WO2010147185A1 - 光学素子及びその製造方法 - Google Patents

光学素子及びその製造方法 Download PDF

Info

Publication number
WO2010147185A1
WO2010147185A1 PCT/JP2010/060306 JP2010060306W WO2010147185A1 WO 2010147185 A1 WO2010147185 A1 WO 2010147185A1 JP 2010060306 W JP2010060306 W JP 2010060306W WO 2010147185 A1 WO2010147185 A1 WO 2010147185A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
layer
optical element
ratio
reflective material
Prior art date
Application number
PCT/JP2010/060306
Other languages
English (en)
French (fr)
Inventor
一尋 屋鋪
力 澤村
浩司 梅崎
久保 章
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to CN201080026768.6A priority Critical patent/CN102460236B/zh
Priority to RU2011151400/28A priority patent/RU2531847C2/ru
Priority to EP10789559.1A priority patent/EP2444826B1/en
Priority to JP2011501057A priority patent/JP5545289B2/ja
Priority to EP19175652.7A priority patent/EP3575101A1/en
Priority to MX2011013708A priority patent/MX2011013708A/es
Publication of WO2010147185A1 publication Critical patent/WO2010147185A1/ja
Priority to US13/302,461 priority patent/US20120064303A1/en
Priority to US13/838,476 priority patent/US9272308B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/06Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain multicolour or other optical effects
    • B05D5/061Special surface effect
    • B05D5/063Reflective effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/324Reliefs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • B42D2033/18
    • B42D2033/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/328Diffraction gratings; Holograms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Definitions

