WO2012089129A1 - 基于拨动式超越离合机构的通用驻车制动器及其操纵方法 - Google Patents

基于拨动式超越离合机构的通用驻车制动器及其操纵方法 Download PDF

Info

Publication number
WO2012089129A1
WO2012089129A1 PCT/CN2011/084841 CN2011084841W WO2012089129A1 WO 2012089129 A1 WO2012089129 A1 WO 2012089129A1 CN 2011084841 W CN2011084841 W CN 2011084841W WO 2012089129 A1 WO2012089129 A1 WO 2012089129A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
parking brake
wedge
circumferential
guide
Prior art date
Application number
PCT/CN2011/084841
Other languages
English (en)
French (fr)
Inventor
洪涛
Original Assignee
Hong Tao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Tao filed Critical Hong Tao
Publication of WO2012089129A1 publication Critical patent/WO2012089129A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/04Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by moving discs or pads away from one another against radial walls of drums or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D41/00Freewheels or freewheel clutches
    • F16D41/22Freewheels or freewheel clutches with clutching ring or disc axially shifted as a result of lost motion between actuating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D67/00Combinations of couplings and brakes; Combinations of clutches and brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/36Helical cams, Ball-rotating ramps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2127/00Auxiliary mechanisms
    • F16D2127/001Auxiliary mechanisms for automatic or self-acting brake operation
    • F16D2127/004Auxiliary mechanisms for automatic or self-acting brake operation direction-responsive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2127/00Auxiliary mechanisms
    • F16D2127/001Auxiliary mechanisms for automatic or self-acting brake operation
    • F16D2127/005Auxiliary mechanisms for automatic or self-acting brake operation force- or torque-responsive

