WO2014127739A1 - 空间斜撑式超越离合器、联轴器、铰链和传动轮 - Google Patents

空间斜撑式超越离合器、联轴器、铰链和传动轮 Download PDF

Info

Publication number
WO2014127739A1
WO2014127739A1 PCT/CN2014/072393 CN2014072393W WO2014127739A1 WO 2014127739 A1 WO2014127739 A1 WO 2014127739A1 CN 2014072393 W CN2014072393 W CN 2014072393W WO 2014127739 A1 WO2014127739 A1 WO 2014127739A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
diagonal
friction
force
overrunning clutch
Prior art date
Application number
PCT/CN2014/072393
Other languages
English (en)
French (fr)
Inventor
洪涛
Original Assignee
Hong Tao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Tao filed Critical Hong Tao
Publication of WO2014127739A1 publication Critical patent/WO2014127739A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/069Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by pivoting or rocking, e.g. sprags
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/06Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface
    • F16D41/069Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by pivoting or rocking, e.g. sprags
    • F16D41/07Freewheels or freewheel clutches with intermediate wedging coupling members between an inner and an outer surface the intermediate members wedging by pivoting or rocking, e.g. sprags between two cylindrical surfaces

Definitions

  • the invention relates to a clutch device in the field of mechanical transmission, including the clutch device such as a coupling, a brake, a backstop, a differential, a one-way transmission, an irreversible transmission, a friction transmission wheel, a stepless positioning Friction drive and/or brakes such as lock hinges/shafts, seat recliners, seat lifts, wrenches and screwdrivers, and axial engagement forces for such friction drives and/or brakes
  • the automatic pressurizing mechanism in particular, relates to a friction type overrunning clutch. Background technique
  • the prior art diagonally overrunning clutch has the following technical drawbacks. That is, since the idling resistance torque is sensitive to the centrifugal force, the working speed and the service life are both low; because the rotation axis of the diagonal struts is difficult to parallel to the rotation axis of the clutch, the structural complexity and the manufacturing cost are increased, for example, it is often necessary to set Precise auxiliary mechanism; because the actual diagonal angle is too small, for example, it is difficult to exceed 5.4°, the diagonal bracing force is too large, but the transmission capacity is not large enough, and the diagonal braces are easily turned over and failed, which causes the coaxiality to be nearly close. When it is harsh, it reduces the reliability of its work.
  • the length of the slanting struts is only about 0.25% larger than the radial height of the uniform slides (l/cos5° at 5°). 1 « 0.38% ), the basic dimension corresponding to the length of the brace is only about 10.025 mm with respect to a slide having a general radial height, for example 10 mm.
  • the manufacturing tolerances and grouping of the diagonal ribs having the basic dimensions which are almost the same are naturally extremely severe and troublesome, and the diagonal struts are also more susceptible to wear failure and flipping due to elastic deformation.
  • the present invention is directed to eliminating, overcoming or at least alleviating the above-discussed deficiencies of the prior art.
  • the technical problem to be solved by the present invention is to provide a space slanting overrunning clutch with higher working speed, longer working life, higher working reliability and significantly lowering the coaxiality requirement.
  • Another technical problem to be solved by the present invention is to provide a space slanting type coupling that transmits torque by friction, which has a transmission characteristic that does not slip before the structure is broken.
  • a further technical problem to be solved by the present invention is to provide a space slanting hinge which can achieve the purpose of stopping rotation by frictional force and can be steplessly positioned and self-locking, and has a positioning characteristic that does not slip before the structure is broken.
  • the last technical problem to be solved by the present invention is to provide a space slanting type transmission wheel that transmits torque by friction, which has a transmission characteristic that does not slip before the structure is broken.
  • the space slanting overrunning clutch of the present invention includes at least one groove ring that rotates about an axis and at least provides an axial closing function, and is coaxially formed with a circumference of at least substantially half a circumference.
  • a bearing ring that rotates about the axis and is at least adapted to receive axial double-sided pressure, at least partially and rotatably located in the circumferential groove; at least one disposed in the circumferential groove and at least one a set of diagonal braces each having two bearing faces and located at least one axial end of the bearing ring in a manner inclined to the same circumferential direction; and at least one pretensioning spring at least indirectly connected to the same group
  • Each of the diagonal braces such that the set of diagonal braces are axially at least indirectly connected to a wall surface of the circumferential groove and the inner end surface of the force ring, and simultaneously cause the force ring Continuously resisting the other wall surface of the circumferential groove to form a rotary force transmitting friction mechanism F2 that directly transmits the friction torque; wherein, in the radial projection to the same cylindrical surface
  • the angle between the line of action of the diagonal bracing force and the axis is referred to as a diagonal angle and is greater than zero, but less than
  • the two bearing faces of the diagonal braces are spherical caps whose centers of curvature do not coincide;
  • the circumferential groove is also rotatably provided with at least one shoe ring, the axial inner end surface of which abuts against a set of diagonal braces a bearing surface of the same axial end of the sub-shaft, the axially outer friction surface abutting against the one wall surface of the circumferential groove or the inner end surface of the bearing ring; and axially resisting the bearing surface of the set of diagonal braces
  • a plurality of spherical crown-shaped recesses of the same number are respectively complementarily provided for correspondingly receiving a bearing surface of a set of diagonal braces.
  • the space slanting type coupling of the present invention comprises the above-mentioned space slanting type overrunning clutch, and the diagonal struts are two sets of mutually inclined directions, and the shoe ring is radially rotatable. Two grounded to each other.
  • the spatially tiltable hinge of the present invention can be steplessly positioned and self-locking, comprising the above-mentioned spatial diagonal bracing coupling, a ring ring non-rotatably disposed in the circumferential groove, and a winding ring a stepless support mechanism arranged on the axis, which is disposed between the force limiting member and the lining ring, and moves the lining ring steplessly in the axial direction to establish the force limiting member and the bearing ring, the diagonal support and the sliding shoe The axial force between the rings is closed against the connection.
  • the space slanting friction transmission wheel of the present invention comprises an outer radial groove ring that rotates around an axis and has an axial closing function, and the groove ring is formed around the axis.
  • a combined member of the swiveling outer radial circumferential groove, the shaft-shaped force-limiting member provided with the outer flange for defining the circumferential groove is non-rotatably connected to the force-limiting ring provided with the rotary wall surface, and the fixing member is fixed Connected to the outer peripheral surface of the force limiting member away from the outer flange to axially limit the tendency of the force limiting ring to move away from the outer flange; at least two sets of diagonal braces disposed in the circumferential groove and each having at least one of the number, The two sets of diagonal braces each have two spherical coronal bearing surfaces and are in opposite directions to each other in the circumferential oblique direction to the same wall surface of the circumferential groove; at least one
  • the two sets of angles formed between the radial projection and the axis are respectively two sets of diagonal angles and are greater than zero, but each is less than or equal to the torque transmission through a corresponding group of the diagonal supports.
  • the smallest of the respective friction angles corresponding to the equivalent friction coefficients of all the relevant friction mechanisms in the branch path.
  • the space slanting overrunning clutch according to the present invention has a higher working turn because the supporting surface of the diagonal struts is a plane perpendicular to the axis of rotation or a spherical crown. Moment, operating speed and operational reliability, as well as greater wear resistance and longer service life.
  • Figure 1 is a schematic axial cross-sectional view of an overrunning clutch having a wire friction pair in accordance with the present invention.
  • Figure 2 is a left side view of the groove ring in the view of Figure 1.
  • Figure 3 is a left side view of a set of diagonal braces in the view of Figure 1.
  • Figure 4 is a left side view of the pretension spring in the view of Figure 1.
  • Figure 5 is an axial cross-sectional view of an overrunning clutch having a collar and a wire friction pair in accordance with the present invention.
  • Figure 6 is a schematic axial cross-sectional view of an overrunning clutch having a face friction pair in accordance with the present invention.
  • Figure 7 is a left side view of the bearing ring of Figure 6;
  • Figure 8 is a schematic axial cross-sectional view of a multiple friction plate overrunning clutch in accordance with the present invention.
  • Figure 9 is a left side elevational view of a groove half ring rotated 90° in the view of Figure 8.
  • Figure 10 is a schematic axial cross-sectional view of a truncated cone overrunning clutch in accordance with the present invention.
  • Figure 11 is a schematic axial cross-sectional view of a double-type overrunning clutch in accordance with the present invention.
  • Figure 12 is a schematic axial cross-sectional view of a two-way irreversible transmission device in accordance with the present invention.
  • Figure 13 is a left side elevational view showing the positional relationship of the finger ring and the two shoe rings in the view of Figure 12;
  • Fig. 14 is a partially exploded perspective view showing the tooth profile of each member associated with the finger in Fig. 12, which is projected radially toward the same outer cylindrical surface; the double-dotted line portion is a flattened schematic view of the centering groove in the left view 12.
  • Figure 15 is a schematic axial cross-sectional view of a coupling in accordance with the present invention.
  • Figure 16 is an axial cross-sectional view of a hinge having a single outer casing in accordance with the present invention.
  • Figure 17 is an axial cross-sectional view of a hinge having a combined outer casing in accordance with the present invention.
  • Figure 18 is a schematic axial cross-sectional view of a multi-rope drive wheel in accordance with the present invention.
  • Figures 19 and 20 are lateral schematic views of two spherical diagonal braces.
  • Figure 21 is a partial exploded view showing the radial projection of the tooth profile of each mechanism of Figure 1 toward the same outer cylindrical surface.
  • Figure 22 is a partial exploded view showing the radial projection of the tooth profile of each mechanism of Figure 6 toward the same outer cylindrical surface. detailed description
  • Embodiment 1 Space slanting overrunning clutch with cylindrical diagonal braces C1
  • the space slanting overrunning clutch since the transmission mechanism is constructed and operated based on the friction self-locking brace mechanism, the space slanting overrunning clutch according to the present invention also includes the most basic four members. That is, two annular members for directly coupling and transmitting torque to the outside, a torque transmitted between the two annular members and having at least one set of diagonal braces, and causing the group The axial ends of the diagonal braces are continuously in a frictional contact state.
  • the overrunning clutch C1 includes a groove ring 80 formed around the axis X and having an axial force closing function.
  • the grooved ring 80 is preferably an annular bag-shaped member having an axially central portion of the inner peripheral surface 82 formed about the axis X, coaxially disposed with a disk-shaped annular circumferential groove 92 of an optimum planar shape. .
  • the inner surface of the circumferential groove 92 is preferably extended to the outer circumferential surface of the groove ring 80 in a tangential direction H and ⁇ ' which are parallel or mutually distant from each other, and form a rectangular cross-sectional inlet 88.
  • the cylindrical inner surface 94 of the circumferential groove 92 thus extends into a non-closed inner radial surface having a U-shaped cross-sectional shape and forms two circumferential wall faces 95 that are at least mutually parallel.
  • a set of diagonal braces 50, etc. which are slidably disposed on the inner end surface 72 of the bearing ring 60 in the circumferential direction, can be along the direction indicated by the hollow arrow in FIG. 2, along with the bearing ring 60-passage entrance.
  • the inner diameter sides of the two annular end portions may be optimally provided with a ring end face as shown in FIG. Flange 89.
  • the bearing ring 60 which is slidably disposed about the axis X in the circumferential groove 92, includes a base ring 70 that receives the axial clamping force and is preferably in the shape of a flat disk, on the outer diameter side of the base ring 70.
  • the annular end face flange 66, and the inner peripheral surface of the base ring 70, is provided with a tubular base 64 such as a spline tooth surface or a force transmitting characteristic curved surface 68.
  • the end planar force transmitting friction surface 74 of the base ring 70 directly abuts against a wall surface 98 of the circumferential groove 92, and optimally forms a force transmitting friction mechanism F2 having a full surface contact force transmitting friction pair rotating around the X axis.
  • the inner end surface 72 of the base ring 70 which is perpendicular to the axis X, and the other wall surface 96 of the circumferential groove 92, and the outer peripheral surface of the tubular base 64 and the inner peripheral surface of the annular end face flange 66 collectively define a rotation about the axis X.
  • a set of diagonal struts 50 that are at least one in number and generally cylindrical in shape are at least substantially uniformly radiating in their own axes, circumferentially uniform and radially confined within the annular space.
  • the diagonal braces 50 are actually a planar closed pattern surrounded by two convex curves and two connecting lines which do not coincide with the center of curvature, and a normal line extending along the plane is not greater than A columnar member obtained by the radial height of the annular space.
  • the two convex curves extend along the normal direction into two mutually parallel cylindrical 7
  • the two 7-force faces 52 and 54 are each part of two cylindrical faces.
  • Two sides 55 is optimally modified to be radially inwardly adjacent to each other in a plane that is V-shaped in cross-section, and to have a uniform circumferential gap ⁇ between any two adjacent sides 55 is preferred.
  • the pretension spring 100 is a closed annular serpentine wire spring in a radial plane that includes a set of inner circumferential segments 102, outer circumferential segments 104 and radial segments 106. And, an open inner radial recess 107 and an outer radial recess 108 defined by them. When fabricated, the two ends of the spring are optimally welded together or otherwise secured together.
  • the bearing faces 52 and 54 of the diagonal braces 50 are formed by simultaneously forming two sets of non-slip line contact type bracing friction pairs, respectively, rigidly touching the supporting faces, that is, the wall faces 96 and the inner ends.
  • a straight line/plane coincident with the direction of the diagonal support force that is, the inclined support surface/line S connected between the linear contact portions " ⁇ and ⁇ 2 , also called the diagonal length S, and
  • the normal line of the axis X or the wall surface 96 and/or the inner end surface 72 forms an angle. As shown in Fig.
  • the radial projection of the angle on the surface of the rotating cylinder is the diagonal angle ⁇
  • the value interval is 0 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • P min is the smaller of the equivalent or average friction coefficient of all sets of diagonal friction pairs, for example, the friction angles corresponding to ⁇ ⁇ 1 and ⁇ ⁇ 2 , respectively.
  • circumferential through linear grooves 56 and 58 respectively disposed on the radially inner and outer end faces of the diagonal braces 50a and 50b, can completely accommodate the corresponding inner and outer peripheral segments 102 and 104, and
  • the pretension spring 100 is caused to be in a corresponding elastic deformation state.
  • the pretension spring 100 can pass through the inner circumferential section 102 and the inner wall of the linear groove 56, and the torsion of the outer circumferential segment 104 and the inner wall of the linear groove 58 continues for 4 strokes, so that the set of diagonal braces 50a and 50b rotate with the same rotation.
  • the wall surface 96 and the inner end surface 72 are continuously touched in the axial direction, respectively.
  • the circumferential clearance ⁇ should be optimally large enough to accommodate the radial segments 106 in a gap.
  • the diagonal braces 50, the pretension spring 100 and the bearing ring 60 are first assembled into one assembly, so that all the diagonal braces 50 are inclined or tilted relative to the bearing ring 60 in the same circumferential direction as desired.
  • the circumferential groove 92 is radially placed together by the inlet 88 in the direction indicated by the arrow ⁇ in FIG.
  • the working process of the overrunning clutch C1 is very simple. That is, when the bearing ring 60 begins to have an initial moment of a tendency to rotate relative to the groove ring 80 in the direction indicated by the arrow ⁇ in Fig. 21, the diagonal braces 50 in the elastically pretensioned state will be immediately known in a known manner.
  • the ground brace is on the wall surface 96 and the inner end surface 72, and when the two sets of line contact type bracing friction pairs are absolutely self-locking, the axial force closed contact connection is formed, so that the force transmitting friction surface 74 is
  • the rotary force transmitting friction mechanism F2 between the wall faces 98 also enters the static friction state of the friction self-locking.
  • the bearing ring 60, the groove ring 80 and the set of diagonal braces 50 are joined or joined in a rotationally self-locking manner to form a single rotating body.
  • the driving torque ⁇ 0 transmitted from the transmission shaft in the inner hole of the bearing ring 60 is divided into the oblique support.
  • the transmitted diagonal friction torque of 50 and the frictional torque M 2 directly transmitted via the force transmitting friction mechanism F2 are respectively transmitted to the groove ring 80, and then transmitted through the inner and outer peripheral surfaces or end faces of the groove ring 80.
  • a feature curved surface 93 (not shown) is transmitted to other members not shown.
  • Mc ⁇ l ⁇ + M ⁇ Obviously, the above-mentioned expansion-type diagonal bracing force, axial clamping force and each frictional force derived from the self-excitation effect are completely It is adaptively proportional to M Q as the source of self-excited power, and the torque can also be transmitted in the opposite path without any substantial difference.
  • the overrunning clutch C1 is the most critical and essential difference from the prior art in that the diagonal braces in the prior art are respectively braced substantially radially on the inner and outer cylindrical surfaces of the annular space.
  • the formed brace mechanism is a planar mechanism, and the diagonal braces 50 in the overrunning clutch C1 according to the present invention are respectively axially slanted substantially axially on the two axial walls of the annular space.
  • the diagonal bracing mechanism is a space mechanism.
  • the spatial slanting overrunning clutch C1 is distinguished by: the two slanting angles are completely equal; as the slanted annular wall surface 96 and the inner end surface 72, both are curvatures
  • the radius is equal to infinity and the normal line is not perpendicular to the plane of the axis X; whether the linear diagonal friction pair can be self-locking is independent of the radial position of the diagonal support 50, regardless of whether it extends along the radial direction;
  • the positive pressure of the force transmitting friction pair of the auxiliary and force transmitting friction mechanism F2 is absolutely independent of the operating rotational speed and the centrifugal force; and the rotary force transmitting friction mechanism F2 having the direct transmission torque. Therefore, the overrunning clutch C1 has at least the advantageous effects as described below compared to the prior art.
  • the increase of the minimum diagonal angle in the bracing path directly increases the transmittable diagonal frictional torque M 1 and the torque M 2 transmitted by the force transmitting friction mechanism F2 is approximately equal to ! ⁇ . "21 ⁇ .
  • the force transmitting friction mechanism F2 and/or the traction friction mechanism F1 are arranged in a structural form having multiple friction plates, as shown in Fig. 8, the increase in the transmission capacity can be higher.
  • the invention having the same transmission capability can at least reduce its diagonal bracing force and contact stress strength at least.
  • a single diagonal bracing is less prone to failover and has higher operational reliability.
  • the axial section corresponding to the U-shaped inner surface 94 is subjected to the axial pulling force.
  • the groove ring 80 must have a relatively stronger resistance to deformation, that is, higher rigidity.
  • the axial stiffness of the annular end portion 84 including the circumferential tensile stress in the bending resistance will also be significantly higher than the straight cantilever beam.
  • the planar beveled surface is more curved than the curved bracing surface, of course having a longer diagonal bracing distance/length, and higher The upper limit of the amount of diagonal deformation.
  • the diagonal length/straightening line S is only 10.0308 mm, which is theoretically ensured.
  • the upper limit of the amount of deformation of the diagonal braces in which the diagonal braces 50 are not inverted is 0.0308 mm.
  • the corresponding diagonal length/straightening line S is 10.0382 mm, and the corresponding upper limit of the deformation amount is 0.0382 mm, which is increased by 24%.
  • the diagonal braces 50 can be adapted to any assembly precision or eccentricity encountered, the coaxiality may even be undesired when used, for example, as a backstop, as long as the diagonal braces 50 are not guaranteed. It is sufficient to interfere with the U-shaped inner surface 94 of the circumferential groove 92. As a result, this feature will result in significantly improved operating conditions and longevity of the slanted overrunning clutch, reducing installation and maintenance requirements during use, and will significantly expand its application area and longevity. For example, when used as a one-way device in a vehicle electric starting system, when used as a one-way pulley of a vehicle such as a generator, and as a backstop for a high-speed shaft end of a speed reducer.
  • the requirements for the fabrication and assembly of the pretension spring 100 or the cage are no longer critical.
  • the diagonal friction pair is necessarily a complete and line contact type as long as the wire contact braces
  • the contact line or T 2 of the friction pair does not coincide with the tangential direction of its own revolution circle about the axis X.
  • the relative rotation between the bearing ring 60 and the groove ring 80 can cause the diagonal support 50 to adaptively rotate and Establish a frictional self-locking diagonal relationship.
  • the diagonal bracing 50 has an adaptive rectifying ability or self-resetting ability, and the reliability in operation will be remarkably improved, and it is impossible for the single oblique bracing in the prior art to be locally established due to the posture change.
  • the diagonal braces in the prior art when the axis of rotation of the diagonal braces in the prior art is not parallel to the axis X, the diagonal braces will pass through the axial contact between the two ends thereof and the inner circumferential surface of the outer ring, and the axial middle and inner portions thereof The contact of the outer peripheral surface of the ring establishes a three-point radial diagonal support relationship.
  • a diagonal friction pair is an incomplete line contact type, and it is easy to damage the relevant surface due to excessive stress.
  • the radius of the inner and outer rings at this time increases to infinity, the radial slant-type abutting connection can be converted from a three-point type to the full line contact type of the present application.
  • the purpose of providing the pretension spring 100 is to cause the diagonal braces 50 to continuously have a tendency to rotate about their own axis of rotation so that their bearing faces 52 and 54 can continuously abut against the wall surface 96, respectively. And an inner end surface 72. Therefore, as long as the purpose of the setting can be achieved, it may be an elastic member of any material including rubber and plastic, and may have any geometric shape, number, position and arrangement, and the like.
  • a known annular cage can also be provided with reference to the prior art.
  • one of the ones that respectively accommodate each diagonal support 50 is provided A set of annular spring pieces of radially extending holes.
  • Even the function of the cage can be provided by a more singular arrangement of providing cylindrical grooves on the bearing ring 60. That is, with reference to the prior art, a set of recesses, for example, partially cylindrical groove faces, which respectively accommodate the respective diagonal braces 50 and have complementary structures with the bearing faces 54 are radially disposed on the inner end surface 72. .
  • the friction angle P T2 between the two will increase to nearly 90°, and P min can only be equal to the inevitable smaller friction angle A between the diagonal support 50 and the wall surface 96.