  • the present invention relates to an optical technique that provides, for example, an anti-counterfeit effect, a decorative effect, and / or an aesthetic effect.
  • Such an article may support an optical element having an excellent anti-counterfeit effect.
  • optical elements include fine structures such as diffraction gratings, holograms, and lens arrays. These microstructures are difficult to analyze. Moreover, in order to manufacture an optical element including these fine structures, expensive manufacturing equipment such as an electron beam drawing apparatus is required. Therefore, such an optical element can exhibit an excellent anti-counterfeit effect.
  • These optical elements usually include a relief structure forming layer having a main surface including a fine structure, and a reflective layer provided thereon.
  • the reflective layer may be formed in a pattern on only a part of the main surface. For example, when a reflective layer is provided on the main surface so that its outline forms a micro character, a micro character pattern that emits diffracted light is obtained.
  • Examples of the method for forming the reflective layer in a pattern include a photolithography method (see, for example, Patent Document 1). According to this method, the reflective layer formed in a pattern can be provided with relatively high definition.
  • This method requires alignment between the relief structure forming layer and the mask. However, it is impossible or extremely difficult to achieve high productivity and high positional accuracy at the same time. For example, in this method, a positional deviation of 100 ⁇ m or more may occur between the outline of the target position and the outline of the reflective layer.
  • Patent Document 2 the following method is adopted in order to form the reflective layer with high positional accuracy.
  • first method first, a “first region” having a concavo-convex structure having a large depth-width ratio and a “second region” having a concavo-convex structure that is flat or has a smaller depth-width ratio.
  • a relief structure forming layer is prepared.
  • a metal reflection layer is formed on the relief structure forming layer with a uniform surface density. Thereafter, the obtained laminate is subjected to an etching process.
  • the portion corresponding to the “first region” in the metal reflective layer is less resistant to etching than the portion corresponding to the “second region”. Therefore, the portion corresponding to the “first region” can be removed before the portion corresponding to the “second region” in the metal reflective layer is completely removed by the etching process. That is, the metal reflection layer can be formed only on the “second region”.
  • the difference in transmittance between the portion corresponding to the “first region” and the portion corresponding to the “second region” in the laminate is used. Specifically, the fact that the transmittance of the portion corresponding to the “first region” in the laminate is larger than that of the portion corresponding to the “second region” is used.
  • a laminate of a relief structure forming layer and a metal reflective layer is prepared, and a photosensitive layer is formed on the metal reflective layer. Thereafter, the entire surface of the laminate is exposed from the relief structure forming layer side.
  • a photoreaction can be caused with higher efficiency in the portion corresponding to the “first region” in the photosensitive layer.
  • this is treated with an appropriate solvent or the like to remove a portion corresponding to one of the “first region” and the “second region” in the photosensitive layer.
  • the metal reflective layer is etched using the partially removed photosensitive layer as a mask. In this way, only the portion corresponding to one of the “first region” and the “second region” in the metal reflective layer is removed.
  • This method also requires an exposure process for the photosensitive layer. This method is therefore disadvantageous in terms of cost and productivity.
  • An object of the present invention is to provide an optical technique that enables a reflective layer to be formed stably and with high positional accuracy.
  • the first surface includes a main surface including first and second regions adjacent to each other, the first region includes first and second sub regions, and the first sub region includes the first region and the second region. Adjacent to the second region and extending along a boundary between the first and second regions, the second sub region is adjacent to the second region with the first sub region in between, and The two regions are provided with a plurality of concave portions or convex portions, and the ratio of the surface area to the apparent area is larger than that of the first region, and the material of the relief structure forming layer has a refractive index.
  • the second material, which is different from the first material covers the first layer, and the ratio of the amount of the second material at the position of the second region to the apparent area of the second region is:
  • an optical element comprising a second layer that is zero or smaller than the ratio of the amount of the second material at the position of the second sub-region to the apparent area of the second sub-region.
  • the second surface has a main surface including the first and second regions adjacent to each other, and the second region is provided with a plurality of recesses or protrusions, compared to the first region.
  • Vapor-phase-deposited to have a surface shape corresponding to the surface shape of the first and second regions, or a portion corresponding to the first region has a surface shape corresponding to the surface shape of the first region.
  • the surface shape corresponding to the surface shape of the first and second regions has a surface shape corresponding to the surface shape of the first region in the portion corresponding to the first region and the first region
  • FIG. 1 is a plan view schematically showing an example of an optical element according to one embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II of the optical element shown in FIG. Sectional drawing which shows schematically the manufacturing method of the optical element shown in FIG.1 and FIG.2. Sectional drawing which shows schematically the manufacturing method of the optical element shown in FIG.1 and FIG.2. Sectional drawing which shows schematically the manufacturing method of the optical element shown in FIG.1 and FIG.2. Sectional drawing which shows schematically the manufacturing method of the optical element shown in FIG.1 and FIG.2.
  • the top view which shows schematically the optical element which concerns on one modification. Sectional drawing along the VIII-VIII line of the optical element shown in FIG. The top view which shows roughly the optical element which concerns on another modification.
  • FIG. 1 is a plan view schematically showing an example of an optical element according to one embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line II-II of the optical element shown in FIG. Sectional drawing which shows
  • FIG. 10 is a cross-sectional view of the optical element shown in FIG. 9 taken along line XX.
  • the top view which shows roughly an example of the optical element which concerns on the other aspect of this invention.
  • FIG. 12 is a cross-sectional view of the optical element shown in FIG. 11 taken along line XII-XII.
  • Sectional drawing which shows schematically the manufacturing method of the optical element shown in FIG.11 and FIG.12.
  • Sectional drawing which shows schematically the manufacturing method of the optical element shown in FIG.11 and FIG.12.
  • Sectional drawing which shows schematically the manufacturing method of the optical element shown in FIG.11 and FIG.12.
  • Sectional drawing which shows schematically the manufacturing method of the optical element shown in FIG.11 and FIG.12.
  • Sectional drawing which shows schematically the manufacturing method of the optical element shown in FIG.11 and FIG.12.
  • Sectional drawing which shows schematically the manufacturing method of the optical element shown in FIG.11 and FIG.12.
  • the graph which shows an example of the relationship between the presence or absence of a
  • FIG. 1 is a plan view schematically showing an example of an optical element according to an aspect of the present invention.
  • FIG. 2 is a sectional view taken along line II-II of the optical element shown in FIG. 1 and 2, directions parallel to the main surface of the optical element 10 and orthogonal to each other are defined as an X direction and a Y direction, and a direction perpendicular to the main surface of the optical element 10 is defined as a Z direction.
  • a portion corresponding to a first region R1 described later of the optical element 10 is a display portion DP1
  • a portion corresponding to a second region R2 described later is a display portion DP2.
  • the optical element 10 shown in FIGS. 1 and 2 includes a relief structure forming layer 110, a first layer 120 ′, and a second layer 130 ′.
  • a relief structure is provided on one main surface of the relief structure forming layer 110.
  • the first layer 120 ′ partially covers the previous main surface of the relief structure forming layer 110.
  • the second layer 130 ′ covers the first layer 120 ′.
  • the structure of the optical element 10 will be described in detail later.
  • FIGS. 3 to 6 are cross-sectional views schematically showing a method for manufacturing the optical element shown in FIGS.
  • a relief structure forming layer 110 having a main surface including a first region R1 and a second region R2 adjacent to each other is prepared.
  • the first region R1 is flat, or provided with a concave structure and / or a convex structure.
  • the concave structure and the convex structure are each composed of a plurality of concave portions and a plurality of convex portions.
  • the plurality of concave portions or convex portions may be arranged one-dimensionally or two-dimensionally.
  • the plurality of concave portions or convex portions may be regularly arranged or irregularly arranged.
  • FIG. 3 illustrates a case where a plurality of grooves arranged one-dimensionally and regularly are provided as a plurality of recesses in the first region R1.
  • the plurality of grooves typically form a diffraction grating or hologram that emits diffracted light when illuminated with white light.
  • the cross-sectional shape perpendicular to the length direction of the plurality of grooves is, for example, a tapered shape such as a V shape and a U shape, or a rectangular shape.
  • a tapered shape such as a V shape and a U shape
  • a rectangular shape such as a V shape and a U shape
  • FIG. 3 as an example, the case where the cross-sectional shape is V-shaped is illustrated.
  • the width of the openings of the plurality of grooves provided in the first region R1 is, for example, in the range of 100 nm to 3000 nm. Further, the depth of the plurality of grooves is, for example, in the range of 20 nm to 1500 nm. The average value of the ratio of the depth to the width of the openings of the plurality of grooves is, for example, 0.5 or less, and typically in the range of 0.05 to 0.3.
  • the second region R2 is provided with a concave structure and / or a convex structure.
  • These concave structure and convex structure are each composed of a plurality of concave portions and a plurality of convex portions.
  • the plurality of concave portions or convex portions may be arranged one-dimensionally or two-dimensionally.
  • these several recessed part or convex part may be arranged regularly, and may be arranged irregularly.
  • FIG. 3 illustrates a case where a plurality of grooves arranged one-dimensionally and regularly are provided as a plurality of recesses in the second region R2.
  • the cross-sectional shape perpendicular to the length direction of the plurality of grooves is, for example, a tapered shape such as a V shape and a U shape, or a rectangular shape.
  • a tapered shape such as a V shape and a U shape
  • a rectangular shape such as a V shape and a U shape
  • FIG. 3 as an example, the case where the cross-sectional shape is V-shaped is illustrated.
  • the ratio of the surface area to the apparent area of the second region R2 is larger than that of the first region R1.
  • the “apparent area” of a region means the area of the orthogonal projection of the region onto a plane parallel to the region, that is, the area of the region ignoring the concave structure and the convex structure.
  • the “surface area” of a region means the area of the region in consideration of the concave structure and the convex structure.
  • the plurality of recesses or projections in the second region R2 are typically compared with the plurality of recesses or projections in the first region R1.
  • the average value of the ratio of the depth to the diameter or width of the opening of the concave portion or the average value of the ratio of the height to the diameter or width of the bottom portion of the convex portion is larger.
  • the plurality of grooves provided in the second region R ⁇ b> 2 has a larger depth ratio to the width of the groove opening than the plurality of grooves provided in the first region R ⁇ b> 1. .
  • the width of the openings of the plurality of grooves provided in the second region R2 is, for example, in the range of 100 nm to 3000 nm. Further, the depth of the plurality of grooves is, for example, in the range of 80 nm to 6000 nm.
  • the average value of the ratio of the depth to the width of the openings of the plurality of grooves provided in the second region R2 is the plurality of grooves provided in the first region R1 It is made larger than the average value of the ratio of the depth to the width of the opening of the groove.
  • the average value of the ratio of the depth to the width of the openings of the plurality of grooves provided in the second region R2 is, for example, in the range of 0.8 to 2.0, and typically in the range of 0.8 to 1.2. Within. If this value is excessively large, the productivity of the relief structure forming layer 110 may decrease.
  • the relief structure forming layer 110 can be formed, for example, by pressing a mold provided with fine protrusions against the resin. At this time, the shape of these convex portions is a shape corresponding to the shape of the concave portions provided in the region R2 or both the regions R1 and R2.
  • the relief structure forming layer 110 is formed by, for example, a method in which a thermoplastic resin is applied on a base material, and an original plate provided with the above convex portions is pressed against the original plate while applying heat.
  • a thermoplastic resin for example, an acrylic resin, an epoxy resin, a cellulose resin, a vinyl resin, a mixture thereof, or a copolymer thereof is used.
  • the relief structure forming layer 110 is formed by a method in which a thermosetting resin layer is applied on a base material, heat is applied while pressing the original plate provided with the above convex portions, and then the original plate is removed. May be.
  • a thermosetting resin for example, a urethane resin, a melamine resin, an epoxy resin, a phenol resin, a mixture thereof, or a copolymer thereof is used.
  • this urethane resin is obtained, for example, by adding polyisocyanate as a crosslinking agent to acrylic polyol and polyester polyol having a reactive hydroxyl group and crosslinking them.
  • the relief structure forming layer 110 is formed by applying a radiation curable resin on a substrate, irradiating the substrate with the radiation while irradiating radiation such as ultraviolet rays to cure the material, and then removing the original. May be.
  • the relief structure forming layer 110 may be formed by pouring the composition between a substrate and an original, irradiating with radiation to cure the material, and then removing the original.
  • the radiation curable resin typically contains a polymerizable compound and an initiator.
  • the polymerizable compound for example, a compound capable of photo radical polymerization is used.
  • a compound capable of radical photopolymerization for example, a monomer, oligomer or polymer having an ethylenically unsaturated bond or an ethylenically unsaturated group is used.
  • Monomers such as epoxy acrylate, urethane acrylate and polyester acrylate, or polymers such as urethane-modified acrylic resin and epoxy-modified acrylic resin may be used.
  • a photoradical polymerization initiator is used as the initiator.
  • the photo radical polymerization initiator include benzoin compounds such as benzoin, benzoin methyl ether and benzoin ethyl ether, anthraquinone compounds such as anthraquinone and methylanthraquinone, acetophenone, diethoxyacetophenone, benzophenone, hydroxyacetophenone, 1-hydroxy Phenyl ketone compounds such as cyclohexyl phenyl ketone, ⁇ -aminoacetophenone and 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, benzyldimethyl ketal, thioxanthone, acylphosphine oxide, or Michler's ketone Is used.
  • a compound capable of photocationic polymerization may be used as the polymerizable compound.
  • the compound capable of photocationic polymerization for example, a monomer, oligomer or polymer having an epoxy group, an oxetane skeleton-containing compound, or vinyl ethers are used.
  • a photocationic polymerization initiator is used as the initiator.
  • this photocationic polymerization initiator for example, an aromatic diazonium salt, an aromatic iodonium salt, an aromatic sulfonium salt, an aromatic sulfonium salt, an aromatic phosphonium salt, or a mixed ligand metal salt is used.
  • a mixture of a compound capable of photoradical polymerization and a compound capable of photocationic polymerization may be used as the polymerizable compound.
  • the initiator for example, a mixture of a radical photopolymerization initiator and a cationic photopolymerization initiator is used.
  • a polymerization initiator that can function as an initiator for both photoradical polymerization and photocationic polymerization may be used.
  • an aromatic iodonium salt or an aromatic sulfonium salt is used as such an initiator.
  • the ratio of the initiator to the radiation curable resin is, for example, in the range of 0.1 to 15% by mass.
  • Radiation curable resins are sensitizing dyes, dyes, pigments, polymerization inhibitors, leveling agents, antifoaming agents, anti-sagging agents, adhesion improvers, coating surface modifiers, plasticizers, nitrogen-containing compounds, and epoxy resins.
  • An agent, a release agent, or a combination thereof may be further included.
  • the radiation curable resin may further contain a non-reactive resin in order to improve its moldability.
  • this non-reactive resin for example, the above-mentioned thermoplastic resin and / or thermosetting resin can be used.
  • the original plate used for forming the relief structure forming layer 110 is manufactured using, for example, an electron beam drawing apparatus or a nanoimprint apparatus. If it carries out like this, the several recessed part or convex part mentioned above can be formed with high precision.
  • a reverse plate is manufactured by transferring the uneven structure of the original plate, and a duplicate plate is manufactured by transferring the uneven structure of the reverse plate. Then, if necessary, a reversal plate is manufactured using the copy plate as an original plate, and the uneven structure of the reversal plate is transferred to further manufacture a copy plate. In actual production, a copy obtained in this way is usually used.
  • the relief structure forming layer 110 typically includes a base material and a resin layer formed thereon.
  • a film base material is typically used.
  • a film substrate for example, a plastic film such as a polyethylene terephthalate (PET) film, a polyethylene naphthalate (PEN) film, or a polypropylene (PP) film is used.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PP polypropylene
  • paper, synthetic paper, plastic multilayer paper, or resin-impregnated paper may be used as the substrate.
  • the base material may be omitted.
  • the resin layer is formed by the above-described method, for example.
  • the thickness of the resin layer is, for example, in the range of 0.1 ⁇ m to 10 ⁇ m. If this thickness is excessively large, resin protrusion and / or wrinkle formation is likely to occur due to pressure during processing. If this thickness is excessively small, it may be difficult to form a desired concave structure and / or convex structure.
  • the thickness of the resin layer is made equal to or greater than the depth or height of the concave portion or convex portion to be provided on the main surface. This thickness is, for example, in the range of 1 to 10 times the depth or height of the concave portion or convex portion, and typically in the range of 3 to 5 times thereof.
  • the relief structure forming layer 110 may be formed by, for example, the “pressing method” disclosed in Japanese Patent No. 4194073, the “casting method” disclosed in Japanese Utility Model Registration No. 2524092, or JP2007 The “photopolymer method” disclosed in JP-A-118563 may be used.
  • a first material having a refractive index different from that of the material of the relief structure forming layer 110 is vapor-deposited over the entire regions R1 and R2.
  • the reflective material layer 120 is formed on the main surface including the regions R1 and R2 of the relief structure forming layer 110.
  • the first material for example, a material having a refractive index difference of 0.2 or more from the material of the relief structure forming layer 110 is used. If this difference is small, reflection at the interface between the relief structure forming layer 110 and the first layer 120 ′ described later may be difficult to occur.
  • At least one metal material selected from the group consisting of Al, Sn, Cr, Ni, Cu, Au, Ag, and alloys thereof is used.
  • ceramic materials or organic polymer materials listed below may be used as the first material having relatively high transparency.
  • the numerical value in the parenthesis described after the following chemical formula or compound name means the refractive index of each material.
  • a ceramic material for example, Sb 2 O 3 (3.0), Fe 2 O 3 (2.7), TiO 2 (2.6), CdS (2.6), CeO 2 (2.3 ), ZnS (2.3), PbCl 2 (2.3), CdO (2.2), Sb 2 O 3 (5), WO 3 (5), SiO (5), Si 2 O 3 (2. 5), In 2 O 3 (2.0), PbO (2.6), Ta 2 O 3 (2.4), ZnO (2.1), ZrO 2 (5), MgO (1), SiO 2 (1.45), Si 2 O 2 (10), MgF 2 (4), CeF 3 (1), CaF 2 (1.3 to 1.4), AlF 3 (1), Al 2 O 3 (1 ) Or GaO (2) can be used.
  • polyethylene (1.51), polypropylene (1.49), polytetrafluoroethylene (1.35), polymethyl methacrylate (1.49) or polystyrene (1.60) is used as the organic polymer material. be able to.
  • the vapor deposition of the first material is performed using, for example, a vacuum evaporation method, a sputtering method, or a chemical vapor deposition method (CVD method).
  • a vacuum evaporation method for example, a vacuum evaporation method, a sputtering method, or a chemical vapor deposition method (CVD method).
  • CVD method chemical vapor deposition method
  • This vapor deposition is performed at a uniform density in the in-plane direction parallel to the main surface of the relief structure forming layer 110. Specifically, this vapor deposition includes the ratio of the amount of the first material at the position of the first region R1 to the apparent area of the first region R1 and the second region relative to the apparent area of the second region R2. The ratio of the amount of the first material at the position R2 is set to be equal to each other.
  • the film thickness (hereinafter referred to as a set film thickness) when the main surface of the relief structure forming layer 110 is assumed to be only a flat surface is determined as follows. That is, the set film thickness is determined so that the reflective material layer 120 satisfies the following requirements.
  • the portion of the reflective material layer 120 corresponding to the first region R1 has a surface shape corresponding to the surface shape of the first region R1.
  • this portion forms a continuous film having a surface shape corresponding to a plurality of grooves provided in the first region R1.
  • the portion of the reflective material layer 120 corresponding to the second region R2 has a surface shape corresponding to the surface shape of the second region R2, or a plurality of recesses provided in the second region R2 or It is made to open partially corresponding to arrangement
  • FIG. 4 illustrates the former case as an example. That is, in the example shown in FIG. 4, this portion forms a continuous film having a surface shape corresponding to a plurality of grooves provided in the second region R2.
  • the ratio of the surface area to the apparent area of the second region R2 is larger than that of the first region R1. Therefore, when the set film thickness is determined so that the reflective material layer 120 has a surface shape corresponding to the surface shape of the regions R1 and R2, the portion of the reflective material layer 120 corresponding to the second region R2 is Compared with the portion corresponding to one region R1, the average film thickness becomes smaller.
  • the “average film thickness” of a layer means the average value of the distance between each point on one side of the layer and the foot of a perpendicular drawn on the other side of the layer.
  • the portion corresponding to the first region R1 has a surface shape corresponding to the surface shape of the first region R1 and corresponds to the second region R2.
  • the reflective material layer 120 partially opened corresponding to the arrangement of the plurality of concave portions or convex portions can be formed.
  • the set film thickness of the reflective material layer 120 is typically made smaller than the depth or height of the plurality of concave portions or convex portions provided in the second region R2. In addition, when a plurality of concave portions or convex portions are provided in the first region R1, the set film thickness is typically smaller than these depths or heights.
  • the set film thickness of the reflective material layer 120 is, for example, in the range of 5 nm to 500 nm, and typically in the range of 30 nm to 300 nm. If the set film thickness is excessively small, reflection at the interface between the relief structure forming layer 110 and the first layer 120 ′ described later may be difficult to occur. If the set film thickness is excessively large, it may be difficult to form the reflective material layer 120 so as to satisfy the above requirements.
  • the average film thickness of the portion corresponding to the first region R1 in the reflective material layer 120 is, for example, in the range of 5 nm to 500 nm, and typically in the range of 30 nm to 300 nm. If the average film thickness is excessively small, reflection at the interface between the relief structure forming layer 110 and the first layer 120 ′ described later may be difficult to occur. If the average film thickness is excessively large, the productivity of the optical element 10 may be reduced.
  • a second material different from the material of the reflective material layer 120 is vapor-deposited on the reflective material layer 120.
  • the mask layer 130 facing the relief structure forming layer 110 with the reflective material layer 120 interposed therebetween is formed.
  • an inorganic substance is used as the second material.
  • the inorganic material include MgF 2 , Sn, Cr, ZnS, ZnO, Ni, Cu, Au, Ag, TiO 2 , MgO, SiO 2, and Al 2 O 3 .
  • MgF 2 when MgF 2 is used as the second material, it is possible to further improve the followability and scratch resistance of the mask layer 130 and the second layer 130 ′ against bending and impact of the substrate.
  • an organic substance may be used as the second material.
  • this organic substance for example, an organic substance having a weight average molecular weight of 1500 or less is used.
  • examples of such organic substances include polymerizable compounds such as acrylates, urethane acrylates, and epoxy acrylates.
  • a compound obtained by mixing these polymerizable compounds and an initiator, vapor-depositing as a radiation curable resin, and then polymerizing by radiation irradiation may be used.
  • a metal alkoxide may be used as the second material.
  • a metal alkoxide deposited in a vapor phase and then polymerized may be used. At this time, after vapor deposition, drying may be performed before polymerization.
  • the vapor deposition of the second material is performed using, for example, a vacuum evaporation method, a sputtering method, or a CVD method.
  • This vapor deposition is performed at a uniform density in the in-plane direction parallel to the main surface of the relief structure forming layer 110. Specifically, this vapor deposition includes the ratio of the amount of the second material at the position of the first region R1 to the apparent area of the first region R1 and the second region relative to the apparent area of the second region R2. The ratio of the amount of the second material at the position R2 is set to be equal to each other.
  • the set film thickness of the mask layer 130 is determined as follows. That is, the set film thickness is determined so that the mask layer 130 satisfies the following requirements.
  • a portion of the mask layer 130 corresponding to the first region R1 is made to have a surface shape corresponding to the surface shape of the first region R1.
  • this part forms a continuous film having a surface shape corresponding to a plurality of grooves provided in the first region R1.
  • a portion of the mask layer 130 corresponding to the second region R2 has a surface shape corresponding to the surface shape of the second region R2, or a plurality of recesses or protrusions provided in the second region R2. It is made to open partially corresponding to arrangement
  • FIG. 5 illustrates the latter case as an example. That is, in the example shown in FIG. 5, this portion forms a discontinuous film partially opened corresponding to the arrangement of the plurality of grooves provided in the second region R2 on the reflective material layer 120. Yes.
  • the ratio of the surface area to the apparent area of the second region R2 is larger than that of the first region R1. Therefore, when the set film thickness is determined so that the mask layer 130 has a surface shape corresponding to the surface shape of the regions R1 and R2, the portion of the mask layer 130 corresponding to the second region R2 is the first region. Compared to the portion corresponding to R1, the average film thickness becomes smaller.
  • the portion corresponding to the first region R1 has a surface shape corresponding to the surface shape of the first region R1 and corresponds to the second region R2.
  • the mask layer 130 partially opened corresponding to the arrangement of the plurality of concave portions or convex portions can be formed.
  • the set film thickness of the mask layer 130 is typically made smaller than the depth or height of the plurality of concave portions or convex portions provided in the second region R2. In addition, when a plurality of concave portions or convex portions are provided in the first region R1, the set film thickness is typically smaller than these depths or heights. The set film thickness of the mask layer 130 is typically smaller than the set film thickness of the reflective material layer 120.
  • the set film thickness of the mask layer 130 is, for example, in the range of 0.3 nm to 200 nm, and typically in the range of 3 nm to 80 nm. If the set film thickness is excessively small, the average film thickness of the portion corresponding to the first region R1 in the mask layer 130 becomes excessively small, and the mask layer corresponding to the first region R1 in the reflective material layer 120 is formed. The protection by 130 may be insufficient. If the set film thickness is excessively large, the mask layer 130 may excessively protect the portion of the reflective material layer 120 corresponding to the second region R2.
  • the average film thickness of the portion of the mask layer 130 corresponding to the first region R1 is typically smaller than the average film thickness of the portion of the reflective material layer 120 corresponding to the first region R1.
  • the average film thickness of the portion corresponding to the first region R1 in the mask layer 130 is, for example, in the range of 0.3 nm to 200 nm, and typically in the range of 3 nm to 80 nm. If the average film thickness is excessively small, the portion of the reflective material layer 120 corresponding to the first region R1 is not sufficiently protected by the mask layer 130, and corresponds to the first region R1 in the first layer 120 ′ described later. In some cases, the average film thickness of the affected portion may become excessively small. If the set film thickness is excessively large, the mask layer 130 may excessively protect the portion of the reflective material layer 120 corresponding to the second region R2.
  • the mask layer 130 is exposed to a reactive gas or liquid that can cause a reaction with the material of the reflective material layer 120.
  • the reaction with the material of the reflective material layer 120 is caused at least in the position of the second region R2.
  • an etching solution capable of dissolving the material of the reflective material layer 120 is used as the reactive gas or liquid.
  • this etching solution typically, an alkaline solution such as a sodium hydroxide solution, a sodium carbonate solution, and a potassium hydroxide solution is used.
  • an acidic solution such as hydrochloric acid, nitric acid, sulfuric acid, and acetic acid may be used as the etching solution.
  • the portion corresponding to the first region R1 in the mask layer 130 forms a continuous film, whereas the portion corresponding to the second region R2 is a discontinuous film partially opened. Is forming.
  • the portion of the reflective material layer 120 that is not covered with the mask layer 130 is more likely to come into contact with the reactive gas or liquid than the portion of the reflective material layer 120 that is covered with the mask layer 130. Therefore, the former is more easily etched than the latter.
  • the etching of the reflective material layer 120 proceeds in the in-plane direction at the position of each opening. As a result, on the second region R2, the portion of the reflective material layer 120 that supports the mask layer 130 is removed together with the mask layer 130 thereon.
  • the optical element 10 shown in FIGS. 1 and 2 is obtained as described above.
  • the optical element 10 obtained by the method described above has the following characteristics.
  • the first layer 120 ′ is a reflective layer and is typically made of the first material described above.
  • the first layer 120 ′ covers only the first region R1 out of the regions R1 and R2. That is, the first layer 120 ′ is provided only at a position corresponding to the first region R1. Further, the ratio of the amount of the first material at the position of the second region R2 to the apparent area of the second region R2 is zero.
  • the first layer 120 ′ has a surface shape corresponding to the surface shape of the first region R1.
  • the first layer 120 ′ has a surface shape corresponding to the plurality of grooves provided in the first region R1.
  • the plurality of grooves provided in the first region R1 typically form a diffraction grating or hologram that emits diffracted light when illuminated with white light on the surface of the first layer 120 ′.
  • the display unit DP1 of the optical element 10 can display a color corresponding to the diffracted light. Therefore, in this case, a better anti-counterfeit effect and a decorative effect can be achieved.
  • the orthographic projection of the contour of the first layer 120 ′ onto the main surface of the relief structure forming layer 110 entirely overlaps the contour of the first region R 1. That is, the first layer 120 ′ is patterned corresponding to the shape of the first region R1. Therefore, by forming the regions R1 and R2 with high positional accuracy, the first layer 120 ′ formed with excellent positional accuracy can be obtained.
  • the portion of the reflective material layer 120 corresponding to the first region R ⁇ b> 1 is covered with the mask layer 130. Therefore, even when the above etching process is performed, the film thickness of the portion is hardly or not reduced at all. Therefore, the average film thickness of the portion corresponding to the first region R1 in the first layer 120 ′ is typically equal to the average film thickness of the portion corresponding to the first region R1 in the reflective material layer 120. That is, the average film thickness is in the range of 5 nm to 500 nm, for example, and typically in the range of 30 nm to 300 nm.
  • the maximum value of the shortest distance between the boundaries of the regions R1 and R2 and the contour of the first layer 120 ′ is, for example, less than 20 ⁇ m, preferably less than 10 ⁇ m, and more preferably less than 3 ⁇ m.
  • the second layer 130 ' is a layer formed by, for example, a vapor deposition method.
  • the second layer 130 ′ covers the first layer 120 ′.
  • the second layer 130 ′ faces only the entire first region R1 out of the regions R1 and R2 with the first layer 120 ′ interposed therebetween. That is, the orthographic projection of the contour of the first layer 120 ′ onto the main surface of the relief structure forming layer 110 entirely overlaps the orthographic projection of the contour of the second layer 130 ′ onto the main surface. Further, the ratio of the amount of the second material at the position of the second region R2 to the apparent area of the second region R2 is zero.
  • the average film thickness of the portion corresponding to the first region R1 in the second layer 130 ′ is equal to or smaller than the average film thickness of the portion corresponding to the first region R1 in the mask layer 130.
  • This average film thickness is, for example, in the range of 0.3 nm to 200 nm, and typically in the range of 3 nm to 80 nm.
  • the second layer 130 ' plays a role of protecting the first layer 120', for example.
  • forgery of the optical element 10 can be made more difficult than when the second layer 130 ′ is not present.
  • the second layer 130 ′ affects the color of other parts of the optical element 10. Without this, it is possible to change the color of the portion of the optical element 10 where the first layer 120 ′ is provided.
  • a blackish color is imparted to the portion of the optical element 10 where the first layer 120 ′ is provided. Can do.
  • Al is used as the first material and ZnS is used as the second material
  • a yellowish color can be imparted to the portion of the optical element 10 where the first layer 120 ′ is provided.
