WO2012089131A1 - 空间楔合式摩擦连接器 - Google Patents

空间楔合式摩擦连接器 Download PDF

Info

Publication number
WO2012089131A1
WO2012089131A1 PCT/CN2011/084846 CN2011084846W WO2012089131A1 WO 2012089131 A1 WO2012089131 A1 WO 2012089131A1 CN 2011084846 W CN2011084846 W CN 2011084846W WO 2012089131 A1 WO2012089131 A1 WO 2012089131A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
force
guide
wedge
circumferential
Prior art date
Application number
PCT/CN2011/084846
Other languages
English (en)
French (fr)
Inventor
洪涛
Original Assignee
Hong Tao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Tao filed Critical Hong Tao
Publication of WO2012089131A1 publication Critical patent/WO2012089131A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/04Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by moving discs or pads away from one another against radial walls of drums or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D67/00Combinations of couplings and brakes; Combinations of clutches and brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/36Helical cams, Ball-rotating ramps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2127/00Auxiliary mechanisms
    • F16D2127/001Auxiliary mechanisms for automatic or self-acting brake operation
    • F16D2127/004Auxiliary mechanisms for automatic or self-acting brake operation direction-responsive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2127/00Auxiliary mechanisms
    • F16D2127/001Auxiliary mechanisms for automatic or self-acting brake operation
    • F16D2127/005Auxiliary mechanisms for automatic or self-acting brake operation force- or torque-responsive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2127/00Auxiliary mechanisms
    • F16D2127/08Self-amplifying or de-amplifying mechanisms
    • F16D2127/10Self-amplifying or de-amplifying mechanisms having wedging elements

