WO2010150745A1 - モータ制御装置および電動パワーステアリング装置 - Google Patents

モータ制御装置および電動パワーステアリング装置 Download PDF

Info

Publication number
WO2010150745A1
WO2010150745A1 PCT/JP2010/060473 JP2010060473W WO2010150745A1 WO 2010150745 A1 WO2010150745 A1 WO 2010150745A1 JP 2010060473 W JP2010060473 W JP 2010060473W WO 2010150745 A1 WO2010150745 A1 WO 2010150745A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
resistance
average value
motor
calculated
Prior art date
Application number
PCT/JP2010/060473
Other languages
English (en)
French (fr)
Inventor
武史 上田
真悟 前田
由信 冷水
逸人 小松
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to US13/320,839 priority Critical patent/US8496085B2/en
Priority to CN2010800272218A priority patent/CN102460948A/zh
Priority to EP10792063A priority patent/EP2448106A1/en
Publication of WO2010150745A1 publication Critical patent/WO2010150745A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/281Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices the DC motor being operated in four quadrants
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation

Definitions

  • the present invention relates to a motor control device for driving an electric motor and an electric power steering device using the same.
  • a target value of the current to be supplied to the motor is determined based on the steering torque and the vehicle speed.
  • determining the target value for example, JP-A-8-67262 and JP-A-10-109655 disclose that the steering speed or the angular speed of the motor corresponding thereto is taken into account in addition to the steering torque and the vehicle speed. ing.
  • an angle detection sensor for detecting the rotational position of the motor such as a resolver, is usually used. Therefore, the motor angular velocity can be obtained by differentiating the output signal of the angle detection sensor with respect to time. it can.
  • a motor resistance R is obtained based on a characteristic indicating a relationship between the motor current and the motor resistance (hereinafter referred to as “motor current-resistance characteristic”).
  • the motor resistance R is used when calculating the motor angular velocity according to 1). As a result, the motor angular velocity ⁇ can be obtained more accurately.
  • the motor resistance R varies depending on temperature changes and manufacturing variations. For this reason, a difference may occur between the value of the motor resistance R used for calculating the motor angular velocity ⁇ by the above formula (1) and the actual value of the motor resistance. Therefore, even when the motor angular velocity ⁇ is calculated using the motor resistance R obtained based on the current-resistance characteristics of the motor, the motor angular velocity cannot always be accurately calculated due to the above temperature change and manufacturing variation. Can not. As a result, for example, in the electric power steering apparatus using the motor control apparatus as described above, the accuracy of control using the motor angular velocity is lowered, and there is a possibility that steering assist cannot be performed satisfactorily.
  • the present invention relates to a motor control device that calculates an estimated value of the rotation speed of the electric motor based on a counter electromotive force generated in an armature winding of the electric motor and drives the electric motor using the estimated value.
  • the current detection unit detects a current flowing through the electric motor.
  • the voltage detector detects a voltage applied to the electric motor.
  • the determination unit determines whether the rotation speed of the electric motor is equal to or less than a predetermined value that is substantially zero.
  • the characteristic holding unit holds the relationship between the current flowing through the electric motor and the resistance of the electric motor as a current-resistance characteristic.
  • the resistance calculation unit is configured to detect a current detection value obtained by the current detection unit and a voltage detection value obtained by the voltage detection unit when the determination unit determines that the rotation speed of the electric motor is equal to or less than the predetermined value. Based on the above, the resistance value of the electric motor is calculated.
  • the estimated value calculation unit includes a current detection value obtained by the current detection unit, a voltage detection value obtained by the voltage detection unit, and a resistance value or the resistance calculation associated with the current detection value by the current-resistance characteristic. Based on the resistance value calculated by the unit, a speed estimation value indicating the rotation speed of the electric motor is calculated.
  • the characteristic updating unit updates the current-resistance characteristic based on the resistance value calculated by the resistance calculation unit and the current detection value used for calculation of the resistance value.
  • FIG. 1 is a schematic view showing a configuration of an electric power steering apparatus using a motor control device according to a first embodiment of the present invention, together with a configuration of a vehicle related thereto.
  • This electric power steering device is a column assist type electric power steering device including a brushed motor 1, a speed reducer 2, a torque sensor 3, a vehicle speed sensor 4, and an electronic control unit (ECU) 5 as a motor control device.
  • the motor control device according to the present invention preferably includes a sensor (hereinafter referred to as “rotation sensor”) 7 for detecting the presence or absence of rotation of the motor 1.
  • the electric power steering apparatus shown in FIG. 1 has a hall sensor as the rotation sensor 7.
  • the rotation sensor 7 is not limited to a hall sensor, and any sensor that generates a pulse signal according to the rotation of the motor 1 may be used. Further, since it is not necessary to detect the rotation direction of the motor 1, a low-cost sensor can be used as the rotation sensor 7.
  • a steering wheel (steering wheel) 101 is fixed to one end of the steering shaft 102, and the other end of the steering shaft 102 is connected to a rack shaft 104 via a rack and pinion mechanism 103. Both ends of the rack shaft 104 are connected to a wheel 106 via a connecting member 105 composed of a tie rod and a knuckle arm.
  • a connecting member 105 composed of a tie rod and a knuckle arm.
  • the electric power steering device performs the following steering assistance in order to reduce the load on the driver.
  • the torque sensor 3 detects a steering torque Ts applied to the steering shaft 102 by operating the handle 101.
  • the vehicle speed sensor 4 detects the vehicle speed S.
  • the rotation sensor 7 generates pulses at a frequency corresponding to the rotation speed of the rotor of the motor 1 and outputs a pulse signal P including these pulses. When the rotor of the motor 1 is stopped, the rotation sensor 7 does not generate a pulse.
  • the ECU 5 receives power supplied from the in-vehicle battery 8 and drives the brushed motor 1 based on the steering torque Ts, the vehicle speed S, and the pulse signal P.
  • the brushed motor 1 generates a steering assist force when driven by the ECU 5.
  • the speed reducer 2 is provided between the brushed motor 1 and the steering shaft 102.
  • the steering assist force generated by the brushed motor 1 acts to rotate the steering shaft 102 via the speed reducer 2.
  • the steering shaft 102 rotates by both the steering torque applied to the handle 101 and the steering assist force generated by the brushed motor 1.
  • the electric power steering apparatus performs steering assist by applying the steering assist force generated by the brushed motor 1 to the steering mechanism of the vehicle.
  • FIG. 2 is a block diagram illustrating a configuration of the motor control device according to the first embodiment.
  • This motor control device is used in the electric power steering device and is configured using the ECU 5 to drive the brushed motor 1.
  • the ECU 5 includes a control unit 10 and a drive unit 20.
  • the control unit 10 is realized using a microcomputer (hereinafter abbreviated as “microcomputer”).
  • the drive unit 20 includes a motor drive circuit 30, a current detection resistor 35, a PWM signal generation circuit 21, a voltage detection circuit 24, and a current detection circuit 25.
  • the rotation sensor 7 is not used, and the configuration using the rotation sensor 7 will be described later as a second embodiment and a modification.
  • the ECU 5 receives the steering torque Ts output from the torque sensor 3 and the vehicle speed S output from the vehicle speed sensor 4, and these are given to the microcomputer 10 as input data.
  • an applied voltage to the motor 1 that is, a voltage between terminals of the motor 1 (hereinafter referred to as “motor voltage”) is detected by a voltage detection circuit 24, and an armature in the motor 1 is also detected.
  • a current flowing through the winding (hereinafter referred to as “motor current”) is detected by the current detection circuit 25, and a voltage detection value Vm and a current detection value Im as these detection results are also given to the microcomputer 10.
  • the microcomputer 10 executes a program stored in a memory (not shown) built in the ECU 5, thereby setting a target current setting unit 12, a subtractor 14, a control calculation unit as functional units for controlling the motor 1. 16 and the angular velocity estimation unit 50 are realized by software.
  • the angular velocity estimation unit 50 calculates an angular velocity estimation value ⁇ e indicating the rotation speed of the rotor of the motor 1 based on the voltage detection value Vm and the current detection value Im.
  • the pulse signal P output from the rotation sensor 7 is also used for calculating the estimated angular velocity value ⁇ e.
  • the target current setting unit 12 determines a target value It of current to be passed through the motor 1 based on the steering torque Ts and the vehicle speed S and the estimated angular velocity value ⁇ e.
  • the subtractor 14 calculates a deviation (It ⁇ Im) between the current target value It and the current detection value Im.
  • the control calculation unit 16 calculates a command value D indicating a voltage to be applied to the motor 1 in order to cancel the deviation (It-Im) by a proportional-integral control calculation based on the deviation (It-Im).
  • the command value D is output from the microcomputer 10 and given to the PWM signal generation circuit 21 of the drive unit 20.
  • the PWM signal generation circuit 21 generates first and second rightward PWM signals SRd1 and SRd2 and first and second leftward PWM signals SLd1 and SLd2 according to a command value D given from the microcomputer 10.
  • the sign of the command value D indicates that the torque to be generated by the motor 1 is a torque in a direction assisting rightward steering (hereinafter referred to as “rightward torque”) or a torque in a direction assisting leftward steering (hereinafter “left”).
  • Direction torque a torque in a direction assisting rightward steering
  • the right direction PWM signals SRd1 and SRd2 are generated as PWM signals having a duty ratio corresponding to the command value D, and the left direction PWM signals SLd1 and SLd2 are generated as inactive signals.
  • the left direction PWM signals SLd1 and SLd2 are generated as PWM signals having a duty ratio corresponding to the command value D, and the right direction PWM signals SRd1 and SRd2 are generated as inactive signals.
  • Motor drive circuit 30 is a bridge circuit composed of power field effect transistors (hereinafter referred to as “FETs”) 31 to 34 that are four switching elements.
  • This bridge circuit is connected between a power supply line and a ground line of the battery 8, and the motor 1 is connected as a load.
  • the bridge circuit includes power supply line side FETs 31 and 32 connected to the power supply line and ground line side FETs 33 and 34 connected to the ground line via the current detection resistor 35.
  • the positive terminal of the motor 1 is connected to a connection point N1 between the power supply line side FET 31 and the ground line side FET 33.
  • a negative terminal of the motor 1 is connected to a connection point N2 between the power supply line side FET 32 and the ground line side FET 34.
  • the right direction PWM signals SRd1 and SRd2 are applied to the gate terminals of the power supply line side FET 31 and the ground line side FET 34, respectively.
  • the left PWM signals SLd1 and SLd2 are applied to the gate terminals of the power supply line side FET 32 and the ground line side FET 33, respectively.
  • the FETs 31 and 34 or the FETs 32 and 33 are turned on and off at a duty ratio corresponding to the command value D, whereby a voltage having a polarity and magnitude corresponding to the sign of the command value D is transferred from the motor drive circuit 30 to the motor 1.
  • a current is supplied from the motor drive circuit 30 to the motor 1, and the motor 1 generates a steering assist force according to the steering torque Ts, the vehicle speed S, and the estimated angular velocity value ⁇ e.
  • the motor 1 is driven as described above, the voltage applied to the motor 1, that is, the voltage across the terminals of the motor 1 is detected by the voltage detection circuit 24. At the same time, the current flowing through the motor 1 is detected by the current detection circuit 25 based on the voltage across the current detection resistor 35.
  • the detected voltage detection value Vm and detected current value Im are input to the microcomputer 10 and, as described above, calculation of the angular velocity estimation value ⁇ e and the above deviation (It ⁇ Im) for feedback control of the motor 1. Used for.
  • FIG. 3 is a block diagram illustrating a functional configuration of the angular velocity estimation unit 50 that calculates the angular velocity estimation value ⁇ e used for determining the current target value It in the first embodiment.
  • the angular velocity estimation unit 50 includes a steering determination unit 51, a resistance calculation unit 52, an average value calculation unit 53, a map update unit 54, a map holding unit 55, and an angular velocity estimation value calculation unit (hereinafter referred to as “an angular velocity estimation value calculation unit”). 56 (abbreviated as “estimated value calculation unit”).
  • the voltage detection value Vm and the current detection value Im obtained by the voltage detection circuit 24 and the current detection circuit 25 are input to the steering determination unit 51, the resistance calculation unit 52, and the estimated value calculation unit 56.
  • the angular velocity ⁇ of the rotor of the brushed motor 1 is given by the following equation as described above.
  • (V ⁇ I ⁇ R) / k (2)
  • V is a motor voltage (terminal voltage)
  • I is a motor current
  • R is a motor resistance (terminal resistance)
  • k is a counter electromotive force constant. Therefore, if the value of the motor resistance R is known in addition to the voltage detection value Vm and the current detection value Im, the angular velocity ⁇ can be calculated.
  • the map holding unit 55 in the angular velocity estimating unit 50 holds a table associating the motor current with the motor resistance based on the current-resistance characteristic of the motor 1 as a resistance map, and functions as a characteristic holding unit.
  • the steering determination unit 51 obtains a motor resistance value Rm corresponding to the current detection value Im by referring to the resistance map.
  • the steering retention determination unit 51 If the angular velocity for determination ⁇ d is equal to or less than a predetermined value ⁇ in the vicinity of 0, the steering retention determination unit 51 considers that the rotor of the motor 1 has stopped rotating, and the electric power steering apparatus maintains it. It is determined that the vehicle is in the rudder state. On the other hand, if the determination angular velocity ⁇ d is greater than the predetermined value ⁇ , the steering determination unit 51 determines that the rotor of the motor 1 is rotating and determines that the electric power steering device is in a steering state. This determination result is output from the steering holding determination unit 51 as the rotation state signal St and input to the resistance calculation unit 52, the average value calculation unit 53, and the estimated value calculation unit 56.
  • the current detection value Im used to calculate the calculated resistance value Rc is also input to the average value calculation unit 53 as the calculated current value Ic.
  • the calculated resistance value Rc and the calculated current value Ic are input to the average value calculation unit 53 for each control cycle, which is a cycle for calculating the target value It of the current to be passed through the motor 1. It is preferable that the calculated resistance value Rc is also input to the estimated value calculation unit 56.
  • the average value calculation unit 53 is a calculation that is input from the resistance calculation unit 52 for each control cycle during a period in which the electric power steering device is in the steering state (hereinafter referred to as “steering period”).
  • the respective average values of the resistance value Rc and the calculated current value Ic are obtained and output as the resistance average value Rav and the current average value Iav.
  • a specific method for calculating the average values Rav and Iav will be described later.
  • the average resistance value Rav and the average current value Iav output from the average value calculation unit 53 are input to the map update unit 54.
  • the calculated resistance value Rc and the calculation-time current value Ic output from the resistance calculation unit 52 may be input to the map update unit 54.
  • the resistance average value Rav may also be input to the estimated value calculation unit 56.
  • the holding period is the first state period.
  • the estimated angular velocity value ⁇ e may be obtained by the above equation (2) using the calculated resistance Rc during the steering holding period based on the rotation state signal St. Some specific examples of such a method of calculating the angular velocity estimated value ⁇ e will be described later.
  • the angular velocity estimation value ⁇ e calculated as described above is output from the angular velocity estimation unit 50 and input to the current target setting unit 12 as described above (FIG. 2).
  • the target current setting unit 12 performs, for example, damping control or detection of the end-of-contact state of the steering wheel based on the estimated angular velocity value ⁇ e in the process for determining the target value It of the current to be supplied to the motor 1. Can do.
  • the resistance map used for obtaining the motor resistance value Rm in the angular velocity estimation unit 50 does not give the relationship between the motor current and the motor resistance in the motor 1, that is, the current-resistance characteristic, and the map update unit 54 Updated by That is, the map update unit 54 updates the resistance map in the map holding unit 55 based on the calculated resistance value Rc and the calculated current value Ic obtained during the steering holding period, or the resistance average value Rav and the current average value Iav.