  • the annular end face flange 66 of the outer set of diagonal braces 50 is radially outwardly constrained, except that it may be modified as a separate ring disposed independently of the bearing ring 60, nor is it itself Necessary, its radial limiting action can be provided entirely by a helically tensioned preload spring 100, specifically a closed loop.
  • the pretension spring 100 is disposed through the linear groove 58 radially outward of each of the diagonal braces 50, and all the diagonal braces 50 should be the diagonal braces 50b shown in Figs.
  • the overrunning clutch C1 is actually a special case of the following modifications of the present invention. That is, the wall surface 96 and the inner end surface 72 of the modification are respectively truncated cone-shaped rotating faces having equal half-cone apex angles ⁇ , and the wall faces 98 and the force-transmitting friction faces 74 are respectively truncated cone faces having equal half-cone apex angles ⁇ , respectively. See Figure 10.
  • the split force is equal to zero and the annular end 84 or 86 is no longer needed, and the groove ring 80 is deformed into a cylindrical tubular inner or outer ring.
  • any curve/busbar of any direction can be rotated around the axis X, and can be a discontinuous surface provided with grooves of any area that are useful for dissipating heat or excluding liquid or gas.
  • the above ⁇ and ⁇ should be optimally prevented from falling into the friction angle of the respective friction pairs to avoid friction self-locking in the axial direction. This is common sense and will not be detailed.
  • the overrunning clutch C1 can also be modified as such. That is, referring to Fig. 1, a set of diagonal braces 50 and pretensioning springs 100 are disposed between the force transmitting friction surface 74 and the wall surface 98 in an axially at least substantially symmetrical manner, and the bearing ring 60 is modified into Axial symmetrical member.
  • this variant will have two diagonal braces that are similar to the axial doubles shown in Figure 11, and the likelihood that the diagonal braces 50 will be reversed will be further reduced because the upper limit of the corresponding bracing deformation has doubled.
  • Embodiment 2 Space Skew Overrunning Clutch C2 with Cylindrical Skewers and Combined Groove Rings
  • the overrunning clutch C2 is a single tube variant of the overrunning clutch C1.
  • the groove ring 80 is modified into a radially butted combination ring. It comprises two force limiting members, at least substantially symmetrical in the radial direction, specifically grooved half rings 90a, 90b, and an interference fit on the stepped outer peripheral faces of the end face flanges 81 and 83 on both sides, Two processable hoops 220 that are fastened into a rigid member in a butt manner. In fact, the two annular ferrules 220 can also be combined into a single ring. Referring to Fig.
  • the groove half rings 90a and 90b can be regarded as groove rings provided on the inner circumferential surface 82 with the complete circumferential grooves 92, and the abutting faces 91 are optimally equally divided into two semi-rings which are completely symmetrical in the radial direction. product.
  • the axial force-closed groove ring 80 of the present invention can also be an axially butted combination member.
  • a closure such as a disc ring is fixedly attached to a cup opening such as an annular cup which preferably has a central circular opening.
  • the resulting component of the end face See Figure 17.
  • the circumferential W-groove 92 defined thereby may also be an outer radial direction with the radial opening facing outward as shown in FIG. Type groove.
  • the modification corresponds to the result of inverting, for example, all the members in Fig. 1 or Fig. 5 in the radial direction.
  • the outer radial type groove may also be a composite member having more members, and there may be more applications, for example, an absolutely non-slip friction transmission wheel or pulley shown in Fig. 18.
  • the ring also includes a backing ring 120 that is slidably sleeved over the tubular base 64.
  • the backing ring 120 is a flat disk ring disposed between the diagonal braces 50 and the wall surface 96 of the groove half ring 90, the inner diameter side of which is preferably formed to extend axially into the annular end portions 84a and 84b.
  • the collar 120 should be at least non-rotatably coupled to the groove halves 90a and/or 90b.
  • the collar 120 should be at least non-rotatably coupled to the groove halves 90a and/or 90b.
  • this non-rotatable connection is not necessary, especially when the frictional torque between the collar 120 and the groove half ring 90 is greater than the frictional torque between the collar 120 and the diagonal stiffener 50.
  • a bearing 140 that radially supports the groove half ring 90 is provided, as well as a seal 142 that blocks the lubricant.
  • the two are disposed in an annular space between the annular end face flange of the groove half ring 90 and the tubular base 64.
  • the force transmitting characteristic curved surface 93 on the annular end face flanges 81 and 83 of the groove half ring 90 is specifically a set of axial type screw holes.
  • the force transmitting characteristic surface 68 of the bearing ring 60 is specifically a flat key groove surface.
  • the pretensioning spring 100 is specifically a closed annular spiral tension spring which is disposed through the circumferential through linear groove 56 or 58 radially inward or outward of each of the diagonal braces 50. That is, all of the diagonal braces 50 are the diagonal braces 50a or 50b shown in Figs.
  • Embodiment 3 Space slanting overrunning clutch C3 with spherical slanting struts and shoe rings
  • the main variant of the overrunning clutch C3 relative to the overrunning clutch C1 is: First, for the two sets of lines The contact type bracing friction pair is replaced by two sets of surface contact type bearing friction pairs to at least reduce the wear strength, improve work reliability and service life.
  • the shoe ring 110 is slidably disposed on the tubular base body 64 between the diagonal braces 50 and the wall surface 96.
  • the ring and the diagonal braces 50 are hingedly configured as a combined bracing The ring, and causing the diagonal braces 50 to indirectly interfere with its support surface, that is, the wall surface 96.
  • the flat end surface friction surface 112 of the shoe ring 110 is in contact with the wall surface 96 to form a rotary traction friction mechanism F1 that is in full surface contact.
  • the bearing surfaces 52 and 54 are respectively set as two spherical crowns in which the spherical centers do not coincide, that is, the portions where the two spherical surfaces are cut by the plane (the curved portion of the spherical portion), and the diagonal braces are respectively
  • Sub 50 is modified to be a completely uniform set of spherical slanted braces.
  • the radius of the two spherical caps is equal to SR 2 and the surface area is greater than or equal to half a sphere.
  • the spherical crown bearing faces 52 and/or 54 may also be two ball bands (the curved portion of the table) cut by the two cutting faces 51 in FIG.
  • the inner end surface 72 of the force ring 60 is circumferentially evenly provided with a set of spherical crowns 76 which are complementary to the force surface 54 and whose support surface area is not greater than but optimally equal to half a spherical surface, the shoe ring Similarly, the inner end faces of 110 are uniformly circumferentially provided with a plurality of spherical crown-shaped recesses 116 which are complementary to the bearing surface 52 and whose supporting surface area is not larger than but optimally equal to half a spherical surface, and are located on the outer diameter side thereof. Annular end face flange 114. For at least one of the spherical coercive force pair 52, 54 and the spherical crown pockets 116, 76, for example, a surface groove for lubrication and an inner oil guide hole may be optimally provided.
  • the two sets of centers ( ⁇ and 0 2 ) of the pair of pockets 116 and 76 appearing on two planes perpendicular to the axis X and having exactly the same radius of gyration. Therefore, all the diagonal supports
  • the two spheres of 50 (the sum of the trajectories of ⁇ and ⁇ are recombined into two circles of equal radius respectively.
  • the trajectory can obviously be non-optimally located on the same truncated cone surface with a half cone angle not equal to 90°. .
  • the inner circumferential faces of the annular end face flanges 66 and 114 are tangent to the spherical faces corresponding to the pockets 76 and 116, respectively.
  • the shoe ring 110 is structurally identical to the bearing ring 60 except that it has no tubular base 64.
  • the centrifugal force acting on the diagonal struts 50 will not be able to be connected to the interference between the respective pocket faces by the force faces 52 and 54 and be converted into axial separation forces, so that the traction friction mechanism F1 and the transmission are not caused.
  • the force friction mechanism F2 generates an idling frictional resistance moment and mechanical wear in response to the centrifugal force.
  • the maximum axial distance between the shoe ring 110 and the bearing ring 60 ensures the connection between the center of the pockets 116 and 76 and 0 2 , that is, the diagonal support 50 is inclined to the circumferential side.
  • the diagonal line S the minimum angle with the axis X in the plane shown in Fig. 22, that is, the diagonal angle ⁇ or its initial value ⁇ , is greater than zero and less than or equal to the equivalent friction coefficient ⁇ of the traction friction mechanism F1?
  • the corresponding friction angle ⁇ (assuming that the pockets 116 and 76 are an even number, when the number is odd, the frictional moment of the spherical friction pair is small and can be ignored). among them, , p ⁇ arctan ⁇ ?
  • is the smallest of all the sets of friction angles in the transmission path via the diagonal braces 50, ie Pmin P ⁇ because the other two sets of friction pairs in the path are spherical at both ends of the diagonal support 50
  • the friction pairs each have an equivalent friction coefficient of approximately infinity and a friction angle of approximately 90°. It is easy to understand that a set of diagonal braces 50 are hinged to the bearing ring 60 and the shoe ring 110. Therefore, the diagonal brace pair no longer has two sets, but only one traction friction pair in the traction friction mechanism F1.
  • the bracing surface also has only the pair of friction surface 112 and wall surface 96, and the shoe ring 110 is also a diagonal ring.
  • the diagonal braces 50 continuously indirectly touch the wall surface 96, and the preload spring 100 is optimal.
  • the ground is specifically an axially compressible torsion spring.
  • One end of the torsion spring is fitted in an axial hole 62 at the inner diameter of the inner end of the bearing ring 60, and the other end is fitted in a corresponding axial hole of the shoe ring 110.
  • the pretension spring 100 is indirectly connected to each of the diagonal arms 50.
  • the specific form, arrangement position, and arrangement of the pretension spring 100 are not limited as long as the setting purpose in the technical solution can be achieved.
  • it may be specifically a spiral tension spring or a compression spring that is circumferentially attached to or in contact with two projections, respectively.
  • the two protrusions are respectively arranged on the shoe ring
  • an arc balance element/weight 146 having the complementary configuration optimally with the remaining space is provided.
  • the weight 146 is preferably radially positioned by at least one of the securing pins that are inserted therethrough and fixedly coupled in the axial bore 87 of the groove ring 80.
  • a seal ring 208 that completely covers the inlet 88 is also optimally provided, for example, by shrinkage, interference, screwing or gluing.
  • the splined hub 144 is also non-rotatably coupled to the inner bore of the bearing ring 60 by means of a spline pair.
  • the inner peripheral surface of the splined hub 144 is provided with a force transmitting characteristic curved surface 148 which is specifically a flat key groove.
  • the outer peripheral ends of the outer peripheral surface are provided with circumferential grooves, and the two snap rings 150 respectively received therein are axially outward. The ends define two axes 7 140.
  • the overrunning clutch C3 since there is no longer any line contact friction pair, the overrunning clutch C3 obviously further greatly improves the working speed, the working reliability and the service life than the overrunning clutch C1, and a set of diagonal braces 50 are hinged to For the first time, the same shoe ring 110 has absolute motion consistency. That is, the possibility of any single or partial oblique support 50 inversion failure is absolutely eliminated, which is more tolerant and adaptable to the difference between a group of oblique members 50. However, in the case where all of the diagonal braces are inverted, the design wear amount of the wall faces 96 and 98 and the friction surface 112 and the force transmitting friction surface 74 is completely exhausted, or after all the diagonal braces 50 are simultaneously crushed.
  • the pre-tensioning elastic 100 in the clutch C3 does not need to have a setting function for improving and ensuring the uniformity and responsiveness of the diagonal support 50. Therefore, the elastic preload force acting on the diagonal stay 50 can be further significantly reduced, and the idle friction torque of the clutch C3 can be further lowered.
  • a spherical bearing surface 52 and 54 may also be provided with, for example, a figure.
  • the cylindrical transition portion 57 shown in FIG. 20, and the maximum distance L between the two spherical crown faces in the direction of the center of the spherical center 0 ⁇ 0 2 may be smaller than the sum of the radius of both sides and SR 2 to make the bearing surface 52 And 54 has a smaller curvature as shown in FIG.
  • the manufacturing process of the diagonal braces 50 is preferably the cold bridge pressure.
  • the diagonal braces 50 may obviously be a composite member formed by two fixed spherical portions, which are combined by a fixed connection such as threading, pin-groove fitting, interference, welding and gluing. Even the two perfectly symmetrical independent ball rims can be constructed in the form of a profile as shown in Fig. 22 to form a nominal composite member in such a way that they only abut each other.
  • the combined structure of the four-contact type is further variable to include two complete round balls and one end each having a complementary spherical defect A cylindrical transition section 57 of the shaped pocket.
  • the two ball-deficient or transition segments 57 that are continuously in a mutually incompatible state will adaptively adjust their pitch angles by the action of the preload springs. And adaptively ensure that all conflicting surfaces are not misaligned with each other, and the effect is exactly the same as a one-piece unit with consistent motion.
  • the present invention may also have the beneficial effect of at least multiplying the working life of the overrunning clutch.
  • the sealing member and the axially abutting faces of the cup for example, 1-3 complementary helical face teeth are optimally provided to steplessly adjust the axial width of the circumferential groove 92 of the composite member.
  • the axial width of the circumferential W groove 92 can be reduced by about ⁇ by simply rotating the fastening position of the sealing member relative to the cup by one circumference B. , the axial wear of the clutch can be compensated, so that it returns to the angle of the slanting angle equal to ⁇ . Work as new initial conditions and move to the next life cycle.
  • the working life of the overrunning clutch can be extended to the original ⁇ times, where ⁇ is a natural number greater than 1.
  • a replaceable spacer having a thickness difference of, for example, At is provided, and one of the abutting surfaces is ground to a thickness of, for example, ⁇ ⁇ , or both sides
  • a circumferential threaded connection mechanism as shown in Fig. 17 is provided between the faces.
  • the shoe ring 110 can also be axially reversed so that the diagonal support 50 directly supports the wall surface 96, that is, the pocket 76 is disposed. On the wall 96. At that time, a set of diagonal braces 50 indirectly interfere with the bearing ring 60 through the slipper shoe ring 100.
  • the elastic restoring force of the relevant member in response to the elastic strain can drive the bearing ring 60 to be concave at the first moment.
  • the grooved ring 80 makes a circumferential rotation of the strain level, thereby releasing the brace state and causing the positive pressure of all associated friction pairs to fall to an elastic pretension level equal to zero. That is to say, as long as the design criterion of p 2 qj Pi is followed, the unlocking torque ⁇ ⁇ ⁇ 0 of the overrunning clutch C3 can be absolutely ensured, achieving a natural separation effect without the unlocking torque.
  • Embodiment 4 Space slanting overrunning clutch C4 having spherical slanting braces and multiple friction plates.
  • the overrunning clutch C4 shown in the mounted state is a single mod variant of the overrunning clutch C3. It is to expand the difference between 2 and according to the design criteria, to increase the range and design freedom of the diagonal angle ⁇ .
  • the bearing ring 60, a set of diagonal braces 50, the slipper shoe ring 110, and the pretension spring 100 are configured as a separate diagonal bracing subassembly 200 including a centering mechanism.
  • the inner diameter side of the shoe ring 110 is provided with an annular end face flange 118.
  • At least one circumferentially extending centering groove 115 and 78 of the centering mechanism is provided in pairs on the inner circumferential surface of the flange 118 and the outer circumferential surface of the tubular base 64, respectively. Both of the grooves extend axially to the respective end faces and are open-ended.
  • the centering grooves 115 and 78 have the same radial height, which is optimally equal to the radius of the pretensioning spring 100, which is specifically a helical compression spring, and the two circumferential walls of the two grooves are optimally optimally They are simultaneously coplanar and each has a circumferential angle span of ⁇ , and the defined arc length is optimally smaller than the length of the pretension spring 100.
  • the preload spring 100 is suitably compressed and then axially placed into the centering grooves 115 and 78. In the free state in which no external force acts, the two ends of the pretension spring 100 will continuously simultaneously abut against the two circumferential walls of the same end of the centering grooves 115 and 78, respectively.
  • the centering position corresponding to the free state should be optimally such that the diagonal angle ⁇ is equal to zero.
  • any relative rotation of the shoe ring 110 and the bearing ring 60 from the centering position will cause the preload springs 100 to only partially interfere with each other due to the circumferential misalignment of the centering grooves 115 and 78.
  • Each of said circumferential walls of the two recesses see Figs. 13-14, further compresses the pretension spring 100.
  • the pre-tensioned spring 100 which is further compressed, naturally causes the shoe ring 110 and the bearing ring 60 to have a tendency to return to the centering position or to be corrected, thereby having a preload function.
  • a snap ring 150 is provided at the outer end of the tubular base 64 for axially defining the end flange 118 and the pretension spring 110 to join the diagonal bracing members 200 into a single process.
  • groove ring 80 is modified to be a radially butted combination member similar to that shown in Fig. 5, but does not include the collar 120 and the end flange 89.
  • the centering grooves 115 and 78 may be respectively disposed on the opposite end faces of the shoe ring 110 and the bearing ring 60 as described above, and the two types of the axial grooves are more variable.
  • the pretension springs 100 are specifically, for example, helical compression springs or tension springs respectively embedded in the two holes, and optimally have a circumferential gap equal to zero.
  • a limit mechanism for circumferential relative position For example, a radially arranged pin slot type stop mechanism, the machine
  • the circumferentially extending end face opening stop groove 113 is disposed at an axially inner end of the inner circumferential surface of the shoe ring 110, and the limiting protrusion 152 is disposed on the tubular base body 64 of the bearing ring 60. Corresponding to the outer peripheral surface.
  • the optimal setting effect of the circumferential degree of freedom (Z + Y) of the limiting mechanism is that, in the relative rotation direction of the removal of the diagonal force transmission connection, the diagonal supporting angle is not hindered to reach its maximum permissible value P min , ie , Y 0; and in the relative rotational direction of establishing the diagonal force transmission connection, the diagonal angle ⁇ can be prevented from being as small as zero, that is, ⁇ ⁇ .
  • represents the angle between the center of the sphere ( ⁇ and 0 2 around the axis X.
  • the type and position of the above-mentioned limiting mechanism or the position of the above-mentioned limiting mechanism can be quantitatively achieved for the purpose of limiting the circumferential relative position of the shoe ring 110 and the bearing ring 60.
  • the mechanism may be disposed directly or indirectly between the shoe ring 110 and the bearing ring 60, may be disposed between the opposite end faces or circumferential faces, and may be, for example, at least including a projection and a groove.
  • a set of end or peripheral fitting mechanisms may be used to set.
  • the fitting mechanism can be a pin-slot mechanism with a general impact resistance capability, to meet the needs of a common application with a low joint frequency, or a high-impact jaw mechanism or a spline mechanism. Meet the needs of special applications such as pulsating continuously variable transmissions with high or high engagement frequencies.
  • the friction pair of the traction friction mechanism F1 is modified into a friction pair having multiple friction plates to obtain an ideal setting of > 2, and a larger diagonal angle ⁇ , thereby reducing the diagonal support force, that is, the axial sealing force and the surface.
  • the stress intensity achieves the purpose that the unlocking torque ⁇ ⁇ is equal to zero, or, in order to obtain a stronger friction transmission capability with the same diagonal supporting force, the purpose of increasing the length of the diagonal stay to further increase the service life is achieved.
  • the force transmitting friction mechanism F2 of all embodiments of the present invention can also be provided in the form of a multi-friction disc. In effect, it is equivalent to multiplying the equivalent friction coefficient ⁇ of the friction mechanism F1 or F2 due to the modification of the combined friction pair. And ⁇ ° 2 , as well as the friction angle and ⁇ 2 .
  • annular inner friction plates 154 of the traction friction mechanism F1 is non-rotatably coupled to the corresponding outer circumferential surface of the annular end face flange 118 by a spline connection.
  • a set of annular outer friction plates 156 is non-rotatably coupled to the fixed pins 158 by pin and groove connections.
  • the fixing pin 158 is fixedly disposed in the axial hole 99 at the outer end surface of the recessed half ring 90, and the pin head portion thereof extends into the circumferential groove 92.
  • the outer radial portion of the pin head portion is received in a semicircular groove in the U-shaped inner surface 94, and the inner radial portion thereof is fitted in a semicircular notch on the outer peripheral surface of the outer set of outer friction plates 156.
  • the axial hole 99 on the two abutting faces 91 and the vertical bisector VP thereof can be preferably modified into a radial type rectangular groove, and the semicircular notch of the friction plate 156 corresponding thereto is variable. Complementary rectangular projection.
  • the length of the diagonal stay/slope line S will be 10.77 mm
  • the upper limit of the amount of deformation to ensure the unlocking torque ⁇ ⁇ ⁇ 0 is 0.738 mm ( « 10 X (l/cos21.80° - l/cos4.57°) ), 24 times that of the prior art.
  • the overrunning clutch C4 clearly has higher operational reliability, transmission capability, and service life than other embodiments.
  • the axial closing force and the friction surface stress intensity will be reduced to about 1/3 of the original, and thus the axial bearing area of the clutch can be reduced by 66% and the radial dimension.
  • At least one centrifugal mechanism such as a steel ball bevel type is disposed between the shoe ring 110 and the force ring 60.
  • the steel balls 206 of the centrifugal mechanism are housed in respective radial holes such as the outer peripheral surface of the tubular base 64.
  • the inner radial direction of the centrifugal mechanism touches the centrifugal force acting surface of the steel ball 206, which is an inclined guiding surface disposed on the inner circumferential surface of the annular end surface flange 118, which has a circumferential direction away from the base ring 70.
  • the orientation is
  • the circumferential component force of the interaction between the steel ball 206 and the inclined guide surface in response to the inertial centrifugal force has a tendency to cause the diagonal angle ⁇ to become larger, and the rotational speed of the bearing ring 60 is higher than a certain
  • the shoe ring 110 is caused to rotate against the bearing ring 60 against the elastic force of the pretensioning spring 100 by a certain circumferential angle, and the axial component of the resisting force causes the shoe ring 110 to be axially Press or move toward the bearing ring 60.
  • a working member such as a gear ring that is sleeved on the outer circumferential surface of the bearing 140 can be fixed to the two groove half rings 90 by a connection such as a flat key or an interference fit as in the prior art.
  • a connection such as a flat key or an interference fit as in the prior art.
  • the force transmitting front surface 93 which is specifically a flat keyway, is optimally disposed on the outer peripheral surface at the abutting surface 91.
  • the power torque can be transmitted to the drive shaft 202 by, for example, the working member.
  • the multi-friction friction pair is not the only technical means to meet the design criteria.
  • the traction friction mechanism F1 is set as a truncated cone type rotary friction pair, or a friction pair made of a material having a high coefficient of friction can also achieve a setting effect of > 2 and having a larger diagonal angle ⁇ .
  • the half cone angle ? of the rotary friction surface of the traction friction mechanism F1 is set to, for example, 22.5.