Definitions

  • the present invention generally relates to a device for transmitting rotational motion or torque in a frictional connection, or for suppressing such rotational motion or torque, including all actuations of mechanical, electrical, magnetic or fluid actuation. Clutches and self-controlled clutches, brakes, parking brakes, and shafts or hinges, and the like, in particular, a friction type connector. Background technique
  • prior art friction connectors operate on the basis of energizing devices and transmissions, the torque capacity of which is completely dependent on and sensitive to the resulting bonding energy/force and associated friction coefficient, and the transmitted/loaded Torque is irrelevant. Therefore, in order to match the joint energy/force and the transmitted/loaded torque, the friction connector based on the prior art inevitably consumes more resources and economic costs in control, and the reliability is further lowered. Moreover, the prior art friction connector does not easily have the function of a parking brake when used as a brake, in particular, a general parking brake function. Summary of the invention
  • the present invention seeks to design a connection device based on a completely new technical principle to avoid the above disadvantages.
  • the technical problem to be solved by the present invention is to provide a space that requires no energy supply device and transmission device, higher torque capacity, work reliability and longevity, simple operation and easy wire control, simpler structure, more compact and less wearable space. Wedge friction connector.
  • the space-wedge friction connector of the present invention includes at least one traction friction mechanism that is pivoted about an axis and axially engageable, and has at least approximately a frictional surface that is disposed about the axis and is provided with a friction surface.
  • An annular intermediate member and a friction member for transmitting frictional torque between the two members Providing at least one rotational guiding mechanism for the traction friction mechanism to rotate and rotate about the axis, having at least substantially annular guiding members and intermediate members that are rotated about the axis and each provided with a corresponding guiding surface; Operatively controlling the manner of the wedge and the wedge of the intermediate member, and controlling the engagement and separation of the friction connector into the wedge control mechanism; when the guide member and the friction member are drivingly coupled to form a friction body by the intermediate member, the guide member and the intermediary
  • the rising angle ⁇ of the mutually resisting portions between the guiding faces of the two members is greater than zero and less than or equal to ⁇ , that is, 0 ⁇ ⁇ ⁇ , wherein ⁇ is an angle of self-locking of the guiding friction pair formed at the abutting portion
  • two axially engageable friction mechanisms can be provided which are pivoted about the above-mentioned axis, one of which is the traction friction mechanism described above, and the other of which is at least non-rotatably different from the guide member and the friction member.
  • the range of the rising angle ⁇ may further be: ⁇ ⁇ ⁇ ⁇ , or 0 ⁇ ⁇ ⁇ (when ⁇ > 0 ), wherein ⁇ is capable of self-locking the guiding friction pair of the abutting portion
  • the minimum value of the lift angle ⁇ is also the maximum value of the lift angle ⁇ of the traction friction pair of the traction friction mechanism.
  • the method further includes at least one force limiting member connectable to at least one of the guide member, the intermediate member and the friction member in at least one non-rotatable manner to form a force-closed composite member to establish mutual The axial force is closed against the connection.
  • the guiding member, the intermediate member, the friction member or the force limiting member is a pocket member for establishing an axial force closed contact connection with each other, and is provided with an inner circumference of at least substantially a half revolution around the axis a face, and a substantially half-circumferential circumferential groove on the inner peripheral surface and an inlet connected to the circumferential groove by the outer peripheral surface of the bag-shaped member.
  • At least one resilient member is further disposed between the two axially-shaped contact faces at at least one axial end of the rotary guide mechanism to form an elastic axial sealing force.
  • the guiding surface of the guiding member and the intermediate member is a spiral tooth surface disposed on a surface of the two members including the end surface, the inner circumferential surface and the outer circumferential surface; in the axial plane, the spiral tooth surface and the above
  • the angle between the axes is greater than 0 degrees and less than 180 degrees.
  • the force limiting element is a cup-shaped shell having a central circular aperture.
  • the force limiting element may comprise two semi-circular shells and at least one annular hoop at least substantially symmetric in the radial direction, the shape of the two semi-circular shells having such a combined effect, that is, the combined members formed by the radial joints of the two a central circular hole around the axis and a circumferential groove around the axis on the inner circumferential surface of the central circular hole; the annular hoop being disposed on the outer circumferential surface of the central portion or the outer end portion of the composite member, The composite member is fixed.
  • At least one of the traction friction mechanism and the force-transmitting friction mechanism, the two corresponding friction surfaces are truncated cone surfaces having a half cone angle apex greater than 0 degrees and less than 180 degrees.
  • the traction friction mechanism may be a multi-friction disc friction mechanism having two sets of at least one friction lining that are non-rotatably coupled to the friction member and the intermediate member, respectively.
  • the force-transmitting friction mechanism may be a multi-friction disc friction mechanism having two sets of axially staggered at least one friction plates that are non-rotatably coupled to the friction member and the guide member, respectively.
  • the wedge control mechanism includes an adjustment mechanism for changing the circumferential position of the intermediate member relative to the guide member, the adjustment mechanism being disposed at least indirectly on the guide member, the intermediate member, the friction member or the force limiting member.
  • the wedge control mechanism includes a stepless support mechanism disposed about the axis, and a trigger mechanism disposed on the force limiting member.
  • the former is disposed between the force limiting member and the supported member, and moves the supported member in a stepless manner in the axial direction, and establishes an axial force closed contact connection between the force limiting member and the guiding member, the intermediate member and the friction member.
  • the latter causes the former to establish and revoke the axial force closed contact connection in an actuating manner.
  • the supported member is the one of the guide member, the intermediate member and the friction member that is non-rotatably connected to the force limiting member.
  • the wedge control mechanism further includes a circumferential limit mechanism with a circumferential degree of freedom greater than or equal to zero to stop the free entry wedge of the intermediate member in two circumferential directions, the mechanism having at least one limit protrusion, and corresponding The limiting recess of the limiting protrusion is permanently received, and the two are at least indirectly disposed on the intermediate member and the guiding member.
  • the limiting protrusion has at least circumferential elasticity, and the circumferential freedom of the circumferential limiting mechanism is equal to zero.
  • the stepless support mechanism includes a support member disposed about the axis and having at least a substantially annular shape, which is coupled to the force limiting member and the supported member by axially abutting and rotationally guiding.
  • the circumferential freedom of the support member relative to the force limiting member is at least as large as to enable the stepless support mechanism to establish the extent of the axial force closed contact connection described above.
  • the stepless support mechanism includes an inner closed cavity device that is axially telescopic and contains a fluid, a one-way communication valve disposed on the force limiting member, a pressure relief valve, and a passage that connects the three to each other.
  • the trigger mechanism includes the one-way communication valve and the pressure relief valve.
  • the inner closed cavity device is a cylinder-piston device comprising a force limiting element and a supported member.
  • the inner closed cavity device comprises a soft palate provided with an inlet and outlet.
  • the trigger mechanism further includes a variable volume and fluid-containing outer closed cavity device including a force limiting member and an elastic diaphragm connected to the outer surface of the force limiting member, and passing through the one-way communication valve The pressure valve and the passage are in communication with the inner closed cavity device.
  • two rotationally-oriented guide members and at least one elastic member which are mutually nested in the radial direction may be provided.
  • the two guiding members of the two mechanisms and the two intermediate members are respectively formed in the form of the guiding faces on the same direction end faces, respectively connected to be rigidly integrated, and non-rotatably connected to be circumferentially integrated; respectively, the two rotating guiding mechanisms are respectively guided
  • the rising angle ⁇ of the friction pair is greater than zero and less than or equal to ⁇ , and greater than ⁇ and less than or equal to ⁇ ; the elastic element axially at least indirectly interferes with the turning guide mechanism having an angle of rise ⁇ greater than zero and less than or equal to ⁇ .
  • Inter-ground setting Set on other components that are not rotatably connected to the set destination component.
  • Rotating guide mechanism Converts the circumferential relative rotation into a guiding mechanism including at least an axial relative movement or movement tendency.
  • a sliding/rolling spiral or partial screw mechanism a radial pin groove mechanism, an end face wedge mechanism, an end face fitting mechanism, an end face ratchet mechanism, and a cylindrical/end face cam mechanism with a strictly uniform and non-rigid spiral angle.
  • Space wedge mechanism A mechanism consisting of a rotary guide mechanism and a traction friction mechanism.
  • Wedge Also known as wedge, as opposed to wedge/wrap, is the working process and state in which the interposer 90 is drivingly coupled/combined with the friction member 70 into a friction body.
  • ⁇ and ⁇ the important limit angle of the space wedge mechanism, the intermediate member 90 shown in Figs. 1 and 4, in the axial direction, the friction surface, for example, 104 and the traction friction surface 72 of the friction member 70 at least axially interfere with each other to form
  • the resultant force of the normal pressure of the abutting portion W is not perpendicular to the rotation axis X of the rotary traction friction mechanism F1, and includes at least one set of traction friction pairs; on the other hand, the guide surface, for example, 94a, which faces a certain circumferential direction, At least one axial contact with the corresponding guiding surface of the guide member 50, for example, 54a, to form a combined force of the normal pressure of the four contact portions, and a set of guiding of the rotary guiding mechanism G not including the one of the rotational guiding mechanisms G
  • the friction pair; the average of the angle between the common tangent of the abutting portion and the plane perpendicular to the axis of rotation X
  • the guiding friction pair is in a constant self-locking state, and the traction friction pair is in a general static friction state that cannot be self-locking.
  • the transmission capacity of the space wedge mechanism is uniquely determined by the traction friction torque of the traction pair when wedged. Therefore, although the intermediate member 90 can wedge the guide member 50 and the friction member 70 into a friction body, when the friction member 70 is overloaded relative to the guide member 50, the traction friction pair can be naturally transferred from the static friction state to the sliding friction state to guide the friction. The assistant can still maintain self-locking.
  • the spatial wedge mechanism is in a half-wedge state and the friction connector is in a non-fully engaged state.
  • the traction friction pair is in a constant self-locking state, and the guiding friction pair is in a general static friction state.
  • the transmission capacity of the space wedge mechanism is uniquely determined by the maximum static friction torque/guide friction torque of the guide friction pair when wedged. Therefore, although the intermediate member 90 can wedge the guide member 50 and the friction member 70 into a friction body, when the friction member 70 is overloaded relative to the guide member 50, the intermediate member 90 will have the maximum static friction state of the breakthrough guide friction pair and the relative guide member.
  • the tendency of the 50-sliding climb is that the climbing trend can be prevented by the rigid axial force-closed structure of the wedge mechanism (unless the pressure ⁇ is derived from the elastic force), so the guide friction pair can be forcibly maintained at the same level as the self-locking
  • the general static friction state That is, the intermediate member 90, the guide member 50 and the friction member 70 are forcibly wedged/combined into a single rotating body, and they do not slip and climb each other even if they are overloaded to be damaged.
  • the space wedge mechanism is thus in an absolute self-locking/wedge state similar to a slanted overrunning clutch, the transmission capacity of which is determined solely by the structural strength.
  • the above-mentioned rising angle ⁇ is the wedge angle of the space wedge mechanism, also called the wedge angle/crowding angle, and only when 0 ⁇ ⁇ , the space wedge mechanism can be wedged, and the friction connector can be engaged.
  • Figure 1 is an axial cross-sectional view of a mechanical continuously supported friction connector in accordance with the present invention.
  • Fig. 2 is a schematic side view showing the annular bag-shaped force-limiting member shown in the left side view of Fig. 1.
  • Figure 3 is a schematic side view of the support member shown in the left side view of Figure 1.
  • Figure 4 is a partial exploded view of the tooth profile of the mechanism of Figure 1 projected radially toward the same outer cylindrical surface.
  • Figure 5 is an axial cross-sectional view of a fluid continuously supported friction connector in accordance with the present invention.
  • Figure 6 is an axial cross-sectional view of yet another fluid continuously supported friction connector in accordance with the present invention.
  • Figure 7 is a partial schematic view of the K K section of Figure 6.
  • Figure 8 is a partial schematic view of the Y-Y section of Figure 7.
  • Fig. 9 is a schematic view showing the balance element in the form of a Z-Z cross-sectional view in the figure.
  • Figure 10 is an axial cross-sectional view of a fluid continuously supported friction connector having a combined tooth in accordance with the present invention.
  • Figure 11 is an axial cross-sectional view of yet another fluid continuously supported friction connector having a combined tooth in accordance with the present invention.
  • Figure 12 is an axial cross-sectional view of an adjustable resilient stepless supported friction connector in accordance with the present invention.
  • Figure 13 is an axial cross-sectional view of yet another adjustable resilient stepless supported friction connector in accordance with the present invention.
  • the upper half of the axis X of Fig. 1, 5-6, 10-13 corresponds to the wedge-wound separation state, and the lower half corresponds to the wedge-joined state.
  • Embodiment 1 A space wedge type friction connector CB1 having a mechanical stepless support mechanism.
  • FIG. 1 to 4 show a wheel-shaft-driven friction connector CB1 comprising a force-limiting element 180 formed around an axis X and having an axial force-closing function.
  • the force-limiting member 180 is preferably an annular pocket member having an axially central portion of the inner peripheral surface 84 formed about the axis X, coaxially disposed with an optimally planar disk-shaped annular circumferential groove. 78.
  • the inner surface of the circumferential groove 78 is preferably extended to the outer circumferential surface of the force-limiting member 180 in two mutually parallel tangential directions H and H', and an equal-section rectangular inlet 82 is formed.
  • the radially inner surface 80 of the circumferential groove 78 thus extends into a non-closed inner radial surface having a U-shaped cross-sectional shape.
  • the intermediate member 90, the substantially annular friction member 70 and the support member 220 on the outer circumferential surface of the tubular base 60 extending from the inner side of the inner side of the inner side of the guide member 50 are slidably disposed in the axial direction, as shown in FIG. Medium
  • the guiding member 50 is directly inserted into the circumferential groove 78 by the inlet 82, and is axially slidably penetrated through the first shaft 200 in the inner hole of the force limiting member 180, and is radially positioned on the axis X. on.
  • first shaft 200 is non-rotatably coupled to the inner peripheral surface of the tubular base 60 by means of a connection such as a spline pair.
  • the circumferential groove 78 is annular and the inlet 82 is rectangular in equal section, which is the best but not required arrangement for carrying out the invention.
  • the circumferential groove 78 and the inlet 82 may have any shape and unequal section as long as they can be incorporated, such as the guide 50 and the intermediate member 90.
  • the inner peripheral surface 84 of the force-limiting element 180 does not have to be circumferentially closed and corresponds to the through-type inner hole, which may completely have a U-shaped opening shape of, for example, substantially a half circumference and corresponds to a blind hole as long as it is inside the inner circumference. Can be set on the surface 84
  • annular force-shaped annular bag-shaped force element 18 (or may also be a combination member).
  • a central circular hole is provided.
  • the cup-shaped force-limiting element is axially fixedly coupled to the end face of a disc-shaped ring and defines a circumferential groove 78.
  • the filling ground is provided with at least one fastening connection such as a ring hoop or a ring gear, and at least substantially symmetrical in the radial direction, and the semicircular inner ring surface is provided with a semicircular circumferential groove with two semicircular shell force limiting forces
  • the element radially fixedly abutted into a combined annular force limiting element defining a complete circumferential groove 78.
  • the friction member 70 is non-rotatably coupled to the force-limiting member 180 by providing a flanged force arm 75 that extends in a complementary manner along the inlet 82 to its outer edge on its outer peripheral surface.
  • a flanged force arm 75 that extends in a complementary manner along the inlet 82 to its outer edge on its outer peripheral surface.
  • the two radial side surfaces of the force arm 75 are simultaneously and positively engaged with the two radial side surfaces of the inlet 82 and transmit torque.
  • a set of bidirectional helical guide teeth 52 which are optimally distributed circumferentially about the axis X are provided.
  • a pair of helical guiding teeth 92 of the intermediate member 90 facing the guiding member 50 are provided with a pair of helical guiding teeth 92 which are complementarily constructed with the guiding teeth 52.
  • the guide teeth 52 and 92 are permanently fitted to each other to constitute a surface contact type bidirectional rotation guide mechanism G which is optimally rotated about the axis X.
  • the intermediate member 90 is frictionally connected to the rotary traction friction surface 72 which is optimally disposed on the opposite end surface of the friction member 70 through the rotary friction surface 104 on the endless end surface thereof, thereby forming a rotary surface contact traction friction.
  • the guide member 50 passes through the force transmitting friction surface 58 on the endless end face thereof, and is frictionally frictionally attached to an inner end surface of the circumferential groove 78, that is, the inner end surface of the annular disk end 188b of the force limiting member 180.
  • the face 74 is frictionally coupled to form a rotary type surface contact force friction mechanism F2 that is non-rotatably coupled to the guide member 50 and the friction member 70 and that directly transmits frictional torque therebetween.
  • the traction friction mechanism F1 and the rotation guide mechanism G together form an end-face type space wedge mechanism, which in turn forms a spatial wedge-wound friction connection mechanism of the frictional connector CB1.
  • the friction connector CB1 should be optimally filled with brake fluid or coolant which helps to dissipate heat, especially when used as a brake to form wet friction. surroundings. At the same time, it should also be in the friction surface or inside of the member such as the friction member 70, referring to the known technology. Radial channels that are in communication with one another are optimally disposed, such as radial through holes 79 in FIG.
  • the connector CB1 may theoretically not require the guide member 50 and the intermediate member.
  • each pair of end face type helical guide teeth 52 and 92 which preferably have a trapezoidal cross section and extend in the radial direction are complementarily configured as helical tooth faces, both of which are circumferentially
  • a pair of surface-oriented spiral guide friction pairs corresponding to different circumferential directions can be formed.
  • the two complementary elevation angles X a X b of the two sets of guiding faces 54a and 94a and 54b and 94b, respectively facing the two circumferential directions are symmetrically equal to ⁇ .
  • the tooth heights of all of the guide teeth 52 and 92 are arranged so as not to interfere with the simultaneous engagement of the two sets of guide faces 54a and 94a and 54b and 94b corresponding to the two circumferential directions in the axial direction, that is, the respective
  • the axial minimum spacing ⁇ of the crests and the bottom surface of each of the cogging grooves is optimally greater than zero to ensure that the circumferential freedom/gap of the rotary guide G can be equal to zero.
  • the plurality of guiding teeth 52 on the end surface of the guiding member 50 are actually wedge-shaped teeth of the space wedge mechanism, and the guiding surfaces 54 are gradually axially closer to the rotary traction friction surface 72 of the friction member 70 toward the two circumferential directions. And the latter is respectively divided into two groups of a plurality of circumferentially extending end face wedge-shaped spaces.
  • the plurality of guide teeth 92 disposed in the plurality of wedge-shaped spaces are wedges which are optimally merged into one another, i.e., the integrally annular intermediate member 90, because of the necessity of radial movement.
  • the friction connector CB1 is further provided with a wedge control mechanism for operatively forcibly establishing or canceling the axial force-closed conflict of the frictional connection mechanism connection.
  • the wedge control mechanism includes a rotary guide type stepless support mechanism SS, which includes a friction member 70 as a supported member, a support member 220, and a force limiting member 180, see Figs. 1, 3, and 4.
  • the substantially annular support member 220 is axially rigidly engageable against the other inner end surface of the friction member 70 and the circumferential groove 78, that is, the support end surface 189, and is provided in a limited rotation manner, and is disposed on the friction member 70 and the limit. Between the force elements 180.
  • the stepless support mechanism SS is specifically another space wedge mechanism having the support member 220 as an intermediate member and having a limit angle ⁇ ', which is provided with an unidirectional rotation guide mechanism UG.
  • the two sets of the guiding mechanism UG have complementary-shaped unidirectional helical guiding teeth 62 and 232, respectively disposed on the mutually facing annular end faces of the friction member 70 and the supporting member 220, so that the two are connected in a rotationally guiding manner.
  • the guide teeth 62 and 232 can also be disposed on the support end faces 224 and 189, respectively.
  • the guide teeth 62 and 232 preferably have a serrated profile, both provided with helical guide faces 64 and 234 of the angle ⁇ ' ⁇ ', preferably non-guided faces parallel to the axis X 61 and 236, and the top of the tooth Face 238.
  • ⁇ ' has the same definition as ⁇ .
  • the outer peripheral surface of the support member 220 is optimally provided with a torsion arm 222 extending radially to the outer edge of the inlet 82.
  • the force arm 222 has a side surface 228 that is appropriately inclined inwardly so that the two sides of the force arm 222 and the inlet 82 optimally have a rotational gap, thereby ensuring that the support member 220 has sufficient circumferential freedom ⁇ with respect to the friction member 70. .
  • the support member 220 is rotated relative to the force limiting member 180 in a circumferential direction, and the mutually opposite rotary support end faces 224 and 189 are used as the reference plane within the circumferential freedom ⁇ ', and the axial direction is steplessly
  • the friction member 70 is driven away/moved to rigidly press/impact the friction member 70, the intermediate member 90 and the guide member 50 without any gap on the force transmitting friction surface 74, or to cancel the rigid pressing/interference state, thereby forcing
  • the axial force-closed abutment connection of the frictional connection mechanism is established or eliminated, and the space wedge mechanism is forced to wedge or wedge in both circumferential directions.
  • the axial freedom ⁇ ' of the guiding member 50, the intermediate member 90, the friction member 70 and the supporting member 220 in the circumferential groove 78 is greater than zero, but less than or equal to the axis of the rotational guiding motion corresponding to the circumferential freedom ⁇ ' Move the distance s ' x tg X '.
  • a helical compression spring may be disposed between, for example, the force transmitting friction surface 74 and the friction member 70, or a linear wire spring may be disposed in the corresponding radial hole of the force limiting member 180, respectively.
  • the axial freedom ⁇ ' in the separated state is located between the friction surfaces of the friction mechanism F1 or F2.
  • the wedge control mechanism also includes a trigger mechanism AC that triggers the wedge action/process.
  • the trigger mechanism AC is preferably a cylindrical cam mechanism including a reference projection 122 radially disposed on the outer peripheral surface of the disc-shaped end portion 188b, and a guide projection 132 radially disposed on the outer peripheral surface of the force arm 222, And a trigger ring 120 rotatably disposed on the outer peripheral surface of the force limiting member 180. Accordingly, the inner circumferential surface of the trigger ring 120 is provided with a reference groove 124 that slidably receives the reference projection 122, and a guide groove 134 that slidably receives the guide projection 132.
  • the reference groove 124 and the guiding groove 134 may be different segments having different elevation angles of the same channel starting from the end, and may be two mutually independent channels extending to the end faces respectively, or may be radial through holes.