  • FIG. 4 shows the current-resistance characteristics of the motor 1 in an orthogonal coordinate system having a horizontal axis indicating the motor current I and a vertical axis indicating the motor resistance R. That is, the curve indicated by the solid line in FIG. 4 represents the current-resistance characteristic, and data for associating various motor current I values with motor resistance R values according to this curve (hereinafter referred to as “characteristic curve”). Is held in the map holding unit 55 as a resistance map.
  • the map update unit 54 changes the data constituting the characteristic curve, that is, the resistance map so that the characteristic curve passes through the point A (resistance map update).
  • FIGS. 5A to 5C are diagrams for explaining a specific example of such a resistance map updating method.
  • FIG. 5A shows a first update method, in which the dotted curve indicates the characteristic curve before update, and the solid curve indicates the characteristic curve after update (FIGS. 5B, 5C, and 6). The same applies to the above).
  • the map updating unit 54 translates the characteristic curve in the horizontal axis direction, that is, the current direction so that the characteristic curve passes through the point A.
  • a resistance map corresponding to the characteristic curve after movement (curve indicated by a solid line) is held in the map holding unit 55.
  • FIG. 5B shows a second update method.
  • the map updating unit 54 translates the characteristic curve in the vertical axis direction, that is, the resistance direction so that the characteristic curve passes through the point A, and after the update, A resistance map corresponding to the characteristic curve after movement (curve indicated by a solid line) is held in the map holding unit 55.
  • FIG. 5C shows a third updating method.
  • the map updating unit 54 sets the intersection B between the straight line passing through the origin of the orthogonal coordinates and the point A and the characteristic curve before updating (curve indicated by the dotted line).
  • the characteristic curve is translated in the direction of the straight line so that the intersection B coincides with the point A.
  • the map holding unit 55 holds a resistance map corresponding to the characteristic curve after the parallel movement (curved line).
  • the method of updating the heel resistance map is not limited to the method of translating the characteristic curve as in the first to third updating methods.
  • both ends C ⁇ b> 1 and C ⁇ b> 2 of the characteristic curve may be fixed and the curve may be deformed so as to pass through the point A.
  • a part of the resistance map may be changed without changing the entire resistance map.
  • the current-resistance characteristics of the motor 1 are held as a map, that is, as data for associating the motor current with the motor resistance.
  • a function or an approximate expression representing the resistance characteristic may be held (the same applies to other embodiments described later).
  • the characteristic updating unit as a component corresponding to the map updating unit 54 calculates the function or approximate expression based on the calculated resistance value Rc and the calculated current value Ic, or the resistance average value Rav and the current average value Iav. Change the specified parameter.
  • the second embodiment will be described based on FIGS.
  • the second embodiment is different from the first embodiment only in angular velocity estimation processing for calculating the angular velocity estimation value ⁇ e in the angular velocity estimation unit 50, and only the differences will be described below.
  • FIG. 7 is a waveform diagram for explaining the angular velocity estimation processing in the embodiment.
  • FIG. 7A shows a temporal change in the steering angle ⁇ in the electric power steering apparatus that uses the motor control apparatus as the ECU 5.
  • FIG. 7B shows a change in the motor resistance value R used to calculate the estimated angular velocity value ⁇ e when the steering angle ⁇ changes as shown in FIG.
  • FIG. 7C shows a change in the resistance average value Rav calculated when the steering angle ⁇ changes as shown in FIG.
  • resistance average value Rav in a steering period is shown by the thick line
  • the motor resistance value R is shown by the thin line.
  • FIG. 8 is a block diagram showing a functional configuration of the angular velocity estimation unit 50 corresponding to the angular velocity estimation processing in the second embodiment.
  • the configuration of FIG. 8 is obtained by limiting the configuration of the angular velocity estimation unit 50 shown in FIG. 3 so as to support only the angular velocity estimation processing.
  • the angular velocity estimation processing in the second embodiment will be described with reference to FIGS. 7 and 8. Detailed description of the same portions as those of the angular velocity estimation processing with the configuration shown in FIG. 3 will be omitted (the same applies to other embodiments described below).
  • the resistance map is not used, and the steering determination unit 51 holds the resistance average value Rav in the immediately preceding steering period, and uses the resistance average value Rav.
  • the resistance calculation unit 52 Based on the angular velocity for determination ⁇ d calculated by the equation (2), it is determined whether or not the steering is maintained.
  • the resistance calculation unit 52 detects the voltage detection value for each control cycle.
  • the calculated resistance value Rc is obtained by the equation (3) using Vm and the current detection value Im.
  • the estimated value calculation unit 56 calculates the angular velocity estimated value ⁇ e by the equation (2) using the calculated resistance value Rc, the detected voltage value Vm, and the detected current value Im.
  • the average value calculation unit 53 integrates the calculated resistance value Rc obtained for each control cycle by the resistance calculation unit 52, and calculates the resistance average value Rav from the integrated value.
  • the estimated value calculation unit 56 holds this resistance average value Rav until a new resistance average value Rav is calculated in the next steering holding period.
  • the estimated value calculation unit 56 holds the resistance average value Rav and the voltage.
  • the angular velocity estimated value ⁇ e is calculated by Equation (2).
  • the estimated value calculation unit 56 updates the held resistance average value Rav to the new resistance average value Rav.
  • an appropriate motor resistance value obtained from the measurement result or design data is held in the estimated value calculation unit 56 as an initial value of the resistance average value Rav (maintenance). The same applies to the resistance average value Rav held in the rudder determination unit 51).
  • the steering period is the second state period.
  • the angular velocity estimation value ⁇ e is calculated using the calculated resistance value Rc obtained from the voltage detection value Vm and the current detection value Im for each control cycle in the steering period.
  • the estimated angular velocity value ⁇ e is calculated by using the resistance average value Rav in the immediately preceding steering holding period. In this way, the calculated resistance value Rc and the resistance average value Rav as the motor resistance value R used for calculating the estimated angular velocity value ⁇ e are updated. Therefore, even if there is an individual difference in the motor 1, or even if the contact state between the brush and the commutator in the motor 1 or the temperature changes, the estimated angular velocity value ⁇ e can be accurately calculated.
  • the resistance average value Rav in the immediately preceding steering period is used to calculate the estimated speed value ⁇ e in the steering period. Therefore, even if noise is included in each calculated resistance value Rc obtained in the steering period, the calculated angular velocity estimated value ⁇ e does not vary greatly at the time of switching between the steering period and the steering period. A stable estimated angular velocity value ⁇ e can be obtained.
  • the map update unit 54 and the map holding unit 55 are unnecessary in the angular velocity estimation unit 50, but the map update is performed as indicated by a dotted line in FIG.
  • the motor resistance value Rm may be obtained using a resistance map during the steering period, and the estimated angular velocity value ⁇ e may be calculated using the motor resistance value Rm.
  • the map updating unit 54 updates the resistance map in the map holding unit 55 based on the resistance average value Rav and the corresponding current average value Iav in the steering period. preferable.
  • the steering determination unit 51 preferably calculates the determination angular velocity ⁇ d using the motor resistance value Rm obtained from the resistance map.
  • FIG. 9 is a block diagram illustrating a functional configuration of the angular velocity estimation unit 50 corresponding to the angular velocity estimation processing according to the third embodiment.
  • the configuration of FIG. 9 is obtained by limiting the configuration of the angular velocity estimation unit 50 shown in FIG. 3 so as to support only the angular velocity estimation processing.
  • the average value calculation unit 53 includes a first calculation unit 531 and a second calculation unit 532.
  • the first calculation unit 531 calculates the resistance average value once in the steering period
  • the second calculation unit 532 calculates the resistance average value in each subsequent steering period.
  • the resistance map is not used as in the angular velocity estimation process of the second embodiment.
  • the steering determination unit 51 holds the resistance average value Rav in the immediately preceding steering period, and whether the steering is maintained based on the determination angular velocity ⁇ d calculated by the equation (2) using the resistance average value Rav. Determine whether or not.
  • the resistance calculation part 52 calculates
  • the estimated value calculation unit 56 calculates the angular velocity estimated value ⁇ e by the equation (2) using the calculated resistance value Rc, the detected voltage value Vm, and the detected current value Im.
  • the resistance calculation unit 52 determines the voltage detection value Vm and the control period for each control cycle.
  • the calculated resistance value Rc is obtained by the equation (3) using the current detection value Im.
  • the second calculation unit 532 of the average value calculation unit 53 sets the resistance average value Rav in the immediately previous steering period as the immediately preceding average value Ravb.
  • the second calculation unit 532 calculates an average value (Rc + Ravb) / 2 of the obtained calculated resistance value Rc and the previous average value Ravb as a new resistance average value Rav,
  • the previous average value Ravb is updated to the new resistance average value Rav.
  • the resistance average value Rav is newly calculated for each control period, and the estimated value calculation unit 56 calculates the resistance average value Rav, the voltage detection value Vm, and the current detection value Im. Is used to calculate the estimated angular velocity value ⁇ e for each control cycle according to the equation (2).
  • the estimated value calculation unit 56 is calculated last in the immediately preceding steering period.
  • the resistance average value Rav is held.
  • the estimated value calculation unit 56 calculates the angular velocity estimated value ⁇ e by the equation (2) using the resistance average value Rav, the voltage detection value Vm, and the current detection value Im for each control cycle.
  • the angular velocity estimated value ⁇ e is calculated using the resistance average value Rav calculated for each control cycle in the (second and subsequent) steering period.
  • the estimated angular velocity value ⁇ e is calculated by using the resistance average value Rav in the immediately preceding steering holding period.
  • an average value (Rc + Ravb) / 2 of the calculated resistance value Rc obtained first in the steering period and the resistance average value Rab calculated last in the previous steering period is The resistance average value Rav is calculated as the resistance average value Rav.
  • the resistance average value Rav calculated last in the previous steering holding period is held. For this reason, even if noise is included in the calculated resistance value Rc obtained in the steering period, the average resistance value Rav used for calculating the angular velocity estimated value ⁇ e changes suddenly at the time of switching from the steering period to the steering period. do not do.
  • the average value (Rc + Ravb) / 2 of the calculated resistance value Rc and the previous average value Ravb obtained for each control cycle is calculated as the resistance average value Rav, and the previous average value Ravb. Is updated to the resistance average value Rav. Therefore, even during the steering period, even if the calculated resistance value Rc includes noise, a stable resistance average value Rav is used for calculating the angular velocity estimated value ⁇ e.
  • the map update unit 54 and the map holding unit 55 are unnecessary in the angular velocity estimation unit 50, but the map update is performed as indicated by a dotted line in FIG.
  • the motor resistance value Rm may be obtained using a resistance map during the steering period, and the estimated angular velocity value ⁇ e may be calculated using the motor resistance value Rm.
  • the resistance map in the map holding unit 55 is updated based on the resistance average value Rav obtained last in the steering period and the corresponding current average value Iav. Is preferably updated.
  • the steering determination unit 51 preferably calculates the determination angular velocity ⁇ d using the motor resistance value Rm obtained from the resistance map.
  • FIG. 10 is a waveform diagram for explaining the angular velocity estimation processing in the fourth embodiment.
  • FIG. 10A shows a temporal change in the steering angle ⁇ in the electric power steering apparatus that uses the motor control apparatus according to the fourth embodiment as the ECU 5.
  • FIG. 10B shows a change in the motor resistance value Rm used to calculate the estimated angular velocity value ⁇ e during the steering period when the steering angle ⁇ changes as shown in FIG.
  • FIG. 10C shows a change in the motor resistance value Rc used for calculation of the estimated angular velocity value ⁇ e in the steering holding period when the steering angle ⁇ changes as shown in FIG.
  • FIG. 10A shows a temporal change in the steering angle ⁇ in the electric power steering apparatus that uses the motor control apparatus according to the fourth embodiment as the ECU 5.
  • FIG. 10B shows a change in the motor resistance value Rm used to calculate the estimated angular velocity value ⁇ e during the steering period when the steering angle ⁇ changes as shown in FIG.
  • FIG. 10C shows a change in
  • FIG. 11 is a block diagram showing a functional configuration of the angular velocity estimation unit 50 corresponding to the angular velocity estimation processing in the fourth embodiment.
  • the configuration of FIG. 11 is obtained by limiting the configuration of the angular velocity estimation unit 50 shown in FIG. 3 so as to support only the angular velocity estimation processing.
  • the angular velocity estimation processing in the fourth embodiment will be described with reference to FIGS. 10 and 11.
  • the estimated value calculation unit 56 refers to the resistance map in the map holding unit 55 during the steering period, which is the period determined by the steering determination unit 51 as the steering state. Then, a motor resistance value Rm corresponding to the detected current value Im is obtained. The estimated value calculation unit 56 uses the motor resistance value Rm, the voltage detection value Vm, and the current detection value Im to calculate the angular velocity estimation value ⁇ e for each control period using Equation (2). However, in calculating the angular velocity estimation value ⁇ e in a predetermined period immediately after switching from the steering period to the steering period, as will be described later, the resistance average value Rav in the steering period is changed to the motor resistance value Rm based on the resistance map. A resistance value Rt that gradually changes is used (see FIG. 10D).
  • the estimated value calculation unit 56 is obtained by the resistance calculation unit 52 for each control cycle, as in the first angular velocity estimation process.
  • the estimated angular velocity value ⁇ e is calculated by the equation (2).
  • the average value calculation unit 53 integrates the calculated resistance value Rc obtained for each control cycle by the resistance calculation unit 52 as in the first angular velocity estimation process, and calculates the resistance average value Rav from the integrated value. calculate.
  • the estimated value calculation unit 56 starts from the resistance average value Rav at the end of the steering period as shown in FIG.
  • a resistance value (hereinafter referred to as “transition resistance value”) Rt that gradually changes to the motor resistance value Rm obtained from the resistance map is obtained.
  • the estimated value calculation unit 56 calculates the angular velocity estimated value ⁇ e using the transition resistance value Rt.
  • the estimated value calculation unit 56 calculates the motor resistance value Rm based on the resistance map.
  • the angular velocity estimated value ⁇ e is calculated by using this.
  • the calculated resistance value Rc obtained from the voltage detection value Vm and the current detection value Im is controlled for each control cycle, as in the angular velocity estimation process of the second embodiment.
  • the angular velocity estimated value ⁇ e is calculated by using this. Therefore, even if there is an individual difference in the motor 1 or the contact state between the brush and the commutator in the motor 1, the temperature, and the like change, the estimated angular velocity value ⁇ e can be obtained with high accuracy.
  • the estimated angular velocity value ⁇ e is calculated using the motor resistance value Rm obtained from the resistance map.
  • the estimated angular velocity value ⁇ e is calculated using the transition resistance value Rt (FIG. 10D). For this reason, the calculated angular velocity estimated value ⁇ e does not vary greatly when the steering period and the steering period are switched, and a stable angular velocity estimated value ⁇ e can be obtained.
  • the map update unit 54 in the angular velocity estimation unit 50 since the resistance map is not updated based on the calculated resistance value Rc or the resistance average value Rav obtained in the steering period, the map update unit 54 in the angular velocity estimation unit 50
  • a map update unit 54 is provided as shown by a dotted line in FIG. 11, and a resistance map in the map holding unit 55 is calculated based on the resistance average value Rav at the end of the steering holding period and the current average value Iav corresponding thereto. It may be updated.