  • the corresponding equivalent friction coefficient ⁇ ? And ⁇ and the friction angle and 2 are equal to 0.175, 0.08, 9.94, and 4.57, respectively, which ensure that ⁇ ⁇ ⁇ (the value of the slant angle ⁇ is 4.57 ° ⁇ 9.94 °.
  • a synchronization mechanism is optimally disposed in the overrunning clutch C6.
  • the synchronizing mechanism is preferably an axial fitting mechanism having a circumferential freedom of zero or more, such as the pin groove fitting mechanism shown in Fig. 11.
  • the synchronizing pin 204 of the mechanism is fixed in, for example, an axial bore of the shoe ring 110a, axially extending through the escape through hole 61 in the force ring 60, and axially slidably extends to, for example, a corresponding axial direction of the sliding ring 110b. In the hole.
  • the circumferential freedom of the synchronizing pin 204 and the avoiding through hole 61 should be at least as large as possible.
  • the diagonal angle ⁇ of the diagonal struts 50 reaches the extent of 0 and P min .
  • both of them apparently have a function completely similar to the limit projection 152 and the limit groove 113 in the overrunning clutch C4.
  • the circumferential degree of freedom described above may also be so large that the diagonal angles ⁇ 3 and HJ b of the diagonal braces 50a and 50b are attained to the extent of -P min and P min to allow the diagonal braces 50 to be in two circumferential directions. Establish a diagonal relationship.
  • the pretension spring 100 is also variable in a compression type elastic member provided between the relief through hole 61 and the circumferential direction of the synchronizing pin 204.
  • the two sets of pockets 76a and 76b of the bearing ring 60 are preferably circumferentially staggered so that the axial elastic strain of the force ring 60 can be utilized to tolerate and accommodate the manufacturing tolerances of the diagonal stiffener 50 and the like. In this way, the load of each diagonal support 50 can be equalized, the overall reliability of the clutch can be improved, the manufacturing precision of the diagonal support 50 and the like can be reduced, and the axial dimension of the clutch can be reduced.
  • the bag-shaped housing having an overrunning clutch C3 also have ⁇ ⁇ ⁇ 0 refinement.
  • a collar 120 that is non-rotatably coupled to the groove ring 80 is provided and traction friction is formed between the collar 120 and the shoe ring 110.
  • the friction surface of the mechanism F1 is set to the truncated cone type shown in Fig. 10 or the double truncated cone type shown in Fig. 16.
  • Embodiment 5 Space slanting type bidirectional irreversible transmission device C7 having spherical slanting braces As shown in FIGS. 12 to 14, the bidirectional irreversible transmission device C7 is actually a two-way overrunning clutch known in the prior art, which is A radial reset type of single change over clutch C3.
  • a second bracing mechanism having an opposite working direction is disposed outside the radial direction of the original bracing mechanism.
  • the two sets of diagonal braces 50a and 50b, which are opposite to each other in the oblique direction of the two mechanisms, are hinged to the same end face of the same bearing ring 60 as described above.
  • a centering mechanism similar to that described above is provided between the two peripheral faces of the two shoe rings 110a and 110b which are slidably coupled to each other.
  • the difference is that the outward-facing centering groove 78 of the mechanism is replaced with the centering groove 115a on the shoe ring 110a, and is no longer open-ended.
  • the pretension spring 100 disposed therein simultaneously causes the two shoe rings 110a and 110b to continuously abut against the wall surface 96.
  • the torque from the bearing ring 60 can drive the groove ring 80 to rotate in two circumferential directions. If the groove ring 80 is coupled to a stationary object such as a frame, the bearing ring 60 can be realized. Bidirectional braking of its coupling members.
  • a finger ring 40 is also provided.
  • the finger ring 40 is slidably nested in the inner bore of the shoe ring 110a, and at least one of the fingers 42 disposed at the inner end thereof is between the bearing ring 60 and the axial gap of the shoe ring 100. Radially extends into the annular section in which the shoe ring 110b is located.
  • the axial type unlocking projections 111a and 111b respectively provided on the inner end faces of the shoe rings 110a and 110b are disposed on both circumferential sides of the finger 42 in such a manner that the finger 42 is drivingly indirectly connected to the oblique direction.
  • Props 50a and 50b are also provided.
  • the fingers 42 are in contact with the circumferential direction of the two projections, so that the diagonal angles 3 and b of the diagonal braces 50a and 50b associated with them are increased.
  • the circumferential gap of the finger 42 and the unlocking projection 111 is greater than or equal to zero.
  • 1 to 2 diagonal braces 50a and 50b can be removed to provide a circumferential space for the setting fingers 42 and the unlocking projections ll la, 111b.
  • the unlocking projection 111b may be disposed on the radially inner side of the diagonal brace 50b or in the form of an arcuate block as shown in FIG.
  • the finger ring 40 is directly driven by the bearing ring 60, and a jaw mechanism is also provided.
  • Each of the mechanisms includes at least one of two sets of teeth 46 and 77 that are respectively disposed on the annular end faces of the finger ring 40 and the bearing ring 60 that are directly opposite each other.
  • the dental mechanism is in P and R
  • the circumferential degrees of freedom in the directions are greater than the circumferential gaps of the fingers 42 and the two unlocking projections 111 in the same direction, respectively.
  • the rotation of the finger ring 40 relative to any circumference of the groove ring 80 can only be made on the opposite sides 111a or 44b of the finger 42 against the corresponding unlocking projection 111a or 111b and drive the corresponding shoe ring 110a or After 110b releases the corresponding diagonal friction pair, the circumferential engagement/impact of the jaw mechanism can be completed, and the direct drive and transmission of the bearing ring 60 can be realized.
  • the transmission and torque transmission can only be made by the finger ring 40 in the direction of the bearing ring 60, and cannot be reversed.
  • the radial indentation of the groove half ring 90 is preferably accompanied by the active relative rotation of the finger ring 40. It is quite clear that the number of the fingers 42 is greatly reduced compared to the prior art, and does not need to correspond to each pair of diagonal supports 50a and 50b, but corresponds to at least one of the pair of shoe rings 110a and 110b. The circumferential space is thus greatly reduced. Therefore, the two-way irreversible transmission C7 has all the advantageous effects as described above, in particular, significantly improved indexing accuracy and at least doubled transmission capacity and service life.
  • the unlocking projection 111 nor the jaw mechanism is necessary.
  • the direct drive of the diagonal braces 50 by the fingers 42 can be used to unlock and drive the irreversible transmission as in the prior art. This method is particularly useful in situations where the shoe rings 110a and 110b are not present and the diagonal braces 50 are supported in complementary grooves on the inner end surface 72.
  • the drive can be implemented directly by any other type of mating mechanism, for example, by a pin slot mechanism that includes an unlocking projection 111 that extends axially into a corresponding slot or axial bore of the bearing ring 60.
  • the above variants differ only in that the transmission capacity is reduced. It will be apparent that the axially extending unlocking projections 111a and 110b can also be used as the limiting projections 152.
  • the bearing ring 60 is strained into two independent members which are non-rotatably connected to the tubular base 64 and the base ring 70, for example, by means of Spline pair or end face inserts.
  • the tubular base 48 of the finger ring 40 and the disc-shaped ring portion of the finger 42 can be modified in the same manner.
  • the irreversible transmission C7 is a two-way overrunning clutch when the groove ring 80 rotationally transmits torque.
  • the finger ring 40 By operating the finger ring 40, it can be set to work in the corresponding circumferential direction. Overrunning the clutch.
  • the manner in which the finger ring 40 is fixed relative to the bearing ring 60 a large number of mature solutions have been available for selection and combination in the prior art, without the need for creative labor.
  • the finger ring 40 can be used as an active drive member or as a control or adjustment member or handle. Therefore, in addition to the prior art, the irreversible transmission device according to the present invention, such as C7, will expand a wider application space due to factors such as its overall improved performance advantages. For example, it can be used in the space-wedge irreversible transmission disclosed by the applicants in the patent documents CN102478086A, CN102562889A and CN102537025A, the universal parking brake and the stepless positioning hinge/rotary shaft, and the various types of adjustments that can be used in various types of seats. Instead of the overrunning clutch mechanism, a horn, a seat lift, a steerable friction connection or a transmission such as a wrench and a screwdriver. See below for instructions.
  • Embodiment 6 Space slanting coupling with spherical slanting braces C8
  • the main change of the coupling C8 is that the fingers 42 are removed, and the tubular base 48 is decomposed into two respectively connected to the groove half ring 90, and A flat key groove type force transmitting characteristic surface 93 is disposed on the inner peripheral surface.
  • the keyway can be as shown in FIG. Combined keyway.
  • An axial through hole 97 is also provided in the annular end portion 86 for ease of adjustment and maintenance disassembly. The through hole 97 is radially higher than the contact circumferential surface of the shoe rings 110a and 110b to accommodate an unillustrated unlocking pin for a long period of time or temporarily.
  • the contact peripheral surfaces of the shoe rings 110a and 110b are provided with a corresponding set of unlocking teeth.
  • the teeth or fingers of the unlocking pin head can be simultaneously engaged to the two sets of unlocking teeth at the same time, and the rotating unlocking pin can drive the shoe rings 110a and 110b to each other circumferentially. Rotate the ground to release the self-locking of the friction pair and perform the required operation.
  • the inner and outer nesting of the shoe ring 110, the diagonal braces 50a and 50b, and the spherical crown bearing surface are not necessary for the coupling, such as C8, nor are all of the present invention provided with oblique directions.
  • the technical solutions of the two sets of diagonal braces 50a and 50b are necessary, for example, in the fifth embodiment, and in the subsequent embodiments seven to nine.
  • the pretension spring 100 is specifically an axial compression spring as described above. At this time, in order to reduce the radial dimension, the obliquely extending diagonal arms 50a and 50b may be disposed at the same radial height.
  • the same shoe ring 110 is simultaneously hinged and constitutes a two-way bracing mechanism.
  • an elastic member such as a disc spring can be optimally provided between the two force-transmitting friction surfaces of the force-transmitting friction mechanism F2.
  • the coupling can have the ability to resist torque shock due to the damping action of the spring.
  • the transmission capacity of the same radial height variant will also be reduced by about half.
  • the entire bracing mechanism When assembling, the entire bracing mechanism is first placed radially into the groove half ring, for example 90a. In the meantime, if necessary, the diagonal angle 4J b can be increased by external force or tooling, and the relative rotation can be performed to unlock the traction friction pair Fla. A groove half ring, such as 90b, is then assembled. The above operation can be carried out by means of the through hole 97 if necessary.
  • Embodiment 7 Spatially tiltable hinge with stepless positioning and self-locking with a single casing C9
  • hinge C9 is actually a synthesis of the above embodiments and variations.
  • the groove ring 80 is a composite member including a liner ring 120 and a force limiting member 130.
  • the force limiting member 130 is an annular bag-shaped member as shown in FIG. 1
  • the annular end portion 84 is provided with a radial flange, and the hole-shaped force transmitting characteristic curved surface 93 on the flange can accommodate a screw or the like.
  • the collar 120 is disposed in the circumferential groove of the force limiting member 130, and an outer peripheral surface thereof is provided with a flanged force arm 128 extending radially to the outer edge of the inlet 88.
  • the force arm 128 and the inlet 88 preferably have complementary cross-sectional shapes, and the two circumferential side surfaces simultaneously engage or interfere with the two circumferential wall surfaces 95, respectively, such that the collar 120 is non-rotatably coupled to the force limiting member 130.
  • the two members collectively define a circumferential groove 92 and have respective walls 96 and 98.
  • the axial position of the shoe ring 110 is reversed, and the two sets of spherical oblique supports 50a and 50b which are opposite to each other in the oblique direction at the same radial height are provided. , respectively, hinged to the same shoe ring 110 and the liner ring 120, and at the same time, the truncated cone type traction friction mechanism F1 is set to the end face V-shaped groove.
  • the two double-tapered friction surfaces 112a and 112b of the shoe ring 110 are complementarily engaged with the two inner end surfaces 72a and 72b of the bearing ring 60, respectively, to form a traction friction with a small contact stress.
  • Agency Fla and Flb the shoe ring 110 can also be a split ring.
  • the limiting protrusion 152 and the limiting groove 113 of the limiting mechanism are respectively disposed at positions of the pair of axially opposite pair of pockets 116 and 76 Above, its circumferential freedom (Z a + Z b ) satisfies the relationship Z a K p Z b K b .
  • Z, K have the same meaning as before, and Z a and 3 corresponding to one set of diagonal supports 50a correspond to Z and K in FIG.
  • stopper protrusion 152 is also variable by e.g. helical tension spring, compression spring, or acting as an elastic spring wire pin, then, 2 3 ⁇ 4 and 23 should be optimally set to zero.
  • the double-tapered friction pair of the traction friction mechanism F 1 and the force-transmitting friction pair of the force-transmitting friction mechanism F2 in Fig. 16 are all variable types as friction pairs having multiple friction plates.
  • a pivot 210 is also provided.
  • the pivots 210 are rotatably supported on the inner peripheral faces 82a and 82b, respectively, by the extending sections 212a and 212b.
  • the pivot 210 is non-rotatably coupled to the inner bore of the tubular base 64, respectively, by a D-shaped non-circular fit formed by two cut faces 216 and 214, respectively, and a movable member such as a seat back. Installed in the hole.
  • the tubular base 64 of the bearing ring 60 is rotatably extended into the bore of the liner ring 120.
  • the mechanism SS includes a backing ring 120 as a supported member, a support member 190, and a force limiting member 130.
  • the substantially annular support member 190 can axially rigidly abut against the support end surface 136 of the backing ring 120 and the force limiting member 130, and can be set in a limited rotation with a circumferential degree of freedom of £ w .
  • a set of serrated guide teeth 122 and 192 including at least one are provided on the mutually facing annular end faces of the support member 190 and the backing ring 120.
  • the two sets of guide teeth 122 and 192 optimally have complementary unidirectional helical flank angles of ⁇ .
  • the angle of lift ⁇ should not be so large as to cause the support member 190 in the free state to be pressed by the axial pressing force to the extent that it can be rotated circumferentially.
  • a cylindrical force arm 198 extending radially outward from the inlet 88 is preferably provided on its outer peripheral surface.
  • the circumferential clearance of the force arm 198 from the inlet 88 is set to a level that does not interfere with achieving a circumferential degree of freedom.
  • both ends of the tension spring type pretensioning spring 100 are optimally coupled to the outer peripheral faces of the guide teeth 122 and 192, respectively, or to the force arms 128 and 198 so that the guide faces of both adjacent guide teeth 122 and 192 continue.
  • the ground is close to each other. For example, by setting a hole or pin on it.
  • the hinge C9 can be unlocked at any time, and the relative angles of the two members pivotally connected by the hinge, such as the pitch angle of the backrest with respect to the seat cushion, can be arbitrarily adjusted. With the control of the arm 198 removed, the actuation of the spring 100 immediately locks the relative angle.
  • Embodiment 8 Spatially tiltable hinge with stepless positioning and self-locking with a combined casing C10
  • the hinge C10 is a modification of the hinge C9.
  • the groove ring 80 is a composite member.
  • the composite member includes, in particular, a force limiting member for the cup member 160, specifically a support member 190 for the cup-shaped closure member, and a liner ring 120.
  • the support member 190 is coupled to the outer peripheral surface of the cup member 160 by a thread pair
  • the collar ring 120 is non-rotatably coupled to the outer peripheral end of the inner peripheral surface of the cup member 160 by the spline pair.
  • the outer end surface 126 of the collar 120 is supported on the inner wall surface 196 of the support member 190 and defines a circumferential groove 92 in conjunction with the cup member 160.
  • threaded guide teeth 192 and 162 are provided on the inner circumferential surface of the tubular flange 194 of the support member 190 and the outer circumferential surface of the tubular flange 166 of the cup member 160, respectively.
  • Spline teeth 164 and 132 are provided on the inner circumferential surface of the tubular flange 166 and the outer circumferential surface of the collar 120, respectively.
  • the bearing ring 60 and the pivot 210 are combined into one member.
  • the extension 212b of the pivot 210 may be eliminated if desired, or the extension 212a may not extend into the inner bore of the support member 190. That is, the cup member 160 or the support member 190 may not have a central circular hole.
  • the pretension spring 100 is modified into a torsion spring disposed between the cup 160 and the support 190.
  • the two ends thereof are respectively fitted in the outer peripheral faces provided on the tubular flange 194, and in the corresponding mounting holes of the inner end faces of the radial flanges of the cup member 160.
  • the arrangement of the members in the hinge C10 has such an effect. That is, the self-locking hinge C10 positioned on the occasion, the flange 166 and the inner wall surface of the tubular axial gap 53 between the 196 is greater than zero, but less than the axial clearance between the tubular flange and the flange 194 of the cup 160 5 b , that is, 0 ⁇ 5 a ⁇ 5 b .
  • the stepless support member 190 is also variably formed as a threaded plug that is coupled to the inner peripheral surface of the outer end of the spline teeth 164.
  • complementary threads are provided on the opposite circumferential surfaces of the two.
  • Embodiment 9 Space slanting multi-slot transmission wheel capable of working in both directions C11
  • the bidirectional transmission wheel C11 is a result of a modification of the technical solution disclosed in the patent document CN103527748A, which is changed by replacing the latter rotation guide mechanism G with a two-way diagonal strut mechanism.
  • the groove ring 80 is a composite member including a hollow shaft type force limiting member 170, a truncated cone type force limiting ring 180, and a half snap ring 178.
  • the force limiting ring 180 is non-rotatably coupled to the outer peripheral surface of the end of the force limiting member 170 by the spline pair.
  • An inner spline tooth complementary to the outer spline tooth 172 of the force limiting member 170 is disposed in the inner bore.
  • the radially symmetrical half snap rings 178a and 178b axially simultaneously interfere with the outer end faces of the force limiting ring 180, and radially inwardly abut against the inner peripheral faces of the end face flanges 182 of the force limiting ring 180, Radially received in the circumferential groove of the outer end of the force limiting member 170, thereby axially supporting and restraining the force limiting ring 180.
  • the two half snap rings 178 as fixing members are swelled radially on the inner circumferential surface of the flange 182.
  • the fixed connection of the fasteners can also be modified by a snap ring connection such as a known threaded connection or welding. At that time, the two half snap rings 178 will be modified into nuts or removed.
  • two sets of spherical-type diagonal braces 50a and 50b which are opposite to each other in the oblique direction at the same radial height are respectively hinged to the inner end surface of the outer radial flange 176 of the force-limiting member 170-end, that is, the wall surface 96. And an inner end surface of the shoe ring 110. Coronal cavities 76 and 116 are respectively disposed on the two inner end faces.
  • the wall surface 96 and the inner end surface including the wall surface 98 disposed on the force limiting ring 180 together define an outer radial opening Circumferential groove 92.
  • a dust-proof jaw 188 for example tubular, is also optimally provided.
  • the sealing lips at both ends of the dust damper 188 are elastically sleeved on the respective outer circumferential faces of the flange 176 and the shoe ring 110, respectively, in a relatively slidable manner.
  • the shoe ring 110 is slidably sleeved on the outer peripheral surface of the tubular base 174 of the force limiting member 170, and the outer peripheral surface of the tubular flange 118 is provided with external spline teeth 117.
  • a bracing mechanism and a shoe ring can be provided substantially symmetrically to obtain a modification of the two traction friction mechanisms F1 which cancels the force transmitting friction mechanism F2.
  • the traction friction mechanism F1 and the force-transmitting friction mechanism F2 are optimally multi-friction disc friction mechanisms.
  • the annular inner friction plates 154a, 154b, and 154c of the two mechanisms are non-rotatably coupled to the outer spline teeth 117 and 172, respectively, through complementary spline teeth in the respective inner bores.
  • the friction surface 112 of the shoe ring 110 and the wall surface 98 of the force limiting ring 180, and the friction surface 155 of the outer radial portion of the inner friction plates 154a, 154b and 154c are at least substantially frustoconical surfaces, and are oppositely opposed
  • the circumferential grooves 157a to 157d are defined.
  • the outer friction plates 156a, 156b and 156c of the two friction mechanisms F1 and F2, and the bearing ring 60 are in the form of flexible intermediate transmission members such as wire ropes.
  • the set of intermediate transmission members are respectively wound in the circumferential grooves 157a, 157b, 157c and 157d in a manner of extending circumferentially for at least half a cycle.
  • inner and outer friction plates 154 and 156 are merely illustrative, and it is obvious that they may have any desired number and any combination including zero.
  • the multi-slot drive wheel C11 will be modified into a single-slot drive wheel.
  • a splined hub tubular flange extending into the bore of the inner friction plate 154c is also optimally disposed on the inner end surface.
  • the pretension spring 100 can be optimally disposed in any one of the axial gaps of the shoe ring 110 to the force limiting ring 180 to eliminate all possible axial clearances and improve the operational reliability of the bracing mechanism.
  • a two-way stop mechanism as described above for preventing the tilting of the diagonal arms 50a and 50b is optimally provided.
  • the diagonal braces 50a and 50b in the drive wheel C11 can also be hinged to the two shoe rings 110a and 110b that are nested one another.
  • One of the shoe rings, for example 110a is a force limiting ring 180
  • the other shoe ring, such as 110b is attached to the respective end face of the force limiting ring 180.
  • a fitting mechanism should also be provided between the shoe ring 110b and the force limiting ring 180 to ensure reliable torque transfer between the two members.
  • the circumferential freedom of the fitting mechanism ensures the oblique angle of the corresponding diagonal braces, for example 50b, 4J b P b , min .
  • the pre-tensioning spring 100 should be provided, and at the inner end surface of the flange 176 or the inner end surface of the shoe ring 110, at least one blocking protrusion axially contacting the other side should be provided, and the axial height should be exactly the angle of the slanting angle. ⁇ is less than or equal to P min .
  • the traction friction mechanism F1 is provided with four friction plates.
  • the maximum diagonal strut length/straightening stratum S will be 15.05 mm, and the upper limit of the deformation of the diagonal bracing that ensures that the diagonal bracing 50 does not reverse is 5.05 mm, which has been reached. 50.5% of the 10mm diagonal bracing space span.
  • the value/proportion provides the ability to prevent the tilting of the diagonal braces far beyond the actual requirements. The diagonal bracing force and the axial pressing force are thus greatly reduced compared to the prior art, and the transmission wheel is thus close to Ideal reliability.
  • the wires S are so that the diagonal bracing force of each of the diagonal braces 50 is optimally applied to the center of the inner surfaces of the pockets 116 and 76 where they are located.
  • the multi-slot transmission wheel C11 is a transmission wheel that transmits torque by means of a spatial slanting frictional force, which has a transmission characteristic that does not slip before the structure is broken.
  • the transmission principle is completely different from the traditional theory, and the transmission capacity is not restricted by the classical Euler's formula.
  • the friction transmission wheel according to the present invention does not have the safety problem of slipping, and is particularly suitable for hoisting, lifting, and traction equipment. For example, it is used as the main wheel of a multi-rope friction hoist.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Operated Clutches (AREA)
  • One-Way And Automatic Clutches, And Combinations Of Different Clutches (AREA)