  • the average film thickness of 1st layer 120 ' is small, even if it is a case where the optical element 10 is observed from the relief structure formation layer 110 side, these effects can be achieved.
  • the first region R1 may be flat.
  • the display unit DP1 looks like a mirror surface, for example.
  • the ratio of the surface area to the apparent area of the first region R1 is equal to 1.
  • the first region R1 may be provided with a plurality of concave portions or convex portions arranged two-dimensionally.
  • these concave portions or convex portions are typically tapered.
  • these concave portions or convex portions have a cone, a pyramid, a truncated cone, a truncated pyramid, an elliptic paraboloid or a rotating paraboloid.
  • the side walls of these recesses or protrusions may be smooth or stepped.
  • these recessed parts or convex parts may be columnar shapes, such as a cylinder and prismatic shape.
  • the two-dimensionally arranged concave portions or convex portions may be regularly arranged or irregularly arranged.
  • these recesses or projections typically form a diffraction grating or hologram on the surface of the first layer 120 'that emits diffracted light when illuminated with white light.
  • these recesses or projections are arranged in a square lattice, for example.
  • these concave portions or convex portions may be arranged in a rectangular lattice shape or a triangular lattice shape.
  • the average value of the diameters of the openings of these recesses or the average value of the diameters of the bottoms of these projections is, for example, 100 nm to It shall be in the range of 3000 nm.
  • the average value of the depth of these recessed parts or the average value of the height of these convex parts shall be in the range of 20 nm to 1500 nm, for example.
  • the average value of the ratio of the depth to the diameter of these concave portions or the average value of the ratio of the height to the diameter of the bottom portion of these convex portions is, for example, 0.5 or less, typically in the range of 0.05 to 0.3.
  • the second region R2 may be provided with a plurality of concave portions or convex portions arranged two-dimensionally.
  • the plurality of concave portions or convex portions for example, first, except that the average value of the ratio of the depth to the diameter of the concave portion or the average value of the ratio of the height to the diameter of the bottom portion of the convex portion is larger.
  • a configuration similar to that described for the plurality of recesses or protrusions in one region R1 can be employed.
  • the average value of the diameters of the openings of these concave portions or the average value of the diameters of the bottom portions of these convex portions is, for example, 100 nm to It shall be in the range of 3000 nm.
  • the average value of the depth of these recessed parts or the average value of the height of these convex parts shall be in the range of 80 nm to 6000 nm, for example.
  • the average value of the ratio of the depth to the diameter of the concave portions or the average value of the ratio of the height to the diameter of the bottom portion of the convex portions is, for example, in the range of 0.8 to 2.0, typically 0.8. To be within the range of 1.5.
  • the plurality of concave portions or convex portions provided in the regions R1 and R2 form a relief hologram, a diffraction grating, a sub-wavelength grating, a microlens, a polarizing element, a condensing element, a scattering element, a diffusing element, or a combination thereof. Also good.
  • the reflective material layer 120 has a surface shape corresponding to the surface shape of the regions R1 and R2, and the portion of the mask layer 130 corresponding to the first region R1 is the surface shape of the first region R1.
  • the portion corresponding to the second region R2 of the mask layer 130 partially opens corresponding to the arrangement of the plurality of recesses or protrusions provided in the second region R2.
  • the structure of these layers is not limited to this.
  • both the reflective material layer 120 and the mask layer 130 have surface shapes corresponding to the surface shapes of the regions R1 and R2 may be employed.
  • the portions of the reflective material layer 120 and the mask layer 130 corresponding to the second region R2 are averaged compared to the portions of these layers corresponding to the first region R1, respectively.
  • the film thickness is smaller.
  • a portion of the mask layer 130 having a smaller average film thickness is more likely to allow a reactive gas or liquid to pass through than a portion having a larger average film thickness.
  • the mask layer 130 can be opened only on the second region R2. .
  • the optical element 10 shown in FIGS. 1 and 2 can be manufactured by adjusting the concentration and temperature of the etching solution, the etching processing time, and the like.
  • both the reflective material layer 120 and the mask layer 130 have a surface shape corresponding to the surface shape of the first region R1 in a portion corresponding to the first region R1, and a portion corresponding to the second region R2.
  • the optical element 10 shown in FIGS. 1 and 2 can be manufactured by adjusting the concentration and temperature of the etching solution, the etching processing time, and the like.
  • the ratio of the amount of the first material at the position of the second region R2 to the apparent area of the second region R2 is larger than zero and the apparent amount of the first region R1
  • the ratio may be smaller than the ratio of the amount of the first material at the position of the first region R1 to the upper area.
  • the ratio of the amount of the second material at the position of the second region R2 to the apparent area of the second region R2 is greater than zero and the first region R1 with respect to the apparent area of the first region R1. It may be made smaller than the ratio of the amount of the second material at the position.
  • the reflective material layer 120 and the first layer 120 ′ may have a multilayer structure.
  • the first layer 120 ′ may form a multilayer interference film.
  • the first layer 120 ′ includes, for example, a multilayer film in which a mirror layer, a spacer layer, and a half mirror layer are laminated in this order from the relief structure forming layer 110 side.
  • the mirror layer is a metal layer, and typically includes a single metal or an alloy.
  • the metal contained in the mirror layer include aluminum, gold, copper, and silver.
  • aluminum is particularly preferable.
  • the thickness of the mirror layer is, for example, 300 nm or less, and typically in the range of 20 to 200 nm.
  • the spacer layer typically includes a dielectric material.
  • the refractive index of this dielectric material is preferably 1.65 or less.
  • the dielectric material is preferably transparent. Examples of such a dielectric material include SiO 2 and MgF 2 .
  • the thickness of the spacer layer is, for example, in the range of 5 to 500 nm.
  • the half mirror layer is a light transmissive reflective layer, and typically includes a simple metal, an alloy, a metal oxide, or a metal sulfide.
  • the metal or alloy contained in the half mirror layer include aluminum, nickel, Inocell (registered trademark), titanium oxide (TiO 2 ), zinc sulfide (ZnS), molybdenum sulfide (MoS 2 ), and iron oxide ( III) (Fe 2 O 3 ).
  • the thickness of the half mirror layer is, for example, in the range of 5 to 80 nm.
  • This thickness is preferably in the range of 30 to 80 nm when a metal oxide such as titanium oxide or a metal sulfide such as zinc sulfide, which is a highly transparent high refractive index material, is used.
  • the thickness is preferably in the range of 5 to 45 nm when a metal such as aluminum having high reflectivity and light shielding properties is used.
  • the mask layer 130 and the second layer 130 ' have a single-layer structure, but these layers may have a multilayer structure.
  • the second layer 130 ′ may form a multilayer interference film.
  • the multilayer structure of the first layer 120 ′ and the second layer 130 ′ may form a multilayer interference film.
  • the multilayer interference film can be formed stably and with high positional accuracy by using the method described with reference to FIGS.
  • the steps described with reference to FIGS. 4 and 6 may be repeated.
  • a structure in which the first layers 120 ′ and the second layers 130 ′ are alternately stacked on the first region R1 can be obtained.
  • a multilayer interference film can be formed on the first region R1.
  • the multilayer interference film can be formed stably and with high positional accuracy.
  • the etching liquid is used as the reactive gas or liquid. Is not limited to this.
  • an etching gas that can vaporize the material of the reflective material layer 120 may be used as the reactive gas or liquid.
  • a gas or liquid that can change a part of the reflective material layer 120 into a layer made of a material different from the first material by reaction with the first material may be used.
  • the portion instead of removing the portion corresponding to the second region R2 in the reflective material layer 120, the portion can be changed to a layer made of a material different from the first material.
  • an oxidizing agent capable of oxidizing the first material can be used.
  • the oxidizing agent include oxygen, ozone, or halogen, or halides such as chlorine dioxide, hypohalous acid, halous acid, hypohalogen acid, perhalogen acid, and salts thereof, hydrogen peroxide, peroxygen, and the like.
  • Inorganic peroxides such as sulfates, peroxocarbonates, peroxosulfates, and peroxophosphates, benzoyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, performic acid, peracetic acid, and peroxyphosphate
  • Organic peroxides such as benzoic acid, cerium salts, Mn (III), Mn (IV) and Mn (VI) salts, silver salts, copper salts, chromium salts, cobalt salts, dichromates, chromates, peroxy salts
  • Metals or metal compounds such as manganate, magnesium perphthalate, ferric chloride, and cupric chloride, or nitric acid, glass Salts, bromate, using an inorganic acid or an inorganic acid salt such as periodate and iodate.
  • the portion of Cu when used as the material of the reflective material layer 120 ′, at least a portion corresponding to the second region R 2 of the reflective material layer 120 ′ is reacted with an oxidizing agent, so that the portion is made of Cu oxide. Can be changed.
  • Al when used as the material of the reflective material layer 120 ′, at least a portion corresponding to the second region R 2 of the reflective material layer 120 ′ is reacted with an oxidant to thereby react the portion with an Al oxide such as boehmite. It can be changed to a layer consisting of
  • a reducing agent that can reduce the material of the reflective material layer 120 ′ may be used as the reactive gas or liquid.
  • the reducing agent include hydrogen sulfide, sulfur dioxide, hydrogen fluoride, alcohol, carboxylic acid, hydrogen gas, hydrogen plasma, remote hydrogen plasma, diethylsilane, ethylsilane, dimethylsilane, phenylsilane, silane, disilane, and aminosilane) , Borane, diborane, alane, germane, hydrazine, ammonia, hydrazine, methyl hydrazine, 1,1-dimethylhydrazine, 1,2-dimethylhydrazine, t-butylhydrazine, benzylhydrazine, 2-hydrazinoethanol, 1-n- Butyl-1-phenylhydrazine, phenylhydrazine, 1-naphthylhydrazine, 4-chlorophenylhydrazine,
  • the second layer 130 ′ may be removed after the first layer 120 ′ is formed by etching or the like.
  • the removal of the second layer 130 ′ is effective, for example, when there is a concern about ionization of the first material based on the difference in ionization tendency between the first material and the second material.
  • FIG. 7 is a plan view schematically showing an optical element according to a modification.
  • FIG. 8 is a sectional view taken along line VIII-VIII of the optical element shown in FIG.
  • the optical element 10 shown in FIGS. 7 and 8 has been described with reference to FIGS. 3 to 6 except that the structures of the regions R1 and R2 included in the main surface of the relief structure forming layer 110 are different. It can be manufactured by the same method.
  • the first region R1 has a contour corresponding to the micro character “TP”.
  • region R1 is equipped with the flat area
  • the flat region FR borders the uneven region UR.
  • a portion corresponding to the flat region FR in the optical element 10 is used as the display unit DPF, and a portion corresponding to the uneven region UR in the optical element 10 is used as the display unit DPU.
  • the width of the display unit DPF bordering the display unit DPU is, for example, in the range of 10 ⁇ m to 2000 ⁇ m, and typically in the range of 50 ⁇ m to 1000 ⁇ m.
  • the first layer 120 ′ can be formed with high positional accuracy as described above. Therefore, when such a method is used, even a fine image such as the above-described micro character can be displayed with an excellent resolution.
  • FIG. 9 is a plan view schematically showing an optical element according to another modification.
  • FIG. 10 is a cross-sectional view of the optical element shown in FIG. 9 taken along line XX.
  • a portion corresponding to a first sub-region SR1 (to be described later) of the optical element 10 is a display portion DSP1
  • a portion corresponding to the second sub-region SR2 is a display portion DSP2.
  • the optical element 10 shown in FIGS. 9 and 10 has the same configuration as the optical element 10 shown in FIGS. 1 and 2 except for the following points.
  • the first region R1 includes the first subregion SR1 and the second subregion SR2.
  • the first sub-region SR1 is adjacent to the second region R2 and extends along the boundary between the regions R1 and R2.
  • the second sub region SR2 is adjacent to the second region R2 with the first sub region SR1 interposed therebetween.
  • the outline of the second sub-region SR2 typically has a shape along the outline of the first region R1.
  • the first layer 120 ′ is provided only at a position corresponding to the second sub-region SR2. That is, only the second sub-region SR2 of the regions R1 and R2 is covered with the first layer 120 ′.
  • a portion of the first layer 120 ′ corresponding to the second sub region SR2 has a surface shape corresponding to the surface shape of the second sub region SR2.
  • the average film thickness of the portion corresponding to the second sub-region SR2 in the first layer 120 ′ is, for example, in the range of 5 nm to 500 nm, and typically in the range of 5 nm to 300 nm. If this average film thickness is excessively small, reflection at the interface between the relief structure forming layer 110 and the first layer 120 ′ may be difficult to occur. If the average film thickness is excessively large, the productivity of the optical element 10 may be reduced.
  • the second layer 130 typically faces the entire first region R1. That is, typically, the second layer 130 'includes a first portion P1 that covers the first layer 120' and a second portion P2 that protrudes outward from the first portion P1.
  • the first orthogonal projection of the contour of the first layer 120 ′ onto the main surface of the relief structure forming layer 110 typically follows the second orthogonal projection of the contour of the vapor deposition layer onto the main surface. It has a shape and is surrounded by a second orthogonal projection.
  • the optical element 10 when the second material is colored, different colors are displayed in the portion DSR1 corresponding to the first subregion SR1 and the portion DSR2 corresponding to the second subregion SR2 in the optical element 10. Can do. This color difference can be confirmed, for example, by observing the optical element 10 using a microscope. Alternatively, when the area occupied by the first sub-region SR1 is large, this color difference can be observed with the naked eye. Thus, the optical element 10 described with reference to FIGS. 9 and 10 can exhibit a special optical effect.
  • the average film thickness of the portion corresponding to the second sub-region SR2 in the second layer 130 ′ is, for example, in the range of 0.3 nm to 200 nm, and typically in the range of 3 nm to 80 nm.
  • the optical element 10 shown in FIGS. 9 and 10 is manufactured as follows, for example. That is, after the process described with reference to FIGS. 3 and 5, by adjusting the concentration and temperature of the etchant, the time of the etching process, and the like, the portion corresponding to the first region R ⁇ b> 1 in the reflective material layer 120. Side etching occurs. Thereby, the part corresponding to the first sub-region SR1 in the reflective material layer 120 is removed together with the part corresponding to the second region R2 in the reflective material layer 120 and the mask layer 130. In this way, the optical element 10 shown in FIGS. 9 and 10 is obtained.
  • the above-described side etching occurs at a substantially uniform speed from the contour of the portion corresponding to the first region R1 in the reflective material layer 120 toward the inside thereof. Therefore, the width of the portion removed by the side etching, that is, the variation in the distance between the contour of the first sub-region SR1 and the contour of the first region R1 is relatively small. Therefore, typically, the outline of the second sub-region SR2 typically has a shape along the outline of the first region R1. Therefore, even when such a method is employed, the first layer 120 ′ can be formed with high positional accuracy.
  • the etching from the main surface is little or not even under the condition that the side etching occurs from the side surface. Does not occur. Therefore, even when such a method is employed, the first layer 120 ′ can be stably formed.
  • the first orthographic projection of the contour of the first layer 120 ′ onto the main surface of the relief structure forming layer 110 has a shape along the second orthographic projection of the contour of the vapor deposition layer onto the main surface.
  • the configuration surrounded by the second orthogonal projection has been described, but the configurations of the first layer 120 ′ and the second layer 130 ′ are not limited to this.
  • the etched structure is cut so as to cross the first region R1
  • a part of the first orthogonal projection overlaps a part of the second orthogonal projection
  • the remaining part of the first orthogonal projection is the second orthogonal projection.
  • the shape of the second part of the second orthogonal projection is the shape of the second part of the second orthogonal projection.
  • FIG. 11 is a plan view schematically showing an example of an optical element according to another aspect of the present invention.
  • 12 is a cross-sectional view of the optical element shown in FIG. 11 taken along line XII-XII.
  • 13 to 17 are cross-sectional views schematically showing a method for manufacturing the optical element shown in FIGS.
  • a portion corresponding to a third region R3 described later in the optical element 10 is a display portion DP3.
  • a relief structure forming layer 110 having a main surface including a first region R1, a second region R2, and a third region R3 is prepared.
  • the relief structure forming layer 110 has the same configuration as the relief structure forming layer described with reference to FIG. 3 except that it further includes a third region R3.
  • the third region R3 is provided with a plurality of concave portions or convex portions. And 3rd area
  • region R3 has a larger surface area ratio with respect to an apparent area compared with 1st area
  • the third region R3 typically has the same configuration as the second region R2.
  • the first material is vapor-deposited over the entire region R1 to R3.
  • the reflective material layer 120 is formed.
  • the reflective material layer 120 is formed in the same manner as described with reference to FIG.
  • a portion of the reflective material layer 120 corresponding to the first region R ⁇ b> 1 forms a continuous film having a surface shape corresponding to a plurality of grooves provided in the first region R ⁇ b> 1.
  • portions of the reflective material layer 120 corresponding to the regions R2 and R3 form a continuous film having a surface shape corresponding to a plurality of grooves provided in the regions R2 and R3.
  • the second material is vapor deposited on the reflective material layer 120.
  • the mask layer 130 is formed.
  • the mask layer 130 is formed in the same manner as described with reference to FIG.
  • a portion of the mask layer 130 corresponding to the first region R1 forms a continuous film having a surface shape corresponding to a plurality of grooves provided in the first region R1. Further, portions of the mask layer 130 corresponding to the regions R2 and R3 are discontinuous portions that are partially opened on the reflective material layer 120 corresponding to the arrangement of the plurality of grooves provided in the regions R2 and R3. A film is formed.
  • FIG. 16 illustrates a case where the coating layer 140 faces the entire third region R3 and a part of the first region R1.
  • the coating layer 140 can be formed using a known pattern forming method.
  • a pattern forming method for example, a flexographic printing method, a gravure printing method, an ink jet printing method, an offset printing method, or a security intaglio printing method is used.
  • a material of the covering layer 140 for example, the above-described thermoplastic resin, thermosetting resin, or radiation curable resin is used.
  • heat resistant resins such as polycarbonate, polyamide, and polyimide, a mixture thereof, or a copolymer thereof may be used.
  • a dye, a pigment, a leveling agent, an antifoaming agent, an anti-sagging agent, an adhesion improver may be added.
  • a coating surface modifier, a plasticizer, a nitrogen-containing compound, a crosslinking agent such as an epoxy resin, or a combination thereof may be added.
  • the mask layer 130 and the covering layer 140 are exposed to a reactive gas or liquid that can cause a reaction with the material of the reflective material layer 120. Then, a reaction with the material of the reflective material layer 120 is caused at least in the position of the second region R2.
  • a reactive gas or liquid that can cause a reaction with the material of the reflective material layer 120.
  • the portion corresponding to the first region R1 in the mask layer 130 forms a continuous film, whereas the portion corresponding to the second region R2 is a discontinuous film partially opened. Is forming. Due to this, the portion of the reflective material layer 120 corresponding to the second region R2 is more easily etched than the portion corresponding to the first region R1.
  • a covering layer 140 is formed on a portion of the mask layer 130 corresponding to the third region R3.
  • the coating layer 140 is not formed on the portion of the mask layer 130 corresponding to the second region R2. Due to this, the portion of the reflective material layer 120 corresponding to the second region R2 is more easily etched than the portion corresponding to the third region R3.
  • the portion corresponding to the second region R2 in the reflective material layer 120 can be removed as shown in FIG. At this time, along with the removal of the portion corresponding to the second region R2 in the reflective material layer 120, the portion corresponding to the second region R2 in the mask layer 130 is also removed.
  • the optical element 10 includes a relief structure forming layer 110, a first layer 120 ', a second layer 130', and a covering layer 140.
  • the first layer 120 ′ also exists in a region other than the first region R 1, that is, on the third region R 3. Therefore, for example, in the third region R3, by providing a plurality of concave portions or convex portions that can exhibit an optical effect corresponding to a hologram, a diffraction grating, a sub-wavelength grating, a zero-order diffraction filter, a polarization separation filter, etc.
  • the optical element 10 having a special visual effect can be obtained.
  • the optical element 10 may further include a protective film.
  • the surface of the optical element 10 may be subjected to antireflection treatment. Further, when manufacturing the optical element 10, at least one surface of the layer constituting the optical element 10 may be subjected to corona treatment, flame treatment, or plasma treatment.
  • the technology described above may be used in combination with a known process for partially providing the reflective layer.
  • a laser method is used in which the reflective layer is removed in a pattern using a laser.
  • a method may be used in which after a mask is provided in a pattern on the reflective layer, a portion of the reflective layer that is not covered with the mask is removed.
  • a mask is provided in a pattern on the main surface of the layer or substrate, a reflective layer is formed over the entire main surface, and then the portion of the reflective layer located on the mask is masked.
  • a removal method may be used. These masks are formed by, for example, a printing method or a photoresist method.
  • the optical element 10 may be used as part of an adhesive label.
  • This pressure-sensitive adhesive label includes an optical element 10 and a pressure-sensitive adhesive layer provided on the back surface of the optical element 10.
  • the optical element 10 may be used as a part of the transfer foil.
  • the transfer foil includes an optical element 10 and a support layer that supports the optical element 10 in a peelable manner.
  • the optical element 10 may be used while being supported on an article.
  • the optical element 10 may be supported by a plastic card or the like.
  • the optical element 10 may be used by being cut into paper.
  • the optical element 10 may be crushed into flakes and used as a component of a pigment.
  • the optical element 10 may be used for purposes other than forgery prevention.
  • the optical element 10 can be used as a toy, a learning material, or a decoration.
  • a laminated body of the relief structure forming layer 110, the reflective material layer 120, and the mask layer 130 was manufactured as follows.
  • urethane (meth) acrylate 50.0 parts by mass of urethane (meth) acrylate, 30.0 parts by mass of methyl ethyl ketone, 20.0 parts by mass of ethyl acetate, and 1.5 parts by mass of photoinitiator as materials for the ultraviolet curable resin
  • a composition containing an agent was prepared.
  • the urethane (meth) acrylate a polyfunctional one having a molecular weight of 6000 was used.
  • photoinitiator “Irgacure 184” manufactured by Ciba Specialty was used.
  • the above composition was applied on a transparent PET film having a thickness of 23 ⁇ m by a gravure printing method so that the dry film thickness was 1 ⁇ m.
  • the original plate provided with a plurality of convex portions was supported on the cylindrical surface of the plate cylinder, and ultraviolet rays were irradiated from the PET film side while pressing the original plate against the previous coating film. Thereby, said ultraviolet curable resin was hardened.
  • the press pressure was 2 kgf / cm 2
  • the press temperature was 80 ° C.
  • the press speed was 10 m / min.
  • the ultraviolet irradiation was performed using a high-temperature mercury lamp at an intensity of 300 mJ / cm 2 .
  • first region R1 of the relief structure forming layer 110 a plurality of regularly arranged grooves were formed.
  • the cross-sectional shape of these grooves was V-shaped.
  • the pitch of these grooves was 1000 nm.
  • a plurality of concave portions arranged in a square lattice shape were formed on the entire second region R2.
  • the shape of these recesses was a pyramid shape.
  • the minimum distance between the centers of these recesses was 333 nm.
  • the reflective material layer 120 was formed. At this time, the set film thickness of the reflective material layer 120 was 50 nm.
  • MgF 2 was vacuum deposited as a second material on the main surface of the reflective material layer 120 opposite to the relief structure forming layer 110.
  • the mask layer 130 was formed.
  • the set film thickness of MgF 2 was set to 20 nm.
  • laminated body LB1 laminated body thus manufactured.
  • laminated body LB2 (Manufacture of laminated body LB2; comparative example) A laminated body of the relief structure forming layer 110 and the reflective material layer 120 was manufactured in the same manner as the laminated body LB1 except that the formation of the mask layer 130 was omitted.
  • this laminate is referred to as “laminate LB2”.
  • the laminates LB1 and LB2 were subjected to an etching process using an aqueous sodium hydroxide solution.
  • the temperature of the sodium hydroxide aqueous solution was sequentially changed, and the following evaluation was performed for each case. That is, the time T1 until the transmittance of the portion corresponding to the first region R1 in the laminated body becomes 20% and the time T2 until the transmittance of the portion corresponding to the second region R2 becomes 80%. And measured. The result is shown in FIG.
  • concentration of sodium hydroxide aqueous solution was 0.1 mol / L, and the liquid temperature was 60 degreeC, 50 degreeC, 40 degreeC, 30 degreeC, and 25 degreeC in order from the higher one.
  • FIG. 18 is a graph showing an example of the relationship between the presence / absence of a mask layer and the etching speed.
  • the data on each curve are arranged so that the temperature of the sodium hydroxide aqueous solution decreases in a direction away from the origin.
  • the ratio T1 / T2 was substantially equal to 1 in the region where the temperature of the aqueous sodium hydroxide solution was high. That is, in this region, the etching selectivity was low. And in the area
  • the laminate LB1 had a large ratio T1 / T2 regardless of the temperature of the aqueous sodium hydroxide solution. That is, the laminate LB1 had high etching selectivity regardless of the temperature of the aqueous sodium hydroxide solution. Therefore, it was found that when the laminate LB1 is used, the optical element can be stably manufactured in a short etching processing time. That is, in this case, it has been found that both productivity and stability in the production of the optical element can be achieved.
  • optical elements OD1 to OD9 were manufactured as follows.
  • Example 1 Production of optical element OD1
  • the laminated body LB1 described above was subjected to an etching process. Specifically, this laminate LB1 was exposed to a sodium hydroxide aqueous solution having a concentration of 0.1 mol / L and a liquid temperature of 60 ° C. for 7 seconds. As a result, portions of the reflective material layer 120 and the mask layer 130 corresponding to the second region R2 were removed.
  • optical element OD1 The optical element 10 was manufactured as described above. Hereinafter, the optical element 10 is referred to as “optical element OD1”.
  • the optical element OD1 includes a relief structure forming layer 110, a first layer 120 ′ covering only the entire first region R1 out of the regions R1 and R2, and a second layer 130 covering the entire first layer 120 ′. It had the laminated structure which consists of '.
  • the average film thickness of the first layer 120 ′ was 50 nm.
  • the average film thickness of 2nd layer 130 ' was 20 nm.
  • optical element OD2 (Example 2: Production of optical element OD2) Except that the distance between the minimum centers of the plurality of recesses provided in the second region R2 is 200 nm, the width of the opening of these recesses is 200 nm, and the depth is 160 nm, the optical element is the same as the optical element OD1. A device was manufactured. Hereinafter, this optical element is referred to as “optical element OD2”.
  • the average film thickness of the first layer 120 ′ was 50 nm.
  • the average film thickness of 2nd layer 130 ' was 20 nm.
  • Example 3 Production of optical element OD3
  • the pitch of the plurality of grooves provided in the first region R1 is set to 300 nm
  • the width of the openings of these grooves is set to 300 nm
  • the depth is set to 100 nm
  • the minimum center distance between the plurality of recesses provided in the second region R2 is set to 375 nm.
  • the optical element was manufactured in the same manner as the optical element OD1, except that the width of the opening of these concave portions was 375 nm and the depth was 300 nm.
  • this optical element is referred to as “optical element OD3”.
  • the average film thickness of the first layer 120 ′ was 50 nm.
  • the average film thickness of 2nd layer 130 ' was 20 nm.
  • optical element OD4 (Example 4: Production of optical element OD4) In the same manner as in the optical element OD3, except that the minimum distance between the centers of the plurality of recesses provided in the second region R2 is 300 nm, the width of the opening of these recesses is 300 nm, and the depth is 300 nm. A device was manufactured. Hereinafter, this optical element is referred to as “optical element OD4”.
  • the average film thickness of the first layer 120 ′ was 50 nm.
  • the average film thickness of 2nd layer 130 ' was 20 nm.
  • Example 5 Production of optical element OD5
  • the relief structure forming layer 110 having a main surface further including the third region R3 in addition to the regions R1 and R2 was formed in the same manner as described for the stacked body LB1.
  • the regions R1 and R2 in the relief structure forming layer 110 the same configuration as that of the stacked body LB1 was adopted.
  • region R3 the structure similar to 2nd area
  • the reflective material layer 120 and the mask layer 130 were formed in the same manner as described above for the stacked body LB1.
  • the coating layer 140 facing the entire third region R3 and only a part of the first region R1 among the regions R1 to R3 was formed using a gravure printing method.
  • optical element OD5 the optical element thus obtained is referred to as “optical element OD5”.
  • the average film thickness of the first layer 120 ′ was 50 nm.
  • the average film thickness of 2nd layer 130 ' was 20 nm.
  • optical element OD6 Production of optical element OD6; comparative example
  • laminating LB1 instead of laminating LB1
  • laminating LB1 instead of exposing it to an aqueous sodium hydroxide solution having a concentration of 0.1 mol / L and a liquid temperature of 60 ° C. for 7 seconds, the concentration is
  • An optical element was manufactured in the same manner as described for the optical element OD1 except that it was exposed to an aqueous solution of sodium hydroxide having a liquid temperature of 0.1 mol / L and a liquid temperature of 30 ° C. for 60 seconds. .
  • this optical element is referred to as “optical element OD6”.
  • optical element OD7 Production of optical element OD7; comparative example
  • An optical element was manufactured in the same manner as described for the optical element OD6 except that the setting film thickness of the reflective material layer 120 was 20 nm.
  • this optical element is referred to as “optical element OD7”.
  • optical element OD8 Production of optical element OD8; comparative example
  • An optical element was manufactured in the same manner as described for the optical element OD6 except that the setting film thickness of the reflective material layer 120 was set to 80 nm.
  • this optical element is referred to as “optical element OD8”.
  • Example 9 Production of optical element OD9; comparative example
  • an optical element was manufactured in the same manner as described for the optical element OD1 except that the mask layer 130 was formed as follows.
  • the mask layer 130 is formed by using the gravure printing method instead of forming the entire reflective material layer 120 by using the vapor deposition method. Specifically, first, a composition comprising 50.0 parts by mass of vinyl chloride-vinyl acetate copolymer resin, 30.0 parts by mass of methyl ethyl ketone, and 20.0 parts by mass of ethyl acetate was prepared. Then, this composition was gravure-printed on the pattern which the part corresponding to 1st area
  • the optical element thus obtained is referred to as “optical element OD9”.
  • the selectivity for removing the reflective material layer 120 was evaluated for each of the optical elements OD1 to OD9. Specifically, for each of the optical elements OD1 to OD9, the visible light transmittance of the portion corresponding to the regions R1 and R2 was measured. An optical element whose visible light transmittance corresponding to the first region R1 is 20% or less and whose visible light transmittance corresponding to the second region R2 is 90% or more is “OK”. The others were evaluated as “NG”. The results are shown in Table 1 below.
  • the selectivity for removing the reflective material layer 120 was insufficient. That is, in these optical elements OD6 to OD8, the visible light transmittance of the portion corresponding to the first region R1 of the optical elements is greater than 20%, or the visible light transmittance of the portion corresponding to the second region R2 is 90%. It was smaller. On the other hand, in the optical elements OD1 to OD5 and OD9, the selectivity for removing the reflective material layer 120 was high.
  • the positional accuracy of the reflective layer 120 was evaluated for each of the optical elements OD1 to OD9. Specifically, the maximum value of the shortest distance between the boundary between the regions R1 and R2 and the contour of the first layer 120 ′ was measured for each optical element. And when this value was less than 20 ⁇ m, it was evaluated as “OK”, and when this value was 20 ⁇ m or more, it was evaluated as “NG”. The results are shown in Table 1 above.
  • the positional accuracy of the reflective layer 120 was insufficient. That is, in the optical element OD9, the maximum value of the shortest distance between the boundary between the regions R1 and R2 and the contour of the first layer 120 ′ is 20 ⁇ m or more. On the other hand, in the optical elements OD1 to OD8, the positional accuracy of the reflective layer 120 was high.
  • both the selectivity for removing the reflective material layer 120 and the positional accuracy of the first layer 120 ′ were excellent.
  • DESCRIPTION OF SYMBOLS 10 Optical element 110 ... Relief structure formation layer, 120 ... Reflective material layer, 120 '... 1st layer, 130 ... Mask layer, 130' ... 2nd layer, 140 ... Covering layer, DP1 ... Display part, DP2 ... Display Part, DP3 ... display part, DPF ... display part, DSP ... display part, DSP1 ... display part, DSP2 ... display part, P1 ... first part, P2 ... second part, R1 ... first area, R2 ... second area , R3 ... third region, SR1 ... first subregion, SR2 ... second subregion.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Credit Cards Or The Like (AREA)
  • Holo Graphy (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