  • the outer circumferential surface of the trigger ring 120 is optimally provided with a slip ring groove 126, and a fork (not shown) disposed therein can optimally elastically drive the axial movement of the trigger ring 120 in a known manner.
  • the trigger ring 120 can also be driven by a stationary member that is rotatably and axially fixedly coupled thereto.
  • its axially-triggered urging force can be provided by a mechanical mechanism, an electromagnetic mechanism, a fluid mechanism, or an electromechanical mechanism including a stepping motor, according to known techniques.
  • a centrifugal friction connector that is quickly engaged or disengaged but whose engagement force is independent of the rotational speed can be obtained.
  • the trigger mechanism AC has such an effect. That is, the axial movement of the trigger ring 120, such as from left to right in Fig. 1, by the movement guiding action of the guide groove 134, causes the guide projection 132 to rotate relative to the force limiting member 180, for example, along the arrow P in Fig. 4.
  • the support member 220 is driven to rotate in the same direction with respect to the friction member 70, and the friction member 70, the intermediate member 90 and the guide member 50 are rigidly rigided before the support member 220 circumferentially abuts against the radial side of the inlet 82. Abutting the force transmitting friction surface 74, an axial force closed contact connection is forcibly established, as shown in the lower half of FIG.
  • the wedge control mechanism is also optimally provided with a circumferential degree of freedom for restricting the rotation guide mechanism G.
  • the limiting mechanism is preferably an axial/radial pin slot fitting mechanism disposed between the guiding member 50 and the intermediate member 90 with a circumferential degree of freedom greater than or equal to zero, which includes at least one centering type limiting protrusion 68 is disposed on the top surface of the guide tooth, such as the top surface of the guide tooth 52 illustrated in FIG.
  • the limit projection 68 should have at least a circumferential elasticity and be disposed radially at the innermost end of the guide tooth 52, for example, by an implanted spring wire. At this time, the circumferential freedom of the circumferential limit mechanism can be optimally equal to zero.
  • the limiting protrusions 68 and the recesses 118 can also be disposed on the inner and outer peripheral surfaces of the guiding member 50 and the interposing member 90 to continuously elastically contract the two sides into one body, as described in detail later, or
  • the ground is disposed on other members that are non-rotatably connected to the guide member 50 and the intermediate member 90.
  • the inner peripheral surface of the force limiting member 180 and the outer peripheral surface of the interposer 90 see Figs. 5, 6, and 10, and may have a form such as a guide 4*/pin connection.
  • the axial elastic contraction function described above may be provided by a separate elastic member, for example, a screw spring in which the two end portions are respectively embedded in the corresponding radial holes of the outer peripheral surface of the intermediate member 90 and the guide member 50.
  • the circumferential limit mechanism has such an effect. Namely, in the separated state, the axial contact between the intermediate member 90 and the guide member 50 is performed in such a manner that the guide faces 54a and 94a and 54b and 94b are in simultaneous contact. Thus, in the wedge engagement in any direction, the friction connector CB1 does not produce a circumferential empty stroke and a corresponding frictional impact. Moreover, the de-wedge separation process will be simple and rapid with significant steps. Even in the climb angle range where the lift angle ⁇ takes a value of 0 ⁇ , the circumferential blocking action of the limit projection 68 causes the process to be completed in a stepwise manner, which is not done in a gradual manner as in the prior art.
  • Friction Connector The working process of CB1 is very simple.
  • the trigger ring 120 In the disengaged state, the trigger ring 120 is axially moved by a not-shown shifting fork, for example, moving left to right in FIG. 1, so that the support member 220 is caused to be opposed to the friction member 70, for example, by the arrow ⁇ in FIG.
  • the direction is rotated, thereby forcing the rotation guiding mechanism G, the traction friction mechanism F1 and the force transmitting friction mechanism F2 to simultaneously perform the axial fitting as described above by means of the rotational guiding action of the stepless supporting mechanism SS, that is, forcibly establishing the axial direction at the same time Force closed contact.
  • the rotation of the guide member 50 relative to the friction member 70 in any direction can force the intermediate member 90 to wedge the two into a friction body and then into the wedge-engaged engagement state. Thereafter, the trigger ring 120 does not need to continuously apply the maintaining force, and the friction connector CB 1 can adaptively maintain the wedge-type frictional connection state and stably transmit the torque.
  • the friction member 70 will be assisted by the traction friction mechanism F1.
  • the traction friction torque pulls the intermediate member 90 of the rotation guiding mechanism G, and the relative guiding member 50 makes a rotational guiding motion in the direction indicated by the arrow R.
  • the axial movement/expansion force generated by the rotational guiding motion is instantaneously wedged in the end face wedge-shaped space surrounded by the guiding surface 54a and the traction friction surface 72, that is, the intermediate member 90 will guide the member 50.
  • the friction member 70 is wedged to form a friction body, and the traction friction mechanism F1 is axially engaged, and the guide member 50 is also immediately expanded on the corresponding inner end surface of the force limiting member 180, that is, the force transmitting friction surface 74 to form the shaft.
  • the force-transmitting friction mechanism F2 is also synchronously engaged, and the guide member 50 and the friction member 70 are directly connected in the circumferential direction as a friction body. See the bottom half of Figure 1.
  • the friction connector CB1 is engaged with the wedge of the space wedge mechanism.
  • the driving torque M of the first shaft 200 in the inner bore. the wedge friction torque M transmitted via the rotation guide mechanism G and the traction friction mechanism F1 and the force transmission friction torque M 2 directly transmitted via the force transmission friction mechanism F2 are respectively transmitted to the circumferentially integrated friction member 70 and the limit
  • the force element 180 is transmitted to other members, not shown, via a force transmitting characteristic surface (not shown) on the outer peripheral surface or the end surface of the latter.
  • MQ M + M 2 and the above-mentioned axial expansion force, the wedge force/joining force and the magnitude of each friction force are completely adaptively proportional to, that is, the driving torque M 0 .
  • the guide member 50 has a completely similar working process with respect to the rotation of the friction member 70 in the direction indicated by the arrow R in Fig. 4, and need not be repeated.
  • the torque can also be transmitted in the opposite path as described above, and there is no substantial difference in the working process.
  • the friction connector CB1 can obtain an anti-overload damage function adaptively relative to the drive torque overload slip only in the setting with ⁇ ⁇ ⁇ ,, provided that the torque must be
  • the guide member 50 is transmitted to the friction member 70/force-limiting member 180, that is, in the direction of the path from the shaft to the wheel as described above, and not vice versa.
  • the above-described wedge-joining engagement process of the transmission friction connector CB1 having the ⁇ ⁇ ⁇ ⁇ ⁇ setting is necessarily an adaptively short transient overload.
  • the transition of the slipping process until the end of the overload does not cause harmful shocks, and does not stop the prime mover or cause damage to the relevant components.
  • Its frictional sliding torque/axial engagement force is always adaptively equal to / corresponds to the driving torque Mo, which does not cause it to wedge.
  • the clutching characteristics of the overload slip will be particularly advantageous for clutching and braking conditions.
  • the force-limiting element 180 is coupled to a stationary frame (not shown), which acts as a friction connector CB1 for the brake and will therefore be optimal.
  • the ground has an adaptive ABS anti-lock brake function. Without the help or support of any other components or systems, and without the need to detect any rotational speed and attention to ground adhesion and the slip rate of the wheel, the braking torque can be adaptively equal to the driving torque M from the first shaft 200. . And the torque M. The maximum value also adaptively corresponds to the maximum ground adhesion of the wheel/track.
  • the ABS anti-lock brake function has no versatility with respect to any specific parameters of a specific vehicle, and is significantly superior to the prior art.
  • the connector CB1 can also have an optimal parking brake function, which can automatically convert the service brake directly into a reliable parking brake, and can be easily designed to be released by the pedaling action of the accelerator pedal, for example. .
  • the urging force that causes the friction connector CB1 to engage and disengage that is, acts on
  • the axial driving force of the inner end surface of the slip ring groove 126 is larger for the separation than for the joint.
  • the torque is equal to zero as ⁇ 'is equal to ⁇ ' (the support member 220 is critically extruded "in the circumferential direction of the normal force acting on the guide surface 234").
  • the axial force of the drive slip ring groove 126 corresponding to the control torque can therefore also be close to or equal to zero, and thus a continuous axial maintaining force is optimally required to maintain the triggering state, improving the stepless support mechanism SS
  • the reliability of the wedge For example, by frictional self-locking of the guiding protrusion 132 and the guiding groove 134, by means of a locking/positioning mechanism with an elastic member, or by reciprocal positioning by means of a groove-type elastic positioning mechanism, respectively, the friction connector CB1 can be engaged or disengaged. On both positions.
  • friction connector CB1 according to the present invention has many advantageous effects with respect to the prior art friction connectors which are specifically friction clutches and brakes.
  • the system is lightweight, structured and controlled, it is simply matched to a triggering mechanism/control device such as mechanical, electromagnetic, fluid or stepper motor, including the friction connector CB1.
  • the invention can be specifically controlled by mechanical, electromagnetic, fluid or electronic control
  • the unpowered source friction connector will be significantly superior to the various related prior art powered clutches and brakes without horizontal and vertical mounting.
  • an electromagnetically actuated friction connector CB1 having a 0 ⁇ ⁇ ⁇ ⁇ setting is superior to the prior art jaw electromagnetic clutch and can be replaced.
  • the centrifugal force trigger type, electromagnetic power loss or electric trigger type friction connector CB1 can be optimally used as an emergency brake and/or work for fall protection against overspeed, such as elevator car/cage/elevator. Brakes, or anti-speed/speed brakes for various thermal power prime movers.
  • the friction connector CB1 has a high-speed rotation capability which depends almost exclusively on the strength of the relevant material due to the absence of centrifugal inertia force; since the rotation guide mechanism G has almost no wear, the frictional forces of the friction mechanisms F1 and F2 are insulated from the centrifugal inertia force. It can automatically compensate for wear and has a long working life.
  • the inner diameter of the guide member 50 is not less than 50 mm
  • the outer diameter of the force limiting member 180 is 98 to 175 mm
  • the axial width is 60 to 100 mm
  • the working coefficient and the friction coefficient are 2.0 and 0.1, respectively, only about half a week.
  • the frictional connector CB1 which can be wedged and transmitted, has a wedge-type friction calculation torque of the order of 2,790 ⁇ 16,900 N ⁇ m. Even if it is reduced due to the process structure such as the provision of heat dissipation grooves, its transmission capacity will be much higher than the prior art, especially the density/capacity of torque transmission.
  • the present invention also has various techniques for increasing the limit angle ⁇ and ⁇ values. Including, the guide faces 54 and 94 of the rotary guide mechanism G are disposed as inclined spiral tooth faces, and the friction faces 72 and 104 of the traction friction mechanism F1 are disposed as truncated cone faces, so that the guide faces 54 and 94 or the friction faces in the shaft section are formed.
  • the angle between the 72 and 104 and the axis X/half cone angle is not equal to 90 degrees, and is equal to other values from 0 to 180 degrees; the traction friction mechanism F1 is set to a multi-friction disc structure; and, will have a larger friction coefficient
  • the material or component is attached to at least one of the friction surfaces 72 and 104.
  • the static friction coefficient is 0.1
  • the ⁇ and ⁇ in the friction connector CB1 are equal to 0 degrees and 11.4 degrees, respectively, and the friction surface of the traction friction mechanism F1 only needs to be set as a truncated cone with a half cone angle equal to 30 degrees.
  • the above limit angles are raised to 5.6 degrees and 17.02 degrees respectively.
  • the traction friction mechanism F1 and the force-transmitting friction mechanism F2 can also be separately or simultaneously set as described above according to known techniques.
  • a multiple friction plate clutch mechanism and thus more than one set of traction friction pairs or force transmitting friction pairs.
  • an intermediate member 90 is disposed axially symmetrically, and the guide member 50 and the friction member 70 are symmetrically formed to form a further rotation guide mechanism G and The traction friction mechanism F1, the friction connector CB1 will lose the force transmitting friction mechanism F2, and has two traction friction mechanisms F1 sharing the same combined pocket friction member.
  • the axial position of the alignment guide 50 and the intermediate member 90, the friction mechanisms F1 and F2 will also be axially reversed, which will be directly rigidly coupled to the guide member 50 and the friction member 70, respectively.
  • the two sides of the traction guide mechanism G and the traction friction mechanism F1 are interchanged, that is, the axial positions of the guide teeth 52, 92 and the friction surfaces 72, 104 are interchanged in pairs, and the friction connector CB1 can be in the shaft to the shaft.
  • the friction member 70 and the guide member 50 in Fig. 1 have actually exchanged roles.
  • the friction member 70 and the intermediate member 90 are combined into one part, and an inner hole is placed between the force transmitting friction surfaces 58 and 74. Friction rings coupled with different drive shafts, the friction member 70 will be modified as an intermediate member. That is, in the latter two variants, the supported members will be served by the guides and the interposers, respectively.
  • the present invention does not specifically limit the rotary guide mechanism G and its guide teeth 52, 92, and it is not necessary to have an optimum helical tooth structure. Therefore, the mechanism G and its guide teeth can have any form and shape with a rotary guiding function.
  • the guide teeth may be disposed in a discrete form on the end face/circumferential face, or may be circumferentially continuously disposed on the corresponding inner/outer peripheral faces in the form of, for example, a single-head or a multi-start thread. In the latter arrangement, however, it can be optimally arranged to have helical teeth having a sectional shape such as a rectangle, a trapezoid, a zigzag or a triangle.
  • the truncated cone type friction surfaces of the respective two sets of rotary friction pairs of the traction friction mechanism F1 and the force transmitting friction mechanism F2 can be based on an arbitrary curve/
  • the busbar is turned and can be a discontinuous surface that is provided with a groove for dissipating heat or removing liquid/gas.
  • the friction connector CB1 can also have such a modification. That is, the spiral guide teeth 52 and 92 of the rotary guide mechanism G are disposed on the outer peripheral surface of the tubular base 60 and the inner peripheral surface of the intermediate member 90, or are provided on the outer peripheral surface of the intermediate member 90 and formed on the guide member 50. The inner peripheral surface of the annular end face flange on the radially outer ring side (corresponding to the position of the radially reversed intermediate member 90 and the guide member 50).
  • the guide member 50 is removed, and the guide teeth 52 are directly rigidly formed on the force transmitting friction surface 74 by means of, for example, precision casting, casting, die casting or injection molding, so that the force limiting member 180 is deformed to have an axial force sealing function.
  • the friction connector CB1 is variable as a wheel having a guide member as a bag member.
  • One-axis transmission friction connector If the other end is fixedly connected to the inner hole of the intermediate member 90, the latter will exchange the role with the guide member and become a pocket-shaped intermediate member, and the modification will be further modified into that the intermediate member is the shaft-axis of the bag-shaped member. Drive friction connector.
  • the above-mentioned guide member is removed as a circumferential limiting mechanism in the modification of the bag-shaped member, the friction member 70 and the support member 200 are removed, and the force arm 222 having the guide protrusion 132 is transplanted to the outer peripheral surface of the intermediate member 90.
  • the adjustment mechanism AM is formed with the trigger ring 120, and ⁇ « ⁇ is set as described above, and the simplest structural modification having four members can be obtained. Controlling the axial movement of the trigger ring 120 allows the intermediate member 90 to be wedged or wedged in a single circumferential direction.
  • the minimal structural variant in the wedge engaged state can only transfer torque in the corresponding circumferential direction, and not vice versa, unless the trigger ring 120 is reversely moved to the reverse wedge. Therefore, the simplest structural variant no longer has the performance advantage of the frictional connector CB1 being adaptively reversing the torque at any time in any circumferential direction after a single wedge.
  • the above-described interposer may be a variant of the pouch member and may further have a similar four-member minimal structural variant.
  • the force limiting element 180 can also be a non-holocyclic, ring-shaped member if desired, for example, as a brake. That is, when it is desired to axially extend the tubular base 60, such as the guide 50, such that it cannot pass radially through the inlet 82, a radial indentation can be provided at one of the axial ends at the inlet 82.
  • a radial indentation can be provided at one of the axial ends at the inlet 82.
  • an inner circumferential surface of exactly half a circumference at the inner circumferential surface 84b is radially extended to the outer circumferential surface of the force limiting member 180 in two mutually parallel tangential directions parallel to H or H', and an allowable tubular shape is formed. The gap in which the substrate 60 is placed/passed.
  • the inner peripheral surface 84b also extends into a non-closed inner radial surface having a U-shaped cross-sectional shape, and the force-limiting member 180 becomes a U-shaped split ring shaped like a weight.
  • an arcuate press member having a complementary configuration with the inlet should be optimally disposed in the enlarged inlet 82 to radially position the tubular base 60.
  • the trigger mechanism AC in the friction connector CB1 apparently drives the support member 220 to rotate in a more direct manner.
  • the trigger ring 120 is removed, and a gear that meshes with the teeth provided on a portion of the outer cylindrical surface of the radially reduced force arm 222 is elastically twistably coupled to the force arm 75 and the disk end 188a.
  • a radially extending centrifugal rocker located in the inlet 82 is fixedly coupled to one end of the gear.
  • the friction connector CB1 is modified into a connection device triggered by a rotating centrifugal force, such as a centrifugal overrunning clutch.
  • the guide faces 54 and 94 of the ⁇ ⁇ ⁇ ⁇ are not slidable, it is also possible to be between two axial abutment faces of at least one axial end of the rotary guide mechanism G, for example, support end faces 189 and 224 Between the at least one elastic member is provided to adjust the axial engagement force, for example, a set of disc springs including at least one.
  • the friction connector CB1 will have the same ability to be flexibly engaged as in the prior art.
  • it when used as a brake, it will have a flexible engagement capability that can quickly and steplessly adjust the slip time and slip braking force/torque in accordance with the slip friction method to meet specific and complex practical needs.
  • the stepless support mechanism SS should preferably have a sufficiently large guide lift to ensure the implementation of the rigid wedge engagement described above.
  • the above-described arrangement including the axial engagement force/closing force of the elastic member is also applicable to the case where the friction connector CB1 is used as a clutch to have the characteristics and process of the flexible joint.
  • the time required for the flexible joining process up to the rigid wedge/join can be set and controlled in advance. This simply controls the axial movement speed/time of the control ring 120, i.e., controls the rotational speed of the support member 220 relative to the force limiting member 180.
  • a prior art manual transmission such as in a motor vehicle can be significantly optimized. That is, the idler ring gear that pairs the gears of the transmission with the synchronizer in a pair is fixedly connected to one end of the corresponding connector CB1, or the teeth thereof are directly disposed at the corresponding disc-shaped end 188a or 188b.
  • the shifting forks of the prior art are used to drive the trigger rings 120 to obtain an improved manual transmission.
  • the two axially adjacent trigger rings 120 can be combined into one piece, and even the main clutch disposed between the transmission and the engine can be completely eliminated to achieve direct connection of the first two.
  • the manual transmission will have the beneficial characteristics of easier and faster shifting, and only one hand is required, because the time consuming to the synchronization and the trouble of the cooperation of the pedal clutch are eliminated.
  • the operation is easier to achieve a fine and smooth shifting effect.
  • the guide member 50 or its tubular base 60 in the friction connector CB1 may be provided as another pocket member.
  • another set of guides and interposers are provided in the circumferential recesses inside the pocket member, the other guide members being directly coupled to the first shaft 200 .
  • the variant has a plurality of functions for one-way braking of the overrunning clutch axially or radially juxtaposed therein.
  • this purely mechanical multi-function device can best replace the complex combination of overrunning clutch and brake in the existing hydraulic automatic transmission.
  • Embodiment 2 Space Wedge Friction Connector CB2 with Fluid Stepless Support Mechanism
  • the friction connector CB2 is a modification of the friction connector CB1.
  • the guide member 50 and the force limiting member 180 are both splined and non-rotatably disposed on the outer peripheral surface of the first shaft 200.
  • the second shaft 210 for the shaft-shaft transmission is, in the same manner, non-rotatably disposed in the inner bore of the friction member 70 and rotatably radially positioned on the corresponding inner circumference of the force-limiting member 180 by means of the bearing 158. On the surface.
  • a cylindrical central protrusion 214 having a common axis X is optimally disposed, which is received in the central hole 204 of the common axis X of the inner end surface of the first shaft 200, and There is a rotatable needle roller 206 at a good interval.
  • Element/weighting block 240 In order to accommodate high-speed rotation, it is also optimal to provide an arc balance which is optimally complementary to the remaining space in the remaining space of the inlet 82 which is not filled on the inner diameter side of the annular sealing member 190.
  • the balancing element 240 is preferably threaded through its axial bore 242 and is fixedly positioned radially by at least one of the retaining pins that are coupled to the axial bore 81 of the force limiting member 180, see Figures 2, 7.
  • the sealing member 190 is disposed on the outer peripheral surface of the force limiting member 180 by a fastening or non-fastening connection such as welding, riveting, gluing, threading, radial or face screwing, interference or clearance fit, To optimally close/block the inlet 82.
  • a fastening or non-fastening connection such as welding, riveting, gluing, threading, radial or face screwing, interference or clearance fit
  • the centering limiting projection 68 of the circumferential limiting mechanism in particular a wire-like linear spring, has an inner diameter end that is disposed in a penetrating manner in a radial through hole in the tubular base 60, the outer diameter end of which is optimally
  • the radial hole type centering type limiting groove 118 is fixed to the inner circumferential surface of the intermediate member 90. Adjacent portions of the two radial bores are preferably frustoconical to allow for limited circumferential and axial elastic displacement of the interposer 90 relative to the guide member 50, and have such a setting effect.
  • the limiting protrusion 68 can cause the axial distance between the intermediate member 90 and the guiding member 50 to be continuously elastically contracted to the minimum, and optimally causes the circumference of the rotating guiding mechanism G corresponding to the two circumferential directions.
  • the gap is equal to zero.
  • the stepless support mechanism SS is specifically an inner closed cavity device containing a fluid
  • the trigger mechanism AC is specifically an outer closed cavity device.
  • the two devices respectively have inner and outer axially telescopic variable volume annular closed cavities 46 and 48 bounded by disc-shaped ends 188a and interconnected.
  • the inner closed cavity device is a cylinder-piston device in which the guide member 50 as a supported member is an annular piston, and the force-limiting member 180 is a cylinder.
  • the annular inner cavity 48 of the device has a bottom surface supporting the end faces 51 and 189, and the inner and outer end faces of the radially inner and outer end faces of the two supporting end faces are provided with two complete inner circumferential surfaces and outer peripheral surfaces of the sealing member. .
  • the cylinder-piston assembly is used to steplessly support the guide member 50 to have an axial travel of at least greater than ⁇ ' to ensure that the intermediate member 90 can be wedged so that the spatially wedged frictional connection mechanism can engage the force transfer.
  • ⁇ ' is the axial freedom of each member in the circumferential groove 78.
  • the inner wall surface of the resilient annular diaphragm 30 and the outer end surface of the disc shaped end 188a define an outer cavity 46 for the outer closed cavity means.
  • the outer edge of the annular diaphragm 30 is glued into the corresponding circumferential groove 186 of the outer peripheral surface of the disc-shaped end 188a, the inner edge of which is glued to the outer circumference of the annular inner end flange 187 at the disc-shaped end 188a.