Abstract

一种空间斜撑式超越离合器以及包括该空间斜撑式超越离合器的联轴器、铰链和传动轮,其中,该空间斜撑式超越离合器包括一组斜撑子(50),其分别轴向地斜撑在一环形空间的两个相互面对的内壁面(84,86)上,所形成的斜撑机构是一个空间机构,而该环状空间由形成有轴向力封闭式周向凹槽的凹槽环(80),以及位于该周向凹槽中的用于承受轴向夹紧力的盘形承力环(60)共同限定。上述结构可具有球面斜撑子(50b)的完全面接触变型型式,可没有同轴度的要求,可按需增大摩擦角,具有消除斜撑子翻转的可能,线接触型斜撑摩擦副不受斜撑子工作姿态的影响,超越、空转时的摩擦阻力更小且与离心力无关,能够增加工作转矩、转速,可靠性高,使用寿命长,同时,降低了制作和使用的成本,实现了工作的静音化。

Description

空间斜撑式超越离合器、 联轴器、 铰链和传动轮 相关申请
本申请要求本申请人提出的中国专利申请 201320097392.9的优先权, 该在 先专利申请的全部内容通过引用结合于此。 技术领域
本发明涉及机械传动领域中的一种离合装置, 包含该离合装置的诸如联轴 器、 制动器、 逆止器、 差速器、 单向传动装置、 不可逆传动装置、 摩擦传动轮、 无级定位自锁的铰链 /转轴、 座椅调角器、 座椅升降装置、 扳手和螺丝刀之类的 摩擦传动和 /或制动装置, 以及, 为该类摩擦传动和 /或制动装置提供轴向接合力 的自动加压机构, 特别涉及一种摩擦类的超越离合器。 背景技术
公知地, 现有技术中的斜撑式超越离合器具有如下技术缺陷。 即, 因空转 阻力转矩敏感于离心力而致使工作转速和使用寿命均较低; 因斜撑子的自转轴 线难以平行于离合器的回转轴线而增加了结构复杂程度和制作成本, 例如, 常 需设置精密的辅助机构;因实际斜撑角太小例如难以超过 5.4°而致使斜撑力过大 但传动能力却不够大, 同时还致使斜撑子容易翻转失效, 在导致其对同轴度要 求近乎苛刻之际, 更降低了其工作可靠性。
几何参数上, 当斜撑角约为 4°之际, 斜撑子的斜撑长度仅仅比其所处均匀 滑道的径向高度大了不过约 0.25% ( 5°时为 l/cos5° - 1 « 0.38% ), 相对于一般径 向高度例如 10mm的滑道, 该斜撑长度所对应的基本尺寸仅为约 10.025mm。 显 然, 具有该相差无几的基本尺寸的斜撑子的制作公差和分组装配等, 自然变得 极为严苛和麻烦, 同时, 斜撑子也更易磨损失效和因弹性变形而翻转。 毕竟, 在离心力的持续作用下, 磨损掉对应于 0.025mm的材料厚度或斜撑变形量上限 高度 /数值, 并不需要多长的时间。 而且, 在高强斜撑力的作用下, 常常呈完全 中空状的内、 外环的受力部位的径向变形量, 也不难超过该变形量上限数值。
另外, 公知的摩擦类联轴器、 铰链和传动轮, 多存在可摩擦打滑的缺陷。 发明内容
本发明致力于消除、 克服或至少减轻现有技术存在的上述不足。
本发明要解决的技术问题是提供一种具有更高工作转速、 更长工作寿命、 更高工作可靠性、 可显著降低同轴度要求的空间斜撑式超越离合器。
本发明要解决的另一技术问题是, 提供一种依靠摩擦力传递转矩的空间斜 撑式联轴器, 其具有结构破坏前绝不打滑的传动特性。
本发明要解决的再一技术问题是, 提供一种依靠摩擦力实现止转目的且可 无级定位自锁的空间斜撑式铰链, 其具有结构破坏前绝不滑转的定位特性。 本发明要解决的最后一个技术问题是, 提供一种依靠摩擦力传递转矩的空 间斜撑式传动轮, 其具有结构破坏前绝不打滑的传动特性。
为解决上述技术问题, 本发明之空间斜撑式超越离合器包括, 绕一轴线回 转并至少用以提供轴向封闭功能的至少一个凹槽环, 其同轴线地形成有一个至 少大致半周的周向 槽; 绕所述轴线回转并至少用于承受轴向双侧压力的承力 环, 其至少部分地且可转动地位于所述周向凹槽中; 设置在周向凹槽中且最少 为一个的至少一组斜撑子, 其均具有两个承力面并以朝同一圓周方向倾斜的方 式位于承力环的至少一个轴向端; 以及, 至少一个预紧弹簧, 其至少间接地连 接至同一组的每一个斜撑子, 以致使该一组斜撑子轴向上至少间接地分别持续 •I氐触相连至上述周向凹槽的一壁面以及^力环的内端表面, 并同时致使该^力 环持续地抵触至周向凹槽的另一壁面, 以形成直接传递摩擦转矩的回转式传力 摩擦机构 F2; 其中, 在向同一圓柱面的径向投影中, 上述斜撑子的斜撑力的作 用线与所述轴线之间的夹角, 称为斜撑角且大于零, 但小于等于转矩传递路径 中的经由斜撑子的那一个分支路径中的所有相关摩擦机构的当量摩擦系数, 所 分别对应的各摩擦角中的最小的那一个。
优选地, 斜撑子的两个承力面均为曲率中心不相重合的球冠; 周向 槽中 还可转动地设置有至少一个滑靴环, 其轴向内端面抵触至一组斜撑子的同一轴 向端的承力面, 其轴向外侧的摩擦面抵触至周向凹槽的上述一壁面或所述承力 环的内端表面; 与一组斜撑子的承力面轴向抵触相连的表面上, 均互补地设置 有数量相同的各一组球冠状凹穴, 用以对应地收纳一组斜撑子的承力面。
为解决上述另一技术问题, 本发明之空间斜撑式联轴器, 包括上述的空间 斜撑式超越离合器, 且斜撑子为倾斜方向互反的两组, 滑靴环为径向上可转动 地相互套接的两个。
为解决上述又一技术问题, 本发明之可无级定位自锁的空间斜撑式铰链, 包括上述的空间斜撑式联轴器, 不可旋转地设置在周向凹槽中的衬环, 以及绕 所述轴线设置的无级支撑机构, 该机构设置在限力件和衬环之间, 以轴向上无 级移动该衬环的方式, 建立限力件与承力环、 斜撑子以及滑靴环之间的轴向力 封闭式抵触连接。
为解决上述再一技术问题, 本发明之空间斜撑式摩擦传动轮包括, 绕一轴 线回转并具有轴向封闭功能的外径向凹槽环, 该凹槽环是一个形成有绕所述轴 线回转的外径向周向凹槽的组合构件, 其用于限定出周向凹槽的设置有外凸缘 的轴状限力件与设置有回转型壁面的限力环不可旋转地相连接, 其固定件固定 地连接至限力件的远离外凸缘的外周面上, 以轴向限制限力环远离外凸缘的趋 势; 设置在周向凹槽中且数量上最少各为一个的至少两组斜撑子, 该两组斜撑 子均具有两个球冠状承力面并以圓周倾斜方向互反的方式抵触至周向凹槽的同 一壁面; 可转动地设置在周向凹槽中的至少一个滑靴环, 其轴向内端面抵触至 两组斜撑子的同一轴向端的承力面, 其轴向外端外环侧设置有回转型摩擦面; 以及, 与两组斜撑子的承力面抵触相连的上述一壁面和内端面上, 均互补地设 置有数量相同的两组球冠状凹穴, 用以对应地收纳两组斜撑子的相应 7 力面; 当作用于滑靴环的轴向外端的摩擦力致使滑靴环通过两组斜撑子抵触至周向凹 槽的上述同一壁面时, 两组斜撑子的斜撑力的作用线在同一圓柱面的径向投影 中与轴线之间所分别形成的两组夹角, 即为两组斜撑角且均大于零, 但又均分 别小于等于经由各自对应的一组所述斜撑子的转矩传递分支路径中的所有相关 摩擦机构的当量摩擦系数所分别对应的各摩擦角中的最小的那一个。
本发明的更多的改进方案, 由具体实施方式部分给出。
相对现有技术, 依据本发明的空间斜撑式超越离合器, 因其斜撑子的支撑 面或为垂至于回转轴线的平面, 或为凹穴状的球冠, 从而具有了更高的工作转 矩、 工作转速和工作可靠性, 以及更强的耐磨性和更长的使用寿命等优点。 借 助下述实施例的说明和附图, 本发明的目的和优点将显得更为清楚和明了。 附图说明
图 1是根据本发明的具有线摩擦副的超越离合器的轴向剖面示意图。
图 2是图 1视图中的凹槽环的左视图。
图 3是图 1视图中的一组斜撑子的左视图。
图 4是图 1视图中的预紧弹簧的左视图。
图 5是根据本发明的具有衬环和线摩擦副的超越离合器的轴向剖面示意图。 图 6是根据本发明的具有面摩擦副的超越离合器的轴向剖面示意图。
图 7是图 6视图中的承力环的左视图。
图 8是根据本发明的多摩擦片式超越离合器的轴向剖面示意图。
图 9是图 8视图中的一个凹槽半环旋转 90°角后的左视图。
图 10是根据本发明的截锥式超越离合器的轴向剖面示意图。
图 11是根据本发明的双联型超越离合器的轴向剖面示意图。
图 12是^^据本发明的双向不可逆传动装置的轴向剖面示意图。
图 13是图 12视图中的拨爪环和两个滑靴环的位置关系的左视示意图。 图 14是图 12中与拨爪相关的各构件的齿廓, 向同一外圓柱面径向投影的 局部展开示意图; 双点画线部分, 是左视图 12时其对中 槽的展平示意图。
图 15是根据本发明的联轴器的轴向剖面示意图。
图 16是根据本发明的具有单一外壳的铰链的轴向剖面示意图。
图 17是根据本发明的具有组合外壳的铰链的轴向剖面示意图。
图 18是根据本发明的多绳传动轮的轴向剖面示意图。
图 19、 20是两种球面型斜撑子的侧向示意图。
图 21是图 1中各机构的齿廓向同一外圓柱面径向投影的局部展开图。
图 22是图 6中各机构的齿廓向同一外圓柱面径向投影的局部展开图。 具体实施方式
必要说明: 为筒洁明了, 本说明书的正文及所有附图中, 相同或相似的构 件及特征部位均采用相同的附图标记, 并只在它们第一次出现或有变型时给予 必要的说明。 同样, 也不重复说明相同或相似机构的工作机理或过程。 为区别 设置在对称或对应位置上的相同的构件或特征部位, 本说明书在其附图标记后 面附加了字母, 而在泛指说明或无需区别时, 则不附加任何字母。
实施例一: 具有柱面斜撑子的空间斜撑式超越离合器 C1
显然, 由于仍然是基于摩擦自锁的斜撑机理而构成和工作的传动机构, 因 此, 根据本发明的空间斜撑式超越离合器, 同样包括最基本的四种构件。 即, 用于分别对外直接耦合并传递转矩的两个环状构件, 在该两个环状构件之间传 递转矩且数量上至少为一个的一组斜撑子, 以及, 致使该一组斜撑子的轴向两 端均持续地处于摩擦氏触状态的预紧弹簧。
具体地, 参见图 1 ~ 4、 21示出的空间斜撑式超越离合器 Cl。作为本发明的 最筒实施例,超越离合器 C1包括绕轴线 X形成并具有轴向力封闭功能的凹槽环 80。 该 槽环 80最佳地是一个环状袋形构件, 其绕轴线 X形成的内周面 82的 轴向中部, 同轴线地设置有最佳地为平面型的盘形环状周向凹槽 92。 该周向凹 槽 92的约半周的内表面, 最佳地沿两相互平行或相互远离的切线方向 H和 Η', 延伸至凹槽环 80的外周面, 并形成矩形横截面状入口 88。 周向凹槽 92的圓柱 状内表面 94, 因而延伸成具有 U字形横截面形状的非闭合式内径向表面, 并形 成两个至少相互平行的周向壁面 95。 于是, 周向上依次可滑转地设置在承力环 60内端表面 72上的一组斜撑子 50等, 便可沿图 2中空心箭头所指方向, 随同 承力环 60—道经入口 88直接纳入周向凹槽 92 , 并被轴向可滑转地穿过凹槽环 80并延伸至 7 力环 60内孔中未示出的传动轴, 径向定位在轴线 X上。
另夕卜, 为增强凹槽环 80的环状端部 84和 /或 86的轴向刚度, 该两个环状端 部的内径侧, 可最佳地设置一个如图 1所示的环形端面凸缘 89。
如上所述, 绕轴线 X可滑转地设置在周向凹槽 92内的承力环 60, 包括承 受轴向夹紧力且最佳地呈平盘状的基体环 70,位于基体环 70外径侧的环形端面 凸缘 66, 以及,位于基体环 70内径侧且内周面上设置有诸如花键齿面或传力特 征曲面 68的管状基体 64。 基体环 70的端平面型传力摩擦面 74, 直接抵触至周 向凹槽 92的一个壁面 98 , 最佳地形成一个具有绕 X轴回转的完全面接触式传 力摩擦副的传力摩擦机构 F2 , 以直接传递摩擦转矩。基体环 70的垂至于轴线 X 的内端表面 72 , 与周向凹槽 92的另一个壁面 96, 以及管状基体 64的外周面和 环形端面凸缘 66的内周面, 共同限定出一个绕轴线 X回转的平盘形环状空间。 数量上最少为一个且总体上呈柱状的一组斜撑子 50, 以自身轴线至少呈大致放 射状的姿态, 周向均布并被径向限制在该环状空间内。
应该指出的是, 本申请 "直接传递摩擦转矩" 的含义是指, 转矩在两构件 间的传递路径仅经过一个摩擦机构, 而不经过任何第二个其它机构, 其与该摩 擦机构所具有的摩擦面 /片的数量没有任何关系。
参见图 3、 4、 21 , 斜撑子 50实际上是由曲率中心不重合的两段外凸型曲线 和两段连接线所围成的平面封闭图形, 沿该平面的法线延伸一个不大于上述环 状空间的径向高度所得到的柱状构件。 其中, 两段外凸的曲线沿所述法线方向 延伸成两个相互平行的柱面型 7|力面 52和 54 ,两段连接线同步地延伸成两个侧 面 55。 最佳地, 该两个 7?力面 52和 54分别是两个圓柱面的一部分。 两个侧面 55最佳地变型为内径向地相互逐渐靠近成 V形横截面的平面, 并以致使任意两 个相邻的侧面 55之间具有均匀的周向间隙 ε为最佳。
继续参见图 3、 4、 21 , 预紧弹簧 100是一个位于径向平面内的呈封闭环状 的蛇形钢丝弹簧, 其包括一组内周节段 102, 外周节段 104和径向段 106, 以及, 由它们所限定的开口状内径向凹口 107和外径向凹口 108。 制作时, 该弹簧的两 个端头, 被最佳地焊接在一起或用其它手段固定在一起。
设置上, 上述构件具有这样的效果。 即, 一方面, 斜撑子 50 的承力面 52 和 54以同时形成两组不可打滑的线接触型斜撑摩擦副的方式, 分别刚性地氐触 至其支撑面也就是壁面 96和内端表面 72上, 其间的与斜撑力的指向所重合的 直线 /平面, 亦即连接在直线状抵触部位 "^与 Τ2之间的斜撑面 /线 S , 也称斜撑 长度 S, 与轴线 X或者壁面 96和 /或内端表面 72的法线形成一个夹角。 如图 21 所示, 该夹角在回转圓柱面上的径向投影即为斜撑角 Ψ , 其取值区间是, 0< Ψ≤ΡΓπίη ο 其中, Pmin是所有各组斜撑摩擦副的当量或平均摩擦系数例如 μτ1 和 μΤ2所分别对应的摩擦角中的较小的那一个。
另一方面, 当一组斜撑子 50a和 50b分别对应地纳入一组内、 外径向凹口
107和 108中, 分别设置在斜撑子 50a和 50b的径向内、 外侧端面上的周向贯通 式直线凹槽 56和 58, 可以完整地收纳对应的内、 外周节段 102和 104, 并致使 预紧弹簧 100处于相应的弹性变形状态。 于是, 预紧弹簧 100可以通过内周节 段 102与直线 槽 56内壁, 以及外周节段 104与直线 槽 58内壁的扭转性持 续 4氏触, 致使一组斜撑子 50a和 50b以相同的自转方式, 例如, 以图 21所示的 逆时针自转方向, 轴向上持续地分别氐触至壁面 96和内端表面 72。 同时, 周向 间隙 ε应最佳地大到可以间隙地收容径向段 106的程度。
装配时, 先将斜撑子 50、 预紧弹簧 100和承力环 60装配成一个组件, 再以 致使所有斜撑子 50相对承力环 60朝所需的同一圓周方向倾斜或倾倒的姿势, 例如, 朝图 21中箭头 Ρ所指的方向, 由入口 88径向地一起置入周向凹槽 92。 当然, 边转动边置入方法会更好, 例如, 朝左视图 1 时的顺时针方向转动, 亦 即朝图 21中箭头 R所指方向转动。
超越离合器 C1的工作过程非常筒单。 即, 当承力环 60开始持续地具有沿 图 21 中箭头 Ρ所指方向相对凹槽环 80转动的趋势的初始瞬间, 弹性预紧状态 中的斜撑子 50将以公知的方式, 即刻刚性地斜撑在壁面 96和内端表面 72上, 在致使两组线接触型斜撑摩擦副绝对自锁之际, 还以形成轴向力封闭式抵触连 接的方式, 致使传力摩擦面 74与壁面 98之间的回转式传力摩擦机构 F2, 也同 步地进入摩擦自锁的静摩擦状态。从而致使承力环 60、 凹槽环 80和一组斜撑子 50以摩擦自锁的接合方式, 连接或接合成一个转动整体。
于是, 由承力环 60 内孔中的传动轴传入的驱动转矩 Μ0, 分成经由斜撑子
50传递的斜撑式摩擦转矩 以及经由传力摩擦机构 F2直接传递的摩擦转矩 M2, 分别传递给凹槽环 80, 再经凹槽环 80 内、 外周面或端面上公知的传力特 征曲面 93 (未示出), 传递给未示出的其它构件。 其中, Mc^ l ^ + M^ 显然, 源自自激励效应的上述胀紧式斜撑力、 轴向夹紧力和各摩擦力的大小, 均完全 自适应地正比于 也就是作为自激励动力源头的 MQ, 而且, 转矩也可按相反 路径传递, 却不会产生任何实质差别。
之后, 在承力环 60开始持续地具有沿图 21中箭头 R所指方向相对凹槽环 80转动的趋势的初始瞬间, 也就是自激励的源头转矩实质撤除之际, 无论是自 然的惯性分离还是被动力驱动所致, 自激励效应都将即刻消失。 亦即, 一组斜 撑子 50的斜撑作用, 都将以公知的方式同步消失或被解除。 所有传力用摩擦副 上的正压力, 将随着所述斜撑作用的消失而一同消失, 斜撑摩擦副和传力摩擦 机构 F2将即刻同步地解除摩擦自锁状态并转入非自锁的可滑转状态。 于是, 超 越离合器 C1结束接合并开始超越转动,其承力环 60随即相对凹槽环 80沿 R方 向摩擦滑转, 一组斜撑子 50则转入随机的摩擦滑转工况。
至此, 本领域的技术人员不难发现, 虽然都是基于摩擦自锁的斜撑机理而 构成和工作, 虽然斜撑关系或斜撑式抵触连接都发生在绕轴线 X回转的环状空 间内, 但超越离合器 C1与现有技术最关键和最本质的不同之处在于, 现有技术 中的斜撑子是分别大致径向地斜撑在该环状空间的内、 外两个圓柱面上, 所形 成的斜撑机构是一个平面机构, 而根据本发明的超越离合器 C1中的斜撑子 50, 则是分别大致轴向地斜撑在该环状空间的两个轴向壁面上, 所形成的斜撑机构 是一个空间机构。
具体地, 相较现有技术, 依据本发明的空间斜撑式超越离合器 C1的区别特 征在于: 两个斜撑角完全相等; 作为被斜撑的环形壁面 96和内端表面 72 , 均为 曲率半径等于无穷大且法线绝对不垂至于轴线 X的平面; 直线状的斜撑摩擦副 能否自锁, 与斜撑子 50所处径向位置无关, 与其是否沿径向延伸无关; 斜撑摩 擦副以及传力摩擦机构 F2的传力摩擦副的正压力, 与工作转速及离心力绝对无 关; 以及, 具有直接传递转矩的回转式传力摩擦机构 F2。 因此, 相较现有技术, 超越离合器 C1至少具有如下所述的有益效果。
第一, 至少大约倍增的传动能力。 显然地, 同等条件下, 斜撑路径中的最 小斜撑角的增大直接提升了可传递的斜撑式摩擦转矩 M1 而传力摩擦机构 F2 传递的转矩 M2又约等于 因此, !^。《21^。 而如果将传力摩擦机构 F2和 / 或牵引摩擦机构 F1设置成具有多摩擦片的结构型式, 参见图 8, 传动能力的增 长倍数还可更高。 同时也意味着, 具有同等传动能力的本发明可至少成倍地降 低其斜撑力及接触应力强度。