 反射層を安定に且つ高い位置精度で形成することを可能とする光学技術を提供する。本発明に係る光学素子は、レリーフ構造形成層と、前記レリーフ構造形成層の材料とは屈折率が異なる第1材料からなる第1層と、前記第1材料とは異なる第2材料からなり、前記第1層を被覆し、前記第2領域の見かけ上の面積に対する前記第2領域の位置における前記第2材料の量の比は、ゼロであるか又は前記第2サブ領域の見かけ上の面積に対する前記第2サブ領域の位置における前記第2材料の量の比と比較してより小さい第2層とを含んでいる。

Description

光学素子及びその製造方法
 本発明は、例えば、偽造防止効果、装飾効果及び/又は美的効果を提供する光学技術に関する。
 有価証券、証明書、ブランド品及び個人認証媒体等には、偽造が困難であることが望まれる。そのため、このような物品には、偽造防止効果に優れた光学素子を支持させることがある。
 このような光学素子の多くは、回折格子、ホログラム及びレンズアレイ等の微細構造を含んでいる。これら微細構造は、解析することが困難である。また、これら微細構造を含んだ光学素子を製造するためには、電子線描画装置等の高価な製造設備が必要である。それゆえ、このような光学素子は、優れた偽造防止効果を発揮し得る。
 これら光学素子は、通常、微細構造を含んだ主面を有するレリーフ構造形成層と、その上に設けられた反射層とを含んでいる。この場合、偽造防止効果を更に向上させるべく、反射層を、上記主面の一部のみにパターン状に形成することがある。例えば、上記主面上に、反射層をその輪郭がマイクロ文字を構成するように設けると、回折光を射出するマイクロ文字状のパターンが得られる。
 反射層をパターン状に形成するための方法としては、例えば、フォトリソグラフィー法が挙げられる(例えば、特許文献1参照)。この方法によると、パターン状に形成された反射層を、比較的高精細に設けることができる。
 この方法では、レリーフ構造形成層とマスクとの間の位置合わせが必要である。しかしながら、高い生産性と高い位置精度とを同時に達成することは、不可能であるか又は極めて困難である。例えば、この方法では、上記の目標位置の輪郭と反射層の輪郭との間に、100μm以上の位置ズレを生ずることもある。
 他方、特許文献2では、反射層を高い位置精度で形成すべく、以下の方法を採用している。
 第1の方法では、まず、深さ幅比が大きな凹凸構造を備えた「第一の領域」と、平坦であるか又は深さ幅比がより小さな凹凸構造を備えた「第二の領域」とを含んだレリーフ構造形成層を準備する。次に、このレリーフ構造形成層の上に、金属反射層を均一な表面密度で形成する。その後、得られた積層体をエッチング処理に供する。
 金属反射層のうち「第一の領域」に対応した部分は、「第二の領域」に対応した部分と比較して、エッチングに対する耐性がより低い。従って、上記のエッチング処理により、金属反射層のうち「第二の領域」に対応した部分が完全に除去される前に、「第一の領域」に対応した部分を除去することができる。即ち、「第二の領域」の上のみに、金属反射層を形成することができる。
 しかしながら、この方法では、金属反射層のうち「第二の領域」に対応した部分の一部も、エッチング処理により除去される。それゆえ、金属反射層のうち「第二の領域」に対応した部分の膜厚が過度に小さくなり、当該部分の反射率が不十分となることがある。或いは、金属反射層のうち「第二の領域」に対応した部分の膜厚に、大きなムラが生じることがある。即ち、この方法では、金属反射層を安定に形成することが困難である。
 第2の方法では、上記積層体のうち「第一の領域」に対応した部分と「第二の領域」に対応した部分との透過率の差を利用する。具体的には、積層体のうち「第一の領域」に対応した部分の透過率が「第二の領域」に対応した部分のそれと比較してより大きいことを利用する。
 即ち、まず、レリーフ構造形成層と金属反射層との積層体を準備し、金属反射層上に感光性層を形成する。その後、積層体の全面をレリーフ構造形成層側から露光する。こうすると、上述した透過率の差異に起因して、感光性層のうち「第一の領域」に対応した部分において、より高い効率で光反応を生じさせることができる。次いで、これを適切な溶剤等を用いて処理することにより、感光性層のうち「第一の領域」及び「第二の領域」の何れか一方に対応した部分を除去する。
 次に、部分的に除去された感光性層をマスクとして用いて、金属反射層のエッチング処理を行う。このようにして、金属反射層のうち「第一の領域」及び「第二の領域」の何れか一方に対応した部分のみを除去する。
 しかしながら、通常、上記の透過率の差異は小さいので、感光性層のうち「第二の領域」に対応した部分においても、上記の光反応が進行する。それゆえ、感光性層のうち「第一の領域」及び「第二の領域」に対応した部分の何れか一方のみで上記の反応を生じさせることは、現実的には不可能であるか又は極めて困難である。従って、この方法を用いて金属反射層を高い位置精度で形成することも、実際には不可能であるか又は極めて困難である。
 また、この方法は、感光性層の露光プロセスを必要とする。それゆえ、この方法は、コスト及び生産性の面で不利である。
特開2003―255115号公報 特表2008-530600号公報
 本発明の目的は、反射層を安定に且つ高い位置精度で形成することを可能とする光学技術を提供することにある。
 本発明の第1側面によると、互いに隣接した第1及び第2領域を含んだ主面を有し、前記第1領域は第1及び第2サブ領域を含み、前記第1サブ領域は、前記第2領域と隣接し、前記第1及び第2領域間の境界に沿って延びており、前記第2サブ領域は前記第1サブ領域を間に挟んで前記第2領域と隣接し、前記第2領域は、複数の凹部又は凸部が設けられ、前記第1領域と比較して見かけ上の面積に対する表面積の比がより大きいレリーフ構造形成層と、前記レリーフ構造形成層の材料とは屈折率が異なる第1材料からなり、少なくとも前記第2サブ領域を被覆し、前記第2サブ領域に対応した部分は前記第2サブ領域の表面形状に対応した表面形状を有しており、前記第2領域の見かけ上の面積に対する前記第2領域の位置における前記第1材料の量の比は、ゼロであるか又は前記第2サブ領域の見かけ上の面積に対する前記第2サブ領域の位置における前記第1材料の量の比と比較してより小さい第1層と、前記第1材料とは異なる第2材料からなり、前記第1層を被覆し、前記第2領域の見かけ上の面積に対する前記第2領域の位置における前記第2材料の量の比は、ゼロであるか又は前記第2サブ領域の見かけ上の面積に対する前記第2サブ領域の位置における前記第2材料の量の比と比較してより小さい第2層とを具備した光学素子が提供される。
 本発明の第2側面によると、互いに隣接した第1及び第2領域を含んだ主面を有し、前記第2領域は、複数の凹部又は凸部が設けられ、前記第1領域と比較して見かけ上の面積に対する表面積の比がより大きいレリーフ構造形成層を形成することと、前記レリーフ構造形成層の材料とは屈折率が異なる第1材料を前記第1及び第2領域の全体に対して気相堆積させて、前記第1及び第2領域の表面形状に対応した表面形状を有しているか又は前記第1領域に対応した部分では前記第1領域の表面形状に対応した表面形状を有しており且つ前記第2領域に対応した部分では前記複数の凹部又は凸部の配置に対応して部分的に開口した反射材料層を形成することと、前記第1材料とは異なる第2材料を前記反射材料層に対して気相堆積させて、前記第1及び第2領域の表面形状に対応した表面形状を有しているか又は前記第1領域に対応した部分では前記第1領域の表面形状に対応した表面形状を有しており且つ前記第2領域に対応した部分では前記複数の凹部又は凸部の配置に対応して部分的に開口したマスク層を形成することと、前記マスク層を前記第1材料との反応を生じ得る反応性ガス又は液に曝して、少なくとも前記第2領域の位置で前記反応を生じさせ、これにより、前記第1材料からなる第1層と前記第2材料からなる第2層とを得ることとを含んだ光学素子の製造方法が提供される。
本発明の一態様に係る光学素子の一例を概略的に示す平面図。 図1に示す光学素子のII-II線に沿った断面図。 図1及び図2に示す光学素子の製造方法を概略的に示す断面図。 図1及び図2に示す光学素子の製造方法を概略的に示す断面図。 図1及び図2に示す光学素子の製造方法を概略的に示す断面図。 図1及び図2に示す光学素子の製造方法を概略的に示す断面図。 一変形例に係る光学素子を概略的に示す平面図。 図7に示す光学素子のVIII-VIII線に沿った断面図。 他の変形例に係る光学素子を概略的に示す平面図。 図9に示す光学素子のX-X線に沿った断面図。 本発明の他の態様に係る光学素子の一例を概略的に示す平面図。 図11に示す光学素子のXII-XII線に沿った断面図。 図11及び図12に示す光学素子の製造方法を概略的に示す断面図。 図11及び図12に示す光学素子の製造方法を概略的に示す断面図。 図11及び図12に示す光学素子の製造方法を概略的に示す断面図。 図11及び図12に示す光学素子の製造方法を概略的に示す断面図。 図11及び図12に示す光学素子の製造方法を概略的に示す断面図。 マスク層の有無とエッチングの速さとの関係の一例を示すグラフ。
 以下、本発明の態様について、図面を参照しながら詳細に説明する。なお、各図において、同様又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する説明は省略する。
 図1は、本発明の一態様に係る光学素子の一例を概略的に示す平面図である。図2は、図1に示す光学素子のII-II線に沿った断面図である。図1及び図2では、光学素子10の主面に平行であり且つ互いに直交する方向をX方向及びY方向とし、光学素子10の主面に垂直な方向をZ方向としている。また、図1では、光学素子10のうち後述する第1領域R1に対応した部分を表示部DP1とし、後述する第2領域R2に対応した部分を表示部DP2としている。
 図1及び図2に示す光学素子10は、レリーフ構造形成層110と、第1層120´と、第2層130´とを備えている。
 レリーフ構造形成層110の一方の主面には、レリーフ構造が設けられている。第1層120´は、レリーフ構造形成層110の先の主面を部分的に被覆している。第2層130´は、第1層120´を被覆している。なお、光学素子10の構造等については、後で詳しく説明する。
 次に、図3乃至図6を参照しながら、図1及び図2に示す光学素子10の製造方法について説明する。
 図3乃至図6は、図1及び図2に示す光学素子の製造方法を概略的に示す断面図である。
 この方法では、まず、図3に示すように、互いに隣接した第1領域R1及び第2領域R2を含んだ主面を有したレリーフ構造形成層110を準備する。
 第1領域R1は、平坦であるか、又は、凹構造及び/又は凸構造が設けられている。凹構造及び凸構造は、それぞれ、複数の凹部及び複数の凸部からなる。第1領域R1に複数の凹部又は凸部が設けられている場合、これら複数の凹部又は凸部は、一次元的に配列していてもよく、二次元的に配列していてもよい。また、この場合、これら複数の凹部又は凸部は、規則的に配列していてもよく、不規則に配列していてもよい。図3には、第1領域R1に、複数の凹部として、一次元的に且つ規則的に配列した複数の溝が設けられている場合を描いている。これら複数の溝は、典型的には、白色光で照明したときに回折光を射出する回折格子又はホログラムを形成している。
 これら複数の溝の長さ方向に垂直な断面の形状は、例えば、V字形状及びU字形状等の先細り形状とするか又は矩形状とする。図3には、一例として、上記の断面形状がV字形状である場合を描いている。
 第1領域R1に設ける複数の溝の開口部の幅は、例えば100nm乃至3000nmの範囲内とする。また、これら複数の溝の深さは、例えば20nm乃至1500nmの範囲内とする。これら複数の溝の開口部の幅に対する深さの比の平均値は、例えば0.5以下とし、典型的には0.05乃至0.3の範囲内とする。
 第2領域R2は、凹構造及び/又は凸構造が設けられている。これら凹構造及び凸構造は、それぞれ、複数の凹部及び複数の凸部からなる。これら複数の凹部又は凸部は、一次元的に配列していてもよく、二次元的に配列していてもよい。また、これら複数の凹部又は凸部は、規則的に配列していてもよく、不規則に配列していてもよい。図3には、第2領域R2に、複数の凹部として、一次元的に且つ規則的に配列した複数の溝が設けられている場合を描いている。
 これら複数の溝の長さ方向に垂直な断面の形状は、例えば、V字形状及びU字形状等の先細り形状とするか又は矩形状とする。図3には、一例として、上記の断面形状がV字形状である場合を描いている。
 第2領域R2は、第1領域R1と比較して、見かけ上の面積に対する表面積の比がより大きい。なお、ここでは、領域の「見かけ上の面積」とは、当該領域に平行な平面への当該領域の正射影の面積、即ち、凹構造及び凸構造を無視した当該領域の面積を意味することとする。また、領域の「表面積」とは、凹構造及び凸構造を考慮した当該領域の面積を意味することとする。
 第1領域R1に複数の凹部又は凸部が設けられている場合、第2領域R2の複数の凹部又は凸部は、典型的には、第1領域R1の複数の凹部又は凸部と比較して、凹部の開口部の径若しくは幅に対する深さの比の平均値又は凸部の底部の径若しくは幅に対する高さの比の平均値がより大きい。図3に示す例では、第2領域R2に設けられた複数の溝は、第1領域R1に設けられた複数の溝と比較して、溝の開口部の幅に対する深さの比がより大きい。
 第2領域R2に設ける複数の溝の開口部の幅は、例えば100nm乃至3000nmの範囲内とする。また、これら複数の溝の深さは、例えば80nm乃至6000nmの範囲内とする。領域R1及びR2の双方に複数の溝が設けられている場合、第2領域R2に設ける複数の溝の開口部の幅に対する深さの比の平均値は、第1領域R1に設けた複数の溝の開口部の幅に対する深さの比の平均値と比較してより大きくする。第2領域R2に設ける複数の溝の開口部の幅に対する深さの比の平均値は、例えば0.8乃至2.0の範囲内とし、典型的には0.8乃至1.2の範囲内とする。この値が過度に大きいと、レリーフ構造形成層110の生産性が低下する場合がある。
 レリーフ構造形成層110は、例えば、微細な凸部を設けた金型を樹脂に押し付けることにより形成することができる。この際、これら凸部の形状は、領域R2又は領域R1及びR2の双方に設ける凹部の形状に対応した形状とする。
 レリーフ構造形成層110は、例えば、基材上に熱可塑性樹脂を塗布し、これに上記の凸部が設けられた原版を、熱を印加しながら押し当てる方法により形成する。この場合、上記の熱可塑性樹脂としては、例えば、アクリル系樹脂、エポキシ系樹脂、セルロース系樹脂、ビニル系樹脂、これらの混合物、又は、これらの共重合物を使用する。
 或いは、レリーフ構造形成層110は、基材上に熱硬化性樹脂層を塗布し、これに上記の凸部が設けられた原版を押し当てながら熱を印加し、その後、原版を取り除く方法により形成してもよい。この場合、熱硬化性樹脂としては、例えば、ウレタン樹脂、メラミン系樹脂、エポキシ樹脂、フェノール系樹脂、これらの混合物、又は、これらの共重合物を使用する。なお、このウレタン樹脂は、例えば、反応性水酸基を有したアクリルポリオール及びポリエステルポリオール等に、架橋剤としてポリイソシアネートを添加して、これらを架橋させることにより得られる。
 或いは、レリーフ構造形成層110は、基材上に放射線硬化樹脂を塗布し、これに原版を押し当てながら紫外線等の放射線を照射して上記材料を硬化させ、その後、原版を取り除く方法により形成してもよい。或いは、レリーフ構造形成層110は、基材と原版との間に上記組成物を流し込み、放射線を照射して上記材料を硬化させ、その後、原版を取り除く方法により形成してもよい。
 放射線硬化樹脂は、典型的には、重合性化合物と開始剤とを含んでいる。
 重合性化合物としては、例えば、光ラジカル重合が可能な化合物を使用する。光ラジカル重合が可能な化合物としては、例えば、エチレン性不飽和結合又はエチレン性不飽和基を有したモノマー、オリゴマー又はポリマーを使用する。或いは、光ラジカル重合が可能な化合物として、1,6-ヘキサンジオール、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールペンタアクリレート及びジペンタエリスリトールヘキサアクリレート等のモノマー、エポキシアクリレート、ウレタンアクリレート及びポリエステルアクリレート等のオリゴマー、又は、ウレタン変性アクリル樹脂及びエポキシ変性アクリル樹脂等のポリマーを使用してもよい。
 重合性化合物として光ラジカル重合が可能な化合物を使用する場合、開始剤としては、光ラジカル重合開始剤を使用する。この光ラジカル重合開始剤としては、例えば、ベンゾイン、ベンゾインメチルエーテル及びベンゾインエチルエーテル等のベンゾイン系化合物、アントラキノン及びメチルアントラキノン等のアントラキノン系化合物、アセトフェノン、ジエトキシアセトフェノン、ベンゾフェノン、ヒドロキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、α-アミノアセトフェノン及び2-メチル-1-(4-メチルチオフェニル)-2-モルホリノプロパン-1-オン等のフェニルケトン系化合物、ベンジルジメチルケタール、チオキサントン、アシルホスフィンオキサイド、又は、ミヒラーズケトンを使用する。
 或いは、重合性化合物として、光カチオン重合が可能な化合物を使用してもよい。光カチオン重合が可能な化合物としては、例えば、エポキシ基を備えたモノマー、オリゴマー若しくはポリマー、オキセタン骨格含有化合物、又は、ビニルエーテル類を使用する。
 重合性化合物として光カチオン重合が可能な化合物を使用する場合、開始剤としては、光カチオン重合開始剤を使用する。この光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩、芳香族スルホニウム塩、芳香族ホスホニウム塩又は混合配位子金属塩を使用する。
 或いは、重合性化合物として、光ラジカル重合が可能な化合物と光カチオン重合が可能な化合物との混合物を使用してもよい。この場合、開始剤としては、例えば、光ラジカル重合開始剤と光カチオン重合開始剤との混合物を使用する。或いは、この場合、光ラジカル重合及び光カチオン重合の双方の開始剤として機能し得る重合開始剤を使用してもよい。このような開始剤としては、例えば、芳香族ヨードニウム塩又は芳香族スルホニウム塩を使用する。
 なお、放射線硬化樹脂に占める開始剤の割合は、例えば、0.1乃至15質量%の範囲内とする。
 放射線硬化樹脂は、増感色素、染料、顔料、重合禁止剤、レベリング剤、消泡剤、タレ止め剤、付着向上剤、塗面改質剤、可塑剤、含窒素化合物、エポキシ樹脂等の架橋剤、離型剤又はこれらの組み合わせを更に含んでいてもよい。また、放射線硬化樹脂には、その成形性を向上させるべく、非反応性の樹脂を更に含有させてもよい。この非反応性の樹脂としては、例えば、上記の熱可塑性樹脂及び/又は熱硬化性樹脂を使用することができる。
 レリーフ構造形成層110の形成に用いる上記の原版は、例えば、電子線描画装置又はナノインプリント装置を用いて製造する。こうすると、上述した複数の凹部又は凸部を高い精度で形成することができる。なお、通常は、原版の凹凸構造を転写して反転版を製造し、この反転版の凹凸構造を転写して複製版を製造する。そして、必要に応じ、複製版を原版として用いて反転版を製造し、この反転版の凹凸構造を転写して複製版を更に製造する。実際の製造では、通常、このようにして得られる複製版を使用する。
 レリーフ構造形成層110は、典型的には、基材と、その上に形成された樹脂層とを含んでいる。この基材としては、典型的には、フィルム基材を使用する。このフィルム基材としては、例えば、ポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム及びポリプロピレン(PP)フィルム等のプラスチックフィルムを使用する。或いは、基材として、紙、合成紙、プラスチック複層紙又は樹脂含浸紙を使用してもよい。なお、基材は、省略してもよい。
 樹脂層は、例えば、上述した方法により形成される。樹脂層の厚みは、例えば0.1μm乃至10μmの範囲内とする。この厚みが過度に大きいと、加工時の加圧等による樹脂のはみ出し及び/又は皺の形成が生じ易くなる。この厚みが過度に小さいと、所望の凹構造及び/又は凸構造の形成が困難となる場合がある。また、樹脂層の厚みは、その主面に設けるべき凹部又は凸部の深さ又は高さと等しくするか又はそれより大きくする。この厚みは、例えば、凹部又は凸部の深さ又は高さの1乃至10倍の範囲内とし、典型的には、その3乃至5倍の範囲内とする。
 なお、レリーフ構造形成層110の形成は、例えば、特許第4194073号公報に開示されている「プレス法」、実用新案登録第2524092号公報に開示されている「キャスティング法」、又は、特開2007-118563号公報に開示されている「フォトポリマー法」を用いて行ってもよい。
 次に、図4に示すように、レリーフ構造形成層110の材料とは屈折率が異なる第1材料を、領域R1及びR2の全体に対して気相堆積させる。これにより、レリーフ構造形成層110の領域R1及びR2を含んだ主面上に、反射材料層120を形成する。
 この第1材料としては、例えば、レリーフ構造形成層110の材料との屈折率の差が0.2以上である材料を使用する。この差が小さいと、レリーフ構造形成層110と後述する第1層120´との界面における反射が生じ難くなる場合がある。
 第1材料としては、典型的には、Al、Sn、Cr、Ni、Cu、Au、Ag及びこれらの合金からなる群より選択される少なくとも1つの金属材料を使用する。
 或いは、透明性が比較的高い第1材料として、以下に列挙するセラミック材料又は有機ポリマー材料を使用してもよい。なお、以下に示す化学式又は化合物名の後に記載した括弧内の数値は、各材料の屈折率を意味している。
 即ち、セラミック材料としては、例えば、Sb23(3.0)、Fe23(2.7)、TiO2(2.6)、CdS(2.6)、CeO2(2.3)、ZnS(2.3)、PbCl2(2.3)、CdO(2.2)、Sb23(5)、WO3(5)、SiO(5)、Si23(2.5)、In23(2.0)、PbO(2.6)、Ta23(2.4)、ZnO(2.1)、ZrO2(5)、MgO(1)、SiO2(1.45)、Si22(10)、MgF2(4)、CeF3(1)、CaF2(1.3~1.4)、AlF3(1)、Al23(1)又はGaO(2)を使用することができる。 
 有機ポリマー材料としては、例えば、ポリエチレン(1.51)、ポリプロピレン(1.49)、ポリテトラフルオロエチレン(1.35)、ポリメチルメタクリレート(1.49)又はポリスチレン(1.60)を使用することができる。
 第1材料の気相堆積は、例えば、真空蒸着法、スパッタリング法又は化学蒸着法(CVD法)を用いて行う。
 この気相堆積は、レリーフ構造形成層110の主面に平行な面内方向について均一な密度で行う。具体的には、この気相堆積は、第1領域R1の見かけ上の面積に対する第1領域R1の位置における第1材料の量の比と、第2領域R2の見かけ上の面積に対する第2領域R2の位置における第1材料の量の比とが、互いに等しくなるようにして行う。
 また、この気相堆積では、典型的には、レリーフ構造形成層110の主面が平坦面のみからなると仮定した場合の膜厚(以下、設定膜厚という)を、以下のように定める。即ち、この設定膜厚は、反射材料層120が以下の要件を満足するようにして定める。
 第1に、反射材料層120のうち第1領域R1に対応した部分が、第1領域R1の表面形状に対応した表面形状を有するようにする。図4に示す例では、この部分は、第1領域R1に設けられた複数の溝に対応した表面形状を有した連続膜を形成している。
 第2に、反射材料層120のうち第2領域R2に対応した部分が、第2領域R2の表面形状に対応した表面形状を有するか、又は、第2領域R2に設けられた複数の凹部又は凸部の配置に対応して部分的に開口しているようにする。図4には、一例として、前者の場合を描いている。即ち、図4に示す例では、この部分は、第2領域R2に設けられた複数の溝に対応した表面形状を有した連続膜を形成している。
 なお、上述したように、第2領域R2は、第1領域R1と比較して、見かけ上の面積に対する表面積の比がより大きい。従って、反射材料層120が領域R1及びR2の表面形状に対応した表面形状を有するように上記の設定膜厚を定めた場合、反射材料層120のうち第2領域R2に対応した部分は、第1領域R1に対応した部分と比較して、平均膜厚がより小さくなる。
 なお、ここでは、層の「平均膜厚」とは、当該層の一方の面上の各点と当該層の他方の面に下ろした垂線の足との間の距離の平均値を意味することとする。
 また、上記の設定膜厚を更に小さな値に定めることにより、第1領域R1に対応した部分では第1領域R1の表面形状に対応した表面形状を有しており且つ第2領域R2に対応した部分では複数の凹部又は凸部の配置に対応して部分的に開口した反射材料層120を形成することができる。
 反射材料層120の設定膜厚は、典型的には、第2領域R2に設けられた複数の凹部又は凸部の深さ又は高さと比較してより小さくする。また、第1領域R1に複数の凹部又は凸部が設けられている場合、この設定膜厚は、典型的には、これらの深さ又は高さと比較してより小さくする。
 具体的には、反射材料層120の設定膜厚は、例えば5nm乃至500nmの範囲内とし、典型的には30nm乃至300nmの範囲内とする。この設定膜厚が過度に小さいと、レリーフ構造形成層110と後述する第1層120´との界面における反射が生じ難くなる場合がある。この設定膜厚が過度に大きいと、反射材料層120を上記の要件を満足するように形成することが困難となる場合がある。