  • the calculated resistance value Rc and the average resistance value Rav obtained in each steering period are used. Therefore, even if there is an individual difference in the motor 1 or the contact state between the brush of the motor 1 and the commutator, the temperature, and the like change, the estimated angular velocity value ⁇ e can be accurately calculated.
  • the resistance map is updated based on the average resistance value Rav and the average current value Iav obtained during each steering period.
  • the motor resistance value Rm with a smaller error than the actual motor resistance value is obtained.
  • the estimated angular velocity value ⁇ e can be accurately calculated using the motor resistance value Rm. If the angular velocity estimated value ⁇ e is calculated with high accuracy in this way, the control accuracy of the motor control device is improved, and a good steering feeling can be obtained in the electric power steering device using the motor control device.
  • a motor control device is also used in the electric power steering apparatus shown in FIG. 1 and is configured using the ECU 5 to drive the brushed motor 1.
  • the configuration of the ECU 5 is the same as that of the first embodiment except that it includes a rotation sensor 7 for determining whether or not the rotor of the motor 1 is rotating. A detailed description is omitted with reference numerals (see FIG. 2).
  • the control unit 10 including the angular velocity estimation unit 50 is realized by software when the microcomputer executes a program stored in a memory (not shown) built in the ECU 5, and the control unit 10 Since the functional configuration 10 is basically the same as that of the first embodiment, the same or corresponding parts are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the internal configuration of the angular velocity estimation unit 50 in the fifth embodiment is slightly different from the angular velocity estimation unit 50 (FIG. 3) in the first embodiment, both have the same or corresponding components.
  • the same reference numerals are assigned to the same or corresponding parts in the internal configuration of the angular velocity estimating unit 50.
  • an angular velocity estimation process for calculating the angular velocity estimation value ⁇ e in the angular velocity estimation unit 50 according to the fifth embodiment will be described.
  • FIG. 12 is a waveform diagram for explaining the angular velocity estimation processing in the fifth embodiment.
  • FIG. 12A is output from the rotation sensor 7 when the steering angle ⁇ changes as shown in FIG. 12B in the electric power steering apparatus using the motor control apparatus according to the fifth embodiment as the ECU 5.
  • the waveform of the pulse signal P is shown.
  • FIG. 13 is a block diagram showing a functional configuration of the angular velocity estimation unit 50 corresponding to the angular velocity estimation processing in the fifth embodiment.
  • the configuration in FIG. 13 is a modification of the configuration of the angular velocity estimation unit 50 shown in FIG. 3 so as to correspond to the angular velocity estimation processing in the fifth embodiment.
  • the angular velocity estimation process in the fifth embodiment will be described with reference to FIGS. 12 and 13.
  • the steering determination unit 51 in the fifth embodiment is different from the first to fourth embodiments without using the voltage detection value Vm, the current detection value Im, and the motor resistance value Rm.
  • the steering determination unit 51 Based on the pulse signal P from the rotation sensor 7, it is determined whether or not the rotor of the motor 1 is rotating, that is, whether or not the steering is maintained. Specifically, as shown in FIG. 12 (a), the steering determination unit 51 does not output a pulse in the pulse signal P unless the rotation sensor 7 outputs a pulse for a predetermined time ⁇ T1. B) It is determined that the steering is maintained. If the rotation sensor 7 outputs a pulse during the time ⁇ T1 (if a pulse appears in the pulse signal P), the steering retention determination unit 51 determines that the steering state is set.
  • This time ⁇ T1 is, for example, 10 times the control period.
  • the steering determination unit 51 allows the rotational speed of the motor 1 to be less than or equal to a predetermined value near 0 when no pulse is output from the rotation sensor 7 during the time ⁇ T1. It is determined that the electric power steering device is in the steering holding state.
  • the determination result in the steering determination unit 51 is input to the resistance calculation unit 52, the average value calculation unit 53, and the estimated value calculation unit 56 as the rotation state signal St.
  • steering is detected when the rotation sensor 7 does not output a pulse, but when a pulse is output from the rotation sensor 7 after the detection, the rotation state signal St is steered at that time. It changes to show the state.
  • the average value calculation unit 53 uses the calculated resistance value Rc and the calculated current value Ic obtained at each control cycle for a predetermined time after the steering state is detected based on the rotation state signal St from the steering determination unit 51. Accumulate during ⁇ T2.
  • the average value calculation unit 53 obtains the average value of the calculated resistance value Rc and the calculated current value Ic at the predetermined time ⁇ T2 from the integrated values.
  • the average value of the calculated resistance value Rc and the average value of the calculated current value Ic thus obtained are input to the map updating unit 54 as the resistance average value Rav and the current average value Iav.
  • the predetermined time ⁇ T2 is set to such a length that the noise included in the calculated resistance value Rc is sufficiently suppressed by averaging at the predetermined time ⁇ T2 and can be accommodated in the holding period. Good.
  • the map update unit 54 updates the resistance map in the map holding unit 55 based on the input resistance average value Rav and current average value Iav. To do.
  • a specific method for updating the resistance map a method similar to that already described with reference to the first embodiment can be employed (see FIGS. 5A to 5C and FIG. 6).
  • the estimated value calculation unit 56 uses the calculated resistance value Rc from the resistance calculation unit 52 together with the voltage detection value Vm and the current detection value Im while the rotation state signal St indicates the steered state. Is used to calculate the estimated angular velocity value ⁇ e. On the other hand, while the rotation state signal St indicates the steering state, the estimated value calculation unit 56 refers to the resistance map in the map holding unit 55 to obtain the motor resistance value Rm corresponding to the current detection value Im. The estimated value calculation unit 56 uses the motor resistance value Rm together with the detected voltage value Vm and the detected current value Im to calculate the estimated angular velocity value ⁇ e according to Equation (2).
  • the calculated angular velocity estimated value ⁇ e is output from the angular velocity estimating unit 50 and input to the current target setting unit 12 as in the first embodiment, where it is used to determine the target value It of the current to be passed through the motor 1. (See FIG. 2).
  • the angular velocity estimation value ⁇ e is calculated using the calculated resistance value Rc obtained from the voltage detection value Vm and the current detection value Im for each control period in the steering period.
  • the estimated angular velocity value ⁇ e is calculated using the motor resistance value Rm obtained from the resistance map updated based on the resistance average value Rav at the predetermined time ⁇ T2 within the immediately preceding steering period. In this way, the value of the motor resistance used to calculate the estimated angular velocity value ⁇ e is updated.
  • the motor resistance value (Rc) with less error than the actual motor resistance value.
  • the estimated angular velocity value ⁇ e can be accurately calculated using Rm).
  • FIG. 14 is a waveform diagram for explaining the angular velocity estimation processing in the sixth embodiment.
  • FIG. 14A is outputted from the rotation sensor 7 when the steering angle ⁇ changes as shown in FIG. 14B in the electric power steering apparatus using the motor control apparatus according to the sixth embodiment as the ECU 5.
  • the waveform of the pulse signal P is shown.
  • FIG. 14C shows a change in a counter value C, which will be described later, in the average value calculation unit 53 when the steering angle ⁇ changes as shown in FIG.
  • FIG. 15 is a block diagram showing a functional configuration of the angular velocity estimation unit 50 corresponding to the angular velocity estimation processing in the sixth embodiment. The configuration of FIG.
  • FIG. 15 is a modification of the configuration of the angular velocity estimation unit 50 shown in FIG. 3 so as to correspond to the angular velocity estimation processing in the sixth embodiment.
  • the angular velocity estimation processing in the sixth embodiment will be described with reference to FIGS. 14 and 15.
  • the pulse signal P from the rotation sensor 7 is input to the steering determination unit 51.
  • the steering determination unit 51 determines that the steering state is maintained unless the rotation sensor 7 outputs a pulse during a predetermined time ⁇ T1, and the rotation sensor 7 is detected during the time ⁇ T1. If a pulse is output, it is determined that the vehicle is in the steering state (see FIG. 14A). This determination result is input to the resistance calculation unit 52 and the average value calculation unit 53 as the rotation state signal St.
  • the steering is detected when the rotation sensor 7 does not output a pulse during the time ⁇ T1, but if a pulse is output from the rotation sensor 7 after the detection, At that time, the rotation state signal St changes to indicate the steering state.
  • the resistance calculation unit 52 uses the voltage detection value Vm and the current detection value Im for each control cycle while the rotation state signal St indicates the steered state, as in the case of the angular velocity estimation process of the fifth embodiment. Then, the value of the motor resistance R is calculated as the calculated resistance value Rc.
  • the calculated resistance value Rc obtained for each control cycle in this way is input to the average value calculation unit 53 together with the calculated current value Ic that is the current detection value Im used to calculate each calculated resistance value Rc.
  • the average value calculation unit 53 includes a counter 535 that increases the count value C by 1 every time one control cycle elapses.
  • the counter 535 starts counting from 0 at the time when the steering holding state is detected based on the rotation state signal St, and is reset every time the count value C reaches a predetermined end value Cn (for example, 50). Start counting again from zero. In this way, as shown in FIG. 14 (c), while the rotation state signal St indicates the steered state, the counting starts from 0 and is reset when the count value C reaches the end value Cn. The operation of starting counting is repeated.
  • the average value calculation unit 53 starts integration of the calculated resistance value Rc and the calculated current value Ic obtained by the resistance calculation unit 52 for each control cycle.
  • the count value C reaches the end value Cn, the integration ends.
  • the average value calculation unit 53 obtains an average value of the calculated resistance value Rc and an average value of the calculated current value Ic during the period until the count value C changes from 0 to Cn from the integrated values.
  • both average values are input to the map updating unit 54 as the resistance average value Rav and the current average value Iav, respectively.
  • the steered state is detected at time t0, and the counter 535 starts counting.
  • the count value C reaches the end value Cn
  • the counter 535 is reset, and from 0 again. Start counting.
  • the count value C reaches the end value Cn
  • the counter 535 is reset, and counting is started again from 0, and after counting is started at time t4.
  • the steering holding state ends before the count value C reaches the end value Cn.
  • the end of the steering holding state is detected by a change in the pulse signal P, and the counter 535 stops operating based on the rotation state signal St. Therefore, in the example of FIG.
  • the resistance average value Rav1 and the current average value Iav1 in the period from time t0 to t1 are calculated immediately after time t1 and input to the map update unit 54. Thereafter, similarly, the resistance average value Rav2 and the current average value Iav2 in the period from the time t1 to t2, the resistance average value Rav3 and the current average value Iav3 in the period from the time t2 to t3, and the period from the time t3 to t4.
  • the average resistance value Rav4 and the average current value Iav4 are calculated immediately after time t2, immediately after time t3, and immediately after time t4, respectively, and sequentially input to the map update unit 54.
  • the map update unit 54 calculates the resistance map in the map holding unit 55 based on the input average resistance value Ravi and the average current value Iavi.
  • Update (i 1, 2, 3, 4 in the example of FIG. 14C).
  • a specific method for updating the resistance map a method similar to that already described with reference to the first embodiment can be employed (see FIGS. 5A to 5C and FIG. 6).
  • the estimated saddle value calculation unit 56 refers to the resistance map in the map holding unit 55 regardless of whether the steering state or the steering state, and obtains a motor resistance value Rm corresponding to the current detection value Im.
  • the estimated value calculation unit 56 uses the motor resistance value Rm together with the detected voltage value Vm and the detected current value Im to calculate the estimated angular velocity value ⁇ e according to the above equation (2).
  • the calculated angular velocity estimated value ⁇ e is output from the angular velocity estimating unit 50 and input to the current target setting unit 12 as in the first embodiment, where it is used to determine the target value It of the current to be passed through the motor 1. Is done.
  • the count value C is repeatedly counted from 0 to Cn in the steering holding period, and based on the resistance average value Rav calculated every time the count value C reaches the end value Cn.
  • the resistance map in the map holding unit 55 is updated.
  • the estimated value calculation unit 56 refers to the resistance map updated every predetermined period in this way to obtain the motor resistance value Rm corresponding to the current detection value Im.
  • the estimated value calculation unit 56 further calculates the angular velocity estimated value ⁇ e by the equation (2) using the motor resistance value Rm together with the detected voltage value Vm and the detected current value Im.
  • the estimated value calculation unit 56 refers to the resistance map last updated in the immediately preceding steering period and obtains the motor resistance value Rm corresponding to the current detection value Im.
  • the estimated value calculation unit 56 further calculates the angular velocity estimated value ⁇ e by the equation (2) using the motor resistance value Rm together with the detected voltage value Vm and the detected current value Im.
  • the resistance map used for calculating the angular velocity estimated value ⁇ e in the steering holding period and the steering period is sequentially updated. Therefore, even if there is an individual difference in the motor 1, or even if the contact state between the brush and the commutator in the motor 1 or the temperature changes, the motor resistance value Rm with a smaller error than the actual motor resistance value is obtained.
  • the estimated angular velocity value ⁇ e can be accurately calculated using the motor resistance value Rm. Further, not only during the steering period but also during the steering period, ⁇ e is calculated using the resistance map updated based on the resistance average value Rav, so that the influence of noise included in the calculated resistance value Rc is suppressed.
  • the average value Rav of the calculated resistance value Rc is obtained in the steered state determined based on the pulse signal P, and the resistance map used for calculating the estimated angular velocity value ⁇ e. Is updated based on the average value Rav. For this reason, even if there is an individual difference in the motor 1 or the contact state or temperature between the brush and the commutator of the motor 1 changes, the motor resistance value Rm with less error than the actual motor resistance value. Can be used to accurately calculate the angular velocity estimated value ⁇ e. Thereby, the control accuracy of the motor control device is improved, and a good steering feeling can be obtained in the electric power steering device using the motor control device.
  • the rotation sensor 7 is not provided, and whether or not the steering is maintained based on the determination angular velocity ⁇ d calculated using the voltage detection value Vm, the current detection value Im, and the like (the rotor of the motor 1). Whether or not is rotating) is determined (see FIG. 3 and the like).
  • the rotation sensor 7 is provided (see FIG. 2), and it is determined whether or not the steering is maintained based on the pulse signal P as the output signal (FIGS. 12 to 15).
  • it may be determined whether the steering state is maintained based on the determination angular velocity ⁇ d calculated using the voltage detection value Vm, the current detection value Im, and the like.
  • the angular velocity estimation unit 50 is realized by software by the microcomputer 10 executing a predetermined program. However, part or all of the angular velocity estimation unit 50 is realized by hardware. May be.
  • the motor control devices are devices for driving the brushed motor 1, but the present invention is not limited to this.
  • the present invention is based on the back electromotive force generated in the armature winding of the electric motor, and the rotational speed (angular speed) of the motor from the resistance value of the motor, the applied voltage to the motor, and the detected value of the current flowing through the motor. Any other type of motor can be applied as long as the estimated value can be calculated.
  • the present invention can be applied not only to the above-described column assist type electric power steering apparatus but also to a pinion assist type or rack assist type electric power steering apparatus.
  • the present invention can also be applied to motor control devices other than the electric power steering device.
  • SYMBOLS 1 Motor with a brush (electric motor), 5 ... ECU (motor control apparatus), 7 ... Rotation sensor, 54 ... Map update unit (characteristic update means), 55 ... Map holding part (characteristic holding part), 56... Angular velocity estimated value calculating unit (estimated value calculating means) 531 ... 1st calculation part (1st average value calculation means), 532 ... 2nd calculation part (2nd average value calculation means).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Direct Current Motors (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