  • the corresponding circumferential groove of the face In the corresponding circumferential groove of the face.
  • the stepless support mechanism SS and the trigger mechanism AC of the two closed cavity devices inside and outside also has a shared one-way communication valve and a pressure relief valve.
  • the outer end surface of the disc-shaped end portion 188a is provided with a threaded counterbore 183, and an inlet and outlet passage 34 communicating from the bottom portion thereof to the inner chamber 48.
  • the spring 44, the steel ball 42, and the threaded plug type valve body with the center hole are sequentially loaded into the screw counterbore 183 to form a one-way communication valve 40 that can be unidirectionally closed.
  • a radially extending outer peripheral surface of the disc-shaped end portion 188a is provided on the inner peripheral surface of the threaded counterbore 183 corresponding to the portion of the spring 44.
  • intersecting axial blind holes are provided, and the central portion of the rod-shaped spool 41 is provided with an annular groove 43 so as to constitute a pressure relief valve with the passage 36.
  • a return spring 45 is disposed between the inner end surface of the spool 41 and the bottom of the axial blind hole, so that the annular groove 43 is continuously held at a position offset from the passage 36 to cut the passage 36.
  • the outer end surface of the spool 41 is in contact with the inner wall surface of the annular diaphragm 30, and can be axially displaced by the latter against the reaction force of the spring 45 to the position where the annular groove 43 is axially aligned with the passage 36, thereby the inner chamber 48. It is connected to the outer chamber 46 to reduce the pressure of the fluid in the inner chamber 48.
  • the bottom of the axial blind hole is optimally communicated to the passage 38.
  • the outer chamber 46 is optimally provided with an annular metal diaphragm expansion spring 28 that continuously has a tendency to swell.
  • the partitioning projection 32 which is optimally in contact with the disc-shaped end portion 188a is provided.
  • the process thread seal plug 110 is disposed at the outer radial opening of the passage 36.
  • the friction connector CB2 has a working process completely similar to the friction connector CB1, can be used as a clutch, can also be used as a brake, and can also have an overload slip/ABS anti-lock braking capability (when the second shaft 210 is fixed to the rack) ), the difference is only in the triggering mode of the wedge action/process. That is, in the separated state, the diaphragm 30 is axially urged by the annular portion corresponding to the axially outer end arrow VI by means of known techniques and devices, and fluid such as hydraulic oil in the outer chamber 46 will pass through the center of the one-way communication valve 40.
  • the triggering of the corresponding portion of the diaphragm 30 can be performed either directly or indirectly, and can be performed either circumferentially or semi-circularly.
  • the compression ring plate 230 as shown in FIG. 11 is spaced or non-rotatably connected to the end face flange 187 by means of a spacer or fixedly corresponding to a specific portion of the diaphragm 30. Shaped rings and so on.
  • the above-described pressure relief valve, one-way communication valve 40 is in the form and installation form only for the purpose of obtaining an optimum sealing and use effect, the highest reliability and longevity, and thus is obviously not unique. It can be a slide valve and a rotary valve that can be replaced separately, can be a solenoid valve, and can be triggered from the outside of the outer chamber 46. When operated from the outside, the pressure relief valve and the one-way communication valve 40 can obviously be integrated into one spool valve or rotary valve, or can be simplified as a one-way communication valve 40 that can rotate half a cycle, and the through holes 36 and 38 can be eliminated. .
  • the one-way communication valve and the pressure relief valve between the inner and outer closed cavity devices are removed, or the annular diaphragm 30 can be further removed, and only the passage 34 which is modified as the orifice is connected, and the expansion spring is simultaneously
  • the 28 is disposed in the inner closed cavity device, and the friction connector CB2 can obtain the ability of flexible engagement, and can be used as an overrunning clutch or a motor vehicle glider such as an anti-seismic impact.
  • the intermediate member 90 and the friction member 70 at this time should be kept in frictional contact for a long time, and the reversing mechanism should be provided when used as a two-way transmission.
  • Embodiment 3 Space Wedge Friction Connector with Fluid Stepless Support Mechanism CB3
  • the main improvement of the friction connector CB3 with respect to CB2 is that the friction member 70 optimally has an axial elastic deformation ability.
  • the rising angle ⁇ of the turning guide mechanism G is set in the interval of 0 ⁇ ⁇ ⁇ where the guiding surfaces 54 and 94 can mutually climb and climb, and the wedge control mechanism is further disposed on the guiding member 50 and the intermediate member. Damping mechanism D between 90.
  • At least one disc spring 100 serving as an elastic member is disposed between the friction members 70a and 70b to optimally indirectly interfere with the force transmitting friction surface 58 in order to reduce wear and improve friction transmission capability.
  • the damper bag 160 of the damper mechanism D is fixedly disposed in the circumferential groove 244 located on the radially inner surface of the balance member 240, and the elastic diaphragm bowls 164a and 164b on the circumferential sides thereof are circumferentially in contact with the intermediate member 90, respectively.
  • the radially extending damping jaws 112a and 112b are fixedly disposed in the circumferential groove 244 located on the radially inner surface of the balance member 240, and the elastic diaphragm bowls 164a and 164b on the circumferential sides thereof are circumferentially in contact with the intermediate member 90, respectively.
  • the two diaphragm bowls 164a and 164b of the damper pack 160 are respectively optimally glued to the annular edge concave surface of the damper disc 162 by two ends, forming two variable volumes that are communicated by the central orifice of the damper disc 162.
  • Resetting springs 166a and 166b are provided in the two chambers, respectively, and a corresponding fluid, such as a gas or liquid.
  • the groove 244 is a circumferentially extending semicircular arcuate groove having a radially inner semicircular inner peripheral surface 248 centrally disposed with a semicircular circumferential groove 254.
  • the groove 254 is contiguous with a corresponding semi-circular W groove on the plate-like half clamp 250 to form a completed circular groove, and the damper 160 is pressed and fixed in the groove 244.
  • the plate-shaped half clamps 250 are radially disposed radially outwardly to the recesses 254 and are located in the straight slots 256 on both axial sides of the recess 244 and are received in the pin holes 258 at both ends of the balance member 240.
  • the inserted axial pin 218 is radially fixed.
  • the circumferential groove 254 and the corresponding groove on the half clamp 250 are arranged to have a taper to axially press the edge of the diaphragm bowl 164.
  • the gap between the damping claws 112a and 112b and the corresponding wall surfaces 246a and 246b on the circumferential sides of the groove 244, that is, the angle at which the intermediate member 90 can climb and climb relative to the guide member 50, should be large enough to ensure that the disc spring 100 is compressed to To the extent of its own thickness, see Figure 7.
  • the intermediate member 90 is immediately wedged as described above, and the relative guide member 50 starts to climb and climb due to the overload.
  • the disc spring 100 is also axially compressed.
  • the intermediate member 90 is subjected to the circumferential damping of the damper bag 160, its sliding climb speed and angle will always be hindered, and the partial torque will not pass through the turning guide mechanism G, but at the intermediate member 90 and the force limiting member 180.
  • the direct transfer is made in such a manner that substantially no axial force is generated, and the traction friction mechanism F1 is thus in the engaged state of the slip friction.
  • the friction connector CB3 is in a flexible engagement state and has a torque transmitting capability corresponding to the elastic closing force of the disc spring 100.
  • the damping effect of the damper package 160 will be until a sufficient portion of the fluid in one of the chambers passes through the damper hole into the chamber on the other side, allowing the rotational guiding action of the interposer 90, the friction members 70a and 70b and the disc spring 100. Compressed until rigid. Thereafter, the friction connector CB3 will be connected in a rigid, integrated, wedge-engaged state, and the overload will not slip unless structural damage occurs.
  • the length of the damping time can be set.
  • the damper mechanism D can have any configuration in the prior art, for example, the simplest cylinder-piston device.
  • the friction connector CB3 no longer has the function of overload slipping compared to CB1 and CB2, and when used as a brake, it no longer has the ABS anti-lock braking capability.
  • the intermediate member 90 which is not rubbed by the friction member 70a, will return to the free centering position of the opposite guide member 50 under the dual action of the return spring 166 and the limit projection 68.
  • Embodiment 4 Space Wedge Friction Connector CB4 with Fluid Stepless Support Mechanism and Combined Teeth
  • this embodiment is an improvement of the friction connector CB3, which is reconfigured by means of a combined guide tooth. The ability to overload and slip.
  • the guide teeth 52a and 92a of the rotary guide mechanism Ga having 0 ⁇ ⁇ ⁇ ⁇ are disposed on the inner ring side of the guide member 50 and the intermediate member 90a, respectively.
  • the guide teeth 52b and 92b of the rotary guide mechanism Gb having the ⁇ ⁇ ⁇ ⁇ are disposed on the outer ring side of the guide member 50 and the intermediate member 90b, respectively.
  • the interposers 90a and 90b are preferably non-rotatably connected in a circumferentially integral manner by splines.
  • the traction friction surface 72b of the friction member 70b serves as an end surface of the annular end face flange whose outer ring side is located outside the outer peripheral surface of the friction member 70a.
  • the inner peripheral surface of the flange is provided with a set of circumferentially extending L-shaped grooves 73 including at least one to form L-shaped convex teeth 83.
  • One end of the L-shaped W groove 73 extends axially to the traction friction surface 72b to form an inlet.
  • a set of radial projections 77 are provided on the outer end side of the outer peripheral surface of the friction member 70a, and the inlet axially enters the L-shaped recess 73 and then circumferentially rotates to the top end thereof, thereby being able to be L-shaped convex teeth 83.
  • the circumferential relative positions of the friction members 70a and 70b are fixed by the second shaft 210 penetrating through the inner holes.
  • the friction connector CB4 can therefore have an initial friction torque that is not equal to zero.
  • each of the above-described constituent elements has such an effect. That is, the intermediate member 90a and the friction member 70a are firstly in contact with each other, and the intermediate member 90a that automatically slides and climbs before the end of the elastically resisting state between the friction members 70a and 70b has driven the intermediate member 90b to simultaneously abut against the traction friction surface 72b and the guide.
  • the respective guide faces 54 of the teeth 52b cause the interposer 90b to reliably enter the wedge.
  • the friction connector CB4 is turned into a rigid wedge-engaged state that can be overloaded and slipped. Therefore, when it is used as a brake, it can have the ABS anti-lock braking capability again, but it does not have the ability to adjust the braking torque steplessly.
  • Embodiment 5 Space Wedge Friction Connector with Fluid Stepless Support Mechanism and Combined Teeth CB5 Referring to Fig. 11, the friction connector CB5 is only a simple modification of the friction connector CB4.
  • the guide teeth 92a and 52a of the rotary guide mechanism Ga having the 0 ⁇ ⁇ ⁇ arrangement are provided on the inner ring side of the intermediate member 90 and the guide member 50a, respectively.
  • the guide teeth 92b and 52b of the rotary guide mechanism Gb having the ⁇ ⁇ ⁇ ⁇ are disposed on the outer ring side of the intermediate member 90 and the guide member 50b, respectively.
  • An annular region of the guide member 50b located radially inward of the guide teeth 52b is provided with an end face type circumferential groove.
  • the guide member 50a movably received in the circumferential groove is preferably non-rotatably coupled to the outer peripheral surface of the groove by a spline connection so as to be circumferentially integrated with the guide member 50b.
  • the disc spring 100 is disposed in a pre-compacted manner between the guide member 50a and the wall surface of the circumferential groove.
  • the associated recess for receiving the stop projection 68 is optimally configured to allow the intermediate member 90 to resiliently approach the guide member 50 while rigidly inhibiting the opposite away tendency, such as a shape having a half-tapered opening.
  • a shape of a snap ring may be directly provided on the outer peripheral surface of the tubular base 60b between the intermediate member 90 and the guide member 50a. The axial direction defines the guide 50a.
  • the turning guide mechanisms Ga and Gb and the like have such an effect. That is, in the circumferential direction, the guide teeth 52a and 92a, which can automatically slide and climb when overloaded, first touch each other, and when the guide teeth 52b and 92b start to collide with each other, corresponding to the rotation guiding action of the guide teeth 52a and 92a The axial compression does not cause the guide members 50a and 50b to initiate an indirect rigid contact with each other in the axial direction.
  • the first shaft 200 non-rotatably coupled to the tubular base 60b is modified to be non-rotatably coupled thereto.
  • the flange, then, the guide 50 and the interposer 90 will actually interchange roles.
  • annular piston is acted upon by the friction member 70 as a supported member, and the inner chamber 48 is surrounded by the annular soft palate 20.
  • the soft palate 20 is optimally glued to the support end face 189 and is provided with an inlet and outlet 24 corresponding to the passage 34.
  • annular ferrules 170 and 174 are provided on the outer edges of the annular diaphragm 30, respectively.
  • the annular hoop 174 is provided with an axially movable compression ring plate 230 and is disposed with the annular diaphragm 30, and is disposed on the end flange 187 with a snap ring 184 defined from the outer end.
  • the biasing cylinder 22 axially abutting against the outer end surface of the spool 41 is optimally provided.
  • the end face flange of the through hole is hooped by the annular band 172 in the circumferential groove of the force applying cylinder 22.
  • the space wedge mechanism having the elastic wedging force corresponding to the rotary guide mechanism Ga also functions to guide and secure the absolute wedge of the space wedge mechanism having the rigid wedge force corresponding to the rotation guide mechanism Gb. It is essentially a reliable wedge guiding mechanism and guarantee mechanism.
  • the friction connector CB5 can also be provided with a damping mechanism D of the friction connectors CB3 ⁇ CB4.
  • the outer cavity 46 shared in the friction connector CB2 CB5 is not essential.
  • the one-way communication valve 40 can be connected to a hydraulic pump or accumulator, and the through hole 38 can be directly connected to the oil sump.
  • the second shaft 210 can be removed, and the disk-shaped end portion 188a, the diaphragm 30, and the soft palate 20 are deformed from a circular shape into a disk shape.
  • the soft palate 20 can also be replaced by a disc-shaped diaphragm or, instead, as a friction member 70 of a cylindrical piston.
  • annular soft palate 20, the diaphragm bowl 164 and the annular diaphragm 30 in the present application are known to be made of any elastically deformable metal or non-metal material such as rubber, fiber or elastic metal sheet.
  • Embodiment 6 Space Wedge Friction Connector with Adjustable Stepless Support Mechanism CB6
  • Fig. 12 shows a friction connector CB6 which is optimally used as a brake.
  • the force limiting member 180 is fixed to a frame not shown, and the base body around the inlet 82 extends in a tangential direction H and H' out of the square inlet portion 181, see FIG.
  • the generally annular guide member 50 and the intermediate member 90 are provided with radial flanged force arms 55 and 95 extending radially along the inlet 82 to their outer edges, respectively.
  • the force arm 55 and the inlet 82 are optimally radially complementary, and the guide member 50 is non-rotatably coupled in the circumferential groove 78, but is axially movable.
  • the radial clearance between the force arm 95 and the inlet 82 can be optimally large enough to cause axial displacement of the rotary guide mechanism G corresponding to the angle at which the intermediate member 90 is rotated relative to the force-limiting member 180, which will be located at the guide member 50 and the support end face.
  • the disc spring 100 between 189 is compressed to the extreme extent.
  • the at least one limiting pin 176 disposed in the corresponding radial hole of the force limiting member 180 can axially abut the corresponding flange on the outer circumferential surface of the guiding member 50, so that the guiding member 50 can maintain the pre-reading of the disc spring 100. compression.
  • the disc spring 100 may be disposed between any other two members located at both ends of the rotary guide mechanism G, and although some positions are not effective, they can be steplessly adapted to the rotational guide compression of the mechanism G.
  • the wedge control mechanism comprises at least one resilient element, in particular the disc spring 100 described above, and an adjustment mechanism AM.
  • the adjusting mechanism AM is a worm gear mechanism, the worm gear teeth are disposed on the outer circumferential surface of the force arm 95, and the worm 260 is rotatably disposed radially in the corresponding mounting hole of the square inlet portion 181 on both sides of the inlet 82. And is provided externally, for example, a stepping motor drive (not shown).
  • the worm 260 can also be fixed to the frame so as to be indirectly disposed on the guide member 50 or the force limiting member 180.
  • the lifting angle ⁇ of the turning guide mechanism G should preferably have such a setting effect that the intermediate in the driving wedge state can be caused
  • the maximum torque of the member 90 rotating in both directions is equal.
  • a spiral contraction spring 152 is also optimally provided on the inner peripheral surface of the interposer 90.
  • One end of the spring 152 is fitted in a corresponding radial hole in the inner peripheral surface of the intermediate member 90, and the other end is fitted in a corresponding radial hole in the inner peripheral surface 84a.
  • the braking force/torque of the friction connector CB6 can be steplessly adjusted until the relevant mechanism is transferred into the rigid wedge due to the axial rigidity. Until the state.
  • the direction of the relative rotation described above should be the same as the direction of rotation of the first shaft 200.
  • the rotary direction switch of the stepper motor is optimally controlled by the shifting mechanism of the transmission.
  • the wedge control mechanism only needs to adjust the mechanism AM. After removing the disc spring 100 as the elastic member, the friction connector CB6 still has a controllable frictional connection function, and the lost, only the ability to adjust the friction torque steplessly. Further, by providing the guide teeth 52 directly on the support end faces 189, the simplest embodiment of the present invention having only four members can be obtained.
  • the adjustment mechanism AM can obviously also be a cylindrical cam mechanism similar to that shown in Fig. 1, or specifically a mechanical, electromechanical, electromagnetic or liquid gas transmission mechanism such as a steel wire rope, a gear, a lever or a connecting rod. At this time, the friction connector CB6 can also be used as a friction clutch with a flexible engagement function.
  • the disc spring 100 When used as a clutch, the disc spring 100 can be eliminated, and the elastic members are circumferentially disposed between the two circumferential walls of the force arm 55 and the inlet 82, respectively, to be elastic before the clutch enters the rigid wedge engagement state. Damping effect. Thus, although it is difficult to have the effect of the flexible joint, at least the effect of the circumferential damping can effectively alleviate the mechanical impact when the clutch is engaged. Naturally, the circumferential freedom of the force arm 55 at the inlet 82 at this time should be greater than zero.
  • Embodiment 7 Space Wedge Friction Connector CB7 with Adjustable Stepless Support Mechanism
  • the friction connector CB7 used as the brake is coupled to the rotating shaft.
  • the guide member 50 is no longer the friction member 70 in the friction connector CB6.
  • the friction member 70 is an axial force-enclosed annular pocket member that is fixed to the frame.
  • the guide members 50a and 50b are non-rotatably provided on the outer peripheral surface of the spline sleeve 130 in a splined connection, and the disc springs 100 are optimally spaced therebetween.
  • the adjustment mechanism AM is modified into a planetary mechanism.
  • the mechanism AM includes two planetary gears 140a and 140b that are optimally double-connected into a rigid body.
  • the double gears 140a and 140b are rotatably sleeved over the planet shaft 144 and are radially positioned in the inlet 82 as the shaft is secured to a corresponding axial bore of the friction member 70.
  • changing and maintaining the circumferential relative position between the intermediate member 90 and the guide member 50a that is, changing and maintaining the axial separation distance of the former from the latter, has nothing to do with the rotational speed of the friction member 70 relative to the two members. That is, with the friction member 70 Whether it is in a rotating state or a stationary state.
  • the teeth of the planetary gears 140a and 140b respectively have different helix angles, for example, oblique gear teeth and straight gear teeth, respectively, or oppositely inclined wheel wheels. tooth.
  • the teeth 53 and 93 which are respectively engaged with them have correspondingly different helix angles. Therefore, the essence of the axially moving planetary gears 140a and 140b is to use the cylindrical cam type movement guiding mechanism to drive the intermediate member 90 to rotate the guiding motion relative to the guiding member 50a, thereby driving the latter to compress the disc spring 100.
  • the shift fork 270 for moving the planetary gears 140a, 140b is rotatably positioned in the inlet 82 through the fork shaft 272 which is inserted into the radial sides of the inlet 82.
  • the head of the shift fork 270 is received in an annular chute between the planet gears 140a, 140b and can be driven in a known manner by a drive unit not shown.
  • both the planet shaft 144 and the shift fork 270 can also be disposed on a frame, not shown, so as to be indirectly disposed on the friction member 70.
  • the adjustment mechanism AM, the rotation guide mechanism G, and the like have such an effect. That is, in the position shown in the upper half of Fig. 13, the planetary gears 140a and 140b are held at extreme positions which cause the intermediate member 90 and the guide member 50a to be circumferentially centered and the axial distance is equal to zero. At this time, the sum of the axial gaps of the members in the circumferential groove 78 is equal to ⁇ ', and the friction torque of the friction connector CB7 is equal to zero.
  • the intermediate member 90 is rotatively guided to the opposite circumferential direction of the guiding member 50a, respectively, to drive the guiding member 50a to compress the disc spring 100 while also frictionally resisting
  • the slewing friction surface 104 provides a braking torque corresponding to the amount of compression of the disc spring 100.
  • the disc spring 100 can be compressed to the extreme before the planet gears 140a and 140b are disengaged from the guide member 50a and the intermediate member 90, and the friction connector CB7 can be transferred to the rigid wedge type. Engaged state, and enter the ABS anti-lock brake state in the setting of ⁇ ⁇ ⁇ ⁇ .
  • the adjustment mechanism AM is still a pin-and-groove fitting mechanism with a cylindrical cam working mechanism, which is identical to the orientation mechanism in the two patent applications incorporated above, except that it has a dynamic fitting relationship. Only. For related instructions, reference may be made to the patent application filed by the applicant on the same day as the present application, which is a space-wound twisting work tool capable of continuous operation.
  • the movement guiding function of the adjusting mechanism AM does not have to be provided by the gear meshing mechanisms of the gears 140a, 140b and the teeth 53, 93. That is, all the teeth of the mechanism AM can be arranged as straight teeth, and only the gear 140a only needs to be provided as a separate toothed ring that is movably connected to the planetary shaft 144 by the helical tooth pair, for example, the gear 140b and the planetary shaft 144. It can be fixed into one body or made into a single part.
  • the planetary shaft 144 at this time should be rotatably disposed in the axial seat hole of the friction member 70, and the shift fork 270 can individually control the gear 140a.
  • the friction connector CB7 can also have a variant of a combined guide tooth.
  • the guide teeth 52a and 92a and 52b and 92b having 0 ⁇ human and ⁇ inset settings are respectively correspondingly acted by different portions of the same radial portion of the same guide tooth 52 or 92.
  • the guide faces 54a and 94a having the guide teeth 52a and 92a provided with 0 ⁇ ⁇ ⁇ are axially respectively corresponding to, for example, the upper and lower halves of the guide teeth 52 and 92, and have ⁇ ⁇ ⁇ ⁇
  • the guide faces 54b and 94b of the guide teeth 52b and 92b are disposed, respectively, in the axial direction, for example, at the lower half and the upper portion of the guide teeth 52 and 92, respectively.
  • the guide members 50a and 50b can be indirectly The ground is rigidly resistant. It is easy to understand that the stepless support mechanism SS in the friction connectors CB1 to CB5 may be a known toggle mechanism in addition to the rotary guide and the fluid mechanism.
  • friction connectors CB2 to CB5 are used as brakes for wheeled or crawler type movable machines, it is also possible to optimally have the full-featured ability to automatically switch from the service brake state to a reliable parking brake state, and the same It is easily released by, for example, the pedaling operation of the accelerator pedal. Excellent and versatile ramp parking and starting performance without the help of any complex system.
  • the present invention when used as a full-function brake such as a vehicle/mechanical/aircraft, it has a significant advantage as described above with respect to the prior art, and this advantage is more proportional to the length of the vehicle and the number of wheels, and is extremely long.
  • the ultimate in rail vehicles/trains and unpowered vehicles For example, for synchronous braking of very long heavy-duty trains, parking brakes for marshalling trains without traction locomotives, and for driving and parking brakes of vehicles with trailers.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)
  • Braking Arrangements (AREA)
  • Friction Gearing (AREA)