 反射材料層120のうち第1領域R1に対応した部分の平均膜厚は、例えば5nm乃至500nmの範囲内とし、典型的には30nm乃至300nmの範囲内とする。この平均膜厚が過度に小さいと、レリーフ構造形成層110と後述する第1層120´との界面における反射が生じ難くなる場合がある。この平均膜厚が過度に大きいと、光学素子10の生産性が低下する場合がある。
 次いで、図5に示すように、反射材料層120の材料とは異なる第2材料を、反射材料層120に対して気相堆積させる。これにより、反射材料層120を間に挟んでレリーフ構造形成層110と向き合ったマスク層130を形成する。
 この第2材料としては、典型的には、無機物を使用する。この無機物としては、例えば、MgF2、Sn、Cr、ZnS、ZnO、Ni、Cu、Au、Ag、TiO2、MgO、SiO及び Al23が挙げられる。特には、第2材料としてMgF2を使用した場合、基材の曲げや衝撃に対するマスク層130及び第2層130´の追従性及び耐擦傷性を更に向上させることができる。
 或いは、この第2材料として、有機物を使用してもよい。この有機物としては、例えば、重量平均分子量が1500以下の有機物を使用する。このような有機物としては、例えば、アクリレート、ウレタンアクリレート、エポキシアクリレート等の重合性化合物が挙げられる。或いは、このような有機化合物として、これら重合性化合物と開始剤とを混合し、放射線硬化樹脂として気相堆積した後に、放射線照射によって重合させたものを使用してもよい。
 或いは、第2材料として、金属アルコキシドを使用してもよい。或いは、第2材料として、金属アルコキシドを気相堆積した後、これを重合させたものを使用してもよい。この際、気相堆積の後、重合させる前に、乾燥処理を行ってもよい。
 第2材料の気相堆積は、例えば、真空蒸着法、スパッタリング法又はCVD法を用いて行う。
 この気相堆積は、レリーフ構造形成層110の主面に平行な面内方向について均一な密度で行う。具体的には、この気相堆積は、第1領域R1の見かけ上の面積に対する第1領域R1の位置における第2材料の量の比と、第2領域R2の見かけ上の面積に対する第2領域R2の位置における第2材料の量の比とが、互いに等しくなるようにして行う。
 また、この気相堆積では、マスク層130の設定膜厚を、以下のように定める。即ち、この設定膜厚は、マスク層130が以下の要件を満足するようにして定める。
 第1に、マスク層130のうち第1領域R1に対応した部分が、第1領域R1の表面形状に対応した表面形状を有するようにする。図5に示す例では、この部分は、第1領域R1に設けられた複数の溝に対応した表面形状を有した連続膜を形成している。
 第2に、マスク層130のうち第2領域R2に対応した部分が、第2領域R2の表面形状に対応した表面形状を有するか、又は、第2領域R2に設けられた複数の凹部又は凸部の配置に対応して部分的に開口しているようにする。図5には、一例として、後者の場合を描いている。即ち、図5に示す例では、この部分は、反射材料層120の上で、第2領域R2に設けられた複数の溝の配置に対応して部分的に開口した不連続膜を形成している。
 なお、上述したように、第2領域R2は、第1領域R1と比較して、見かけ上の面積に対する表面積の比がより大きい。従って、マスク層130が領域R1及びR2の表面形状に対応した表面形状を有するように上記の設定膜厚を定めた場合、マスク層130のうち第2領域R2に対応した部分は、第1領域R1に対応した部分と比較して、平均膜厚がより小さくなる。
 また、上記の設定膜厚を更に小さな値に定めることにより、第1領域R1に対応した部分では第1領域R1の表面形状に対応した表面形状を有しており且つ第2領域R2に対応した部分では複数の凹部又は凸部の配置に対応して部分的に開口したマスク層130を形成することができる。
 マスク層130の設定膜厚は、典型的には、第2領域R2に設けられた複数の凹部又は凸部の深さ又は高さと比較してより小さくする。また、第1領域R1に複数の凹部又は凸部が設けられている場合、この設定膜厚は、典型的には、これらの深さ又は高さと比較してより小さくする。そして、マスク層130の設定膜厚は、典型的には、反射材料層120の設定膜厚と比較してより小さくする。
 具体的には、マスク層130の設定膜厚は、例えば0.3nm乃至200nmの範囲内とし、典型的には3nm乃至80nmの範囲内とする。この設定膜厚が過度に小さいと、マスク層130のうち第1領域R1に対応した部分の平均膜厚が過度に小さくなり、反射材料層120のうち第1領域R1に対応した部分のマスク層130による保護が不十分となる場合がある。この設定膜厚が過度に大きいと、反射材料層120のうち第2領域R2に対応した部分のマスク層130による保護が過剰となる場合がある。
 マスク層130のうち第1領域R1に対応した部分の平均膜厚は、典型的には、反射材料層120のうち第1領域R1に対応した部分の平均膜厚と比較してより小さくする。
 マスク層130のうち第1領域R1に対応した部分の平均膜厚は、例えば0.3nm乃至200nmの範囲内とし、典型的には3nm乃至80nmの範囲内とする。この平均膜厚が過度に小さいと、反射材料層120のうち第1領域R1に対応した部分のマスク層130による保護が不十分となり、後述する第1層120´のうち第1領域R1に対応した部分の平均膜厚が過度に小さくなる場合がある。この設定膜厚が過度に大きいと、反射材料層120のうち第2領域R2に対応した部分のマスク層130による保護が過剰となる場合がある。
 続いて、マスク層130を、反射材料層120の材料との反応を生じ得る反応性ガス又は液に曝す。そして、少なくとも第2領域R2の位置で、反射材料層120の材料との上記反応を生じさせる。
 ここでは、反応性ガス又は液として、反射材料層120の材料を溶解可能なエッチング液を使用する場合について説明する。このエッチング液としては、典型的には、水酸化ナトリウム溶液、炭酸ナトリウム溶液及び水酸化カリウム溶液等のアルカリ性溶液を使用する。或いは、エッチング液として、塩酸、硝酸、硫酸及び酢酸等の酸性溶液を使用してもよい。
 図5に示すように、マスク層130のうち第1領域R1に対応した部分は連続膜を形成しているのに対し、第2領域R2に対応した部分は、部分的に開口した不連続膜を形成している。反射材料層120のうちマスク層130によって被覆されていない部分は、反射材料層120のうちマスク層130によって被覆された部分と比較して、反応性ガス又は液と接触し易い。従って、前者は、後者と比較してよりエッチングされ易い。
 また、反射材料層120のうちマスク層130によって被覆されていない部分が除去されると、反射材料層120には、マスク層130の開口に対応した開口が生じる。エッチングを更に続けると、反射材料層120のエッチングは、各開口の位置で面内方向に進行する。その結果、第2領域R2上では、反射材料層120のうちマスク層130を支持している部分が、その上のマスク層130と共に除去される。
 従って、エッチング液の濃度及び温度並びにエッチングの処理時間等を調整することにより、図6に示すように、反射材料層120のうち第2領域R2に対応した部分のみを除去することができる。これにより、領域R1及びR2のうち第1領域R1のみを被覆した第1層120´が得られる。
 以上のようにして、図1及び図2に示す光学素子10を得る。 
 上述した方法によって得られる光学素子10には、以下の特徴がある。
 第1層120´は、反射層であり、典型的には、上述した第1材料からなる。第1層120´は、領域R1及びR2のうち、第1領域R1のみを被覆している。即ち、第1層120´は、第1領域R1に対応した位置にのみ設けられている。また、第2領域R2の見かけ上の面積に対する第2領域R2の位置における第1材料の量の比は、ゼロである。
 第1層120´は、第1領域R1の表面形状に対応した表面形状を有している。図1及び図2に示す例では、第1層120´は、第1領域R1に設けられた複数の溝に対応した表面形状を有している。第1領域R1に設けられた複数の溝は、典型的には、白色光で照明したときに回折光を射出する回折格子又はホログラムを第1層120´の表面に形成している。この場合、光学素子10の表示部DP1は、回折光に対応した色を表示し得る。従って、この場合、より優れた偽造防止効果及び装飾効果を達成することができる。
 第1層120´の輪郭のレリーフ構造形成層110の主面への正射影は、その全体が第1領域R1の輪郭と重なり合っている。即ち、第1層120´は、第1領域R1の形状に対応してパターニングされている。従って、領域R1及びR2を高い位置精度で形成しておくことにより、優れた位置精度で形成された第1層120´を得ることができる。
 なお、図3乃至図6を参照しながら説明した方法では、反射材料層120のうち第1領域R1に対応した部分は、マスク層130によって被覆されている。それゆえ、上記のエッチング処理を行った場合でも、当該部分の膜厚は、殆ど又は全く減少しない。従って、第1層120´のうち第1領域R1に対応した部分の平均膜厚は、典型的には、反射材料層120のうち第1領域R1に対応した部分の平均膜厚と等しい。即ち、この平均膜厚は、例えば5nm乃至500nmの範囲内にあり、典型的には30nm乃至300nmの範囲内にある。
 なお、領域R1及びR2の境界と第1層120´の輪郭との最短距離の最大値は、例えば20μm未満とし、好ましくは10μm未満とし、より好ましくは3μm未満とする。
 第2層130´は、例えば、気相堆積法により形成される層である。第2層130´は、第1層120´を被覆している。第2層130´は、第1層120´を間に挟んで、領域R1及びR2のうち第1領域R1の全体のみと向き合っている。即ち、第1層120´の輪郭のレリーフ構造形成層110の主面への正射影は、その全体が第2層130´の輪郭の上記主面への正射影と重なり合っている。また、第2領域R2の見かけ上の面積に対する第2領域R2の位置における第2材料の量の比は、ゼロである。
 第2層130´のうち第1領域R1に対応した部分の平均膜厚は、マスク層130のうち第1領域R1に対応した部分の平均膜厚と等しいか又はより小さい。この平均膜厚は、例えば0.3nm乃至200nmの範囲内にあり、典型的には3nm乃至80nmの範囲内にある。
 第2層130´は、例えば、第1層120´を保護する役割を担っている。また、第2層130´を設けると、第2層130´が存在しない場合と比較して、光学素子10の偽造をより困難とすることができる。
 また、第2材料として着色している材料を使用し、光学素子10を第2層130´側から観察した場合、第2層130´は、光学素子10の他の部分の色彩に影響を与えることなしに、光学素子10のうち第1層120´が設けられた部分の色彩を変化させることを可能とする。例えば、第1材料としてAlを使用し且つ第2材料としてSn又はCrを使用した場合、光学素子10のうち第1層120´が設けられた部分に、黒味を帯びた色彩を付与することができる。或いは、第1材料としてAlを使用し且つ第2材料としてZnSを使用した場合、光学素子10のうち第1層120´が設けられた部分に、黄味を帯びた色彩を付与することができる。なお、第1層120´の平均膜厚が小さい場合には、光学素子10をレリーフ構造形成層110側から観察した場合であっても、これら効果を達成することができる。
 なお、以上においては、領域R1及びR2の双方に規則的に配列した複数の溝が設けられている場合について説明したが、領域R1及びR2の構成はこれには限られない。
 例えば、第1領域R1は、平坦であってもよい。この場合、表示部DP1は、例えば、鏡面のように見える。なお、この場合、第1領域R1の見かけ上の面積に対する表面積の比は1に等しい。
 或いは、第1領域R1は、二次元的に配列した複数の凹部又は凸部が設けられていてもよい。この場合、これら凹部又は凸部は、典型的には、先細りしている。例えば、これら凹部又は凸部は、円錐、角錐、円錐台、角錐台、楕円放物面又は回転放物面形状を有している。これら凹部又は凸部の側壁は、滑らかであってもよく、階段状であってもよい。或いは、これら凹部又は凸部は、円柱及び角柱状等の柱状であってもよい。
 また、二次元的に配列した凹部又は凸部は、規則的に配列していてもよく、不規則に配列していてもよい。前者の場合、これら凹部又は凸部は、典型的には、白色光で照明したときに回折光を射出する回折格子又はホログラムを第1層120´の表面に形成している。
 第1領域R1に二次元的に配列した凹部又は凸部が設けられている場合、これら凹部又は凸部は、例えば、正方格子状に配列している。或いは、これら凹部又は凸部は、矩形格子状又は三角格子状に配列していてもよい。
 第1領域R1に二次元的に配列した複数の凹部又は凸部が設けられている場合、これら凹部の開口部の径の平均値又はこれら凸部の底部の径の平均値は、例えば100nm乃至3000nmの範囲内とする。また、これら凹部の深さの平均値又はこれら凸部の高さの平均値は、例えば20nm乃至1500nmの範囲内とする。これら凹部の径に対する深さの比の平均値又はこれら凸部の底部の径に対する高さの比の平均値は、例えば0.5以下とし、典型的には0.05乃至0.3の範囲内とする。
 また、第2領域R2は、二次元的に配列した複数の凹部又は凸部が設けられていてもよい。これら複数の凹部又は凸部としては、例えば、凹部の径に対する深さの比の平均値又は凸部の底部の径に対する高さの比の平均値がより大きいことを除いては、先に第1領域R1の複数の凹部又は凸部について説明したのと同様の構成を採用することができる。
 第2領域R2に二次元的に配列した複数の凹部又は凸部が設けられている場合、これら凹部の開口部の径の平均値又はこれら凸部の底部の径の平均値は、例えば100nm乃至3000nmの範囲内とする。また、これら凹部の深さの平均値又はこれら凸部の高さの平均値は、例えば80nm乃至6000nmの範囲内とする。これら凹部の径に対する深さの比の平均値又はこれら凸部の底部の径に対する高さの比の平均値は、例えば0.8乃至2.0の範囲内とし、典型的には0.8乃至1.5の範囲内とする。
 なお、領域R1及びR2に設ける複数の凹部又は凸部は、レリーフホログラム、回折格子、サブ波長格子、マイクロレンズ、偏光素子、集光素子、散乱素子、拡散素子又はこれらの組み合わせを形成していてもよい。
 また、上では、反射材料層120が領域R1及びR2の表面形状に対応した表面形状を有しており、マスク層130のうち第1領域R1に対応した部分がこの第1領域R1の表面形状に対応した表面形状を有しており、マスク層130のうち第2領域R2に対応した部分が第2領域R2に設けられた複数の凹部又は凸部の配置に対応して部分的に開口している構成について説明したが、これら層の構成はこれには限られない。
 例えば、反射材料層120とマスク層130との双方が領域R1及びR2の表面形状に対応した表面形状を有した構成を採用してもよい。この場合、先に述べたように、反射材料層120及びマスク層130のうち第2領域R2に対応した部分は、それぞれ、これら層のうち第1領域R1に対応した部分と比較して、平均膜厚がより小さい。
 一般に、マスク層130のうち平均膜厚がより小さい部分は、平均膜厚がより大きい部分と比較して、反応性ガス又は液を透過させ易い。また、反応性ガス又は液と第2材料とが反応し、この反応の生成物がマスク層130から直ちに除去される場合には、第2領域R2上でのみマスク層130を開口させることができる。
 従って、この場合においても、エッチング液の濃度及び温度並びにエッチングの処理時間等を調整することにより、図1及び図2に示す光学素子10を製造することが可能である。
 或いは、反射材料層120とマスク層130との双方が、第1領域R1に対応した部分では第1領域R1の表面形状に対応した表面形状を有しており、第2領域R2に対応した部分では第2領域R2に設けられた複数の凹部又は凸部の配置に対応して部分的に開口している構成を採用してもよい。この場合においても、エッチング液の濃度及び温度並びにエッチングの処理時間等を調整することにより、図1及び図2に示す光学素子10を製造することが可能となる。
 また、上では、反射材料層120及びマスク層130のうち第2領域R2に対応した部分を完全に除去する場合について説明したが、これら部分の一部が残存するようにしてもよい。例えば、エッチング処理に供する時間をより短くすることにより、第2領域R2の見かけ上の面積に対する第2領域R2の位置における第1材料の量の比が、ゼロより大きく且つ第1領域R1の見かけ上の面積に対する第1領域R1の位置における第1材料の量の比と比較してより小さくなるようにしてもよい。或いは、同様にして、第2領域R2の見かけ上の面積に対する第2領域R2の位置における第2材料の量の比が、ゼロより大きく且つ第1領域R1の見かけ上の面積に対する第1領域R1の位置における第2材料の量の比と比較してより小さくなるようにしてもよい。
 更には、上では、反射材料層120及び第1層120´が単層構造を有している場合について説明したが、これら層は、多層構造を有していてもよい。これにより、例えば、光学素子10において、第1層120´が多層干渉膜を形成するようにしてもよい。
 この場合、第1層120´は、例えば、レリーフ構造形成層110側から、ミラー層とスペーサ層とハーフミラー層とがこの順に積層した多層膜を含んでいる。
 ミラー層は、金属層であり、典型的には、金属の単体又は合金を含んでいる。ミラー層が含んでいる金属としては、例えば、アルミニウム、金、銅及び銀が挙げられる。この金属としては、アルミニウムが特に好ましい。ミラー層の厚みは、例えば300nm以下とし、典型的には20乃至200nmの範囲内とする。
 スペーサ層は、典型的には、誘電材料を含んでいる。この誘電材料の屈折率は、1.65以下であることが好ましい。また、この誘電材料は、透明であることが好ましい。このような誘電材料としては、例えば、SiO及びMgFが挙げられる。スペーサ層の厚みは、例えば、5乃至500nmの範囲内とする。
 ハーフミラー層は、光透過性のある反射層であり、典型的には、金属の単体、合金、金属酸化物又は金属硫化物を含んでいる。ハーフミラー層が含んでいる金属又は合金としては、例えば、アルミニウム、ニッケル、イノセル(登録商標)、酸化チタン(TiO)、硫化亜鉛(ZnS)、硫化モリブデン(MoS)、及び、酸化鉄(III)(Fe)が挙げられる。ハーフミラー層の厚みは、例えば、5乃至80nmの範囲内とする。この厚みは、透明性の高い高屈折率材料である、酸化チタンなどの金属酸化物や硫化亜鉛などの金属硫化塩を使用する場合には、30乃至80nmの範囲内とすることが好ましい。また、この厚みは、反射率及び光遮蔽性が高いアルミニウムなどの金属を使用する場合には、5乃至45nmの範囲内とすることが好ましい。
 また、上では、マスク層130及び第2層130´が単層構造を有している場合について説明したが、これら層は、多層構造を有していてもよい。これにより、例えば、光学素子10において、第2層130´が多層干渉膜を形成するようにしてもよい。
 或いは、第1層120´と第2層130´との積層構造が多層干渉膜を形成するようにしてもよい。
 これら場合、図3乃至図6を参照しながら説明した方法を利用すると、多層干渉膜を安定に且つ高い位置精度で形成することが可能となる。
 図3乃至図6を参照しながら説明した方法において、第1層120´及び第2層130´を形成した後、図4及び図6を参照しながら説明した工程を繰り返してもよい。こうすると、第1領域R1上に、第1層120´と第2層130´とが交互に積層した構造を得ることができる。こうすると、例えば、第1領域R1上に、多層干渉膜を形成することが可能となる。この場合にも、多層干渉膜を安定に且つ高い位置精度で形成することが可能となる
 また、上では、反応性ガス又は液としてエッチング液を使用する場合について説明したが、反応性ガス又は液はこれには限られない。例えば、反応性ガス又は液として、反射材料層120の材料を気化させ得るエッチングガスを使用してもよい。
 或いは、反応性ガス又は液として、第1材料との反応により、反射材料層120の一部を第1材料とは異なる材料からなる層に変化させ得るガス又は液を使用してもよい。この場合、例えば、反射材料層120のうち第2領域R2に対応した部分を除去する代わりに、当該部分を第1材料とは異なる材料からなる層に変化させることが可能となる。
 このような反応性ガス又は液としては、例えば、第1材料を酸化させ得る酸化剤を使用することができる。この酸化剤としては、例えば、酸素、オゾン、若しくはハロゲン、又は、二酸化塩素、次亜ハロゲン酸、亜ハロゲン酸、次ハロゲン酸、過ハロゲン酸、及びその塩などのハロゲン化物、過酸化水素、過硫酸塩類、ペルオキソ炭酸塩類、ペルオキソ硫酸塩類、及びペルオキソリン酸塩類などの無機過酸化物、過酸化ベンゾイル、t-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジイソプロピルベンゼンヒドロペルオキシド、過蟻酸、過酢酸、及び過安息香酸などの有機過酸化物、セリウム塩、Mn(III)、Mn(IV)及びMn(VI)塩、銀塩、銅塩、クロム塩、コバルト塩、重クロム酸塩、クロム酸塩、過マンガン酸塩、過フタル酸マグネシウム、塩化第二鉄、及び塩化第二銅などの金属又は金属化合物、又は、硝酸、硝酸塩、臭素酸塩、過ヨウ素酸塩、及びヨウ素酸塩などの無機酸若しくは無機酸塩を使用する。
 例えば、反射材料層120´の材料としてCuを使用した場合、反射材料層120´のうち少なくとも第2領域R2に対応した部分を酸化剤と反応させることにより、当該部分をCu酸化物からなる層に変化させることができる。或いは、反射材料層120´の材料としてAlを使用した場合、反射材料層120´のうち少なくとも第2領域R2に対応した部分を酸化剤と反応させることにより、当該部分をベーマイト等のAl酸化物からなる層に変化させることができる。
 或いは、上記の反応性ガス又は液として、反射材料層120´の材料を還元させ得る還元剤を使用してもよい。この還元剤としては、例えば、硫化水素、二酸化硫黄、フッ化水素、アルコール、カルボン酸、水素ガス、水素プラズマ、遠隔水素プラズマ、ジエチルシラン、エチルシラン、ジメチルシラン、フェニルシラン、シラン、ジシラン、アミノシラン)、ボラン、ジボラン、アラン、ゲルマン、ヒドラジン、アンモニア、ヒドラジン、メチルヒドラジン、1,1-ジメチルヒドラジン、1,2-ジメチルヒドラジン、t-ブチルヒドラジン、ベンジルヒドラジン、2-ヒドラジノエタノール、1-n-ブチルー1-フェニルヒドラジン、フェニルヒドラジン、1-ナフチルヒドラジン、4-クロロフェニルヒドラジン、1,1-ジフェニルヒドラジン、p-ヒドラジノベンゼンスルホン酸、1,2-ジフェニルヒドラジン、アセチルヒドラジン又はベンゾイルヒドラジンを使用する。
 なお、図3乃至図6を参照しながら説明した方法において、エッチング処理等によって第1層120´を形成した後、第2層130´を除去してもよい。この第2層130´の除去は、例えば、第1材料と第2材料とのイオン化傾向の差異に基づいた第1材料のイオン化が懸念される場合に有効である。
 図7は、一変形例に係る光学素子を概略的に示す平面図である。図8は、図7に示す光学素子のVIII-VIII線に沿った断面図である。図7及び図8に示す光学素子10は、レリーフ構造形成層110の主面が含んだ領域R1及びR2の構成を異ならしめることを除いては、図3乃至図6を参照しながら説明したのと同様の方法により製造することができる。
 図7及び図8に示す光学素子10では、第1領域R1は、「TP」なるマイクロ文字に対応した輪郭を有している。
 第1領域R1は、平坦面からなる平坦領域FRと、複数の凹部又は凸部を備えた凹凸領域URとを備えている。平坦領域FRは、凹凸領域URを縁取っている。図7では、光学素子10のうち平坦領域FRに対応した部分を表示部DPFとし、光学素子10のうち凹凸領域URに対応した部分を表示部DPUとしている。
 表示部DPUを縁取っている表示部DPFの幅は、例えば10μm乃至2000μmの範囲内にあり、典型的には50μm乃至1000μmの範囲内にある。このような表示部DPFを形成するためには、第1層120´を極めて高い位置精度で形成する必要がある。従って、このような光学素子10を従来のパターニング方法を用いて製造することは、不可能であるか又は極めて困難である。
 他方、先に図3乃至図6を参照しながら説明した方法を用いると、上述したように、第1層120´を高い位置精度で形成することができる。従って、このような方法を用いると、上記のマイクロ文字のような微細な像であっても、優れた解像度で表示させることが可能となる。
 図9は、他の変形例に係る光学素子を概略的に示す平面図である。図10は、図9に示す光学素子のX-X線に沿った断面図である。図9では、光学素子10のうち後述する第1サブ領域SR1に対応した部分を表示部DSP1とし、第2サブ領域SR2に対応した部分を表示部DSP2としている。
 図9及び図10に示す光学素子10は、以下の点を除いては、図1及び図2に示す光学素子10と同様の構成を有している。
 即ち、図9及び図10に示す光学素子10では、第1領域R1は、第1サブ領域SR1と第2サブ領域SR2とを含んでいる。第1サブ領域SR1は、第2領域R2と隣接し、領域R1及びR2間の境界に沿って延びている。第2サブ領域SR2は、第1サブ領域SR1を間に挟んで第2領域R2と隣接している。第2サブ領域SR2の輪郭は、典型的には、第1領域R1の輪郭に沿った形状を有している。
 第1層120´は、第2サブ領域SR2に対応した位置にのみ設けられている。即ち、領域R1及びR2のうち第2サブ領域SR2のみが第1層120´によって被覆されている。そして、第1層120´のうち第2サブ領域SR2に対応した部分は、第2サブ領域SR2の表面形状に対応した表面形状を有している。