電動パワーステアリング装置のモータ制御に使用する角速度推定値(ωe)を次のようにして求める。モータが実質的に回転を停止する第1状態期間に、抵抗算出部(52)は、モータ電圧および電流の検出値(Vm),(Im)に基づきモータ抵抗値(Rc)を算出する。平均値算出部(53)は、算出された抵抗値(Rc)の保舵期間での平均値(Rav)を求める。特性保持部(55)にはモータ電流をモータ抵抗に対応付ける電流-抵抗特性が保持されており、特性更新部(54)は、この電流-抵抗特性を上記平均値(Rav)に基づき更新する。推定値算出部(56)は、モータ電圧および電流の検出値(Vm),(Im)と電流-抵抗特性により得られるモータ抵抗値(Rm)とに基づき角速度推定値(ωe)を算出する。

Description

モータ制御装置および電動パワーステアリング装置
 本発明は、電動モータを駆動するモータ制御装置およびそれを用いた電動パワーステアリング装置に関する。
  電動パワーステアリング装置におけるモータ制御装置では、操舵トルクや車速に基づきモータに流すべき電流の目標値を決定する。この目標値の決定において、例えば、特開平8-67262号公報や特開平10-109655号公報は、操舵トルクや車速に加えて、操舵速度またはそれに対応するモータの角速度を考慮することを開示している。ブラシレスモータを制御する場合には、通常、レゾルバ等のモータ回転位置を検出するための角度検出センサが使用されるので、その角度検出センサの出力信号を時間微分することによりモータ角速度を得ることができる。しかし、ブラシ付きモータの制御のように角度センサを使用しないモータ制御では、モータ電流およびモータ端子間電圧を検出し、下記式に基づきモータ角速度ωが算出される。
    ω=(V-I×R)/k   …(1)
ここで、Vはモータ端子間電圧であり、Iはモータ電流であり、Rはモータ抵抗(モータ端子間抵抗)であり、kは逆起電力定数である。
  ところで、ブラシ付きモータでは、ブラシの接触抵抗がモータ電流によって変化することから、モータ抵抗はモータ電流に対する依存性を有している。このため、ブラシ付きモータを駆動するモータ制御装置では、モータ電流とモータ抵抗との関係を示す特性(以下、「モータの電流-抵抗特性」という)に基づきモータ抵抗Rが求められ、上記式(1)によりモータ角速度を算出する際にそのモータ抵抗Rが使用される。これにより、モータ角速度ωをより正確に求めることができる。
  しかし、上記のモータ抵抗Rは、温度変化や製造ばらつきによって変動する。このため、上記式(1)によるモータ角速度ωの算出に使用されるモータ抵抗Rの値と実際のモータ抵抗の値との間に差が生じることがある。したがって、モータの電流-抵抗特性に基づき求めたモータ抵抗Rを用いてモータ角速度ωを算出した場合であっても、上記の温度変化や製造ばらつきのために必ずしも精度よくモータ角速度を算出することができない。その結果、例えば、上記のようなモータ制御装置を用いた電動パワーステアリング装置において、モータ角速度を使用する制御の精度が低下し、良好に操舵補助を行えないおそれがある。
特開平8-67262号公報 特開平10-109655号公報
  本発明の目的のひとつは、温度変化や製造ばらつき等によりモータ抵抗が変動しても精度よく当該モータの駆動を制御できるモータ制御装置を提供することである。また、本発明の他の目的は、そのようなモータ制御装置を備えた電動パワーステアリング装置を提供することである。
  本発明は、電動モータの電機子巻線に生じる逆起電力に基づき当該電動モータの回転速度の推定値を算出し、当該推定値を用いて当該電動モータを駆動するモータ制御装置に関する。電流検出部は、前記電動モータに流れる電流を検出する。電圧検出部は、前記電動モータに印加される電圧を検出する。判定部は、前記電動モータの回転速度が実質的に0である所定値以下か否かを判定する。特性保持部は、前記電動モータに流れる電流と前記電動モータの抵抗との関係を電流-抵抗特性として保持する。抵抗算出部は、前記判定部により前記電動モータの回転速度が前記所定値以下であると判定されたときに、前記電流検出部により得られる電流検出値と前記電圧検出手段により得られる電圧検出値とに基づき前記電動モータの抵抗値を算出する。推定値算出部は、前記電流検出部により得られる電流検出値と、前記電圧検出部により得られる電圧検出値と、前記電流-抵抗特性によって当該電流検出値に対応付けられる抵抗値または前記抵抗算出部により算出される抵抗値とに基づき、前記電動モータの回転速度を示す速度推定値を算出する。特性更新部は、前記抵抗算出部により算出される抵抗値と当該抵抗値の算出に使用される前記電流検出値とに基づき前記電流-抵抗特性を更新する。
第1の実施形態に係るモータ制御装置を用いた電動パワーステアリング装置の構成を、それに関連する車両の構成と共に示す概略図である。 第1の実施形態に係るモータ制御装置の構成を示すブロック図である。 第1の実施形態における角速度推定部の構成を示すブロック図である。 第1の実施形態におけるモータの電流-抵抗特性および抵抗マップ更新のための抵抗値および電流検出値を説明するための図である。 第1の実施形態における抵抗マップの更新方法を説明するための図である。 第1の実施形態における抵抗マップの更新方法を説明するための図である。 第1の実施形態における抵抗マップの更新方法を説明するための図である。 第1の実施形態における抵抗マップの他の更新方法を説明するための図である。 第2及び第3の実施形態における第1の角速度推定処理を説明するための波形図である。 第2の実施形態における角速度推定処理に対応する角速度推定部の構成を示すブロック図である。 第3の実施形態における角速度推定処理に対応する角速度推定部の構成を示すブロック図である。 第4の実施形態における角速度推定処理を説明するための波形図である。 第4の実施形態における角速度推定処理に対応する角速度推定部の構成を示すブロック図である。 第5の実施形態に係るモータ制御装置における角速度推定処理を説明するための波形図である。 第5の実施形態における角速度推定処理に対応する角速度推定部の構成を示すブロック図である。 第6の実施形態における角速度推定処理を説明するための波形図である。 第6の実施形態における第2の角速度推定処理に対応する角速度推定部の構成を示すブロック図である。
<第1の実施形態>
  図1は、本発明の第1の実施形態に係るモータ制御装置を用いた電動パワーステアリング装置の構成を、それに関連する車両の構成と共に示す概略図である。この電動パワーステアリング装置は、ブラシ付きモータ1、減速機2、トルクセンサ3、車速センサ4、および、モータ制御装置としての電子制御ユニット(ECU)5を備えたコラムアシスト型の電動パワーステアリング装置である。なお、本発明に係るモータ制御装置は、モータ1の回転の有無を検出するためのセンサ(以下「回転センサ」という)7を備えているのが好ましい。図1に示す電動パワーステアリング装置は、回転センサ7としてホールセンサを持つ。なお、この回転センサ7はホールセンサに限定されるものではなく、モータ1の回転に応じてパルス信号を発生させるものであればよい。また、モータ1の回転方向を検出する必要がないので、回転センサ7として低コストのセンサを使用することができる。
  図1に示すように、ステアリングシャフト102の一端にはハンドル(ステアリングホイール)101が固着されており、ステアリングシャフト102の他端はラックピニオン機構103を介してラック軸104に連結されている。ラック軸104の両端は、タイロッドおよびナックルアームからなる連結部材105を介して車輪106に連結されている。運転者がハンドル101を回転させると、ステアリングシャフト102は回転し、これに伴いラック軸104は往復運動を行う。ラック軸104の往復運動に伴い、車輪106の向きが変わる。
  電動パワーステアリング装置は、運転者の負荷を軽減するために、以下に示す操舵補助を行う。トルクセンサ3は、ハンドル101の操作によってステアリングシャフト102に加えられる操舵トルクTsを検出する。車速センサ4は、車速Sを検出する。回転センサ7は、モータ1のロータの回転速度に応じた頻度でパルスを発生し、それらのパルスを含むパルス信号Pを出力する。モータ1のロータが停止しているときには、回転センサ7はパルスを発生しない。
  ECU5は、車載バッテリ8から電力の供給を受け、操舵トルクTs、車速Sおよびパルス信号Pに基づきブラシ付きモータ1を駆動する。ブラシ付きモータ1は、ECU5によって駆動されると、操舵補助力を発生させる。減速機2は、ブラシ付きモータ1とステアリングシャフト102との間に設けられる。ブラシ付きモータ1で発生した操舵補助力は、減速機2を介して、ステアリングシャフト102を回転させるように作用する。
  この結果、ステアリングシャフト102は、ハンドル101に加えられる操舵トルクと、ブラシ付きモータ1で発生した操舵補助力の両方によって回転する。このように電動パワーステアリング装置は、ブラシ付きモータ1で発生した操舵補助力を車両のステアリング機構に与えることにより操舵補助を行う。
<モータ制御装置の構成>
  図2は、第1の実施形態に係るモータ制御装置の構成を示すブロック図である。このモータ制御装置は、上記電動パワーステアリング装置において使用され、ECU5を用いて構成されており、ブラシ付きモータ1を駆動する。ECU5は、制御部10と駆動部20からなる。制御部10は、マイクロコンピュータ(以下「マイコン」と略称する)を用いて実現されている。駆動部20は、モータ駆動回路30、電流検出用抵抗35、PWM信号生成回路21、電圧検出回路24、および電流検出回路25を備えている。なお、本実施形態では、回転センサ7は使用されないものとし、回転センサ7を使用する構成は第2の実施形態および変形例として後述する。
  ECU5には、トルクセンサ3から出力された操舵トルクTs、および、車速センサ4から出力された車速Sが入力され、これらはマイコン10に入力データとして与えられる。また、駆動部20では、後述のように、モータ1への印加電圧すなわちモータ1の端子間電圧(以下「モータ電圧」という)が電圧検出回路24により検出されると共に、モータ1内の電機子巻線を流れる電流(以下「モータ電流」という)が電流検出回路25により検出され、これらの検出結果としての電圧検出値Vmおよび電流検出値Imもマイコン10に与えられる。
  マイコン10は、ECU5に内蔵されたメモリ(図示せず)に格納されたプログラムを実行することにより、モータ1の制御のための機能単位として、目標電流設定部12、減算器14、制御演算部16、および角速度推定部50をソフトウェア的に実現している。角速度推定部50は、上記の電圧検出値Vmおよび電流検出値Imに基づき、モータ1のロータの回転速度を示す角速度推定値ωeを算出する。後述の第2の実施形態および変形例では、回転センサ7から出力されるパルス信号Pも、この角速度推定値ωeの算出に使用される。目標電流設定部12は、上記の操舵トルクTsおよび車速Sと、この角速度推定値ωeとに基づき、モータ1に流すべき電流の目標値Itを決定する。減算器14は、この電流目標値Itと上記電流検出値Imとの偏差(It-Im)を算出する。制御演算部16は、この偏差(It-Im)に基づく比例積分制御演算によって、この偏差(It-Im)を打ち消すためにモータ1に印加すべき電圧を示す指令値Dを算出する。この指令値Dはマイコン10から出力されて駆動部20のPWM信号生成回路21に与えられる。
  PWM信号生成回路21は、マイコン10から与えられる指令値Dに応じて、第1および第2の右方向PWM信号SRd1,SRd2と第1および第2の左方向PWM信号SLd1,SLd2とを生成する。ここで、指令値Dの符号は、モータ1が発生すべきトルクが右方向操舵を補助する方向のトルク(以下「右方向トルク」という)か左方向操舵を補助する方向のトルク(以下「左方向トルク」という)かを示す。右方向トルクを発生させる場合には、右方向PWM信号SRd1,SRd2は指令値Dに応じたデューティ比のPWM信号として生成され、左方向PWM信号SLd1,SLd2は非アクティブな信号として生成される。左方向トルクを発生させる場合には、左方向PWM信号SLd1,SLd2は指令値Dに応じたデューティ比のPWM信号として生成され、右方向PWM信号SRd1,SRd2は非アクティブな信号として生成される。
  モータ駆動回路30は、4個のスイッチング素子である電力用の電界効果型トランジスタ(以下「FET」という)31~34によって構成されるブリッジ回路である。このブリッジ回路はバッテリ8の電源ラインと接地ラインとの間に接続され、負荷としてモータ1が接続されている。すなわち、このブリッジ回路は、電源ラインに接続される電源ライン側FET31,32と、電流検出用抵抗35を介して接地ラインに接続される接地ライン側FET33,34とからなる。電源ライン側FET31と接地ライン側FET33との接続点N1にはモータ1の正端子が接続される。電源ライン側FET32と接地ライン側FET34との接続点N2にはモータ1の負端子が接続される。電源ライン側FET31および接地ライン側FET34のゲート端子には、上記の右方向PWM信号SRd1,SRd2がそれぞれ印加される。電源ライン側FET32および接地ライン側FET33のゲート端子には、上記の左方向PWM信号SLd1,SLd2がそれぞれ印加される。これにより、指令値Dに応じたデューティ比でFET31および34またはFET32および33がオンおよびオフすることにより、指令値Dの符号に応じた極性および大きさの電圧がモータ駆動回路30からモータ1に印加される。その結果、モータ駆動回路30からモータ1に電流が供給され、モータ1は操舵トルクTs、車速Sおよび角速度推定値ωeに応じた操舵補助力を発生させる。