第二, 更高的工作转速和使用寿命——因摩擦力与离心力无关。 同等条件 下, 超越转动时的空转摩擦阻力和磨损更小且几乎恒久不变。
第三, 更小的溜滑角。 显然, 凹槽环 80的对应于 U形内表面 94的环形连 接段的轴向刚度, 要远远大于现有技术的中空式内、 外环的径向刚度。 亦即, 传动状态中 W槽环 80的轴向变形量相较现有技术的径向变形量将远远为小。 因 此, 离合器的溜滑角将显著小于现有技术的约 7° , 并可因此扩大使用范围。 例 如, 可用于脉动式无级变速器中, 以传递相较更高的转矩和适用于更高转速。
第四, 单个斜撑子更不易翻转失效, 工作可靠性更高。 一方面, 相对于现 有技术的中空式管状圓环,以 U形内表面 94所对应的环形段承受轴向拉力的 槽环 80, 必然具有相较更强的抗变形能力, 也就是更高的刚度。 而且, 相较平 直的悬臂梁, 抗弯力中包括圓周向拉应力的环状端部 84的轴向刚度也将显著为 高。 另一方面, 相对于同等的当量摩擦系数和同等的斜撑空间垂直跨度, 平面 状被斜撑表面相较曲面状被斜撑表面, 当然具有更长的斜撑距离 /长度, 以及更 高的斜撑变形量上限。
例如, 假定斜撑空间垂直跨度仍为 10mm, 最大斜撑角为 5° , 内环外径为 84mm的现有技术, 其斜撑长度 /斜撑线 S便只有 10.0308mm, 亦即理论上确保 斜撑子 50不翻转的斜撑变形量上限是 0.0308mm。 而本实施例中, 该对应的斜 撑长度 /斜撑线 S是 10.0382mm, 对应的变形量上限是 0.0382mm, 增长了 24%。
第五, 全寿命周期内, 同轴度从此不再是个问题。 显然, 依据本发明的超 越离合器, 其对制造和使用安装时的同轴度要求不再苛刻, 一般即可, 而且还 不受径向力和轴承精度的影响, 甚至不再必需配置径向定位用的轴承便可正常 工作。 因而, 显著地降低了制作和使用成本, 以及使用时对安装精度的要求。
实际上, 因斜撑子 50可自适应于所遇到的任意装配精度或偏心度, 该同轴 度在例如用作逆止器时甚至可以是没有要求的, 只要能够保证斜撑子 50不抵触 至周向凹槽 92的 U形内表面 94即可。 因此, 该特征将致使斜撑式超越离合器 的工况和寿命得以显著改善, 降低使用时的安装和维护要求, 必将显著扩展其 应用领域和寿命。 例如, 用作车辆电起动系统中的单向器时, 用作车辆的例如 发电机的单向皮带轮时, 以及, 用作减速器高速轴端的逆止器时。
第六, 对预紧弹簧 100或者保持架的制作和装配要求不再苛刻。 如上所述, 只要能保证斜撑子 50的柱状承力面 52和 54分别抵触至壁面 96和内端表面 72, 斜撑摩擦副就必然是完整的和线接触型的, 只要线接触斜撑摩擦副的接触线 或 T2不重合于其自身绕轴线 X的回转圓的切线方向,承力环 60与凹槽环 80之 间的相对转动, 就一定能够致使斜撑子 50自适应转动并建立起摩擦自锁的斜撑 关系。 也就是说, 斜撑子 50具有自适应的纠偏能力或自归正能力, 工作中的可 靠性将显著提高, 不可能出现现有技术中的单个斜撑子因姿态改变而只能局部 地建立起斜撑关系的情况。
例如, 当现有技术中的斜撑子的自转轴线不平行于轴线 X之际, 该斜撑子 将通过其轴向两端与外环内周面的氐触, 以及其轴向中部与内环外周面的氐触, 建立起三点式的径向斜撑关系。 显然, 这样的斜撑摩擦副是不完全的线接触型, 极易因应力过大而损坏相关表面。 但是, 假定此时的内外环的半径增至无穷大, 该径向斜撑式抵触连接便可由三点式转化为本申请的完全线接触型。
无庸置疑, 与现有技术一样, 设置预紧弹簧 100 的目的, 就是致使斜撑子 50持续地具有绕自身转轴自转的趋势, 以使其承力面 52和 54可以持续地分别 抵触至壁面 96和内端表面 72。 因此, 只要能够达成该设置目的, 其可以是包括 橡胶和塑料的任意材质的弹性元件, 可以具有任意的几何形状、 数量以及设置 位置和设置方式等。
当然, 为保证所有斜撑子 50始终处于理想的工作位置, 也可参照现有技术 设置一个公知的环状保持架。 例如, 均布有分别对应地收纳每个斜撑子 50的一 组径向延伸孔的环状弹簧片。 甚至, 该保持架的功能也可通过在承力环 60上设 置圓柱型凹槽的更筒单方式提供。 即, 参照现有技术, 在内端表面 72上呈放射 状地设置一组分别对应地收纳各个斜撑子 50,并与其承力面 54具有互补式构造 的例如部分圓柱型凹槽面的凹穴。 这样, 两者之间的摩擦角 PT2将扩大至接近 90° , Pmin便只能等于斜撑子 50与壁面 96之间的必然较小的摩擦角 A。
容易想到,在实施例一中,外径向地限制一组斜撑子 50的环形端面凸缘 66, 除可以变型为一个独立于承力环 60的单独设置的圓环外,其本身也不是必需的, 其径向限制作用, 完全可以由一个具体为封闭环状的螺旋拉簧式预紧弹簧 100 提供。 届时, 该预紧弹簧 100贯穿地设置在每一个斜撑子 50的径向外侧的直线 凹槽 58中, 而所有斜撑子 50都应该是图 1、 3中所示的斜撑子 50b。
稍加分析便不难发现, 现有技术实质上就是本发明的一个变型特例。 因为, 超越离合器 C1实际上也是本发明的下述变型的一个特例。 即,该变型的壁面 96 和内端表面 72分别是具有相等半锥顶角 β的截锥型回转面, 壁面 98和传力摩 擦面 74则分别是具有相等半锥顶角 α的截锥面,参见图 10。其中, 0° β 180° , 0°^α^ 180° ,斜撑子 50的两个承力面 52和 54可以不再具有径向上均一的斜撑 长度 S, 凹槽环 80最佳地是如后所述的轴向对接式组合构件。 因此, 超越离合 器 C1显然是该变型在 β = α = 90°时的特例, 而现有技术显然是该变型在 β和 α 分别等于 0°和 180°时的特例, 届时, 斜撑力的轴向分力等于零而不再需要环状 端部 84或 86, 凹槽环 80便变型为圓柱状管形内环或外环。
应顺便指出的是, 只要能够实现轴向的互补式贴合或抵触, 本发明的例如 传力摩擦机构 F2以及后续说明中的牵引摩擦机构 F1 中的所有面接触型回转摩 擦面或摩擦副, 均可基于任意走向的任意曲线 /母线绕轴线 X回转而成, 并可以 是设置有用以散热或排除液体或气体的具有任意面积占比的沟槽的非连续表 面。 当然, 呈截锥面摩擦副时, 上述 β和 α应最佳地避免落入各自对应的摩擦 副的摩擦角内, 以免出现轴向上的摩擦自锁。 此为常识, 不再详述。
还应该指出的是, 在忽略弹性预紧力之际, 超越离合器 C1所需的最小解锁 。 其中, 摩擦系数、
Figure imgf000010_0001
由此可见, 只要设置上能确保 ^≤μΤ2 , ω和 Μτ便为负数。 亦即, 超越离合器 C1的解锁过 程无需借助外力,而是借助响应于斜撑子 50等的弹性应变的复原式内部挤压力, 以周向退出^力环 60的方式, 于超越转动开始的瞬间自然地完成。 而显然地, 除了特意设计之外, μ^≤μΤ2和 Μτ = 0均为超越离合器 C1的常态属性。
必需指出的是, 超越离合器 C1还可作这样的变型。 即, 参见图 1 , 以轴向 上至少大致对称的方式, 在传力摩擦面 74与壁面 98之间, 再设置一组斜撑子 50和预紧弹簧 100, 并将承力环 60变型为轴向对称构件。 于是, 该变型将具有 类似图 11所示的轴向双联的两个斜撑机构, 其斜撑子 50翻转的可能性将因为 对应的斜撑变形量上限已经翻倍而进一步降低。 而且, 因为不再具有传力摩擦 机构 F2 , 其解锁转矩 Μτ将绝对地恒等于零。 实施例二: 具有柱面斜撑子和组合式凹槽环的空间斜撑式超越离合器 C2 如图 5所示, 超越离合器 C2是对超越离合器 C1的筒单变型。
首先, 凹槽环 80变型为一个径向对接式组合环。 其包括径向上至少大致对 称的两个具体为凹槽半环 90a、 90b的限力件, 以及, 过盈地紧箍在双方端面凸 缘 81和 83的台阶形外周面上, 将双方以径向对接方式紧固成一个刚性构件的 两个工艺性环形箍 220。 实际上, 两个环形箍 220也可合并成一个单独的环。 参 见图 9, 凹槽半环 90a和 90b, 可视为内周面 82上设置有完整周向凹槽 92的凹 槽环, 被对接面 91最佳地均分成径向上完全对称的两个半圓环的产物。
不难想到, 本发明的轴向力封闭式凹槽环 80也可以是一个轴向对接式组合 构件。 例如, 借助诸如焊接、 铆接、 螺纹或螺釘之类的紧固连接方式, 将一个 诸如盘形环的封口件固定连接至一个最佳地具有中心圓孔的诸如环状的杯形件 的杯口端面所得的构件。 参见图 17所示。 更详细的结构图示和说明, 可参见本 申请人在专利文献 CN101936345A和 CN101936346B中公开的内容, 该两份文 献的全文引用于此, 此处不作进一步说明。
当然, 在凹槽环 80具体为一个轴向对接式组合构件的变型方案中, 其所限 定出的周向 W槽 92也可以是一个如图 18所示的径向开口朝外的外径向型 槽。 此时, 该变型相当于径向上内外翻转了例如图 1或图 5 中所有构件后的结果。 而且, 外径向型凹槽还可以是具有更多构件的组合构件, 还可以有更多的应用, 例如, 图 18所示的绝对不打滑的摩擦传动轮或皮带轮。
其次, 为绝对地消除制作和装配误差, 绝对地消除两个 槽半环 90a与 90b 的对接面 91连接处的可能的台阶效应, 以保证被斜撑表面是一个绝对连续的平 面, 所述组合环还包括一个可滑转地空套在管状基体 64上的衬环 120。 该衬环 120是一个设置在斜撑子 50与凹槽半环 90的壁面 96之间的平盘状圓环, 其内 径侧最佳地形成有轴向延伸至环状端部 84a和 84b内孔中的管状凸缘 124。
最优地, 衬环 120应至少不可旋转地连接至凹槽半环 90a和 /或 90b。 例如, 借助截锥型表面摩擦副的抵触式相连、 胶接、 轴向或径向的嵌合或销槽式机构, 或者,由衬环 120上延伸至对接面 91之间的凹槽中的径向或轴向凸缘等。 当然, 该不可旋转的连接并不是必需的, 尤其是当衬环 120与凹槽半环 90之间的摩擦 转矩相较其与斜撑子 50之间的摩擦转矩为大之际。
再次, 还设置有径向支撑凹槽半环 90的轴承 140, 以及封堵润滑剂的密封 圏 142。该两者设置在凹槽半环 90的环形端面凸缘与管状基体 64之间的环形空 间内。
最后, 凹槽半环 90的环形端面凸缘 81和 83上的传力特征曲面 93 , 具体为 一组轴向型螺釘孔。 承力环 60的传力特征曲面 68, 具体为平键槽曲面。 而预紧 弹簧 100, 具体为一个封闭环状的螺旋拉簧, 其贯穿地设置在每一个斜撑子 50 的径向内侧或外侧的周向贯通式直线 槽 56或 58中。 即, 所有的斜撑子 50都 是图 1、 3中所示的斜撑子 50a或 50b。
容易理解, 因为都具有借助直接传力摩擦机构 F2实现分流传动的特点, 因 此, 在以同等的回转摩擦半径传递相同的转矩之际, 超越离合器 Cl、 C2中斜撑 子 50所承受的接触应力强度, 均仅为现有技术的约 50%。
实施例三: 具有球面型斜撑子和滑靴环的空间斜撑式超越离合器 C3 参见图 6、 7、 22, 超越离合器 C3相对超越离合器 C1的主要变型在于: 第一, 为将两组线接触型斜撑摩擦副替换为两组面接触型承力摩擦副, 以 至少降低磨损强度, 提高工作可靠性和使用寿命。 一方面, 在斜撑子 50与壁面 96之间间隔以一个可滑转地空套在管状基体 64上的滑靴环 110, 该环与斜撑子 50以铰接方式配置成一个组合式斜撑环,并致使斜撑子 50间接地抵触至其支撑 面也就是壁面 96。其中,滑靴环 110的平端面型摩擦面 112与壁面 96抵触相连, 构成完全面接触的回转式牵引摩擦机构 Fl。 另一方面, 承力面 52和 54被分别 设置为球心不相重合的两个球冠,亦即分别是两个圓球面被平面割剩的部分(球 缺的曲面部分), 使斜撑子 50变型为完全均一的一组圓球面型斜撑子。 最佳地, 两个球冠的半径 5^与 SR2相等, 表面积分别大于等于半个球面。 当然, 如果 工艺需要, 球冠状承力面 52和 /或 54也可以是被图 20中的两个割面 51所切出 的两个球带 (球台的曲面部分)。
相应地, 力环 60的内端表面 72上, 周向均布有一组与^力面 54呈互补 构造且支撑面面积不大于但最佳地等于半个圓球面的球冠状凹穴 76 ,滑靴环 110 的内端面上也同样地周向均布有一组与承力面 52呈互补构造且支撑面面积不大 于但最佳地等于半个圓球面的球冠状凹穴 116, 以及, 位于其外径侧的环形端面 凸缘 114。 为降氏球面铰接副的摩阻, 球冠状 力面 52、 54和球冠状凹穴 116、 76中的至少一方, 可最佳地设置例如用以润滑的表面沟槽和内部导油孔。
优选地, 成对出现的凹穴 116和 76的两组球心(^和 02, 分别位于与轴线 X相垂直的两个平面上, 并具有完全相同的回转半径。 因此, 所有斜撑子 50的 两个球心(^和 的回转轨迹便分别重合成半径相等的两个圓。 当然,该回转轨 迹显然还可以非最佳地位于半锥顶角不等于 90°的同一截锥面上。
最优地, 环形端面凸缘 66和 114的内周面, 分别相切于凹穴 76和 116所 对应的球面。 而滑靴环 110除了没有管状基体 64之外, 结构上与承力环 60完 全相同。 这样, 作用于斜撑子 50上的离心力, 将不可能通过 力面 52和 54与 各自的凹穴面之间的抵触相连, 转化为轴向分离力, 从而不会致使牵引摩擦机 构 F1和传力摩擦机构 F2产生响应于离心力的空转摩擦阻力矩和机械磨损。
设置上, 滑靴环 110与承力环 60间最大的轴向间距, 可确保凹穴 116和 76 的球心 与 02之间的连线 ,也就是斜撑子 50向周向一侧倾斜的斜撑线 S , 在图 22所示的平面内与轴线 X的最小夹角, 亦即斜撑角 Ψ或其初始值 Ψο, 大 于零且小于等于牵引摩擦机构 F1的当量摩擦系数 μ?所对应的摩擦角 Α (假定凹 穴 116和 76为偶数个, 为奇数个时则因球面摩擦副的摩擦力偶矩矢之和微小而 可以忽略)。 其中,
Figure imgf000012_0001
, p^arctan^?) , 和 分别 是牵引摩擦机构 F1的摩擦系数和当量摩擦半径。 显然, Ρ 是经由斜撑子 50的 传动路径中的所有各组摩擦角中的最小的那一个, 即 Pmin P^ 因为, 该路径中 的其它两组摩擦副均为斜撑子 50两端的球面摩擦副, 均具有近似无穷大的当量 摩擦系数以及接近 90°的摩擦角。 容易明了, 一组斜撑子 50是铰接至承力环 60和滑靴环 110的, 因此, 斜 撑摩擦副不再具有两组, 而是仅仅具有牵引摩擦机构 F1中的一个牵引摩擦副, 斜撑表面也仅有摩擦面 112与壁面 96这一对, 滑靴环 110也是斜撑环。
第二, 为致使滑靴环 110和承力环 60分别持续地抵触至周向凹槽 92的两 个壁面 96和 98 , 确保斜撑子 50持续地间接氏触至壁面 96, 预紧弹簧 100最佳 地具体为一个可轴向压缩的扭簧。 该扭簧的一端嵌合在位于承力环 60内端内径 处的轴向孔 62中, 另一端嵌合在滑靴环 110的相应轴向孔中。 此时, 预紧弹簧 100间接地连接至每一个斜撑子 50。
如上所述, 只要能够达成技术方案中的设置目的, 预紧弹簧 100 的具体形 式、 设置位置和设置方式就可不受任何的限制。 例如, 可以具体为分别周向地 挂接至或抵触至两个凸起的螺旋拉簧或压簧。 该两个凸起或分别设置在滑靴环
110和 7?力环 60上, 并轴向地和 /或径向地延伸至双方间的轴向 /径向间隙中, 或 内 /外、径向地分别设口置在与该二环不可旋转相连的两个限定环上。 而对于压簧方 为后续实施例 C4的对中机构的变型。 或者, 轴向地直接弹压至滑靴环 110和承 力环 60的相向端面, 以致使该二环分别贴紧在壁面 96和 98上。
第三, 为实现高速旋转时的回转平衡, 还在入口 88的未被填满的剩余空间 中, 设置有一个与该剩余空间最佳地具有互补式构造的弧形平衡元件 /配重块 146。 该配重块 146最佳地被贯穿于其中并固定连接在凹槽环 80的轴向孔 87中 的至少一个固定销径向定位。 为实现对入口 88的密封, 还最佳地设置有一个完 全覆盖该入口 88的密封环 208, 例如, 通过收缩、 过盈、 螺釘或胶接方式。
第四, 为便于单独封装, 借助花键副, 承力环 60的内孔中还不可旋转地连 接有花键毂 144。该花键毂 144的内周面上设置有具体为平键槽的传力特征曲面 148, 其外周面的两外端设置有周向槽, 分别收纳于其中的两个卡环 150从轴向 外端限定住两个轴 7 140。
如上所述, 因不再具有任何的线接触摩擦副, 超越离合器 C3相较超越离合 器 C1显然进一步地大幅提高了工作转速、 工作可靠性和使用寿命, 其一组斜撑 子 50更因铰接于同一个滑靴环 110而首次具有了绝对的动作一致性。 即, 绝对 地消除了其中任何单个或部分斜撑子 50翻转失效的可能性,其对一组斜撑子 50 个体之间的差异性具有更高的容忍度和适应能力。 而其全部斜撑子 50—齐翻转 的情况, 只在壁面 96和 98以及摩擦面 112和传力摩擦面 74的设计磨损量完全 消耗殆尽之后, 或者全部斜撑子 50被同时压溃之后, 或者凹槽环 80等发生结 构破坏之后, 也就是在超越离合器 C3的使用寿命结束之后, 方才成为可能。 受 益于完全的面接触, 超越离合器 C3摩擦滑转的声音相较现有技术将远远为低, 并因此而实现了工作的静音化。
另外, 有别于现有技术, 离合器 C3中的预紧弹性 100无需具有提高和保障 斜撑子 50动作一致性和响应性的设置功能。 因而, 作用于斜撑子 50上的弹性 预紧力可进一步地显著降低, 离合器 C3的空转摩擦转矩也可进一步降低。
应指出的是, 如果需要, 球冠状承力面 52和 54之间也可以设置有例如图 20所示的圓柱状的过渡段 57, 且两个球冠面在球心 0^ 02连线方向上的最大 距离 L可以小于双方的半径 与 SR2之和, 以使其承力面 52和 54具有如图 19所示的更小的曲率。 在无需高强的渗碳 /渗氮表面之际, 斜撑子 50的制作工 艺当以冷桥压为最佳。 另外, 斜撑子 50显然也可以是由两个独立球缺部分通过 螺纹、 销槽式嵌合、 过盈、 焊接和胶接等固定连接方式合并成的组合构件。 甚 至, 该两个最佳地完全对称的独立球缺还可以按如图 22所示的轮廓形式, 以仅 仅相互抵触在一起的方式构成名义上的组合构件。 或者, 在 5¾大于承力面 52 和 54的半径之和时, 该 4氏触相连的组合构件的构成, 还可变型为包括两个完整 圓钢球和一个两端分别设置有互补式球缺型凹穴的圓柱状过渡段 57。
