具有该传动轮的提升设备
CN104963963A (zh) * 2014-06-11 2015-10-07 洪涛 具有大楔角的空间楔合式多槽传动轮以及包括该传动轮的摩擦式提升设备
CN112041579A (zh) * 2018-02-16 2020-12-04 法雷奥摩擦材料公司 离合器的摩擦衬片和包括该摩擦衬片的离合器的摩擦盘
CN112041579B (zh) * 2018-02-16 2022-11-22 法雷奥摩擦材料公司 离合器的摩擦衬片和包括该摩擦衬片的离合器的摩擦盘
KR20210055527A (ko) * 2019-11-07 2021-05-17 주식회사 카펙발레오 원웨이 클러치 및 이를 구비하는 토크 컨버터
KR102270671B1 (ko) * 2019-11-07 2021-06-28 주식회사 카펙발레오 원웨이 클러치 및 이를 구비하는 토크 컨버터

Also Published As

Publication number Publication date
EP2450589B1 (en) 2022-03-23
EP2450589A4 (en) 2016-03-16
EP2450589A1 (en) 2012-05-09
JP5679469B2 (ja) 2015-03-04
US9476465B2 (en) 2016-10-25
CN101936346B (zh) 2013-01-02
JP2012531562A (ja) 2012-12-10
US20120103743A1 (en) 2012-05-03
CN101936346A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
WO2011000300A1 (zh) 空间楔合式摩擦超越离合器
JP2012531562A5 (zh)
EP3129671B1 (en) Pulley assembly with radially oriented decoupling mechanism
JP5561898B2 (ja) 楔式一方向クラッチ
TWI424127B (zh) 包含彈性碟片機構的改進式鎖定差速器
TWI582319B (zh) 離心力結合滑動阻尼之轉矩致動離合器
AU2011318873B2 (en) Load Sensing Transmission And Hoisting Machine Including The Same
US20130161150A1 (en) Pulley assembly with a decoupling mechanism
CN106715944A (zh) 动力传递装置
US20140151179A1 (en) Torque Limiting Clutch
WO2014127739A1 (zh) 空间斜撑式超越离合器、联轴器、铰链和传动轮
WO2010034223A1 (zh) 导向式牙嵌超越离合器
WO2012089130A1 (zh) 升降设备用空间楔合式防坠落、防超速紧急制动装置
CN201041204Y (zh) 零碰撞牙嵌式通用安全离合器
CN103277425B (zh) 双螺旋超越离合器
WO2012089131A1 (zh) 空间楔合式摩擦连接器
CN102537124B (zh) 空间楔合式摩擦联轴器和安全离合器
WO2012089129A1 (zh) 基于拨动式超越离合机构的通用驻车制动器及其操纵方法
CN106050977B (zh) 新型滑块式双向超越离合器
CN201368156Y (zh) 惯性涨紧离合器
CN204082987U (zh) 超越离合器
CN101476606B (zh) 惯性涨紧离合器
JP2004069055A (ja) 圧力作動式クラッチプーリー
CN104565122B (zh) 解楔转矩较小或等于零的空间楔合式摩擦超越离合器
CN106870596B (zh) 开关齿式超越离合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793595

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012516503

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13381262

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 10419/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010793595

Country of ref document: EP