Definitions

  • the present invention is a dependent patent application of the Chinese patent application No. 201010222712.X, 201020186785.3 and 201020187124.2, which is proposed by the applicant as a space-wrap-type friction overrunning clutch and a full-channel self-resolving overrunning clutch.
  • the entire disclosure of the three prior patent applications is incorporated herein by reference.
  • the present invention generally relates to a brake device in all fields of mechanical transmission and transportation, and to a safety drive/brake device in the field of hoisting, lifting and traction equipment, and stepless positioning/locking A hinge or pivot, an irreversible transmission, and more particularly to a parking brake having a self-energizing braking force that does not require an energizing device and a transmission.
  • Background technique
  • braking force relies heavily on the engagement force provided by the energizing device or the physical strength of the operator, the slippage failure, the complexity of the structure, the large volume, the frequent hydraulic and electronic techniques, the lack of reliability and safety, and the inconvenience of operation.
  • the switching between the machine/mechanical drive torque and the parking brake torque is difficult to seamlessly connect, and the starting operation is the most cumbersome and prone to failure or loss of control.
  • the present invention is directed to designing a parking brake based on a completely new technical principle to solve the above problems.
  • the technical problem to be solved by the present invention is to provide a movable type machine/mechanism, which can adaptively maintain the parking brake state before the machine/mechanical drive is driven to start driving, based on the toggle type A universal parking brake that goes beyond the clutch mechanism. It has the advantages of high reliability, high safety, simple structure, low cost, easy operation, no need to provide external braking force source and no slipping of braking, and whether the machine/mechanical parking is on the flat, uphill or downhill
  • the lot, without any ramp-assisted starting system has the advantage of a simple parking and start-up operating procedure that is completely different from the parking level.
  • the universal parking brake based on the toggle type overrunning clutch mechanism of the first aspect of the present invention includes a toggle type overrunning clutch having a dial member, a guide member and a friction member provided with a rotary friction surface.
  • the mechanism, in the non-parking braking state, the overrunning clutch mechanism is a transmission device that transmits driving torque, which is input by its dial member and output by its guide member; and at least in the parking brake state , the friction member is set to be non-rotatable.
  • the above-described toggle type overrunning clutch mechanism is a one-way roller type overrunning clutch with a finger, a two-way roller type overrunning clutch with a finger, a one-way diagonal overrunning clutch with a finger, or a finger
  • the two-way diagonal overrunning clutch has a ring provided with a rotary friction surface as a friction member, and the other ring or star wheel is a guide member, and the finger is a dial member.
  • the toggle overrunning clutch mechanism is an irreversible transmission or a full channel self-returning friction overrunning clutch.
  • the irreversible transmission of the first aspect includes at least one traction friction mechanism that is pivotable about an axis and axially engageable, having at least substantially annular intermediate members that are rotated about the axis and are each provided with a friction surface And a friction member for transmitting frictional torque between the two members; at least one rotary guide mechanism for providing an engagement force to the traction friction mechanism and rotating about the axis, having at least one rotation about the axis and each having a corresponding guide surface a substantially annular guide member and the intermediate member; a dial member disposed around the axis, which is non-rotatably connected to the intermediate member and the guide member, the connection having a circumferential degree of freedom greater than zero;
  • the intermediate member rotates relative to each other, the intermediate member can enter a wedged state, and in the wedged state, the integrated circumferential freedom of the dial member relative to the intermediate member and the guide member is greater than or equal to zero, and the dial member is in any circumferential direction.
  • the active rotation of the upper friction member always firstly circumferentially abuts and drives one of the intermediate member and the guide member to start the wedge turning And at least indirectly circumferentially resisting and causing the other of the two members to begin to rotate before the two members circumferentially rigidly interfere with each other in the direction of the unwrapped rotation; and the first is circumferentially interfered a driven member whose circumferential direction of the guide surface for mutually resisting in the above-mentioned wedged state is exactly opposite to the direction of the above-described active rotation of the dial member; and, when the guide member and the friction member are driven by the intermediate member When connected to a friction body, the angle of increase ⁇ of the mutual contact portion between the guide member and the guide surface of the intermediate member is greater than zero and less than or equal to ⁇ , that is, 0 ⁇ ⁇ ⁇ , wherein ⁇ is capable of being formed in the The maximum value of the lift angle ⁇ of the self-locking of the guiding friction pair of the abutting portion
  • two friction mechanisms are provided which are rotated about the above-mentioned axis, one of which is the above-mentioned traction friction mechanism, and the other of which is a force-transmitting friction mechanism which is coupled to the guide member and the friction member at least non-rotatably respectively, or One of the above traction friction mechanisms.
  • the range of the above-mentioned rising angle ⁇ may also be: ⁇ ⁇ ⁇ ⁇ , or 0 ⁇ ⁇ ⁇ (when ⁇ > 0 ), where ⁇ is the guiding friction pair capable of making the abutting portion
  • is the guiding friction pair capable of making the abutting portion
  • the minimum value of the lift angle ⁇ of the lock is also the maximum value of the lift angle ⁇ of the traction friction pair of the traction friction mechanism.
  • the method further includes at least one force limiting member connectable to at least one of the guide member, the intermediate member and the friction member in at least one non-rotatable manner to form a force-closed combination member to establish mutual The axial force is closed against the connection.
  • the guiding member, the intermediate member, the friction member or the force limiting member is a pocket member for establishing an axial force closed contact connection with each other, which is disposed at least approximately half a week around the axis a circumferential surface, and a substantially half-circumferential circumferential groove on the inner circumferential surface and an inlet connected to the circumferential groove by the outer circumferential surface of the above-described pocket member.
  • the dialing member is provided with a shifting tooth
  • the intermediate member or the force-limiting member that is non-rotatably connected thereto is provided with a wedge-wounding tooth
  • the guiding member or the force-limiting member that is non-rotatably connected thereto is provided with a force-transmitting convex
  • the dial member can be rotated by the circumferential movement of the dialing teeth with the wedge teeth and the force transmitting teeth, respectively, causing the intermediate member and the guide member to rotate.
  • the above-mentioned shifting teeth, the de-cleaving teeth and the force-transmitting teeth are provided as circumferential convex teeth or end surface convex teeth.
  • the two members can also be placed at the same time on the circumferential midpoint position of the free rotation portion of the dial member.
  • the above-mentioned plucking teeth, the rib teeth and the force transmitting teeth are arranged as uniform and uniform circumferential symmetrical teeth, and the circumferential degrees of freedom are in accordance with the inequality, sa - s ⁇ sg ⁇ Sa + ⁇ , and sa - ⁇ > 0.
  • represents the circumferential freedom of the intermediate member relative to the guide member
  • s a represents the circumferential freedom of the dial member relative to the intermediate member
  • ⁇ g represents the circumferential freedom of the dial member relative to the guide member.
  • the force limiting element may comprise two semi-circular shells and at least one annular hoop at least substantially symmetric in the radial direction, the shape of the two semi-circular shells having such a combined effect, that is, the combined members formed by the radial joints of the two a central circular hole around the axis and a circumferential 1HJ groove around the axis on the inner circumferential surface of the central circular hole; the annular hoop being disposed on the outer circumferential surface of the central portion or the outer end portion of the composite member Form, holding the composite member.
  • the first solution further includes a wedge control mechanism for operatively biasing the wedge and the wedge, and alternately continuing to impart the above-described toggle over clutch mechanism in a reciprocal manner;
  • the overrunning clutch mechanism When the control mechanism is actuated, the overrunning clutch mechanism will continue to have a wedge-incorporating capability, and the rotation of the guide member relative to the friction member will cause the universal parking brake to enter the braking state; and when the wedge control mechanism is not actuated, the override The clutch mechanism will continue to have the ability to unwind, and the rotation of the dial relative to the friction member will cause the universal parking brake to release the braking state.
  • the above-mentioned wedge control mechanism includes an elastic contraction mechanism having at least one elastic element and at least an actuating action, the elastic element acting on the element, and providing the traction mechanism to the traction mechanism to be non-rotatably and at least
  • the grounding member is disposed on the friction member and operatively abuts against the intermediate member to prevent relative rotation between the two sides.
  • the wedge control mechanism further includes a rotation stop member, a return spring, and an actuating ring and a steering ring disposed about the axis.
  • a rotation stop for operatively coupling the friction member to the frame in a non-rotatable manner, at least indirectly; an actuation ring for operatively actuating the actuator; the steering ring axially rests on the rotation member and Between the moving rings, the rotation preventing member and the actuating ring are operatively moved; the return spring is disposed on the inner peripheral surface of the rotation preventing member and the actuating ring to continuously axially elastically press the two rings to the operating ring.
  • the above-described wedge control mechanism includes an elastic pretensioning mechanism having at least one elastic member for continuously maintaining at least an indirect frictional connection between the intermediate member and the friction member.
  • the wedge control mechanism described above further includes a rotation stop for operatively connecting the friction member to the frame at least indirectly in a non-rotatable manner.
  • the wedge control mechanism further includes a circumferential centering mechanism and a claw ring.
  • the centering mechanism has at least one centering protrusion, continuously receiving the reference groove of the centering protrusion, correspondingly accommodating the centering groove of the centering protrusion, and a centering spring, the reference groove and the centering concave
  • the grooves are respectively disposed on the outer peripheral surfaces of the intermediate member and the guide member; the centering protrusions are disposed on the inner peripheral surface of the centering ring on the outer peripheral surface of the two members, and the centering spring acts on the centering ring to continuously The latter's centering projection is pressed toward the centering 1HJ slot.
  • the claw ring is non-rotatably and at least indirectly disposed on the friction member, and the end surface of the claw ring is provided with There is one axially extending retracting pawl extending from one end of the centering groove to the corresponding end face of the centering ring.
  • the universal parking brake based on the toggle type overtaking clutch mechanism of the second aspect of the present invention includes the universal parking brake of the first aspect described above, and the wedge control mechanism as described above, but not It is used as a transmission to transmit drive torque.
  • the method for operating the universal parking brake according to the first aspect of the present invention includes: detecting a transmission output shaft and a drive shaft of a movable machine/mechanical provided with a parking brake; The speed of the driving wheel or the follower wheel, when the state of the speed equal to zero continues to the threshold time, the wedge control mechanism is actuated to cause the parking brake to continuously have the parking brake capability; meanwhile, the parking brake is set to be detected The state change amount of the accelerator operating device of the movable machine, when the amount of change is greater than zero, cancels the above-described actuation of the wedge control mechanism to cause the parking brake to continuously have the ability to release the parking brake.
  • Inter-ground setting Set on other components that are not rotatably connected to the set destination component.
  • Rotating guide mechanism Converts the circumferential relative rotation into a guiding mechanism including at least an axial relative movement or movement tendency.
  • a sliding/rolling spiral or partial screw mechanism a radial pin groove mechanism, an end face wedge mechanism, an end face fitting mechanism, an end face ratchet mechanism, and a cylindrical/end face cam mechanism with a strictly uniform and non-rigid spiral angle.
  • Space wedge mechanism A mechanism consisting of a rotary guide mechanism and a traction friction mechanism.
  • Wedge Also known as wedge, as opposed to wedge/wrap, is the working process and state in which the interposer 90 is drivingly coupled/combined with the friction member 70 into a friction body.
  • the important limit angle of the space wedge mechanism is at least axially in contact with the traction friction surface 72 of the friction member 70 by its friction surface, for example, 104 to form a conflict
  • the resultant force of the normal pressure of the portion W is not perpendicular to the rotation axis X of the rotary traction friction mechanism F1 comprising at least one set of traction friction pairs; on the other hand, through its friction surface or the guide surface 94 facing the same circumferential direction, At least one axial contact with the corresponding guiding surface 54 of the guiding member 50 to form a resultant force of the normal pressure of the four contact portions ⁇ a set of guiding friction pairs including at least one of the rotational guiding mechanisms G not perpendicular to the rotational axis X
  • the average of the angle between the common tangent of the abutting portion and the plane perpendicular to the axis of rotation X is referred to as the angle of elevation ⁇ of the abut
  • the guiding friction pair is in a constant self-locking state, and the traction friction pair is in a general static friction state that cannot be self-locking.
  • the intermediate member 90 can wedge the guiding member 50 and the friction member 70 into a friction body, but when the friction member 70 is overloaded relative to the guiding member 50, the traction friction pair can still be normally transferred into the sliding friction state by the static friction state to guide the friction.
  • the assistant can still be stable and self-locking.
  • the space wedge mechanism is in a semi-wedged state, and the overrunning clutch mechanism is in a non-fully engaged state.
  • the intermediate member 90, the guide member 50 and the friction member 70 are forcibly wedged/combined into a single rotating body, and they do not slip and climb each other even if they are overloaded to damage.
  • the spatial wedge mechanism is thus in an absolute self-locking/wedge state similar to a slanted overrunning clutch.
  • the above-mentioned rising angle ⁇ is the wedge angle of the space wedge mechanism, also called the wedge angle/crowding angle, and only when 0 ⁇ ⁇ , the space wedge mechanism can be wedged and can be engaged beyond the clutch mechanism.
  • the universal parking brake according to the present invention has higher reliability and higher safety, simple and compact structure, low manufacturing cost, simple operation, and no need for an energy supply device and The transmission, and the brakes do not slip.
  • the mobile machine/mechanical equipped with the parking brake, whether it is parked on the ground or on the upper and lower ramps, has the same starting procedure as the flat, simple and smooth without any special experience or attention, no need Any ramp assisted starting system.
  • Figure 1 is an axial sectional view of a universal parking apparatus according to a first embodiment of the present invention.
  • Fig. 2 ⁇ 2 ⁇ is a partial development view of the radial profile of the tooth profile of each mechanism in Fig. 1 to the same outer cylindrical surface, wherein Fig. 2 ⁇ corresponds to the braking state of the vehicle when parking in the downhill direction, Fig. 2 ⁇ Corresponding to the braking state when the vehicle is parked in the uphill direction, for the sake of simplicity, only one convex tooth of the dial member is schematically shown, and each of the intermediate member and the guiding member receives the convex tooth.
  • the cogging regardless of its specific number, whether it is specifically a face tooth or a peripheral tooth.
  • Figure 3 is an end elevational view, in elevation, of the annular pocket friction member of Figure 1 having a force closure function.
  • 4 is an axial cross-sectional view of a universal parking apparatus in accordance with a second embodiment of the present invention.
  • Figure 5 is an axial cross-sectional view of a universal parking apparatus in accordance with a third embodiment of the present invention.
  • Figure 6 is an axial cross-sectional view of a universal parking apparatus in accordance with a fourth embodiment of the present invention.
  • the upper half of the axis X of Figs. 1, 4-6 corresponds to the wedge-wound separation state during driving, and the lower half corresponds to the wedge-engaged state of the parking.
  • the present invention will hereinafter be described as a representative of a toggle type overrunning clutch mechanism with a non-reciprocal transmission device as a specific application background for a wheeled motor vehicle in a movable machine/mechanism, and a dial-type overtaking clutch mechanism.
  • the embodiment of the universal parking brake and its handling method will be described in detail.
  • the detailed description of the irreversible transmission device is recorded on the same day as the applicant's application number 201010******.*, which is called the space wedge type irreversible transmission device and the full-range active drive type hoisting mechanism.
  • the entire contents of this patent application are incorporated herein by reference.
  • Embodiment 1 The friction-fixed fixed-turn wedge universal parking brake P1
  • the universal parking brake P1 with shaft-axis transmission is actually a simple and straightforward application of a two-way irreversible transmission that operates in a controlled reverse-stop mode of operation. It includes a guide member 50 that is optimally formed about the axis X and that is optimally stepped annular. On the inner end surface of the outer ring side, a set of bidirectional helical guide teeth 52 which are optimally distributed circumferentially around the axis X are provided, and an inner circumferential surface of the tubular base body 60 whose inner ring side extends toward the inner end is optimally provided.
  • the transfer tooth 62 of the spline tooth, the shaft-shaped dial 30 coupled to the vehicle prime mover coaxially disposed in the inner hole thereof, and the follower 40 coupled to the vehicle drive shaft are connected non-rotatably by means of spline pairs.
  • the previous connection has a circumferential freedom s g greater than zero, and the latter connection optimally has a circumferential freedom equal to zero.
  • at least one of the dialing teeth 32 and the force transmitting teeth which are preferably the same spline teeth, are respectively disposed on the outer peripheral surfaces of the inner end portions adjacent to both the dial member 30 and the follower member 40. 42.
  • a cylindrical center projection 44 of the coaxial axis X is optimally disposed, which is rotatably received in the center hole 34 of the inner end surface of the dial member 30.
  • a radially annular intermediate member 90 is slidably radially disposed by the guide teeth 52 disposed on the end surface facing the guide member 50.
  • a plurality of helically-guided teeth 92 of a complementary configuration are permanently fitted to the guide member 50 to constitute a surface-contact type bidirectional rotary guide mechanism G that is optimally rotated about the axis X.
  • the inner peripheral surface of the intermediate member 90 is further provided with an annular flange 100 which extends radially outward beyond the inner end surface of the tubular base 60.
  • the interposer 90 is non-rotatably coupled to the dial member 30 by means of a decoupling tooth 112 disposed on the inner circumferential surface of the flange 100 to be circumferentially opposed to the shifting tooth 32, and has a circumferential freedom s a greater than zero.
  • the parking brake PI also includes a friction member 70 that is preferably formed about the axis X and that has an axial force closing function.
  • the friction member 70 is preferably an annular pocket member having an axially central portion of the inner peripheral surface 84 formed about the axis X, coaxially disposed with a substantially planar disk-shaped annular circumferential groove 78. .
  • the circumferential concave The inner surface of the groove 78 for about a half cycle extends optimally along the mutually parallel tangential directions H and H' to the outer peripheral surface of the friction member 70, and forms an equal-section rectangular inlet 82.
  • the radially inner surface 80 of the circumferential groove 78 thus extends into a non-closed inner radial surface having a U-shaped cross-sectional shape.
  • the mutually fitting guide member 50 and the intermediate member 90 can be directly inserted into the circumferential groove 78 from the inlet 82 in the direction indicated by the hollow arrow in FIG. 3, and axially penetrated through the dial member 30 and the hole in the inner hole of the friction member 70.
  • the moving member 40 is positioned radially.
  • the friction member 70 is axially fixed to the two members by two bearings 158 disposed at both end portions of the inner peripheral surface thereof and the corresponding outer peripheral surfaces of the dial member 30 and the follower member 40. .
  • the bearing 158 is attached with a sealing ring or bearing cap, not shown.
  • the circumferential groove 78 is annular and the inlet 82 is rectangular in equal section, which is the best but not required arrangement for carrying out the invention.
  • the circumferential groove 78 and the inlet 82 may have any shape and unequal section as long as they can be incorporated, such as the guide 50 and the intermediate member 90.
  • the inner peripheral surface 84 of the friction member 70 does not have to be circumferentially closed and corresponds to the through-type inner hole, which may completely have a U-shaped opening shape of, for example, substantially a half circumference and corresponds to a blind hole as long as it is on the inner circumferential surface.
  • a substantially half-circumferential circumferential groove 78 for accommodating a rotary member such as the interposer 90 may be provided on the 84.
  • the dialing teeth 32, the de-cleaving teeth 112, and the force transmitting teeth 62 are not necessarily circumferential-shaped teeth or spline teeth, as long as the dial member 30 and the intermediate member 90 and the guide member 50 can be formed separately.
  • the annular bag-shaped friction member 70 whose axial force is closed may also be a composite member.
  • a cup-shaped force-limiting element having a central circular hole is axially fixedly coupled to an end face of a disc-shaped ring by a fastening means such as welding, riveting or bolting, and defines a circumferential groove 78.
  • the guide teeth 52 or 92 may be further integrally formed rigidly integrally on the inner end surface of the disc-shaped ring, and a separate disc-shaped ring may be provided in the circumferential groove 78 to serve as a friction member.
  • a fastening means such as welding, which provides at least one annular hoop or toothed ring in an interference manner on the outer peripheral surface including the axially central portion and/or the outer end portion, at least substantially symmetrical in the radial direction, and half
  • Two semicircular shell force limiting elements each having a semicircular circumferential groove on a circular inner circular surface are radially fixedly butted into a combined annular friction member defining a complete circumferential 1HJ groove 78.