在这种最方便制作的名义组合构件方案中, 借助预紧弹簧的作用, 持续地 处于相互抵触状态中的两个所述球缺或过渡段 57 将会自适应地调节其斜撑角 Ψ, 并自适应地确保所有相互抵触的表面之间不会相互错位, 效果上完全等同于 一个动作一致的整体构件。
有必要补充说明的是, 在图 19所示的情况中, 斜撑子 50的自转趋势不再 对应于滑靴环 110相对凹槽环 80的移动方向, 而是正好相反。 因此, 随着离合 器轴向上相关磨损的积累, 正常的离合器失效或达到使用寿命时的表现形式, 不再是斜撑角 Ψ由初始值 Ψ0降至接近等于零的过程,而是斜撑角 Ψ由初始值 Ψ0 升至约等于摩擦角 Α的过程。 相应地, 只需更换预紧弹簧 100 的作用方向, 而 无需拆开整个单向超越离合器以变换所有斜撑子 50的斜撑方向, 就可方便地改 变其工作方向。 这一点显著优于现有技术。
有必要指出的是, 对于 槽环 80变型为轴向对接式组合构件的本申请的所 有技术方案, 本发明还可具有至少倍增超越离合器工作寿命的有益效果。 例如, 封口件与杯形件的轴向对接面之间, 最佳地设置例如 1 ~ 3个互补式的螺旋端面 齿, 以无级地调节该组合构件的周向凹槽 92的轴向宽度。 较佳地, 在以周向均 布的螺釘进行固定连接的方案中, 对应于螺釘周节 B的端面螺旋齿的导向升程 或推程 A t最好是, At =(cosp2-cosnj。)x ^。这样, 当超越离合器因磨损而出 现解锁困难的状况后,只需将封口件的紧固位置相对杯形件旋转一个周节 B,便 可将周向 W槽 92的轴向宽度缩小约 Δ ΐ,便可补偿离合器的轴向磨损,令其再次 回复到斜撑角约等于 Ψ。的工作如新的初始工况, 从而进入下一个寿命周期。
因此, 只要制作时将上述螺旋端面齿的轴向高度设置成 的 Ν倍, 超越离 合器的工作寿命便可延长至原先的约 Ν倍, 其中, Ν是大于 1的自然数。
不难想到, 倍增工作寿命的目的, 也可通过下述技术手段达到。 例如, 在 封口件与杯形件的端面之间设置可更换的厚度相差为例如 A t的不同垫片, 将对 接表面中的一方打磨掉厚度为例如 Δ ΐ的材料, 或者, 在双方的周面之间设置如 图 17所示的周面螺纹连接机构。 当然, 也可通过设置一个如图 16中的转动导 向式无级支撑机构 SS的方式来达成。
另外, 当图 6中的 槽环 80变型为轴向对接式组合构件时, 还可轴向翻转 滑靴环 110, 以使斜撑子 50直接支撑在壁面 96上, 也就是将凹穴 76设置在壁 面 96上。 届时, 一组斜撑子 50便通过滑靴环 100间接地抵触至承力环 60。 必需特别强调的是, 在设置有滑靴环 110的超越离合器 C3中, 其忽略弹性 预紧力后的比值 ω的筒化计算式为, ω =(μ°- ί3η ψ)/(μ°+ μ°)。因此,只要
Figure imgf000015_0001
μ° , 传力摩擦机构 F2便不可自锁, 在驱动转矩消失或者发生超越转动之际, 相关构 件的响应于弹性应变的弹性复原力, 便可在第一时刻驱使承力环 60相对凹槽环 80作出应变量级的周向转动, 从而解除斜撑状态并致使所有相关摩擦副的正压 力降至弹性预紧级别的约等于零。 也就是说, 只要遵循 p2 qj Pi的设计准则, 就可绝对地确保超越离合器 C3的解锁转矩 Μτ≡0,达成无需解锁转矩的自然分 离效果。 其中, p2=arctan^°2), 是传力摩擦机构 F2的传力摩擦副的摩擦角。
实施例四: 具有球面型斜撑子和多摩擦片的空间斜撑式超越离合器 C4 参见图 8、 9、 22, 以安装状态示出的超越离合器 C4是对超越离合器 C3的 筒单变型, 目的就是为了依照设计准则扩大 2与 间的差值, 用以增大斜撑角 Ψ的取值范围和设计自由度。
第一, 为便于制作、 装配和单独售卖, 承力环 60、 一组斜撑子 50、 滑靴环 110和预紧弹簧 100等被配置成一个包括对中机构的独立的斜撑子部件 200。 为 此, 滑靴环 110的内径侧设置有环形端面凸缘 118。 在凸缘 118的内周面上和管 状基体 64的外周面上, 分别成对地设置有对中机构的至少一个周向延伸型对中 凹槽 115和 78。 该两凹槽均轴向延伸至各自的端面, 并呈端面开口状。 参数上, 对中凹槽 115和 78具有相同的径向高度, 该径向高度最佳地等于具体为螺旋压 簧的预紧弹簧 100 的半径, 两 槽的两个周向壁面可最佳地分别同时共面且圓 周角跨度均为 φ, 所限定的弧长最佳地小于预紧弹簧 100的长度。 装配时, 先对 该预紧弹簧 100予以适当压缩, 然后再将其轴向地置入对中凹槽 115和 78中。 在无外力作用的自由状态中, 预紧弹簧 100 的两个端头将持续地分别同时抵触 至对中凹槽 115和 78的同一端的两个周向壁面。 设置效果上, 该自由状态所对 应的对中位置, 应最佳地正好致使斜撑角 Ψ等于零。
因此, 在实际使用中, 滑靴环 110与承力环 60的任何偏离上述对中位置的 相对转动, 都将因对中 槽 115和 78的周向相错而致使预紧弹簧 100只能分别 抵触至该两凹槽的各一个所述周向壁面, 参见图 13 ~ 14, 从而进一步压缩预紧 弹簧 100。 而被进一步压缩的预紧弹簧 100则自然地致使滑靴环 110与承力环 60具有回复对中位置或归正的趋势, 从而具有预紧的功能。 设置在管状基体 64 外端的卡环 150, 用于轴向同时限定住端面凸缘 118及预紧弹簧 110, 以将斜撑 子部件 200连接成一个工艺整体。
与之对应, 凹槽环 80变型为一个类似图 5所示的径向对接式组合构件, 但 不包括衬环 120和端面凸缘 89。
实际上, 对中凹槽 115和 78也可如前所述地分别设置在滑靴环 110与承力 环 60双方相对的端面上, 更可变型为两个轴向孔。 届时, 预紧弹簧 100具体为 分别嵌入该两个孔中的例如螺旋压簧或拉簧, 并最佳地具有等于零的周向间隙。
第二, 为提高离合器的可靠性和高频工作时的动作响应性, 降低斜撑摩擦 副解锁瞬间预紧弹簧 100可能受到的沖击, 还设置有限制滑靴环 110与承力环 60的周向相对位置的限位机构。 例如, 一个径向设置的销槽式限位机构, 该机 构的周向延伸的端面开口状限位槽 113被设置在例如滑靴环 110的内周面的轴 向内端, 其限位凸起 152则被设置在承力环 60的管状基体 64的相应外周面上。
该限位机构的周向自由度 (Z + Y)的最佳设置效果是, 在撤除斜撑式传力连 接的相对转动方向上, 不妨碍斜撑角 Ψ达到其最大许可值 Pmin, 即, Y 0; 而 在建立斜撑式传力连接的相对转动方向上, 不妨碍斜撑角 Ψ可以小至等于零, 即, Ζ Κ。 其中, Κ代表球心(^与 02间绕轴线 X的圓周夹角。 该设置从结构 上消除了斜撑子 50的翻转可能, 筒化了离合器的装配工艺, 且不妨碍磨损储备 的切实可用。
有必要顺便指出的是, 基于最基本的常识均可明了, 只要能够定量地达成 上述限制滑靴环 110与承力环 60的周向相对位置的目的, 上述限位机构的类型 和设置位置或设置方式便不受任何限制。 例如, 该机构可以直接地或间接地设 置在滑靴环 110与承力环 60之间, 可以设置在两者相对的端面或周面之间, 可 以是例如至少包括一个凸起和凹槽的一组端面或周面嵌合机构。 而在嵌合机构 中, 其可以是抗沖击能力一般的销槽机构, 以满足接合频率不高的普通应用之 需, 也可以是抗沖击能力高强的牙嵌机构或花键机构, 以满足接合频率较高或 超高的例如脉动无级变速器之类的特殊应用之需。
第三, 将牵引摩擦机构 F1的摩擦副变型为具有多摩擦片的摩擦副, 以获得 〉 2的理想设置, 以及更大的斜撑角 Ψ, 从而降低斜撑力也就是轴向封闭力 和表面应力强度, 达成解锁转矩 Μτ等于零的目的, 或者, 从而以同样的斜撑力 获得更强的摩擦传动能力, 达成增大斜撑长度以进一步提升使用寿命的目的。 当然, 如果需要进一步倍增超越离合器的传动能力, 而又不希望增大其直径和 / 或应力强度, 本发明中所有实施例的传力摩擦机构 F2也可设置成多摩擦片的型 式。 效果上, 因变型为组合式摩擦副而相当于倍增了摩擦机构 F1或 F2的当量 摩擦系数 μ?和 μ°2 , 以及摩擦角 和 Ρ2
具体地, 牵引摩擦机构 F1的至少包括一个的一组环状内摩擦片 154, 通过 花键连接方式, 不可旋转地连接到环形端面凸缘 118 的相应的外周面上。 而与 内摩擦片 154轴向交错布置的至少包括一个的一组环状外摩擦片 156,则通过销 槽连接方式, 不可旋转地连接至固定销 158。 该固定销 158固定地设置在位于凹 槽半环 90外端面的轴向孔 99中, 其销头部分延伸至周向凹槽 92中。 最佳地, 该销头部分的外径向部分收容在位于 U形内表面 94的半圓槽内,而其内径向部 分则嵌合在一组外摩擦片 156外周面上的半圓缺口内。
显然, 位于两个对接面 91上及其垂直平分面 VP上的轴向孔 99, 可以较佳 地变型为径向型矩形凹槽, 与之对应的摩擦片 156 的半圓缺口, 则可变型为互 补式的矩形凸起。
作为示例, 图 8所示的超越离合器 C4中, 牵引摩擦机构 F1具有 4个摩擦 片。 假定摩擦机构 F1和 F2的所有摩擦面之间的摩擦系数均为 0.08 , 那么, 两 机构 F1和 F2的当量摩擦系数 μ?和 便分别是 5 x 0.08 = 0.40和 0.08 (假定 = R2 = Rx ), 对应的摩擦角 Pi = arctan(0.40) = 21.80° , 摩擦角 p2 = arctan(0.08) = 4.57°。 因此, 斜撑角 Ψ取值范围是 0° ~ 21.80°或 4.57° ~ 21.80°。 仍以上述斜撑 空间垂直跨度等于 10mm的情况为例, 其斜撑长度 /斜撑线 S将为 10.77mm, 确 保斜撑子 50不翻转的斜撑变形量上限, 是 25倍于现有技术的 0.77mm ( = 25 0.0308 ),全然不在一个量级上。而确保解锁转矩 Μτ≡0的变形量上限是 0.738mm ( « 10 X (l/cos21.80° - l/cos4.57°) ), 24倍于现有技术。
因此, 相较其它实施例, 超越离合器 C4显然具有更高的工作可靠性、 传动 能力和使用寿命等。 同等传动能力情况下, 其轴向封闭力和摩擦表面应力强度 将降低至原先的约 1/3 ,并因而可以降低离合器的轴向承力面积 66%和径向尺寸。
第四, 为至少降低超越工况中的摩阻和磨损, 还在滑靴环 110和^力环 60 之间设置有至少一个诸如钢球斜面式的离心机构。 该离心机构的钢球 206收容 在例如管状基体 64外周面上的相应径向孔中。 该离心机构的内径向地 4氐触至钢 球 206的离心力作用面, 是一个设置在环形端面凸缘 118的内周面上的倾斜型 导向面, 其具有同时背离一个圓周方向和基体环 70的朝向。 设置效果上, 响应 于惯性离心力的钢球 206与该倾斜型导向面的抵触作用的周向分力, 具有致使 斜撑角 Ψ变大的趋势, 并在承力环 60的转速高于某一设定值后, 再致使滑靴环 110克服预紧弹簧 100的弹性力而相对承力环 60转动一定的圓周角, 而该抵触 作用的轴向分力则可致使滑靴环 110轴向上压向或移向承力环 60。
工作时, 套设在轴承 140外周面上的例如齿轮环的工作构件, 可以如现有 技术一样, 通过诸如平键或者过盈配合之类的连接方式, 固定至两个凹槽半环 90的外周面上。所述具体为平键槽的传力特正面 93被最佳地设置在位于对接面 91 处的外周面上。 这样, 动力转矩便可由例如该工作构件传递至传动轴 202。 而在超越状态中, 一旦传动轴 202的转速超过设定值, 滑靴环 110便如上所述 地轴向移向承力环 60, 于是, 超越离合器 C4中的摩擦机构 F1和 F2便可转入 无压力或非接触式旋转状态, 从而降低或消除摩擦阻力和磨损。
无疑, 多摩擦片摩擦副并非符合设计准则的唯一技术手段。 例如, 将牵引 摩擦机构 F1设置成截锥型回转摩擦副, 或者, 设置成由具有高摩擦系数的材料 构成的摩擦副, 同样可以达成 〉 2和具有更大斜撑角 Ψ的设置效果。
例如, 图 10所示的超越离合器 C5 , 其牵引摩擦机构 F1的回转摩擦面的半 锥顶角 β便被设置为例如 22.5°。 在其它参数同于超越离合器 C4之际, 其对应 的当量摩擦系数 μ?和 ^以及摩擦角 和 2 , 便分别等于 0.175、 0.08、 9.94°和 4.57° , 其确保 ΜΤ≡(Η々斜撑角 Ψ的取值区间是 4.57° ~ 9.94°。 而图 11所示的超 越离合器 C6, 则是对超越离合器 C5实施如前所述的双联两个斜撑机构和两个 牵引摩擦机构 F1的筒单变型。 其 £1 = ¾ = 22.5° , 对应的当量摩擦系数 μ?和摩擦 角 分别等于 0.175和 9.94° , 确保 Μτ≡0的斜撑角 Ψ的取值区间是 0° ~ 9.94°。
另外, 为保证两个滑靴环 110a和 110b动作的一致性和轴向位置的稳定性, 超越离合器 C6中还最佳地设置有一个同步机构。该同步机构最佳地是一个周向 自由度大于等于零的轴向嵌合机构, 例如图 11中所示的销槽式嵌合机构。 该机 构的同步销 204固定在例如滑靴环 110a的轴向孔中,轴向穿过^力环 60上的避 让通孔 61 , 可轴向滑动地延伸至例如滑化环 110b的相应轴向孔中。
设置效果方面, 同步销 204与避让通孔 61的周向自由度, 应至少大到不妨 碍斜撑子 50的斜撑角 Ψ达到 0和 Pmin的程度。 此时, 两者显然具有完全类似于 超越离合器 C4中的限位凸起 152和限位槽 113的功能。 当然, 上述周向自由度 也可大到不妨碍斜撑子 50a和 50b的斜撑角 Ψ3和 HJb达到 - Pmin和 Pmin的程度, 以允许斜撑子 50在两个圓周方向上建立斜撑关系。 另外, 预紧弹簧 100也可变 型为设置在避让通孔 61与同步销 204的周向之间的压缩式弹性元件。
容易理解, 承力环 60的两组凹穴 76a和 76b最好周向交错地排列, 以便可 以利用 7 力环 60的轴向弹性应变, 容忍和适应斜撑子 50等的制作误差。 这样, 既可均衡各斜撑子 50 的荷载, 提升离合器整体可靠性, 又可降低对斜撑子 50 等的制作精度的要求, 更可减小离合器的轴向尺寸。
实际上,具有袋形外壳的超越离合器 C3也可具有 Μτ≡ 0的改进方案。例如, 在图 6中的滑靴环 110与壁面 96之间, 设置一个不可旋转地连接至凹槽环 80 的衬环 120, 并将形成于衬环 120与滑靴环 110之间的牵引摩擦机构 F1的摩擦 表面设置成图 10所示的截锥型, 或者, 图 16所示的双截锥型。
实施例五: 具有球面型斜撑子的空间斜撑式双向不可逆传动装置 C7 如图 12 ~ 14所示, 双向不可逆传动装置 C7实际上就是现有技术中所称的 双向超越离合器, 其是对超越离合器 C3的径向重置式的筒单变型。
第一, 为传递双周向的转矩, 在原有的斜撑机构的径向之外, 设置有工作 方向相反的第二个斜撑机构。 两机构的倾斜方向互反的两组斜撑子 50a和 50b, 如上所述地铰接至同一个承力环 60的同一个端面。
第二, 可滑转地相互套接在一起的两个滑靴环 110a和 110b的两周面之间, 设置有类似如上所述的对中机构。 区别在于, 该机构的外向型对中凹槽 78替换 为滑靴环 110a上的对中凹槽 115a, 且不再呈端面开口状。 设置于其中的预紧弹 簧 100, 同时致使两个滑靴环 110a和 110b持续地抵触至壁面 96上。 于是, 来 自承力环 60的转矩, 便可在两个圓周方向上驱使凹槽环 80转动, 若凹槽环 80 耦合至例如机架之类的静止物,则可实现对承力环 60及其耦合构件的双向制动。
第三, 为实现可选择地解锁牵引摩擦机构 Fla和 Fib的两个斜撑摩擦副, 还设置有拨爪环 40。 该拨爪环 40可滑转地嵌套在滑靴环 110a的内孔中, 设置 在其内端的至少一个拨爪 42, 由承力环 60与滑靴环 100的轴向空隙之间, 外径 向地延伸至滑靴环 110b所在的环形区间内。 分别设置在滑靴环 110a和 110b内 端面上的轴向型解锁凸起 111a和 111b, 以这样的效果设置在拨爪 42的周向两 侧, 以使拨爪 42可驱动地间接连接至斜撑子 50a和 50b。 即, 拨爪 42与该二凸 起的周向抵触, 可致使与它们联动的斜撑子 50a和 50b的斜撑角 3b增大。 优选地, 拨爪 42与解锁凸起 111的周向间隙大于等于零。
为便于设计和制作, 减小径向尺寸, 可去除 1 ~ 2个斜撑子 50a和 50b, 以 为设置拨爪 42和解锁凸起 ll la、 111b留出周向空间。 当然, 解锁凸起 111b也 可设置在斜撑子 50b的径向内侧, 也可呈图 13所示的弧形块状。
第四, 为提升传动或制动能力, 实现拨爪环 40对承力环 60的直接驱动, 还设置有牙嵌机构。 该机构的各包括至少一个的两组牙嵌齿 46和 77, 分别设置 在拨爪环 40和承力环 60双方直接相对的环形端面上。 而该牙嵌机构在 P、 R两 个方向上的周向自由度, 分别大于拨爪 42与两个解锁凸起 111在相同方向上的 周向间隙。 因此, 拨爪环 40相对凹槽环 80的任何圓周转动, 都只能是在拨爪 42的两侧面 44a或 44b抵触上对应的解锁凸起 111a或 111b,并驱使对应的滑靴 环 110a或 110b解除了对应的斜撑摩擦副之后, 方可完成牙嵌机构的周向啮合 / 抵触, 实现对承力环 60的直接驱动和传动。 于是, 在凹槽环 80不可转动之际, 传动和转矩传递只能由拨爪环 40向承力环 60的方向进行, 而不能反向进行。
凹槽半环 90的径向入位过程, 最好伴随拨爪环 40的主动式相对转动。 非常明了, 相对现有技术, 拨爪 42的数量大为减少, 无需对应于每一对斜 撑子 50a和 50b, 而是对应于一对滑靴环 110a和 110b的至少一个即可, 所占据 的周向空间因而大为缩少。 因此, 双向不可逆传动装置 C7具有如前所述的所有 有益效果, 尤其是显著提升的分度精度以及至少倍增的传动能力和使用寿命。