 第1層120´のうち第2サブ領域SR2に対応した部分の平均膜厚は、例えば5nm乃至500nmの範囲内にあり、典型的には5nm乃至300nmの範囲内にある。この平均膜厚が過度に小さいと、レリーフ構造形成層110と第1層120´との界面における反射が生じ難くなる場合がある。この平均膜厚が過度に大きいと、光学素子10の生産性が低下する場合がある。
 第2層130´は、典型的には、第1領域R1の全体と向き合っている。即ち、典型的には、第2層130´は、第1層120´を被覆した第1部分P1と、第1部分P1からその外側に突き出た第2部分P2とを含んでいる。そして、第1層120´の輪郭のレリーフ構造形成層110の主面への第1正射影は、典型的には、気相堆積層の輪郭の上記主面への第2正射影に沿った形状を有し且つ第2正射影に取り囲まれている。
 従って、例えば、第2材料が着色している場合、光学素子10のうち第1サブ領域SR1に対応した部分DSR1と、第2サブ領域SR2に対応した部分DSR2とで、異なる色彩を表示させることができる。この色彩の差異は、例えば、光学素子10を顕微鏡を用いて観察することにより確認できる。或いは、第1サブ領域SR1が占める面積が大きい場合には、この色彩の差異を、肉眼で観察することができる。このように、図9及び図10を参照しながら説明した光学素子10は、特殊な光学効果を発揮し得る。
 なお、第2層130´のうち第2サブ領域SR2に対応した部分の平均膜厚は、例えば0.3nm乃至200nmの範囲内にあり、典型的には3nm乃至80nmの範囲内にある。
 図9及び図10に示す光学素子10は、例えば、以下のようにして製造する。即ち、図3及び図5を参照しながら説明した工程の後、エッチング液の濃度及び温度並びにエッチング処理の時間等を調整することにより、反射材料層120のうち第1領域R1に対応した部分において、サイドエッチングを生じさせる。これにより、反射材料層120及びマスク層130のうち第2領域R2に対応した部分と共に、反射材料層120のうち第1サブ領域SR1に対応した部分を除去する。このようにして、図9及び図10に示す光学素子10を得る。
 上記のサイドエッチングは、反射材料層120のうち第1領域R1に対応した部分の輪郭から、その内側に向けて、ほぼ均一な速さで生じる。それゆえ、このサイドエッチングにより除去される部分の幅、即ち、第1サブ領域SR1の輪郭と第1領域R1の輪郭との間の距離のバラつきは、比較的小さい。それゆえ、典型的には、第2サブ領域SR2の輪郭は、典型的には、第1領域R1の輪郭に沿った形状を有している。従って、このような方法を採用した場合であっても、第1層120´を高い位置精度で形成することができる。
 また、反射材料層120のうち第1領域R1に対応した部分は、マスク層130により被覆されているため、側面からのサイドエッチングが生じる条件下においても、その主面からのエッチングは殆ど又は全く生じない。従って、このような方法を採用した場合であっても、第1層120´を安定に形成することができる。
 なお、上では、第1層120´の輪郭のレリーフ構造形成層110の主面への第1正射影が気相堆積層の輪郭の上記主面への第2正射影に沿った形状を有し且つ第2正射影に取り囲まれている構成について説明したが、第1層120´及び第2層130´の構成はこれには限られない。例えば、エッチング後の構造を第1領域R1を横切るように切断した場合、第1正射影の一部は第2正射影の一部と重なり合い、第1正射影の残りの部分は第2正射影の残りの部分に沿った形状を有し且つ第2正射影に取り囲まれる。
 図11は、本発明の他の態様に係る光学素子の一例を概略的に示す平面図である。図12は、図11に示す光学素子のXII-XII線に沿った断面図である。図13乃至図17は、図11及び図12に示す光学素子の製造方法を概略的に示す断面図である。なお、図11では、光学素子10のうち後述する第3領域R3に対応した部分を、表示部DP3としている。
 以下、図13乃至図17を参照しながら、図11及び図12に示す光学素子10の製造方法について説明する。
 まず、図13に示すように、第1領域R1と第2領域R2と第3領域R3とを含んだ主面を有したレリーフ構造形成層110を準備する。このレリーフ構造形成層110は、第3領域R3を更に含んでいることを除いては、図3を参照しながら説明したレリーフ構造形成層と同様の構成を有している。
 第3領域R3は、複数の凹部又は凸部が設けられている。そして、第3領域R3は、第1領域R1と比較して、見かけ上の面積に対する表面積の比がより大きい。この第3領域R3は、典型的には、第2領域R2と同様の構成を有している。
 次に、図14に示すように、第1材料を領域R1乃至R3の全体に対して気相堆積させる。これにより、反射材料層120を形成する。この反射材料層120の形成は、図4を参照しながら説明したのと同様にして行う。図14に示す例では、反射材料層120のうち第1領域R1に対応した部分は、第1領域R1に設けられた複数の溝に対応した表面形状を有した連続膜を形成している。また、反射材料層120のうち領域R2及びR3に対応した部分は、これら領域R2及びR3に設けられた複数の溝に対応した表面形状を有した連続膜を形成している。
 次いで、図15に示すように、第2材料を反射材料層120に対して気相堆積させる。これにより、マスク層130を形成する。このマスク層130の形成は、図5を参照しながら説明したのと同様にして行う。
 図15に示す例では、マスク層130のうち第1領域R1に対応した部分は、第1領域R1に設けられた複数の溝に対応した表面形状を有した連続膜を形成している。また、マスク層130のうち領域R2及びR3に対応した部分は、反射材料層120の上で、これら領域R2及びR3に設けられた複数の溝の配置に対応して部分的に開口した不連続膜を形成している。
 続いて、図16に示すように、領域R2及びR3のうち第3領域R3のみと向き合った被覆層140を形成する。被覆層140は、第1領域R1の少なくとも一部と更に向き合っていてもよい。図16には、被覆層140が、第3領域R3の全体及び第1領域R1の一部と向き合っている場合を描いている。
 この被覆層140の形成は、公知のパターン形成方法を用いて行うことができる。このパターン形成方法としては、例えば、フレキソ印刷法、グラビア印刷法、インクジェット印刷法、オフセット印刷法又はセキュリティー凹版印刷法を使用する。この被覆層140の材料としては、例えば、上述した熱可塑性樹脂、熱硬化性樹脂又は放射線硬化樹脂を使用する。或いは、被覆層140の材料として、ポリカーボネート、ポリアミド及びポリイミド等の耐熱樹脂、これらの混合物又はこれらの共重合物を使用してもよい。なお、上記材料を印刷可能な塗料とすべく、水及び有機溶剤等の溶媒によって樹脂を溶解した後に、必要に応じて、染料、顔料、レベリング剤、消泡剤、タレ止め剤、付着向上剤、塗面改質剤、可塑剤、含窒素化合物、エポキシ樹脂等の架橋剤、又はこれらの組み合わせを添加してもよい。
 その後、マスク層130及び被覆層140を、反射材料層120の材料との反応を生じ得る反応性ガス又は液に曝す。そして、少なくとも第2領域R2の位置で、反射材料層120の材料との反応を生じさせる。ここでは、反応性ガス又は液の一例として、反射材料層120の材料を溶解可能なエッチング液を使用する場合について説明する。
 図16に示すように、マスク層130のうち第1領域R1に対応した部分は連続膜を形成しているのに対し、第2領域R2に対応した部分は、部分的に開口した不連続膜を形成している。これに起因して、反射材料層120のうち第2領域R2に対応した部分は、第1領域R1に対応した部分と比較してよりエッチングされ易い。
 また、図16に示すように、マスク層130のうち第3領域R3に対応した部分の上には、被覆層140が形成されている。他方、マスク層130のうち第2領域R2に対応した部分の上には、被覆層140が形成されていない。これに起因して、反射材料層120のうち第2領域R2に対応した部分は、第3領域R3に対応した部分と比較してよりエッチングされ易い。
 従って、エッチング液の濃度及び温度並びにエッチングの処理時間等を調整することにより、図17に示すように、反射材料層120のうち第2領域R2に対応した部分のみを除去することができる。なお、この際、反射材料層120のうち第2領域R2に対応する部分の除去に伴って、マスク層130のうち第2領域R2に対応した部分も除去される。
 以上のようにして、図11及び図12に示す光学素子10を得る。
 この光学素子10は、レリーフ構造形成層110と第1層120´と第2層130´と被覆層140とを含んでいる。この光学素子10では、第1領域R1以外の領域、即ち第3領域R3上にも、第1層120´が存在する。それゆえ、例えば、第3領域R3に、ホログラム、回折格子、サブ波長格子、ゼロ次回折フィルタ及び偏光分離フィルタ等に対応した光学効果を発揮し得る複数の凹部又は凸部を設けることにより、更に特殊な視覚効果を有した光学素子10を得ることができる。
 光学素子10は、保護膜を更に備えていてもよい。光学素子10は、その表面に、反射防止処理を施されていてもよい。また、光学素子10を製造する際に、光学素子10を構成する層の少なくとも1つの表面に、コロナ処理、フレーム処理又はプラズマ処理を施してもよい。
 なお、以上において説明した種々の態様及び変形例は、それらの2以上を組み合わせて適用されてもよい。
 また、以上において説明した技術は、反射層を部分的に設けるための公知のプロセスと組み合わせて使用してもよい。この公知のプロセスとしては、例えば、レーザーを用いて反射層をパターン状に除去するレーザー法を使用する。或いは、このプロセスとして、反射層上にマスクをパターン状に設けた後、反射層のうちマスクに被覆されていない部分を除去する方法を使用してもよい。或いは、このプロセスとして、層又は基材の主面上にマスクをパターン状に設け、上記主面の全体に亘って反射層を形成し、その後、反射層のうちマスク上に位置した部分をマスクと共に除去する方法を使用してもよい。なお、これらマスクの形成は、例えば、印刷法又はフォトレジスト法により行う。
 光学素子10は、粘着ラベルの一部として使用してもよい。この粘着ラベルは、光学素子10と、光学素子10の背面上に設けられた粘着層とを備えている。
 或いは、光学素子10は、転写箔の一部として使用してもよい。この転写箔は、光学素子10と、光学素子10を剥離可能に支持した支持体層とを備えている。
 光学素子10は、物品に支持させて使用してもよい。例えば、光学素子10は、プラスチック製のカード等に支持させてもよい。或いは、光学素子10は、紙に漉き込んで使用してもよい。光学素子10は、燐片状に破砕して、顔料の一成分として使用してもよい。
 光学素子10は、偽造防止以外の目的で使用してもよい。例えば、光学素子10は、玩具、学習教材又は装飾品としても使用することができる。
<マスク層の有無とエッチングの速さとの関係>
 まず、マスク層130の有無と、反射材料層120のうち領域R1及びR2に対応した部分のエッチングの速さの差異との関係を調べた。
(積層体LB1の製造)
 以下のようにして、レリーフ構造形成層110と反射材料層120とマスク層130との積層体を製造した。
 まず、紫外線硬化型樹脂の材料として、50.0質量部のウレタン(メタ)アクリレートと、30.0質量部のメチルエチルケトンと、20.0質量部の酢酸エチルと、1.5質量部の光開始剤とを含んだ組成物を準備した。ウレタン(メタ)アクリレートとしては、多官能性であり且つ分子量が6000であるものを使用した。光開始剤としては、チバスペシャリティー製「イルガキュア184」を使用した。
 次に、厚みが23μmである透明PETフィルム上に、上記の組成物を、乾燥膜厚が1μmとなるように、グラビア印刷法によって塗布した。
 次いで、複数の凸部が設けられた原版を版胴の円筒面に支持させ、この原版を先の塗膜に押し当てながら、PETフィルム側から紫外線を照射した。これにより、上記の紫外線硬化樹脂を硬化させた。この際、プレス圧力は2kgf/cm2とし、プレス温度は80℃とし、プレススピードは10m/分とした。また、紫外線の照射は、高温水銀灯を用いて、300mJ/cm2の強度で行った。
 以上のようにして、領域R1及びR2を含んだ主面を有したレリーフ構造形成層110を得た。
 このレリーフ構造形成層110の第1領域R1には、その全体に、規則的に配列した複数の溝を形成した。これら溝の断面形状は、V字形状とした。また、これら溝のピッチは1000nmとした。そして、これら溝の開口部の幅は1000nmとし、深さは100nmとした。即ち、第1領域R1には、溝の開口部の幅に対する深さの比が100nm/1000nm=0.1である複数の溝を形成した。
 また、このレリーフ構造形成層110の第2領域R2には、その全体に、正方格子状に配列した複数の凹部を形成した。これら凹部の形状は、角錐状とした。また、これら凹部の最小中心間距離は、333nmとした。そして、これら凹部の開口部の幅は333nmとし、深さは333nmとした。即ち、第2領域R2には、溝の開口部の幅に対する深さの比が333nm/333nm=1.0である複数の凹部を形成した。
 続いて、レリーフ構造形成層110の上記主面上に、第1材料として、Alを真空蒸着させた。このようにして、反射材料層120を形成した。なお、この際、反射材料層120の設定膜厚は、50nmとした。
 その後、反射材料層120のレリーフ構造形成層110とは反対側の主面上に、第2材料として、MgF2を真空蒸着させた。このようにして、マスク層130を形成した。なお、この際、MgFの設定膜厚は、20nmとした。
 以上のようにして、レリーフ構造形成層110と反射材料層120とマスク層130との積層体を得た。以下、このようにして製造された積層体を「積層体LB1」と呼ぶ。
(積層体LB2の製造;比較例)
 マスク層130の形成を省略したことを除いては、積層体LB1と同様にして、レリーフ構造形成層110と反射材料層120との積層体を製造した。以下、この積層体を「積層体LB2」と呼ぶ。
(評価)
 積層体LB1及びLB2を、水酸化ナトリウム水溶液を用いたエッチング処理に供した。この際、水酸化ナトリウム水溶液の温度を順次変化させて、各々の場合について、以下の評価を行った。即ち、上記の積層体のうち第1領域R1に対応した部分の透過率が20%となるまでの時間T1と、第2領域R2に対応した部分の透過率が80%となるまでの時間T2とを測定した。その結果を、図18に示す。なお、水酸化ナトリウム水溶液の濃度は0.1mol/Lとし、その液温は、高い方から順に、60℃、50℃、40℃、30℃及び25℃とした。
 図18は、マスク層の有無とエッチングの速さとの関係の一例を示すグラフである。図18には、積層体LB1及びLB2の各々についての時間T1及びT2の測定結果と、式T1=T2で表される直線とを描いている。なお、各曲線上のデータは、原点から離れる方向へ向けて水酸化ナトリウム水溶液の温度が減少するように並んでいる。
 この測定において、T1の値が大きいほど、反射材料層120のうち第1領域RG1に対応した部分のエッチングの速さが小さい。また、T2の値が小さいほど、反射材料層120のうち第2領域RG2に対応した部分のエッチングの速さが大きい。従って、比T1/T2の値が大きいほど、エッチングの選択性が高い。
 図18から分かるように、積層体LB2は、水酸化ナトリウム水溶液の温度が高い領域において、比T1/T2がほぼ1に等しかった。即ち、この領域では、エッチングの選択性が低かった。そして、水酸化ナトリウム水溶液の温度が低い領域では、その温度を低くするにつれて、比T1/T2が次第に増大していた。即ち、この領域では、水酸化ナトリウム水溶液の温度を低くすることにより、エッチングの選択性を向上させることができた。それゆえ、積層体LB2を用いた場合、光学素子を高い安定性で製造するためには、水酸化ナトリウム水溶液の温度を低くする必要がある。しかしながら、この場合、エッチング処理に要する時間が許容できないほど大きくなる。従って、この場合、光学素子の製造の生産性と安定性とを両立することは不可能であるか又は極めて困難であることが分かった。
 他方、積層体LB1は、水酸化ナトリウム水溶液の温度の高低に拘らず、比T1/T2の値が大きかった。即ち、積層体LB1は、水酸化ナトリウム水溶液の温度の高低に拘らず、エッチング選択性が高かった。従って、積層体LB1を用いた場合、光学素子を、短いエッチング処理時間で、安定に製造可能であることが分かった。即ち、この場合、光学素子の製造における生産性と安定性とを両立可能であることが分かった。
<反射材料層の除去の選択性及び反射層の位置精度の評価>
 まず、以下のようにして、光学素子OD1乃至OD9を製造した。
(例1:光学素子OD1の製造)
 先に述べた積層体LB1を、エッチング処理に供した。具体的には、この積層体LB1を、濃度が0.1mol/Lで、液温が60℃の水酸化ナトリウム水溶液に7秒間に亘って曝した。これにより、反射材料層120及びマスク層130のうち第2領域R2に対応した部分を除去した。
 以上のようにして、光学素子10を製造した。以下、この光学素子10を「光学素子OD1」と呼ぶ。この光学素子OD1は、レリーフ構造形成層110と、領域R1及びR2のうち第1領域R1の全体のみを被覆した第1層120´と、第1層120´の全体を被覆した第2層130´とからなる積層構造を有していた。
 また、この光学素子OD1では、第1層120´の平均膜厚は50nmであった。そして、第2層130´の平均膜厚は20nmであった。
(例2:光学素子OD2の製造)
 第2領域R2に設ける複数の凹部の最小中心間距離を200nmとし、これら凹部の開口部の幅を200nmとし、深さを160nmとしたことを除いては、光学素子OD1と同様にして、光学素子を製造した。以下、この光学素子を「光学素子OD2」と呼ぶ。
 この光学素子OD2では、第1領域R1に設けられた溝の開口部の幅に対する深さの比は、100nm/1000nm=0.1であった。また、第2領域R2に設けられた複数の凹部の開口部の幅に対する深さの比は、160nm/200nm=0.8であった。
 また、この光学素子OD2では、第1層120´の平均膜厚は50nmであった。そして、第2層130´の平均膜厚は20nmであった。
(例3:光学素子OD3の製造)
 第1領域R1に設ける複数の溝のピッチを300nmとし、これら溝の開口部の幅を300nmとし、深さを100nmとすると共に、第2領域R2に設ける複数の凹部の最小中心間距離を375nmとし、これら凹部の開口部の幅を375nmとし、深さを300nmとしたことを除いては、光学素子OD1と同様にして、光学素子を製造した。以下、この光学素子を「光学素子OD3」と呼ぶ。
 この光学素子OD3では、第1領域R1に設けられた溝の開口部の幅に対する深さの比は、100nm/300nm=0.33であった。また、第2領域R2に設けられた複数の凹部の開口部の幅に対する深さの比は、300nm/375nm=0.8であった。
 また、この光学素子OD3では、第1層120´の平均膜厚は50nmであった。そして、第2層130´の平均膜厚は20nmであった。
(例4:光学素子OD4の製造)
 第2領域R2に設ける複数の凹部の最小中心間距離を300nmとし、これら凹部の開口部の幅を300nmとし、深さを300nmとしたことを除いては、光学素子OD3と同様にして、光学素子を製造した。以下、この光学素子を「光学素子OD4」と呼ぶ。
 この光学素子OD4では、第1領域R1に設けられた溝の開口部の幅に対する深さの比は、100nm/300nm=0.33であった。また、第2領域R2に設けられた複数の凹部の開口部の幅に対する深さの比は、300nm/300nm=1.0であった。
 また、この光学素子OD4では、第1層120´の平均膜厚は50nmであった。そして、第2層130´の平均膜厚は20nmであった。
(例5:光学素子OD5の製造)
 まず、先に積層体LB1について述べたのと同様にして、領域R1及びR2に加えて第3領域R3を更に含んだ主面を有したレリーフ構造形成層110を形成した。このレリーフ構造形成層110における領域R1及びR2としては、積層体LB1の場合と同様の構成を採用した。そして、第3領域R3としては、第2領域R2と同様の構成を採用した。
 次に、先に積層体LB1について述べたのと同様にして、反射材料層120及びマスク層130を形成した。
 その後、グラビア印刷法を用いて、領域R1乃至R3のうち、第3領域R3の全体及び第1領域R1の一部のみと向き合った被覆層140を形成した。
 続いて、先に光学素子OD1について述べたのと同様にして、エッチング処理を行った。これにより、反射材料層120及びマスク層130のうち第2領域R2に対応した部分のみを除去して、反射層120及び気相堆積層130を形成した。以下、このようにして得られた光学素子を「光学素子OD5」と呼ぶ。
 この光学素子OD5では、第1領域R1に設けられた溝の開口部の幅に対する深さの比は、100nm/1000nm=0.1であった。また、領域R2及びR3に設けられた凹部の開口部の幅に対する深さの比は、333nm/333nm=1.0であった。
 また、この光学素子OD5では、第1層120´の平均膜厚は50nmであった。そして、第2層130´の平均膜厚は20nmであった。
(例6:光学素子OD6の製造;比較例)
 積層体LB1の代わりに積層体LB2を使用し、これを、濃度が0.1mol/Lであり、液温が60℃であるの水酸化ナトリウム水溶液に7秒間に亘って曝す代わりに、濃度が0.1mol/Lであり、液温が30℃である水酸化ナトリウム水溶液に60秒間に亘って曝したことを除いては、光学素子OD1について述べたのと同様にして、光学素子を製造した。以下、この光学素子を「光学素子OD6」と呼ぶ。
(例7:光学素子OD7の製造;比較例)
 反射材料層120の設定膜厚を20nmとしたことを除いては、光学素子OD6について述べたのと同様にして、光学素子を製造した。以下、この光学素子を「光学素子OD7」と呼ぶ。
(例8:光学素子OD8の製造;比較例)
 反射材料層120の設定膜厚を80nmとしたことを除いては、光学素子OD6について述べたのと同様にして、光学素子を製造した。以下、この光学素子を「光学素子OD8」と呼ぶ。
(例9:光学素子OD9の製造;比較例)
 この例では、マスク層130を以下のようにして形成したことを除いては、光学素子OD1について述べたのと同様にして、光学素子を製造した。
 即ち、この例では、マスク層130を反射材料層120の全体に気相堆積法を用いて形成する代わりに、グラビア印刷法を用いて形成した。具体的には、まず、50.0質量部の塩化ビニル-酢酸ビニル共重合体樹脂と、30.0質量部のメチルエチルケトンと、20.0質量部の酢酸エチルとからなる組成物を準備した。その後、この組成物を、反射材料層120のうち第1領域R1に対応した部分が形成しているパターンの上に、グラビア印刷した。なお、この印刷は、マスク層130の平均膜厚が1.0μmとなるようにして行った。以下、このようにして得られた光学素子を「光学素子OD9」と呼ぶ。
(評価)
 まず、光学素子OD1乃至OD9の各々について、反射材料層120の除去の選択性を評価した。具体的には、光学素子OD1乃至OD9の各々について、領域R1及びR2に対応した部分の可視光透過率を測定した。そして、光学素子のうち第1領域R1に対応した部分の可視光透過率が20%以下であり且つ第2領域R2に対応した部分の可視光透過率が90%以上であるものを「OK」と評価し、それ以外のものを「NG」と評価した。その結果を、以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 なお、表1において、「アスペクト比」とは、溝の開口部の幅に対する深さの比の平均値を意味しているものとする。
 表1から分かるように、光学素子OD6乃至OD8では、反射材料層120の除去の選択性が不十分であった。即ち、これら光学素子OD6乃至OD8では、光学素子のうち第1領域R1に対応した部分の可視光透過率が20%より大きいか又は第2領域R2に対応した部分の可視光透過率が90%より小さかった。他方、光学素子OD1乃至OD5及びOD9では、反射材料層120の除去の選択性が高かった。
 次に、光学素子OD1乃至OD9の各々について、反射層120の位置精度の評価を行った。具体的には、各光学素子について、領域R1及びR2の境界と第1層120´の輪郭との最短距離の最大値を測定した。そして、この値が20μm未満であるものを「OK」と評価し、この値が20μm以上であるものを「NG」と評価した。その結果を、先の表1に示す。
 表1から分かるように、光学素子OD9では、反射層120の位置精度が不十分であった。即ち、この光学素子OD9では、領域R1及びR2の境界と第1層120´の輪郭との最短距離の最大値が20μm以上であった。他方、光学素子OD1乃至OD8では、反射層120の位置精度が高かった。
 以上の通り、光学素子OD1乃至OD5では、反射材料層120の除去の選択性と第1層120´の位置精度との双方が優れていた。
 更なる利益及び変形は、当業者には容易である。それゆえ、本発明は、そのより広い側面において、ここに記載された特定の記載や代表的な態様に限定されるべきではない。従って、添付の請求の範囲及びその等価物によって規定される本発明の包括的概念の真意又は範囲から逸脱しない範囲内で、様々な変形が可能である。
 10…光学素子、110…レリーフ構造形成層、120…反射材料層、120´…第1層、130…マスク層、130´…第2層、140…被覆層、DP1…表示部、DP2…表示部、DP3…表示部、DPF…表示部、DPU…表示部、DSP1…表示部、DSP2…表示部、P1…第1部分、P2…第2部分、R1…第1領域、R2…第2領域、R3…第3領域、SR1…第1サブ領域、SR2…第2サブ領域。