  上記のようにしてモータ1が駆動される間、モータ1に印加される電圧すなわちモータ1の端子間電圧は電圧検出回路24によって検出される。同時に、モータ1に流れる電流は電流検出用抵抗35の両端間の電圧に基づき電流検出回路25によって検出される。検出された電圧検出値Vmおよび電流検出値Imは、マイコン10に入力され、既述のように、角速度推定値ωeの算出やモータ1のフィードバック制御のための上記偏差(It-Im)の算出に使用される。
<角速度推定部の構成および動作>
  図3は、第1の実施形態において電流目標値Itの決定に使用される角速度推定値ωeを算出する角速度推定部50の機能的な構成を示すブロック図である。この角速度推定部50は、図3に示すように、保舵判定部51、抵抗算出部52、平均値算出部53、マップ更新部54、マップ保持部55、および、角速度推定値算出部(以下「推定値算出部」と略記する)56を備えている。上記の電圧検出回路24および電流検出回路25により得られる電圧検出値Vmおよび電流検出値Imは、保舵判定部51、抵抗算出部52、および推定値算出部56に入力される。
  一般に、ブラシ付きモータ1のロータの角速度ωは、既述のように次式により与えられる。
    ω=(V-I×R)/k   …(2)
ここで、Vはモータ電圧(端子間電圧)であり、Iはモータ電流であり、Rはモータ抵抗(端子間抵抗)であり、kは逆起電力定数である。したがって、上記の電圧検出値Vmおよび電流検出値Imに加えて、モータ抵抗Rの値がわかれば、角速度ωを算出することができる。
  そこで、角速度推定部50におけるマップ保持部55は、モータ1の電流-抵抗特性に基づきモータ電流をモータ抵抗に対応付けるテーブルを抵抗マップとして保持し、特性保持手段として機能する。保舵判定部51は、この抵抗マップを参照することにより、電流検出値Imに対応するモータ抵抗値Rmを求める。そして保舵判定部51は、V=Vm、I=Im、R=Rmを上記式(2)に代入することにより角速度ωを算出する(以下、この角速度ωdを「判定用角速度」という)。保舵判定部51は、この判定用角速度ωdが、予め決められた0近傍の所定値ε以下であれば、モータ1のロータが回転を停止しているものとみなし、電動パワーステアリング装置が保舵状態にあると判定する。一方、上記判定用角速度ωdが所定値εよりも大きければ、保舵判定部51は、モータ1のロータが回転しているものとみなし、電動パワーステアリング装置が操舵状態であると判定する。この判定結果は、回転状態信号Stとして保舵判定部51から出力され、抵抗算出部52、平均値算出部53、および推定値算出部56に入力される。
  電動パワーステアリング装置が保舵状態であってモータ1のロータが停止している場合、角速度ω=0であるので、上記式(2)に基づき下記式(3)によりモータ抵抗Rを算出することができる。
    R=V/I    …(3)
そこで抵抗算出部52は、回転状態信号Stが保舵状態を示すと、角速度ω=0とみなし、上記式(3)にV=Vm、I=Imを代入することによりモータ抵抗Rの値を算出する(以下、この値を「算出抵抗値」といい、記号“Rc”で示すものとする)。このようにして得られる算出抵抗値Rc(=Vm/Im)は、平均値算出部53に入力される。また、この算出抵抗値Rcの算出に使用された電流検出値Imも、算出時電流値Icとして平均値算出部53に入力される。このようにして、モータ1に流すべき電流の目標値Itを算出する周期である制御周期毎に、算出抵抗値Rcおよび算出時電流値Icが平均値算出部53に入力される。算出抵抗値Rcは推定値算出部56にも入力されるのが好ましい。
  平均値算出部53は、上記の回転状態信号Stに基づき、電動パワーステアリング装置が保舵状態である期間(以下「保舵期間」という)に抵抗算出部52から制御周期毎に入力される算出抵抗値Rcおよび算出時電流値Icのそれぞれの平均値を求め、抵抗平均値Ravおよび電流平均値Iavとして出力する。これらの平均値Rav,Iavの具体的な算出方法については後述する。平均値算出部53から出力される抵抗平均値Ravおよび電流平均値Iavはマップ更新部54に入力される。なお、抵抗平均値Ravおよび電流平均値Iavに代えて、抵抗算出部52から出力される算出抵抗値Rcおよび算出時電流値Icが、マップ更新部54に入力されるようにしてもよい。また、抵抗平均値Ravが推定値算出部56にも入力されるようにしてもよい。保舵期間は、第1状態期間である。
  推定値算出部56は、マップ保持部55に保持されている抵抗マップを参照して、上記の電流検出値Imに対応するモータ抵抗値Rmを求め、上記の電圧検出値Vmおよび電流検出値Imを用い上記式(2)により角速度推定値ωeを算出する。すなわち推定値算出部56は、V=Vm、I=Im、R=Rmを上記式(2)に代入することにより角速度推定値ωeを算出する。また、抵抗マップにより得られるモータ抵抗値Rmに代えて、上記の抵抗平均値Ravを用いて上記式(2)により角速度推定値ωeを求めてもよい。さらに、回転状態信号Stに基づき保舵期間において上記の算出抵抗Rcを用いて上記式(2)により角速度推定値ωeを求めてもよい。このような角速度推定値ωeの算出方法について幾つかの具体例を後で説明する。
  上記のようにして算出された角速度推定値ωeは、角速度推定部50から出力され、既述のように電流目標設定部12に入力される(図2)。これにより、目標電流設定部12では、モータ1に流すべき電流の目標値Itを決定するための処理において、この角速度推定値ωeに基づき例えばダンピング制御やハンドルの端当て状態の検出等を行うことができる。
  上記角速度推定部50においてモータ抵抗値Rmを求めるために使用される抵抗マップは、モータ1におけるモータ電流とモータ抵抗との関係すなわち電流-抵抗特性を固定的に与えるものではなく、マップ更新部54により更新される。すなわち、マップ更新部54は、保舵期間に得られる算出抵抗値Rcおよび算出時電流値Ic、または、抵抗平均値Ravおよび電流平均値Iavに基づき、マップ保持部55における抵抗マップを更新する。
  図4は、モータ電流Iを示す横軸とモータ抵抗Rを示す縦軸からなる直交座標系においてモータ1の電流-抵抗特性を示している。すなわち、図4において実線で示されている曲線が当該電流-抵抗特性を表しており、この曲線(以下「特性曲線」という)に従って種々のモータ電流Iの値をモータ抵抗Rの値に対応付けるデータが抵抗マップとしてマップ保持部55に保持されている。いま、算出抵抗値Rcおよび算出時電流値Ic、または、抵抗平均値Ravおよび電流平均値Iavとして、電流値I1と抵抗値R1とがマップ更新部54に入力され、これらの電流値I1および抵抗値R1が上記直交座標系において図4に示す点Aに対応するものとする。この点Aは上記特性曲線から外れている。この場合、マップ更新部54は、上記特性曲線が点Aを通過するように上記特性曲線すなわち抵抗マップを構成するデータを変更する(抵抗マップの更新)。
  図5A~図5Cは、このような抵抗マップの更新方法の具体例を説明するための図である。図5Aは、第1の更新方法を示しており、点線の曲線が更新前の上記特性曲線を示し、実線の曲線が更新後の上記特性曲線を示している(図5B、図5C、図6においても同様)。この第1の更新方法が採用された場合、マップ更新部54は、上記特性曲線が点Aを通過するように上記特性曲線を横軸方向すなわち電流方向に平行移動させ、更新後には、この平行移動後の特性曲線(実線で示される曲線)に対応する抵抗マップがマップ保持部55に保持される。
  図5Bは、第2の更新方法を示している。この第2の更新方法が採用された場合、マップ更新部54は、上記特性曲線が点Aを通過するように上記特性曲線を縦軸方向すなわち抵抗方向に平行移動させ、更新後には、この平行移動後の特性曲線(実線で示される曲線)に対応する抵抗マップがマップ保持部55に保持される。
  図5Cは、第3の更新方法を示している。この第3の更新方法が採用された場合、マップ更新部54は、上記直交座標の原点および点Aを通過する直線と更新前の特性曲線(点線で示される曲線)との交点Bとしたとき、その交点Bが点Aに一致するように上記特性曲線を当該直線方向に平行移動させる。更新後には、この平行移動後の特性曲線(実線で示される曲線)に対応する抵抗マップがマップ保持部55に保持される。
  抵抗マップの更新方法は、上記第1から第3の更新方法のように特性曲線を平行移動させるものに限定されない。例えば図6に示すように、特性曲線の両端部C1,C2を固定し、点Aを通過するように上記曲線を変形させてもよい。また、抵抗マップの更新に際し、抵抗マップ全体を変更せずに抵抗マップの一部を変更するようにしてもよい。さらにまた、図3に示した角速度推定部50では、モータ1の電流-抵抗特性がマップとしてすなわちモータ電流とモータ抵抗を対応付けるデータとして保持されているが、これに代えて、モータ1の電流-抵抗特性を表す関数または近似式を保持するようにしてもよい(後述の他の実施形態においても同様)。この場合、マップ更新部54に対応する構成要素としての特性更新部が、算出抵抗値Rcおよび算出時電流値Ic、または、抵抗平均値Ravおよび電流平均値Iavに基づき、当該関数または近似式を特定するパラメータを変更する。
<第2の実施形態>
  図7及び8に基づき、第2の実施形態を説明する。第2の実施形態は、第1の実施形態とは角速度推定部50における角速度推定値ωeを算出するための角速度推定処理のみが異なるので、以下ではその相違点のみ説明する。
  図7は、実施形態における角速度推定処理を説明するための波形図である。図7(a)は、モータ制御装置をECU5として使用する電動パワーステアリング装置における操舵角θの時間的変化を示す。図7(b)は、図7(a)に示されるように操舵角θが変化したときに角速度推定値ωeの算出に使用されるモータ抵抗値Rの変化を示す。図7(c)は、図7(a)に示されるように操舵角θが変化したときに算出される抵抗平均値Ravの変化を示す。ただし図7(c)では、保舵期間での抵抗平均値Ravが太線で示され、モータ抵抗値Rが細線で示されている。また、図8は、第2の実施形態における角速度推定処理に対応する角速度推定部50の機能的構成を示すブロック図である。図8の構成は、図3に示した角速度推定部50の構成を当該角速度推定処理にのみ対応するように限定したものである。以下、図7および図8を参照して、第2の実施形態における角速度推定処理について説明する。なお、図3に示した構成による角速度推定処理と同様の部分については詳しい説明を省略する(以下に述べる他の実施形態についても同様)。
  第2の実施形態の角速度推定処理では、抵抗マップは使用されず、保舵判定部51は、直前の保舵期間での抵抗平均値Ravを保持しており、その抵抗平均値Ravを用いて式(2)により算出される判定用角速度ωdに基づき保舵状態か否かを判定する。この保舵判定部51により保舵状態と判定されている期間である保舵期間(回転状態信号Stが保舵状態を示す期間)において、抵抗算出部52は、制御周期毎に、電圧検出値Vmおよび電流検出値Imを用いて式(3)により算出抵抗値Rcを求める。推定値算出部56は、この算出抵抗値Rcと電圧検出値Vmおよび電流検出値Imとを用いて、式(2)により角速度推定値ωeを算出する。
  この保舵期間において平均値算出部53は、抵抗算出部52により制御周期毎に得られる算出抵抗値Rcを積算し、その積算値から抵抗平均値Ravを算出する。推定値算出部56は、この抵抗平均値Ravを次の保舵期間において新たな抵抗平均値Ravが算出されるまで保持する。推定値算出部56は、保舵判定部51により操舵状態と判定されている期間である操舵期間(回転状態信号Stが操舵状態を示す期間)では、その保持されている抵抗平均値Ravと電圧検出値Vmおよび電流検出値Imとを用いて、式(2)により角速度推定値ωeを算出する。次の保舵期間で新たな抵抗平均値Ravが算出されると、推定値算出部56は、保持している抵抗平均値Ravをその新たな抵抗平均値Ravに更新する。なお、抵抗平均値Ravが一度も算出されていないときには、測定結果または設計データ等から得られる適切なモータ抵抗値が抵抗平均値Ravの初期値として推定値算出部56に保持されている(保舵判定部51に保持される抵抗平均値Ravについても同様)。操舵期間は、第2状態期間である。
  第2の実施形態の角速度推定処理によれば、保舵期間では、制御周期毎に電圧検出値Vmおよび電流検出値Imから得られる算出抵抗値Rcを用いて角速度推定値ωeが算出される。また、操舵期間では、直前の保舵期間での抵抗平均値Ravを用いて角速度推定値ωeが算出される。このようにして、角速度推定値ωeの算出に用いられるモータ抵抗値Rとしての算出抵抗値Rcおよび抵抗平均値Ravが更新されていく。したがって、モータ1に個体差があっても、また、モータ1におけるブラシと整流子の間の接触状態や温度等が変化しても、角速度推定値ωeを精度良く算出することができる。また、操舵期間における速度推定値ωeの算出には、直前の保舵期間における抵抗平均値Ravが使用される。したがって、保舵期間で得られる各算出抵抗値Rcにノイズが含まれていても、算出される角速度推定値ωeは保舵期間と操舵期間との間での切り替わり時に大きく変動することはなく、安定した角速度推定値ωeを得ることができる。
  なお、第2の実施形態の角速度推定処理では、抵抗マップは使用されないので、角速度推定部50においてマップ更新部54およびマップ保持部55は不要であるが、図8において点線で示すようにマップ更新部54およびマップ保持部55を設け、操舵期間において抵抗マップを使用してモータ抵抗値Rmを求め、このモータ抵抗値Rmを用いて角速度推定値ωeを算出してもよい。この場合、保舵期間から操舵期間に切り替わる毎に、その保舵期間における抵抗平均値Ravおよびそれに対応する電流平均値Iavに基づきマップ保持部55における抵抗マップをマップ更新部54により更新するのが好ましい。また、マップ保持部55が設けられる場合、保舵判定部51は、抵抗マップにより得られるモータ抵抗値Rmを用いて判定用角速度ωdを算出するのが好ましい。