容易理解, 解锁凸起 111和牙嵌机构都不是必需的。 例如, 将拨爪 42可驱 动地直接连接至斜撑子 50a和 50b, 便可如现有技术一样, 通过拨爪 42对斜撑 子 50的直接驱动, 实现不可逆传动装置的解锁和传动。 该方法特别适用于不具 有滑靴环 110a和 110b,且斜撑子 50支撑在内端表面 72上的互补式凹槽中的情 形。 另外, 传动也可借助其它任何型式的嵌合机构直接实现, 例如, 借助包括 轴向延伸至承力环 60的相应 槽或轴向孔中的解锁凸起 111的销槽机构。 上述 变型方案的区别仅在于, 降低了传动能力。显然,所述轴向延伸的解锁凸起 111a 和 110b也可当作限位凸起 152使用。
应顺便说明的是, 当凹槽环 80具体为如图 6所示的单一袋形构件时, 承力 环 60应变型为管状基体 64和基体环 70两个不可旋转相连的独立构件, 例如借 助花键副或端面牙嵌副。 同样, 拨爪环 40的管状基体 48和拨爪 42的盘形环部 分也可作相同的变型。
由常识可知, 在凹槽环 80旋转地传递转矩之际, 不可逆传动装置 C7便是 一个双向超越离合器, 操纵拨爪环 40, 便可将其设定为工作在相应圓周方向上 的单向超越离合器。 关于拨爪环 40相对承力环 60的位置固定方式, 现有技术 中已经有大量的成熟方案可供选择和组合, 无需付出创造性地劳动。 例如, 本 申请人在文献 CN100582517C中所公开的技术方案。 因此, 此处不予详述。
显然地, 拨爪环 40即可用作主动驱动构件, 也可用作控制或调节构件或手 柄。 因此, 除可替代现有技术外, 依据本发明的不可逆传动装置例如 C7, 还将 因为其全面提升的性能优势等因素, 拓展出更广阔的应用空间。 例如, 可用于 本申请人在专利文献 CN102478086A、 CN102562889A和 CN102537025A中公开 的空间楔合式不可逆传动装置、 通用驻车制动器和无级定位铰链 /转轴, 以及, 可用于各类座椅中的各类调角器, 座椅升降装置, 扳手和螺丝刀之类的可操控 的摩擦连接或传动装置等, 以替代其中的超越离合机构。 相关说明参见于后。
实施例六: 具有球面型斜撑子的空间斜撑式联轴器 C8
参见图 15 , 作为不可逆传动装置例如 C7的变型, 联轴器 C8的主要变化在 于, 去除了其中的拨爪 42 , 并将管状基体 48分解成分别连接至凹槽半环 90的 两个, 且内周面上设置有平键槽式传力特征曲面 93。 该键槽可以是图 15所示的 组合式键槽。 为便于调整和维修拆卸, 还在环状端部 86上设置有轴向通孔 97。 该通孔 97径向上与滑靴环 110a和 110b的接触周面同高, 以长期或临时容纳未 示出的解锁销轴。相应地,滑靴环 110a和 110b的至少部分接触周面上均设置有 相应的一组解锁轮齿。 这样, 在需要之时, 便可致使解锁销轴头部的轮齿或拨 爪居中地同时啮合至所述两组解锁轮齿, 旋转解锁销轴就可驱动滑靴环 110a和 110b周向互反地转动, 从而解除斜撑摩擦副的自锁, 实施所需的操作。
显然地, 滑靴环 110, 斜撑子 50a和 50b的内外嵌套式设置, 以及具有球冠 状承力面, 都不是联轴器例如 C8的必需, 也不是本发明的所有设置有倾斜方向 互反的两组斜撑子 50a和 50b的技术方案的必需, 例如实施例五, 以及后续的 实施例七〜九。 而且, 即便设置滑靴环 110, 实施例五〜九也可仅具有一个, 预 紧弹簧 100具体为如上所述的轴向压簧。 届时, 为降低径向尺寸, 倾斜方向互 反的斜撑子 50a和 50b也可设置在同一径向高度上。 例如, 以间隔相错或各占 半周的形式, 同时铰接至该同一个滑靴环 110 并构成双向斜撑机构。 另外, 在 传力摩擦机构 F2的两个传力摩擦面之间,还可最佳地设置例如碟簧的弹性元件。 如此, 联轴器便可因弹簧的阻尼作用而具有了抗转矩沖击的能力。 显然, 同一 径向高度变型方案的传动能力也将降低一半左右。
装配时, 先将整个斜撑机构径向置入 槽半环例如 90a中。 其间如果需要, 可一边借助外力或工装致使斜撑角 4Jb增大, 一边相对转动以使牵引摩擦副 Fla 解锁。 之后再装配凹槽半环例如 90b。 如果需要, 可借助通孔 97实施上述操作。
实施例七: 具有单一外壳的可无级定位自锁的空间斜撑式铰链 C9
参见图 16, 铰链 C9实际上就是对上述实施例及变型的综合。
首先, 凹槽环 80是一个包括有衬环 120和限力件 130的组合构件。 其中, 限力件 130是一个如图 1所示的环状袋形构件, 其环状端部 84上设置有径向凸 缘, 凸缘上的孔状传力特征曲面 93可容纳螺釘之类的紧固件, 以将铰链 C9固 定至例如座椅之类的机座。 衬环 120设置于限力件 130的周向凹槽中, 其外周 面上设置有一个径向延伸至入口 88外缘的凸缘式力臂 128。 该力臂 128与入口 88最佳地具有互补的横截面形状,其两个周向侧表面分别与两个周向壁面 95同 时啮合或抵触, 致使衬环 120与限力件 130不可旋转地连接成一个组合式袋形 凹槽环。 两构件共同限定出周向凹槽 92 , 并具有相应的壁面 96和 98。
其次, 为降低截锥面的应力强度和便于制作, 翻转了滑靴环 110 的轴向位 置,并将设置在同一径向高度上的倾斜方向互反的两组球面型斜撑子 50a和 50b, 分别铰接至同一个滑靴环 110 和衬环 120, 同时, 还将截锥型的牵引摩擦机构 F1设置成端面 V形槽的型式。 其中, 滑靴环 110的两个双截锥式摩擦面 112a 和 112b, 与承力环 60的两个内端表面 72a和 72b, 分别互补式地贴合, 构成具 有较小接触应力的牵引摩擦机构 Fla和 Flb。 当然, 为确保两对截锥面的同时贴 合, 滑靴环 110也可以是开口环。
最佳地, 两组斜撑子 50a和 50b呈等腰三角形设置, 即, Ψ3 = - 另夕卜, 为消除斜撑子 50翻转的可能, 还最佳地设置有双向限位机构。 该限位机构的限 位凸起 152和限位槽 113 , 被分别设置在轴向相对的一对凹穴 116和 76的位置 上, 其周向自由度 (Za + Zb)满足关系式 Za K p Zb Kb。 其中, Z, K含义同前, 且对应于一组斜撑子 50a的 Za3相当于图 22中的 Z和 K, 对应于另一组斜 撑子 50b的 Zb相当于图 22中的 Y, 下标 a、 b表示对应于不同的圓周方向。 当 然, 限位凸起 152也可变型为由例如螺旋拉簧、 压簧或弹簧钢丝充当的弹性销, 届时, 23和2¾应最佳地设置成等于零。
显然地, 图 16中牵引摩擦机构 F 1的双截锥式摩擦副以及传力摩擦机构 F2 的传力摩擦副, 均可变型为具有多摩擦片的摩擦副。
再次, 为实现枢转连接, 还设置有枢轴 210。 一方面, 借助延伸段 212a和 212b, 枢轴 210分别可转动地支撑在内周面 82a和 82b上。 另一方面, 通过例 如由两个割面 216和 214所形成的 D字形非圓配合, 枢轴 210不可旋转地分别 连接至管状基体 64的内孔, 以及例如座椅靠背之类的活动构件的安装孔中。 而 承力环 60的管状基体 64, 则可转动地延伸至衬环 120内孔中。
最后, 为实现人为可控,还设置有控制斜撑作用有和无的无级支撑机构 SS。 该机构 SS包括作为被支撑件的衬环 120、 支撑件 190以及限力件 130。 其中, 大致呈环状的支撑件 190,以轴向上可同时刚性抵触至衬环 120和限力件 130的 支撑端面 136, 以及可作周向自由度为 £w的有限转动的方式, 设置在衬环 120 与限力件 130之间, 并被其内孔中的管状基体 64径向定位。 在支撑件 190和衬 环 120 的相互面对的环形端面上, 均设置有至少包括一个的一组锯齿状导向齿 122和 192。 该两组导向齿 122和 192最佳地具有升角为 λ的互补式单向螺旋齿 面。 其中, 升角 λ不应大到致使自由状态中的支撑件 190被轴向挤压力挤压得 可以周向转动的程度。
数值上, 在衬环 120与支撑件 190的间距达到最小之际, 限力件 130周向 槽内的所有构件间的轴向自由度的总和, 大于零但小于等于上述周向自由度 £w所对应的螺旋式转动导向运动的轴向移动距离 £w X tan 。
为便于转动支撑件 190, 还在其外周面上最佳地设置有由入口 88外径向地 延伸出来的例如柱状力臂 198。 该力臂 198与入口 88的周向间隙, 被设置成大 到不妨碍实现周向自由度 £«的程度。 这样, 相对限力件 130转动支撑件 190, 便可在周向自由度 £w之内 , 轴向无级地调节衬环 120的被支撑高度。 该调节可 推动衬环 120将承力环 60无间隙地刚性压紧或抵触在壁面 98上, 或者撤销该 刚性压紧或抵触状态, 从而强制性地建立或撤销上述构件之间的轴向力封闭式 抵触连接, 迫使两组斜撑机构在两个圓周方向上可靠地摩擦自锁或解锁。
另外,密封环 208的内端设置有避让力臂 198的缺口 209 ,通过该缺口 209, 密封环 208可跟随力臂 198转动。 拉簧式预紧弹簧 100的两端, 最佳地分别连 接至导向齿 122和 192的外周面上, 或力臂 128和 198上, 以致使两相邻导向 齿 122和 192双方的导向面持续地相互贴紧。 例如, 借助设置其上的孔或销釘。
因此, 以克服预紧弹簧 100的弹力的方式转动力臂 198,便可随时解锁铰链 C9 , 任意调节被该铰链枢转连接的两个构件的相对角度, 例如靠背相对座垫的 俯仰角。 而撤除对力臂 198的控制, 弹簧 100的致动便即刻锁定住该相对角度。
应指出的是, 参照包括铰链 C9 在内的本发明和本申请人在专利文献 CN103527674A和 CN103527687A 中公开的技术方案中, 还可得到基于空间斜 撑机构的离心离合器和电控离合器的技术方案。
实施例八: 具有组合外壳的可无级定位自锁的空间斜撑式铰链 C10 参见图 17, 铰链 C10是对铰链 C9的变型。
首先, 凹槽环 80是一个组合构件。 该组合构件包括, 具体为杯形件 160的 限力件,具体为杯形壳式封口件的支撑件 190, 以及衬环 120。其中, 支撑件 190 通过螺纹副连接在杯形件 160的外周面上, 衬环 120通过花键副不可旋转地连 接至杯形件 160的内周面外端。 衬环 120的外端面 126支撑在支撑件 190的内 壁面 196上, 并与杯形件 160共同限定出周向凹槽 92。 为此, 在支撑件 190的 管状凸缘 194的内周面和杯形件 160的管状凸缘 166的外周面上, 分别设置有 螺纹式导向齿 192和 162。 在管状凸缘 166的内周面和衬环 120的外周面上, 分 别设置有花键齿 164和 132。
其次,承力环 60与枢轴 210合并成一个构件。如果需要,可以取消枢轴 210 的延伸段 212b, 或者, 延伸段 212a也可以不伸入支撑件 190的内孔。 亦即, 杯 形件 160或支撑件 190可以不设置中心圓孔。
再次, 预紧弹簧 100变型为设置在杯形件 160和支撑件 190之间的扭簧。 其两个端头分别嵌合在设置于管状凸缘 194的外周面, 以及杯形件 160的径向 凸缘内端面的相应安装孔中。
最后, 铰链 C10中各构件的设置具有这样的效果。 即, 在铰链 C10定位自 锁之际, 管状凸缘 166与内壁面 196之间的轴向间隙 53大于零, 但小于管状凸 缘 194与杯形件 160的凸缘之间的轴向间隙 5b, 亦即, 0 < 5a < 5b
应该指出的是, 根据常识, 无级支撑件 190也可变型为一个连接至花键齿 164外端内周面的螺纹堵头。 相应地, 两者相对的周面上设置有互补的螺纹。
实施例九: 可双向工作的空间斜撑式多槽传动轮 C11
参见图 18, 双向传动轮 C11是对专利文献 CN103527748A所公开的技术方 案实施变型的结果, 其改变在于以双向斜撑机构替代了后者的转动导向机构 G。
首先, 凹槽环 80是一个包括空心轴式限力件 170、 截锥式限力环 180以及 半卡环 178的组合构件。 其中, 限力环 180通过花键副不可旋转地连接至限力 件 170端部的外周面上。 其内孔中设置有与限力件 170的外花键齿 172互补的 内花键齿。 最佳地径向对称的半卡环 178a和 178b, 以轴向同时抵触至限力环 180的外端面,以及径向同时抵触至限力环 180的端面凸缘 182的内周面的方式, 径向收纳在限力件 170外端部的周向槽中, 从而轴向支撑和限制住限力环 180。 优选地,作为固定件的两个半卡环 178, 应径向过盈地胀接在凸缘 182的内周面 上。 当然, 固定件的固定连接方式也可由卡环连接变型为例如公知的螺纹连接 或焊接。 届时, 两个半卡环 178将变型为螺母或被取消。
其次, 设置在同一径向高度上的倾斜方向互反的两组球面型斜撑子 50a和 50b, 分别铰接至限力件 170—端的外径向凸缘 176的内端面, 亦即壁面 96, 以 及滑靴环 110的内端面。 该两个内端面上分别设置有球冠状凹穴 76和 116。 壁 面 96与设置在限力环 180上的包括壁面 98的内端面, 共同限定出外径向开口 的周向凹槽 92。在斜撑机构的径向之外,还最佳地设置有例如管状的防尘圏 188。 该防尘圏 188两端的密封唇, 可相对滑转地分别弹性套设在凸缘 176和滑靴环 110的相应外周面上。滑靴环 110可滑转地空套在限力件 170的管状基体 174的 外周面上, 其管状凸缘 118的外周面上, 设置有外花键齿 117。
如前所述, 在设置半卡环 178 的一端, 还可大致对称地设置一个斜撑机构 和滑靴环, 以获得取消传力摩擦机构 F2而具有两个牵引摩擦机构 F1的变型。
再次, 牵引摩擦机构 F1和传力摩擦机构 F2最佳地均为多摩擦片摩擦机构。 该两机构的环状内摩擦片 154a、 154b和 154c, 均通过各自内孔中的互补式花键 齿, 不可旋转地分别连接至外花键齿 117和 172。 滑靴环 110的摩擦面 112和限 力环 180的壁面 98, 以及内摩擦片 154a、 154b和 154c的外径向部位的摩擦面 155 ,均至少为大致的截锥面,并两两相对地限定出周向凹槽 157a ~ 157d。 同时, 各构件之间的内径侧还最佳地设置有防尘圏 184和 186。 两摩擦机构 F1和 F2 的外摩擦片 156a、 156b和 156c, 以及承力环 60, 形式上均为例如钢丝绳的挠性 中间传动件。 该一组中间传动件以周向延伸至少半周的方式, 分别对应地卷绕 在周向凹槽 157a、 157b, 157c和 157d内。
毫无疑问, 内、 外摩擦片 154和 156的上述数量只是示意性的, 其显然可 以具有包括零在内的任何所需数量和任意组合方式。 取消所有摩擦片时, 多槽 传动轮 C11将变型为单槽传动轮。 而为了提升和确保限力环 180的同轴度, 其 内端面上也可最佳地设置有延伸至内摩擦片 154c内孔中的花键毂式管状凸缘。
另外, 还可最佳地在滑靴环 110至限力环 180的任何一个轴向间隙中设置 预紧弹簧 100,以消除所有可能的轴向间隙,提高斜撑机构的工作可靠性。 同时, 还可最佳地设置防止斜撑子 50a和 50b翻转的一个如前所述的双向限位机构。
如前所述, 传动轮 C11 中的斜撑子 50a和 50b也可分别铰接至相互嵌套的 两个滑靴环 110a和 110b。 其中的一个滑靴环例如 110a是限力环 180, 另一个滑 靴环例如 110b则 4氏触在限力环 180的相应端面上。 优选地, 还应在滑靴环 110b 与限力环 180之间设置一个嵌合机构, 以确保两构件间转矩传递的可靠。 该嵌 合机构的周向自由度,可确保对应的斜撑子例如 50b的斜撑角 4Jb Pb,min。 当然, 对于仅需单向传动的摩擦轮, 也可仅仅设置一组斜撑子例如 50a。 届时, 应设置 预紧弹簧 100, 并在凸缘 176的内端面或滑靴环 110的内端面上, 设置至少一个 轴向抵触至对方的阻挡凸起, 其轴向高度应正好致使斜撑角 Ψ小于等于 Pmin
作为示例, 图 18所示的双向多槽传动轮 C11中, 牵引摩擦机构 F1设置有 4个摩擦片。 该设置的参数效果是, 假定牵引摩擦机构 F1的所有摩擦面之间的 摩擦系数均为 0.15 , 那么, 其当量摩擦系数 μ?便是 5 χ 0.15 χ 1.5 = 1.125 (假定 5 个摩擦面的 Rj/Rx = 1.5 ), 对应的摩擦角 Pi即为 arctan(1.125) = 48.37° , 斜撑角 Ψ 取值范围扩大至 0° ~ 48.37°。 仍以上述斜撑空间垂直跨度等于 10mm的情况为 例,其最大斜撑长度 /斜撑线 S将为 15.05mm,确保斜撑子 50不翻转的斜撑变形 量的上限为 5.05mm, 已达到 10mm斜撑空间跨度的 50.5%。 显然, 该数值 /比例 提供的防止斜撑子翻转的能力, 远远超出实际所需, 斜撑力和轴向挤压力相较 现有技术将因此而大为减小, 传动轮因而具有接近理想的可靠性。 而且, 在具 有同等传动能力的情况下, 传动轮的径向尺寸相较现有技术将明显地为小。 容易想到, 当斜撑角 Ψ取值较大时, 例如 Ψ = 45° , 为降低表面应力, 每个 凹穴 116和 76所在的局部端面的法线, 应重合于该 Ψ = 45°的斜撑线 S, 以使每 个斜撑子 50的斜撑力都最佳地正好作用于其所在凹穴 116和 76的内表面中心。
必需指出的是, 多槽传动轮 C11是一种依靠空间斜撑式摩擦力传递转矩的 传动轮, 其具有结构破坏前绝对不打滑的传动特性。 其传动原理完全不同于传 统理论, 传动能力更不受经典的欧拉公式的制约。 只要形式上均为挠性中间传 动件的外摩擦片 156和承力环 60上作用有张力, 斜撑作用就会始终存在, 斜撑 摩擦副就会始终自锁。 因此, 依据本发明的摩擦传动轮不存在打滑的安全问题, 特别适用于卷扬、 提升、 牵引设备。 例如, 用作多绳摩擦式提升机的主导轮。
关于传动轮的更多实施方式, 可参阅公知技术或者本申请人在专利文献 CN102562860A和 CN103527748A中公开的技术方案, 本申请不再详述, 而 是全文参引并结合于此。
需最后指出是, 参照本申请人在中国专利文献 CN 10252871 OA中公开的技 术方案等, 本申请显然还可具有斜撑式单双向扳手和 /或螺丝刀等的应用变型。
以上仅仅是本发明针对其有限实施例给予的描述和图示, 具有一定程度的 特殊性, 但应该理解的是, 所提及的实施例和附图都仅仅用于说明的目的, 而 不用于限制本发明及其保护范围, 对其进行的各种变化、 等同、 互换以及结构 或各构件位置的更动, 都将被认为未脱离开本发明构思的精神和范围。