Description

空间梭合式摩擦连接器 相关申请
本申请是本申请人提出的名为空间楔合式摩擦超越离合器的中国专利申请
201010222712.X和 201020186785.3的从属专利申请。 该公开在先的两项专利申 请的全部内容通过引用结合于此。 技术领域
本发明总体上涉及所有传动领域中的一种以摩擦连接方式传送旋转运动或 转矩, 或者制止该旋转运动或转矩的装置, 包括机械、 电力、 磁力或流体等致 动在内的所有操纵离合器和自控离合器、 制动器、 驻车制动器, 以及转轴或铰 链等, 特别涉及一种摩擦式连接器。 背景技术
一般地, 在包括工业、 农业和交通领域的所有旋转轴系中, 无论借助人力 致动, 还是借助气 /液压致动、 电磁致动或电动机致动等, 用于传递旋转运动或 限制该旋转运动的现有技术的摩擦连接器, 例如摩擦离合器和制动器, 除了必 需的控制装置外, 均附装有供能装置和相应的传动装置。 因此, 现有技术的离 合器或制动器不仅过于复杂, 构件过多, 体积和质量庞大, 成本高昂, 可靠性 较低, 而且因属于有源系统而断能便不可工作, 且能耗过高。 同时, 也不易小 型化, 轻量化, 更不易实现线控传动或制动。 当其传递接合能量的传动装置的 空间跨度较大时, 更因响应性较差而不易保证系统动作的一致性。 例如, 用作 挂车或轨行车辆的制动时, 便会因为其由首至尾的各个制动点相距较远和开始 制动时间的不一致 /滞后, 而带来不容忽视的安全隐患。
另外, 现有技术的摩擦连接器均基于供能装置和传动装置而工作, 其转矩 容量完全取决于并敏感于其所得到的接合能量 /力以及相关摩擦系数, 而与其所 传递 /承载的转矩无关。 因此, 为匹配接合能量 /力与传递 /承载的转矩, 基于现有 技术的摩擦连接器在控制上必然耗费更多的资源和经济成本, 可靠性也因此进 一步降低。 而且, 现有技术的摩擦连接器用作制动器时也不易具有驻车制动的 功能, 尤其是通用的驻车制动功能。 发明内容
本发明致力于设计基于全新技术原理的连接装置, 以避免上述缺点。
本发明要解决的技术问题是提供一种无需供能装置和传动装置, 转矩容量、 工作可靠性和寿命均更高, 操作简便且易于线控, 结构更简单更紧凑和更不易 磨损的空间楔合式摩擦连接器。
为解决上述技术问题, 本发明之空间楔合式摩擦连接器, 包括, 绕一轴线 回转且可轴向接合的至少一个牵引摩擦机构, 其具有绕所述轴线回转并均设置 有摩擦面的至少大致为环状的中介件和摩擦件, 以在该两构件间传递摩擦转矩; 为该牵引摩擦机构提供接合力并绕上述轴线回转的至少一个转动导向机构, 其 具有绕上述轴线回转并均设置有相应导向面的至少大致为环状的导向件和中介 件; 以及, 以可操作地控制中介件的入楔和解楔的方式, 控制摩擦连接器的接 合与分离的入楔控制机构; 当导向件和摩擦件被中介件可驱动地连接成一个摩 擦体时, 导向件与中介件双方的导向面之间的相互抵触部位的升角 λ , 大于零 且小于等于 ξ , 即, 0 < λ ξ , 其中, ξ是能够令形成于该抵触部位的导向摩 擦副自锁的升角 λ的最大值。
为最佳地封闭轴向力, 可设置有两个绕上述轴线回转的可轴向接合的摩擦 机构, 其中一个是上述牵引摩擦机构, 其中另一个是与导向件和摩擦件至少不 可旋转地分别结合在一起的传力摩擦机构, 或者再一个上述牵引摩擦机构。
可选地, 上述升角 λ的取值范围还可以是: ζ < λ ξ , 或者, 0 < λ ζ (当 ζ > 0 ), 其中, ζ是能够令所述抵触部位的导向摩擦副自锁的升角 λ的最 小值, 也是令牵引摩擦机构的牵引摩擦副自锁的升角 λ的最大值。
较佳地, 还可包括有至少一个限力元件, 其可与导向件、 中介件和摩擦件 中的至多一个, 以至少不可旋转的方式连接成力封闭式组合构件, 以建立相互 之间的轴向力封闭式抵触连接。
优选地, 上述导向件、 中介件、 摩擦件或限力元件是袋形构件, 用以建立 相互之间的轴向力封闭式抵触连接, 其设置有绕上述轴线回转的至少大致半周 的内周面, 以及位于该内周面上的大致半周的周向凹槽和由上述袋形构件的外 周面连通至该周向凹槽的入口。
可选地, 还包括至少一个弹性元件, 其设置在位于转动导向机构的至少一 个轴向端的两个轴向 4氏触面之间 , 以形成弹性的轴向封闭力。
优选地, 导向件和中介件的导向面是螺旋型齿面, 其设置在该二构件的包 括端面、 内周面和外周面的一个表面上; 在轴平面内, 该螺旋型齿面与上述轴 线之间的夹角大于 0度, 小于 180度。
可选地, 限力元件是具有中心圓孔的杯形壳。
较佳地, 限力元件可包括径向上至少大致对称的两个半圓壳和至少一个环 形箍, 该两个半圓壳的形状具有这样的组合效果, 即, 二者径向对接所构成的 组合构件, 设置有绕上述轴线的中心圓孔以及位于该中心圓孔内周面上的绕所 述轴线的周向凹槽; 上述环形箍以设置在组合构件的中部或外端部的外周面上 的形式, 固定住该组合构件。
可选地, 牵引摩擦机构和传力摩擦机构中的至少一个, 其两个相应摩擦面 是半锥顶角大于 0度而小于 180度的截锥面。
为增大 ζ和 ξ , 牵引摩擦机构可以是多摩擦片式摩擦机构, 其具有与摩擦 件和中介件分别不可旋转相连的两组轴向交错排列的各至少一个摩擦片。
为增大转矩容量, 传力摩擦机构可以是多摩擦片式摩擦机构, 其具有与摩 擦件和导向件分别不可旋转相连的两组轴向交错排列的各至少一个摩擦片。
作为一种改进, 入楔控制机构包括一个用于改变中介件相对导向件的周向 位置的调节机构, 该调节机构至少间接地设置在导向件、 中介件、 摩擦件或限 力元件上。 作为第二种改进, 入楔控制机构包括绕上述轴线设置的无级支撑机构, 以 及设置在限力元件上的触发机构。 前者设置在限力元件和被支撑件之间, 以轴 向上无级移动该被支撑件的方式, 建立限力元件与导向件、 中介件以及摩擦件 之间的轴向力封闭式抵触连接; 后者以促动方式致使前者建立和撤销该轴向力 封闭式抵触连接。 被支撑件是导向件、 中介件和摩擦件中与限力元件不可旋转 相连的那一个。
进一步地, 入楔控制机构还包括周向自由度大于等于零的周向限位机构, 以在两个圓周方向上制止中介件的自由入楔, 该机构具有至少一个限位凸起, 以及对应且恒久地收纳该限位凸起的限位凹槽, 两者至少间接地分别设置在中 介件和导向件上。
优选地, 限位凸起至少具有周向弹性, 周向限位机构的周向自由度等于零。 一种再改进是, 无级支撑机构包括绕上述轴线设置且至少呈大致环状的支 撑件, 其通过轴向抵触和转动导向两种连接方式, 分别连接至限力元件和被支 撑件。 而且, 支撑件相对限力元件的周向自由度, 至少大到致使无级支撑机构 可以建立上述轴向力封闭式抵触连接的程度。
另一种再改进是, 无级支撑机构包括可轴向伸缩且包含有流体的内封闭腔 体装置, 设置在限力元件上的单向连通阀、 泄压阀以及将三者相互连通的通道。 触发机构包括该单向连通阀和该泄压阀。
可选地, 内封闭腔体装置是包括限力元件和被支撑件的缸一活塞装置。 可选地, 内封闭腔体装置包括设置有进出口的软嚢。
可选地, 触发机构还包括可变容积且包含有流体的外封闭腔体装置, 其包 括限力元件和连接至该限力元件外表面的弹性膜片, 并通过上述单向连通阀、 泄压阀以及通道, 与内封闭腔体装置连通。
作为第三种改进, 可设置两个径向上相互嵌套的转动导向机构和至少一个 弹性元件。 该两机构的两个导向件以及两个中介件, 以导向面位于同方向端面 上的形式, 分别连接成刚性一体, 以及不可旋转地连接成周向一体; 该两个转 动导向机构中各自导向摩擦副的升角 λ , 分别大于零且小于等于 ζ , 以及大于 ζ且小于等于 ξ; 弹性元件则轴向上至少间接地抵触至升角 λ大于零且小于等 于 ζ的所述转动导向机构。
需要特别说明的是, 本申请文件中的相关概念或名词的含义如下: 间接地设置: 设置在与设置的目的地构件不可旋转相连的其它构件上。 转动导向机构: 将圓周相对转动转换为至少包括轴向相对移动或移动趋势 的导向机构。 例如螺旋升角严格一致和不严格一致的滑动 /滚动式螺旋或部分螺 旋机构、 径向销槽机构、 端面楔形机构、 端面嵌合机构、 端面棘轮机构及圆柱 / 端面凸轮机构。
空间楔形机构: 由转动导向机构和牵引摩擦机构组成的机构。
入楔: 也称楔合, 与解楔 /去楔相反, 就是中介件 90将导向件 50与摩擦件 70可驱动地连接 /结合成一个摩擦体的工作过程和状态。
ζ和 ξ : 空间楔形机构的重要极限角, 如图 1、 4所示的中介件 90, —方面 通, 过其摩擦面例如 104与摩擦件 70的牵引摩擦面 72至少轴向抵触, 以形成 抵触部位的法向压力的合力 W不垂直于回转轴线 X的回转型牵引摩擦机构 F1 的至少包括一个的一组牵引摩擦副; 另一方面, 通过其朝向某一圓周方向的导 向面例如 94a, 与导向件 50的相应导向面例如 54a至少轴向 ·ί氏触, 以形成 4氐触 部位的法向压力的合力 Ν不垂直于回转轴线 X的转动导向机构 G的至少包括一 个的一组导向摩擦副; 该抵触部位的公切线与垂至于回转轴线 X的平面的夹角 的平均值, 称为该抵触部位的升角 λ ; 再一方面, 通过其它表面还可作用有诸 如用于弹性预紧或限位的其它作用力, 参见图 5 ~ 6、 10 - 13 ; 在转动导向机构 G的转动导向工况中, 也就是导向件 50致使中介件 90沿例如箭头 Ρ所指方向 以大于等于零的速度相对摩擦件 70转动的工况中, 能够确保导向摩擦副自锁的 双方表面抵触部位的最小升角被定义为 ζ , 而最大升角则被定义为 ξ。 而该两 个极限角则完全界定了中介件 90相对导向件 50向前转动、 静止不动和向后转 动的一切可能的运动形式。 具体含义如下:
1、 当 ξ < λ < 90度时, 导向摩擦副和牵引摩擦副均不能自锁, 通过导向摩 擦副的法向压力 Ν, 或者其分力 Q和 Τ, 导向件 50可致使中介件 90相对其向 前亦即箭头 Ρ所指方向滑转 /挤出。 因此, 导向件 50与摩擦件 70不能被中介件 90楔合成一个摩擦体。 只是由于压力 Ν源自非弹性力, 或者源自弹性力但受构 件结构所限, 才致使中介件 90仅被导向件 50推动着相对摩擦件 70摩擦滑转而 未被实际挤出。
2、 当 ζ < λ ξ且 λ > 0时, 导向摩擦副处于恒定的自锁状态, 牵引摩擦 副处于不可自锁的一般静摩擦状态。 此时, 空间楔形机构的传动能力唯一决定 于楔合时牵引摩擦副的牵引摩擦转矩。 因此, 尽管中介件 90 可以将导向件 50 与摩擦件 70楔合成一个摩擦体, 但在摩擦件 70相对导向件 50过载时, 牵引摩 擦副仍可由静摩擦状态自然地转入滑动摩擦状态而导向摩擦副仍可维持自锁。 对应地, 空间楔形机构处于半楔合状态, 摩擦连接器处于非完全接合状态。
3、 当 0 < λ ζ (针对 ζ > 0 的情况) 时, 牵引摩擦副处于恒定的自锁状 态, 导向摩擦副处于一般静摩擦状态。 空间楔形机构的传动能力唯一决定于楔 合时导向摩擦副的最大静摩擦转矩 /导向摩擦转矩。 因此, 尽管中介件 90可以将 导向件 50与摩擦件 70楔合成一个摩擦体, 但在摩擦件 70相对导向件 50过载 时, 中介件 90将具有突破导向摩擦副的最大静摩擦状态而相对导向件 50滑转 爬升的趋势, 只是该爬升趋势可被楔形机构的刚性轴向力封闭结构所阻止 (除 非压力 Ν源自弹性力), 所以, 导向摩擦副可被强制性地维持在等同于自锁的一 般静摩擦状态。 即, 中介件 90、 导向件 50与摩擦件 70三者被强制楔合 /结合成 一个转动整体, 即使过载至毁损也不相互滑转爬升。 空间楔形机构因而处于类 似斜撑式超越离合器的绝对自锁 /楔合状态, 其传动能力仅决定于结构强度。
由常识可知, λ等于 ζ的情况, 只存在于理论上而不存在于现实中。 也就 是说, 因不能同时自锁而必然始终存在着一组不自锁的可滑转摩擦副, (空间) 楔形机构传递转矩的物理本质只能是摩擦, 而不是现有技术认定的摩擦自锁。
显然, 上述升角 λ就是空间楔形机构的楔角, 也称楔合角 /挤住角, 并且仅 在 0 < λ ξ时, 空间楔形机构方可楔合, 摩擦连接器方可接合。
相对现有技术的摩擦连接器, 依据本发明的空间楔合式摩擦连接器或其系 统, 因省去了供能装置和传动装置而大幅简化了整体结构, 降低了制作成本, 简化了操作程序, 同时具有更高的承载能力 /转矩容量, 以及更高的可靠性和更 高的安全性。 借助下述实施例的说明和附图, 本发明的目的和优点将显得更为 清楚和明了。 附图说明
图 1是根据本发明的机械无级支撑式摩擦连接器的轴向剖面图。
图 2是以图 1的左视图形式表示的环形袋状限力元件的端面示意图。
图 3是以图 1的左视图形式表示的支撑件的端面示意图。
图 4是图 1中各机构的齿廓向同一外圓柱面径向投影的局部展开图。
图 5是根据本发明的一种流体无级支撑式摩擦连接器的轴向剖面图。
图 6是根据本发明的又一种流体无级支撑式摩擦连接器的轴向剖面图。 图 7是图 6中 K K剖面的局部示意图。
图 8是图 7中 Y— Y剖面的局部示意图。
图 9是以图 Ί中 Z— Z剖面视图形式表现的平衡元件的示意图。
图 10是根据本发明的一种具有组合齿的流体无级支撑式摩擦连接器的轴向 剖面图。
图 11是根据本发明的又一种具有组合齿的流体无级支撑式摩擦连接器的轴 向剖面图。
图 12是根据本发明的一种可调弹性无级支撑式摩擦连接器的轴向剖面图。 图 13 是根据本发明的又一种可调弹性无级支撑式摩擦连接器的轴向剖面 图。
其中, 为便于表现和说明, 图 1、 5 ~ 6、 10 - 13 中轴线 X的上半部分对应 于解楔式分离状态, 下半部分对应于楔合式接合状态。 具体实施方式
必要说明: 本说明书的正文及所有附图中, 相同或相似的构件及特征部位 均采用相同的附图标记, 并只在它们第一次出现时给予必要说明。 同样, 也不 重复说明相同或相似机构的工作机理或过程。 为区别设置在对称或对应位置上 的相同的构件或特征部位, 本说明书在其附图标记后面附加了字母, 而在泛指 说明或无需区别时, 则不附加任何字母。
实施例一: 具有机械无级支撑机构的空间楔合式摩擦连接器 CB1。
图 1 ~ 4示出的是轮一轴传动式摩擦连接器 CB1,其包括绕轴线 X形成并具 有轴向力封闭功能的限力元件 180。该限力元件 180最佳地是一个环状袋形构件, 其绕轴线 X形成的内周面 84的轴向中部, 同轴线地设置有最佳地为平面型的盘 形环状周向凹槽 78。 该周向凹槽 78的约半周的内表面, 最佳地沿两相互平行的 切线方向 H和 H'延伸至限力元件 180的外周面, 并形成等截面矩形入口 82。 周 向凹槽 78的径向内表面 80, 因而延伸成具有 U字形横截面形状的非闭合式内 径向表面。 轴向上依次可滑转地设置在导向件 50内环侧朝内端延伸的管状基体 60外周面上的中介件 90、 大致呈环状的摩擦件 70和支撑件 220, 即可沿图 2中 空心箭头所指方向, 随同导向件 50—道由入口 82直接纳入周向凹槽 78 , 并被 轴向可滑转地贯穿于限力元件 180内孔中的第一轴 200, 径向定位在轴线 X上。 该径向定位显然也可借助非滑转的滚动轴承实现。 同时, 借助诸如花键副的连 接方式, 第一轴 200不可旋转地连接至管状基体 60的内周面。
在此应指出的是, 周向凹槽 78呈环状和入口 82呈等截面矩形, 均是实现 本发明的最佳但并非必需设置。 实际上, 只要能够纳入诸如导向件 50和中介件 90, 周向凹槽 78和入口 82可以具有任意形状和不等截面。 同样道理, 限力元 件 180的内周面 84也不必需周向封闭和对应于贯通式内孔, 其完全可以呈例如 大致半周的 U形开口状并对应于一个盲孔,只要在该内周面 84上可以设置出用
、、 显然, 轴向力封闭的环状袋形 力元件 18(/也可以 °是一个组合^件。 例如, 借助诸如焊接、 铆接或螺栓之类的紧固方式, 将一个具有中心圓孔的杯形壳式 限力元件轴向固定连接至一盘形圓环的端面, 并限定出周向凹槽 78。 再如, 借 助诸如焊接、 在包括轴向中部和 /或外端部的外周面上过盈地设置至少一个环形 箍或齿环之类的紧固连接方式, 将径向上至少大致对称, 且半圆形内圓面上均 设置有半圓形周向槽的两个半圆壳式限力元件, 径向固定地对接成一个限定出 完整的周向凹槽 78的组合式环状限力元件。 相关结构的更详细说明和图示, 可 参见上文所整体结合的两项专利申请, 此处不作进一步说明。
继续参见图 1 , 摩擦件 70通过在其外周面上, 设置一个以互补的形式沿入 口 82径向延伸至其外缘的凸缘式力臂 75的方式, 与限力元件 180不可旋转地 连接成一个组合式袋形摩擦件。 力臂 75的两个径向侧表面, 可与入口 82的两 个径向侧表面同时互补式地啮合, 并传递转矩。 最佳地呈阶梯环状的导向件 50 的外环侧的内端面上, 设置有一组最佳地绕轴线 X周向均布的双向螺旋导向齿 52。 相应地, 中介件 90的面对导向件 50的端面上, 设置有与导向齿 52呈互补 式构造的一组螺旋导向齿 92。 导向齿 52与 92恒久地嵌合, 构成最佳地绕轴线 X回转的面接触型双向转动导向机构 G。 另外, 中介件 90通过其无齿端面上的 回转摩擦面 104, 可与最佳地以互补方式设置在摩擦件 70相对端面上的回转型 牵引摩擦面 72摩擦相连, 构成回转型面接触牵引摩擦机构 Fl。 而导向件 50通 过其无齿端面上的传力摩擦面 58, 可与设置在周向凹槽 78的一个内端面, 也就 是限力元件 180的圓环状盘形端部 188b内端面的传力摩擦面 74摩擦相连, 构 成与导向件 50以及摩擦件 70不可旋转地结合在一起, 并在两者间直接传递摩 擦转矩的回转型面接触传力摩擦机构 F2。 牵引摩擦机构 F1 和转动导向机构 G 共同组成端面型空间楔形机构, 该机构再与传力摩擦机构 F2—起, 构成摩擦连 接器 CB1的轴向力封闭的空间楔合式摩擦连接机构。
应该指出的是, 本申请 "直接传递摩擦转矩" 的含义是指, 转矩在两构件 间的传递路径仅经过一个摩擦机构, 而不经过任何第二个其它机构, 其与该摩 擦机构所具有的摩擦面 /片的数量没有任何关系。
必需特别指出的是, 鉴于全周向面接触摩擦的特点, 摩擦连接器 CB1 中应 最佳地加注有助于散热的制动液或冷却液, 尤其是用作制动器时, 以形成湿式 摩擦环境。 同时, 还应在摩擦件 70等构件的摩擦表面或内部, 参照公知技术, 最佳地设置相应的彼此连通的径向通道, 例如图 5中的径向通孔 79。
显然, 由于环状袋形限力元件 180的盘形环状周向凹槽 78被最佳地设置成 平盘状而非锥盘状, 因此, 连接器 CB1在理论上可以不要求导向件 50和中介件 90的组合与限力元件 180之间的同轴度精度。 也就是说, 可以不对摩擦连接机 构中的转动导向机构 G、 牵引摩擦机构 F1和传力摩擦机构 F2三者之间以及三 者与轴线 X的同轴度做过高要求, 尤其是转速不高时。 只要其两个面接触回转 摩擦副垂直于轴线 X, 以及仅具有很小相对转动量的导向件 50和中介件 90相 互间同轴线设置即可。 而相对现代工艺, 保证该两个环状构件之间的同轴度又 是一件简单和低成本的劳动。 因此,这将显著降低制作、装配和使用连接器 CB1 的要求和成本。
下面再结合图 4来说明双向转动导向机构 G的详细关系和结构特征。其中, 最佳地具有梯形横截面且沿径向延伸的每对端面型螺旋导向齿 52和 92的相互 面对的导向面 54和 94, 均被互补地构造成螺旋型齿面, 两者周向相互贴合后, 便可形成对应于不同圓周方向的两组面接触的螺旋式导向摩擦副。 优选地, 分 别朝向两个圓周方向的两组导向面 54a和 94a以及 54b和 94b的两个互补的升角 X a X b, 均对称地等于 λ。 一般地, 0 < λ < ξ, 特殊地, ζ < λ < ξ或者 0 < λ ζ (当 ζ > 0 )。 显然, 如果只需传递单向转矩, 升角 λ &和 λ 中的一个, 可以最佳地等于平行于轴线 X的 90度。 优选地, 所有导向齿 52和 92的齿高, 均被设置成不妨碍对应于两个圓周方向的两组导向面 54a和 94a以及 54b和 94b 在轴向上的同时贴合, 亦即各自的齿顶与各自所处齿槽槽底面的轴向最小间距 δ最佳地大于零, 以保证转动导向机构 G的周向自由度 /间隙可以等于零。
容易理解, 导向件 50端面上的多个导向齿 52实际上就是空间楔形机构的 楔形齿, 其导向面 54分别朝两个圓周方向轴向上逐渐靠近摩擦件 70的回转型 牵引摩擦面 72 , 并与后者分别围成两组各包括多个的沿周向延伸的端面楔形空 间。 而设置在该多个楔形空间中的多个导向齿 92就是楔合子, 其因不必需径向 运动而最佳地相互合并成一个零件, 即整体环状的中介件 90。
为可控制地实现空间楔合式摩擦连接机构的入楔和去楔, 摩擦连接器 CB1 中还特别设置有入楔控制机构, 以可操纵地强制建立或撤销摩擦连接机构的轴 向力封闭式抵触连接。 其中, 入楔控制机构包括一个转动导向式无级支撑机构 SS , 该机构 SS包括作为被支撑件的摩擦件 70、 支撑件 220以及限力元件 180, 参见图 1、 3、 4。 大致呈环状的支撑件 220 , 以轴向上可同时刚性抵触至摩擦件 70和周向凹槽 78的另一个内端面也就是支撑端面 189 ,以及作有限转动的方式, 设置在摩擦件 70与限力元件 180之间。
本实施例中, 无级支撑机构 SS具体为一个以支撑件 220为中介件且具有极 限角 ξ '的又一个空间楔形机构, 其设置有最佳地呈单向的转动导向机构 UG。该 导向机构 UG的两组具有互补式构造的单向螺旋型导向齿 62和 232, 分别设置 摩擦件 70和支撑件 220的相互面对的圓环形端面上, 以使两者转动导向地相 连接。 实际上, 导向齿 62和 232也可分别设置在支撑端面 224和 189上。 参见 图 3 - 4 , 导向齿 62和 232最佳地具有锯齿状的齿形, 二者设置有升角 λ ' ξ ' 的螺旋导向面 64和 234, 最佳地平行于轴线 X的非导向面 61和 236, 以及齿顶 面 238。 其中, ξ '的定义同于 ξ 。
另外, 支撑件 220的外周面上最佳地设置有沿入口 82径向延伸至其外缘的 扭转力臂 222。 该力臂 222具有适当向内倾斜的侧表面 228 , 以使该力臂 222与 入口 82两侧面最佳地具有转动间隙, 从而保证支撑件 220相对摩擦件 70具有 足够的周向自由度 ε '。 这样, 在一个圆周方向上相对限力元件 180转动支撑件 220, 便可在该周向自由度 ε '之内, 以相互抵触的回转型支撑端面 224和 189为 基准面, 轴向无级地驱离 /移动摩擦件 70, 以将摩擦件 70、 中介件 90和导向件 50, 无间隙地刚性压紧 /抵触在传力摩擦面 74上, 或者撤销该刚性压紧 /抵触状 态, 从而强制性地建立或撤销摩擦连接机构的轴向力封闭式抵触连接, 并迫使 空间楔形机构在两个圓周方向上可靠地入楔或解楔。 其中, 导向件 50、 中介件 90、 摩擦件 70和支撑件 220在周向凹槽 78中的轴向自由度 δ '大于零, 但小于 等于上述周向自由度 ε '所对应的转动导向运动的轴向移动距离 s ' x tg X '。 最优 地, 可在例如传力摩擦面 74与摩擦件 70之间设置螺旋压簧, 或者, 在限力元 件 180的相应径向孔中设置直线钢丝弹簧, 分别由牵引摩擦面 72—端作用于摩 擦件 70的外径向凸缘上, 以使分离状态中的轴向自由度 δ ', 位于摩擦机构 F1 或 F2的摩擦面之间。
为可操控,入楔控制机构还包括触发入楔动作 /过程的触发机构 AC。该触发 机构 AC最佳地是一个圓柱凸轮机构, 其包括径向地设置在盘形端部 188b外周 面上的基准凸起 122, 径向地设置在力臂 222外周面的导向凸起 132, 以及可滑 转地设置在限力元件 180外周面上的触发环 120。 相应地, 触发环 120的内周面 上设置有可滑动地收纳基准凸起 122的基准槽 124, 以及, 可滑动地收纳导向凸 起 132的导向槽 134。基准槽 124与导向槽 134可以是由端部开始的同一个槽道 的具有不同升角的不同段, 可以是分别延伸至端面的两个相互独立的槽道, 也 可以是径向通孔式的槽道。 触发环 120的外周面上则最佳地设置有滑环槽 126, 设置于其中的未示出的拨叉, 可依公知方式最佳地弹性驱动触发环 120轴向移 动。 实际上, 触发环 120也可被一个与其可旋转地轴向固定相连的静止构件驱 动。 而且, 其轴向触发式促动力可依公知技术, 由机械机构、 电磁机构、 流体 机构或包括步进电机的机电机构就近提供。 例如, 由公知的钢球连杆式离心机 构驱动, 便可获得迅速接合或分离但接合力与转速无关的离心式摩擦连接器。