<第3の実施形態>
  図9は、第3の実施形態における角速度推定処理に対応する角速度推定部50の機能的構成を示すブロック図である。図9の構成は、図3に示した角速度推定部50の構成を当該角速度推定処理にのみ対応するように限定したものである。ただし、第3の実施形態において第2の角速度推定処理が採用された場合、平均値算出部53は第1算出部531および第2算出部532を含む。第1算出部531が保舵期間に抵抗平均値を1度算出すると、その後の各保舵期間では、第2算出部532が抵抗平均値を算出する。以下、図7と共に図9を参照して、第3の実施形態の角速度推定処理について説明する。
  第3の実施形態の角速度推定処理においても、第2の実施形態の角速度推定処理と同様、抵抗マップは使用されない。保舵判定部51は、直前の保舵期間での抵抗平均値Ravを保持しており、その抵抗平均値Ravを用いて式(2)により算出される判定用角速度ωdに基づき保舵状態か否かを判定する。この保舵判定部51により保舵状態と判定されている期間である保舵期間(回転状態信号Stが保舵状態を示す期間)のうち例えば当該モータ制御装置の起動後の最初の保舵期間では、抵抗算出部52は、制御周期毎に、電圧検出値Vmおよび電流検出値Imを用いて式(3)により算出抵抗値Rcを求める。そして、平均値算出部53の第1算出部531が、制御周期毎に得られる算出抵抗値Rcを積算し、その積算値から抵抗平均値Ravを算出する。この最初の保舵期間では、推定値算出部56は、算出抵抗値Rcと電圧検出値Vmおよび電流検出値Imとを用いて、式(2)により角速度推定値ωeを算出する。
  第1算出部531により抵抗平均値Rabが算出された後に開始される各保舵期間すなわち2番目以降の保舵期間おいても、抵抗算出部52は、制御周期毎に、電圧検出値Vmおよび電流検出値Imを用いて式(3)により算出抵抗値Rcを求める。また、この2番目以降の保舵期間では、平均値算出部53の第2算出部532が、直前の保舵期間での抵抗平均値Ravを直前平均値Ravbとする。第2算出部532は、上記算出抵抗値Rcが得られる毎に、得られた算出抵抗値Rcと直前平均値Ravbとの平均値(Rc+Ravb)/2を新たな抵抗平均値Ravとして算出し、直前平均値Ravbをその新たな抵抗平均値Ravに更新する。このようにして2番目以降の保舵期間では、制御周期毎に抵抗平均値Ravが新たに算出され、推定値算出部56は、この抵抗平均値Ravと電圧検出値Vmおよび電流検出値Imとを用いて、式(2)により制御周期毎に角速度推定値ωeを算出する。
  保舵判定部51により操舵状態と判定されている期間である操舵期間(回転状態信号Stが操舵状態を示す期間)では、推定値算出部56は、直前の保舵期間において最後に算出された抵抗平均値Ravを保持する。推定値算出部56は、制御周期毎に、この抵抗平均値Ravと電圧検出値Vmおよび電流検出値Imとを用いて、式(2)により角速度推定値ωeを算出する。
  第3の実施形態の角速度推定処理によれば、(2番目以降の)保舵期間では、制御周期毎に算出される抵抗平均値Ravを用いて角速度推定値ωeが算出さる。また、操舵期間では、直前の保舵期間での抵抗平均値Ravを用いて角速度推定値ωeが算出される。これにより、モータ1に個体差があっても、また、モータ1におけるブラシと整流子の間の接触状態や温度等が変化しても、角速度推定値ωeを精度良く算出することができる。また、保舵期間が開始されると、その保舵期間で最初に得られる算出抵抗値Rcと前回の保舵期間で最後に算出された抵抗平均値Rabとの平均値(Rc+Ravb)/2が抵抗平均値Ravとして算出され、その保舵期間の直前の操舵期間では、前回の保舵期間で最後に算出された抵抗平均値Ravが保持されている。このため、保舵期間で得られる算出抵抗値Rcにノイズが含まれていても、角速度推定値ωeの算出に使用される抵抗平均値Ravは、操舵期間から保舵期間への切り替わり時において急変しない。また、(2番目以降の)保舵期間では、制御周期毎に得られる算出抵抗値Rcと直前平均値Ravbとの平均値(Rc+Ravb)/2が抵抗平均値Ravとして算出され、直前平均値Ravbがその抵抗平均値Ravに更新される。このため保舵期間においても、各算出抵抗値Rcにノイズが含まれていても、角速度推定値ωeの算出には安定した抵抗平均値Ravが使用される。
  したがって、保舵期間から操舵期間へ切り替わり時や保舵期間における角速度推定値ωeの変動を抑制し、安定した角速度推定値ωeを得ることができる。その結果、電動パワーステアリング装置において、第3の実施形態の角速度推定処理を採用したモータ制御装置を用いた場合には、安定した角速度推定値ωeに基づくモータ制御によって操舵感が向上する。
  なお、第3の実施形態の角速度推定処理では、抵抗マップは使用されないので、角速度推定部50においてマップ更新部54およびマップ保持部55は不要であるが、図9において点線で示すようにマップ更新部54およびマップ保持部55を設け、操舵期間において抵抗マップを使用してモータ抵抗値Rmを求め、このモータ抵抗値Rmを用いて角速度推定値ωeを算出してもよい。この場合、保舵期間から操舵期間に切り替わる毎に、その保舵期間で最後に得られた抵抗平均値Ravおよびそれに対応する電流平均値Iavに基づきマップ保持部55における抵抗マップをマップ更新部54により更新するのが好ましい。また、マップ保持部55が設けられる場合、保舵判定部51は、抵抗マップにより得られるモータ抵抗値Rmを用いて判定用角速度ωdを算出するのが好ましい。
<第4の実施形態>
  図10は、第4の実施形態における角速度推定処理を説明するための波形図である。図10(a)は、第4の実施形態に係るモータ制御装置をECU5として使用する電動パワーステアリング装置における操舵角θの時間的変化を示す。図10(b)は、図10(a)に示されるように操舵角θが変化したときに操舵期間における角速度推定値ωeの算出に使用されるモータ抵抗値Rmの変化を示す。図10(c)は、図10(a)に示されるように操舵角θが変化したときに保舵期間における角速度推定値ωeの算出に使用されるモータ抵抗値Rcの変化を示す。また、図11は、第4の実施形態における角速度推定処理に対応する角速度推定部50の機能的構成を示すブロック図である。図11の構成は、図3に示した角速度推定部50の構成を当該角速度推定処理にのみ対応するように限定したものである。以下、図10および図11を参照して、第4の実施形態における角速度推定処理について説明する。
  第4の実施形態の角速度推定処理では、保舵判定部51により操舵状態と判定されている期間である操舵期間には、推定値算出部56は、マップ保持部55における抵抗マップを参照して、電流検出値Imに対応するモータ抵抗値Rmを求める。推定値算出部56は、このモータ抵抗値Rmと電圧検出値Vmおよび電流検出値Imとを用いて、式(2)により制御周期毎に角速度推定値ωeを算出する。ただし、保舵期間から操舵期間に切り替わった直後の所定期間での角速度推定値ωeの算出には、後述のように、その保舵期間における抵抗平均値Ravから抵抗マップによるモータ抵抗値Rmへと徐々に変化するような抵抗値Rtを用いる(図10(d)参照)。
  保舵判定部51により保舵状態と判定されている期間である保舵期間には、推定値算出部56は、第1の角速度推定処理と同様、抵抗算出部52により制御周期毎に得られる算出抵抗値Rcと電圧検出値Vmおよび電流検出値Imとを用いて、式(2)により角速度推定値ωeを算出する。また、保舵期間において平均値算出部53は、第1の角速度推定処理と同様、抵抗算出部52により制御周期毎に得られる算出抵抗値Rcを積算し、その積算値から抵抗平均値Ravを算出する。
  保舵期間から操舵期間に切り替わると、推定値算出部56は、その切り替わり時点から所定期間の間、図10(d)に示すように、その保舵期間の終了時点での抵抗平均値Ravから抵抗マップによって求められる上記モータ抵抗値Rmへと徐々に変化するような抵抗値(以下「遷移抵抗値」という)Rtを求める。そして推定値算出部56は、この遷移抵抗値Rtを用いて角速度推定値ωeを算出する。そして当該操舵期間のうち、その遷移抵抗値Rtが抵抗マップによる上記モータ抵抗値Rmに等しくなる時点以降すなわち上記所定期間経過後では、推定値算出部56は、抵抗マップによる上記モータ抵抗値Rmを用いて角速度推定値ωeを算出する。
  第4実施形態の角速度推定処理によれば、保舵期間では、第2の実施形態の角速度推定処理と同様、制御周期毎に電圧検出値Vmおよび電流検出値Imから得られる算出抵抗値Rcを用いて角速度推定値ωeが算出される。したがって、モータ1に個体差があっても、また、モータ1におけるブラシと整流子の間の接触状態や温度等が変化しても、精度良く角速度推定値ωeを得ることができる。一方、操舵期間では、基本的には、抵抗マップによって求められるモータ抵抗値Rmを用いて角速度推定値ωeが算出されるが、保舵期間から操舵期間に切り替わった直後の所定期間では上記のような遷移抵抗値Rt(図10(d))を用いて角速度推定値ωeが算出される。このため、算出される角速度推定値ωeは保舵期間と操舵期間との切り替わり時に大きく変動することはなく、安定した角速度推定値ωeを得ることができる。
  なお、第4の実施形態の角速度推定処理では、保舵期間において得られる算出抵抗値Rcまたは抵抗平均値Ravに基づく抵抗マップの更新は行われないので、角速度推定部50においてマップ更新部54は不要であるが、図11において点線で示すようにマップ更新部54を設け、保舵期間の終了時点での抵抗平均値Ravおよびそれに対応する電流平均値Iavに基づきマップ保持部55における抵抗マップを更新してもよい。
<効果>
  第1~第4の実施形態によれば、抵抗マップを使用しない場合や抵抗マップを更新しない場合であっても、各保舵期間において得られる算出抵抗値Rcや抵抗平均値Ravを用いる。したがって、モータ1に個体差があっても、また、モータ1のブラシと整流子の間の接触状態や温度等が変化しても、角速度推定値ωeを精度良く算出することができる。また、抵抗マップが使用される場合には、各保舵期間に得られる抵抗平均値Ravおよび電流平均値Iav等に基づき抵抗マップを更新する。したがって、モータ1に個体差があっても、また、モータ1のブラシと整流子の間の接触状態や温度等が変化しても、実際のモータ抵抗値に比べ誤差の少ないモータ抵抗値Rmが得られ、このモータ抵抗値Rmを用いて角速度推定値ωeを精度良く算出することができる。このようにして角速度推定値ωeが精度良く算出されると、モータ制御装置の制御精度が向上し、そのモータ制御装置を用いた電動パワーステアリング装置において良好な操舵感が得られる。
<第5の実施形態>
  次に、第5の実施形態に係るモータ制御装置について説明する。このモータ制御装置も、図1に示す電動パワーステアリング装置において使用されるものであって、ECU5を用いて構成されており、ブラシ付きモータ1を駆動する。ECU5の構成は、モータ1のロータが回転しているか否かを判定するための回転センサ7を備える点を除き、上記第1の実施形態と同様であるので、同一の部分には同一の参照符号を付して詳しい説明を省略する(図2参照)。
  第5の実施形態においても、角速度推定部50を含む制御部10は、ECU5に内蔵されたメモリ(図示せず)に格納されたプログラムをマイコンが実行することによりソフトウェア的に実現され、制御部10の機能的構成は第1の実施形態の場合と基本的に同じであるので、同一または対応する部分には同一の参照符号を付して詳しい説明を省略する。第5の実施形態における角速度推定部50の内部構成は、第1の実施形態の角速度推定部50(図3)とは若干異なるが、両者は同一または対応する構成要素を有しているので、角速度推定部50の内部構成についても同一または対応する部分には同一の参照符号を付すものとする。以下、第5の実施形態における角速度推定部50において角速度推定値ωeを算出するための角速度推定処理につき説明する。
  図12は、第5の実施形態における角速度推定処理を説明するための波形図である。図12(a)は、第5の実施形態に係るモータ制御装置をECU5として使用する電動パワーステアリング装置において操舵角θが図12(b)に示すように変化した場合に回転センサ7から出力されるパルス信号Pの波形を示している。また、図13は、第5の実施形態における角速度推定処理に対応する角速度推定部50の機能的構成を示すブロック図である。図13の構成は、図3に示した角速度推定部50の構成を第5の実施形態における角速度推定処理に対応するように修正したものである。以下、図12および図13を参照して、第5の実施形態における角速度推定処理について説明する。
  図13に示すように、第5の実施形態における保舵判定部51は、第1~4の実施形態とは異なり、電圧検出値Vmや、電流検出値Im、モータ抵抗値Rmを用いることなく、回転センサ7からのパルス信号Pに基づきモータ1のロータが回転しているか否かすなわち保舵状態か否かを判定する。具体的には、図12(a)に示すように、保舵判定部51は、予め決められた時間ΔT1の間、回転センサ7がパルスを出力しなければ(パルス信号Pにパルスが現れなければ)保舵状態であると判定する。保舵判定部51は、当該時間ΔT1の間に回転センサ7がパルスを出力すれば(パルス信号Pにパルスが現れれば)操舵状態であると判定する。この時間ΔT1は例えば制御周期の10倍の時間である。この時間ΔT1を適切に設定することにより、保舵判定部51は、回転センサ7から当該時間ΔT1の間、パルスが出力されない場合に、モータ1の回転速度が0近傍の所定値以下であって電動パワーステアリング装置が保舵状態にあると判定する。保舵判定部51での判定結果は、回転状態信号Stとして、抵抗算出部52、平均値算出部53、および推定値算出部56に入力される。なお、当該時間ΔT1の間、回転センサ7がパルスを出力しない場合に保舵が検出されるが、その検出後において回転センサ7からパルスが出力されると、その時点で回転状態信号Stは操舵状態を示すように変化する。