  • the disk-shaped annular circumferential grooves 78 are provided with a rotary traction friction surface 72 and a force transmission friction surface 74, respectively.
  • the traction friction surface 72 at the left end thereof is frictionally connected with the rotary friction surface 104 provided on the toothless end surface of the intermediate member 90 to constitute a rotary surface contact traction friction mechanism F1.
  • the force transmitting friction surface 74 at the right end thereof is frictionally connected with the force transmitting friction surface 58 provided on the toothless end surface of the guide member 50, and constitutes a rotary type surface contact force transmitting friction mechanism F2 which can directly transmit the friction torque with the guide member 50.
  • the traction friction mechanism F1 and the rotation guide mechanism G together form an end-face type space wedge mechanism, which together with the force-transmitting friction mechanism F2 constitutes a universal parking brake P1, that is, a two-way irreversible transmission device, an axial force-closed space wedge type Friction exceeds the clutch mechanism.
  • the clutch mechanism including the dial member 30 is a toggle type overrunning mechanism.
  • the coaxiality between the rotary guide mechanism G, the traction friction mechanism F1, and the force-transmitting friction mechanism F2 in the overrunning mechanism and the three axes with the axis X may not be excessively required.
  • the rotational speed is not high, as long as the two surfaces thereof contact the rotary friction pair perpendicular to the axis X, and the guide member 50 and the intermediate member 90 having only relatively imperceptible relative rotation are disposed coaxially with each other.
  • ensuring the coaxiality between the two annular members is a simple and low-cost labor. Therefore, this will significantly reduce the requirements and costs of manufacturing, assembling and using the parking brake P1.
  • At least one of the sealing members 190 is provided on the outer peripheral surface of the friction member 70 in the middle or the outside thereof.
  • the outer peripheral surface of the end portion of the friction member 70 is radially provided with a square flange 86.
  • four axial through holes 83 for fixed connection are provided.
  • each pair of end face type helical guide teeth 52 and 92 which preferably have a trapezoidal cross section and extend in the radial direction are complementarily configured as helical tooth faces, both of which are circumferentially
  • a pair of surface-oriented spiral guide friction pairs corresponding to different circumferential directions can be formed.
  • the two complementary elevation angles ⁇ and b of the two sets of helical guide faces 54a and 94a and 54b and 94b, respectively, toward the two circumferential directions are symmetrically equal to ⁇ .
  • the rotational guide mechanism G has an axial freedom/gap of ⁇ and a circumferential freedom/gap of ⁇ , and both degrees of freedom are optimally larger than zero, and the smaller the better, the better.
  • the plurality of guiding teeth 52 on the end surface of the guiding member 50 are actually wedge-shaped teeth of the space wedge mechanism, and the guiding surfaces 54 are gradually axially closer to the rotary traction friction surface 72 of the friction member 70 toward the two circumferential directions. And the latter is respectively divided into two groups of a plurality of circumferentially extending end face wedge-shaped spaces.
  • the plurality of guide teeth 92 disposed in the plurality of wedge-shaped spaces are wedges which are optimally merged into one another, i.e., the integrally annular intermediate member 90, because of the necessity of radial movement.
  • each component of the parking brake P1 has such an effect. That is, the relative rotation of both the intermediate member 90 and the guide member 50 when they are wedged in two circumferential directions is not hindered and affected by the dialing teeth 32 provided on the dial member 30, but enters and is, for example, The wedge-engaged engagement state shown in Fig. 2 ⁇ ⁇ 2 ⁇ . That is, in the two engaged states, the integrated circumferential freedom of the dial member 30 with respect to the intermediate member 90 and the wedge body of the guide member 50 is still greater than or equal to zero. At the same time, the active rotation of the dial member 30 relative to the friction member 70 in any circumferential direction can release the wedge-engaged engagement state without causing both the intermediate member 90 and the guide member 50 to enter the wedge-engaged engagement state again.
  • the active rotation of the dial member 30 in the direction indicated by the arrow will be in the circumferential direction of the tooth flanks 111 a by the dialing teeth 32 in FIG. 2 , first driving the interposer 90 to start to rotate and unwrap, and then intervening Before the member 90 is brought into contact with the guide member 50 by the engagement of the guide faces 94b and 54b, the circumferential direction of the tooth flanks 61a is touched by the dialing teeth 32, and the guide member 50 is driven to start synchronous rotation. In In Fig. 2B, the circumferential direction of the flank 61a is offset by the dialing teeth 32.
  • the driving guide 50 starts to rotate and unwrap, and then the guide member 50 is bonded to the intermediate member 90 through the guiding surfaces 54a and 94a.
  • the circumferential direction of the flank 111 a will be reversed by the dialing teeth 32, and the 5 circumferences of the intermediate member 54b will be driven toward ⁇ , just opposite to the direction of the arrow. , ' °
  • the flank surfaces 111 and 61 are the flank surfaces of the wedge teeth 112 and the force transmitting teeth 62, respectively.
  • the active rotation of the dial member 30 in the direction indicated by the arrow R will be in the circumferential direction of the tooth flanks 61b by the dialing teeth 32 in FIG. 2A.
  • the driving guide member 50 starts to rotate and unwrap, and then guides. Before the member 50 is brought into contact with the intermediate member 90 by the engagement of the guiding surfaces 54b and 94b, the circumferential direction of the tooth flanks 111b is reversed by the dialing teeth 32, and the interposer 90 is driven to start synchronous rotation; In Fig. 2B, the circumferential direction of the flank 111b is reversed by the dialing teeth 32.
  • the intermediate member 90 is driven to start to rotate and unwrap, and then the carrier member 90 is pasted with the guide member 50 by the fitting of the guiding surfaces 94a and 54a.
  • the circumferential direction of the tooth flanks 61b will be reversed by the dialing teeth 32, and then the driving guide will be driven.
  • a simple and optimal setting is that, firstly, the dialing teeth 32, the decoupling teeth 112 and the force transmitting teeth 62 are arranged to be uniform and uniform circumferentially symmetric teeth .
  • each geometrical element is arranged according to such a setting effect, that is, when both the intermediate member 90 and the guiding member 50 are at the circumferential midpoint/halfway point of the relatively free rotation section, the two members can also be simultaneously positioned relative to the dialing member 30. The circumferential midpoint position of the free rotation interval.
  • the parking brake P1 is also optimally provided with a wedge control mechanism including an elastic contraction mechanism and at least one actuator 192.
  • the elastic contraction mechanism comprises at least one elastic member, specifically the wire-like linear spring 152 of FIG. 1, the inner diameter end of which is disposed in the radial through hole in the tubular base 60, and the outer diameter end thereof is optimally fixed.
  • the elastic contraction mechanism comprises at least one elastic member, specifically the wire-like linear spring 152 of FIG. 1, the inner diameter end of which is disposed in the radial through hole in the tubular base 60, and the outer diameter end thereof is optimally fixed.
  • Adjacent portions of the two radial holes are frustoconical to allow for limited circumferential and axial elastic displacement of the interposer 90 relative to the guide member 50, and have such a setting effect.
  • the spring 152 can cause the axial distance between the intermediate member 90 and the guide member 50 to be continuously elastically contracted to the minimum, preferably equal to zero and elastically close to each other, so that the guide faces 54a and 94a and 54b are 94b continues to contradict each other continuously.
  • the combination of the intermediate member 90 and the guide member 50 will not touch the two friction faces 72 and 74 at the same time due to ⁇ >
  • both of them can overcome the elastic force of the spring 152 and separate the axial distance of at least ⁇ .
  • the spring 152 may also be one or more coil springs, a sheet-like wave spring, or an elastic member made of an elastic material having at least one of any form and any arrangement position, as long as it can produce the above-described elastic contraction effect.
  • it is disposed on the outer peripheral surface of both the intermediate member 90 and the guiding member 50, and the two ends are respectively inserted into the spiral tension springs in the corresponding radial holes, or as shown in FIG.
  • the elastic opening annular spring 152, or the compression spring between the friction surface 72 and the intermediate member 90 is disposed on the outer peripheral surface of both the intermediate member 90 and the guiding member 50, and the two ends are respectively inserted into the spiral tension springs in the corresponding radial holes, or as shown in FIG.
  • the elastic opening annular spring 152, or the compression spring between the friction surface 72 and the intermediate member 90 is shown in FIG.
  • the actuating member 192 is specifically a cylindrical pin slidably disposed in a radial hole of the friction member 70, operatively abutting against the outer peripheral surface of the intermediate member 90 to forcibly stop the intermediate member 90 from opposing the friction member 70.
  • the head is optimally provided with a V-shaped beveled anti-rotation surface 194 and is preferably circumferentially elastic or made of an elastic material.
  • the corresponding outer peripheral surface of the intermediate member 90 with which it is in contact should preferably have a higher coefficient of friction, or be disposed to have a corresponding flank 106 having, for example, a 30 degree tilt angle.
  • the tooth surface and the circumferential contact of the anti-rotation surface 194 should preferably not cause the actuator member 192 to wedge between its radial bore and the intermediate member 90.
  • the actuating member 192 can also be disposed in the axial bore and can be contacted with the swivel friction surface 104, or by the guide member 50-side against the radial flange of the intermediate member 90, or as described below.
  • the truncated cone faces against the friction surface 72, and even indirectly on, for example, the force limiting element that is non-rotatably coupled to the friction member 70.
  • the actuator 192 can be actuated in a known manner by any of the well-known techniques/mechanisms of mechanical, electromechanical, hydraulic or electromagnetic means, and thus need not be described in detail.
  • the frictional manner of stopping the rotation of the intermediate member 90 relative to the friction member 70 may be any of the existing braking techniques.
  • the outer peripheral surface of the interposer 90 may be provided as a truncated cone (not shown), and a friction actuating wheel 170 may be provided in the inlet 82 to establish at least a line contact friction pair with the truncated cone.
  • the actuating wheel 170 is fixed to the pin 172 by, for example, a radial pin.
  • a pin 172 is slidably disposed in the axial bore 81 of the friction member 70 at both ends of the inlet 82.
  • the spiral compression spring 178 is sleeved on the pin 172, and the force transmitting friction surface 74 is used as a supporting surface, and the actuating wheel 170 is continuously biased toward the truncated cone surface.
  • An end portion of the pin shaft 172 extending from the end of the force transmitting friction surface 74 to the outer end surface of the friction member 70 is fixed with a rotation preventing head portion 174 having at least a curved surface of the rotation preventing feature.
  • the feature curved surface is optimally located on the outer peripheral surface thereof and has a configuration complementary to the outer peripheral surface of the end face flange 77 of the friction member 70.
  • an adjustment cam 176 is disposed, and the adjustment cam portion 176 and the rotation preventing head portion 174 constitute a rotation guiding mechanism as described above.
  • the adjusting cam 176 is rotated, and the rotating guiding mechanism can be in a guided or non-guided state, and the axial movement generated can cause the friction actuating wheel 170 and the intermediate member 90 to establish or release the frictional contact connection with each other, thereby stopping the The rotation of the person.
  • actuating the actuating member 192 at any time to enter the radial contact and stop the working state of the intermediate member 90 can cause the intermediate member 90 to overcome the spring 152 when the guide member 50 rotates relative to the friction member 70.
  • the elastic force is guided to the wedge relative to the guide member 50.
  • the parking brake P1 works very simply, with or without actuation of the wedge control mechanism, everything else is done adaptively by the brake P1 itself. That is, as long as the actuator 192 is in an actuated state before parking, the actuation of the actuating member 192 is released to return to the unactuated state.
  • the ideal parking brake condition and ideal starting effect are achieved without any additional work.
  • actuating member 192 when the vehicle parked on a flat or ramp begins to have or continues to have an initial moment of sliding due to non-self-driving forces, coupling with the drive wheel or the drive wheel
  • the follower 40 will immediately drive the guide 50 to begin to attempt to rotate relative to the friction member 70 in a downhill direction such as indicated by arrow P in Fig. 2A.
  • the friction member 70 will be driven by the frictional engagement or engagement of the head of the actuator member 192 to pull the intermediate member 90 of the rotary guide mechanism G, and the relative guide member 50 is rotated and guided in the direction indicated by the arrow R, so that the two overcome The spring force of the spring 152 is in contact with the traction friction surface 72 and the force transmitting friction surface 74, respectively.
  • the parking brake P1 is engaged with the wedge of the space wedge mechanism and enters the reverse and parking brake conditions. That is, the introduction of the follower 40 from the bore in the bore of the tubular base 60 can result in a slipping torque M, for example, derived from gravity.
  • the wedge friction torque M l transmitted through the rotation guide mechanism G and the traction friction mechanism F1 and the force transmission friction torque ⁇ 2 directly transmitted via the force transmission friction mechanism F2 are respectively transmitted to the friction member 70 and finally terminated with The attached rack is fixed and cannot be further transferred to the dial 30.
  • Mo Mi + M ⁇ and the above-mentioned axial expansion force, the wedge force and the magnitude of each friction force are completely adaptively proportional to M l , that is, the slip torque M 0 .
  • the parking brake P1 has a reliable and non-slip wedge-type parking brake force which does not need to be provided and controlled manually, which is completely adaptively momentarily equal to the slip torque M Q which causes the vehicle to slip. And it is produced as it occurs, and disappears as it disappears.
  • the rotation of the follower member 40 driving the guide member 50 in the direction indicated by the arrow R with respect to the friction member 70 has a working process completely similar to that of the above, see Fig. 2B, and therefore no need for repeated explanation. That is to say, when the parking brake is required, as long as the operator completes the command operation of the parking brake, the actuating member 192 is in an actuated state, and can be automatically activated by means of the slip torque M Q The substantial operation of the parking brake is completed, so that the parking brake P1 is in an arbitrary direction to obtain an adaptive and reliable parking brake force. Even on the horizontal ground, as long as the external force is the driving action of the slip torque M Q , the parking brake P1 acts as a parking brake as described above, and suppresses all movement tendency of the vehicle.
  • the actuation of the actuator 192 is terminated as soon as it is ready to start the vehicle, so that it is in an unactuated state to relieve its circumferential constraint on the interposer 90.
  • This can be done by a similar action to a conventional hand brake in the prior art, or by a push button switch that changes the working state of a hydraulic valve, an electromagnetic switch or a drive motor, for example, without The prior art and theory are any second action.
  • the aforementioned commanding operation to cause the actuating member 192 to enter the actuated state is also accomplished in the same simple manner by the same mechanism.
  • the above operation merely completes the command operation that can end the parking brake, and does not complete the substantial operation of actually ending the parking brake.
  • the reliable execution of this substantial operation relies only on the driving force from the vehicle's prime mover. In other words, the parking brake will not end until the vehicle has successfully started. Because, as long as the slip torque M Q is not equal to zero, the parking brake P1 will certainly maintain its wedge condition, not Will solve the wedge on its own, and M Q is equal to zero, and it is impossible to slip on its own. That is, the parking brake state and the start-up drive state are two reciprocal/complementary states that are seamlessly coupled in time, and the vehicle will continue to be continuously after performing the command operation of ending the parking brake and before actually driving the vehicle to start. In the ideal parking brake state, there is no danger of losing control even if parked on the ramp.
  • the trigger member 30 which is coupled to the prime mover drive, begins to have an initial moment of a tendency to actively rotate relative to the friction member 70, such as follows the arrow P in Figure 2 ⁇ or the arrow in Figure 2B.
  • the active rotation of the aspect indicated by R is synchronized with the slip torque M 0 to drive the guide 50 to rotate synchronously after the wedge rotation is completed.
  • the dial member 30 will first drive the guide member 50 to overcome the slip torque M 0 and start to act against the intermediate member 90.
  • the direction of the wedge is rotated, and the intermediate member 90 is synchronously rotated after the wedge turning is completed.
  • all the unwrapped rotations are substantially the rotations that cancel the guiding action of the rotation guiding mechanism G.
  • the intermediate member 90 and the guide member 50 will elastically contract again to a mutual fit state in which the axial distance is equal to zero at the first time after the wedge is unwound. Therefore, the normal pressure between the guide faces 54 and 94 in the wedged state and the rotational guide action of the rotary guide mechanism G will disappear simultaneously with the moment when the two guide faces are mutually disengaged, for example, FIG.
  • the parking brake P1 ends the wedge-engaged engagement state at the time of parking, shifts to the wedge-wound separation state, and starts free overrunning, and the idling frictional resistance is approximately zero.
  • the dialing member 30 drives the driven member 40 through the guiding member 50 while driving the intermediate member 90 and the guiding member 50 while idling with the opposing friction member 70, and transmits the driving torque to the vehicle. Drive shaft. After the start, the vehicle's forward, reverse or taxiing is independent of the parking brake P1.
  • the seamless relay-type alternating conversion process between the parking braking force and the driving driving force during the above starting process of the vehicle has no difference between the flat ground and the upper and lower slopes, and the operator does not need to skillfully and coordinately operate the clutch.
  • the related operations are simple and reliable, and, in theory and in practice, it is impossible to produce the slightest rolling phenomenon with the best starting effect and relatively less mechanical wear. What the operator needs is only the simple operational skills of starting the vehicle on a flat ground and the basic common sense of a slightly larger starting throttle.
  • the parking brake P1 has an essential and comprehensive advantage over the prior art. That is, it has higher system reliability and higher system safety, and the structure is simple and compact, the manufacturing cost is low, the operation is simple, the power supply device and the transmission device are not needed, the power can be operated without power, and the brake has no slip. It has only two command operations, which can be performed immediately and unconditionally, without braking, and there is no other operation, such as a cumbersome selection operation with respect to the working direction, and thus the handling of the vehicle becomes simpler rather than the opposite. More critically, without any ramp-assisted starting system, the vehicle's start-up procedures in both the uphill and downhill directions are as simple as smooth, simple and smooth without any special experience or attention.
  • the parking brake P1 has the same The prior art has at least significantly higher working life and reliability.
  • the driving state has the transmission capacity of the gear coupling
  • the parking brake state has the high-strength transmission capability of the space-wedge friction overrunning clutch/mechanism. For the latter with full face contact friction pair and axial high stiffness, as described in the two patent applications incorporated above, it has almost all of the characteristics that an ideal overrunning clutch should have.
  • the universal parking brake P1 which can be wedged and transmitted for only about half a week, has a calculated torque for wedge brakes of the order of 2,790 ⁇ 16,900 N ⁇ m (doubled when set to one-way guide teeth).
  • the parking brake of the present invention is a relatively simple non-power brake device
  • the control mechanism determines that its control device will also be simpler and at most requires only a small energy supply, so that the entire parking brake system according to the invention will be very simple.
  • the high bearing capacity and the simplicity of control dictate not only the versatility of all mobile equipment/mechanics for both mounted and heavy-duty trucks, but also for manual, automatic, and
  • the versatility of the graded variable speed drive system is more versatile for all mounting positions in the entire torque drive shafting from the vehicle prime mover to the drive wheel/shaft. Therefore, the parking brake according to the present invention obviously has a smaller system volume, has lower cost and higher reliability corresponding to a simpler system, and is correspondingly easier to realize the superiority of the line-controlled line-controlled parking brake.
  • the characteristic is the ideal universal parking brake.
  • k is the total number of sheets of the friction plates of the friction mechanisms F1 and F2.
  • the more the number of slices the smaller the M R and the easier it is to start in the downhill direction.
  • the closer the angle of elevation ⁇ is to the limit angle ⁇ the closer the resistance torque M R is to zero.
  • the resistance torque M R is equal to zero as ⁇ is equal to ⁇ . Therefore, as long as the design is appropriate, or to ensure reliable actuation of the actuator 192, even if applied to a heavy truck, even if the slip torque M Q is large, the downhill slope can be considerably small, or equal to zero.
  • the parking brake P1 can also be normally braked. .
  • the parking brake P1 can also be used as a comprehensive brake having both a parking and a traveling brake function, and has a fully adaptive ABS anti-lock brake function (when ⁇ ⁇ ⁇ ⁇ ).
  • the outer casing of the brake having both functions such as a pocket member, is optimally axially doubled into a single piece.
  • the parking brake P1 is fixedly disposed, for example, in a transaxle of a vehicle, and its dial member 30 and the differential output side gear are optimally formed in the same part, and the driving half shaft of the differential acts as Its follower 40.
  • the necessary deformation of the space wedge mechanism is implemented, the magnitude of the braking force can be gradually changed as needed.
  • the wedge control mechanism can be manipulated according to a known method and a known control system according to a manipulation method provided with three different priority levels of manipulation commands. That is, the actuation state of the particular actuator 192 is manipulated. That is, the forced operation command of the highest priority manual mechanical mechanism to cope with, for example, the situation that there is no power and no power or the electronic control fails, and the vehicle needs to be moved urgently (after being unactuated, toward the uphill direction or at most two The direction of each push can be used to unwind the wedge/slack, and the emergency braking is required when driving.
  • Sub-optimal button-type forced electronic control commands to force braking or forced braking.
  • the actuator 192 is automatically actuated, for example, to a threshold of 0 to 2 seconds set by the operator.