设置上, 触发机构 AC具有这样的效果。 即, 轴向移动触发环 120, 例如于 图 1 中由左至右, 通过导向槽 134的移动导向作用, 可致使导向凸起 132相对 限力元件 180转动, 例如沿图 4中的箭头 P所指方向, 从而带动支撑件 220相 对摩擦件 70作同向的导向转动, 并在支撑件 220周向抵触至入口 82的径向侧 面之前,将摩擦件 70、中介件 90以及导向件 50刚性地抵触至传力摩擦面 74上, 强制建立起轴向力封闭式抵触连接, 如图 1 的下半部所示。 而轴向反向移动触 发环 120, 则执行完全相反于上的动作, 强制撤销上述轴向力封闭式抵触连接, 并可使上述构件之间的轴向自由间隙之和, 再次接近或等于轴向自由度 δ ', 如 图 1的上半部所示。
而为了确保中介件 90在两个圓周方向上的可靠入楔, 以及入楔动作的可靠 性和一致性, 入楔控制机构还最佳地设置有限制转动导向机构 G的周向自由度 的周向限位机构。 该限位机构最佳地是一个设置在导向件 50和中介件 90之间 的周向自由度大于等于零的轴向 /径向销槽式嵌合机构, 其至少包括一个的对中 式限位凸起 68设置在其中的导向齿齿顶面上, 例如图 4中示意的导向齿 52的 齿顶面上, 而用以轴向滑动地恒久收容该凸起 68的对中式限位凹槽 118 , 则设 置在相对的导向齿 92的例如齿槽底面上。 最佳地, 限位凸起 68应至少兼具周 向弹性, 并径向上设置在导向齿 52的最内端, 例如, 由一个植入式的弹簧钢丝 充当。 此时, 周向限位机构的周向自由度, 可最佳地等于零。
当然, 限位凸起 68和凹槽 118也可设置在导向件 50与中介件 90的相互面 对的内外周面上, 以将双方持续地弹性收缩成一体, 相关说明详见于后, 或者, 间接地设置在与导向件 50和中介件 90不可旋转相连的其它构件上。 例如, 限 力元件 180的内周面和中介件 90的外周面上, 参见图 5、 6、 10, 并可具有诸如 导向 4*/销连接的形式。 另外, 上述轴向弹性收缩功能也可由一个独立的弹性元 件提供, 例如, 两个端头分别嵌入中介件 90和导向件 50外周面相应径向孔中 的螺旋拉簧。
设置上, 周向限位机构具有这样的效果。 即, 分离状态中, 中介件 90与导 向件 50的轴向抵触, 均以导向面 54a和 94a以及 54b和 94b同时接触的方式进 行。 这样, 在任何方向上的楔合式接合, 摩擦连接器 CB1均不会产生周向空行 程, 以及相应的摩擦冲击。 并且, 去楔式的分离过程将简捷而迅速, 具有显著 的阶跃性。 即便是当升角 λ取值 0 ~ 的爬升角区间, 限位凸起 68的周向阻挡 作用也会令该过程以阶跃方式完成, 不会象现有技术那样以渐变方式完成。
摩擦连接器 CB1的工作过程非常简单。 分离状态中, 通过未示出的拨叉驱 动触发环 120轴向移动, 例如于图 1 中由左至右地移动, 便可致使支撑件 220 相对摩擦件 70沿例如图 4中箭头 Ρ所指方向转动, 从而借助无级支撑机构 SS 的转动导向作用, 迫使转动导向机构 G、 牵引摩擦机构 F1 和传力摩擦机构 F2 如上所述地同时完成轴向贴合, 亦即同时强制建立起轴向力封闭式抵触连接。 于是, 导向件 50相对摩擦件 70的沿任意方向的转动, 均可迫使中介件 90将二 者楔合成一个摩擦体, 进而转入楔合式接合状态。 之后, 触发环 120 无需持续 地施加维持力, 摩擦连接器 CB 1均可自适应地维持住该楔合式摩擦连接状态, 稳定地传递转矩。
例如, 完成上述轴向力封闭式抵触连接之际或之后, 只要导向件 50持续地 具有沿图 4中箭头 P所指方向相对摩擦件 70转动的趋势, 摩擦件 70均将借助 牵引摩擦机构 F1的牵引摩擦转矩, 牵引着转动导向机构 G的中介件 90 , 相对 导向件 50沿箭头 R所指方向作转动导向运动。该转动导向运动所产生的轴向移 动 /胀紧力, 在将导向齿 92瞬间楔紧在导向面 54a和牵引摩擦面 72所围成的端 面楔形空间中 , 也就是中介件 90将导向件 50与摩擦件 70楔合成一个摩擦体, 牵引摩擦机构 F1因而轴向接合的同时,还将导向件 50即刻胀紧在限力元件 180 的相应内端面也就是传力摩擦面 74上, 以形成轴向力封闭式抵触连接的方式, 致使传力摩擦机构 F2也同步接合, 并将导向件 50与摩擦件 70周向上直接连接 成一个摩擦体。 参见图 1下半部分。
于是, 摩擦连接器 CB1 随着空间楔形机构的楔合而接合。 由管状基体 60 内孔中的第一轴 200传入的驱动转矩 M。,分成经由转动导向机构 G和牵引摩擦 机构 F1传递的楔合摩擦转矩 M 以及经由传力摩擦机构 F2直接传递的传力摩 擦转矩 M2, 分别传递给周向一体的摩擦件 70和限力元件 180, 再经后者外周面 或端面上的未示出的传力特征曲面, 传递给未示出的其它构件。 其中, MQ M + M2, 且上述轴向胀紧力、 楔合力 /接合力和各摩擦力的大小, 均完全自适应地 正比于 , 也就是驱动转矩 M0
无疑地, 由于周向上的对称性, 导向件 50沿图 4中箭头 R所指方向相对摩 擦件 70的转动, 具有完全类似的工作过程, 无需重复说明。 而且, 转矩也可按 与上述相反的路径传递, 工作过程不会有任何实质差别。
但应该特别指出的是, 如上所述, 摩擦连接器 CB1仅在具有 ζ < λ ξ的 设置中, 可以获得自适应地相对驱动转矩过载打滑的防过载破坏功能, 但前提 是转矩必需由导向件 50向摩擦件 70/限力元件 180传递, 也就是沿如上所述的 由轴到轮的路径方向传递, 而不是相反。 而由动量矩定理 /动量定理的运动学基 本常识可知, 存在不可忽视的转动惯量的负载, 也就是第一轴 200, 其转速不可 能在摩擦连接器 CB1接合的瞬间产生阶跃式的飞升或骤降。 所以, 当被摩擦连 接的构件与第一轴 200存在较大转速差时, 具有 ζ < λ < ξ设置的传动摩擦连 接器 CB1的上述楔合式接合过程, 必然是一个自适应地出现短暂的过载滑转的 过渡过程, 直至过载结束, 而不会产生有害冲击, 更不会致停原动机或造成相 关构件的损坏。 其摩擦滑动转矩 /轴向接合力始终自适应地等于 /对应于驱动转矩 Mo, 不会致其楔死。 该过载打滑的接合特性将特别有利于离合和制动的工况。
例如, 若将第一轴 200耦合于例如机动车辆的轮轴或履带驱动轮轴, 将限 力元件 180耦合于固定机架(未示出), 用作制动器的摩擦连接器 CB1 , 将因此 而最佳地具有自适应的 ABS防抱死制动功能。 无需任何其它元件或系统的帮助 或支持, 更无需检测任何转速和关注地面附着力以及车轮的滑移率, 其制动转 矩均可自适应地对等于来自第一轴 200的驱动转矩 M。, 而该转矩 M。的最大值 又自适应地对应于车轮 /履带的最大地面附着力。 并且, 该 ABS防抱死制动功能 无关于具体车辆的任何具体参数, 具有广泛的通用性, 显著优于现有技术。 同 时关键地, 连接器 CB1还可具有最佳的驻车制动功能, 可自动地将行车制动直 接转为可靠的驻车制动, 并很容易设计成被例如加速踏板的踩踏动作联动解除。
之后, 在需要结束楔合式接合状态时, 只需执行上述相反的操作, 撤销刚 性支撑, 解除轴向力封闭连接状态即可。 即, 通过未示出的拨叉驱动触发环 120 反向移动, 例如于图 1 中由右至左地移动, 便可致使支撑件 220相对摩擦件 70 沿例如图 4中箭头 R所指方向转动,也就是作解除无级支撑机构 SS的导向作用 的转动。 因此, 导向面 64与 234之间的法向压力和其转动导向作用, 将随着两 导向面产生相互脱离接触趋势的一瞬间而同时消失。 自然, 基于该机构 SS的轴 向支撑力的两个摩擦机构 F1和 F2以及空间楔形机构, 将随即分离或解楔, 并 因为机 ¾ G、 F1和 F2不可同时轴向贴合, 而失去再次楔合的可能。 于是, 摩擦 连接器 CB1结束接合并再次转入解楔式分离状态。此时, 中介件 90便跟随导向 件 50—起相对摩擦件 70和限力元件 180空转。 参见图 1上半部分。
应该说明的是, 致使摩擦连接器 CB1接合和分离的促动力, 也就是作用于 滑环槽 126 内端面的轴向驱动力, 用于分离的相较用于接合的为大。 但是, 参 照前文所述, 无级支撑机构 SS 的导向升角 λ '越接近其极限角 ξ ', 驱动支撑件 220作分离解楔转动的控制转矩就越接近于零,触发式控制也就越容易。理论上, 该转矩随着 λ '等于 ξ '而等于零(支撑件 220临界于被作用在导向面 234上的法 向力周向 "挤出" 了)。 自然, 对应于该控制转矩的驱动滑环槽 126的轴向力也 可因此接近于或等于零, 并因此而最佳地需要持续的轴向维持力, 以维持触发 状态, 提高无级支撑机构 SS楔合的可靠性。 比如, 借助导向凸起 132与导向槽 134 的摩擦自锁, 借助具有弹性构件的锁止 /定位机构, 或借助凹槽式弹性定位 机构分别互反地定位在可致使摩擦连接器 CB1接合或分离的两个位置上。
至此不难发现, 相对现有技术的具体为摩擦式离合器和制动器的摩擦连接 器, 依据本发明的摩擦连接器 CB1具有诸多有益效果。
首先, 其彻底摒弃了的现有技术所必需的供能装置和传动装置, 尤其是其 中既复杂又昂贵的液压系统, 不仅致使摩擦连接器 (系统) 结构得以大幅简化 和紧凑, 制作和装配成本更低, 易于方便地实现线控传动或制动, 特别是相对 大型或重型传动系统而言, 而且还因轴向接合力的高强而具有了至少倍增的转 矩容量, 轴向和径向尺寸均因此而大为缩小, 系统可靠性大为提高。 显然, 本 发明因此具有了显著的通用性, 适用于微型至重型机械传动的所有应用领域。
例如, 用作机动车辆的线 Ζ电控制动时, 现有技术中所遇到的关键技术难题 均不复存在。 即, 驱动能源不再是难题, 更无需升高车辆的电源电压和面对升 高电压所带来的安全问题; 控制系统失效不再是难题, 使用一套并联的借助例 如钢丝拉绳的机械传动机构, 便可既筒单又可靠地实现应急制动; 控制上相对 地大为简化, 如何适应不同种类的车型需要不再是难题, 因为摒弃了驱动能源, 最大制动力又自适应地对应于被制动车轮的摩擦力 /转矩, 与具体车型无关。
其次, 其楔合式摩擦力完全自适应地对等于来自导向件 50的驱动或负载转 矩, 基本上无关于摩擦系数, 不存在轴向压紧力过大或不足的可能。 可分别具 有接合后不过载便不打滑, 或者过载也不打滑的特性, 令摩擦连接器 CB1具有 了更高的可靠性和安全性, 并因此以最简单的方式具有了最理想的 ABS防抱死 制动功能, 以及可靠的驻车制动功能, 或者工业上需要的绝对无滑的制动功能。
再次, 其操作更简便, 动作响应更快捷, 更容易保证长距离设置范围内的 传动或制动动作的同步性、 一致性和快捷性。
再其次, 其无需外界为各摩擦机构提供接合力, 不必需持续的或较大的控 制力, 只在分离或接合时需要触发式的促动力, 因而更加节能, 控制装置更简 单, 动作更轻便灵敏。 尤其是具有 λ '约等于 ξ '参数的设置方案, 将特别有益于 必需具有手工解除接合状态功能的各类摩擦连接器, 可显著降低其设备成本和 所需人工劳动强度和难度。 例如, 用作曳引电梯的工作制动器的情况。 而用于 替代现有技术中液力自动变速器的所有离合器和制动器时, 将因显著地降低其 结构复杂性以及可摒弃整个液压系统, 而大幅降低其制作成本和使用成本。
最后, 由于实现了系统的轻量化、 结构和控制的筒单化, 因此, 只要简单 地匹配上诸如机械、 电磁、 流体或包括步进电机式的触发机构 /控制装置, 包括 摩擦连接器 CB1的本发明便可具体为可控的机械式、 电磁式、 流体式或电控式 无动力源摩擦连接器, 将显著地优于现有技术的各类相关的有动力源离合器和 制动器, 且无水平和垂直安装之分。 例如, 具有 0 < λ < ζ设置的电磁促动式摩 擦连接器 CB1 , 便全方位地优于现有技术的牙嵌式电磁离合器, 并可取而代之。 而诸如接合迅速的离心力触发式、 电磁失电或得电触发式的摩擦连接器 CB1 , 便可最佳地用作电梯轿厢 /罐笼 /自动扶梯等防坠落防超速的紧急制动器和 /或工 作制动器, 或者各种热动力原动机等的防飞车 /速制动器。
另外, 摩擦连接器 CB1还因无离心惯性力, 而具有几乎仅取决于相关材料 强度的高速转动能力; 因转动导向机构 G几乎不存在磨损, 摩擦机构 F1和 F2 的摩擦力绝缘于离心惯性力并可自动补偿磨损, 而具有较长的工作寿命。
例如, 在导向件 50的内径不小于 50mm, 限力元件 180的外径介于 98 ~ 175mm, 轴向宽度介于 60 ~ 100mm, 以及工作系数和摩擦系数分别为 2.0和 0.1 时, 只有约半周可以楔合和传力的摩擦连接器 CB1, 其楔合式摩擦计算转矩便 可达 2,790 ~ 16,900N · m 的量级水平。 即便因设置散热沟槽等工艺结构而有所 降低, 其传动能力仍将远远高于现有技术, 特别是转矩传递的密度 /容量。
应该指出的是, 为谋求更大的设计自由度和使空间楔形机构更容易地楔合 或解楔, 本发明还具有各种提升极限角 ζ和 ξ数值的技术手段。 包括, 将转动 导向机构 G的导向面 54和 94设置成倾斜螺旋型齿面,将牵引摩擦机构 F1的摩 擦面 72和 104设置成截锥面,致使轴截面内导向面 54和 94或摩擦面 72和 104 与轴线 X的夹角 /半锥顶角不等于 90度, 而等于 0 ~ 180度的其它值; 将牵引摩 擦机构 F1设置成多摩擦片式结构; 以及, 将具备更大摩擦系数的材料或元件附 装至摩擦面 72和 104中的至少一个上。 例如, 在静摩擦系数均为 0.1时, 摩擦 连接器 CB1 中的 ζ和 ξ分别等于 0度和 11.4度, 而只需将牵引摩擦机构 F1的 摩擦面设置成半锥顶角等于 30度的截锥面这一个措施, 上述极限角便分别升至 5.6度和 17.02度。 这里应顺便提及的是, 本说明书已经给出了关于极限角 ζ和 ξ的清晰的文字定义和说明, 无需付出任何创造性的劳动, 本领域的普通技术 人员均可据此推导出其函数关系式 /计算公式。
由常识可知, 为增大同等直径时摩擦连接器 CB1的转矩容量并降低轴向内 力, 牽引摩擦机构 F1和传力摩擦机构 F2也可依公知技术, 被如上所述地分别 或同时设置为多摩擦片式的离合机构, 并因此而具有多于一个的一组牵引摩擦 副或传力摩擦副。
容易想到, 如果在图 1 中的传力摩擦面 58和 74之间, 再轴向对称地设置 一个中介件 90, 并与导向件 50及摩擦件 70分别对称地组成再一个转动导向机 构 G和牵引摩擦机构 Fl, 摩擦连接器 CB1将失去传力摩擦机构 F2, 而具有两 个共用同一个组合式袋形摩擦件的牵引摩擦机构 Fl。 或者, 对调导向件 50和中 介件 90的轴向位置, 摩擦机构 F1和 F2也将轴向对调, 后者将与导向件 50以 及摩擦件 70分别直接刚性地结合在一起。 或者, 互换转动导向机构 G与牵引摩 擦机构 F1双方, 也就是成对地互换导向齿 52、 92与摩擦面 72、 104的轴向位 置,摩擦连接器 CB1便可在由轮到轴的传递路径上, 具备过载打滑的保护功能。 此时, 图 1 中的摩擦件 70与导向件 50, 实际上已互换角色。 或者, 将摩擦件 70与中介件 90合并成一个零件,并在传力摩擦面 58与 74之间置入一个内孔中 耦合有不同传动轴的摩擦环, 摩擦件 70将变型为中介件。 即, 后两种变型中, 被支撑件将分别由导向件和中介件充当。
需要说明的是, 如定义中所述, 本发明没有对转动导向机构 G及其导向齿 52、 92作出具体限制, 其不必需具有最佳的螺旋齿结构。 因此, 该机构 G及其 导向齿可具有任意具备转动导向功能的形式和形状。 导向齿可按离散形式设置 在端面 /周面上, 也可按诸如单头或多头螺纹的形式, 周向延续地设置在相应的 内 /外周面上。 而在后一种设置形式中, 其可最佳地设置成具有诸如矩形、 梯形、 锯齿形或三角形等截面形状的螺旋齿。 同样道理, 只要能够最佳地实现轴向的 互补式贴合 /抵触, 牵引摩擦机构 F1和传力摩擦机构 F2的各自两组回转摩擦副 的截锥式回转型摩擦面, 可以基于任意曲线 /母线回转而成, 并可以是设置有用 以散热或排除液体 /气体的沟槽的非连续表面。
因此, 摩擦连接器 CB1还可以具有这样的变型。 即, 将其中的转动导向机 构 G的螺旋导向齿 52和 92设置在管状基体 60的外周面以及中介件 90的内周 面上, 或者, 设置在中介件 90的外周面以及形成于导向件 50径向外环侧的环 形端面凸缘的内周面上(相当于径向翻转中介件 90以及导向件 50的位置)。 或 者, 去除导向件 50, 借助诸如精密铸造、 浇注、 压铸或注塑等方式, 将导向齿 52直接刚性地形成在传力摩擦面 74上,以使限力元件 180变型为具有轴向力封 闭功能的袋形导向件。 相应地, 再在中介件 90与摩擦件 70之间, 径向置入一 个内孔耦合至第一轴 200的盘形摩擦环, 摩擦连接器 CB1便可变型为导向件为 袋形构件的轮一轴传动式摩擦连接器。 而如果再以另一轴固定连接至中介件 90 的内孔, 后者就将与导向件互换角色并成为袋形中介件, 该变型将进一步变型 为中介件为袋形构件的轴一轴传动式摩擦连接器。
更进一步地, 去除上述导向件为袋形构件的变型中的周向限位机构, 去除 其摩擦件 70和支撑件 200,将具有导向凸起 132的力臂 222移植到中介件 90的 外周面上, 与触发环 120组成调节机构 AM, 并如上所述地设置 λ « ξ, 便可得 到具有四构件的最简结构变型。 控制其触发环 120 的轴向移动, 便可令中介件 90解楔或在单一圓周方向上入楔。 对应地, 楔合式接合状态中的该最简结构变 型仅可在该对应圓周方向上传递转矩, 不可相反, 除非反向移动触发环 120 至 换向入楔。 因此, 该最简结构变型不再具有摩擦连接器 CB1经一次楔合, 便可 在任意圓周方向上自适应地随时换向传递转矩的性能优点。 无疑, 上述中介件 为袋形构件的变型也可进一步具有类似的四构件最简结构变型。
另外, 如果需要, 例如用作制动器时, 限力元件 180也可以是非完整环状 的袋形构件。 即, 当需要轴向延伸例如导向件 50的管状基体 60以致其不能径 向通过入口 82时, 可在入口 82处的轴向一端设置径向缺口。 例如, 将位于内 周面 84b—端的正好半周的内周面, 沿平行于 H或 H'的两条相互平行的切线方 向, 径向延伸至限力元件 180的外周面, 并形成一个允许管状基体 60置入 /通过 的缺口。 于是, 内周面 84b同样延伸成具有 U字形横截面形状的非闭合式内径 向表面, 限力元件 180变成为一个形似琺码的 U形开口环。 当然, 此时应在扩 大的入口 82中最佳地设置一个与该入口具有互补式构造的弧形压件, 以径向定 位管状基体 60。 有关轴向力封闭结构及环状袋形构件的更多变型的图示和说明, 可参见上 文所整体结合的两项专利申请, 以及本申请人提出的名为具有袋形构件的空间 楔合式摩擦超越离合器, 并全文结合于此的中国专利申请 201020563404.9, 本 申请此处不作进一步说明。
不难理解, 摩擦连接器 CB1 中的触发机构 AC显然可以以更直接的方式, 周向驱动支撑件 220转动。 例如, 借助如图 12所示的蜗轮蜗杆机构。 或者, 去 除触发环 120,将一个与径向缩小了的力臂 222的部分外圓柱面上设置的轮齿相 啮合的齿轮, 可弹性扭转地固定连接至力臂 75与盘形端部 188a, 并在该齿轮的 一端固定连接有位于入口 82中的径向延伸的离心摆杆。 如此, 摩擦连接器 CB1 便变型为由旋转离心力触发的连接装置, 比如, 离心式超越离合器。
另外, 在例如 ζ < λ ξ的导向面 54和 94不可滑转爬升的设置中, 还可 在转动导向机构 G的至少一个轴向端的两个轴向抵触面之间,例如支撑端面 189 与 224之间, 设置至少一个弹性元件以调节轴向接合力, 例如, 至少包括一个 的一组碟簧。 这样, 因具有弹性楔合式接合状态, 摩擦连接器 CB1将与现有技 术一样, 将具有柔性接合的能力。 例如, 用作制动器时, 将具有可依滑转摩擦 方式快速且无级地调节滑转时间和滑转制动力 /转矩的柔性接合能力, 以满足具 体而复杂的实际需求。 显然, 当碟簧被压缩至等于自身厚度, 或者, 在此之前 支撑件 220已刚性抵触至支撑端面 189之际, 摩擦连接器 CB1将即刻转入如上 所述的刚性楔合式接合状态, 并因此而转入自适应的 ABS防抱死制动状态。
当然, 无级支撑机构 SS应最佳地具有足够大的导向升程, 以保证上述刚性 楔合式接合的实现。 而且, 上述包括弹性元件的轴向接合力 /封闭力可调的设置, 也适用于摩擦连接器 CB1用作离合器的情况, 以使其具有柔性接合的特性和过 程。 特别地, 该直至刚性楔合 /接合为止的柔性接合过程所需的时间, 是可以事 先设定和控制的。 这只要简单地控制控制环 120的轴向移动速度 /时间, 也就是 控制支撑件 220相对限力元件 180的转动速度即可。
于是, 利用摩擦连接器 CB1的上述柔性接合的变型, 可以显著优化例如机 动车中现有技术的手动变速器。 即, 将变速器各档齿轮对中与同步器成对啮合 的空套齿环, 固定连接至对应的连接器 CB1的一端, 或将其轮齿直接设置于对 应的盘形端部 188a或 188b的外周面上, 再以现有技术中操纵同步器的换档拨 叉来驱动各触发环 120, 便可得到改进的手动变速器。 最佳地, 可将两轴向相邻 的触发环 120合并为一个零件, 甚至, 更可彻底摒弃设置于该变速器与发动机 之间的主离合器, 实现前两者的直接相连。 这样, 相对现有技术, 因省去了至 同步时的耗时和需脚踏离合器的配合麻烦, 该手动变速器将具有换档更轻松和 更快捷的有益特性, 而且, 仅需一只手的操作更易取得精细和平顺的换档效果。
另外, 还可将摩擦连接器 CB1中的例如导向件 50或其管状基体 60设置成 另外一个袋形构件。 为构成一个如上文所整体结合的两项专利申请的超越离合 器, 再在该袋形构件内部的周向凹槽内设置另一组导向件和中介件, 该另一导 向件与第一轴 200 直接耦合。 于是, 该变型便具有了对轴向或径向并列设置于 其内的超越离合器进行单向制动的多种功能。 显然, 该纯机械式多功能装置, 可最佳地替代现有液力自动变速器中的超越离合器与制动器的复杂组合。 实施例二: 具有流体无级支撑机构的空间楔合式摩擦连接器 CB2
如图 5所示, 摩擦连接器 CB2是对摩擦连接器 CB 1的变型。
首先, 为得到轴向力封闭功能的组合式袋形导向件, 导向件 50与限力元件 180均以花键连接形式, 不可旋转地设置在第一轴 200的外周面上。 用于轴一轴 传动的第二轴 210 , 则以同样方式, 不可旋转地设置在摩擦件 70的内孔中, 并 借助轴承 158 , 可转动地径向定位在限力元件 180的相应内周面上。 同时, 在第 二轴 210的内端面上, 最佳地设置有共轴线 X的圓柱状中心凸起 214 , 其收纳 在位于第一轴 200内端面的共轴线 X的中心孔 204中, 并最佳地间隔有可转动 的滚针 206。
实际上, 也可通过在管状基体 60b与盘形端部 188a的相应周面之间设置花 键副, 或者, 在导向件 50的外周面上设置类似力臂 75的径向力臂的方式, 将 导向件 50不可旋转地连接至限力元件 180。
其次, 为适应高速转动, 还最佳地在环状的封口件 190 内径侧未被填满的 入口 82的剩余空间中, 设置有一个与该剩余空间最佳地具有互补式构造的弧形 平衡元件 /配重块 240。 该平衡元件 240最佳地被贯穿于其轴向孔 242中, 并固 定连接在限力元件 180的轴向孔 81中的至少一个固定销径向定位,参见图 2、 7。 封口件 190 则以诸如焊接、 铆接、 胶接、 螺紋副、 径向或端面螺钉、 过盈或间 隙配合之类的紧固或非紧固连接方式, 设置在限力元件 180 的外周面上, 以最 佳地封闭 /封堵入口 82。