Claims

权利要求书
1. 一种空间斜撑式超越离合器, 包括:
绕一轴线回转并至少用于提供轴向封闭功能的至少一个凹槽环, 其形成有 绕所述轴线回转的至少大致半周的周向 槽;
绕所述轴线回转并至少用于 受轴向双侧压力的^ ^力环, 其至少部分地且 可转动地设置于所述周向凹槽中;
设置在所述周向 槽中且最少为一个的至少一组斜撑子, 其均具有两个承 力面并以朝同一圓周方向倾斜的方式位于所述承力环的至少一个轴向端; 以及, 至少一个预紧弹簧, 其直接或间接地连接至同一组的每一个所述斜撑子, 以致使所述一组斜撑子轴向上直接或间接地分别持续抵触至所述周向 槽的一 壁面以及所述 力环的内端表面, 并同时致使所述^力环持续地氐触至所述周 向凹槽的另一壁面, 并形成直接传递摩擦转矩的回转式传力摩擦机构 F2;
其中, 在向同一圓柱面的径向投影中, 所述斜撑子的斜撑力的作用线与所 述轴线之间的夹角, 称为斜撑角且大于零, 但小于或等于转矩传递路径中的经 由所述斜撑子的那一个分支路径中的所有相关摩擦机构的当量摩擦系数, 所分 别对应的各摩擦角中的最小的那一个。
2. 按权利要求 1所述的超越离合器, 其特征在于: 所述承力环的径向外侧 设置有环形端面凸缘, 该凸缘轴向延伸至所述斜撑子的径向外侧, 以径向地限 制所述斜撑子的几何位置。
3. 按权利要求 1所述的超越离合器, 其特征在于: 所述凹槽环是环状袋形 构件, 其设置有绕所述轴线回转的内周面, 位于该内周面上的大致半周的所述 周向 槽, 以及由所述袋形构件的外周面连通至该周向 槽的入口。
4. 按权利要求 1所述的超越离合器, 其特征在于:
所述 槽环是轴向力封闭式组合构件, 其中的限定出所述周向 槽的两个 构件至少通过不可旋转的方式相连接, 该两个构件中的至少一个是用于封闭轴 向斜撑力的限力件。
5. 按权利要求 4所述的超越离合器, 其特征在于: 所述限力件包括一个杯 形件, 以及, 借助紧固连接方式轴向紧固至该杯形件的杯口的一个封口件, 所 述杯形件和所述封口件的至少之一设置有中心圓孔。
6. 按权利要求 4所述的超越离合器, 其特征在于: 所述组合构件包括径向 上至少大致对称的两个凹槽半环和至少一个环形箍, 该两个凹槽半环的形状具 有这样的组合效果, 即, 二者径向对接所构成的组合构件, 设置有绕所述轴线 的中心圓孔以及位于该中心圓孔内周面上的绕所述轴线的所述周向凹槽; 所述 环形箍设置在所述组合构件的中部和外端部之一的外周面上, 以固定所述组合 构件。
7. 按权利要求 1 ~ 6任一项所述的超越离合器, 其特征在于: 所述夹角的 最小值大于或等于所述传力摩擦机构 F2的传力摩擦副的当量摩擦系数所对应的 摩擦角 P2
8. 按权利要求 1 ~ 6任一项所述的超越离合器, 其特征在于: 所述斜撑子 是柱状构件, 其两个所述承力面由同一平面上的曲率中心不相重合的两段外凸 型曲线沿同一直线方向延伸而成。
9. 按权利要求 1 ~ 6任一项所述的超越离合器, 其特征在于:
所述斜撑子的两个所述承力面均为曲率中心不相重合的球冠;
还包括可转动地设置在所述周向凹槽中的至少一个滑靴环, 其轴向内端面 抵触至所述一组斜撑子的同一轴向端的所述承力面, 其轴向外侧的摩擦面抵触 至所述周向凹槽的所述一壁面和所述承力环的所述内端表面之一;
与所述一组斜撑子的所述承力面轴向抵触相连的表面上, 均互补地设置有 数量相同的各一组球冠状凹穴, 用以对应地收纳所述一组斜撑子的所述承力面。
10. 按权利要求 9所述的超越离合器, 其特征在于: 所述斜撑子是通过紧 固和非紧固方式之一相连接的组合构件, 其中的两个组成构件包括有所述球冠。
11. 按权利要求 9所述的超越离合器, 其特征在于: 所述滑靴环的所述摩 擦面与所述一壁面和所述内端表面之一所构成的回转式牵引摩擦机构 F1 , 具有 多摩擦片式摩擦副, 其数量上均最少为一个且轴向交错排列的两组摩擦片, 不 可旋转地分别连接至所述滑靴环和所述周向 槽。
12. 按权利要求 9所述的超越离合器, 其特征在于: 所述滑靴环的所述摩 擦面与所述一壁面和所述内端表面之一所构成的回转式牵引摩擦机构 F1 , 具有 截锥面型摩擦副。
13. 按权利要求 9所述的超越离合器, 其特征在于: 还包括至少一个离心 机构, 该离心机构包括离心构件和离心力作用面, 所述离心构件和所述离心力 作用面分别设置在所述滑靴环和所述^力环上。
14. 按权利要求 1 ~ 8任一项所述的超越离合器, 其特征在于:
所述至少一组斜撑子为所述倾斜方向互反的两组斜撑子;
所述两组斜撑子的径向内侧还设置有包括至少一个径向型拨爪的拨爪环, 所述拨爪以分别致使所述两组斜撑子的所述夹角增大的方式, 可驱动地连接至 所述两组斜撑子。
15. 按权利要求 9 ~ 13任一项所述的超越离合器, 其特征在于:
所述至少一组斜撑子为所述倾斜方向互反的两组斜撑子;
所述滑靴环为径向上可转动地相互套接的两个, 每个所述滑靴环的所述内 端面上均设置有至少一个轴向延伸的解锁凸起;
所述两组斜撑子的径向内侧还设置有包括至少一个径向型拨爪的拨爪环, 所述拨爪以分别致使所述两组斜撑子的所述夹角增大的方式, 可驱动地连接至 所述两个解锁凸起。
16. 按权利要求 1 ~ 15任一项所述的超越离合器, 其特征在于: 所述传力 摩擦机构 F2具有多摩擦片式摩擦副,其数量上均最少为一个且轴向交错排列的 两组摩擦片, 不可旋转地分别连接至所述承力环和所述周向凹槽。
17. 按权利要求 14 ~ 16任一项所述的超越离合器, 其特征在于: 还包括直接传递转矩的嵌合机构, 其相互嵌合的至少一对凸起和 槽分别 设置在所述^力环与所述拨爪环双方相对的环形端面上;
所述嵌合机构在两个圓周方向上的周向自由度, 分别大于所述拨爪与所述 两个解锁凸起在相同圓周方向上的周向间隙。
18.一种具有权利要求 14 ~ 16任一项所述的超越离合器的空间斜撑式联轴 器, 其特征在于, 不包括所述拨爪环。
19.一种具有权利要求 14 ~ 16任一项所述的超越离合器的可无级定位自锁 的空间斜撑式铰链, 其特征在于:
不包括所述拨爪环;
还包括不可旋转地设置在所述周向凹槽中的衬环; 以及
还包括绕所述轴线设置的无级支撑机构, 该机构设置在所述限力件和衬环 之间, 以轴向上无级移动该衬环的方式, 建立所述限力件与所述承力环、 所述 斜撑子以及所述滑靴环之间的轴向力封闭式抵触连接。
20. —种空间斜撑式传动轮, 包括:
绕一轴线回转并具有轴向封闭功能的外径向凹槽环, 该凹槽环是一个形成 有绕所述轴线回转的外径向周向 槽的组合构件, 其限定出所述周向 槽的设 置有外凸缘的轴状限力件与设置有回转型壁面的限力环不可旋转地相连接, 其 固定件固定地连接至所述限力件的远离所述外凸缘的外周面上, 以轴向限制所 述限力环远离所述外凸缘的趋势;
设置在所述周向 槽中且数量上最少各为一个的至少两组斜撑子, 该两组 斜撑子均具有两个承力面并以圓周倾斜方向互反的方式抵触至所述周向 槽的 同一壁面;
可转动地设置在所述周向凹槽中的至少一个滑靴环, 其轴向内端面抵触至 所述两组斜撑子的同一轴向端的所述承力面, 其轴向外端外环侧设置有回转型 摩擦面; 以及
与所述两组斜撑子的所述^力面 ·|氏触相连的所述一壁面和所述内端面上, 均互补地设置有数量相同的两组凹穴, 用以对应地收纳所述两组斜撑子的所述
7 力面;
当作用于所述滑靴环的所述轴向外端的摩擦力致使所述滑靴环通过所述两 组斜撑子抵触至所述周向 槽的所述同一壁面时, 所述两组斜撑子的斜撑力的 作用线在同一圓柱面的径向投影中, 与所述轴线之间所分别形成的两组夹角, 即为两组斜撑角且均大于零, 但又分别小于或等于转矩传递路径中的经由各自 对应的一组斜撑子的那一个分支路径中的所有相关摩擦机构的当量摩擦系数, 所分别对应的各摩擦角中的最小的那一个。
PCT/CN2014/072393 2013-02-22 2014-02-21 空间斜撑式超越离合器、联轴器、铰链和传动轮 WO2014127739A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320097392 2013-02-22
CN201320097392.9 2013-02-22

Publications (1)

Publication Number Publication Date
WO2014127739A1 true WO2014127739A1 (zh) 2014-08-28

Family

ID=50859126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072393 WO2014127739A1 (zh) 2013-02-22 2014-02-21 空间斜撑式超越离合器、联轴器、铰链和传动轮

Country Status (2)

Country Link
CN (2) CN203702922U (zh)
WO (1) WO2014127739A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014127739A1 (zh) * 2013-02-22 2014-08-28 Hong Tao 空间斜撑式超越离合器、联轴器、铰链和传动轮
CN104668906B (zh) * 2015-01-29 2017-04-26 中南大学 一种超越离合器的斜撑块的制造工艺
JP2019086138A (ja) * 2017-11-10 2019-06-06 Ntn株式会社 逆入力遮断クラッチ
CN110750842B (zh) * 2019-10-23 2021-04-06 中南大学 可控斜撑离合器楔块设计方法
CN111537125A (zh) * 2020-04-03 2020-08-14 中国航发哈尔滨东安发动机有限公司 一种离合器阻力矩测量装置及测量方法
CN112629727B (zh) * 2020-12-14 2021-08-03 大连理工大学 环形抛光过程中的限位支撑及摩擦力在线监测一体化装置
CN112832564B (zh) * 2021-02-18 2024-05-28 甘肃工大舞台技术工程有限公司 一种侧车台驱动机
CN115263928B (zh) * 2022-08-18 2023-06-20 临清市百诺轴承有限公司 具有承受轴向载荷的深沟球轴承

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307870A (en) * 1980-04-11 1981-12-29 Elkem A/S Clutch mechanism for hoisting apparatuses
JP2000320580A (ja) * 1999-05-10 2000-11-24 Fuji Univance Corp 一方向クラッチ
DE19955851A1 (de) * 1999-11-20 2001-05-23 Continental Teves Ag & Co Ohg Spreizeinrichtung
JP2006207666A (ja) * 2005-01-26 2006-08-10 Kaaz Corp ブレーキ付きクラッチ装置
CN101936346A (zh) * 2009-06-29 2011-01-05 洪涛 空间楔合式摩擦超越离合器
CN102537126A (zh) * 2010-12-30 2012-07-04 洪涛 具有袋形构件的空间楔合式摩擦超越离合器
CN102537124A (zh) * 2010-12-30 2012-07-04 洪涛 空间楔合式摩擦联轴器和安全离合器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2728825Y (zh) * 2004-08-05 2005-09-28 贾政 全自动机动车节能滑行器
CN102562889B (zh) * 2010-12-30 2016-05-25 洪涛 基于拨动式超越离合机构的通用驻车制动器及其操纵方法
CN102537125B (zh) * 2010-12-30 2016-05-11 洪涛 空间楔合式摩擦连接器
WO2014127739A1 (zh) * 2013-02-22 2014-08-28 Hong Tao 空间斜撑式超越离合器、联轴器、铰链和传动轮

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4307870A (en) * 1980-04-11 1981-12-29 Elkem A/S Clutch mechanism for hoisting apparatuses
JP2000320580A (ja) * 1999-05-10 2000-11-24 Fuji Univance Corp 一方向クラッチ
DE19955851A1 (de) * 1999-11-20 2001-05-23 Continental Teves Ag & Co Ohg Spreizeinrichtung
JP2006207666A (ja) * 2005-01-26 2006-08-10 Kaaz Corp ブレーキ付きクラッチ装置
CN101936346A (zh) * 2009-06-29 2011-01-05 洪涛 空间楔合式摩擦超越离合器
CN102537126A (zh) * 2010-12-30 2012-07-04 洪涛 具有袋形构件的空间楔合式摩擦超越离合器
CN102537124A (zh) * 2010-12-30 2012-07-04 洪涛 空间楔合式摩擦联轴器和安全离合器

Also Published As

Publication number Publication date
CN103851108B (zh) 2016-06-08
CN203702922U (zh) 2014-07-09
CN103851108A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
WO2014127739A1 (zh) 空间斜撑式超越离合器、联轴器、铰链和传动轮
WO2011000300A1 (zh) 空间楔合式摩擦超越离合器
JP2012531562A5 (zh)
TWI424127B (zh) 包含彈性碟片機構的改進式鎖定差速器
CA2810979C (en) Load sensing transmission and hoisting machine including the same
JPS6223171B2 (zh)
WO2008022543A1 (fr) Dispositif de freinage présentant des surfaces de friction tronconiques, destiné à un treuil électrique
KR20210015663A (ko) 회전 드라이브 장치 및 그것을 갖춘 로봇의 로봇암
JP2001328076A (ja) トルク伝達工具
JP5193875B2 (ja) 動力ナットランナー用トルク応答解放クラッチ
JP2019086154A (ja) クラッチ装置
WO2012089131A1 (zh) 空间楔合式摩擦连接器
JPS6263223A (ja) 滑りクラツチ
WO2012089129A1 (zh) 基于拨动式超越离合机构的通用驻车制动器及其操纵方法
JP2004523706A (ja) 連続可変トランスミッションおよびトランスミッション部材
JP2006513379A (ja) 無段階に調整可能な伝動装置
EP1210533A1 (fr) Transmission automatique d&#39;un vehicule automobile
WO2016152973A1 (ja) 電動式ディスクブレーキ装置
JP5466260B2 (ja) ディスクブレーキ装置
JPS594598A (ja) ホイスト用荷重制限装置
JPS5849479B2 (ja) フカセイドウソウチ
JP4192398B2 (ja) トロイダル型無段変速機
JPH01158261A (ja) 逆転防止装置
TWI444305B (zh) Non-synchronous engagement of the clutch
CN104963963B (zh) 具有大楔角的空间楔合式多槽传动轮以及包括该传动轮的多绳摩擦式提升设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754359

Country of ref document: EP

Kind code of ref document: A1