Claims (15)

  1.  互いに隣接した第1及び第2領域を含んだ主面を有し、前記第1領域は第1及び第2サブ領域を含み、前記第1サブ領域は、前記第2領域と隣接し、前記第1及び第2領域間の境界に沿って延びており、前記第2サブ領域は前記第1サブ領域を間に挟んで前記第2領域と隣接し、前記第2領域は、複数の凹部又は凸部が設けられ、前記第1領域と比較して見かけ上の面積に対する表面積の比がより大きいレリーフ構造形成層と、
     前記レリーフ構造形成層の材料とは屈折率が異なる第1材料からなり、少なくとも前記第2サブ領域を被覆し、前記第2サブ領域に対応した部分は前記第2サブ領域の表面形状に対応した表面形状を有しており、前記第2領域の見かけ上の面積に対する前記第2領域の位置における前記第1材料の量の比は、ゼロであるか又は前記第2サブ領域の見かけ上の面積に対する前記第2サブ領域の位置における前記第1材料の量の比と比較してより小さい第1層と、
     前記第1材料とは異なる第2材料からなり、前記第1層を被覆し、前記第2領域の見かけ上の面積に対する前記第2領域の位置における前記第2材料の量の比は、ゼロであるか又は前記第2サブ領域の見かけ上の面積に対する前記第2サブ領域の位置における前記第2材料の量の比と比較してより小さい第2層と
    を具備した光学素子。
  2.  前記第1領域は複数の凹部又は凸部が設けられ、前記第2領域の前記複数の凹部又は凸部は、前記第1領域の前記複数の凹部又は凸部と比較して、凹部の開口部の径若しくは幅に対する深さの比の平均値又は凸部の底部の径若しくは幅に対する高さの比の平均値がより大きい請求項1に記載の光学素子。
  3.  前記第1領域の前記複数の凹部又は凸部は、それら凹部の開口部の径若しくは幅に対する深さの比の平均値又はそれら凸部の底部の径若しくは幅に対する高さの比の平均値が0.5以下であり、前記第2領域の前記複数の凹部又は凸部は、それら凹部の開口部の径若しくは幅に対する深さの比の平均値又はそれら凸部の底部の径若しくは幅に対する高さの比の平均値が0.8乃至2.0の範囲内にある請求項2に記載の光学素子。
  4.  前記第2領域の前記複数の凹部又は凸部は二次元的に配列している請求項1乃至3の何れか1項に記載の光学素子。
  5.  前記第2層のうち前記第2サブ領域に対応した部分の平均膜厚は0.3nm乃至200nmの範囲内にある請求項1乃至4の何れか1項に記載の光学素子。
  6.  前記第2層は気相堆積法により形成される層である請求項1乃至4の何れか1項に記載の光学素子。
  7.  前記第1層は、前記第2サブ領域に対応した位置にのみ又は前記第1領域に対応した位置にのみ設けられている請求項1乃至6の何れか1項に記載の光学素子。
  8.  前記第1層の輪郭の前記主面への第1正射影はその全体が前記第2層の輪郭の前記主面への第2正射影と重なり合っているか、又は、前記第1正射影は前記第2正射影に沿った形状を有し且つ前記第2正射影に取り囲まれているか、又は、前記第1正射影の一部は前記第2正射影の一部と重なり合い、前記第1正射影の残りの部分は前記第2正射影の残りの部分に沿った形状を有し且つ前記第2正射影に取り囲まれている請求項1乃至7の何れか1項に記載の光学素子。
  9.  前記第1領域と前記第2領域との境界と前記第1層の輪郭との最短距離の最大値は20μm未満である請求項1乃至8の何れか1項に記載の光学素子。
  10.  互いに隣接した第1及び第2領域を含んだ主面を有し、前記第2領域は、複数の凹部又は凸部が設けられ、前記第1領域と比較して見かけ上の面積に対する表面積の比がより大きいレリーフ構造形成層を形成することと、
     前記レリーフ構造形成層の材料とは屈折率が異なる第1材料を前記第1及び第2領域の全体に対して気相堆積させて、前記第1及び第2領域の表面形状に対応した表面形状を有しているか又は前記第1領域に対応した部分では前記第1領域の表面形状に対応した表面形状を有しており且つ前記第2領域に対応した部分では前記複数の凹部又は凸部の配置に対応して部分的に開口した反射材料層を形成することと、
     前記第1材料とは異なる第2材料を前記反射材料層に対して気相堆積させて、前記第1及び第2領域の表面形状に対応した表面形状を有しているか又は前記第1領域に対応した部分では前記第1領域の表面形状に対応した表面形状を有しており且つ前記第2領域に対応した部分では前記複数の凹部又は凸部の配置に対応して部分的に開口したマスク層を形成することと、
     前記マスク層を前記第1材料との反応を生じ得る反応性ガス又は液に曝して、少なくとも前記第2領域の位置で前記反応を生じさせ、これにより、前記第1材料からなる第1層と前記第2材料からなる第2層とを得ることと
    を含んだ光学素子の製造方法。
  11.  前記反応によって前記反射材料層を部分的に除去する請求項10に記載の方法。
  12.  前記反射材料層の前記部分的な除去によって、前記第1層を、前記第1及び第2領域のうち前記第1領域のみを被覆した層として得る請求項11に記載の方法。
  13.  前記反応によって前記反射材料層の一部を前記第1材料とは異なる材料からなる層に変化させる請求項10に記載の方法。
  14.  前記反射材料層を、前記第1領域に対応した部分において5nm乃至500nmの範囲内の平均膜厚を有するように形成し、前記マスク層を、前記第1領域に対応した部分において0.3nm乃至200nmの範囲内の平均膜厚を有するように形成する請求項10乃至13の何れか1項に記載の方法。
  15.  前記レリーフ構造形成層の前記主面は第3領域を更に含み、前記第3領域は、複数の凹部又は凸部が設けられ、前記第1領域と比較して見かけ上の面積に対する表面積の比がより大きく、
     前記反射材料層は、前記第1材料を前記第1乃至第3領域の全体に対して気相堆積させることにより形成し、
     前記方法は、前記反応を生じさせる前に、前記第2及び第3領域のうち前記第3領域のみと向き合った被覆層を形成することを更に含んだ請求項10乃至14の何れか1項に記載の方法。
PCT/JP2010/060306 2009-06-18 2010-06-17 光学素子及びその製造方法 WO2010147185A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201080026768.6A CN102460236B (zh) 2009-06-18 2010-06-17 光学元件及其制造方法
RU2011151400/28A RU2531847C2 (ru) 2009-06-18 2010-06-17 Оптическое устройство и способ его изготовления
EP10789559.1A EP2444826B1 (en) 2009-06-18 2010-06-17 Optical device and method of manufacturing the same
JP2011501057A JP5545289B2 (ja) 2009-06-18 2010-06-17 光学素子の製造方法
EP19175652.7A EP3575101A1 (en) 2009-06-18 2010-06-17 Optical device and stacked body for manufacturing the same
MX2011013708A MX2011013708A (es) 2009-06-18 2010-06-17 Elemento optico y metodo para fabricar el mismo.
US13/302,461 US20120064303A1 (en) 2009-06-18 2011-11-22 Optical device and method of manufacturing the same
US13/838,476 US9272308B2 (en) 2009-06-18 2013-03-15 Method of manufacturing optical device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-145532 2009-06-18
JP2009145532 2009-06-18
JP2010-092079 2010-04-13
JP2010092079 2010-04-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/302,461 Continuation US20120064303A1 (en) 2009-06-18 2011-11-22 Optical device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2010147185A1 true WO2010147185A1 (ja) 2010-12-23

Family

ID=43356502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060306 WO2010147185A1 (ja) 2009-06-18 2010-06-17 光学素子及びその製造方法

Country Status (8)

Country Link
US (2) US20120064303A1 (ja)
EP (2) EP2444826B1 (ja)
JP (2) JP5545289B2 (ja)
CN (1) CN102460236B (ja)
MX (1) MX2011013708A (ja)
RU (1) RU2531847C2 (ja)
TW (1) TWI425253B (ja)
WO (1) WO2010147185A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109871A (ja) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd 光学素子、ラベル付き物品、光学キット及び判別方法
JP2012189935A (ja) * 2011-03-14 2012-10-04 Toppan Printing Co Ltd 光学素子
WO2012161257A1 (ja) * 2011-05-25 2012-11-29 凸版印刷株式会社 着色偽造防止構造体および着色偽造防止媒体
WO2014077329A1 (ja) * 2012-11-19 2014-05-22 凸版印刷株式会社 偽造防止構造体及びその製造方法
JP5578286B2 (ja) * 2011-12-07 2014-08-27 凸版印刷株式会社 表示体、転写箔、及び表示体付き物品
JP2015014780A (ja) * 2013-06-05 2015-01-22 凸版印刷株式会社 表示体および印刷物
JP2015061753A (ja) * 2013-08-09 2015-04-02 レオンハード クルツ シュティフトゥング ウント コー. カーゲー 多層体の製造プロセス、及び多層体
JP2015121674A (ja) * 2013-12-24 2015-07-02 凸版印刷株式会社 表示体
JP2015121675A (ja) * 2013-12-24 2015-07-02 凸版印刷株式会社 表示体
JP2016513271A (ja) * 2013-02-01 2016-05-12 ドゥ ラ リュ インターナショナル リミティド セキュリティーデバイスおよびその製造方法
JP2016114952A (ja) * 2016-01-18 2016-06-23 凸版印刷株式会社 着色偽造防止構造体および着色偽造防止媒体
KR20170012353A (ko) 2014-05-26 2017-02-02 도판 인사츠 가부시키가이샤 위조 방지 구조체 및 위조 방지 물품
JP2017517415A (ja) * 2014-05-07 2017-06-29 オーファウデー キネグラム アーゲー 多層体およびその製造方法
CN107489074A (zh) * 2017-07-31 2017-12-19 苏州飘志华复合材料科技有限公司 一种高粘合力耐候不干胶纸
KR20180015143A (ko) * 2015-06-02 2018-02-12 도판 인사츠 가부시키가이샤 적층체 및 그 제조 방법
JP2018036324A (ja) * 2016-08-29 2018-03-08 凸版印刷株式会社 光学素子およびその製造方法
JP2018097371A (ja) * 2012-06-01 2018-06-21 凸版印刷株式会社 異方性反射表示体、並びに異方性反射表示体を用いた情報記録体
EP2735443B1 (en) * 2011-07-19 2018-12-19 Chen, Weiling Preparation process for holographic patterned film and holographic patterned film
WO2022039208A1 (ja) * 2020-08-20 2022-02-24 凸版印刷株式会社 回折シートおよび製造方法、並びに3次元表示装置、光線再生装置、三次元空間表示システム、光線再生方法、及びプログラム
JP2022525371A (ja) * 2019-03-29 2022-05-12 中▲鈔▼特▲種▼防▲偽▼科技有限公司 光学偽造防止素子及びその製造方法
JP2022532560A (ja) * 2019-05-05 2022-07-15 中▲鈔▼特▲種▼防▲偽▼科技有限公司 多層メッキ層を備えた光学偽造防止素子及びその製造方法