再次, 周向限位机构的对中式限位凸起 68, 具体为丝状的直线弹簧, 其内 径端贯穿性地设置在位于管状基体 60的径向通孔中, 其外径端最佳地固定在中 介件 90内周面的径向孔型对中式限位凹槽 118中。 该两个径向孔的相邻部分最 佳地呈截锥形, 以允许中介件 90相对导向件 50作有限的周向和轴向弹性位移, 并具有这样的设置效果。 即, 无外力作用之际, 限位凸起 68 可致使中介件 90 与导向件 50双方轴向间距持续地弹性收缩至最小, 并最佳致使转动导向机构 G 的对应于两个圓周方向的周向间隙, 均等于零。
最后, 无级支撑机构 SS具体为一个包含有流体的内封闭腔体装置, 触发机 构 AC具体为一个外封闭腔体装置。 两装置分别对应地具有以盘形端部 188a为 界, 并可相互连通的内外两个可轴向伸缩的可变容积式环形封闭腔体 46和 48。 其中, 内封闭腔体装置是一个以作为被支撑件的导向件 50为环形活塞, 以限力 元件 180为缸体的缸一活塞装置。 该装置的环形内腔 48以支撑端面 51和 189 为底面, 以两支撑端面的径向内、 外端面凸缘的设置有未示出密封件的两个完 整内周面和外周面为圓柱界面。 缸一活塞装置用以无级地支撑导向件 50, 使其 具有至少大于 δ '的轴向行程, 以保证中介件 90可以入楔, 令空间楔合式摩擦连 接机构可以接合传力。 δ '是周向凹槽 78中各构件的轴向自由度。 弹性环形膜片 30的内壁面与盘形端部 188a的外端面限定出外封闭腔体装置的外腔 46。 优选 地, 环形膜片 30的外缘胶接在盘形端部 188a外缘面的相应周向凹槽 186中, 其内缘则胶接在位于盘形端部 188a径向内侧环形端面凸缘 187外周面的相应周 向凹槽中。
相应地,具体为内外两个封闭腔体装置的无级支撑机构 SS和触发机构 AC, 还具有共用的单向连通阀和泄压阀。 其中, 为将外腔 46中的流体单向地压入内 腔 48中, 盘形端部 188a的外端面上设置有螺纹沉孔 183 , 以及由其底部连通至 内腔 48的进出通道 34。 将弹簧 44、 钢球 42以及带中心孔的螺纹堵头式阀体, 依次装入螺纹沉孔 183, 以形成可单向截止的单向连通阀 40。 而为将内腔 48中 的流体单向地排入外腔 46中 , 在对应于弹簧 44部位的螺纹沉孔 183的内周面 上, 设置有径向延伸至盘形端部 188a外周面的通道 36, 以及将该通道 36连通 至外腔 46的轴向通道 38。 在通道 36的中部, 设置有相交的轴向盲孔, 位于其 中的杆状阀芯 41的中部具有环形槽 43, 从而与通道 36构成泄压阀。 阀芯 41的 内端面与轴向盲孔的底部之间设置有复位弹簧 45 ,可致使环形槽 43持续地保持 在与通道 36相互错开的位置上, 以切断通道 36。 阀芯 41的外端面则抵触至环 形膜片 30内壁面, 并可被后者克服弹簧 45的反力而轴向推移至环形槽 43轴向 对准通道 36的位置上, 从而将内腔 48连通至外腔 46, 以降低内腔 48中流体的 压力。
另夕卜,为降低阀芯 41的移动阻力,轴向盲孔的底部被最佳地连通至通道 38。 为快速排除内腔 48 中的流体, 外腔 46中最佳地设置有使其持续地具有膨 ϋ长趋 势的环形金属膜片式扩张弹簧 28。 为防止动作干涉, 在膜片 30的位于阀芯 41 内径侧部位的内壁面上, 设置有最佳地抵触至盘形端部 188a的隔离凸起 32。 优 选地, 工艺用螺纹密封堵头 110被设置在通道 36的外径向开口处。
摩擦连接器 CB2具有完全类似于摩擦连接器 CB1的工作过程,可用作离合 器, 也可用作制动器, 还可具有过载打滑 /ABS防抱死制动能力 (第二轴 210固 定至机架时), 差别仅在于入楔动作 /过程的触发方式上。 即, 分离状态中, 借助 公知技术和装置, 由轴向外端箭头 VI对应的环形部位轴向推压膜片 30, 外腔 46中的诸如液压油的流体将通过单向连通阀 40的中心孔, 克服弹簧 44的阻力 将密封钢球 42推离其球座, 并经通道 34进入内腔 48 , 进而推动导向件 50轴向 移动 δ '的行程, 致使摩擦连接器 CB2转入楔合式接合状态。 之后, 内腔 48的 压力将自适应于所传递的转矩大小。 而由轴向外端箭头 VO 对应的部位或环形 部位轴向推压膜片 30,便可推压阀芯 41接通通道 36,瞬间泄掉内腔 48的压力, 排除流体。 在导向件 50轴向上自然缩回时, 也令机构 G、 F1和 F2丧失轴向接 合力并分离至轴向间隙再次等于 δ ',摩擦连接器 CB2于是转入解楔式分离状态。
应指出的是, 对膜片 30相应部位的的触发式推压, 可以直接也可以间接地 进行, 可以全周向也可以半周向地进行。 例如, 借助推力轴承或滚轮, 借助或 间隔如图 11所示的压缩环板 230, 借助或间隔不可旋转地连接至端面凸缘 187, 并固定地对应于膜片 30的特定部位的施力盘形圓环等等。
另外, 上述泄压阀、 单向连通阀 40的形式和安装形式只是为了获得最佳的 密封和使用效果, 最高的可靠性和寿命, 因而显然不是唯一的。 其可以是能单 独更换的滑阀和转阀,可以是电磁阀,更可以从外腔 46的外部实施触发式操纵。 当从外部操作时,所述泄压阀和单向连通阀 40显然可以集成为一个滑阀或转阀, 或简化为一个可转动半周的单向连通阀 40, 而且可以取消通孔 36和 38。
再有, 去掉内、 外封闭腔体装置之间的单向连通阀和泄压阀, 或者还可进 一步地去掉环形膜片 30, 而仅以变型为阻尼孔的通道 34相连, 同时将扩张弹簧 28设置在内封闭腔体装置中, 摩擦连接器 CB2便可获得柔性接合的能力, 可用 作例如防接合冲击的超越离合器或机动车滑行器等。 当然, 此时的中介件 90与 摩擦件 70应恒久地保持摩擦接触, 用作双向传动时更应设置换向机构。 相关结 构的更详细说明和图示, 可参见上文所整体结合的两项专利申请, 此处不作进 一步说明。
实施例三: 具有流体无级支撑机构的空间楔合式摩擦连接器 CB3
为获得柔性接合能力, 摩擦连接器 CB3相对 CB2的主要改进在于, 摩擦件 70最佳地具有轴向弹性变形能力。 相应地, 转动导向机构 G的升角 λ, 被设置 在导向面 54和 94可相互滑转爬升的 0 < λ ζ区间内,入楔控制机构进一步地 具^"设置在导向件 50与中介件 90之间的阻尼机构 D。
参见图 6 ~ 7, 为降低磨损并提高摩擦传递能力, 用作弹性元件的至少一个 碟簧 100, 被设置在摩擦件 70a与 70b之间, 以最佳地间接抵触至传力摩擦面 58。 而阻尼机构 D的阻尼包 160, 被固定设置在位于平衡元件 240径向内表面 的周向凹槽 244中, 其周向两侧的弹性膜片碗 164a和 164b, 分别周向抵触至由 中介件 90的径向延伸出的阻尼爪 112a和 112b。 阻尼包 160的两个膜片碗 164a 和 164b, 分别由两端最佳地胶接至阻尼圓盘 162的圆环形边缘凹面, 形成被阻 尼圓盘 162 中央阻尼孔连通的两个可变容积腔室。 两个腔室中分别设置有复原 弹簧 166a和 166b, 以及相应的流体, 例如气体或液体。
再参见图 7 ~ 9。 凹槽 244是一个周向延伸的半圓式弧形槽, 其外径向底部 半圓内周面 248的中部, 设置有半圆形的周向凹槽 254。 该凹槽 254与位于板状 半卡箍 250 上的相应的半圆式 W槽, 径向对接成一个完成的圓形凹槽, 并将阻 尼包 160压紧并固定在凹槽 244中。 而板状半卡箍 250则径向地设置在外径向 地延伸至凹槽 254 , 且位于凹槽 244轴向两侧的直卡槽 256中, 并被经平衡元件 240两端面销孔 258中置入的轴向销 218径向固定。
最优地, 周向凹槽 254和半卡箍 250上的相应凹槽被设置成具有一定的锥 度, 以利轴向施压膜片碗 164的边缘。 同时, 阻尼爪 112a和 112b与凹槽 244 周向两侧对应壁面 246a和 246b的间隙, 也就是中介件 90可以相对导向件 50 爬升转过的角度, 应大到足以保证碟簧 100被压缩至等于自身厚度的程度, 参 见图 7。
于是, 当导向件 50与中介件 90的组合的轴向移动量大于等于 δ '之际, 中 介件 90便即刻如上所述地入楔, 因过载而开始相对导向件 50滑转爬升的同时, 还轴向压缩碟簧 100。 但由于中介件 90受到阻尼包 160的周向阻尼作用, 其滑 转爬升速度和角度将一直受到阻碍, 并致使部分转矩不经过转动导向机构 G, 而在中介件 90与限力元件 180之间以基本上不产生轴向力的方式直接传递, 牵 引摩擦机构 F1因而处于滑转摩擦的接合状态。其间,摩擦连接器 CB3处于柔性 接合状态, 并具有对应于碟簧 100 弹性封闭力的转矩传递能力。 而阻尼包 160 的阻尼作用, 将直至其中一侧腔室中足够部分的流体经阻尼孔进入另一侧的腔 室, 允许中介件 90的转动导向作用, 将摩擦件 70a与 70b以及碟簧 100压缩至 刚性一体为止。 此后, 摩擦连接器 CB3将连接成刚性一体, 转入楔合式接合状 态, 过载也不打滑, 除非出现结构破坏。 显然, 设定阻尼圓盘 162 中央阻尼孔的大小, 便可设定阻尼时间的长短。 而且, 阻尼机构 D可以具有现有技术中的任意结构形式, 例如, 最简单的缸一 活塞装置。另夕卜,摩擦连接器 CB3相较 CB1和 CB2,不再具有过载打滑的功能, 用作制动器时, 不再具有 ABS防抱死制动能力。
而摩擦连接器 CB3解楔分离之后, 不受摩擦件 70a摩擦作用的中介件 90, 将在复原弹簧 166和限位凸起 68的双重作用下, 恢复至相对导向件 50 自由的 对中位置。
实施例四: 具有流体无级支撑机构和组合齿的空间楔合式摩擦连接器 CB4 参见图 10, 本实施例是对摩擦连接器 CB3的改进, 其以设置组合式导向齿 的方式, 重新具有了过载打滑的能力。 为此, 具有 0 < λ < ζ设置的转动导向机 构 Ga的导向齿 52a和 92a, 分别设置在导向件 50的内环侧和中介件 90a上。 而 具有 ζ < λ ξ设置的转动导向机构 Gb的导向齿 52b和 92b, 则分别设置在导 向件 50的外环侧和中介件 90b上。 中介件 90a和 90b, 最佳地通过花键不可旋 转地相连成周向一体。
相应地, 摩擦件 70b的牵引摩擦面 72b, 由其外环侧位于摩擦件 70a外周面 之外的环形端面凸缘的端面充当。 该凸缘的内周面上设置有至少包括一个的一 组周向延伸的 L形凹槽 73 , 以形成 L形凸齿 83。 L形 W槽 73的一端轴向延伸 至牵引摩擦面 72b, 以形成入口。 对应地设置在摩擦件 70a外周面外端侧的一组 径向凸起 77, 由该入口轴向进入 L形凹槽 73后再周向转动至其顶端, 便可被 L 形凸齿 83轴向限定住。 摩擦件 70a与 70b的周向相对位置, 被贯穿于二者内孔 中的第二轴 210固定。 这样, 两者之间的碟簧 100, 便可按需地被预先压缩。 摩 擦连接器 CB4因此可具有不等于零的起始摩擦转矩。
另外, 在设置上, 上述各结构要素具有这样的效果。 即, 中介件 90a与摩 擦件 70a首先抵触, 而在摩擦件 70a与 70b之间结束弹性抵触状态之前, 自动滑 转爬升的中介件 90a, 已经带动中介件 90b同时抵触至牵引摩擦面 72b和导向齿 52b的相应导向面 54, 并致使中介件 90b可靠入楔。 于是, 摩擦连接器 CB4转 入可过载打滑的刚性楔合式接合状态。 因此,其用作制动器时,可再次具有 ABS 防抱死制动能力, 但却不具备无级调节制动转矩的能力。
实施例五: 具有流体无级支撑机构和组合齿的空间楔合式摩擦连接器 CB5 参见图 11 , 摩擦连接器 CB5仅仅是摩擦连接器 CB4的简单变型。
首先, 具有 0 < λ ζ设置的转动导向机构 Ga的导向齿 92a和 52a, 分别 设置在中介件 90的内环侧和导向件 50a上。 具有 ζ < λ ξ设置的转动导向机 构 Gb的导向齿 92b和 52b, 分别设置在中介件 90的外环侧和导向件 50b上。 导向件 50b的位于导向齿 52b径向内侧的环形区域, 设置有端面型周向凹槽。 活动地收容在该周向凹槽中的导向件 50a, 最佳地通过花键连接方式, 不可旋转 地连接在该凹槽的外周面上, 从而与导向件 50b形成周向一体。 同时, 碟簧 100 以预压紧的形式, 设置在导向件 50a和该周向凹槽的壁面之间。 相应地, 收容 限位凸起 68的相关凹槽, 最佳地构造成允许中介件 90弹性地趋近导向件 50, 而刚性地制止相反的远离趋势, 例如具有半边锥形开口的形状。 另外, 也可采 用在中介件 90与导向件 50a之间的管状基体 60b的外周面上直接设置卡环的形 式, 轴向限定导向件 50a。
设置上, 转动导向机构 Ga和 Gb等, 具有这样的效果。 即, 周向上, 过载 时可自动滑转爬升的导向齿 52a与 92a首先相互 4氏触, 且在导向齿 52b与 92b 双方开始相互抵触之际, 对应于导向齿 52a与 92a的转动导向作用的轴向压缩, 并未致使导向件 50a和 50b相互间在轴向上开始间接的刚性抵触。
显然, 如果在中介件 90内周面上设置沿管状基体 60b内端面内径向地延伸 的凸缘, 再将不可旋转地连接至管状基体 60b的第一轴 200, 变型为不可旋转地 连接至该凸缘, 那么, 导向件 50和中介件 90将事实上互换角色。
其次, 环形活塞由作为被支撑件的摩擦件 70充当, 其内腔 48则由环形软 嚢 20围成。 该软嚢 20最佳地胶接在支撑端面 189上, 并设置有对应于通道 34 的进出口 24。 为保证外腔 46密封的可靠, 环形膜片 30的两个外缘上分别设置 有环形箍 170和 174。 环形箍 174上, 设置有可轴向移动的压缩环板 230, 并与 环形膜片 30—道, 被设置在端面凸缘 187上卡环 184从外端限定住。 同样, 为 降低操作阀芯 41时的磨损, 还在环形膜片 30的对应于阀芯 41的通孔中, 最佳 地设置有轴向抵触至阀芯 41外端面的施力圓柱 22。 而该通孔的端面凸缘, 则被 环形箍 172紧箍在施力圓柱 22的周向凹槽中。
必需特别说明的是,对应于转动导向机构 Ga的具有弹性楔合力的空间楔形 机构, 同时还发挥着导引和保障对应于转动导向机构 Gb的具有刚性楔合力的空 间楔形机构绝对楔合的作用, 实质上是其可靠的入楔导引机构和保障机构。
显然, 摩擦连接器 CB5也可设置有摩擦连接器 CB3 ~ CB4的阻尼机构 D。 而且, 摩擦连接器 CB2 CB5中共用的外腔 46并不是必需的。 例如, 将它 们用作制动器时 (将限力元件 180耦合至机架), 单向连通阀 40可连接至一个 液压泵或蓄能器, 通孔 38可直接连接至油池。 此时, 可去除第二轴 210, 并将 盘形端部 188a、 膜片 30以及软嚢 20, 由圓环状变型为圆盘状。 当然, 软嚢 20 也可代之以圓盘状膜片, 或者, 代之以充当圆柱状活塞的摩擦件 70。
另外, 本申请中的环形软嚢 20、 膜片碗 164和环形膜片 30, 可公知地由诸 如橡胶、 纤维或弹性金属片等任意可弹性变形的金属或非金属材料制成。
实施例六: 具有可调式无级支撑机构的空间楔合式摩擦连接器 CB6 图 12示出的是最佳地用作制动器的摩擦连接器 CB6。 其中, 限力元件 180 与未示出的机架固定,其入口 82四周基体沿切线方向 H和 H'延伸出方形入口部 181 , 参见图 2。 大致呈环状的导向件 50和中介件 90, 分别设置有沿入口 82径 向延伸至其外缘的径向凸缘式力臂 55和 95。力臂 55与入口 82最佳地具有径向 互补式构造, 导向件 50不可旋转地连接在周向凹槽 78 中, 但可轴向移动。 力 臂 95与入口 82间的径向间隙, 可最佳地大到致使中介件 90相对限力元件 180 转动的角度所对应的转动导向机构 G的轴向位移,将位于导向件 50与支撑端面 189之间的碟簧 100, 压缩至极致的程度。 设置于限力元件 180相应径向孔中的 至少一个限位销 176, 则以可轴向抵触导向件 50外周面上相应凸缘的形式, 使 导向件 50可以保持住对碟簧 100的预压缩。
实际上, 碟簧 100可以设置在位于转动导向机构 G两端的其它任意两构件 之间, 尽管有些位置效果不佳, 但均可无级地适应机构 G的转动导向式压缩。 为可控地获得无级变化的制动转矩,入楔控制机构包括具体为上述碟簧 100 的至少一个弹性元件, 以及一个调节机构 AM。 该调节机构 AM是一个蜗轮蜗 杆机构, 其蜗轮齿设置在力臂 95的外周面上, 其蜗杆 260可转动地径向设置在 位于入口 82径向两侧方形入口部 181的相应安装孔中, 并被设置于外部的例如 步进电机驱动 (未示出)。 实际上, 蜗杆 260也可固定至机架, 从而间接地设置 在导向件 50或限力元件 180上。 如前文所述, 为降低对例如步进电机的驱动力 需求和能量消耗, 转动导向机构 G的升角 λ , 应最佳地具有这样的设置效果, 即, 可致使驱动楔合状态中的中介件 90朝两个方向转动的最大转矩相等。
而为实现解楔式间隙分离, 在中介件 90的内周面上, 还最佳地设置有螺旋 式收缩弹簧 152。 该弹簧 152的一端头嵌合在位于中介件 90内周面的相应径向 孔中, 其另一端头则嵌合在位于内周面 84a的相应径向孔中。
于是, 通过调节机构 AM调节中介件 90相对导向件 50的转动角度, 便可 无级地调节摩擦连接器 CB6制动力 /转矩的大小, 直至其相关机构因轴向刚性抵 触而转入刚性楔合状态时为止。 显然, 上述相对转动的方向, 应相同于第一轴 200的转动方向。 用作车辆制动器时, 步进电机的转动方向开关可最佳地由变速 器的倒档机构控制。
由常识可知, 入楔控制机构仅需调节机构 AM即可。 去除作为弹性元件的 碟簧 100后, 摩擦连接器 CB6照样具有可控的摩擦连接功能, 其失去的, 仅仅 是无级地调节摩擦转矩大小的能力而已。 进一步地, 将导向齿 52直接设置在支 撑端面 189 上, 便可得到本发明的只有四构件的最简实施例。 另外, 调节机构 AM显然还可具体为一个类似图 1所示的圓柱凸轮机构,或者,具体为钢丝拉绳、 齿轮、 杠杆或连杆等任意机械、 机电、 电磁或液气传动机构。 届时, 摩擦连接 器 CB6还可用作具有柔性接合功能的摩擦离合器。 而用作离合器时, 更可取消 碟簧 100,而将弹性元件分别周向地设置在力臂 55与入口 82的两个周向壁面之 间, 以在离合器进入刚性楔合接合状态之前发挥弹性阻尼作用。 这样, 尽管难 有柔性接合的效果, 但至少具有周向阻尼的作用, 可以有效緩解离合器接合时 的机械沖击。 自然, 此时的力臂 55在入口 82中的周向自由度应大于零。
显然, 摩擦件 70必需是装配过程中径向置入周向凹槽 78的第一个构件。 实施例七: 具有可调式无级支撑机构的空间楔合式摩擦连接器 CB7 如图 13所示,为获得 ABS防抱死制动能力,用作制动器的摩擦连接器 CB7 中与旋转轴耦合的是导向件 50, 不再是摩擦连接器 CB6中的摩擦件 70。 为此, 摩擦件 70是一个与机架固定的轴向力封闭式环状袋形构件。 导向件 50a和 50b 以花键连接形式不可旋转地设置在花键套 130的外周面上, 碟簧 100最佳地间 隔地置于其间。 调节机构 AM则变型为一个行星机构。 该机构 AM包括最佳地 双联成刚性一体的两个行星齿轮 140a和 140b。该双联齿轮 140a和 140b可转动 地空套在行星轴 144上, 并随着该轴固定至摩擦件 70的相应轴向孔而径向定位 在入口 82中。 两者的轮齿 142a和 142b, 分别啮合至导向件 50a和中介件 90外 周面的轮齿 53和 93 , 并具有等于 1的两级总传动比。 这样, 改变和维持中介件 90与导向件 50a之间的周向相对位置, 也就是改变和维持前者相对后者的轴向 分离距离, 便与摩擦件 70相对该二构件的转速没有任何关系, 亦即与摩擦件 70 处于转动状态还是静止状态无关。
为改变中介件 90相对导向件 50a的周向位置, 行星齿轮 140a和 140b的轮 齿分别具有不同的螺旋角, 例如, 分别是斜轮齿和直轮齿, 或者分别是旋向相 反的斜轮齿。 对应地, 与其分别啮合的轮齿 53和 93 , 则相应地具有不同的螺旋 角。 因此, 轴向移动行星齿轮 140a和 140b的实质, 就是利用圆柱凸轮式的移 动导向作用机理, 驱动中介件 90相对导向件 50a作转动导向运动, 进而驱动后 者压缩碟簧 100。 相应地, 用于移动行星齿轮 140a、 140b的拨叉 270 , 被贯穿 其中和入口 82径向两侧面的拨叉轴 272, 可转动地定位在入口 82中。 拨叉 270 的头部, 收容在行星齿轮 140a、 140b间的环形滑槽中, 并可被未示出的驱动装 置以公知方式驱动。 实际上, 行星轴 144和拨叉 270均也可设置于未示出的机 架上, 从而间接地设置于摩擦件 70上。
设置上, 调节机构 AM以及转动导向机构 G等, 具有这样的效果。 即, 在 如图 13上半部所示的位置上, 行星齿轮 140a和 140b保持在致使中介件 90与 导向件 50a周向对中且轴向间距等于零的极端位置上。 此时, 周向凹槽 78中的 各构件的轴向间隙总和等于 δ ', 摩擦连接器 CB7制动转矩等于零。 而当行星齿 轮 140a和 140b被拨叉 270向左或向右移动时, 中介件 90将相对导向件 50a分 别向不同圓周方向转动导向, 驱使导向件 50a压缩碟簧 100的同时, 还摩擦抵 触至回转摩擦面 104 , 提供对应于碟簧 100压缩量的制动转矩。 如图 13下半部 分所示, 在行星齿轮 140a和 140b与导向件 50a和中介件 90对应地脱离啮合之 前, 碟簧 100可被压缩至极致, 摩擦连接器 CB7因而可转入刚性楔合式的接合 状态, 并在 ζ < λ ξ的设置中进入 ABS防抱死制动状态。
实际上, 调节机构 AM仍是一个具有圓柱凸轮工作机理的销槽式嵌合机构, 完全相同于上文所整体结合的两项专利申请中的定向机构, 区别仅在于其具有 动态的嵌合关系而已。 相关说明, 可参见本申请人于本申请同日提出的名为可 连续作业的空间楔合式扭转作业工具的专利申请。
应该指出的是, 调节机构 AM的移动导向功能并不必需由齿轮 140a、 140b 与轮齿 53、 93的齿轮啮合机构提供。 即, 该机构 AM的所有轮齿都可以设置为 直齿, 而只需将例如齿轮 140a设置成通过螺旋齿副活动地连接在行星轴 144上 的单独齿环, 将例如齿轮 140b与行星轴 144固定成一体或制成单一零件即可。 当然, 此时的行星轴 144应可旋转地设置在位于摩擦件 70的轴向座孔中, 拨叉 270单独控制齿轮 140a即可。
另外, 摩擦连接器 CB7也可具有组合式导向齿的变型。 不同于前述的是, 具有 0 < 人 和 <入 设置的导向齿 52a和 92a以及 52b和 92b, 分别对 应地由同一个导向齿 52或 92的同径向部位的不同部分充当。 即, 具有 0 < λ < ζ设置的导向齿 52a和 92a的导向面 54a和 94a, 轴向上分别对应地位于导向齿 52和 92的例如上半部和下半部,而具有 ζ < λ ξ设置的导向齿 52b和 92b的 导向面 54b和 94b,轴向上则分别对应地位于导向齿 52和 92的例如下半部和上 部。并具有这样的设置效果,即,导向面 54a和 94a完成自动的导向爬升之后, 也就是对应于 ζ < λ < ξ设置的导向面 54b和 94b周向抵触之后, 导向件 50a 和 50b方可间接地刚性抵触。 容易明了, 除了转动导向和流体机构之外, 摩擦连接器 CB1 ~ CB5 中的无 级支撑机构 SS也可是公知的肘节机构。 而且, 摩擦连接器 CB2 ~ CB5用作轮式 或履带式可移动机械的制动器时, 同样可以最佳地具有由行车制动状态自动转 入可靠的驻车制动状态的全功能能力, 且同样容易地被例如加速踏板的踩踏动 作联动解除。 无需任何复杂系统的帮助, 便可获得优异且通用的坡道驻车和起 动性能。
另外, 本发明用作例如车辆 /机械 /飞行器的全功能制动器时, 相对现有技术 具有如上所述的显著的优点, 而且, 该优点更正比于车辆的长度和车轮的多少, 且在超长轨行车辆 /列车和无动力车辆中达到极致。 例如, 用于超长重载列车的 同步制动, 无牵引机车的编组列车的驻车制动, 以及带有挂车的车辆的行车和 驻车制动。
以上仅仅是本发明针对其有限实施例给予的描述和图示, 具有一定程度的 特殊性, 但应该理解的是, 所提及的实施例和附图都仅仅用于说明的目的, 而 不用于限制本发明及其保护范围, 其各种变化、 等同、 互换以及更动结构或各 构件的布置, 都将被认为未脱离开本发明构思的精神和范围。

Claims

权利 要求 书
1. 一种空间楔合式摩擦连接器, 包括:
绕一轴线回转且可轴向接合的至少一个牵引摩擦机构, 其具有绕所述轴线 回转并均设置有摩擦面的至少大致为环状的中介件和摩擦件 , 以在该两构件间 传递摩擦转矩;
为所述牵引摩擦机构提供接合力并绕所述轴线回转的至少一个转动导向机 构, 其具有绕所述轴线回转并均设置有相应导向面的至少大致为环状的导向件 和所述中介件;
其特征在于:
还包括入楔控制机构, 其通过可操作地控制所述中介件的入楔和解楔, 以 控制所述摩擦连接器的接合和分离; 以及
当所述导向件和所述摩擦件被所述中介件可驱动地连接成一个摩擦体时, 于零且 于 ^于 ', 即, 0 <入 < ,、'其中, ξ是能够令形成于所述 4氏触部位的 导向摩擦副自锁的所述升角 λ的最大值。
2. 按权利要求 1所述的摩擦连接器, 其特征在于: 该摩擦连接器包括两个 绕所述轴线回转的可轴向接合的摩擦机构, 其中一个是所述牵引摩擦机构, 其 中另一个是与所述导向件和所述摩擦件至少不可旋转地分别结合在一起的传力 摩擦机构以及再一个所述牵引摩擦机构中的一个。
3. 按权利要求 1所述的摩擦连接器, 其特征在于: 所述升角 λ大于 ζ , 即, ζ < λ < ξ , 其中, ζ是能够令所述抵触部位的导向摩擦副自锁的所述升角 λ 的最小值, 也是令所述牵引摩擦机构的牵引摩擦副自锁的所述升角 λ的最大值, ξ的含义同上。
4. 按权利要求 1所述的摩擦连接器, 其特征在于: 当 ζ > 0时, 所述升角 λ小于等于 ζ , 即, 0 < λ ζ , 其中, ζ的含义同上。
5. 按权利要求 1所述的摩擦连接器, 其特征在于:
还包括至少一个限力元件; 以及
所述导向件、 所述中介件和所述摩擦件中的至多一个, 是至少通过不可旋 转的连接方式包括有所述限力元件的力封闭式组合构件, 以建立相互之间的轴 向力封闭式抵触连接。
6. 按权利要求 1 ~ 5任一项所述的摩擦连接器, 其特征在于: 所述导向件、 所述中介件、 所述摩擦件和所述限力元件之一是袋形构件, 用以建立相互之间 的轴向力封闭式抵触连接, 其设置有绕所述轴线回转的至少大致半周的内周面, 以及位于该内周面上的大致半周的周向凹槽和由所述袋形构件的外周面连通至 该周向凹槽的入口。
7. 按权利要求 1 ~ 5任一项所述的摩擦连接器, 其特征在于: 所述入楔控 节机^ , 该调节机构至少间接地设置在^述导向 ^、 所述中介 ^、 所述摩擦件 和所述限力元件中的一个上。
8. 按权利要求 1 ~ 5任一项所述的摩擦连接器, 其特征在于: 还包括至少 一个弹性元件, 其设置在位于所述转动导向机构的至少一个轴向端的两个轴向 抵触面之间, 以形成弹性的轴向封闭力。
9. 按权利要求 1 ~ 5任一项所述的摩擦连接器, 其特征在于: 所述入楔控 制机构包括
绕所述轴线设置的无级支撑机构, 其设置在所述限力元件和被支撑件之间, 以轴向上无级移动该被支撑件的方式, 建立所述限力元件与所述导向件、 所述 中介件以及所述摩擦件之间的轴向力封闭式抵触连接; 所述被支撑件是所述导 向件、 所述中介件和所述摩擦件中与所述限力元件不可旋转地相连接的那一个; 以及
设置在所述限力元件上的触发机构, 其以促动方式致使所述无级支撑机构 建立和撤销所述轴向力封闭式抵触连接。
10. 按权利要求 9 所述的摩擦连接器, 其特征在于: 所述入楔控制机构还 包括周向自由度大于等于零的周向限位机构, 以在两个圓周方向上制止所述中 介件的自由入楔, 该周向限位机构具有至少一个限位凸起, 以及对应且恒久地 收纳该限位凸起的限位凹槽, 两者至少间接地分别设置在所述中介件和所述导 向件上。
11. 按权利要求 10所述的摩擦连接器, 其特征在于:
所述无级支撑机构包括绕所述轴线设置且至少呈大致环状的支撑件, 其通 过轴向抵触和转动导向两种连接方式, 分别连接至所述限力元件和所述被支撑 件;
所述支撑件相对所述限力元件的周向自由度, 至少大到致使所述无级支撑 机构可以建立所述轴向力封闭式抵触连接的程度。
12. 按权利要求 10所述的摩擦连接器, 其特征在于:
所述无级支撑机构包括可轴向伸缩且包含有流体的内封闭腔体装置, 设置 在所述限力元件上的单向连通阀、 泄压阀和将三者相互连通的通道; 以及
所述触发机构包括所述单向连通阀和所述泄压阀。
13. 按权利要求 12所述的摩擦连接器, 其特征在于: 所述内封闭腔体装置 是包括所述限力元件和所述被支撑件的缸一活塞装置。
14. 按权利要求 12所述的摩擦连接器, 其特征在于: 所述内封闭腔体装置 包括设置有进出口的软嚢。
15. 按权利要求 12所述的摩擦连接器, 其特征在于: 所述触发机构还包括 可变容积且包含有流体的外封闭腔体装置, 其包括所述限力元件和连接至该限 力元件外表面的弹性膜片, 并通过所述单向连通阀、 所述泄压阀以及所述通道, 与所述内封闭腔体装置连通。
16. 按权利要求 10所述的摩擦连接器, 其特征在于: 所述限位凸起至少具 有周向弹性, 所述周向限位机构的周向自由度等于零。
17. 按权利要求 1 ~ 5任一项所述的摩擦连接器, 其特征在于:
设置有两个径向上相互嵌套的所述转动导向机构, 该两机构的两个所述导 向件以及两个所述中介件, 以所述导向面位于同方向端面上的形式, 分别连接 成刚性一体, 以及不可旋转地连接成周向一体;
两个所述转动导向机构中各自的所述导向摩擦副的升角 λ , 分别大于零且 小于等于 ζ, 以及大于 ζ且小于等于 ξ ;
设置有弹性元件, 其轴向上至少间接地抵触至所述升角 λ大于零且小于等 于 ζ的所述转动导向机构。
18. 按权利要求 1 ~ 7任一项所述的摩擦连接器, 其特征在于: 所述导向件 和所述中介件的所述导向面是螺旋型齿面, 其设置在该二构件的包括端面、 内 周面和外周面的一个表面上; 在轴平面内, 该螺旋型齿面与所述轴线之间的夹 角大于 0度, 小于 180度。
19. 按权利要求 1 ~ 7任一项所述的摩擦连接器, 其特征在于: 所述限力元 件是具有中心圓孔的杯形壳。
20. 按权利要求 1 ~ 7任一项所述的摩擦连接器, 其特征在于: 所述限力元 件包括径向上至少大致对称的两个半圓壳和至少一个环形箍, 该两个半圓壳的 形状具有这样的组合效果, 即, 二者径向对接所构成的组合构件, 设置有绕所 述轴线的中心圓孔以及位于该中心圓孔内周面上的绕所述轴线的周向凹槽; 所 述环形箍设置在所述组合构件的中部和外端部之一的外周面上, 以固定所述组 合构件。
21. 按权利要求 1 - 7任一项所述的摩擦连接器, 其特征在于: 所述牵引摩 擦机构和所述传力摩擦机构中的至少一个,其两个相应摩擦面是半锥顶角大于 0 度而小于 180度的截锥面。
22. 按权利要求 1 ~ 7任一项所述的摩擦连接器, 其特征在于: 所述牵引摩 擦机构是多摩擦片式摩擦机构, 其具有与所述摩擦件和所述中介件分别不可旋 转地相连接的两组轴向交错排列的各至少一个摩擦片。
23. 按权利要求 1 ~ 7任一项所迷的摩擦连接器, 其特征在于: 所述传力摩 擦机构是多摩擦片式摩擦机构, 其具有与所述摩擦件和所述导向件分别不可旋 转地相连接的两组轴向交错排列的各至少一个摩擦片。
PCT/CN2011/084846 2010-12-30 2011-12-28 空间楔合式摩擦连接器 WO2012089131A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010624899.6A CN102537125B (zh) 2010-12-30 2010-12-30 空间楔合式摩擦连接器
CN201010624899.6 2010-12-30

Publications (1)

Publication Number Publication Date
WO2012089131A1 true WO2012089131A1 (zh) 2012-07-05

Family

ID=46344815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084846 WO2012089131A1 (zh) 2010-12-30 2011-12-28 空间楔合式摩擦连接器

Country Status (2)

Country Link
CN (1) CN102537125B (zh)
WO (1) WO2012089131A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103393437A (zh) * 2013-08-06 2013-11-20 深圳先进技术研究院 旋转控制装置、旋转控制回撤系统和超声成像系统
CN108775347A (zh) * 2018-05-25 2018-11-09 广东机电职业技术学院 一种组合式离合器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527687B (zh) * 2012-07-03 2018-06-22 洪涛 空间楔合式电控离合器
WO2014127739A1 (zh) * 2013-02-22 2014-08-28 Hong Tao 空间斜撑式超越离合器、联轴器、铰链和传动轮
RU198952U1 (ru) * 2020-05-19 2020-08-04 Александр Владимирович Козленок Клин механизма свободного хода

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2373462A (en) * 1944-08-09 1945-04-10 Air Associates Inc Friction clutch
US3447650A (en) * 1966-02-23 1969-06-03 Michel Dossier One-way friction couplings with wedges
US3750782A (en) * 1971-10-08 1973-08-07 Ford Motor Co High speed overrunning clutch
US4076108A (en) * 1976-08-05 1978-02-28 Borg-Warner Corporation Two-way overrunning clutch mechanism
CN2212681Y (zh) * 1993-08-15 1995-11-15 高一知 离心楔块超越离合器
CN101672335A (zh) * 2008-09-08 2010-03-17 洪涛 导向式牙嵌超越离合器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000011250A (ko) * 1998-07-20 2000-02-25 워언인더스트리즈인코포레이티드 클러치링메카니즘
JP2003329064A (ja) * 2002-05-10 2003-11-19 Yamaha Motor Co Ltd クラッチ接続制御装置
DE10348068A1 (de) * 2003-10-13 2005-05-25 Gkn Walterscheid Gmbh Kupplung zur Drehmomentbegrenzung
CN2699052Y (zh) * 2004-04-26 2005-05-11 宋战修 一种压片式自动离合器
CN100582519C (zh) * 2007-09-18 2010-01-20 洪涛 零碰撞牙嵌式通用安全离合器
CN100594309C (zh) * 2007-09-18 2010-03-17 洪涛 零碰撞弹簧钢球安全离合器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2373462A (en) * 1944-08-09 1945-04-10 Air Associates Inc Friction clutch
US3447650A (en) * 1966-02-23 1969-06-03 Michel Dossier One-way friction couplings with wedges
US3750782A (en) * 1971-10-08 1973-08-07 Ford Motor Co High speed overrunning clutch
US4076108A (en) * 1976-08-05 1978-02-28 Borg-Warner Corporation Two-way overrunning clutch mechanism
CN2212681Y (zh) * 1993-08-15 1995-11-15 高一知 离心楔块超越离合器
CN101672335A (zh) * 2008-09-08 2010-03-17 洪涛 导向式牙嵌超越离合器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103393437A (zh) * 2013-08-06 2013-11-20 深圳先进技术研究院 旋转控制装置、旋转控制回撤系统和超声成像系统
CN108775347A (zh) * 2018-05-25 2018-11-09 广东机电职业技术学院 一种组合式离合器
CN108775347B (zh) * 2018-05-25 2024-01-09 广东机电职业技术学院 一种组合式离合器

Also Published As

Publication number Publication date
CN102537125B (zh) 2016-05-11
CN102537125A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
US8267231B2 (en) Electrically variable transmission with an axially-moveable selectable one-way clutch assembly
JP5679469B2 (ja) 空間楔合摩擦オーバーランニング・クラッチ
WO2012089131A1 (zh) 空间楔合式摩擦连接器
US4118013A (en) Self-energizing winch brake and drive
CN102478086B (zh) 空间楔合式不可逆传动装置及全程主动驱动式起升机构
JP2012531562A5 (zh)
WO2012089130A1 (zh) 升降设备用空间楔合式防坠落、防超速紧急制动装置
CN108426031B (zh) 一种单控互锁式电动汽车变速器换档机构及变速器
WO2015172655A1 (zh) 一种带有液压操纵机构的变速装置
US9933024B2 (en) Variable two-way over-running clutch
JP2013520619A (ja) バランスクラッチシステム
WO2014127739A1 (zh) 空间斜撑式超越离合器、联轴器、铰链和传动轮
US20040033144A1 (en) Decoupling mechanism for hydraulic pump/motor assembly
WO2019111294A1 (ja) 2段階に差動制限可能なデファレンシャル装置
CN110905998A (zh) 具有缓冲阻尼功能的换挡装置及其应用
WO2012089129A1 (zh) 基于拨动式超越离合机构的通用驻车制动器及其操纵方法
CN103527750B (zh) 具有空间楔合式摩擦连接器的液力自动变速器和双离合器自动变速器
WO2010012150A1 (zh) 驱动桥的制动装置
US20150285320A1 (en) Selectable one-way and/or dog clutch assembly
CN102537124B (zh) 空间楔合式摩擦联轴器和安全离合器
CN104832573B (zh) 负载制动装置及其应用的起吊设备
CN102619902B (zh) 空间楔合式双离合器
CN102537126B (zh) 具有袋形构件的空间楔合式摩擦超越离合器
US5267912A (en) Automatic mechanical transmission for general purposes
CN103527671B (zh) 柔性接合的自控型空间楔合式摩擦连接器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853007

Country of ref document: EP

Kind code of ref document: A1