  • the actuation of the actuating member 192 is automatically released immediately upon detecting that, for example, the acceleration 3 is depressed.
  • the universal parking brake P1 can also have a wheel-shaft transmission form.
  • the sealing member 190 is removed, the retaining member 40 is disposed as a disc gear on the different axis, and the inlet 82 is engaged with the teeth provided on the outer peripheral surface of the guide member 50 to achieve a drivable connection with the latter.
  • the friction member 70 will be unilaterally supported radially on the through-shaft-shaped dial member 30.
  • an intermediate member 90 may be further disposed axially symmetrically between the force transmitting friction surfaces 58 and 74, and symmetrically formed with the guiding member 50 and the friction member 70, respectively.
  • the turning guide mechanism G and the traction friction mechanism F1 the parking brake P1 will lose the force transmitting friction mechanism F2 and have two traction friction mechanisms F1 sharing the same friction member 70.
  • the two rotary guide mechanisms G can be optimally arranged as two one-way mechanisms in which the guide directions reciprocate to multiply them and the torque carrying capacity of the parking brake P1.
  • dial member 30 nor the follower member 40 are necessary components for the manufacture of the parking brake P1, and the two can be replaced by, for example, an output shaft of the transmission and a transmission shaft connected to the output shaft, and both can be replaced. It is a hollow shaft.
  • the dial member 30 is a functionally necessary member which corresponds to the shifting tooth 32 and the prior art finger ring and finger.
  • the present invention also has various techniques for increasing the limit angle ⁇ and ⁇ values. Including, the guide faces 54 and 94 of the rotary guide mechanism G are disposed as inclined spiral tooth faces, and the friction faces 72 and 104 of the traction friction mechanism F1 are disposed as truncated cone faces, so that the guide faces 54 and 94 or the friction faces in the shaft section are formed.
  • the angle between the 72 and 104 and the axis X/half cone angle is not equal to 90 degrees, and is equal to other values from 0 to 180 degrees; the traction friction mechanism F1 is set to a multi-friction disc structure; and, will have a larger friction coefficient
  • the material/component is attached to at least one of the friction surfaces 72 and 104.
  • the static friction coefficient is 0.1
  • the ⁇ and ⁇ in the parking brake P1 are equal to 0 degrees and 11.4 degrees, respectively
  • the friction surface of the traction friction mechanism F1 only needs to be set as a truncated cone with a half cone angle equal to 30 degrees.
  • the above limit angles are raised to 5.6 degrees and 17.02 degrees respectively.
  • the friction mechanism F1 and the force-transmitting friction mechanism F2 can also be separately or simultaneously as described above according to known techniques. It is provided as a multi-friction disc type clutch mechanism and thus has more than one set of traction friction pairs or force-transmitting friction pairs.
  • the present invention does not specifically limit the rotary guide mechanism G and its guide teeth 52, 92, and it is not necessary to have an optimum helical tooth structure. Therefore, the mechanism G and its guide teeth can have any form and shape with a rotary guiding function.
  • the truncated cone-shaped rotary friction surfaces of the two sets of rotary friction pairs of the traction friction mechanism F1 and the force-transmitting friction mechanism F2 can be converted based on an arbitrary curve/bus bar. And may be provided, therefore, the universal parking brake P1 may have such a variation.
  • the guide teeth 52 or 92 are directly rigidly formed on the respective inner end faces of the friction members 70 by means of, for example, precision casting, casting, die casting or injection molding, to deform the friction members 70 into bags having an axial force sealing function.
  • Shape guide or pocket-shaped intermediate At the same time, between the intermediate member 90 or the guide member 50 of FIG. 1 and the inner end surface of the friction member 70, a relatively rotatable disc-shaped friction ring is radially inserted to deform the parking brake P1 into a guide member.
  • the interposer is a wheel-shaft-driven parking brake of the bag-shaped member.
  • the disc-shaped friction ring can be fixedly coupled to the frame via a hollow shaft or a solid shaft on the inner peripheral surface 84.
  • the friction member 70 functions as a force-limiting member, and only the fixed shaft coupled to the inner hole or the end surface of the disc-shaped friction ring can be extended from one end of the force-limiting member and fixed to the frame.
  • the decoupling teeth 112/transmitting teeth 62 may be indirectly disposed on the above-mentioned force limiting members in the combined members, respectively.
  • the force transmitting friction mechanism F2 is no longer rigidly coupled to the friction member 70 and the guide member 50, respectively, as described above, but is non-rotatably coupled together.
  • the friction member 70 may be a non-completely annular bag member if desired. That is, when it is desired to axially extend the tubular base 60 such as the guide member 50 such that it cannot pass through the inlet 82 radially, referring to Figs. 1, 3, a radial notch may be provided at one or both axial ends of the inlet 82.
  • a radial notch may be provided at one or both axial ends of the inlet 82.
  • an inner circumferential surface of exactly half a circumference at one end of the inner circumferential surface 84b is radially extended to the outer circumferential surface of the friction member 70 in two mutually parallel tangential directions parallel to H or H', and an allowable tubular base body is formed. 60 gaps placed/passed.
  • the inner peripheral surface 84b also extends into a non-closed inner radial surface having a U-shaped cross-sectional shape, and the friction member 70 becomes a U-shaped split ring which is shaped like a weight.
  • the parking brake P1 is variably the simplest embodiment of the invention having only four members. Even the guiding teeth 52, 92 can be unidirectional, and can have only one-way parking braking capability to cope with simple demands. Although the reliability is not high enough, the braking function of the vehicle is deprived due to braking during the taxiing, but the simplest implementation is achieved by, for example, the inertia in the circumferential rotation or the special setting of the rising angle ⁇ of 0 ⁇ ⁇ ⁇ ,. The example can still cause the intermediate member 90 to be wedged to achieve the basic inventive object of parking brake.
  • the guide teeth 52, 92 are provided as one-way teeth, for example, a set of guide faces 54b and 94b which are fitted to each other in Fig. 2A are set to be non-guided to be optimally parallel to the axis X.
  • the face, and the appropriate inner side flank 61a can cause the dial member 30 to contact the flank 61a due to the inability to circumferentially smash, and can only pass the interference between the guide faces 94b and 54b which are modified as non-guide faces, and the grounding
  • the drive guide 50 is rotated in the direction indicated by the arrow P.
  • a traveling machine such as a crawler type excavator, a port track hoisting machine, etc., which has a slow speed, almost no gliding function and a normal positioning operation
  • the task of driving and parking brakes is optimally carried out at the same time (preferably a pretensioning spring 150 is added as shown in Fig. 2).
  • the acceleration control device be the brake device, the drive is stopped, the brake is stopped, the special brake operation is not required, and it is safer, more efficient, more reliable, more energy-saving, simpler to operate, and less labor intensive.
  • the overrunning clutch mechanism in the above-described simplest embodiment may also be a prior art one-way or two-way roller/tilt type overrunning clutch with a finger, and the above-mentioned patent application 201020187124.2 Full channel self-reinforcing friction overrunning clutch.
  • the dial member 30, i.e., the finger is coupled to the prime mover of the vehicle as described above
  • the guide member 50 i.e., the star wheel or the inner ring, for example, is coupled to the drive shaft/wheel of the vehicle, and the friction member 70 is disposed.
  • the outer ring having a rotary friction surface is non-rotatably connected to the frame.
  • Embodiment 2 The friction member can be driven into the wedge type universal parking brake P2
  • the parking brake P2 is a simple variant of the parking brake P1.
  • the mechanism mainly includes an axially compressible annular wave spring 150 disposed between the inner end surface of the tubular base 60 and the inner end surface of the flange 100 of the intermediate member 90.
  • the spring 150 may also be one or more torsion springs, a sheet-like wave spring, or an elastic member made of an elastic material having at least one of any form and any arrangement position as long as it can optimally cause the rotary friction.
  • the face 104 is always resiliently in contact with the traction friction surface 72. Also, it is preferable that the guide surface 94 is also elastically in contact with the guide surface at all times.
  • the elastic pretensioning mechanism can also establish an indirect frictional connection between the two by means of a member that is non-rotatably coupled to the intermediate member 90 or the friction member 70.
  • the wedge control mechanism also includes a operatively axially engaging engagement mechanism to reduce wear of the traction friction mechanism F1 during vehicle travel.
  • the friction member 70 is no longer fixedly coupled to a frame such as a gearbox, but is optimally operatively imparted with freedom of follow-up.
  • a set of anti-rotation teeth 85 including at least one of the end face teeth are provided.
  • a non-rotatable and optimally annular stop member 130 is provided correspondingly to the fixed frame (not shown), and is provided with a lockable tooth 85 /Mixed corresponding inner anti-rotation teeth 132.
  • a curved balancing element/weighting block 230 is constructed.
  • the balancing element 230 is preferably inserted therethrough and is radially positioned by at least one securing pin 232 that is fixedly coupled to the axial bore 81 of the friction member 70.
  • the difference between the parking brake P2 and the parking brake P1 exists only in the operational form. That is, before the vehicle is started, the command operation of the axial separation stopper 130 is performed, and at the time of parking, the command operation of the axial engagement rotation stopper 130 is performed.
  • the effect of the execution is that the anti-rotation member 130 can be accompanied by the slip torque M before the substantial operation of the parking brake is released.
  • the resulting inter-tooth frictional resistance cannot be immediately separated, and it is necessary to wait for the wedge-actuated start, that is, the torque acting on the friction member 70 to fall to the frictional torque corresponding to the spring 150. For this reason, the action of axially moving the rotation stop member 130 should preferably pass through a connection.
  • the elastic element attached thereto is executed to satisfy and tolerate the hysteresis of its substantial action.
  • the substantial operation of the parking brake of the axially engaging anti-rotation member 130 is also true because the anti-rotation teeth 85 and 132 do not have the ability of circumferentially stepless engagement, and it is often necessary to delay the follow-up friction member 70 to rotate. After a certain angle. Therefore, unlike the circumferential stepless engagement and immediate response of the parking brake P1, the engagement of the parking brake P2 to achieve the parking brake is circumferentially stepped and response lag, and depends on the rotation teeth 85 and 132 cycles. The density of the distribution.
  • Embodiment 3 The friction member can be driven into the wedge type universal parking brake P3
  • the parking brake P2 is not a preferred embodiment, but only a slight improvement, that is, the variable type is the universal parking brake P3 as shown in FIG. 5, so that it has circumferential stepless engagement and instant response, and no error. The best possible effect of moving and almost no wear.
  • the rotation preventing teeth 85 and 132 are respectively modified into circumferential surface teeth provided on the respective outer circumferential surfaces and inner circumferential surfaces of the friction member 70 and the rotation preventing member 130.
  • the anti-rotation tooth 85 and 132 are respectively modified into circumferential surface teeth provided on the respective outer circumferential surfaces and inner circumferential surfaces of the friction member 70 and the rotation preventing member 130.
  • the two axially opposite end sides of the two sides are correspondingly arranged, for example, as triangular guide faces/chamfers having a moving introduction function.
  • the wedge control mechanism also includes a circumferential centering mechanism.
  • the circumferential centering mechanism includes a centering ring 120 disposed on an outer peripheral surface of the guide member 50 and having at least one centering protrusion 122 formed on the inner peripheral surface, and an annular radial flange on the outer circumferential surface of the ring 120 and the guide member 50.
  • the reference groove 126 of the middle protrusion 122 is disposed on an outer peripheral surface of the guide member 50.
  • the reference groove 126 and the centering 1HJ groove 118 are respectively disposed at the circumferential center of the respective tooth top and the tooth groove, and the circumference of the end portion of the centering protrusion 122 and the centering groove 118 facing each other To the side, set to a guide surface with an introduction function, such as a partial cylindrical surface or a sloped surface, see Figures 2A to 2B.
  • the centering projection 122, the centering groove 118 and the reference groove 126 all extend optimally in the direction of the axis X.
  • the centering mechanism can integrally flip the positional relationship axially.
  • the centering projection 122 is slidable along the reference groove 126 and axially received in the centering groove 118, thereby continuously constraining the intermediate member 90 to the absolute inability to enter the wedge in both circumferential directions.
  • the free rotation amount of the intermediate member 90 in the centering state with respect to the guide member 50 cannot cause the guide surface 94 and the rotary friction surface 104 to simultaneously abut against the corresponding guide surface 54 and the traction, respectively. Friction surface 72.
  • the friction member 70 in the centered state will have the ability to follow freely, and in any circumferential position, the friction member 70 can adjust the circumferential angle unobstructed, and achieve a circumferentially stepless axial direction with the rotation preventing member 130.
  • the wedge control mechanism further includes a disengagement claw ring 200.
  • the claw ring 200 is movably sleeved on the outer peripheral surface of the dial member 30, and at least one axially projecting pin-shaped detentening claw 202 is disposed on the outer ring side of the end surface.
  • the detent pawls 202 are slidably passed through respective axial holes on the end faces of the friction members 70 and extend axially along the outer peripheral surface of the interposer 90 to respective end faces of the centering ring 120.
  • the entire wedge control mechanism and the rotation preventing member 130 that urges its axial movement have such a setting effect.
  • the claw ring 200 in an axial free state, and in the parking brake state, the claw ring 200 will simultaneously touch the rotation stop 130 and the centering ring 120, and may cause the latter
  • the centering projection 122 axially exits the centering groove 118.
  • the rotation preventing member 130 is axially moved to push the claw ring 200, and the retracting claw 202 can be passed.
  • the centering ring 120 is urged to move axially against the spring force of the centering spring 124, thereby causing the centering projection 122 to exit the centering 1HJ slot 118 to relieve its centering circumferential constraint on the interposer 90.
  • the friction member 70 acts on the friction member 70.
  • the friction torque will immediately drop to a level corresponding to the spring force of the spring 150.
  • the meshing frictional force between the anti-rotation teeth 85 and 132 will be less than the elastic moving force acting on the anti-rotation member 130, and the anti-rotation member 130 will thus smoothly move axially away from the friction member 70 and release the pair thereof. Axial compression and restraint of the center ring 120.
  • the operator's parking brake command operation will rigidly urge the rotation stop member 130 axially toward the friction member 70 (see Fig. 6).
  • the rotation preventing teeth 85 and 132 can be mutually fitted/engaged without any hindrance regardless of any circumferential position or any moment.
  • the geometrical features of the arrangement ensure that the rotation of the anti-rotation member 130 is only axially after the anti-rotation teeth 132 and 85 are axially engaged, and the friction member 70 ends with an adaptive adjustment rotation for the engagement. 4 touches the claw ring 200.
  • the claw ring 200 pushes the action of the centering ring 120 to translate the intermediate member 90 without affecting the axial engagement of the rotation preventing member 130 with the friction member 70.
  • the parking brake P3 can immediately enter the wedge-type parking brake state and remain as described above until the vehicle is again driven to start, see the lower half of Figure 5. .
  • the axial movement of the rotation preventing member 130 in the parking brake P3 has the characteristics of rigid engagement and elastic separation.
  • any of the known techniques/mechanisms such as mechanical, electromechanical, hydraulic or electromagnetic means as described above, such as the elastic mechanism shown in Fig. 6, can be employed.
  • the claw ring 200 is non-rotatably disposed as a limit of the bag member.
  • the friction member and the frame can only be indirectly non-rotatably connected.
  • Embodiment 4 The friction member can be driven into the wedge type universal parking brake P4
  • the parking brake P4 is a variant of the universal parking brake P1 and is intended to provide the friction member 70 with the ability to freely follow in the parking brakes P2 to P3 to minimize wear and tear.
  • the wedge control mechanism includes an annular stopper 130 and an actuation ring 220 disposed at both axial ends of the steering ring 140, and a return spring 142 that elastically connects the three axially integrally, as shown in the drawing. 6.
  • one end of the coil spring spring 142 is fitted in a radial hole in the inner circumferential surface of the rotation preventing member 130, and the other end is fitted in the flange of the inner end surface of the actuation ring 220.
  • the inner peripheral surface is in the radial hole.
  • the rotation preventing teeth 85 and 132 have the same effect as those in the parking brake P3.
  • an outer rotation surface 134 is provided on the outer circumferential surface thereof, and the rotation prevention tooth 134 is continuously engaged to the inner circumference of the frame tooth ring 210.
  • Rotating tooth 212 is provided on the outer circumferential surface thereof.
  • the elastic member in the wedge control mechanism is specifically a disk-shaped elastic opening annular spring 152.
  • the rectangular cross-sectional circumferential grooves are provided on the outer peripheral surface of the tubular base 60 at the same time in the radial direction, and in the respective circumferential grooves 108 of the triangular cross-section of the respective inner peripheral faces of the intermediate member 90.
  • the outer peripheral surface of the spring 152 is optimally disposed to face the frustoconical surface of the guide teeth 52 and is always resiliently abutted against the frustoconical side of the circumferential groove 108 having a complementary configuration.
  • the amount of elastic deformation of the spring 152 in the radial direction can cause the axial distance between the intermediate member 90 and the guide member 50 to be reduced to zero and elastically close to each other when the non-rotation is guided, and can also be rotated by an external force.
  • both sides are allowed to completely completely separate in the axial direction, and the diameter of the spring 152 can be deformed to a minimum after the axial separation distance is greater than ⁇ .
  • the outer end head of the actuating member 192 in the wedge control mechanism preferably has an end face complementary to the truncated cone inner peripheral surface 224 of the actuating ring 220, the radial through hole 196 of the head.
  • the best setting is a spring wire not shown.
  • the spring wire preferably extends along the outer peripheral surface of the sealing member 190 into a full circle, and the two joined ends are optimally welded together.
  • the actuator 192 will be reliably radially constrained.
  • the radial hole 198 of the sealing member 190 which is accommodated therein, is preferably circumferentially extended, for example, into a substantially rectangular shape to avoid or accommodate the same actuating member 192. A portion of the spring wire that is moved on both sides of the through hole 196 is moved.
  • the rotation preventing teeth 85 and 132 are separated from each other, the rotation preventing teeth 134 and 212 are continuously engaged with each other, and the inner circumferential surface 224 and the actuating member 192 are not mutually opposed. contact.
  • the spring 152 causes the axial distance between the intermediate member 90 and the guide member 50 to be reduced to zero and elastically close to each other, and has a gap with the friction member 70 at an axial distance of ⁇ . Therefore, in the follow-up state in which the friction member 70 is completely free in the circumferential direction, there is almost no friction loss in the parking brake ⁇ 4.
  • the steering ring 140 and the rotation preventing member 130 are driven along the path defined by the inner rotation tooth 212 by means of, for example, a gear-driven rack or a cylindrical cam mechanism. Together, it is rigidly axially moved toward the friction member 70. As described above, since the friction member 70 is in the circumferentially free follower state, the rotation preventing teeth 85 and 132 can be engaged with each other without any hindrance at any circumferential position or at any time.
  • the inner circumferential surface 224 of the actuation ring 220 is in conflict with Actuator 192. Thereafter, when the steering ring 140 stops moving, the anti-rotation teeth 134 and 212 will still continue to engage each other, the steering ring 140 will not interfere with the frame ring gear 210, and the inner circumferential surface 224 of the actuation ring 220 is optimal.
  • the actuator 192 is actuated and pressed radially inwardly onto the outer peripheral surface of the intermediate member 90, or in the corresponding slot.
  • the actuating member 192 can be adapted to the inactive position of the actuating ring 220 by the tensile deformation of the return spring 142 and maintain the elastic pulling force until it is in place with the radial insertion of the actuating member 192. until.
  • the guide member 50 in the turning tendency will cause the intermediate member 90 to wedge into the wedge, causing the parking brake P4 to enter the wedge-type parking brake state as shown in the lower half of FIG. 6, and
  • the actuator 192 is radially indexed during the micro-rotation of the interposer 90.
  • the axial movement of the parking brake 130 in the parking brake P4 also has the motion characteristics of rigid engagement and elastic separation, while the actuation ring 220 has the opposite of elastic engagement and rigid separation. Sports characteristics.
  • the rigidly moving steering ring 140 will immediately release the radial 4 touch actuation of the actuator 192, restoring the ability of the intermediate member 90 to unwind.
  • the steering ring 140 will be stretched by the tension of the return spring 142 to continuously maintain its pulling force against the rotation preventing member 130 until it comes from the rotation preventing tooth 85.
  • the frictional resistance disappears with the release of the parking brake wedge-engaged state, and then moves axially away from the friction member.
  • the parking brakes P2 to P4 can also be operated in accordance with the above three priority levels of manipulation.
  • the specific object representing the actuation of the wedge control mechanism is changed to the stopper 130 in the parking brakes P2 to P3, and the steering ring 140 in the parking brake P4.
  • the anti-rotation member 130 obviously does not have to be annular, and it may have a pin-like shape, a ratchet shape, or a screw for fixing the connection in the parking brake P1 as is well known.
  • the universal parking brake according to the present invention can be optimally used as long as the movable machine/mechanical is supported on the ground or track by means of a movable wheel or track.
  • it can also be used as a safety drive or brake for all kinds of elevators, motors, roller blind drive mechanisms, lawn mower garden tools, etc., which can be used for downtime/electrical braking, as well as belt conveyor machinery, large A safety drive or brake for a dip shearer, etc., and also as a pivoting or switching mechanism for a device having a drive such as an electromagnetic or electric motor, such as various types of electric gates, electromagnetic gates, swing doors And retractable doors, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

公开了一种无需供能装置和传动装置的通用驻车制动器,其由车辆的溜滑力自动触发而进入楔合式制动状态,而该制动状态仅可被车辆自身的驱动转矩自动解除,因此车辆不会溜滑。该制动器以具有带拨爪或拨动件的超越离合机构为基础,在非驻车制动状态时,该机构作为传递驱动转矩的传动装置,驱动转矩由拨动件(30)输入,由导向件(50)输出;并且至少在驻车制动状态时,摩擦件(70)不能旋转。还公开了一种操作该驻车制动器的方法,该方法操作简单且不需任何人为干预。该方法是侦测到车辆驱动轴的转速等于零时,使驻车制动器持续地具有驻车制动的能力;并在侦测到车辆的加速踏板被踩下时,使其持续地具有解除驻车制动的能力。该驻车制动器具有理想的驻车制动功能、承载能力和寿命。

Description

基于拨动式超越离合机构的通用驻车制动器及其操纵方法 相关申请
本发明是本申请人提出的名为空间楔合式摩擦超越离合器以及全槽道自归 正摩擦式超越离合器的中国专利申请 201010222712.X, 201020186785.3 以及 201020187124.2 的从属专利申请。 该公开在先的三项专利申请的全部内容通过 引用结合于此。 技术领域
本发明总体上涉及机械传动及交通运输等所有领域中的一种制动装置, 还 涉及卷扬、 提升和牵引设备领域中的一种安全驱动 /制动装置, 以及可无级定位 / 锁定的铰链或枢轴, 不可逆传动装置, 特别涉及一种无需供能装置和传动装置 的具有自激励制动力的驻车制动器。 背景技术
现有技术中, 用于一般车辆、 轨行车辆、 装曱车辆和飞行器等可移动式机 器 /机械中的各式驻车制动器, 或多或少地都存在着各种不足。 例如, 制动力严 重依赖于供能装置提供的接合力或操作者的体力、 易打滑失效、 结构复杂、 体 积较大、 常常必需液压和电子技术、 可靠性和安全性不足、 操作不方便。 尤其 是驻车坡道之后, 机器 /机械的驱动转矩和驻车制动转矩的切换难以做到无缝衔 接, 其起动操作最为繁瑣且易于失败或失控。 为此, 可移动式机器 /机械中, 例 如汽车, 常为此配备复杂的坡道辅助起动系统, 致使整个驻车系统更为复杂和 昂贵, 可靠性更进一步降低。 同时, 现有技术实现线控操纵或线控制动的难度 较大、 成本过高, 而且, 上、 下坡时的起动操作常有别于平地起动操作。 发明内容
本发明致力于设计基于全新技术原理的驻车制动器, 以解决上述问题。 本发明要解决的技术问题是提供一种用于可移动式机器 /机械中, 并在该机 器 /机械被动力驱动开始行驶之前均可自适应地保持驻车制动状态的, 基于拨动 式超越离合机构的通用驻车制动器。 其具有高可靠性、 高安全性、 结构简单、 成本低、 操作简便、 无需外界提供制动力源且制动无滑转的优点, 以及无论该 机器 /机械驻车于平地、 上坡还是下坡地段, 无需任何坡道辅助起动系统, 均具 有完全无异于驻车平地时的简单的, 没有任何方向区别的驻车和起动操作程序 的优点。
为解决上述技术问题, 本发明之第一方案的基于拨动式超越离合机构的通 用驻车制动器包括, 具有拨动件、 导向件和设置有回转型摩擦面的摩擦件的拨 动式超越离合机构, 在非驻车制动状态中, 该超越离合机构是传递驱动转矩的 传动装置, 该驱动转矩由其拨动件输入, 由其导向件输出; 且至少在驻车制动 状态中, 其摩擦件被设置成不能旋转。 具体地, 上述拨动式超越离合机构是带拨爪的单向滚柱式超越离合器、 带 拨爪的双向滚柱式超越离合器、 带拨爪的单向斜撑式超越离合器、 或者带拨爪 的双向斜撑式超越离合器, 其设置有回转型摩擦面的一个环即为摩擦件, 其另 一环或星轮即为导向件, 其拨爪即为拨动件。
更优选地, 上述拨动式超越离合机构, 是不可逆传动装置, 或者全槽道自 归正摩擦式超越离合器。
具体地, 第一方案中的不可逆传动装置包括, 绕一轴线回转且可轴向接合 的至少一个牵引摩擦机构, 其具有绕上述轴线回转并均设置有摩擦面的至少大 致为环状的中介件和摩擦件, 以在该两构件间传递摩擦转矩; 为该牵引摩擦机 构提供接合力并绕上述轴线回转的至少一个转动导向机构, 其具有绕上述轴线 回转并均设置有相应导向面的至少大致为环状的导向件和上述中介件; 绕上述 轴线设置的拨动件, 其与中介件及导向件不可旋转地相连接, 该连接分别具有 大于零的周向自由度; 当导向件与中介件相对转动时, 中介件可进入楔合状态, 而在该楔合状态中, 拨动件相对中介件及导向件二构件的综合周向自由度大于 等于零, 且拨动件在任意圓周方向上相对摩擦件的主动转动, 总是首先周向抵 触并驱动中介件和导向件中的一个开始解楔转动, 并在该两个构件于该解楔转 动方向上周向刚性地相互抵触之前, 再至少间接地周向抵触并致使该两个构件 中的另一个开始转动; 而该首先被周向抵触并被驱动的构件, 其在上述楔合状 态中用于相互抵触的导向面的圓周朝向, 正好相反于拨动件的上述主动转动的 方向; 以及, 当导向件和摩擦件被中介件可驱动地连接成一个摩擦体时, 导向 件与中介件双方的导向面之间的相互抵触部位的升角 λ , 大于零且小于等于 ξ , 即, 0 < λ ξ , 其中, ξ是能够令形成于该抵触部位的导向摩擦副自锁的升角 λ的最大值。
可选地, 设置有两个绕上述轴线回转的摩擦机构, 其中一个是上述牵引摩 擦机构, 其中另一个是与导向件和摩擦件至少不可旋转地分别结合在一起的传 力摩擦机构, 或者再一个上述牵引摩擦机构。
作为一种改进, 上述升角 λ的取值范围还可以是: ζ < λ ξ , 或者, 0 < λ ζ (当 ζ > 0 ), 其中, ζ是能够令所述抵触部位的导向摩擦副自锁的升角 λ的最小值, 也是令牵引摩擦机构的牵引摩擦副自锁的升角 λ的最大值。
可选地, 还可包括有至少一个限力元件, 其可与导向件、 中介件和摩擦件 中的至多一个, 以至少不可旋转的方式连接成力封闭式组合构件, 以建立相互 之间的轴向力封闭式抵触连接。
较佳地, 上述导向件、 中介件、 摩擦件或限力元件是袋形构件, 用以建立 相互之间的轴向力封闭式抵触连接, 其设置有绕上述轴线回转的至少大致半周 的内周面, 以及位于该内周面上的大致半周的周向凹槽和由上述袋形构件的外 周面连通至该周向凹槽的入口。
可选地, 拨动件上设置有拨动齿, 中介件或与其不可旋转相连的限力元件 上设置有解楔凸齿, 导向件或与其不可旋转相连的限力元件上设置有传力凸齿, 于是, 拨动件可借助拨动齿与解楔凸齿以及传力凸齿的周向抵触, 分别致使中 介件以及导向件旋转。 改进地, 上述拨动齿、 解楔凸齿和传力凸齿被设置成周面型凸齿或端面型 凸齿。
更好地, 在具备中介件和所述导向件双方处于相对自由转动区间的周向中 点时, 该二构件也可同时处于相对所述拨动件的自由转动区间的周向中点位置 上的设置效果之际, 再将上述拨动齿、 解楔凸齿和传力凸齿设置成各自均匀一 致且均布的周向对称齿, 并使上述周向自由度之间符合不等式, s a - s < s g < s a + ε , 且 s a - ε > 0。 其中, ε代表中介件相对导向件的周向自由度, s a 代表拨动件相对中介件的周向自由度, ε g代表拨动件相对导向件的周向自由 度。
较佳地, 限力元件可包括径向上至少大致对称的两个半圓壳和至少一个环 形箍, 该两个半圓壳的形状具有这样的组合效果, 即, 二者径向对接所构成的 组合构件, 设置有绕上述轴线的中心圓孔以及位于该中心圓孔内周面上的绕所 述轴线的周向 1HJ槽; 上述环形箍以设置在组合构件的中部或外端部的外周面上 的形式, 固定住该组合构件。
作为一种改进, 第一方案还包括入楔控制机构, 其用于可操作地将入楔和 解楔两种能力, 以互反的方式交替地持续赋予上述拨动式超越离合机构; 当入 楔控制机构致动时, 该超越离合机构将持续地具有入楔能力, 导向件相对摩擦 件的转动, 将致使通用驻车制动器进入制动状态; 而当入楔控制机构未致动时, 该超越离合机构将持续地具有解楔能力, 拨动件相对摩擦件的转动, 将致使通 用驻车制动器解除制动状态。
进一步地, 上述入楔控制机构包括具有至少一个弹性元件的弹性收缩机构 以及至少一 致动 , 该弹性元件作用于 ^介件上,曰以为牵引摩擦机构提供持 述致动件则不可旋转地和至少间接地设置在摩擦件上, 并可操作地抵触至中介 件, 以制止双方间的相对转动。
再进一步地, 上述入楔控制机构还包括止转件、 复位弹簧以及绕上述轴线 设置的促动环和操纵环。 止转件用于可操作地将摩擦件以不可旋转的方式, 至 少间接地连接至机架; 促动环用于可操作地促动致动件; 操纵环轴向上居于止 转件和促动环之间, 以可操作地移动止转件和促动环; 复位弹簧设置于止转件 和促动环的内周面上, 以将该两环持续地轴向弹压至操纵环。
作为另一种改进, 上述入楔控制机构包括至少具有一个弹性元件的弹性预 紧机构, 其用于持续地保持中介件与摩擦件之间的至少间接的摩擦连接。
进一步地, 上述入楔控制机构还包括止转件, 其用于可操作地将摩擦件以 不可旋转的方式, 至少间接地连接至机架。
再进一步地, 入楔控制机构还包括周向对中机构和爪环。 对中机构具有至 少一个对中凸起, 持续地收纳该对中凸起的基准槽, 可对应地收纳该对中凸起 的对中凹槽, 以及对中弹簧, 该基准槽和对中凹槽, 分别设置在中介件以及导 向件双方的外周面上; 对中凸起设置 ^位于该二构件外周面上的对中环的内周 面上, 对中弹簧作用至对中环, 以持续性地将后者的对中凸起弹压向对中 1HJ槽。 爪环则不可旋转地和至少间接地设置在所述摩擦件上, 爪环的端面上设置有至 少一个轴向延伸的退位爪, 该退位爪由对中凹槽一端, 轴向延伸至对中环的相 应端面。 对中凸起收纳至对中凹槽槽底部时, 中介件在两个圓周方向上均不能 同时抵触至导向件和摩擦件; 而爪环推动对中环克服对中弹簧的弹性力而轴向 移动时, 则可致使对中环的对中凸起轴向退出对中凹槽。
为解决上述同一技术问题, 本发明之第二方案的基于拨动式超越离合机构 的通用驻车制动器, 包括上述第一方案的通用驻车制动器, 以及如上所述的入 楔控制机构, 但不再用作传递驱动转矩的传动装置。
为解决上述另一技术问题, 本发明之操纵第一方案所述的通用驻车制动器 的操纵方法, 包括: 侦测设置有驻车制动器的可移动式机器 /机械的变速器输出 轴、 驱动轴、 驱动轮或随动轮的转速, 当该转速等于零的状态持续至阈值时刻, 致动入楔控制机构, 以致使驻车制动器持续地具有驻车制动的能力; 同时, 侦 测设置有驻车制动器的可移动式机器的加速操纵装置的状态变化量, 当该变化 量大于零时, 解除对入楔控制机构的上述致动, 以致使驻车制动器持续地具有 解除驻车制动的能力。
需要特别说明的是, 本申请文件中的相关概念或名词的含义如下: 间接地设置: 设置在与设置的目的地构件不可旋转相连的其它构件上。 转动导向机构: 将圓周相对转动转换为至少包括轴向相对移动或移动趋势 的导向机构。 例如螺旋升角严格一致和不严格一致的滑动 /滚动式螺旋或部分螺 旋机构、 径向销槽机构、 端面楔形机构、 端面嵌合机构、 端面棘轮机构及圓柱 / 端面凸轮机构。
空间楔形机构: 由转动导向机构和牵引摩擦机构组成的机构。
入楔: 也称楔合, 与解楔 /去楔相反, 就是中介件 90将导向件 50与摩擦件 70可驱动地连接 /结合成一个摩擦体的工作过程和状态。
ζ和 ξ : 空间楔形机构的重要极限角, 如图 1、 2Α所示的中介件 90, —方 面, 通过其摩擦面例如 104与摩擦件 70的牵引摩擦面 72至少轴向抵触, 以形 成抵触部位的法向压力的合力 W不垂直于回转轴线 X的回转型牵引摩擦机构 F1 的至少包括一个的一组牵引摩擦副; 另一方面, 通过其摩擦面或朝向同一圓 周方向的导向面 94, 与导向件 50的相应导向面 54至少轴向 4氏触, 以形成 4氐触 部位的法向压力的合力 Ν不垂直于回转轴线 X的转动导向机构 G的至少包括一 个的一组导向摩擦副; 该抵触部位的公切线与垂至于回转轴线 X的平面的夹角 的平均值, 称为该抵触部位的升角 λ ; 再一方面, 通过其它表面还可作用有诸 如用于弹性预紧或限位的其它作用力, 参见图 1、 4 ~ 6; 在转动导向机构 G的 转动导向工况中, 也就是导向件 50致使中介件 90沿箭头 Ρ所指方向以大于等 于零的速度相对摩擦件 70转动的工况中, 能够确保导向摩擦副自锁的双方表面 抵触部位的最小升角被定义为 ζ , 最大升角则被定义为 ξ。 而该两个极限角则 完全界定了中介件 90相对导向件 50向前转动、 静止不动和向后转动的一切可 能的运动形式。 具体含义如下:
1、 当 ξ < λ < 90度时, 导向摩擦副和牵引摩擦副均不能自锁, 通过导向摩 擦副的法向压力 Ν, 或者其分力 Q和 Τ, 导向件 50可致使中介件 90相对其向 前亦即箭头 Ρ所指方向滑转 /挤出。 因此, 导向件 50与摩擦件 70不能被中介件 90楔合成一个摩擦体。 只是因为压力 N源自非弹性力或受构件结构所限, 才致 使中介件 90仅被导向件 50推动着相对摩擦件 70摩擦滑转而未被实际挤出。
2、 当 ζ < λ ξ且 λ > 0时, 导向摩擦副处于恒定的自锁状态, 牵引摩擦 副处于不可自锁的一般静摩擦状态。 此时, 中介件 90可以将导向件 50与摩擦 件 70楔合成一个摩擦体, 但在摩擦件 70相对导向件 50过载时, 牵引摩擦副仍 可由静摩擦状态正常地转入滑动摩擦状态而导向摩擦副仍可稳定自锁。 对应地, 空间楔形机构处于半楔合状态, 超越离合机构处于非完全接合状态。
3、 当 0 < λ ζ (针对 ζ > 0 的情况) 时, 牵引摩擦副处于恒定的自锁状 态, 导向摩擦副处于一般静摩擦状态。 相应地, 在摩擦件 70相对导向件 50过 载时, 中介件 90 将具有突破导向摩擦副的最大静摩擦状态 /阻力而相对导向件 50滑转爬升的趋势, 但由于该爬升趋势被空间楔形机构的轴向力封闭结构刚性 阻止(除非压力 Ν源自弹性力), 因此, 导向摩擦副被强制性地维持在等同于自 锁的一般静摩擦状态。 即, 中介件 90、 导向件 50与摩擦件 70三者被强制楔合 / 结合成一个转动整体, 即使过载至毁损也不相互滑转爬升。 空间楔形机构因而 处于类似斜撑式超越离合器的绝对自锁 /楔合状态。
由常识可知, λ等于 ζ的情况, 只存在于理论上而不存在于现实中。 也就 是说, 因不能同时自锁而必然始终存在着一组不自锁的可滑转摩擦副, 空间楔 形机构传递转矩的物理本质只能是摩擦, 而不是现有技术认定的摩擦自锁。 但 极限角 ζ未被现有技术理论所认识, 也不能由作为特例的平面楔形机构的运动 关系启示、 想象或揭示出来, 更不能由其结构推导出来。 因此, 不知道极限角 ζ的存在及物理含义的现有技术便无法透彻地认识极限角 ξ亦即楔角的真实物 理含义, 包括摩擦滑转的正常性, 更不可能发现、 揭示和证实空间楔合的物理 本质, 并进而得出本申请的基于空间楔形机构的技术方案。
显然, 上述升角 λ就是空间楔形机构的楔角, 也称楔合角 /挤住角, 并仅在 0 < λ ξ时, 空间楔形机构方可楔合, 超越离合机构方可接合。
相对现有技术的驻车制动系统, 依据本发明的通用驻车制动器, 具有更高 的可靠性和更高的安全性, 结构简单紧凑, 制作成本低, 操作简便, 不仅无需 供能装置和传动装置, 而且制动无滑转。 装配有该驻车制动器的可移动式机器 / 机械, 无论是驻车于平地还是上、 下坡道上, 其起动操作程序均与平地无异, 简单、 平稳而无需任何特别经验或关注, 更无需任何坡道辅助起动系统。 借助 下述实施例的说明和附图, 本发明的目的和优点将显得更为清楚和明了。 附图说明
图 1是根据本发明的实施例一的通用驻车装置的轴向剖面图。
图 2Α ~ 2Β,分别是图 1中各机构的齿廓向同一外圓柱面径向投影的局部展 开图, 其中, 图 2Α对应于车辆沿下坡方向 Ρ驻车时的制动状态, 图 2Β对应于 车辆沿上坡方向 Ρ驻车时的制动状态, 而为简单明了, 仅原理性地示出拨动件 的一个凸齿, 以及中介件和导向构上收纳该凸齿的各一个对应的齿槽, 而不论 其具体数量是多少, 也不论其具体为端面齿还是周面齿。
图 3是图 1中具有力封闭功能的环状袋形摩擦件的端面右视图。 图 4是根据本发明的实施例二的通用驻车装置的轴向剖面图。
图 5是根据本发明的实施例三的通用驻车装置的轴向剖面图。
图 6是根据本发明的实施例四的通用驻车装置的轴向剖面图。
其中, 为便于表现和说明, 图 1、 4 ~ 6中轴线 X的上半部分对应于行车时 的解楔式分离状态, 下半部分对应于驻车时的楔合式接合状态。 具体实施方式
必要说明: 本说明书的正文及所有附图中, 相同或相似的构件及特征部位 均采用相同的附图标记, 并只在它们第一次出现时给予必要说明。 同样, 也不 重复说明相同或相似机构的工作机理或过程。 为区别设置在对称或对应位置上 的相同的构件或特征部位, 本说明书在其附图标记后面附加了字母, 而在泛指 说明或无需区别时, 则不附加任何字母。
为说明的方便, 本发明以下将以不可逆传动装置作为拨动式超越离合机构 的代表, 以可移动式机器 /机械中的轮式机动车辆为具体应用背景, 对基于拨动 式超越离合机构的通用驻车制动器及其操纵方法的实施方案予以详细说明。 而 关于不可逆传动装置的详尽说明, 则记录在本申请人于本申请同日提出的申请 号为 201010******.* , 名为空间楔合式不可逆传动装置及全程主动驱动式起升 机构的中国专利申请中, 该专利申请的全部内容通过引用结合于此。
实施例一: 摩擦件固定的止转入楔式通用驻车制动器 P1
参见图 1 ~ 3 , 具有轴一轴传动形式的通用驻车制动器 P1 , 实际上就是按受 控逆止型的工作模式工作的双向不可逆传动装置的简单和直接的应用。 其包括 最佳地绕轴线 X形成,并最佳地呈阶梯环状的导向件 50。其外环侧的内端面上, 设置有一组最佳地绕轴线 X周向均布的双向螺旋导向齿 52, 其内环侧朝内端延 伸的管状基体 60的内周面上, 最佳地设置有具体为花键齿的传力凸齿 62, 以与 同轴线地设置在其内孔中的耦合于车辆原动机的轴状的拨动件 30 , 以及耦合于 车辆驱动轴的从动件 40, 借助花键副分别不可旋转地相连。 前一连接具有大于 零的周向自由度 s g, 后一连接最佳地具有等于零的周向自由度。 相应地, 拨动 件 30和从动件 40两者相邻的内端部的外周面上, 分别对应地设置有最佳地同 为花键齿的至少一个拨动齿 32和传力凸齿 42。 同时, 在从动件 40的内端面上, 最佳地设置有共轴线 X的圓柱状中心凸起 44,其可转动地收纳在位于拨动件 30 内端面的中心孔 34中。 而在管状基体 60的端部外周面上, 则可滑转地径向定 位有最佳地呈环状的中介件 90,其通过设置在面对导向件 50的端面上的与导向 齿 52呈互补式构造的一组螺旋导向齿 92, 与导向件 50恒久地嵌合, 以构成最 佳地绕轴线 X回转的面接触型双向转动导向机构 G。 中介件 90内周面上还设置 有环形凸缘 100, 其内径向地延伸至管状基体 60的内端面之外。 借助设置于该 凸缘 100内周面的可与拨动齿 32周向相抵触的解楔凸齿 112, 中介件 90与拨动 件 30不可旋转地相连, 并具有大于零的周向自由度 s a。
驻车制动器 PI还包括最佳地绕轴线 X形成并具有轴向力封闭功能的摩擦件 70。 该摩擦件 70最佳地是一个环状袋形构件, 其绕轴线 X形成的内周面 84的 轴向中部, 同轴线地设置有最佳地为平面型的盘形环状周向凹槽 78。 该周向凹 槽 78的约半周的内表面,最佳地沿两相互平行的切线方向 H和 H'延伸至摩擦件 70的外周面, 并形成等截面矩形入口 82。 周向凹槽 78的径向内表面 80, 因而 延伸成具有 U字形横截面形状的非闭合式内径向表面。相互嵌合的导向件 50和 中介件 90, 可沿图 3中空心箭头所指方向由入口 82直接纳入周向凹槽 78, 并 被轴向贯穿于摩擦件 70内孔中的拨动件 30及从动件 40径向定位。而摩擦件 70 则通过设置于其内周面两端部, 与拨动件 30及从动件 40的对应外周面之间的 两个轴承 158, 同轴线地径向固定在该两构件上。 最佳地, 轴承 158附装有未示 出的密封圈或轴承盖。
在此应指出的是, 周向凹槽 78呈环状和入口 82呈等截面矩形, 均是实现 本发明的最佳但并非必需设置。 实际上, 只要能够纳入诸如导向件 50和中介件 90, 周向凹槽 78和入口 82可以具有任意形状和不等截面。 同样道理, 摩擦件 70的内周面 84也不必需周向封闭和对应于贯通式内孔,其完全可以呈例如大致 半周的 U形开口状并对应于一个盲孔,只要在该内周面 84上可以设置出用以收 纳诸如中介件 90之类的回转构件的大致半周的周向凹槽 78即可。 同样, 拨动 齿 32、解楔凸齿 112和传力凸齿 62也不必需是周面型凸齿或花键齿, 只要可以 形成拨动件 30与中介件 90及导向件 50的分别不可旋转地相连, 以及分别具有 周向自由度 s a、 s g即可。 例如, 可以借助端面型凸齿、 平键、 D字形轴孔或 方形轴孔的非圓配合等连接方式。
显然, 轴向力封闭的环状袋形摩擦件 70也可以是一个组合构件。 例如, 借 助诸如焊接、 铆接或螺栓之类的紧固方式, 将一个具有中心圓孔的杯形壳式限 力元件轴向固定连接至一盘形圓环的端面, 并限定出周向凹槽 78。 此时, 还可 进一步地将导向齿 52或 92刚性一体地直接形成在该盘形圓环的内端面上, 并 在周向凹槽 78内设置一个独立的盘形圓环以充当摩擦件。再如,借助诸如焊接、 在包括轴向中部和 /或外端部的外周面上过盈地设置至少一个环形箍或齿环之类 的紧固连接方式, 将径向上至少大致对称, 且半圓形内圓面上均设置有半圓形 周向槽的两个半圓壳式限力元件, 径向固定地对接成一个限定出完整的周向 1HJ 槽 78的组合式环状摩擦件。 相关结构的更详细说明和图示可参见上文所整体结 合的两项专利申请, 此处不作进一步说明。
继续参见图 1 ,盘形环状周向凹槽 78分别设置有回转型牵引摩擦面 72和传 力摩擦面 74。 其左端的牵引摩擦面 72, 与设置在中介件 90无齿端面上的回转 摩擦面 104摩擦相连, 构成回转型面接触牵引摩擦机构 Fl。 其右端的传力摩擦 面 74, 与设置在导向件 50无齿端面的传力摩擦面 58摩擦相连, 构成可与导向 件 50直接传递摩擦转矩的回转型面接触传力摩擦机构 F2。 牵引摩擦机构 F1和 转动导向机构 G, 共同组成端面型空间楔形机构, 该机构再与传力摩擦机构 F2 一起, 构成通用驻车制动器 P1也就是双向不可逆传动装置的轴向力封闭的空间 楔合式摩擦超越离合机构。 而包括有拨动件 30的该离合机构, 就是拨动式超越 离合机构。
应该指出的是, 本申请 "直接传递摩擦转矩" 的含义是指, 转矩在两构件 间的传递路径仅经过一个摩擦机构, 而不经过任何第二个其它机构, 其与该摩 擦机构所具有的摩擦面 /片的数量没有任何关系。 显然地, 由于环状袋形摩擦件 70的盘形环状周向凹槽 78被最佳地设置成 平盘状而非锥盘状, 因此, 驻车制动器 P1在理论上可以不要求导向件 50和中 介件 90的组合与摩擦件 70之间的同轴度精度。 也就是说, 可以不对超越离合 机构中的转动导向机构 G、 牵引摩擦机构 F 1和传力摩擦机构 F2三者之间以及 三者与轴线 X的同轴度做过高要求。 尤其是转速不高时, 只要其两个面接触回 转摩擦副垂直于轴线 X, 以及仅具有几乎不可察觉的相对转动的导向件 50和中 介件 90相互间同轴线设置即可。 而相对现代工艺, 保证该两个环状构件之间的 同轴度又是一件简单和低成本的劳动。 因此, 这将显著降低制作、 装配和使用 驻车制动器 P1的要求和成本。
为最佳地封闭 /封堵入口 82 , 还以诸如焊接、 铆接、 胶接、 螺纹副、 径向或 端面螺钉、 过盈或间隙配合之类的紧固或非紧固连接方式, 在入口 82中或其外 部的摩擦件 70的外周面上, 设置有至少一个封口件 190 , 如最佳的完整管状圓 环。 而为直接固定连接至未示出的机架, 例如最佳地直接固定连接至变速器输 出轴端的外壳上,摩擦件 70—端部的外周面上呈径向地设置有方形凸缘 86 , 其 上设置有例如 4个固定连接用的轴向通孔 83。
下面再结合图 2A ~ 2B来说明双向转动导向机构 G的详细关系和结构特征。 其中, 最佳地具有梯形横截面且沿径向延伸的每对端面型螺旋导向齿 52和 92 的相互面对的导向面 54和 94 , 均被互补地构造成螺旋型齿面, 两者周向相互贴 合后, 便可形成对应于不同圓周方向的两组面接触的螺旋式导向摩擦副。 优选 地,分别朝向两个圓周方向的两组螺旋导向面 54a和 94a以及 54b和 94b的两个 互补的升角 λ 和 b , 均对称地等于 λ。 一般地, 0 < λ ξ , 允许过载打滑时, ζ < λ < ξ , 绝对不许打滑时, 0 < λ ζ (当 ζ > 0 )。 另外, 转动导向机构 G 的轴向自由度 /间隙为 δ , 周向自由度 /间隙为 ε , 两自由度均最佳地大于零, 且 设置得越小越好。
容易理解, 导向件 50端面上的多个导向齿 52实际上就是空间楔形机构的 楔形齿, 其导向面 54分别朝两个圓周方向轴向上逐渐靠近摩擦件 70的回转型 牵引摩擦面 72 , 并与后者分别围成两组各包括多个的沿周向延伸的端面楔形空 间。 而设置在该多个楔形空间中的多个导向齿 92就是楔合子, 其因不必需径向 运动而最佳地相互合并成一个零件, 即整体环状的中介件 90。
在设置上, 驻车制动器 P1 的各结构要素具有这样的效果。 即, 中介件 90 和导向件 50双方在两个圓周方向上入楔时的相对转动, 均不会受到设置于拨动 件 30上的拨动齿 32的任何阻碍和影响,而进入和处于例如图 2Α ~ 2Β所示的楔 合式接合状态。 亦即在该两种接合状态中, 拨动件 30相对中介件 90及导向件 50的楔合体的综合周向自由度仍大于等于零。 同时, 拨动件 30相对摩擦件 70 沿任意圓周方向的主动转动, 都可以解除该楔合式接合状态, 而不会致使中介 件 90和导向件 50双方再次进入楔合式接合状态。
例如, 拨动件 30沿箭头 Ρ所指方向的主动转动, 在图 2Α中将通过拨动齿 32对齿侧面 111 a的周向抵触, 首先驱动中介件 90开始转动并解楔, 然后在中 介件 90通过导向面 94b与 54b的贴合而与导向件 50周向相互 4氏触至之前, 将 通过拨动齿 32对齿侧面 61a的周向 4氏触, 再驱动导向件 50开始同步转动; 在 图 2B中则将通过拨动齿 32对齿侧面 61 a的周向抵触, 首先驱动导向件 50开始 转动并解楔,然后在导向件 50通过导向面 54a与 94a的贴合而与中介件 90周向 相互抵触至之前, 将通过拨动齿 32对齿侧面 111 a的周向抵触, 再驱动中介件 和 54b的5圓周朝 ι , 正好相反于箭头 指方向。 、 ' °
其中, 齿侧面 111及 61分别是解楔凸齿 112及传力凸齿 62的齿侧面。 再例如, 拨动件 30沿箭头 R所指方向的主动转动, 在图 2A中将通过拨动 齿 32对齿侧面 61b的周向抵触, 首先驱动导向件 50开始转动并解楔, 然后在 导向件 50通过导向面 54b与 94b的贴合而与中介件 90周向相互 4氏触至之前, 将通过拨动齿 32对齿侧面 111b的周向抵触, 再驱动中介件 90开始同步转动; 在图 2B中则将通过拨动齿 32对齿侧面 111b的周向抵触, 首先驱动中介件 90 开始转动并解楔, 然后在中介件 90通过导向面 94a与 54a的贴合而与导向件 50 周向相互抵触至之前, 将通过拨动齿 32对齿侧面 61b的周向抵触, 再驱动导向
54a和 94b ό 圓周朝向, 正好相反于箭头 指方向。 、 ' 、 ' ° 一种简单的也是最佳的设置方式是, 首先, 将拨动齿 32、 解楔凸齿 112和 传力凸齿 62设置成各自均勾一致且均布的周向对称齿。 其次, 按这样的设置效 果布置各几何要素, 即, 当中介件 90和导向件 50双方处于相对自由转动区间 的周向中点 /半程点时,该二构件也可同时处于相对拨动件 30的自由转动区间的 周向中点位置上。 最后, 将上述周向自由度设置成符合不等式 ε a - ε < s g < e a + ε , 且 s a - s > 0。 其中, 0代表综合周向自由度的下限。
为使行车状态中超越离合机构的空转摩阻尽可能地接近于零, 防止误楔合, 应使超越状态中的两个相背的摩擦面 104和 58之间的轴向最小距离, 持续性地 小于两个相向的摩擦面 72和 74所限定的轴向间距, 以至少保证摩擦副间的正 压力等于零。 为此, 驻车制动器 P1还最佳地设置有包括弹性收缩机构和至少一 个致动件 192的入楔控制机构。
其中, 弹性收缩机构包括具体为图 1 中的丝状直线弹簧 152的至少一个弹 性元件, 其内径端贯穿性地设置在位于管状基体 60的径向通孔中, 其外径端最 佳地固定在中介件 90内周面的相应径向孔中。 该两个径向孔的相邻部分呈截锥 形, 以允许中介件 90相对导向件 50作有限的周向和轴向弹性位移, 并具有这 样的设置效果。 即, 无外力作用之际, 弹簧 152可致使中介件 90与导向件 50 双方轴向间距持续地弹性收缩至最小, 最佳地等于零并相互弹性贴紧, 以使导 向面 54a与 94a以及 54b与 94b分别持续性地相互同时抵触。 中介件 90与导向 件 50双方的组合, 将因 δ > 0而不可能同时 4氐触至两个摩擦面 72和 74。 而当 中介件 90相对导向件 50周向转动时, 双方可克服弹簧 152的弹性力并分离至 少为 δ的轴向距离。
当然, 弹簧 152也可以是一个或多个螺旋弹簧、 片状波形弹簧, 或者由弹 性材料制成的具有任意形式和任意设置位置的至少一个的弹性元件, 只要其可 以产生上述弹性收缩效果即可。 例如, 设置于中介件 90及导向件 50二者外周 面上, 两个端头分别嵌入二者相应径向孔中的螺旋拉簧, 或者, 如图 6 中所示 的弹性开口环状的弹簧 152, 或者, 摩擦面 72与中介件 90之间的压簧。
另外, 致动件 192则具体为可滑动地设置在位于摩擦件 70的径向孔中的圓 柱销, 其可操作地抵触至中介件 90的外周面, 以强行制止中介件 90相对摩擦 件 70的转动。 相应地, 其头部最佳地设置有 V形斜面式止转面 194, 并最佳地 具有周向弹性, 或由弹性材料制成。 与其抵触的中介件 90的对应外周面应最佳 地具有较高的摩擦系数, 或设置成具有例如 30度倾斜角的相应齿面 106。 该齿 面与止转面 194的周向 4氏触, 应最佳地不能致使致动件 192楔合在其径向孔与 中介件 90之间。 当然, 致动件 192也可设置在轴向孔中并可 4氏触于回转摩擦面 104, 或者, 由导向件 50—侧抵触至中介件 90的径向凸缘上, 或如下所述的截 锥面上, 以将其抵触至摩擦面 72, 甚至, 还可间接地设置在与摩擦件 70不可旋 转相连的例如限力元件上。 无疑, 致动件 192可由机械、 机电、 液压或电磁等 机构中的任何一种公知技术 /机构以公知方式致动, 故此无需详细说明。
实际上, 以摩擦方式制止中介件 90相对摩擦件 70转动的方案, 可以是现 有制动技术中的任何一种。 例如, 参见图 1 , 可将中介件 90的外周面设置成截 锥面 (未示出), 并在入口 82 中设置一个可与该截锥面至少建立线接触摩擦副 的摩擦致动轮 170。 该致动轮 170通过例如径向销固定在销轴 172上。 销轴 172 可滑动地设置在位于入口 82两端的摩擦件 70的轴向孔 81中。 套设在销轴 172 上的螺旋压簧 178, 以传力摩擦面 74为支撑面, 将致动轮 170持续地弹压向所 述截锥面。 由传力摩擦面 74—端延伸至摩擦件 70外端面的销轴 172的端部, 固结有至少具有止转特征曲面的止转头部 174。该特征曲面最佳地位于其外周面 上, 并具有与摩擦件 70的端面凸缘 77的外周面互补的构造。 另外, 在该止转 头部 174内端的销轴 172上, 则套设有调节凸轮 176, 该调节凸轮 176与止转头 部 174组成一个如上文所述的转动导向机构。 这样, 转动调节凸轮 176, 该转动 导向机构便可处于导向或非导向状态, 其产生的轴向移动便可致使摩擦致动轮 170与中介件 90建立或解除相互间的摩擦抵触连接, 从而制止后者的转动。
于是, 任意时刻致动致动件 192, 使其进入径向抵触并止转中介件 90的工 作状态, 都可以在导向件 50相对摩擦件 70的转动之际, 致使中介件 90克服上 述弹簧 152的弹性力而相对导向件 50导向转动并入楔。
驻车制动器 P1的工作过程非常简单,只需致动或不致动入楔控制机构即可, 其它一切均由制动器 P1 自己自适应地完成。 即, 只要驻车之前, 令致动件 192 处于致动状态, 而驻车结束之前, 解除对致动件 192 的致动, 使其回复未致动 状态即可。 无需任何其它多余操作, 均可获得理想的驻车制动工况, 以及理想 的起动效果。
例如, 致动件 192处于致动状态后, 当驻车于平地或坡道上的车辆由于非 自身驱动力的原因而开始具有或持续具有滑动的趋势的初始瞬间, 与驱动轮或 主动轮相耦合的从动件 40, 将即刻驱动导向件 50开始试图沿例如图 2A中箭头 P所指的下坡方向相对摩擦件 70转动。 于是,摩擦件 70将借助致动件 192头部 的摩擦抵触或啮合作用, 牵引着转动导向机构 G的中介件 90, 相对导向件 50 沿箭头 R所指方向作转动导向运动, 致使二者克服弹簧 152的弹性力并分别抵 触至牵引摩擦面 72和传力摩擦面 74。 该转动导向运动所产生的轴向移动 /胀紧 力, 在将导向齿 92瞬间楔紧在导向面 54a和牵引摩擦面 72所围成的端面楔形 空间中, 也就是中介件 90将导向件 50与摩擦件 70楔合成一个摩擦体, 牵引摩 擦机构 F1因而轴向接合的同时, 还将导向件 50即刻胀紧在摩擦件 70的传力摩 擦面 74上, 以形成轴向力封闭式抵触连接的方式, 致使传力摩擦机构 F2也同 步接合, 并将导向件 50与摩擦件 70直接连接成一个摩擦体。
于是, 驻车制动器 P1随着空间楔形机构的楔合而接合, 并进入逆止和驻车 制动工况。 即, 由管状基体 60内孔中的从动件 40传入的可导致溜车的例如源 自重力的致滑转矩 M。, 分成经由转动导向机构 G和牵引摩擦机构 F1传递的楔 合摩擦转矩 Ml 以及经由传力摩擦机构 F2直接传递的传力摩擦转矩 Μ2, 分别 传递至摩擦件 70并最终终止于与其固定相连的机架, 而不能进一步地传递给拨 动件 30。 其中, Mo Mi + M^ 且上述轴向胀紧力、 楔合力和各摩擦力的大小, 均完全自适应地正比于 Ml 也就是致滑转矩 M0
应该指出的是, 当 ζ < λ ξ时, 虽然通用驻车制动器 P1具有因逆止转矩 /制动转矩过载而打滑的摩擦制动功能,但由于驻车时耦合于车轮的从动件 40的 转速等于零, 所以, 来自机架的反抗 /逆止转矩, 将时时被动且自适应地对等于 致滑转矩 Μ。。 因此, 实际上不可能出现过载打滑的制动情况, 除非驻车制动时 从动件 40的旋转动能显著大于零,例如行车制动或用作电动机停机 /电即制动的 实际应用中。 但即便如此, 也无需任何控制或干预, 驻车制动均将自适应地进 入自适应式 ABS防抱死制动状态, 直至摩擦制停。 而当 0 < λ ζ时, 则从理 论上彻底消除了过载打滑的任何可能, 除非出现结构性破坏。 也就是说, 驻车 制动器 P1具有可靠的和不打滑的楔合式驻车制动力, 该制动力无需人为提供和 控制, 其完全自适应地时时对等于导致车辆溜滑的致滑转矩 MQ, 并随其产生而 产生, 随其消失而消失。
显然,从动件 40驱动导向件 50沿箭头 R所指方向相对摩擦件 70的转动具 有完全类似于上的工作过程, 参见图 2B, 故无重复说明之必要。 也就是说, 需 要驻车制动之际, 只要操作者完成了驻车制动的指令操作, 令致动件 192处于 致动状态, 即可借助也只能借助致滑转矩 MQ来自动完成驻车制动的实质操作, 致使驻车制动器 P1在任意方向上, 获得自适应且可靠的驻车制动力。 即使在水 平地面上, 只要受到外力也就是致滑转矩 MQ的驱动作用, 驻车制动器 P1也将 如上所述地发挥驻车制动作用, 遏制住车辆的一切移动趋势。
如上所述, 在准备起动车辆行驶之前, 只要结束对致动件 192 的致动, 令 其处于未致动状态以解除其对中介件 90的周向约束即可。 这可以通过类似现有 技术中传统的一个松手刹的动作来完成, 也可通过一个例如改变液压阀、 电磁 开关或驱动电机等的工作状态的按动按钮开关的动作来完成, 而不需要较现有 技术和理论为多的任何第二个动作。 自然, 前述致使致动件 192进入致动状态 的指令操作, 也是依同一机构以同样简单的方式来完成。
必须强调的是, 上述操作仅仅是完成了可以结束驻车制动的指令操作, 并 非完成了真正结束驻车制动的实质操作。 该实质操作的可靠执行, 唯有依赖来 自车辆原动机的驱动力。 也就是说, 在车辆成功起步之前, 驻车制动不会结束。 因为, 只要致滑转矩 MQ不等于零, 驻车制动器 P1就必然维持其楔合工况, 不 会自行解楔, 而 MQ等于零, 又不可能自行溜滑。 即, 驻车制动状态和起步驱动 状态在时间上是无缝衔接的两个互反 /互补状态, 在执行结束驻车制动的指令操 作之后和真正驱动车辆起步之前, 车辆仍将持续地处于理想的驻车制动状态之 中, 即使驻车于坡道也不会有任何失控的危险。
致动件 192处于未致动状态后, 在车辆开始起步行驶之际, 当其原动机驱 动与之相耦合的拨动件 30开始持续地具有相对摩擦件 70主动转动的趋势的初 始瞬间, 例如沿图 2^中箭头 P或图 2B中箭头。R所指的了坡 向的主动转动^ 在完成解楔转动之后再与致滑转矩 M0共同驱动导向件 50同步转动。 而例如沿 图 2A中箭头 R或图 2B中箭头 P所指的上坡方向的主动转动, 拨动件 30则将 首先驱动导向件 50克服致滑转矩 M0后开始相对中介件 90作同方向的解楔转动, 并在完成解楔转动之后再带动中介件 90同步转动。 其中, 所有解楔转动实质上 都是解除转动导向机构 G的导向作用的转动。 并且, 在弹簧 152的作用下, 中 介件 90和导向件 50将于解楔之后的第一时间, 再次弹性收缩至轴向间距等于 零的相互贴合状态。 因此, 处于楔合状态中的导向面 54与 94之间的法向压力 和转动导向机构 G的转动导向作用, 将随着两导向面产生相互脱离接触趋势的 一瞬间而同时消失, 例如图 2A中的导向面 54a与 94a之间以及图 2B中的导向 面 54b与 94b之间。 自然,基于该机构 G的轴向移动 /胀紧力的两个摩擦机构 F1 和 F2以及空间楔形机构, 将随即分离或解楔。 于是, 驻车制动器 P1结束驻车 时的楔合式接合状态, 转入解楔式分离状态并开始自由的超越转动, 其空转摩 擦阻力近似为零。而拨动件 30在驱动中介件 90和导向件 50—同相对摩擦件 70 空转的同时, 还通过导向件 50驱动从动件 40—同作联轴器式转动, 将驱动转 矩传递至车辆驱动轴。 起步之后, 车辆的前行、 倒车或滑行, 均与驻车制动器 P1无关。
显而易见地, 车辆的上述起动过程中驻车制动力与行驶驱动力之间的无缝 的接力式交替转换过程, 没有平地和上、 下坡的区别, 也无需操作者具备娴熟 而协调地操纵离合器、 油门、 行车制动器或驻车制动器的特别经验, 更无需坡 道辅助起动系统的介入, 一切均由简单的驻车制动器 P1于自适应中自动完美地 完成。 相关操作变得简单而可靠, 而且, 因理论上和实际操作中均不可能产生 丝毫的溜车现象而具有最佳的起动效果, 以及相对更小的机械磨损。 操作者所 需具备的, 仅仅是平地起动车辆的简单操作技能和对上坡起步油门应稍大的传 统的基本常识。
至此不难发现,相对现有技术,驻车制动器 P1具有本质的和全面的优越性。 即, 具有更高的系统可靠性和更高的系统安全性, 结构简单紧凑, 制作成本低, 操作简便, 不仅无需供能装置和传动装置, 可以无动力工作, 而且制动无滑转。 其只有制动与解除制动两种可无条件立即执行的指令操作, 不存在任何其它的 操作, 例如关于工作方向的繁瑣的选择操作, 车辆的操控因而变得更加简单而 不是相反。 更关键地, 无需任何坡道辅助起动系统, 便可确保车辆在上坡和下 坡方向上的起动操作程序均与平地无异, 简单、 平稳而无需任何特别经验或关 注。 不仅解除了操作者的注意力负荷, 更显著降低了相关操作的劳动强度。 另外, 由于行驶状态和驻车制动状态均至多存在可忽略不计的磨损, 而且 相关机构均具有自动补偿磨损的能力, 以及保持相关设置参数不变的能力, 因 此, 驻车制动器 P1具有相较现有技术至少显著更高的工作寿命和可靠性。 至于 驻车制动器 P1的承载能力, 更不存在可质疑之处。 其行驶状态中具有齿式联轴 器的传动能力, 驻车制动状态中具有空间楔合式摩擦超越离合器 /机构的高强传 动能力。 对于具有完全面接触摩擦副和轴向高刚度的后者, 正如上文所整体结 合的两项专利申请所述, 其具备了理想超越离合器所应该具备的几乎全部特性, 可参阅。
例如,在导向件 50的内径不小于 50mm,在摩擦件 70环状部分的外径介于 98 ~ 175mm, 轴向宽度介于 48 ~ 90mm, 以及工作系数和摩擦系数分别为 2.0和 0.1时, 只有约半周可以楔合和传力的通用驻车制动器 P1 , 其楔合制动用计算转 矩可达 2,790 ~ 16,900N · m的量级水平 (设置为单向导向齿时则翻倍)。
另外, 相对现有技术, 由于彻底省去了供能装置和相应的传动装置, 只剩 下控制装置和驻车制动器, 而本发明的驻车制动器又是相当简单的非动力制动 装置, 其控制机理又决定了其控制装置也将更加简单, 且至多仅需微小能量供 应的特性, 因而依据本发明的整个驻车制动系统将非常简单。 其承载能力的高 强和控制的简单性决定了, 其不仅具有适用于包括装曱车辆和重型卡车在内的 所有可移动式设备 /机械的通用性, 而且还具有适用于包括手动、 自动、 无级等 变速传动系统的通用性, 更具有适用于从车辆原动机直至驱动轮 /轴的整个转矩 传动轴系中的所有安装位置的通用性。 因此, 依据本发明的驻车制动器显然具 有更小的系统体积, 具有对应于更简单系统的更低成本和更高可靠性, 以及对 应的更易于实现线控操 线控驻车制动的优越特性,是理想的通用驻车制动器。
必需指出的一点是, 依据上述说明, 本领域技术人员很容易明了, 具有依 据本发明的例如驻车制动器 P 1的机动车辆,其朝水平方向和朝上坡方向的起步, 均不会受到对应于驻车制动器 P1的解楔过程的阻力转矩 MR的作用, 因为此时 的该转矩至少约等于零, 但其朝下坡方向的起动, 就必需克服该阻力转矩 MR。 下坡时, 该对应于中介件 90的阻力转矩 MR的最大值, 仅具有牵引摩擦机构 F1 的摩擦转矩的量级, 亦即驻车制动转矩也就是致滑转矩 M。的约 l/(k + 2)。其中, k > 0, k是摩擦机构 F1和 F2的摩擦片的总片数。 显然, 片数越多, MR就越小, 朝下坡方向的起动就越容易。 而特别地, 参照前文所述, 升角 λ越接近极限角 ξ , 该阻力转矩 MR就越接近于零。 理论上, 阻力转矩 MR随着 λ等于 ξ而等于 零。 因此, 只要设计适当, 或者, 保证致动件 192致动状态的可靠, 即便应用 于重型卡车, 即便致滑转矩 MQ很大, 下坡时的 ^^也可相当地小, 或等于零。
尽管上述实施例以应用于动力传动轴系为例, 但本发明适用范围显然并不 限于此。 例如, 对于导向件 50耦合至诸如车辆的方向轮、 轨行车辆及飞机起落 架上的承重轮之类的非驱动用随动轮的情况, 依据本发明的例如驻车制动器 P1 同样可以正常制动。 这只需以更简单的机构执行完解除驻车制动状态的指令操 作后, 再借助公知技术中的可操作地接合的例如液压马达 /液压缸的液压机构、 气压机构、 电磁机构、 包括电机的机电机构、 或者机械机构等驱动装置, 在车 辆起步之前, 向设置于轮轴处的同样随动的拨动件 30, 短促地传递仅仅用以解 除驻车制动器 PI楔合式接合状态的解楔转矩即可。 或者更简单地, 只需朝着反 溜滑的方向直接起步即可。 即使不确知溜滑方向, 最多也只需朝反向短促地起 步一次, 再直接朝欲行驶方向起步行驶即可。 该过程中, 在弹簧 152的作用下, 拨动件 30与导向件 50自然会于第一时刻再次轴向贴合成同一转动体。
另外, 依据本发明的例如驻车制动器 P1 , 也可用作同时具有驻车和行车制 动功能的综合制动器, 且具有完全自适应的 ABS防抱死制动功能(当 ζ < λ ξ )。 或者, 具有该两种功能的制动器的外壳, 例如袋形构件, 最佳地轴向双联 成单一零件。 例如, 将驻车制动器 P1固定地设置于例如车辆的驱动桥中, 并将 其拨动件 30与差速器输出侧齿轮最佳地制成同一个零件, 以差速器的驱动半轴 充当其从动件 40。 当然, 如果对其中的空间楔形机构实施必要变型, 其制动力 的大小便可按需渐进变化。 相关内容的详细图示和说明, 以及可最佳地用于随 动轮处的行车制动和驻车制动的技术方案, 可参见本申请人于本申请同日提出 的名为空间楔合式摩擦连接器的专利申请, 此处不作进一步说明。
应顺便说明的是, 为最佳地应对各种可能情况, 简化操纵方法, 可依公知 技术和公知的控制系统, 按照设置有三个不同优先级别操纵指令的操纵方法, 操纵入楔控制机构, 亦即操纵具体的致动件 192 的致动状态。 即, 最优先级的 手动机械机构的强制操纵指令, 以应对例如既无动力又无电力或电控失效时需 要紧急移动车辆的情况(未致动后, 朝上坡方向或最多朝前后两个方向各推一 次即可解楔 /解困滑行), 以及行车时需要紧急制动的情况。 次优级的按钮式强制 电控操纵指令, 以强制制动或强制不许制动。 普通级别的基于例如转速和加速 操纵装置状态变化量的电控自动操纵指令, 以利用诸如基于转速、 位移等传感 / 检测元件和电子技术的机电 /电磁等机构, 在侦测到诸如车辆驱动轴 /轮、 随动轮 或车辆变速器输出轴的转速等于零的状态持续至阈值时刻之际, 自动致动致动 件 192, 例如, 可持续至由操作者自行设定的阈值 0 ~ 2秒之际, 而在侦测到例 如加速 3务板被踩下时则立即自动解除对致动件 192的致动。
由常识可知, 现有车辆的加速 3务板和被踩下的几何位移, 只是可移动式机 器 /机械的加速操纵装置及其状态变化量的一种具体表现形式,但绝非唯一形式。
于是, 无论多么频繁地起动和停止, 无论上坡还是下坡, 车辆行车制停便 无缝地转入驻车制动, 踩下加速踏板就可立即起步行驶, 其间无需人为或专门 装置来保持制动, 更无需任何的人为干预, 从而显著简化了驾驶车辆的操作程 序, 极大地降低了操作者的劳动强度以及注意力负荷, 尤其有益于军用车辆的 操作者。 这样, 借助最简单的驻车系统和上述操纵方法, 不仅保证了驻车制动 的绝对可靠和绝对及时, 停车即自动进入并保持住驻车制动状态, 完全消灭了 人为疏忽的安全隐患, 而且还理想地实现了驻车制动操纵的完全自动化, 从而 彻底取消了常规情况中所有有关驻车制动的操作, 显著地优于所有的现有技术。
不难想到, 通用驻车制动器 P1还可具有轮一轴传动形式。 例如, 去掉封口 件 190, 将从动件 40设置成异轴上的盘形齿轮, 并伸入入口 82与设置在导向件 50外周面上的轮齿啮合, 实现与后者的可驱动连接。 此时, 摩擦件 70将单一地 径向支撑在通轴状拨动件 30上。 更进一步地, 还可在传力摩擦面 58和 74之间 再轴向对称地设置一个中介件 90, 并与导向件 50及摩擦件 70分别对称地组成 再一个转动导向机构 G和牵引摩擦机构 F1 , 驻车制动器 P1将失去传力摩擦机 构 F2而具有两个共用同一个摩擦件 70的牵引摩擦机构 Fl。 此时, 两个转动导 向机构 G可最佳地设置成导向方向互反的两个单向机构, 以倍增其以及驻车制 动器 P1的转矩承载能力。
必需指出的是, 拨动件 30和从动件 40均不是驻车制动器 P1制造上的必需 构件, 二者可分别由例如变速器的输出轴和与该输出轴相连的传动轴替代, 并 均可以是空心轴。 但拨动件 30却是功能上的必需构件, 其与拨动齿 32相当于 现有技术的拨爪环和拨爪。
应该注意的是, 为谋求更大的设计自由度和使空间楔形机构更容易地楔合 或解楔, 本发明还具有各种提升极限角 ζ和 ξ数值的技术手段。 包括, 将转动 导向机构 G的导向面 54和 94设置成倾斜螺旋型齿面,将牵引摩擦机构 F1的摩 擦面 72和 104设置成截锥面 ,致使轴截面内导向面 54和 94或摩擦面 72和 104 与轴线 X的夹角 /半锥顶角不等于 90度, 而等于 0 ~ 180度的其它值; 将牵引摩 擦机构 F1设置成多摩擦片式结构; 以及,将具备更大摩擦系数的材料 /元件附装 至摩擦面 72和 104中的至少一个上。 例如, 在静摩擦系数均为 0.1时, 驻车制 动器 P1中的 ζ和 ξ分别等于 0度和 11.4度, 而只需将牵引摩擦机构 F1的摩擦 面设置成半锥顶角等于 30度的截锥面这一个措施, 上述极限角便分别升至 5.6 度和 17.02度。 这里应顺便提及的是, 本说明书已经给出了关于极限角 ζ和 ξ的 清晰的文字定义和说明, 无需付出任何创造性的劳动, 本领域的普通技术人员 均可据此推导出其函数关系式 /计算公式。
由常识可知,为增大同等直径时驻车制动器 P1的转矩容量并降低轴向内力, 牵 1摩擦机构 F 1和传力摩擦机构 F2也可依公知技术, 被如上所述地分别或同 时设置为多摩擦片式的离合机构, 并因此而具有多于一个的一组牵引摩擦副或 传力摩擦副。 上述相关说明和图示, 可参见上文所整体结合的两项专利申请。
需要说明的是, 如定义中所述, 本发明没有对转动导向机构 G及其导向齿 52、 92作出具体限制, 其不必需具有最佳的螺旋齿结构。 因此, 该机构 G及其 导向齿可具有任意具备转动导向功能的形式和形状。 同样道理, 只要能够实现 轴向的互补式贴合 /抵触, 牵引摩擦机构 F1和传力摩擦机构 F2的各自两组回转 摩擦副的截锥式回转 摩擦面, 可以基于任意曲线 /母线回转而成, 并可以是设 因此, 通用驻车制动器 P1可以具有这样的变型。 即, 借助诸如精密铸造、 浇注、 压铸或注塑等方式, 将导向齿 52或 92直接刚性地形成在摩擦件 70的相 应内端面上, 以令摩擦件 70变型为具有轴向力封闭功能的袋形导向件或袋形中 介件。 同时, 还需在图 1中的中介件 90或者导向件 50与摩擦件 70的内端面之 间, 径向置入一个可相对旋转的盘形摩擦环, 以将驻车制动器 P1变型为导向件 或中介件为袋形构件的轮一轴传动式驻车制动器。 此时, 该盘形摩擦环可通过 一位于内周面 84上的空心轴或实心轴, 与机架固定相连。
当然, 也可通过在图 1中的中介件 90、 导向件 50或如上所述的盘形摩擦环 的外周面上, 简单地设置一个以互补的方式沿入口 82径向延伸至封口件 190内 表面的凸缘式力臂, 利用该力臂的两个径向侧表面与入口 82的两个径向侧表面 同时互补式的啮合, 使该相应的大致呈环状的构件和摩擦件 70不可旋转地相连 接, 从而构成具有轴向力封闭功能的组合式袋形导向件、 袋形中介件或袋形摩 擦件。 其中, 摩擦件 70用作限力元件, 而仅仅耦合于盘形摩擦环内孔中或端面 上的固定轴, 可由该限力元件的一端伸出并与机架固定。 显然, 在组合式袋形 导向件 /中介件中, 解楔凸齿 112/传力凸齿 62, 可以分别间接地设置在组合式构 件中的上述限力元件上。 同时, 传力摩擦机构 F2不再如前所述地与摩擦件 70 以及导向件 50分别刚性地结合在一起, 而是不可旋转地分别结合在一起。
另外, 如果需要, 摩擦件 70也可以是非完整环状的袋形构件。 即, 当需要 轴向延伸例如导向件 50的管状基体 60以致其不能径向通过入口 82时, 参见图 1、 3 , 可在入口 82处的轴向一端或者两端设置径向缺口。 例如, 将位于内周面 84b一端的正好半周的内周面, 沿平行于 H或 H'的两条相互平行的切线方向, 径向延伸至摩擦件 70的外周面,并形成一个允许管状基体 60置入 /通过的缺口。 于是, 内周面 84b同样延伸成具有 U字形横截面形状的非闭合式内径向表面, 摩擦件 70变成为一个形似砝码的 U形开口环。关于袋形构件及其变型的更多的 图示和说明, 可参见全文结合于此的本申请人提出的中国专利申请 201020563404.9, 本申请不作进一步说明。
还必需指出的一点是, 只要去掉致动件 192、 封口件 190以及弹簧 152, 驻 车制动器 P1就可变型为实施本发明的仅具有四构件的最简实施例。 甚至, 其导 向齿 52、 92也可以是单向的, 可以只具有应对简单需求的单向驻车制动能力。 尽管可靠性不够高, 还因滑行时可导致制动而剥夺了车辆的滑行功能, 但依靠 例如周向转动时的惯性, 或者 0 < λ < ζ的升角 λ的特别设置, 该最简实施例仍 可致使中介件 90入楔从而实现驻车制动的基本发明目的。
应顺便指出的是, 当导向齿 52、 92被设置成单向齿时, 例如, 将图 2Α中 相互贴合的一组导向面 54b和 94b, 设置成最佳地平行于轴线 X的非导向面, 并适当内缩齿侧面 61a,便可致使拨动件 30因不能周向氐触至齿侧面 61a, 而只 能通过变型为非导向面的导向面 94b与 54b之间的抵触, 间接地驱动导向件 50 沿箭头 P所指方向转动。
显然, 对于诸如履带式挖掘机、 港口轨行起重机械等这类慢速、 几乎没有 也无需滑行功能且常态为定位作业的行走机械, 依据上述最简实施例的一个驻 车制动器, 即可最佳地同时承担行车和驻车制动的任务(最好依图 2所示地加 入一个预紧弹簧 150 )。 不仅可以令到加速操纵装置即为制动装置, 停止驱动即 制动, 无需专门的制动操作, 而且更安全、 更有效、 更可靠、 更节能、 操作更 简单, 劳动强度更低。
另外, 上述最简实施例中的超越离合机构, 也可以是现有技术的带拨爪的 单向或双向滚柱式 /斜撑式超越离合器, 以及上文所整体结合的专利申请 201020187124.2 所公开的全槽道自归正摩擦式超越离合器。 只要如上所述地将 其中的拨动件 30即拨爪耦合于车辆的原动机, 将其导向件 50即星轮或例如内 环耦合于车辆的驱动轴 /轮,将其摩擦件 70即设置有回转型摩擦面的例如外环不 可旋转地连接至机架即可。 而且, 基于上述三种超越离合器 /机构的技术方案也 可令车辆保留滑行的功能, 并可减少磨损而延长其工作寿命。 这只需按照上文 所整体结合的专利申请 201020187124.2中的指引, 设置一个类似其弹性导向式 操动机构的入楔控制机构, 将滚柱或斜撑子等中介件可操纵地保持在解除楔合 的解楔 /分离位置上即可。
实施例二: 摩擦件可随动的牵引入楔式通用驻车制动器 P2
如图 4所示, 驻车制动器 P2是对驻车制动器 P1的简单变型。
首先, 入楔控制机构的弹性收缩机构被代之以弹性预紧机构, 以使超越离 合机构的溜滑角尽可能地接近于零。 该机构主要包括一个可轴向压缩的环状波 形弹簧 150,其设置在管状基体 60的内端面与中介件 90的凸缘 100的内端面之 间。 实际上, 弹簧 150也可以是一个或多个扭簧、 片状波形弹簧, 或者由弹性 材料制成的具有任意形式和任意设置位置的至少一个的弹性元件, 只要其可以 最佳地致使回转摩擦面 104始终弹性地抵触至牵引摩擦面 72即可。 并且, 最好 能致使导向面 94也同时始终弹性地抵触至 54导向面。 实际上, 弹性预紧机构 也可通过将一个与中介件 90或摩擦件 70不可旋转相连的构件弹压至对方的方 式, 建立两者间的间接摩擦连接。 有关弹性预紧机构的更详细的说明和图示, 可参见上文所整体结合的两项专利申请, 此处不作进一步说明。
其次, 入楔控制机构还包括可操作地轴向接合的嵌合机构, 以降低车辆行 驶状态中牵引摩擦机构 F1的磨损。 为此, 摩擦件 70不再固定连接至例如变速 箱之类的机架, 而是最佳地被可操作地赋予了随动的自由。 相应地, 在摩擦件 70左端面的径向外环侧, 设置有至少包括一个的一组具体为端面牙嵌齿的止转 齿 85。 在该端面之外, 则相应地设置有一个与固定机架(未示出 ) 不可旋转相 连且最佳地呈环状的止转件 130, 其上设置有可与止转齿 85相嵌合 /啮合的对应 的内止转齿 132。 于是, 当止转件 130轴向移向摩擦件 70时, 止转齿 85与 132 的相互嵌合 /啮合将致使摩擦件 70不能转动, 参见图 4下半部。 这样, 车辆驻车 之际, 当致滑转矩 M0致使导向件 50相对摩擦件 70转动之初, 中介件 90将借 助来自牵引摩擦机构 F1的空载 /牵引摩擦转矩, 牵引着中介件 90入楔并致使驻 车制动器 P2进入楔合的驻车制动工况。
而当止转件 130轴向移离摩擦件 70时, 止转齿 85与 132的相互分离将致 使摩擦件 70可自由转动, 参见图 4上半部。 因此, 在行驶状态中, 摩擦件 70 可跟随导向件 50以及中介件 90的组合一起转动, 两个持续接合的摩擦机构 F1 和 F2, 将不会产生有害磨损。
最后, 作为应对摩擦件 70高速旋转时的回转平衡措施, 还最佳地在封口件 190内径侧未被填满的入口 82的剩余空间中, 设置有一个与该剩余空间最佳地 具有互补式构造的弧形平衡元件 /配重块 230。 该平衡元件 230最佳地被贯穿于 其中, 并固定连接在摩擦件 70的轴向孔 81中的至少一个固定销 232径向定位。
可见, 驻车制动器 P2与驻车制动器 P1的区别, 仅仅存在于操作形式上。 即, 起动车辆之前, 执行轴向分离止转件 130 的指令操作, 驻车之际, 执行轴 向接合止转件 130的指令操作。 执行的效果是, 解除驻车制动的实质操作之前, 止转件 130可由于伴随致滑转矩 M。产生的齿间摩擦阻力而不能立即实现分离, 必需等待解楔起动之后, 也就是作用于摩擦件 70上的转矩降至对应于弹簧 150 的摩擦转矩之际。 为此, 轴向移动止转件 130 的动作, 应该最佳地通过一个连 接至其上的弹性元件来执行, 以满足和容忍其实质动作的滞后性。 当然, 轴向 接合止转件 130的驻车制动的实质操作也是如此, 因为止转齿 85与 132双方不 具有周向无级接合的能力, 经常需要延迟至随动的摩擦件 70转过一定的角度之 后。 因此, 与驻车制动器 P1 的周向无级接合和即时响应不同, 驻车制动器 P2 实现驻车制动的接合是周向有级的和响应滞后的, 并取决于止转齿 85及 132周 向分布的密度。
实施例三: 摩擦件可随动的牵引入楔式通用驻车制动器 P3
显然, 驻车制动器 P2虽不是最佳实施例, 但只需稍加改进, 即可变型为如 图 5所示的通用驻车制动器 P3 , 从而具有周向无级接合和即时响应、 以及无误 制动可能和几乎无磨损的最佳的实施效果。
其中, 止转齿 85与 132, 分别变型为设置在摩擦件 70和止转件 130的相应 外周面和内周面上的周面齿。 为实现轴向上的无级接合, 一方面, 止转齿 85与
132双方轴向相对的端部两侧面,均相应地设置成具有移动导入功能的例如三角 形的导向面 /倒角。
另一方面, 入楔控制机构还包括有周向对中机构的。 周向对中机构包括, 设置在导向件 50外周面上且内周面上形成有至少一个对中凸起 122 的对中环 120,位于该环 120与导向件 50外周面的环形径向凸缘 66之间的对中弹簧 124, 设置在中介件 90外周面上可操作地收纳相应对中凸起 122的对中凹槽 118, 以 及设置在导向件 50外周面上用以持续地收纳相应对中凸起 122的基准槽 126。 最佳地, 基准槽 126和对中 1HJ槽 118分别设置在各自对应齿顶和齿槽的周向中 央, 并将对中凸起 122和对中凹槽 118双方相面对的端部的周向侧面, 设置成 具有导入功能的导向面, 例如部分圓柱面或斜面, 参见图 2A ~ 2B。 同时, 对中 凸起 122、 对中凹槽 118和基准槽 126均最佳地沿轴线 X方向延伸。 实际上, 对中机构可整体性地轴向翻转位置关系。
在弹簧 124的作用下, 对中凸起 122可沿基准槽 126滑动, 并轴向纳入对 中凹槽 118中, 从而将中介件 90持续地约束至在两个圓周方向上均绝对不能入 楔的对中状态中。 即, 在两个圓周方向上, 对中状态中的中介件 90相对导向件 50的自由转动量, 均不能致使其导向面 94和回转摩擦面 104, 分别同时抵触至 相应的导向面 54以及牵引摩擦面 72。 这样, 对中状态中的摩擦件 70将获得自 由随动的能力, 在任何圓周位置上, 摩擦件 70均可不受阻碍地自行调整圓周角 度, 与止转件 130实现周向上无级的轴向接合, 从而确保通用驻车制动器 P3具 备可即时响应驻车制动指令操作并立即无级接合以实现驻车制动的能力。
而为解除对中介件 90的周向约束, 入楔控制机构还包括退位用爪环 200。 爪环 200活动地套设在拨动件 30的外周面上, 其端面外环侧设置有至少一个轴 向凸销状退位爪 202。 退位爪 202可滑动地穿过位于摩擦件 70端面上的相应轴 向孔, 并沿中介件 90的外周面轴向延伸至对中环 120的相应端面。 同时, 整个 入楔控制机构以及推动其轴向移动的止转件 130具有这样的设置效果。 即, 非 驻车制动时, 爪环 200处于轴向自由状态, 而在驻车制动状态中, 爪环 200将 同时 4氐触至止转件 130和对中环 120,且可致使后者的对中凸起 122轴向退出对 中凹槽 118。 于是, 轴向移动止转件 130以推动爪环 200, 便可通过退位爪 202 推动对中环 120克服对中弹簧 124的弹力而轴向移动, 从而致使对中凸起 122 退出对中 1HJ槽 118, 以解除其对中介件 90的对中式周向约束。
工作时, 在车辆接受结束驻车制动指令操作后的起动瞬间, 也就是驻车制 动器 P3的拨动件 30驱动中介件 90或导向件 50解楔转动的瞬间, 作用于摩擦 件 70上的摩擦转矩, 将立即降至对应于弹簧 150弹性力的量级水平。 对应地, 止转齿 85和 132之间的啮合摩擦力, 将即刻小于作用在止转件 130的弹性移动 力, 止转件 130因此将顺利地轴向移离摩擦件 70, 并解除其对对中环 120的轴 向压缩和约束。 之后, 在拨动件 30同时驱动中介件 90和导向件 50—体转动的 第一时刻, 对中凸起 122将正好周向对准并在对中弹簧 124的作用下纳入对中 凹槽 118, 进而完成中介件 90相对导向件 50的对中约束。 同步地, 爪环 200将 被轴向推至其左端的自由工位。 于是, 驻车制动器 P3正式进入几乎无磨损的非 制动工况, 参见图 5的上半部分。
而当车辆停下, 或者行驶中需要紧急驻车制动时, 操作者实施的驻车制动 指令操作, 将刚性地驱使止转件 130轴向移向摩擦件 70 (可参见图 6 )。 如上所 述, 由于摩擦件 70处于周向自由的随动状态, 因此, 无论任何圓周位置或任何 时刻, 止转齿 85与 132均可毫无阻碍地实现相互嵌合 /啮合。 另外, 设置上的几 何特征还可保证, 只有在止转齿 132与 85轴向上开始接合, 且摩擦件 70结束 为应对该接合而作出的自适应调整转动之后, 止转件 130方才轴向 4氏触至爪环 200。 于是, 爪环 200推动对中环 120译放中介件 90的动作, 不会影响止转件 130与摩擦件 70的轴向接合。接合之后, 一旦致滑转矩 MQ大于零, 驻车制动器 P3便可立即进入楔合式驻车制动状态, 并如上所述地保持至车辆再次驱动起步 之时, 参见图 5的下半部分。
显然, 不同于驻车制动器 P2中的弹性接合与弹性分离, 驻车制动器 P3 中 止转件 130 的轴向移动, 具有刚性接合和弹性分离的运动特点。 无疑, 为实现 该平移式运动, 可同样地采用如上所述的机械、 机电、 液压或电磁等机构中的 任何一种公知技术 /机构, 例如图 6所示的弹性机构。
应该说明的是, 如上所述, 当导向件 50、 中介件 90或摩擦件 70变型为前 文所述的组合式袋形构件时, 爪环 200便是不可旋转地设置在作为袋形构件的 限力元件之上的, 而摩擦件与机架只能间接地不可旋转相连。
实施例四: 摩擦件可随动的止转入楔式通用驻车制动器 P4
驻车制动器 P4是对通用驻车制动器 P1的变型, 旨在令摩擦件 70具有如驻 车制动器 P2 ~ P3中的可自由随动的能力, 以最大限度地降氏磨损。
为此, 入楔控制机构包括, 设置在操纵环 140轴向两端的环状的止转件 130 和促动环 220, 以及将三者轴向上弹性地连接成一体的复位弹簧 142, 参见图 6。 其中, 螺旋拉簧式弹簧 142的一个端头, 嵌合在位于止转件 130内周面的径向 孔中, 其另一个端头, 则嵌合在位于促动环 220 内端面凸缘的内周面的径向孔 中。 止转齿 85和 132具有完全同于驻车制动器 P3中的设置效果。 为将止转件 130不可旋转地连接至机架齿环 210, 其外周面上设置有外止转齿 134, 该止转 齿 134持续地接合至位于机架齿环 210内周面的内止转齿 212。
另夕卜, 入楔控制机构中的弹性元件具体为盘形弹性开口环状的弹簧 152。 其 径向上同时设置在管状基体 60外周面上的矩形截面周向槽,以及位于中介件 90 的相应内周面的三角形截面的相应周向槽 108中。 弹簧 152外周面被最佳地设 置成面对导向齿 52的截锥面, 并始终弹性地抵触至周向槽 108的具有互补构造 的截锥型侧面上。 而且, 弹簧 152径向上的弹性变形量, 既可在非转动导向之 际, 致使中介件 90与导向件 50双方轴向间距降至为零并相互弹性贴紧, 也可 在外力所致的转动导向过程中, 允许双方轴向上完全彻底地分离, 并在轴向分 离距离大于 δ之后, 弹簧 152的直径方才可以变形至最小。
另夕卜, 入楔控制机构中的致动件 192的外端头部, 最佳地具有与促动环 220 的截锥式内周面 224互补的端面, 其头部的径向通孔 196中, 最佳的设置有未 示出的弹簧丝。 该弹簧丝最佳地沿封口件 190 的外周面延伸成一个整圓, 两个 相接端头被最佳地焊接在一起。 于是, 高速转动时, 致动件 192将被可靠地径 向约束住。 而为不妨碍其内径向的移动, 收纳其的位于封口件 190上的径向孔 198, 最佳地周向延伸成例如大致的长方形, 以避让或收纳随同致动件 192—同 径向内移的位于通孔 196两侧的部分弹簧钢丝。
其它结构特征的设置效果, 将结合下述工作过程中一同说明。
在非驻车制动状态中,如图 6中上半部分所示,止转齿 85和 132相互分离, 止转齿 134和 212相互持续地接合, 内周面 224与致动件 192互不接触。 同时, 弹簧 152致使中介件 90和导向件 50双方轴向间距降至为零并相互弹性贴紧, 并与摩擦件 70具有轴向距离为 δ的间隙。 因此, 摩擦件 70处于周向上完全自 由的随动状态中, 驻车制动器 Ρ4中几乎不存在摩擦损失。
如前所述, 当操作者实施驻车制动指令操作后, 借助例如电机带动的齿轮 齿条或圓柱凸轮机构, 驱使操纵环 140以及止转件 130沿着内止转齿 212规定 的路径, 一同刚性地轴向移向摩擦件 70。 如上所述, 由于摩擦件 70处于周向自 由的随动状态, 因此, 无论在任何圓周位置或任何时刻, 止转齿 85与 132均可 毫无阻碍地实现相互接合。 在上述移动过程中, 只有当止转齿 132与 85轴向上 开始接合, 且摩擦件 70结束为应对该接合而作出的自适应调整转动之后, 促动 环 220的内周面 224方才抵触至致动件 192。之后,当操纵环 140停止移动之际, 止转齿 134和 212将仍相互持续地接合,操纵环 140将不会抵触至机架齿环 210, 促动环 220的内周面 224可最佳地促动致动件 192, 并将其径向内压至中介件 90的外周面上, 或者相应齿槽中。 即使致动件 192没有径向到位, 也可通过复 位弹簧 142的拉伸变形, 适应促动环 220的不到位, 并保持弹性拉力, 直至其 随着致动件 192的径向入位而到位为止。 而一旦致滑转矩 MQ大于零, 转动趋势 中的导向件 50将致使中介件 90入楔, 致使驻车制动器 P4进入如图 6下半部所 示的楔合式驻车制动状态,并在中介件 90的微量转动中令致动件 192径向入位。
非常明了, 与驻车制动器 P3—样, 驻车制动器 P4中止转件 130的轴向移 动, 也具有刚性接合和弹性分离的运动特点, 而促动环 220则具有弹性接合和 刚性分离的相反的运动特点。 因此, 当操作者实施结束驻车制动的指令操作后, 刚性移动的操纵环 140将立即解除对致动件 192的径向 4氏触式促动, 恢复中介 件 90解楔的能力。 同时, 如果致滑转矩 MQ足够大, 操纵环 140将通过复位弹 簧 142的拉伸变形, 持续地保持其对止转件 130的拉力, 直至来自止转齿 85的 摩擦阻力随着驻车制动楔合式接合状态的解除而消失, 再将其轴向移离摩擦件
70, 进入如图 6上半部分所示的工作状态。
显然,也可按上述三个优先级别的操纵方法操纵驻车制动器 P2 ~ P4。只是, 代表入楔控制机构被致动的具体对象改变为, 驻车制动器 P2 ~ P3 中的止转件 130, 以及驻车制动器 P4中的操纵环 140。
另外, 止转件 130显然不必需呈环状, 其完全可以如公知的那样具有柱销 状, 棘齿状, 或者如驻车制动器 P1中用于固定连接用的螺钉。
工业适用性
无论是否具有动力传动轴系, 只要可移动式机器 /机械借助可运转的轮或履 带支撑在地面或轨道上, 便均可最佳地使用依据本发明的通用驻车制动器。 另 外, 还可用作所有需要停机 /电即制动的诸如各类电梯、 电机、 卷帘驱动机构、 割草机类园林工具等的安全驱动装置或制动器, 还可用作皮带输送机械、 大倾 角采煤机等的安全驱动装置或制动器, 以及, 还可用作具有诸如电磁或电机等 驱动装置的如下装置的枢轴传动机构或开关机构, 例如各类电闸门、 电磁门、 旋摆门和伸缩门等。
以上仅仅是本发明针对其有限实施例给予的描述和图示, 具有一定程度的 特殊性, 但应该理解的是, 所提及的实施例和附图都仅仅用于说明的目的, 而 不用于限制本发明及其保护范围, 其各种变化、 等同、 互换以及更动结构或各 构件的布置, 都将被认为未脱离开本发明构思的精神和范围。

Claims

权 利 要求 书
1. 一种基于拨动式超越离合机构的通用驻车制动器, 包括: 具有拨动件、 导向件和设置有回转型摩擦面的摩擦件的拨动式超越离合机构, 其特征在于: 在非驻车制动状态中, 该超越离合机构是传递驱动转矩的传动装置, 所述 驱动转矩由所述拨动件输入, 并由所述导向件输出; 以及
至少在驻车制动状态中, 所述摩擦件被设置成不能旋转。
2. 按权利要求 1所述的通用驻车制动器, 其特征在于: 所述拨动式超越离 合机构是带拨爪的单向滚柱式超越离合器、 带拨爪的双向滚柱式超越离合器、 带拨爪的单向斜撑式超越离合器、 带拨爪的双向斜撑式超越离合器之一, 其设 置有回转型摩擦面的一个环是所述摩擦件, 其另一环和星轮之一是所述导向件, 其所述拨爪是所述拨动件。
3. 按权利要求 1所述的通用驻车制动器, 其特征在于: 所述拨动式超越离 合机构, 是不可逆传动装置及全槽道自归正摩擦式超越离合器之一。
4. 按权利要求 3所述的通用驻车制动器, 其特征在于: 所述不可逆传动装 置, 包括:
绕一轴线回转且可轴向接合的至少一个牵引摩擦机构, 其具有绕所述轴线 回转并均设置有摩擦面的至少大致为环状的中介件和所述摩擦件, 以在该两构 件间传递摩擦转矩;
为所述牵引摩擦机构提供接合力并绕所述轴线回转的至少一个转动导向机 构, 其具有绕所述轴线回转并均设置有相应导向面的至少大致为环状的所述导 向件和所述中介件;
绕所述轴线设置的拨动件, 其与所述中介件及所述导向件不可旋转地相连 接, 该连接分别具有大于零的周向自由度;
当所述导向件与所述中介件相对转动时, 所述中介件可进入楔合状态, 而 在该楔合状态中, 所述拨动件相对所述中介件及所述导向件二构件的综合周向 自由度大于等于零, 所述拨动件在任意圓周方向上相对所述摩擦件的主动转动, 总是首先周向抵触并驱动所述中介件和所述导向件中的一个开始解楔转动, 并 在该两个构件于该解楔转动方向上周向刚性地相互抵触之前, 再至少间接地周 向抵触并致使该两个构件中的另一个开始转动; 所述首先被周向抵触并被驱动 的构件, 其在所述楔合状态中用于相互抵触的所述导向面的圓周朝向, 正好相 反于所述拨动件的所述主动转动的方向; 以及
当所述导向件和所述摩擦件被所述中介件可驱动地连接成一个摩擦体时, 于零且 ^于 ^于 ξ , 即, 0 < λ ξ, 其°中, ξ是能够令形成于所述抵触部位的 导向摩擦副自锁的所述升角 λ的最大值。
5. 按权利要求 4所述的通用驻车制动器, 其特征在于: 该通用驻车制动器 包括两个绕所述轴线回转的摩擦机构, 其中一个是所述牵引摩擦机构, 其中另 一个是与所述导向件和所述摩擦件至少不可旋转地分别结合在一起的传力摩擦 机构以及再一个所述牵引摩擦机构中的一个。
6. 按权利要求 4所述的通用驻车制动器, 其特征在于: 所述升角 λ大于 ζ , 即, ζ < λ ξ , 其中, ζ是能够令所述抵触部位的导向摩擦副自锁的所述升 角 λ的最小值, 也是令所述牵引摩擦机构的牵引摩擦副自锁的所述升角 λ的最 大值, ξ的含义同上。
7. 按权利要求 4所述的通用驻车制动器, 其特征在于: 当 ζ > 0时, 所述 升角 λ小于等于 ζ , 即, 0 < λ ζ , 其中, ζ的含义同上。
8. 按权利要求 4所述的通用驻车制动器, 其特征在于:
还包括至少一个限力元件; 以及
所述导向件、 所述中介件和所述摩擦件中的至多一个, 是至少通过不可旋 转的连接方式包括有所述限力元件的力封闭式组合构件, 以建立相互之间的轴 向力封闭式 4氏触连接。
9. 按权利要求 5 ~ 8任一项所述的不可逆传动装置, 其特征在于: 所述拨动件上设置有拨动齿, 所述中介件和与其不可旋转相连的所述限力 元件中的一个设置有解楔凸齿, 所述导向件和与其不可旋转相连的所述限力元 件中的一个设置有传力凸齿;
所述拨动件通过所述拨动齿与所述解楔凸齿以及所述传力凸齿的周向抵 触, 可分别致使所述中介件以及所述导向件旋转。
10. 按权利要求 9所述的不可逆传动装置, 其特征在于: 所述拨动齿、 所 述解楔凸齿和所述传力凸齿, 是周面型凸齿和端面型凸齿中的一种。
11. 按权利要求 9 ~ 10任一项所述的不可逆传动装置, 其特征在于: 当所述中介件和所述导向件双方处于相对自由转动区间的周向中点时, 该 二构件也可同时处于相对所述拨动件的自由转动区间的周向中点位置上;
所述拨动齿、 所述解楔凸齿和所述传力凸齿设置成各自均勾一致且均布的 周向对称齿;
所述周向自由度之间符合不等式, s a - s < s g < s a + s ,且 s a - s > 0, 其中, ε代表所述中介件相对所述导向件的周向自由度, ε a代表所述拨动件相 对所述中介件的周向自由度, ε g代表所述拨动件相对所述导向件的周向自由 度。
12. 按权利要求 5 ~ 8任一项所述的通用驻车制动器, 其特征在于: 所述导 向件、 所述中介件、 所述摩擦件和所述限力元件之一是袋形构件, 用以建立相 互之间的轴向力封闭式抵触连接, 其设置有绕所述轴线回转的至少大致半周的 内周面, 以及位于该内周面上的大致半周的凹槽和由所述袋形构件的外周面连 通至该凹槽的入口。
13. 按权利要求 4 ~ 11 任一项所述的通用驻车制动器, 其特征在于: 所述 限力元件包括径向上至少大致对称的两个半圓壳和至少一个环形箍, 该两个半 圓壳的形状具有这样的组合效果, 即, 二者径向对接所构成的组合构件, 设置 有绕所述轴线的中心圓孔以及位于该中心圓孔内周面上的绕所述轴线的周向凹 槽; 所述环形箍设置在所述组合构件的中部和外端部之一的外周面上, 以固定 所述组合构件。
14. 按权利要求 1 ~ 13任一项所述的通用驻车制动器, 其特征在于: 还包括入楔控制机构, 其用于可操作地将入楔和解楔两种能力, 以互反的 方式交替地持续赋予所述拨动式超越离合机构;
所述入楔控制机构致动时, 该超越离合机构将持续地具有入楔能力, 所述 导向件相对所述摩擦件的转动, 将致使所述通用驻车制动器进入制动状态; 所述入楔控制机构未致动时, 该超越离合机构将持续地具有解楔能力, 所 述拨动件相对所述摩擦件的转动, 将致使所述通用驻车制动器解除制动状态。
15. 按权利要求 14所述的通用驻车制动器, 其特征在于: 所述入楔控制机 构包括
具有至少一个弹性元件的弹性收缩机构, 该弹性元件作用于所述中介件上, 以为所述牵引摩擦机构提供持续的弹性分离力, 并使所述中介件与所述导向件 之间的轴向间距弹性地趋于最小, 以及
至少一个致动件, 所述致动件不可旋转地和至少间接地设置在所述摩擦件 上, 并可操作地 4氏触至所述中介件, 以制止双方间的相对转动。
16. 按权利要求 15所述的通用驻车制动器, 其特征在于: 所述入楔控制机 构还包括
止转件, 其用于可操作地将所述摩擦件以不可旋转的方式, 至少间接地连 接至机架;
绕所述轴线设置的促动环, 其用于可操作地促动所述致动件;
绕所述轴线设置的操纵环, 其轴向上居于所述止转件和所述促动环之间 , 以可操作地移动所述止转件和所述促动环; 以及
设置于所述止转件和所述促动环内周面的复位弹簧, 其用于将该两环持续 地轴向弹压至所述操纵环。
17. 按权利要求 14所述的通用驻车制动器, 其特征在于: 所述入楔控制机 构包括至少具有一个弹性元件的弹性预紧机构, 其用于持续地保持所述中介件 与所述摩擦件之间的至少间接的摩擦连接。
18. 按权利要求 17所述的通用驻车制动器, 其特征在于: 所述入楔控制机 构还包括止转件, 其用于可操作地将所述摩擦件以不可旋转的方式, 至少间接 地连接至机架。
19. 按权利要求 18所述的通用驻车制动器, 其特征在于: 所述入楔控制机 构还包括
周向对中机构, 其具有至少一个对中凸起, 持续地收纳该对中凸起的基准 槽, 可对应地收纳该对中凸起的对中 槽,,以及对中弹簧, 所述基准槽和所述 凸起设置在位于该二构件外周面上的对中环的内周面上, 所述对中弹簧作用至 爪环, 其不可旋转地和至少间接地设置在所述摩擦件上, 该爪环的端面上 设置有至少一个轴向延伸的退位爪, 该退位爪由所述对中凹槽一端, 轴向延伸 至所述对中环的相应端面;
所述对中凸起收纳至所述对中 1HJ槽槽底部时, 所述中介件在两个圓周方向 上均不能同时抵触至所述导向件和所述摩擦件;
所述爪环可推动所述对中环克服所述对中弹簧的弹性力而轴向移动, 并可 致使后者的所述对中凸起轴向退出所述对中凹槽。
20. 一种基于拨动式超越离合机构的通用驻车制动器, 包括: 具有拨动件、 导向件和设置有回转型摩擦面的摩擦件的拨动式超越离合机构, 其特征在于: 至少在驻车制动状态中, 所述摩擦件被设置成不能旋转;
还包括入楔控制机构, 其用于可操作地将入楔和解楔两种能力, 以互反的 方式交替地持续赋予所述拨动式超越离合机构;
所述入楔控制机构致动时, 该超越离合机构将持续地具有入楔能力, 所述 导向件相对所述摩擦件的转动, 将致使所述通用驻车制动器进入制动状态; 所述入楔控制机构未致动时, 该超越离合机构将持续地具有解楔能力, 所 述拨动件相对所述摩擦件的转动, 将致使所述通用驻车制动器解除制动状态。
21. 一种操纵按权利要求 1 ~ 19任一项所述的通用驻车制动器的操纵方法, 包括:
侦测设置有所述驻车制动器的可移动式机器 /机械的变速器输出轴、驱动轴、 驱动轮和随动轮之一的转速, 当该转速等于零的状态持续至阈值时刻, 致动所 述入楔控制机构, 以致使所述驻车制动器持续地具有驻车制动的能力;
侦测设置有所述驻车制动器的可移动式机器 /机械的加速操纵装置的状态变 化量, 当该变化量大于零时, 解除对所述入楔控制机构的所述致动, 以致使所 述驻车制动器持续地具有解除驻车制动的能力。
PCT/CN2011/084841 2010-12-30 2011-12-28 基于拨动式超越离合机构的通用驻车制动器及其操纵方法 WO2012089129A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010624901.X 2010-12-30
CN201010624901.XA CN102562889B (zh) 2010-12-30 2010-12-30 基于拨动式超越离合机构的通用驻车制动器及其操纵方法

Publications (1)

Publication Number Publication Date
WO2012089129A1 true WO2012089129A1 (zh) 2012-07-05

Family

ID=46382318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084841 WO2012089129A1 (zh) 2010-12-30 2011-12-28 基于拨动式超越离合机构的通用驻车制动器及其操纵方法

Country Status (2)

Country Link
CN (1) CN102562889B (zh)
WO (1) WO2012089129A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014127739A1 (zh) * 2013-02-22 2014-08-28 Hong Tao 空间斜撑式超越离合器、联轴器、铰链和传动轮
CN104613136B (zh) * 2015-01-30 2017-06-16 陕西东铭车辆系统股份有限公司 带电磁双向离合器的两挡位变速电动车后桥减速器总成
DE102016204919A1 (de) * 2016-03-24 2017-09-28 Voith Patent Gmbh Läuferbremse
CN106641022A (zh) * 2016-12-23 2017-05-10 陕西国力信息技术有限公司 摩擦片式周布螺旋面压紧超越离合器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750782A (en) * 1971-10-08 1973-08-07 Ford Motor Co High speed overrunning clutch
US4076108A (en) * 1976-08-05 1978-02-28 Borg-Warner Corporation Two-way overrunning clutch mechanism
CN86206413U (zh) * 1986-08-30 1987-04-29 万立新 斜楔滚柱式超越离合器
CN1062408A (zh) * 1990-12-10 1992-07-01 吕有英 机动车安全自由滑行装置
CN2479288Y (zh) * 2001-06-15 2002-02-27 曲秀全 锥盘摩擦单向超越离合器
DE102006056741A1 (de) * 2005-12-21 2007-07-05 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Antriebseinheit mit einem inneren Antriebselement und einem äußeren Antriebselement
CN101672335A (zh) * 2008-09-08 2010-03-17 洪涛 导向式牙嵌超越离合器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502006006688D1 (de) * 2005-12-21 2010-05-27 Luk Lamellen & Kupplungsbau Antriebseinheit mit einem inneren Antriebselement und einem äusseren Antriebselement

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750782A (en) * 1971-10-08 1973-08-07 Ford Motor Co High speed overrunning clutch
US4076108A (en) * 1976-08-05 1978-02-28 Borg-Warner Corporation Two-way overrunning clutch mechanism
CN86206413U (zh) * 1986-08-30 1987-04-29 万立新 斜楔滚柱式超越离合器
CN1062408A (zh) * 1990-12-10 1992-07-01 吕有英 机动车安全自由滑行装置
CN2479288Y (zh) * 2001-06-15 2002-02-27 曲秀全 锥盘摩擦单向超越离合器
DE102006056741A1 (de) * 2005-12-21 2007-07-05 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Antriebseinheit mit einem inneren Antriebselement und einem äußeren Antriebselement
CN101672335A (zh) * 2008-09-08 2010-03-17 洪涛 导向式牙嵌超越离合器

Also Published As

Publication number Publication date
CN102562889A (zh) 2012-07-11
CN102562889B (zh) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5679469B2 (ja) 空間楔合摩擦オーバーランニング・クラッチ
US8464852B2 (en) Wet clutch
JP2012531562A5 (zh)
KR101672982B1 (ko) 부하 감지 변속 장치 및 부하 감지 변속 장치를 구비한 권상기
JP5735754B2 (ja) 動力伝達装置
WO2012089129A1 (zh) 基于拨动式超越离合机构的通用驻车制动器及其操纵方法
WO2012089130A1 (zh) 升降设备用空间楔合式防坠落、防超速紧急制动装置
WO2011030689A1 (ja) 電気自動車
CN111433490B (zh) 能够二级限制差动的差动装置
JPS60209498A (ja) ウオーム安全装置を有するホイスト
WO2014193671A1 (en) Wedge one-way clutch with gear thrust activation
US8469855B2 (en) Two-speed transmission module with passive automatic shifting
JP4941819B2 (ja) デフギア装置のデフロック機構
WO2012018286A1 (ru) Механизм сцепления хадеева
CN110905998A (zh) 具有缓冲阻尼功能的换挡装置及其应用
WO2012089131A1 (zh) 空间楔合式摩擦连接器
JPWO2008105292A1 (ja) 変速装置及びその変速装置を備えた移動ロボット
CN113864396A (zh) 扭转阻尼器组件
WO2021187515A1 (ja) 回転ロック装置
US20040144610A1 (en) Gear coupler with a controllable roller clutch
JP6125668B2 (ja) 車両用動力伝達装置
CN103527671B (zh) 柔性接合的自控型空间楔合式摩擦连接器
CN213575487U (zh) 具有缓冲阻尼功能的换挡装置及含有该装置的集中离合装置、驻车装置、差速器、制动系统、安全装置、传动系统、模块及机器
JPS604630A (ja) クラツチ
JP3477506B2 (ja) オンオフ式トルクリミッタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852997

Country of ref document: EP

Kind code of ref document: A1