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5298838B2 (ja) * 2008-12-25 2013-09-25 大豊工業株式会社 斜板とその製造方法
EP2444826B1 (en) 2009-06-18 2019-05-22 Toppan Printing Co., Ltd. Optical device and method of manufacturing the same
GB2500631B (en) 2012-03-27 2017-12-27 Bae Systems Plc Improvements in or relating to optical waveguides
FR2989474B1 (fr) 2012-04-13 2014-11-28 Hologram Ind Composant optique de securite, fabrication d'un tel composant et produit securise equipe d'un tel composant
EP2861207A2 (en) 2012-06-18 2015-04-22 The Procter & Gamble Company Method of improving the appearance of aging skin
JP6234667B2 (ja) * 2012-08-06 2017-11-22 浜松ホトニクス株式会社 光学素子及びその製造方法
JP6201288B2 (ja) * 2012-09-25 2017-09-27 凸版印刷株式会社 表示体および表示体の製造プロセス
JP6229252B2 (ja) * 2012-10-02 2017-11-15 凸版印刷株式会社 光学素子、用紙及び光学素子製造方法
DE102013203303B3 (de) 2012-12-20 2014-06-05 Bundesdruckerei Gmbh Sicherheitsmerkmal für ein Wert- und/oder Sicherheitsprodukt, das Sicherheitsmerkmal aufweisendes Wert- und/oder Sicherheitsprodukt und Verfahren zum Herstellen des Sicherheitsmerkmals
GB2514337B (en) * 2013-05-17 2020-01-15 De La Rue Int Ltd Security documents and methods of manufacture thereof
US10371898B2 (en) 2013-09-05 2019-08-06 Southern Methodist University Enhanced coupling strength grating having a cover layer
CN104647934B (zh) * 2013-11-21 2016-10-05 中钞特种防伪科技有限公司 一种光学防伪元件及其制作方法
CN104057747B (zh) * 2013-11-22 2016-03-23 中钞特种防伪科技有限公司 一种制备光学防伪元件的方法
CN104647937B (zh) * 2013-11-22 2017-04-12 中钞特种防伪科技有限公司 一种制备光学防伪元件的方法
CN104647938B (zh) * 2013-11-22 2016-03-23 中钞特种防伪科技有限公司 一种制备光学防伪元件的方法
DE102013113283A1 (de) * 2013-11-29 2015-06-03 Leonhard Kurz Stiftung & Co. Kg Mehrschichtkörper und Verfahren zu dessen Herstellung
CN105015216B (zh) * 2014-04-29 2017-06-16 中钞特种防伪科技有限公司 一种光学防伪元件及制备光学防伪元件的方法
CN105015215B (zh) * 2014-04-30 2017-05-31 中钞特种防伪科技有限公司 光学防伪元件及其制造方法
DE102014016051A1 (de) * 2014-05-06 2015-11-12 Giesecke & Devrient Gmbh Sicherheitselement
JP5962930B2 (ja) * 2014-06-03 2016-08-03 大日本印刷株式会社 光透過性反射板、スクリーン、及び投影システム
WO2016039690A1 (en) * 2014-09-11 2016-03-17 Heptagon Micro Optics Pte. Ltd. Light sensor modules and spectrometers including an optical grating structure
JP2016097617A (ja) * 2014-11-25 2016-05-30 凸版印刷株式会社 表示体および表示体付き物品
JP2018529527A (ja) * 2015-10-07 2018-10-11 コーニング インコーポレイテッド レーザー切断する予定の被覆基板をレーザーで前処理する方法
US11667434B2 (en) 2016-05-31 2023-06-06 Corning Incorporated Anti-counterfeiting measures for glass articles
FR3053281B1 (fr) * 2016-06-30 2020-03-27 Banque De France Procede de fabrication d'un document de securite presentant un signe de securite a contraste de brillance
US11584151B2 (en) 2016-09-05 2023-02-21 Toppan Printing Co., Ltd. Information display medium and manufacturing method relating thereto
JP2018101014A (ja) * 2016-12-19 2018-06-28 デクセリアルズ株式会社 光学体
JP2018101012A (ja) * 2016-12-19 2018-06-28 デクセリアルズ株式会社 光学体
CN108422764A (zh) * 2017-02-15 2018-08-21 中钞特种防伪科技有限公司 光学防伪元件及光学防伪产品
CN110382254B (zh) * 2017-03-06 2021-05-25 株式会社Lg化学 装饰构件及制造装饰构件的方法
AT520011B1 (de) 2017-05-16 2019-10-15 Hueck Folien Gmbh Verfahren zur Herstellung eines Sicherheitselements sowie nach diesem Verfahren hergestelltes Sicherheitselement und dessen Verwendung
DE102017005050A1 (de) 2017-05-26 2018-11-29 Giesecke+Devrient Currency Technology Gmbh Sicherheitselement mit reflektivem Flächenbereich
CN109895526B (zh) * 2017-12-08 2021-06-22 中钞特种防伪科技有限公司 光学防伪元件及其制作方法
CN108469644B (zh) * 2018-02-28 2019-10-29 中国科学院高能物理研究所 光栅及其制备方法
CN110712452B (zh) * 2018-07-13 2021-03-12 中钞特种防伪科技有限公司 光学防伪元件及其制备方法和光学防伪产品
KR102639402B1 (ko) * 2018-11-06 2024-02-23 삼성전자주식회사 패턴이 형성된 하우징을 포함하는 전자 장치
WO2020096355A1 (ko) * 2018-11-06 2020-05-14 삼성전자 주식회사 패턴이 형성된 하우징을 포함하는 전자 장치
WO2020209331A1 (ja) * 2019-04-09 2020-10-15 凸版印刷株式会社 光学構造体、転写箔、物品、および光学構造体の製造方法
CN112389111A (zh) * 2019-08-19 2021-02-23 中钞特种防伪科技有限公司 光学防伪元件及光学防伪产品
EP4025830B1 (en) * 2019-09-06 2024-11-06 BAE SYSTEMS plc Waveguide and method for fabricating a waveguide
CN112572018B (zh) * 2019-09-29 2022-06-14 中钞特种防伪科技有限公司 多层体光学防伪元件及其制作方法
US11662584B2 (en) * 2019-12-26 2023-05-30 Meta Platforms Technologies, Llc Gradient refractive index grating for display leakage reduction
FR3111843A1 (fr) 2020-06-30 2021-12-31 Surys Procédés de fabrication de composants optiques de sécurité, composants optiques de sécurité et objets sécurisés équipés de tels composants

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212984A (ja) * 1990-01-25 1992-08-04 American Bank Note Holographic Inc アルファニューメリック形状を含む不連続金属化部分を持つホログラム物品
JP2524092Y2 (ja) 1991-02-26 1997-01-29 凸版印刷株式会社 ホログラムシート
JPH11505046A (ja) * 1995-05-06 1999-05-11 レオナード クルツ ゲーエムベーハー ウント コンパニー 光回折効果を有する構造物の配置
JP2002372610A (ja) * 2001-06-13 2002-12-26 Dainippon Printing Co Ltd 真正性確認が可能な回折格子、およびそれが設けられた記録媒体
JP2003255115A (ja) 2002-03-06 2003-09-10 Toppan Printing Co Ltd パターン状の金属反射層を有する回折構造形成体とその製造方法、並びに回折構造体転写箔、回折構造体ステッカー、及び回折構造体付き情報記録媒体
JP2004302269A (ja) * 2003-03-31 2004-10-28 Dainippon Printing Co Ltd 光回折構造による隠しパターン及びその判別具。
JP2005007624A (ja) * 2003-06-17 2005-01-13 Toppan Printing Co Ltd 転写シート及びその製造方法
JP2005524858A (ja) * 2001-11-23 2005-08-18 オーファオデー キネグラム アーゲー 回折構造を備えたセキュリティ素子
JP2007118563A (ja) 2005-03-11 2007-05-17 Dainippon Printing Co Ltd 転写箔及びそれを用いた画像形成物
JP2008107472A (ja) * 2006-10-24 2008-05-08 Toppan Printing Co Ltd 表示体および印刷物
JP2008107470A (ja) * 2006-10-24 2008-05-08 Toppan Printing Co Ltd 表示体及び印刷物
JP2008530600A (ja) 2005-02-10 2008-08-07 オーファウデー キネグラム アーゲー 多層体の製造プロセス及び多層体
JP2008275740A (ja) * 2007-04-26 2008-11-13 Toppan Printing Co Ltd 表示体及び積層体
JP4194073B2 (ja) 2002-09-25 2008-12-10 大日本印刷株式会社 光回折構造体
JP2009063703A (ja) * 2007-09-05 2009-03-26 Toppan Printing Co Ltd 偽造防止積層体、偽造防止転写箔、偽造防止シール、偽造防止媒体、およびこれらの製造方法
JP2009075169A (ja) * 2007-09-18 2009-04-09 Toppan Printing Co Ltd 光学素子、ラベル付き物品、光学キット及び判別方法
JP2009086211A (ja) * 2007-09-28 2009-04-23 Toppan Printing Co Ltd 光学素子、ラベル付き物品、光学キット及び判別方法
JP2009109871A (ja) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd 光学素子、ラベル付き物品、光学キット及び判別方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3567768D1 (en) * 1984-05-04 1989-02-23 Bbc Brown Boveri & Cie Dry-etching process
JP2524092B2 (ja) 1994-05-12 1996-08-14 株式会社クボタ 田植機の苗縦送り装置
DE4421407C1 (de) * 1994-06-18 1995-06-01 Kurz Leonhard Fa Flächenelement mit einer räumlichen, bereichsweise beschichteten Mikrostruktur sowie Verwendung eines solchen Flächenelements
US6761959B1 (en) * 1999-07-08 2004-07-13 Flex Products, Inc. Diffractive surfaces with color shifting backgrounds
US7667895B2 (en) * 1999-07-08 2010-02-23 Jds Uniphase Corporation Patterned structures with optically variable effects
DE10206357A1 (de) * 2002-02-14 2003-08-28 Giesecke & Devrient Gmbh Sicherheitselement und Sicherheitsdokument mit einem solchen Sicherheitselement
DE10232245B4 (de) * 2002-07-17 2008-06-12 Leonhard Kurz Gmbh & Co. Kg Optisch variables Element mit variierender Distanzschicht-Dicke
TWI221010B (en) * 2003-08-07 2004-09-11 Ind Tech Res Inst A method for transferably pasting an element
US7205244B2 (en) * 2004-09-21 2007-04-17 Molecular Imprints Patterning substrates employing multi-film layers defining etch-differential interfaces
US7041604B2 (en) * 2004-09-21 2006-05-09 Molecular Imprints, Inc. Method of patterning surfaces while providing greater control of recess anisotropy
US20070031639A1 (en) * 2005-08-03 2007-02-08 General Electric Company Articles having low wettability and methods for making
DE102006016139A1 (de) * 2006-04-06 2007-10-18 Ovd Kinegram Ag Mehrschichtkörper mit Volumen-Hologramm
CN101688933B (zh) * 2007-09-28 2012-01-11 凸版印刷株式会社 显示体及带标签物品
JP5349781B2 (ja) 2007-09-28 2013-11-20 ネオフォトニクス・セミコンダクタ合同会社 光変調器とその製造方法
EP2444826B1 (en) 2009-06-18 2019-05-22 Toppan Printing Co., Ltd. Optical device and method of manufacturing the same
WO2011093007A1 (ja) * 2010-01-27 2011-08-04 パナソニック株式会社 複合対物レンズ、光ヘッド装置、光情報装置及び情報処理装置

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212984A (ja) * 1990-01-25 1992-08-04 American Bank Note Holographic Inc アルファニューメリック形状を含む不連続金属化部分を持つホログラム物品
JP2524092Y2 (ja) 1991-02-26 1997-01-29 凸版印刷株式会社 ホログラムシート
JPH11505046A (ja) * 1995-05-06 1999-05-11 レオナード クルツ ゲーエムベーハー ウント コンパニー 光回折効果を有する構造物の配置
JP2002372610A (ja) * 2001-06-13 2002-12-26 Dainippon Printing Co Ltd 真正性確認が可能な回折格子、およびそれが設けられた記録媒体
JP2005524858A (ja) * 2001-11-23 2005-08-18 オーファオデー キネグラム アーゲー 回折構造を備えたセキュリティ素子
JP2003255115A (ja) 2002-03-06 2003-09-10 Toppan Printing Co Ltd パターン状の金属反射層を有する回折構造形成体とその製造方法、並びに回折構造体転写箔、回折構造体ステッカー、及び回折構造体付き情報記録媒体
JP4194073B2 (ja) 2002-09-25 2008-12-10 大日本印刷株式会社 光回折構造体
JP2004302269A (ja) * 2003-03-31 2004-10-28 Dainippon Printing Co Ltd 光回折構造による隠しパターン及びその判別具。
JP2005007624A (ja) * 2003-06-17 2005-01-13 Toppan Printing Co Ltd 転写シート及びその製造方法
JP2008530600A (ja) 2005-02-10 2008-08-07 オーファウデー キネグラム アーゲー 多層体の製造プロセス及び多層体
JP2007118563A (ja) 2005-03-11 2007-05-17 Dainippon Printing Co Ltd 転写箔及びそれを用いた画像形成物
JP2008107470A (ja) * 2006-10-24 2008-05-08 Toppan Printing Co Ltd 表示体及び印刷物
JP2008107472A (ja) * 2006-10-24 2008-05-08 Toppan Printing Co Ltd 表示体および印刷物
JP2008275740A (ja) * 2007-04-26 2008-11-13 Toppan Printing Co Ltd 表示体及び積層体
JP2009063703A (ja) * 2007-09-05 2009-03-26 Toppan Printing Co Ltd 偽造防止積層体、偽造防止転写箔、偽造防止シール、偽造防止媒体、およびこれらの製造方法
JP2009075169A (ja) * 2007-09-18 2009-04-09 Toppan Printing Co Ltd 光学素子、ラベル付き物品、光学キット及び判別方法
JP2009086211A (ja) * 2007-09-28 2009-04-23 Toppan Printing Co Ltd 光学素子、ラベル付き物品、光学キット及び判別方法
JP2009109871A (ja) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd 光学素子、ラベル付き物品、光学キット及び判別方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2444826A1

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109871A (ja) * 2007-10-31 2009-05-21 Toppan Printing Co Ltd 光学素子、ラベル付き物品、光学キット及び判別方法
JP2012189935A (ja) * 2011-03-14 2012-10-04 Toppan Printing Co Ltd 光学素子
EP3285122A1 (en) * 2011-05-25 2018-02-21 Toppan Printing Co., Ltd. Coloring forgery prevention structure and coloring forgery prevention medium
WO2012161257A1 (ja) * 2011-05-25 2012-11-29 凸版印刷株式会社 着色偽造防止構造体および着色偽造防止媒体
US9354364B2 (en) 2011-05-25 2016-05-31 Toppan Printing Co., Ltd. Coloring forgery prevention structure and coloring forgery prevention medium
CN106199799A (zh) * 2011-05-25 2016-12-07 凸版印刷株式会社 着色防伪结构体及着色防伪介质
JP2012247483A (ja) * 2011-05-25 2012-12-13 Toppan Printing Co Ltd 着色偽造防止構造体および着色偽造防止媒体
US10099503B2 (en) 2011-05-25 2018-10-16 Toppan Printing Co., Ltd. Coloring forgery prevention structure and coloring forgery prevention medium
AU2012259820B2 (en) * 2011-05-25 2015-05-21 Toppan Printing Co., Ltd. Colored counterfeit prevention structure and colored counterfeit prevention medium
CN106199799B (zh) * 2011-05-25 2018-05-25 凸版印刷株式会社 着色防伪结构体及着色防伪介质
EP2735443B1 (en) * 2011-07-19 2018-12-19 Chen, Weiling Preparation process for holographic patterned film and holographic patterned film
EP2790042A4 (en) * 2011-12-07 2015-07-01 Toppan Printing Co Ltd DISPLAY BODY, TRANSFER SHEET AND ARTICLE HAVING THE DISPLAY BODY
JP5578286B2 (ja) * 2011-12-07 2014-08-27 凸版印刷株式会社 表示体、転写箔、及び表示体付き物品
EP2790042B2 (en) 2011-12-07 2020-01-15 Toppan Printing Co., Ltd. Display body, transfer foil, and article with display body
US9720146B2 (en) 2011-12-07 2017-08-01 Toppan Printing Co., Ltd. Display member, transfer foil, and article with display member
RU2589518C2 (ru) * 2011-12-07 2016-07-10 Топпан Принтинг Ко., Лтд. Элемент отображения, фольга переноса и изделие с элементом отображения
EP2790042B1 (en) 2011-12-07 2016-10-26 Toppan Printing Co., Ltd. Display body, transfer foil, and article with display body
JP2018097371A (ja) * 2012-06-01 2018-06-21 凸版印刷株式会社 異方性反射表示体、並びに異方性反射表示体を用いた情報記録体
US10654308B2 (en) 2012-06-01 2020-05-19 Toppan Printing Co., Ltd. Unisometric reflection display, information holder using unisometric reflection display
WO2014077329A1 (ja) * 2012-11-19 2014-05-22 凸版印刷株式会社 偽造防止構造体及びその製造方法
JPWO2014077329A1 (ja) * 2012-11-19 2017-01-05 凸版印刷株式会社 偽造防止構造体及びその製造方法
JP2016513271A (ja) * 2013-02-01 2016-05-12 ドゥ ラ リュ インターナショナル リミティド セキュリティーデバイスおよびその製造方法
JP2015014780A (ja) * 2013-06-05 2015-01-22 凸版印刷株式会社 表示体および印刷物
JP2015061753A (ja) * 2013-08-09 2015-04-02 レオンハード クルツ シュティフトゥング ウント コー. カーゲー 多層体の製造プロセス、及び多層体
JP2015121675A (ja) * 2013-12-24 2015-07-02 凸版印刷株式会社 表示体
JP2015121674A (ja) * 2013-12-24 2015-07-02 凸版印刷株式会社 表示体
JP2017517415A (ja) * 2014-05-07 2017-06-29 オーファウデー キネグラム アーゲー 多層体およびその製造方法
KR20170012353A (ko) 2014-05-26 2017-02-02 도판 인사츠 가부시키가이샤 위조 방지 구조체 및 위조 방지 물품
KR20180097787A (ko) 2014-05-26 2018-08-31 도판 인사츠 가부시키가이샤 위조 방지 구조체 및 위조 방지 물품
KR20180015143A (ko) * 2015-06-02 2018-02-12 도판 인사츠 가부시키가이샤 적층체 및 그 제조 방법
KR102408530B1 (ko) 2015-06-02 2022-06-13 도판 인사츠 가부시키가이샤 적층체 및 그 제조 방법
JP2016114952A (ja) * 2016-01-18 2016-06-23 凸版印刷株式会社 着色偽造防止構造体および着色偽造防止媒体
JP2018036324A (ja) * 2016-08-29 2018-03-08 凸版印刷株式会社 光学素子およびその製造方法
CN107489074A (zh) * 2017-07-31 2017-12-19 苏州飘志华复合材料科技有限公司 一种高粘合力耐候不干胶纸
JP2022525371A (ja) * 2019-03-29 2022-05-12 中▲鈔▼特▲種▼防▲偽▼科技有限公司 光学偽造防止素子及びその製造方法
JP7417625B2 (ja) 2019-03-29 2024-01-18 中▲鈔▼特▲種▼防▲偽▼科技有限公司 光学偽造防止素子及びその製造方法
JP2022532560A (ja) * 2019-05-05 2022-07-15 中▲鈔▼特▲種▼防▲偽▼科技有限公司 多層メッキ層を備えた光学偽造防止素子及びその製造方法
JP7376615B2 (ja) 2019-05-05 2023-11-08 中▲鈔▼特▲種▼防▲偽▼科技有限公司 多層メッキ層を備えた光学偽造防止素子及びその製造方法
WO2022039208A1 (ja) * 2020-08-20 2022-02-24 凸版印刷株式会社 回折シートおよび製造方法、並びに3次元表示装置、光線再生装置、三次元空間表示システム、光線再生方法、及びプログラム

Also Published As

Publication number Publication date
US20130209676A1 (en) 2013-08-15
EP2444826A1 (en) 2012-04-25
JP5051311B2 (ja) 2012-10-17
CN102460236B (zh) 2014-10-22
JP5545289B2 (ja) 2014-07-09
EP2444826A4 (en) 2012-10-03
RU2011151400A (ru) 2013-07-27
JP2012063738A (ja) 2012-03-29
US9272308B2 (en) 2016-03-01
JPWO2010147185A1 (ja) 2012-12-06
EP2444826B1 (en) 2019-05-22
TW201109743A (en) 2011-03-16
MX2011013708A (es) 2012-02-22
TWI425253B (zh) 2014-02-01
RU2531847C2 (ru) 2014-10-27
US20120064303A1 (en) 2012-03-15
CN102460236A (zh) 2012-05-16
EP3575101A1 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
JP5051311B2 (ja) 光学素子の製造方法
JP5578286B2 (ja) 表示体、転写箔、及び表示体付き物品
CN104335097B (zh) 各向异性反射显示体以及使用了各向异性反射显示体的信息记录体
US20190086588A1 (en) Counterfeit prevention structure and manufacturing method therefor
JP2011033935A (ja) 光学物品およびその製造方法
US11161364B2 (en) Laminate comprising a relief structure forming layer and a manufacturing method for same
JP5717324B2 (ja) 偽造防止構造体及びその製造方法
JP6229252B2 (ja) 光学素子、用紙及び光学素子製造方法
JP6500386B2 (ja) 表示体、並びにこれを備えた転写箔及び物品
JP2011150003A (ja) 光学素子及びその製造方法
JP2018036324A (ja) 光学素子およびその製造方法
JP6277712B2 (ja) 表示体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026768.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011501057

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789559

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 9190/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010789559

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/013708

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011151400

Country of ref document: RU