  抵抗算出部52は、回転状態信号Stが保舵状態を示している間、制御周期毎に、電圧検出値Vmおよび電流検出値Imを用いてモータ抵抗の値を算出する(この値を第1の実施形態と同様「算出抵抗値Rc」という)。すなわち、第1の実施形態と同様、角速度ω=0とみなし、式(3)にV=Vm、I=Imを代入することにより算出抵抗値Rcを求める。このようにして制御周期毎に得られる算出抵抗値Rcは、各算出抵抗値Rcの算出に使用された電流検出値Imである算出時電流値Icと共に平均値算出部53に入力される。また、算出抵抗値Rcは推定値算出部56にも入力される。
  平均値算出部53は、制御周期毎に得られる上記の算出抵抗値Rcおよび算出時電流値Icを、保舵判定部51からの回転状態信号Stに基づき保舵状態が検出されてから所定時間ΔT2の間、積算する。平均値算出部53は、それらの積算値から当該所定時間ΔT2での算出抵抗値Rcおよび算出時電流値Icの平均値を求める。このようにして得られる算出抵抗値Rcの平均値および算出時電流値Icの平均値は、抵抗平均値Ravおよび電流平均値Iavとしてマップ更新部54に入力される。なお、上記の所定時間ΔT2は、算出抵抗値Rcに含まれるノイズが当該所定時間ΔT2での平均化によって十分に抑制される程度であって保舵期間に納まる程度の長さに設定されればよい。
  マップ更新部54は、平均値算出部53から抵抗平均値Ravおよび電流平均値Iavが入力されると、入力された抵抗平均値Ravおよび電流平均値Iavに基づきマップ保持部55における抵抗マップを更新する。抵抗マップの具体的な更新方法は、第1の実施形態に関して既に説明しているものと同様の方法を採用することができる(図5A~図5C、図6参照)。
  推定値算出部56は、回転状態信号Stが保舵状態を示している間は、電圧検出値Vmおよび電流検出値Imと共に抵抗算出部52からの算出抵抗値Rcを用いて、式(2)により角速度推定値ωeを算出する。一方、回転状態信号Stが操舵状態を示している間には、推定値算出部56は、マップ保持部55における抵抗マップを参照して、電流検出値Imに対応するモータ抵抗値Rmを求める。推定値算出部56は、電圧検出値Vmおよび電流検出値Imと共に当該モータ抵抗値Rmを用いて、式(2)により角速度推定値ωeを算出する。算出された角速度推定値ωeは、第1の実施形態と同様、角速度推定部50から出力されて電流目標設定部12に入力され、そこで、モータ1に流すべき電流の目標値Itの決定に使用される(図2参照)。
  第5の実施形態における角速度推定処理によれば、保舵期間では、制御周期毎に電圧検出値Vmおよび電流検出値Imから得られる算出抵抗値Rcを用いて角速度推定値ωeが算出される。また、操舵期間では、直前の保舵期間内の所定時間ΔT2での抵抗平均値Ravに基づき更新された抵抗マップより得られるモータ抵抗値Rmを用いて角速度推定値ωeが算出される。このようにして、角速度推定値ωeの算出に用いられるモータ抵抗の値が更新されていく。したがって、モータ1に個体差があっても、また、モータ1におけるブラシと整流子の間の接触状態や温度等が変化しても、実際のモータ抵抗値に比べ誤差の少ないモータ抵抗値(RcまたはRm)を用いて、角速度推定値ωeを精度良く算出することができる。
<第6の実施形態>
  図14は、第6の実施形態における角速度推定処理を説明するための波形図である。図14(a)は、第6の実施形態に係るモータ制御装置をECU5として使用する電動パワーステアリング装置において操舵角θが図14(b)に示すように変化した場合に回転センサ7から出力されるパルス信号Pの波形を示す。図14(c)は、当該操舵角θが図14(b)に示すように変化した場合における平均値算出部53内の後述のカウンタ値Cの変化を示す。また、図15は、第6の実施形態における角速度推定処理に対応する角速度推定部50の機能的構成を示すブロック図である。図15の構成は、図3に示した角速度推定部50の構成を第6の実施形態における角速度推定処理に対応するように修正したものである。以下、図14および図15を参照して、第6の実施形態における角速度推定処理について説明する。
  第6の実施形態の角速度推定処理においても、回転センサ7からのパルス信号Pが保舵判定部51に入力される。既述のように保舵判定部51は、予め決められた時間ΔT1の間、回転センサ7がパルスを出力しなければ保舵状態であると判定し、当該時間ΔT1の間に回転センサ7がパルスを出力すれば操舵状態であると判定する(図14(a)参照)。この判定結果は、回転状態信号Stとして抵抗算出部52および平均値算出部53に入力される。また、第2の角速度推定処理においても、当該時間ΔT1の間、回転センサ7がパルスを出力しない場合に保舵が検出されるが、その検出後において回転センサ7からパルスが出力されると、その時点で回転状態信号Stは操舵状態を示すように変化する。
  抵抗算出部52は、第5の実施形態の角速度推定処理の場合と同様、回転状態信号Stが保舵状態を示している間、制御周期毎に、電圧検出値Vmおよび電流検出値Imを用いてモータ抵抗Rの値を算出抵抗値Rcとして算出する。このようにして制御周期毎に得られる算出抵抗値Rcは、各算出抵抗値Rcの算出に使用された電流検出値Imである算出時電流値Icと共に平均値算出部53に入力される。
  第6の実施形態における角速度推定処理に対応する角速度推定部50では、平均値算出部53は、1つの制御周期が経過する毎に1だけカウント値Cを増大させるカウンタ535を有している。このカウンタ535は、回転状態信号Stに基づき保舵状態の検出時点で0から計数を開始し、そのカウント値Cが所定の終了値Cn(例えば50)に達する毎にリセットされ、リセットされると0から再び計数を開始する。このようにして、図14(c)に示すように、回転状態信号Stが保舵状態を示している間、0から計数を開始してカウント値Cが終了値Cnに達するとリセットされ再び0から計数を開始するという動作を繰り返す。
  平均値算出部53は、カウンタ535が0から計数を開始すると、抵抗算出部52により制御周期毎に得られる上記の算出抵抗値Rcおよび算出時電流値Icの積算を開始し、上記カウンタ535のカウント値Cが終了値Cnに達すると、その積算を終了する。平均値算出部53は、それらの積算値から、カウント値Cが0からCnまで変化するまでの期間での算出抵抗値Rcの平均値および算出時電流値Icの平均値を求める。このようにして算出抵抗値Rcの平均値および算出時電流値Icの平均値が得られると、両平均値はそれぞれ抵抗平均値Ravおよび電流平均値Iavとしてマップ更新部54に入力される。なお以下では、算出時点の異なる抵抗平均値Ravおよび電流平均値Iavを区別する場合には、それらの記号に番号iを追加して「抵抗平均値Ravi」「電流平均値Iavi」と記すものとする(i=1,2,3,…)。
  図14に示す例では、時刻t0で保舵状態が検出されて上記カウンタ535が計数を開始し、時刻t1でカウント値Cが終了値Cnに達して上記カウンタ535がリセットされると共に0から再び計数を開始する。以後、同様に、時刻t2,t3,t4の各時点でウント値Cが終了値Cnに達して上記カウンタ535がリセットされると共に0から再び計数を開始し、時刻t4で計数が開始された後は、カウント値Cが終了値Cnに達する前に保舵状態が終了する。この保舵状態の終了はパルス信号Pの変化によって検出され、回転状態信号Stに基づき上記カウンタ535が動作を停止する。したがって、図14の例では、時刻t0~t1の期間での抵抗平均値Rav1および電流平均値Iav1が時刻t1直後に算出されてマップ更新部54に入力される。以後、同様にして、時刻t1~t2の期間での抵抗平均値Rav2および電流平均値Iav2、時刻t2~t3の期間での抵抗平均値Rav3および電流平均値Iav3、時刻t3~t4の期間での抵抗平均値Rav4および電流平均値Iav4が、時刻t2直後、時刻t3直後,時刻t4直後にそれぞれ算出されてマップ更新部54に順次入力される。
  マップ更新部54は、平均値算出部53から抵抗平均値Raviおよび電流平均値Iaviが入力される毎に、入力された抵抗平均値Raviおよび電流平均値Iaviに基づきマップ保持部55における抵抗マップを更新する(図14(c)の例ではi=1,2,3,4)。抵抗マップの具体的な更新方法は、第1の実施形態に関して既に説明しているものと同様の方法を採用することができる(図5A~図5C、図6参照)。
  推定値算出部56は、保舵状態か操舵状態かに拘わらず、マップ保持部55における抵抗マップを参照して、電流検出値Imに対応するモータ抵抗値Rmを求める。推定値算出部56は、電圧検出値Vmおよび電流検出値Imと共に当該モータ抵抗値Rmを用いて、上記式(2)により角速度推定値ωeを算出する。算出された角速度推定値ωeは、第1の実施形態と同様、角速度推定部50から出力されて電流目標設定部12に入力され、そこで、モータ1に流すべき電流の目標値Itの決定に使用される。
  第6の実施形態における角速度推定処理によれば、保舵期間では、カウント値Cが0からCnまで繰り返し計数され、カウント値Cが終了値Cnに達する毎に算出される抵抗平均値Ravに基づきマップ保持部55における抵抗マップが更新される。そして保舵期間では、推定値算出部56は、このように所定期間毎に更新される抵抗マップを参照して、電流検出値Imに対応するモータ抵抗値Rmを求める。推定値算出部56は更に、電圧検出値Vmおよび電流検出値Imと共に当該モータ抵抗値Rmを用いて、式(2)により角速度推定値ωeを算出する。また、操舵期間では、推定値算出部56は、直前の保舵期間において最後に更新された抵抗マップを参照して、電流検出値Imに対応するモータ抵抗値Rmを求める。推定値算出部56は更に、電圧検出値Vmおよび電流検出値Imと共に当該モータ抵抗値Rmを用いて、式(2)により角速度推定値ωeを算出する。このようにして、保舵期間および操舵期間における角速度推定値ωeの算出に使用される抵抗マップが順次更新される。したがって、モータ1に個体差があっても、また、モータ1におけるブラシと整流子の間の接触状態や温度等が変化しても、実際のモータ抵抗値に比べ誤差の少ないモータ抵抗値Rmが得られ、このモータ抵抗値Rmを用いて角速度推定値ωeを精度良く算出することができる。また、操舵期間のみならず保舵期間においても、抵抗平均値Ravに基づき更新された抵抗マップを用いてωeが算出されるので、算出抵抗値Rcに含まれるノイズの影響が抑制される。
<効果>
  第5及び第6の実施形態では、回転センサ7からのパルス信号Pに基づき保舵状態か否か(モータ1のロータが回転しているか否か)が判定され、モータ1の回転方向を検出する必要がない。したがって、この回転センサ7として安価なホールセンサ等を使用することができる。このため、電圧検出値Vmおよび電流検出値Im等から算出される角速度推定値(判定用角速度)に基づく従来の判定法に比べ、保舵状態か否かをコスト増を抑えつつ正確に判定することができる。また、第5及び第6の実施形態によれば、パルス信号Pに基づき判定される保舵状態において算出抵抗値Rcの平均値Ravが求められ、角速度推定値ωeの算出に使用される抵抗マップがその平均値Ravに基づき更新される。このため、モータ1に個体差があっても、また、モータ1のブラシと整流子の間の接触状態や温度等が変化しても、実際のモータ抵抗値に比べ誤差の少ないモータ抵抗値Rmを用いて、角速度推定値ωeを精度良く算出することができる。これにより、モータ制御装置の制御精度が向上し、そのモータ制御装置を用いた電動パワーステアリング装置において良好な操舵感が得られる。
<変形例など>
  第1~4の実施形態では、回転センサ7を設けずに、電圧検出値Vmおよび電流検出値Im等を用いて算出される判定用角速度ωdに基づき保舵状態か否か(モータ1のロータが回転しているか否か)が判定され(図3等参照)る。第5及び第6の実施形態では、回転センサ7を設け(図2参照)、その出力信号としてのパルス信号Pに基づき保舵状態か否かが判定される(図12~図15)。しかし、これに代えて、第1~4の実施形態において回転センサ7からのパルス信号Pに基づき保舵状態か否かを判定するようにしてもよい。あるいは、第5及び第6の実施形態において電圧検出値Vmおよび電流検出値Im等を用いて算出される判定用角速度ωdに基づき保舵状態か否かを判定するようにしてもよい。
  上記第1および第2の実施形態において、角速度推定部50はマイコン10が所定プログラムを実行することによりソフトウェア的に実現されているが、角速度推定部50の一部または全部をハードウェア的に実現してもよい。
  第1~6の実施形態に係るモータ制御装置は、ブラシ付きモータ1を駆動するための装置であるが、本発明はこれに限定されるものではない。本発明は、電動モータの電機子巻線に生じる逆起電力に基づき、当該モータの抵抗値と当該モータへの印加電圧および当該モータに流れる電流の検出値とから当該モータの回転速度(角速度)の推定値を算出できるものであれば、他の種類のモータにも適用可能である。
  なお本発明は、上述したコラムアシスト型の電動パワーステアリング装置だけでなく、ピニオンアシスト型やラックアシスト型の電動パワーステアリング装置にも適用できる。また、本発明は、電動パワーステアリング装置以外のモータ制御装置にも適用できる。
  1…ブラシ付きモータ(電動モータ)、5…ECU(モータ制御装置)、
  7…回転センサ、54…マップ更新部(特性更新手段)、
  55…マップ保持部(特性保持部)、
  56…角速度推定値算出部(推定値算出手段)、
  531…第1算出部(第1平均値算出手段)、
  532…第2算出部(第2平均値算出手段)。

Claims (10)

  1.   電動モータの電機子巻線に生じる逆起電力に基づき当該電動モータの回転速度の推定値を算出し、当該推定値を用いて当該電動モータを駆動するモータ制御装置であって、
      前記電動モータに流れる電流を検出する電流検出部と、
      前記電動モータに印加される電圧を検出する電圧検出部と、
      前記電動モータの回転速度が実質的に0である所定値以下か否かを判定する判定部と、
      前記電動モータに流れる電流と前記電動モータの抵抗との関係を電流-抵抗特性として保持する特性保持部と、
      前記判定部により前記電動モータの回転速度が前記所定値以下であると判定されたときに、前記電流検出手段により得られる電流検出値と前記電圧検出手段により得られる電圧検出値とに基づき前記電動モータの抵抗値を算出する抵抗算出部と、
      前記電流検出部により得られる電流検出値と、前記電圧検出部により得られる電圧検出値と、前記電流-抵抗特性によって当該電流検出値に対応付けられる抵抗値または前記抵抗算出部により算出される抵抗値とに基づき、前記電動モータの回転速度を示す速度推定値を算出する推定値算出部と、
      前記抵抗算出部により算出される抵抗値と当該抵抗値の算出に使用される前記電流検出値とに基づき前記電流-抵抗特性を更新する特性更新部と
    を備えることを特徴とする、モータ制御装置。
  2.   前記判定部により前記電動モータの回転速度が前記所定値以下であると判定されてから前記判定部により前記電動モータの回転速度が前記所定値よりも大きいと判定されるまでの期間である第1状態期間において前記抵抗算出部により算出される抵抗値の平均値を算出する平均値算出部を更に備え、
      前記推定値算出部は、前回の第1状態期間において前記抵抗算出手段により算出された前記抵抗値の平均値に基づき、前記速度推定値を算出する、請求項1に記載のモータ制御装置。
  3.   前記推定値算出部は、前記判定部により前記電動モータの回転速度が前記所定値よりも大きいと判定される期間である第2状態期間では、前回の第1状態期間において前記平均値算出部により算出された前記抵抗値の平均値に基づき前記速度推定値を算出することを特徴とする、請求項2に記載のモータ制御装置。
  4.   前記推定値算出部は、前記第1状態期間を終了すると、前記速度推定値の算出に使用する抵抗値を前記第1状態期間において前記平均値算出手段により算出された前記抵抗値の平均値から前記電流-抵抗特性によって決定される抵抗値へと徐々に変更することを特徴とする、請求項2に記載のモータ制御装置。
  5.   前記判定部により前記電動モータの回転速度が前記所定値以下であると判定されてから前記判定部により前記電動モータの回転速度が前記所定値よりも大きいと判定されるまでの期間である第1状態期間に前記抵抗算出部により算出される抵抗値の平均値を算出する第1平均値算出部と、
      前記第1平均値算出部により前記抵抗値の平均値が算出された後に前記判定部により前記電動モータの回転速度が前記所定値以下であると判定されて新たな第1状態期間が開始されると、当該新たな第1状態期間の直前の第1状態期間に算出された平均値を直前平均値とし、当該新たな第1状態期間において前記抵抗算出部によって抵抗値が算出される毎に、当該算出された抵抗値と前記直前平均値との平均値を算出し前記直前平均値を当該算出された平均値に更新する第2平均値算出部とを更に備え、
      前記推定値算出部は、前記第1平均値算出部によって前記平均値が算出された後の第1状態期間では、前記第2平均値算出部によって算出される前記平均値に基づき前記速度推定値を算出し、前記判定部により前記電動モータの回転速度が前記所定値よりも大きいと判定される期間である第2状態期間では、直前の第1状態期間において前記第1または第2平均値算出部により最後に算出された前記平均値に基づき前記速度推定値を算出することを特徴とする、請求項1に記載のモータ制御装置。
  6.   前記判定部により前記電動モータの回転速度が前記所定値以下であると判定されてから前記判定部により前記電動モータの回転速度が前記所定値よりも大きいと判定されるまでの期間である第1状態期間内の所定期間において前記抵抗算出部により算出される抵抗値の平均値を算出すると共に、当該所定期間において前記抵抗算出手段により抵抗値が算出される時点で前記電流検出部により得られる電流検出値の平均値を算出する平均値算出部を更に備え、
      前記特性更新部は、前記平均値算出部により算出される前記抵抗値の平均値および前記電流検出値の平均値に基づき前記電流-抵抗特性を更新することを特徴とする、請求項1に記載のモータ制御装置。
  7.   前記第1状態期間は、前記所定期間を複数含み、
      前記平均値算出部は、前記第1状態期間において前記所定期間毎に前記抵抗値の平均値および前記電流検出値の平均値を算出し、
      前記特性更新部は、前記第1状態期間において前記所定期間毎に、前記抵抗値の平均値および前記電流検出値の平均値に基づき前記電流-抵抗特性を更新し、
      前記推定値算出部は、前記電流検出部により得られる電流検出値と、前記電圧検出部により得られる電圧検出値と、前記電流-抵抗特性によって当該電流検出値に対応付けられる抵抗値とに基づき、前記速度推定値を算出することを特徴とする、請求項6に記載のモータ制御装置。
  8.   前記特性更新部は、前記電動モータに流れる電流を示す第1軸と前記電動モータの抵抗を示す第2軸とからなる座標系において、前記電流-抵抗特性を表す特性曲線が、前記抵抗算出部により算出される抵抗値と当該抵抗値の算出に使用される前記電流検出値とからなる1対の値を示す点を通過するように、または、前記平均値算出部により算出される前記抵抗値の平均値と前記電流検出値の平均値とからなる1対の値を示す点を通過するように、前記特性曲線を前記第1軸の方向、前記第2軸の方向、および前記座標系の原点と前記1対の値を示す点とを結ぶ方向のうち、いずれかの方向に平行移動させることを特徴とする、請求項1に記載のモータ制御装置。
  9.   前記判定部は、前記電動モータの回転に応じてパルスを出力するセンサを含み、当該センサから所定時間内に前記パルスが出力されるか否かにより前記電動モータの回転速度が前記所定値よりも大きいか否かを判定することを特徴とする、請求項1に記載のモータ制御装置。
  10.   車両のステアリング機構に電動モータによって操舵補助力を与える電動パワーステアリング装置であって、
      請求項1から9のいずれか1項に記載のモータ制御装置を備え、
      前記モータ制御装置は、前記ステアリング機構に操舵補助力を与える電動モータを駆動することを特徴とする、電動パワーステアリング装置。
PCT/JP2010/060473 2009-06-23 2010-06-21 モータ制御装置および電動パワーステアリング装置 WO2010150745A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/320,839 US8496085B2 (en) 2009-06-23 2010-06-21 Motor control device and electric power steering apparatus
CN2010800272218A CN102460948A (zh) 2009-06-23 2010-06-21 马达控制装置以及电动动力转向装置
EP10792063A EP2448106A1 (en) 2009-06-23 2010-06-21 Motor control device and electric power steering apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-148482 2009-06-23
JP2009148482A JP2011010379A (ja) 2009-06-23 2009-06-23 モータ制御装置および電動パワーステアリング装置

Publications (1)

Publication Number Publication Date
WO2010150745A1 true WO2010150745A1 (ja) 2010-12-29

Family

ID=43386514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060473 WO2010150745A1 (ja) 2009-06-23 2010-06-21 モータ制御装置および電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US8496085B2 (ja)
EP (1) EP2448106A1 (ja)
JP (1) JP2011010379A (ja)
CN (1) CN102460948A (ja)
WO (1) WO2010150745A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102632920A (zh) * 2011-02-14 2012-08-15 株式会社捷太格特 电动动力转向装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534292B2 (ja) * 2008-06-30 2014-06-25 株式会社ジェイテクト 車両用操舵装置
JP5376215B2 (ja) * 2009-01-30 2013-12-25 株式会社ジェイテクト モータ制御装置
JP5495018B2 (ja) 2009-03-12 2014-05-21 株式会社ジェイテクト モータ制御装置
JP5561516B2 (ja) * 2009-07-06 2014-07-30 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5532295B2 (ja) * 2009-11-12 2014-06-25 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5440846B2 (ja) * 2009-11-16 2014-03-12 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5614583B2 (ja) * 2009-11-17 2014-10-29 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5692569B2 (ja) 2010-08-23 2015-04-01 株式会社ジェイテクト 車両用操舵装置
JP6028379B2 (ja) 2012-03-06 2016-11-16 株式会社ジェイテクト ソレノイド制御装置
JP6019727B2 (ja) 2012-05-10 2016-11-02 株式会社ジェイテクト モーター制御装置
JP5999414B2 (ja) * 2012-05-31 2016-09-28 株式会社ジェイテクト モータ制御装置
ITUB20153363A1 (it) 2015-09-03 2017-03-03 Ferrari Spa Metodo di controllo di un motore elettrico con adattamento del valore della impedenza equivalente
JPWO2017103986A1 (ja) * 2015-12-15 2018-10-11 オリンパス株式会社 マニピュレータシステムとその制御方法
CN110603728B (zh) * 2017-05-08 2023-05-05 阿尔卑斯阿尔派株式会社 带旋转角度检测器的电动机、电动机的旋转角度检测器以及电动机的旋转角度检测方法
KR102610780B1 (ko) * 2019-02-12 2023-12-06 에이치엘만도 주식회사 조향 제어 장치 및 조향 제어 방법
KR102459099B1 (ko) * 2020-09-03 2022-10-26 현대트랜시스 주식회사 모터의 회전 검출 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867262A (ja) 1994-08-29 1996-03-12 Nippon Seiko Kk 電動パワ−ステアリング装置の制御装置
JPH10109655A (ja) 1996-10-07 1998-04-28 Nippon Seiko Kk 電動パワ−ステアリング装置の制御装置
JPH1127976A (ja) * 1997-07-07 1999-01-29 Unisia Jecs Corp 電動モータの回転制御装置
JP2002127922A (ja) * 2000-10-30 2002-05-09 Omron Corp 電動パワーステアリング装置
JP2006288029A (ja) * 2005-03-31 2006-10-19 Daihatsu Motor Co Ltd 車両のモータ電流制御装置及びモータ電流制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3104865B2 (ja) * 1997-08-25 2000-10-30 本田技研工業株式会社 電動パワーステアリング装置
JP2003175850A (ja) * 2001-12-13 2003-06-24 Toyoda Mach Works Ltd 電動パワーステアリング装置の制御装置
CN101043194A (zh) * 2006-03-23 2007-09-26 上海格立特电力电子有限公司 一种感应电动机的矢量控制方法及装置
JP4379484B2 (ja) * 2007-04-06 2009-12-09 株式会社デンソー 車両システム
US7898203B2 (en) * 2008-07-11 2011-03-01 Curtis Instruments, Inc. Systems and methods for dynamically compensating motor resistance in electric motors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0867262A (ja) 1994-08-29 1996-03-12 Nippon Seiko Kk 電動パワ−ステアリング装置の制御装置
JPH10109655A (ja) 1996-10-07 1998-04-28 Nippon Seiko Kk 電動パワ−ステアリング装置の制御装置
JPH1127976A (ja) * 1997-07-07 1999-01-29 Unisia Jecs Corp 電動モータの回転制御装置
JP2002127922A (ja) * 2000-10-30 2002-05-09 Omron Corp 電動パワーステアリング装置
JP2006288029A (ja) * 2005-03-31 2006-10-19 Daihatsu Motor Co Ltd 車両のモータ電流制御装置及びモータ電流制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102632920A (zh) * 2011-02-14 2012-08-15 株式会社捷太格特 电动动力转向装置
EP2487089A3 (en) * 2011-02-14 2014-09-03 JTEKT Corporation Electric power steering system
US8901874B2 (en) 2011-02-14 2014-12-02 Jtekt Corporation Electric power steering system

Also Published As

Publication number Publication date
US8496085B2 (en) 2013-07-30
CN102460948A (zh) 2012-05-16
EP2448106A1 (en) 2012-05-02
JP2011010379A (ja) 2011-01-13
US20120080259A1 (en) 2012-04-05

Similar Documents

Publication Publication Date Title
WO2010150745A1 (ja) モータ制御装置および電動パワーステアリング装置
JP5942337B2 (ja) 車両用操舵装置
JP5453714B2 (ja) モータ制御装置および電動パワーステアリング装置
US8823305B2 (en) Electric power steering system
CN104052344A (zh) 旋转电机控制装置和电动助力转向设备
JP6086205B2 (ja) 位相差検出装置およびそれを備えた回転角検出装置
JP2009165259A (ja) モータ制御装置および電動パワーステアリング装置
CN107453683B (zh) 用于控制或管理dc电机的方法和系统
JP2014004920A (ja) 車両の電動パワーステアリング装置
JP2010029028A (ja) モータ制御装置
JP5376213B2 (ja) モータ制御装置
JP5392530B2 (ja) モータ制御装置
JP2011087402A (ja) モータ制御装置および電動パワーステアリング装置
JP5493680B2 (ja) モータ制御装置および電動パワーステアリング装置
JP2017229216A (ja) モータ制御装置
JP6326171B1 (ja) 操舵制御装置、電動パワーステアリング装置
JP5585058B2 (ja) 回転角検出装置、モータ制御装置、および電動パワーステアリング装置
JP5470968B2 (ja) モータ制御装置および電動パワーステアリング装置
JP5645062B2 (ja) モータ制御装置
JP5588155B2 (ja) 回転角度検出装置
JP5975143B2 (ja) 車両用操舵装置
JP5729130B2 (ja) 電動パワーステアリング装置
CN111348098A (zh) 一种无转矩传感器的汽车电动助力转向系统的控制方法
JP2014000930A (ja) 車両の電動パワーステアリング装置
JP5999414B2 (ja) モータ制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027221.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792063

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13320839

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010792063

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE