WO2010147048A1 - 光学製品及び眼鏡プラスチックレンズ - Google Patents

光学製品及び眼鏡プラスチックレンズ Download PDF

Info

Publication number
WO2010147048A1
WO2010147048A1 PCT/JP2010/059854 JP2010059854W WO2010147048A1 WO 2010147048 A1 WO2010147048 A1 WO 2010147048A1 JP 2010059854 W JP2010059854 W JP 2010059854W WO 2010147048 A1 WO2010147048 A1 WO 2010147048A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical
optical product
antifouling
hard coat
Prior art date
Application number
PCT/JP2010/059854
Other languages
English (en)
French (fr)
Inventor
剛 深川
大谷 昇
宏寿 高橋
Original Assignee
東海光学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海光学株式会社 filed Critical 東海光学株式会社
Priority to EP20100789423 priority Critical patent/EP2431772B1/en
Priority to KR1020117029911A priority patent/KR101670005B1/ko
Priority to ES10789423T priority patent/ES2446360T3/es
Priority to CN201080026893.7A priority patent/CN102460224B/zh
Publication of WO2010147048A1 publication Critical patent/WO2010147048A1/ja
Priority to US13/306,273 priority patent/US8746880B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • G02B1/116Multilayers including electrically conducting layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to optical products such as camera lenses or eyeglass plastic lenses.
  • Patent Documents 1 and 2 disclose a method of providing a conductive coating layer as described in Patent Documents 1 and 2 below.
  • the tin oxide which has electroconductivity is made to contain in the hard-coat layer formed on the base
  • Patent Document 2 discloses an antireflection film including a transparent conductive film (IndiumInTin Oxide film, ITO film) formed by adding 5 to 10 weight percent (wt%) tin oxide to indium oxide. There is a mention about.
  • an object of the present invention is to provide an optical product and a spectacle plastic lens that are difficult to attach dust having static electricity and easily remove the attached dust.
  • the invention described in claim 1 relates to an optical product.
  • the absolute value of the charging potential is 2.00 kV or less. It is characterized in that (2) the peel strength of the surface is 0.10 N / 19 mm or less.
  • the invention described in claim 2 is in the above invention, A hard coat film and an optical multilayer film are sequentially formed on the optical product substrate, and the antifouling film is formed on the optical multilayer film.
  • the invention according to claim 3 is the above invention, wherein the optical product substrate and the antifouling film are provided. In addition, a conductive film is disposed.
  • the invention described in claim 4 can achieve an object of providing an optical product that can easily form an antifouling film and can easily adjust the peel strength.
  • the antifouling film is formed by applying a silane compound having a perfluoropolyether group having a peel strength of 0.10 N / 19 mm or less when a film is formed alone. Is.
  • the invention according to claim 5 is the above invention, wherein the optical multilayer film comprises: It is a multilayer film of an inorganic oxide.
  • the invention described in claim 6 is the hard coat film in the invention described above. Contains an organosiloxane resin and inorganic oxide fine particles.
  • the invention described in claim 7 relates to a spectacle plastic lens in order to achieve the object of providing a spectacle plastic lens belonging to an optical product excellent in optical performance or antifouling performance as described above.
  • the optical product substrate is an eyeglass plastic lens substrate
  • the optical multilayer film is an antireflection film.
  • an antifouling film in which (1) the absolute value of the charging potential is 2.00 kV or less and (2) the peel strength of the surface is 0.10 N / 19 mm or less, It is possible to provide an optical product having antifouling performance.
  • the optical lens as an example of the optical product in the present invention has a hard coat film, an optical multilayer film and an antifouling film in this order from the lens base on the surface of the lens base.
  • a primer layer is formed between the lens substrate surface and the hard coat film, or between the lens substrate surface and the hard coat film, between the hard coat layer and the optical multilayer film, or between the optical multilayer film and the antifouling film.
  • the film configuration can be changed to another, such as providing an intermediate layer.
  • a hard coat film, an optical multilayer film, or the like may be formed on the back surface or both front and back surfaces of the lens substrate.
  • Examples of the material (base material) of the lens substrate include polyurethane resin, episulfide resin, polycarbonate resin, polyester resin, acrylic resin, polyether sulfone resin, poly-4-methylpentene-1 resin, diethylene glycol bisallyl carbonate resin, and the like. It is done.
  • examples of the high refractive index include polyurethane resins obtained by addition polymerization of a polyisocyanate compound and polythiol and / or a sulfur-containing polyol. Examples thereof include an episulfide resin obtained by addition polymerization of a group and a polythiol and / or a sulfur-containing polyol.
  • the hard coat film is formed by uniformly applying a hard coat solution to the lens substrate.
  • a hard coat solution for example, an organosiloxane resin containing inorganic oxide fine particles is used.
  • the hard coat liquid is composed mainly of an organosiloxane resin and an inorganic oxide fine particle sol in water or an alcohol solvent. It is adjusted by dispersing (mixing) as follows.
  • the organosiloxane resin is preferably obtained by hydrolyzing and condensing alkoxysilane.
  • alkoxysilane include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, methyltrimethoxysilane, and ethyl silicate.
  • These hydrolysis-condensation products of alkoxysilane are produced by hydrolyzing the alkoxysilane compound or a combination thereof with an acidic aqueous solution such as hydrochloric acid.
  • the inorganic oxide fine particles sols of zinc oxide, silicon dioxide, aluminum oxide, titanium oxide, zirconium oxide, tin oxide, beryllium oxide, antimony oxide, tungsten oxide, and cerium oxide are used alone or in combination of two or more. Can be mentioned as a mixed crystal.
  • the size of the inorganic oxide fine particles is preferably 1 to 100 nanometers (nm), more preferably 1 to 50 nm, from the viewpoint of ensuring the transparency of the hard coat film.
  • the blending amount of the inorganic oxide fine particles preferably occupies 40 to 60 wt% in the hard coat component from the viewpoint of ensuring the appropriate degree of hardness and toughness in the hard coat film.
  • acetylacetone metal salts ethylenediaminetetraacetic acid metal salts, and the like can be added to the hard coat solution as curing catalysts, and surfactants, colorants, solvents, etc. may be added for adjustment as necessary. Can do.
  • the film thickness of the hard coat film is preferably 0.5 to 4.0 micrometers ( ⁇ m), more preferably 1.0 to 3.0 ⁇ m. About the minimum of this film thickness, when it is thinner than this, it will be determined from sufficient hardness not being obtained. On the other hand, the upper limit is determined by increasing the possibility that problems related to physical properties such as generation of cracks and brittleness will occur dramatically.
  • the optical multilayer film is formed by alternately laminating a low refractive index layer and a high refractive index layer by vacuum vapor deposition or sputtering, for example, an antireflection film, a mirror, a half mirror, an ND filter, a band pass filter, etc. Is mentioned.
  • Inorganic oxides are used for each layer. Examples of inorganic oxides include silicon oxide, and titanium oxide, zirconium oxide, aluminum oxide, yttrium oxide, tantalum oxide, hafnium oxide, tin oxide, niobium oxide, and oxide having a higher refractive index. Examples include cerium and indium oxide. Further, insufficient equivalent titanium oxide (TiOx, x ⁇ 2 and close to 2) can be used, and an ITO film can be used in at least one layer.
  • the antifouling film is a film formed so that its surface peel strength is 0.10 Newton (N) / 19 millimeters (mm).
  • the peel strength is an average load necessary for peeling per unit width when the adhesive tape of a predetermined width is sufficiently pressed and then peeled off at a speed of 300 mm / min (min) in the 180 degree direction, The smaller the value, the weaker the adhesion.
  • the antifouling film is preferably formed of a silane compound having a perfluoropolyether group, and is preferably formed by applying and curing by a dipping method.
  • the silane compound has a peel strength of 0.10 N / 19 mm or less when a film is formed alone.
  • Examples 1 to 5 were created as belonging to the optical product according to the present invention.
  • Comparative Examples 1 to 6 not belonging to the present invention were prepared.
  • Various values were measured and dust adhesion tests were performed.
  • the following [Table 1] shows the characteristics and test results of Examples 1 to 5 and Comparative Examples 1 to 6.
  • the lens bases of Examples 1 to 5 and Comparative Examples 1 to 6 are plastic flat lenses.
  • an episulfide resin having a refractive index of 1.70 is used.
  • a 1.60 polyurethane resin was used.
  • a primer layer was formed on the surface of the lens substrate.
  • the primer solution was prepared by adding 0.15 parts by weight of the agent and thoroughly stirring and mixing.
  • the primer solution was dipped onto the lens substrate and coated at a speed of 100 mm / min.
  • the lens substrate coated with the primer solution was cured by heating at 120 degrees for 30 minutes to form a primer film having a thickness of 1.0 ⁇ m.
  • a hard coat film was formed in Examples 1 to 5 and Comparative Examples 1 to 6.
  • ethanol 206 g (g) methanol-dispersed titania sol 300 g (manufactured by JGC Catalysts & Chemicals, solid content 30%), ⁇ -glycidoxypropyltrimethoxysilane 60 g, ⁇ -glycidoxypropylmethyl 30 g of diethoxysilane and 60 g of tetraethoxysilane were added, and a 0.1N (normal concentration) aqueous hydrochloric acid solution was added dropwise to the mixture and stirred for hydrolysis.
  • 0.1N (normal concentration) aqueous hydrochloric acid solution was added dropwise to the mixture and stirred for hydrolysis.
  • a flow regulator (“L-7604” manufactured by Toray Dow Corning Co., Ltd.) and 1.0 g of a catalyst were added and stirred at room temperature for 3 hours to prepare a hard coat solution.
  • This hard coat solution was applied by dipping, and cured by heating at 110 ° C. for 2 hours after air drying to form a hard coat film having a thickness of 2.0 ⁇ m.
  • Examples 1 and 5 and Comparative Example 1 a multilayer film of five layers was formed.
  • a lens substrate having a hard coat film was set in a vacuum chamber, and each layer was sequentially formed by vacuum deposition.
  • the material of the layers is silicon dioxide in the odd layers and zirconium oxide in the even layers.
  • the optical film thickness of each layer was 0.214 ⁇ , 0.080 ⁇ , 0.071 ⁇ , 0.389 ⁇ , 0.236 ⁇ in order from the hard coat film (lens substrate) side.
  • is the design center wavelength
  • 500 nm.
  • Example 2 and Comparative Example 2 a 7-layer multilayer film was formed.
  • the optical film thicknesses of the respective layers are 0.078 ⁇ , 0.056 ⁇ , 0.487 ⁇ , 0.112 ⁇ , 0.059 ⁇ , 0...
  • Example 3 and Comparative Example 3 a 7-layer multilayer film was formed.
  • the material of the layers was silicon dioxide for the odd layers, titanium oxide for the even layers, and the optical film thickness of each layer was 0.074 ⁇ in order from the hard coat film side. , 0.061 ⁇ , 0.113 ⁇ , 0.180 ⁇ , 0.061 ⁇ , 0.168 ⁇ , and 0.273 ⁇ .
  • the pressure was adjusted by introducing oxygen gas so that the pressure was 0.010 Pascal (Pa) during the titanium oxide film formation.
  • the deficient equivalent titanium oxide is formed by vapor-depositing deficient equivalent titanium oxide in a vacuum chamber into which oxygen gas for adjusting the degree of vacuum is introduced, and the pressure during film formation is 0.0050 Pascal (Pa). The pressure was adjusted by adding oxygen gas to the. By providing the insufficient equivalent titanium oxide layer exhibiting conductivity, antistatic properties can be provided.
  • the conductive film an ITO film or a combination of this with a deficient equivalent titanium oxide film may be employed.
  • the value of x relating to TiOx can be finely adjusted by the amount of oxygen gas introduced into the vacuum chamber (vacuum atmosphere) during film formation, and the pressure during film formation is oxygen. It will be determined by the amount of gas introduced. That is, the higher the pressure during film formation, the greater the amount of oxygen gas introduced, so x approaches 2 and the lower the pressure during film formation, the smaller the amount of oxygen gas introduced, so x becomes smaller than 2. .
  • the insufficient equivalent titanium oxide layer may be formed by vapor deposition while assisting with oxygen ions and / or argon ions or plasma treatment. In this case, a better quality equivalent equivalent titanium oxide layer is formed. Can be formed. Furthermore, the insufficient equivalent titanium oxide layer may be formed as a high refractive index layer at another position in the antireflection film (optical multilayer film), or may be independently formed as an insufficient equivalent titanium oxide film.
  • a TiOx film was formed on the surface of a plastic substrate having a refractive index of 1.60 and a glass substrate each having a hard coat film.
  • the TiOx film in the former plastic substrate was used for examining the antistatic performance and the presence or absence of appearance coloring.
  • the TiOx film in the latter glass substrate was used for calculating the absorption rate.
  • (A) to (C) are determined based on the range in which antistatic properties and transparency are compatible in [Table 2].
  • (A) is an optical layer in a TiOx film when the optical film thickness exceeds 0.500 ⁇ .
  • (C) is the lower limit of the optical film thickness where antistatic properties and transparency are compatible (due to a change in refractive index due to an error in the degree of vacuum, etc.).
  • An exponential function ⁇ optical film thickness (a ⁇ exp (b ⁇ p)) ⁇ with the natural logarithm base e as the base (with an error of ⁇ 0.05 ⁇ ) (with least squares) ) Determined by fitting.
  • the antistatic property and the transparency are also compatible when the TiOx film is incorporated in at least one layer of the optical multilayer film.
  • the pressure during film formation is 2.0 ⁇ 10 ⁇ 3 Pa and the optical film thickness is 0.050 ⁇
  • both transparency and antistatic properties are compatible, but optical absorption is confirmed by the optical film thickness meter when forming the TiOx layer. Therefore, the performance as an optical member is inferior in this respect.
  • a single-layer organic antireflection film was formed by spin coating.
  • a coating solution for forming an organic antireflection film a 3% solid content solution (“X-12-2510A” manufactured by Shin-Etsu Chemical Co., Ltd.) containing several types (compositions) of a fluorine-containing organosilicon compound as a main component is used.
  • the surface of the hard coat film on the convex side of the lens substrate is subjected to a corona treatment for 20 seconds from a distance of 30 mm, and then the coating solution is applied by spin coating at a rotation speed of 1300 rpm (times / min) and a rotation time of 30 seconds. It was cured by heating at 100 degrees for 15 minutes. After heat curing, the concave side was treated in the same manner as the convex side and cured at 110 degrees for 1 hour to form an organic antireflection film.
  • Example 5 an antifouling film having the properties of both antifouling films A and B described below was prepared.
  • the antifouling film A is obtained by diluting a perfluoropolyether type silane compound (“KY-8” manufactured by Shin-Etsu Chemical Co., Ltd.) with a fluorine-based solvent (“Novec HFE-7200” manufactured by Sumitomo 3M Limited) to obtain a solid content concentration.
  • the antifouling treatment liquid is 0.2%. This treatment liquid is coated on the lens substrate on which the antireflection film is formed by dipping at a dipping time of 30 seconds and a pulling speed of 180 mm / min, and further cured in a constant temperature and humidity environment of 60 degrees and a humidity of 80%. An antifouling film A was obtained.
  • the surface peel strength of the antifouling film A is 0.15 N / 19 mm.
  • the peel strength is obtained when the adhesive tape (“No. 31B” manufactured by Nitto Denko Corporation, width 19 mm) is pressure-bonded at 20 g / cm 2 for 24 hours and then peeled off at 300 mm / min in the 180 ° direction. The load required for peeling per unit width (19 mm) to which the adhesive tape is attached was measured, and the average value was obtained.
  • the antifouling film B was formed by treating perfluoropolyether type silane compound (“X-71-166” manufactured by Shin-Etsu Chemical Co., Ltd.) in the same manner as the antifouling film A.
  • the surface peel strength of the antifouling film B is 0.06 N / 19 mm.
  • the surface peel strength is 0.09 N / 19 mm.
  • the measurement of the charging potential was performed as follows. That is, the charged potential (kilovolt, kV) immediately after rubbing the lens convex surface with a nonwoven fabric (“pure leaf” manufactured by Ozu Sangyo Co., Ltd.) for 20 seconds at 1 kg load for 10 seconds was measured. The measurement was performed with an electrostatic meter (“FMX-003” manufactured by Simco Japan Co., Ltd.).
  • the absolute value of the charging potential does not change in each of Examples 1 to 4 and Comparative Examples 1 to 4, or is slightly lower in Examples 1 to 4. Further, in Example 4 and Comparative Example 4, the charging potential is zero due to the introduction of the insufficient equivalent titanium oxide layer exhibiting conductivity, and the antistatic property is exhibited.
  • the dust adhesion test was performed as follows. Only one optical product was sequentially placed in a polypropylene tray containing expanded polystyrene beads (approximately spheres, approximately 1.6 mm in diameter), covered, and shaken for 10 seconds (approximately 20 reciprocations). Thereafter, the optical product was gently taken out and the degree of adhesion of the expanded polystyrene beads was confirmed.
  • Table 1 “ ⁇ ” indicates that there is almost no adhesion, “ ⁇ ” indicates that there is partial adhesion, and “x” indicates that there is adhesion on almost the entire surface.
  • the ratio of the area occupied by the attached polystyrene beads to the entire optical product surface was also determined as the adhesion rate of the polystyrene foam.
  • Example 4 which has an insufficiently equivalent titanium oxide layer exhibiting conductivity, has a low charging potential, and has a sufficiently low surface peel strength, is most excellent in antifouling properties.
  • the charging potential is only low, as shown in Comparative Example 4, the antifouling property cannot be sufficiently exhibited against the polystyrene foam having static electricity.
  • the steel wool is only slightly brought into contact, and static electricity is also generated due to low peel strength.
  • the antifouling property can be exhibited even with respect to the expanded polystyrene having.
  • the attached steel wool and polystyrene foam can be easily removed, and in this respect as well, the antifouling property is excellent.
  • the peel strength is 0.10 N / 19 mm while keeping the absolute value of the charging potential below 2.00 kV. The following can exhibit a higher level of antifouling properties.
  • the peel strength is adjusted as in Example 5 and is 0.09 N / 19 mm (the absolute value of the charging potential is 2.00 kV or less), it exhibits antifouling properties against both polystyrene foam and steel wool. Can do.
  • the perfluoropolyether type silane compounds related to the antifouling films A and B were mixed with 6/4, etc., in order to change the solid content ratio, and the antifouling films having different surface peeling strengths were respectively prepared.
  • the absolute value of the charging potential is 2.00 kV or less, if the peel strength is 0.10 N / 19 mm, the antifouling property can be sufficiently exhibited for both. It was.
  • a higher level of antifouling performance can be imparted by disposing the conductive film between the substrate and the antifouling film.
  • the conductive film is at least one layer of the optical multilayer film, optical characteristics such as strength and antireflection can be further provided, and the film configuration also has the function of the conductive film in the optical multilayer film. It can be efficient.
  • a conductive film can be easily formed by making the conductive film a deficient equivalent titanium oxide film, and a deficient equivalent titanium oxide film can be formed under the conditions (A) to (C) described above. Thus, it is possible to form a conductive film having excellent permeability and sufficient antistatic properties.
  • the antifouling film is formed of a silane compound having a perfluoropolyether group, an antifouling film satisfying the above (1) and (2) can be easily formed, and the peel strength is easy. Can be adjusted.
  • the optical multilayer film is an inorganic oxide multilayer film
  • the optical multilayer film can be easily formed, and matching with the antifouling film is good and both the optical performance and the antifouling performance are achieved.
  • Provided optical products can be provided.
  • the hard coat film is formed from an organosiloxane resin, inorganic oxide fine particles, and the like, matching with the optical multilayer film is good, and an optical product having excellent strength can be obtained.
  • the optical multilayer film as an antireflection film and the optical product substrate as an eyeglass plastic lens substrate, it is possible to provide an eyeglass plastic lens exhibiting excellent antifouling performance while having antireflection performance.

Abstract

【課題】静電気を有する埃も付着し難く、付着した埃を除去し易い光学製品や眼鏡プラスチックレンズを提供する。 【解決手段】(1)帯電電位の絶対値が2.00kV以下であり、(2)表面の剥離強度が0.10N/19mm以下であるようにする防汚膜を光学製品基体の上に導入する。又、ハードコート膜及び光学多層膜を光学製品基体と防汚膜の間に配置する。更に、光学多層膜を反射防止膜とし、光学製品基体を眼鏡プラスチックレンズ基体とする。

Description

光学製品及び眼鏡プラスチックレンズ
 本発明は、カメラレンズ等の光学製品ないし眼鏡プラスチックレンズに関する。
 プラスチック製の光学製品では、静電気によりごみや埃等の汚れが付着し易くなり、特に眼鏡レンズにおいては拭き上げの頻度が高くなる。又、埃が付着した状態で拭き上げ等を行うと、埃を巻き込み、その結果レンズ表面にキズが入ってしまう。その他の光学製品においても、埃が付着することで画像出力等への影響が考えられる。
 そこで従来、光学製品の帯電を防止することで埃の付着を防ぐことが試みられている。帯電防止性を付与する手法として、下記特許文献1,2に記載されるような、導電性を有するコート層を設けるものが知られている。特許文献1のものでは、基体上に形成されたハードコート層に導電性を有する酸化スズを含有させている。又、特許文献2においては、酸化インジウムに5~10重量パーセント(wt%)の酸化スズを添加して形成された透明な導電性の膜(Indium Tin Oxide膜,ITO膜)を含む反射防止膜についての言及がある。
特開平5-104673号公報 特開平1-309003号公報
 光学製品に導電性を有するコート層を設けると、拭き上げ等を行っても表面電位がゼロのままであり、そのようなコート層がなく帯電してしまうものに比べて埃を引き寄せ難い。しかし、表面電位がゼロであっても、帯電した埃に対しては電位差があることになり、そのような埃が付着してしまうことがある。
 又、導電性を有するコート層を設けることで埃を引き寄せ難くすることができるが、一旦付着してしまった埃に対してこのコート層が作用することはなく、付着した埃を除去し易くするといった観点はない。
 そこで、請求項1に記載の発明は、静電気を有する埃も付着し難く、付着した埃を除去し易い光学製品や眼鏡プラスチックレンズを提供することを目的としたものである。
 上記目的を達成するために、請求項1に記載の発明は、光学製品に関し、光学製品基体の上に防汚膜を形成することで、(1)帯電電位の絶対値が2.00kV以下である、(2)表面の剥離強度が0.10N/19mm以下である、という条件を満たすようにしたことを特徴とするものである。
 請求項2に記載の発明は、上記目的に加えて、強度、反射防止等の光学特性及び高レベルの防汚性を兼ね備えた光学製品を提供する目的を達成するため、上記発明にあって、前記光学製品基体の上にハードコート膜及び光学多層膜が順次形成されており、当該光学多層膜の上に、前記防汚膜が形成されていることを特徴とするものである。
 請求項3に記載の発明は、上記目的に加えて、より一層高レベルの防汚性能を付与する目的を達成するため、上記発明にあって、前記光学製品基体と前記防汚膜との間に、導電性膜が配置されていることを特徴とするものである。
 請求項4に記載の発明は、上記目的に加えて、防汚膜を容易に形成することができ、剥離強度を容易に調整可能である光学製品を提供する目的を達成するため、上記発明にあって、前記防汚膜は、単体で被膜を形成した場合の剥離強度が0.10N/19mm以下であるパーフルオロポリエーテル基を有するシラン化合物を塗布することで形成されることを特徴とするものである。
 請求項5に記載の発明は、上記目的に加えて、防汚膜の形成に配慮しながら光学多層膜を容易に形成する目的を達成するため、上記発明にあって、前記光学多層膜は、無機酸化物の多層膜であることを特徴とするものである。
 請求項6に記載の発明は、上記目的に加えて、光学多層膜とのマッチングを良好として、強度に優れた光学製品を提供する目的を達成するため、上記発明にあって、前記ハードコート膜は、オルガノシロキサン系樹脂及び無機酸化物微粒子を含有することを特徴とするものである。
 請求項7に記載の発明は、上記のような光学性能ないし防汚性能に優れた光学製品に属する眼鏡プラスチックレンズを提供する目的を達成するため、眼鏡プラスチックレンズに関し、上記発明にあって、前記光学製品基体が眼鏡プラスチックレンズ基体であり、前記光学多層膜が反射防止膜であることを特徴とするものである。
 本発明によれば、(1)帯電電位の絶対値が2.00kV以下であり、(2)表面の剥離強度が0.10N/19mm以下であるような防汚膜を導入することによって、優れた防汚性能を有する光学製品を提供することができる、という効果を奏する。
 以下、本発明に係る実施の形態につき説明する。なお、本発明の形態は、以下のものに限定されない。
 本発明における光学製品の一例としての光学レンズは、レンズ基体の表面に、ハードコート膜、光学多層膜及び防汚膜を、レンズ基体からこの順で有している。なお、レンズ基体表面とハードコート膜の間にプライマー層を形成したり、レンズ基体表面とハードコート膜の間やハードコート層と光学多層膜の間あるいは光学多層膜と防汚膜の間等に中間層を具備させたりする等、膜構成を他のものに変更することができる。又、レンズ基体の裏面や表裏両面にハードコート膜や光学多層膜等を形成しても良い。
 レンズ基体の材質(基材)としては、例えばポリウレタン樹脂、エピスルフィド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、アクリル樹脂、ポリエーテルサルホン樹脂、ポリ4-メチルペンテン-1樹脂、ジエチレングリコールビスアリルカーボネート樹脂等が挙げられる。又、屈折率が高く好適なものとして、例えばポリイソシアネート化合物とポリチオール及び/又は含硫黄ポリオールとを付加重合して得られるポリウレタン樹脂を挙げることができ、更に屈折率が高く好適なものとして、エピスルフィド基とポリチオール及び/又は含硫黄ポリオールとを付加重合して得られるエピスルフィド樹脂を挙げることができる。
 又、ハードコート膜は、レンズ基体にハードコート液を均一に施して形成される。ハードコート膜の材質として、例えば無機酸化物微粒子を含むオルガノシロキサン系樹脂が用いられ、この場合のハードコート液は、水あるいはアルコール系の溶媒にオルガノシロキサン系樹脂と無機酸化物微粒子ゾルを主成分として分散(混合)して調整される。
 オルガノシロキサン系樹脂は、アルコキシシランを加水分解し縮合させることで得られるものが好ましい。アルコキシシランの具体例として、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、メチルトリメトキシシラン、エチルシリケートを挙げることができる。これらアルコキシシランの加水分解縮合物は、当該アルコキシシラン化合物あるいはそれらの組合せを、塩酸等の酸性水溶液で加水分解することにより製造される。
 一方、無機酸化物微粒子の具体例として、酸化亜鉛、二酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化スズ、酸化ベリリウム、酸化アンチモン、酸化タングステン、酸化セリウムの各ゾルを単独で又は2種以上を混晶化したものを挙げることができる。無機酸化物微粒子の大きさは、ハードコート膜の透明性確保の観点から、1~100ナノメートル(nm)であることが好ましく、1~50nmであることがより好ましい。又、無機酸化物微粒子の配合量は、ハードコート膜における硬さや強靭性の適切な度合での確保という観点から、ハードコート成分中40~60wt%を占めることが好ましい。
 加えて、ハードコート液には、硬化触媒としてアセチルアセトン金属塩、エチレンジアミン四酢酸金属塩等を添加することができ、更に必要に応じて界面活性剤、着色剤、溶媒等を調整のため添加することができる。
 ハードコート膜の膜厚は、0.5~4.0マイクロメートル(μm)とするのが好ましく、1.0~3.0μmとするのがより好ましい。この膜厚の下限については、これより薄いと十分な硬度が得られないことから定まる。一方、上限については、これより厚くするとクラックや脆さの発生等物性に関する問題の生ずる可能性が飛躍的に高まることから定まる。
 光学多層膜は、真空蒸着法やスパッタ法等により、低屈折率層と高屈折率層を交互に積層させて形成され、例えば、反射防止膜、ミラー、ハーフミラー、NDフィルター、バンドパスフィルターなどが挙げられる。各層には無機酸化物が用いられ、無機酸化物として例えば酸化ケイ素や、これより屈折率の高い酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸化イットリウム、酸化タンタル、酸化ハフニウム、酸化スズ、酸化ニオブ、酸化セリウム、酸化インジウムが挙げられる。又、不足当量酸化チタン(TiOx,x<2で2に近い)を用いることができるし、少なくとも1層においてITO膜を用いることができる。
 防汚膜は、その表面の剥離強度が0.10ニュートン(N)/19ミリメートル(mm)であるように形成された膜である。剥離強度は、所定幅の粘着テープを十分に圧着した後、180度方向において300mm/分(min)の速さで引き剥がしたときの、単位幅当たりの剥離に必要な平均荷重であって、小さいほど付着力が弱いことを示す。
 防汚膜は、好ましくはパーフルオロポリエーテル基を有するシラン化合物により形成され、好ましくは浸漬法により塗布のうえ硬化されて形成される。当該シラン化合物は、単体で被膜を形成した場合の剥離強度が0.10N/19mm以下となるものである。
 以下に説明するように、本発明に係る光学製品に属するものとして、実施例1~5を作成した。又、実施例1~5と対比させるため、本発明に属さない比較例1~6を作成した。そして、各種値の測定や埃付着テスト等を実施した。次の[表1]に、実施例1~5,比較例1~6の特性やテスト結果等を示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~5及び比較例1~6のレンズ基体はプラスチック製のフラットレンズとし、実施例2,3及び比較例2,3では屈折率1.70のエピスルフィド樹脂を用い、これら以外では屈折率1.60のポリウレタン樹脂を用いた。
 実施例2,3及び比較例2,3ではレンズ基材の表面にプライマー層を形成した。ブロック型のポリイソシアネート(日本ポリウレタン工業株式会社製「コロネート2529」)25重量部、ポリエステルポリオール(同社製「ニッポラン100」)18重量部、エチルセロソルブ100重量部を混合して、酸化スズと酸化タングステンの複合ゾル(メタノール分散ゾル,平均粒子系10~15mm,酸化スズと酸化タングステンの比率は前者100重量部に対して後者40重量部の割合,固形分30%)140重量部、シリコーン系界面活性剤を0.15重量部添加し、十分に攪拌混合して、プライマー液を調整した。そして、当該プライマー液をレンズ基体上に引き上げ速度100mm/minでディッピングしてコートした。当該プライマー液を塗布したレンズ基体は、120度で30分間加熱することで硬化させ、膜厚1.0μmのプライマー膜を形成した。
 次に、実施例1~5及び比較例1~6において、ハードコート膜を形成した。反応容器中にエタノール206グラム(g)、メタノール分散チタニア系ゾル300g(日揮触媒化成工業株式会社製,固形分30%)、γ-グリシドキシプロピルトリメトキシシラン60g、γ-グリシドキシプロピルメチルジエトキシシラン30g、テトラエトキシシラン60gを加え、その混合液中に0.01N(規定濃度)の塩酸水溶液を滴下して攪拌し、加水分解を行った。この後フロー調整剤0.5g(東レ・ダウコーニング株式会社製「L-7604」)及び触媒1.0gを加え、室温で3時間攪拌してハードコート液を作成した。このハードコート液をディッピング法で塗布し、風乾後110度で2時間加熱することにより硬化させ、膜厚2.0μmのハードコート膜を形成した。
 続いて、各種の反射防止膜を形成した。実施例1,5及び比較例1においては、5層の多層膜を形成した。ハードコート膜を有するレンズ基体を真空槽内にセットし、真空蒸着法によって順次各層を形成した。層の材質は、奇数層が二酸化ケイ素であり、偶数層が酸化ジルコニウムである。各層の光学膜厚は、ハードコート膜(レンズ基材)側から順に0.214λ,0.080λ,0.071λ,0.389λ,0.236λとした。ここで、λは設計中心波長であり、λ=500nmに設定した。
 実施例2及び比較例2においては、7層の多層膜を形成した。実施例1,5及び比較例1と同様に形成し、各層の光学膜厚は、ハードコート膜側から順に0.078λ,0.056λ,0.487λ,0.112λ,0.059λ,0.263λ,0.249λとした。ここで、設計中心波長はλ=500nmに設定した。
 実施例3及び比較例3においては、7層の多層膜を形成した。実施例1,5及び比較例1と同様に形成し、層の材質は、奇数層を二酸化ケイ素とし、偶数層を酸化チタンとし、各層の光学膜厚は、ハードコート膜側から順に0.074λ,0.061λ,0.113λ,0.180λ,0.061λ,0.168λ,0.273λとした。ここで、酸化チタン成膜時に圧力が0.010パスカル(Pa)になるように酸素ガスを入れて圧力調節した。ここで、設計中心波長はλ=500nmに設定した。
 実施例4及び比較例4においては、7層の多層膜を形成した。実施例3及び比較例3と同様に形成し、ハードコート膜側から数えて第4層のみ不足当量酸化チタンとし、各層の光学膜厚は、ハードコート膜側から順に0.074λ,0.061λ,0.113λ,0.185λ,0.061λ,0.168λ,0.273λとした(設計中心波長はλ=500nmに設定した)。ここで、不足当量酸化チタンは、真空度調節用の酸素ガスを導入した真空チャンバ内で不足当量酸化チタンを蒸着することにより形成され、成膜時圧力が0.0050パスカル(Pa)になるように酸素ガスを入れて圧力調節した。導電性を呈する不足当量酸化チタン層を備えることにより、帯電防止性を具備させることができる。なお、導電性膜として、ITO膜や、これと不足当量酸化チタン膜との組合せ等を採用して良い。
 不足当量酸化チタンの蒸着材料としては、五酸化三チタン(キヤノンオプトロン株式会社製「OS-50」)を用い、次に示す反応により不足当量酸化チタンを生成しつつ蒸着したが、酸化チタン全般を用ることが可能である。
  Ti + δO → 3TiOx
 ここで、TiOxに係るxの値(不足当量)は、成膜時の真空チャンバ内(真空雰囲気)に導入する酸素ガス導入量によって微調整することができ、又、成膜時の圧力は酸素ガス導入量によって決定されることになる。即ち、成膜時の圧力が高い程、酸素ガス導入量は多くなるため、xが2に近づき、成膜時の圧力が低い程、酸素ガス導入量は少なくなるため、xが2より小さくなる。
 なお、真空チャンバ内での成膜時圧力p(Pa)と不足当量酸化チタン層の光学膜厚(屈折率2.50、設計中心波長λ=500nm)が、(A)p≧0.005、(B)光学膜厚≦0.500λ、(C)光学膜厚≧(0.001exp(905.73p)-0.050)λ、expは自然対数の底eを底とする指数関数、という関係を有するようにすることができ、このようにすると、次の[表2]に示すように、透過性(無着色性)に優れながら帯電防止性を十分に備えさせることができる。又、不足当量酸化チタン層を、酸素イオン及び/又はアルゴンイオンでアシストしながら、あるいはプラズマ処理をしながら蒸着することにより形成しても良く、この場合にはより良質な不足当量酸化チタン層を形成することができる。更に、不足当量酸化チタン層は、反射防止膜(光学多層膜)における他の位置の高屈折率層として形成されて良いし、独立させて不足当量酸化チタン膜として形成されても良い。
Figure JPOXMLDOC01-appb-T000002
 即ち、[表2]における「光学膜厚」と「成膜時圧力」とが交差する欄であって「-」以外が示されるものについて、その光学膜厚ないし成膜時圧力において単層のTiOx膜を、ハードコート膜付きである屈折率1.60のプラスチック製基体、及びガラス製基体の表面にそれぞれ作製した。ここで、前者のプラスチック製基体におけるTiOx膜は、帯電防止性能と外観着色の有無を調べるために用いた。又、後者のガラス製基体におけるTiOx膜は、吸収率算出のために用いた。
 [表2]の「帯電防止」の欄には、帯電電位測定とスチールウール粉付着状況から判定した帯電防止性能の良否が、良好な場合「○」を付し、比較的に劣る場合に「×」を付することで示され、「着色」の欄には、外観観察と吸収率算出結果から判定した透過性の良否が、良好な場合「○」を付し、比較的に劣る場合に「×」を付することで示される。
 上記(A)~(C)は、[表2]において帯電防止性と透過性とが両立する範囲に基づき定められ、特に(A)は光学膜厚が0.500λを超えるとTiOx膜における光学特性(透過性等)に影響が出ることから定められ、又(C)は帯電防止性と透過性とが両立する光学膜厚の下限値につき(真空度の誤差に起因する屈折率変化等による誤差±0.05λを考慮して)自然対数の底eを底とする指数関数{光学膜厚=(a・exp(b・p))λ}を誤差の最も少ない状態で(最小自乗法により)フィットさせることで定められる。そして(A)~(C)を満たす場合、TiOx膜を光学多層膜の少なくとも1層に組み込んだときにも帯電防止性と透過性が同様に両立した。なお、(C)は、誤差等を考慮して、光学膜厚≧(0.001exp(905.73p)-0.050)λや、光学膜厚≧(0.001exp(905.73p)+0.050)λ等とすることができる。又、成膜時圧力2.0×10-3Paかつ光学膜厚0.050λにおいても透過性と帯電防止性が両立するが、TiOx層成膜時に光学式膜厚計で光吸収が確認されたため、この点で光学部材としての性能に劣ることとなる。
 他方、比較例5,6においては、スピンコート法により単層の有機反射防止膜を形成した。有機反射防止膜形成用のコート液として、数種(組成)の含フッ素有機ケイ素化合物を主成分とする固形分濃度3%の溶液(信越化学工業株式会社製「X-12-2510A」)を用いた。レンズ基体の凸面側のハードコート膜表面を30mmの距離から20秒間コロナ処理した後、当該コート液を回転数1300rpm(回/min),回転時間30秒でスピンコート処理することで塗布し、更に100度で15分間加熱して硬化させた。加熱硬化後、凹面側を凸面側と同様に処理し、110度で1時間硬化させ、有機反射防止膜を形成した。
 続いて、防汚膜を3種類形成した。比較例1~5では、次に説明する防汚膜Aを形成した。実施例1~4及び比較例6では、以下説明する防汚膜Bを形成した。実施例5では、以下説明する防汚膜A,Bの双方の性質を兼ね備えた防汚膜を作成した。
 防汚膜Aは、パーフルオロポリエーテル型シラン化合物(信越化学工業株式会社製「KY-8」)をフッ素系溶剤(住友スリーエム株式会社製「ノベックHFE-7200」)に希釈して固形分濃度0.2%とした防汚処理液から形成される。この処理液を反射防止膜上が形成されたレンズ基体上に浸漬時間30秒,引き上げ速度180mm/minでディッピングしてコートし、更に60度・湿度80%の恒温恒湿環境下で硬化を行い、防汚膜Aを得た。防汚膜Aの表面剥離強度は、0.15N/19mmである。ここで、剥離強度は、粘着テープ(日東電工株式会社製「No.31B」,幅19mm)を20g/cmで24時間圧着させた後、180度方向で300mm/minで引き剥がした際の当該粘着テープが付着している単位幅(19mm)当たりの剥離に必要な荷重を測定し、その平均値を求めることで得た。
 防汚膜Bは、パーフルオロポリエーテル型シラン化合物(信越化学工業株式会社製「X-71-166」)につき防汚膜Aと同様に処理して形成した。防汚膜Bの表面剥離強度は、0.06N/19mmである。
 実施例5では、防汚膜A,Bに係るパーフルオロポリエーテル型シラン化合物につき順に固形分比率7対3の割合(A/B=7/3)で混合させ、固形分濃度0.2%の処理液を形成した。後は防汚膜Aと同様に処理して形成した。表面剥離強度は、0.09N/19mmである。
 このようにして得られた各種光学製品につき、帯電電位の測定や埃付着テストを行った。
 帯電電位の測定は、次のように行った。即ち、レンズ凸面を不織布(小津産業株式会社製「pure leaf」)で1キログラム荷重において10秒間20往復擦った直後の帯電電位(キロボルト,kV)を測定した。測定は、静電気測定器(シムコジャパン株式会社製「FMX-003」)により行った。
 帯電電位の絶対値は、実施例1~4と比較例1~4のそれぞれにおいて、変わらないか、若干実施例1~4の方が低くなっている。又、実施例4,比較例4では、導電性を呈する不足当量酸化チタン層の導入により、帯電電位がゼロとなっていて、帯電防止性を呈している。
 埃付着テストは、次のように行った。発泡スチロールビーズ(ほぼ球体,直径約1.6mm)の入ったポリプロピレン製のトレーに各種光学製品を順次1個だけ入れ、蓋をした後、10秒間振った(約20往復)。その後光学製品を静かに取り出し、発泡スチロールビーズの付着具合を確認した。[表1]における「○」は付着が殆どないことを示し、「△」は一部付着があることを示し、「×」はほぼ全面に付着があることを示す。又、発泡スチロールの付着率として、光学製品表面全体に対する付着した発泡スチロールビーズの占める面積の割合も求めた。
 更に、埃付着テストとして、スチールウールを利用したものも行った。光学製品表面を同様に不織布で擦った後、細かく粉砕したスチールウールに近づけ、レンズ凸面にスチールウールが引き寄せられるか否かを確認した。[表1]における「○」は付着がないことを示し、「△」は一部付着があることを示し、「×」はほぼ全面に付着があることを示す。
 そして、各種光学製品につき、埃付着テスト等を踏まえて総合評価を行った。[表1]における「○」は発泡スチロールビーズ及びスチールウールの双方において付着がほぼなく埃付着防止性(防汚性)において良好であることを示し、「○-△」は一方において付着が若干存在して防汚性においてやや良好であることを示し、「△」は一方において付着が認められて防汚性に比較的劣ることを示し、「×」は双方において付着が認められて防汚性に劣ることを示す。
 なお、各種光学製品につき透過性を確認したが、何れも可視領域の反射率が数%以下に収まるものであり、透明でないものはなく、透過性に問題はなかった。
 以上によれば、導電性を呈する不足当量酸化チタン層を有して帯電電位が低く、且つ表面剥離強度が十分低い実施例4が、最も防汚性に優れていることが分かる。帯電電位が低いだけであると、比較例4が表すように、自ら静電気を有する発泡スチロールに対して防汚性を十分に発揮することができない。
 一方、帯電電位が若干高くとも、実施例1~3のように帯電電位の絶対値が2.00kV以下であれば、スチールウールを僅かに寄せ付けるのみとなり、又剥離強度の低さ等により静電気を有する発泡スチロールに対しても防汚性を発揮することができる。更に、剥離強度の低さ等により、付着したスチールウールや発泡スチロールを簡単に除去することができ、この点でも防汚性に優れている。つまり、性能の高い帯電防止膜(導電性膜)を配置して帯電電位をゼロにすることのみを行うよりも、帯電電位の絶対値を2.00kV以下としつつ剥離強度を0.10N/19mm以下とすることの方が、より高レベルの防汚性を発揮することができるのである。
 他方、剥離強度が低かったとしても、比較例6のように帯電電位の絶対値が2.00kVを超えて大きいと、スチールウールに対して防汚性を発揮することができず、発泡スチロールに対してもさほど防汚性を発揮することができない。なお、付着したスチールウールや発泡スチロールは帯電電位により吸い寄せられること等により除去し難い。
 更に、実施例5のように剥離強度を調整し、0.09N/19mm(帯電電位の絶対値は2.00kV以下)としても、発泡スチロール及びスチールウールの双方に対して防汚性を発揮することができる。なお、防汚膜A,Bに係るパーフルオロポリエーテル型シラン化合物につき6/4等と固形分比率を順次代えて混合させ、互いに表面剥離強度の異なる防汚膜をそれぞれ作成し、同様に埃付着テストを行ったところ、帯電電位の絶対値が2.00kV以下である場合において、剥離強度が0.10N/19mmであれば双方に対して十分に防汚性を発揮することができることが分かった。
 即ち、(1)帯電電位の絶対値が2.00kV以下であり、(2)表面の剥離強度が0.10N/19mm以下であるような防汚膜を導入することによって、優れた防汚性能を付与することができる。
 又、ハードコート膜及び光学多層膜を基体と防汚膜の間に配置することによって、強度、反射防止等の光学特性及び高レベルの防汚性を兼ね備えた光学製品を構成することができる。
 更に、導電性膜を基体と防汚膜の間に配置することにより、より一層高レベルの防汚性能を付与することができる。ここで、導電性膜を光学多層膜の少なくとも一層とすれば、更に強度や反射防止等の光学特性を具備させることができ、膜構成も光学多層膜に導電性膜の機能を兼ね備えさせるような効率の良いものとすることができる。又、導電性膜を不足当量酸化チタン膜とすることで、簡易に導電性膜を形成することができ、上記(A)~(C)の条件下等で不足当量酸化チタン膜を形成することで、透過性に優れながら帯電防止性を十分に備えた導電性膜を形成することができる。
 又更に、防汚膜がパーフルオロポリエーテル基を有するシラン化合物で形成されることで、上記(1)や(2)を満たす防汚膜を容易に形成することができるし、剥離強度を容易に調整することができる。
 加えて、前記光学多層膜は、無機酸化物の多層膜であるので、光学多層膜を容易に形成することができるし、防汚膜とのマッチングを良好として光学性能と防汚性能の双方を具備した光学製品を提供することができる。
 又、ハードコート膜がオルガノシロキサン系樹脂及び無機酸化物微粒子等から形成されるため、光学多層膜とのマッチングを良好として、強度に優れた光学製品とすることができる。
 更に、光学多層膜を反射防止膜とし、光学製品基体を眼鏡プラスチックレンズ基体とすることで、反射防止性能を有しながら優れた防汚性能を呈する眼鏡プラスチックレンズを提供することができる。

Claims (7)

  1.  光学製品基体の上に防汚膜を形成することで、次に示す条件を満たすようにしたことを特徴とする光学製品。
    (1)帯電電位の絶対値が2.00kV以下である。
    (2)表面の剥離強度が0.10N/19mm以下である。
  2.  前記光学製品基体の上にハードコート膜及び光学多層膜が順次形成されており、
     当該光学多層膜の上に、前記防汚膜が形成されている
    ことを特徴とする請求項1に記載の光学製品。
  3.  前記光学製品基体と前記防汚膜との間に、導電性膜が配置されている
    ことを特徴とする請求項1又は請求項2に記載の光学製品。
  4.  前記防汚膜は、単体で被膜を形成した場合の剥離強度が0.10N/19mm以下であるパーフルオロポリエーテル基を有するシラン化合物を塗布することで形成される
    ことを特徴とする請求項1ないし請求項3の何れかに記載の光学製品。
  5.  前記光学多層膜は、無機酸化物の多層膜である
    ことを特徴とする請求項2ないし請求項4の何れかに記載の光学製品。
  6.  前記ハードコート膜は、オルガノシロキサン系樹脂及び無機酸化物微粒子を含有する
    ことを特徴とする請求項2ないし請求項5の何れかに記載の光学製品。
  7.  請求項2ないし請求項6の何れかに記載の光学製品にあって、前記光学製品基体が眼鏡プラスチックレンズ基体であり、前記光学多層膜が反射防止膜であることを特徴とする眼鏡プラスチックレンズ。
PCT/JP2010/059854 2009-06-16 2010-06-10 光学製品及び眼鏡プラスチックレンズ WO2010147048A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20100789423 EP2431772B1 (en) 2009-06-16 2010-06-10 Optical product and eyeglass plastic lens
KR1020117029911A KR101670005B1 (ko) 2009-06-16 2010-06-10 광학 제품 및 안경 플라스틱 렌즈
ES10789423T ES2446360T3 (es) 2009-06-16 2010-06-10 Producto óptico y lentes de plástico para gafas
CN201080026893.7A CN102460224B (zh) 2009-06-16 2010-06-10 光学制品及眼镜塑料镜片
US13/306,273 US8746880B2 (en) 2009-06-16 2011-11-29 Optical product and eyeglass plastic lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-143635 2009-06-16
JP2009143635A JP5927457B2 (ja) 2009-06-16 2009-06-16 光学製品及び眼鏡プラスチックレンズ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/306,273 Continuation US8746880B2 (en) 2009-06-16 2011-11-29 Optical product and eyeglass plastic lens

Publications (1)

Publication Number Publication Date
WO2010147048A1 true WO2010147048A1 (ja) 2010-12-23

Family

ID=43356368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059854 WO2010147048A1 (ja) 2009-06-16 2010-06-10 光学製品及び眼鏡プラスチックレンズ

Country Status (7)

Country Link
US (1) US8746880B2 (ja)
EP (1) EP2431772B1 (ja)
JP (1) JP5927457B2 (ja)
KR (1) KR101670005B1 (ja)
CN (1) CN102460224B (ja)
ES (1) ES2446360T3 (ja)
WO (1) WO2010147048A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145613A1 (ja) * 2010-05-20 2011-11-24 東海光学株式会社 プラスチック光学製品及び眼鏡プラスチックレンズ

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6016155B2 (ja) * 2012-09-07 2016-10-26 東海光学株式会社 光学製品及び眼鏡プラスチックレンズ
TW201427132A (zh) * 2012-12-19 2014-07-01 Ind Tech Res Inst 複合漸變折射層結構及包括此結構之封裝結構
US9110230B2 (en) 2013-05-07 2015-08-18 Corning Incorporated Scratch-resistant articles with retained optical properties
US9366784B2 (en) 2013-05-07 2016-06-14 Corning Incorporated Low-color scratch-resistant articles with a multilayer optical film
CN104280792A (zh) * 2013-07-03 2015-01-14 上海舒曼光学有限公司 一种眼镜片减反射膜层及其制备方法
US11267973B2 (en) 2014-05-12 2022-03-08 Corning Incorporated Durable anti-reflective articles
US9335444B2 (en) * 2014-05-12 2016-05-10 Corning Incorporated Durable and scratch-resistant anti-reflective articles
US9790593B2 (en) 2014-08-01 2017-10-17 Corning Incorporated Scratch-resistant materials and articles including the same
KR20170092647A (ko) 2014-12-05 2017-08-11 쓰리엠 이노베이티브 프로퍼티즈 캄파니 시각-보호 필터 렌즈
JP5903181B1 (ja) * 2015-06-09 2016-04-13 株式会社吉城光科学 液晶表示画面保護シート
WO2017048700A1 (en) 2015-09-14 2017-03-23 Corning Incorporated High light transmission and scratch-resistant anti-reflective articles
JP6902775B2 (ja) 2016-02-23 2021-07-14 東海光学株式会社 プラスチック基材ndフィルタ及び眼鏡用プラスチック基材ndフィルタ
CN105904798A (zh) * 2016-04-25 2016-08-31 苏州普京真空技术有限公司 一种多层复合耐用真空镀膜
US11709155B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved chromatography of metal interacting analytes
US11709156B2 (en) 2017-09-18 2023-07-25 Waters Technologies Corporation Use of vapor deposition coated flow paths for improved analytical analysis
JP7228028B2 (ja) 2018-08-17 2023-02-22 コーニング インコーポレイテッド 薄い耐久性の反射防止構造を有する無機酸化物物品
US11918936B2 (en) 2020-01-17 2024-03-05 Waters Technologies Corporation Performance and dynamic range for oligonucleotide bioanalysis through reduction of non specific binding
CN113861478A (zh) * 2021-09-30 2021-12-31 台州星星光电科技有限公司 一种抗静电的玻璃面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309003A (ja) 1988-06-07 1989-12-13 Toray Ind Inc 撥水性を有する帯電防止物品
JPH05104673A (ja) 1991-10-17 1993-04-27 Nikon Corp 撥水性と帯電防止性を有する反射防止性プラスチツク成 形物
JP2004061866A (ja) * 2002-07-29 2004-02-26 Seiko Epson Corp 防汚性眼鏡レンズの製造方法
JP2006175438A (ja) * 2005-12-22 2006-07-06 Toppan Printing Co Ltd 防汚層の形成方法
JP2007127681A (ja) * 2005-11-01 2007-05-24 Tokai Kogaku Kk プラスチックレンズ

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5719705A (en) * 1995-06-07 1998-02-17 Sola International, Inc. Anti-static anti-reflection coating
GB9619781D0 (en) * 1996-09-23 1996-11-06 Secr Defence Multi layer interference coatings
JP4420476B2 (ja) * 1996-10-18 2010-02-24 ソニー株式会社 表面改質膜用組成物,表面改質膜,表示装置用フィルター,表示装置及び表示装置用フィルターの製造方法
CN1422307A (zh) * 2000-04-10 2003-06-04 积水化学工业株式会社 抗静电硬涂层用组合物、抗静电硬涂层、其制造方法及抗静电硬涂层层压体膜
DE60229340D1 (de) * 2001-10-05 2008-11-27 Shinetsu Chemical Co Perfluoropolyethermodifizierte Silane, Oberflächenbehandlungsmittel und Antireflexfilter
US6958191B2 (en) * 2002-08-29 2005-10-25 Shin-Etsu Chemical Co., Ltd. Lens with stain resistant surface layer
KR100693656B1 (ko) * 2003-06-10 2007-03-14 세이코 엡슨 가부시키가이샤 방오성 안경 렌즈 및 그 제조방법
JP2005199572A (ja) * 2004-01-16 2005-07-28 Nitto Denko Corp 汚染防止型反射防止膜及び表示装置
KR101128016B1 (ko) * 2004-06-15 2012-03-29 다이니폰 인사츠 가부시키가이샤 대전방지 적층체 및 그를 이용한 편광판
CN2911720Y (zh) * 2006-03-09 2007-06-13 周大志 看视荧光屏用的防护眼镜片
US7553514B2 (en) * 2006-08-28 2009-06-30 3M Innovative Properties Company Antireflective article
JP4857290B2 (ja) * 2007-01-22 2012-01-18 キヤノン株式会社 光学部材及び光学部材の製造方法
JP5111508B2 (ja) * 2007-08-22 2013-01-09 ユニチカ株式会社 離型用シート
KR100991056B1 (ko) * 2007-11-16 2010-10-29 엡슨 토요콤 가부시키 가이샤 광학 다층막 필터, 광학 다층막 필터의 제조 방법 및 전자기기 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309003A (ja) 1988-06-07 1989-12-13 Toray Ind Inc 撥水性を有する帯電防止物品
JPH05104673A (ja) 1991-10-17 1993-04-27 Nikon Corp 撥水性と帯電防止性を有する反射防止性プラスチツク成 形物
JP2004061866A (ja) * 2002-07-29 2004-02-26 Seiko Epson Corp 防汚性眼鏡レンズの製造方法
JP2007127681A (ja) * 2005-11-01 2007-05-24 Tokai Kogaku Kk プラスチックレンズ
JP2006175438A (ja) * 2005-12-22 2006-07-06 Toppan Printing Co Ltd 防汚層の形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2431772A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145613A1 (ja) * 2010-05-20 2011-11-24 東海光学株式会社 プラスチック光学製品及び眼鏡プラスチックレンズ
EP2560031A1 (en) * 2010-05-20 2013-02-20 Tokai Optical Co., Ltd. Plastic optical product and plastic lens for eyeglasses
EP2560031A4 (en) * 2010-05-20 2013-11-06 Tokai Optical Co Ltd OPTICAL PRODUCT IN PLASTIC AND LENS IN PLASTIC FOR EYEWEAR
US9022561B2 (en) 2010-05-20 2015-05-05 Tokai Optical Co., Ltd. Plastic optical product and plastic lens for spectacles

Also Published As

Publication number Publication date
CN102460224A (zh) 2012-05-16
US8746880B2 (en) 2014-06-10
KR20120034655A (ko) 2012-04-12
EP2431772A1 (en) 2012-03-21
EP2431772A4 (en) 2012-10-03
ES2446360T3 (es) 2014-03-07
JP2011002515A (ja) 2011-01-06
JP5927457B2 (ja) 2016-06-01
KR101670005B1 (ko) 2016-10-27
US20120069295A1 (en) 2012-03-22
CN102460224B (zh) 2014-03-26
EP2431772B1 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5927457B2 (ja) 光学製品及び眼鏡プラスチックレンズ
AU2011370999B2 (en) Method for obtaining optical articles having superior abrasion resistant properties, and coated articles prepared according to such method
EP2416183B1 (en) Optical member, plastic lens for eyeglasses, and method for manufacturing the same
JP6112490B2 (ja) 光学製品及びその製造方法
JP5688567B2 (ja) 帯電防止性反射防止膜を有するプラスチックレンズの製造方法
JP2007102096A (ja) プラスチックレンズ及びプラスチックレンズの製造方法
JP2012234218A (ja) ハードコート組成物及びプラスチック光学製品
JP6257897B2 (ja) 光学物品およびその製造方法
JP2005146272A (ja) 防汚膜被覆樹脂物品の製造方法
JP2020187188A (ja) 眼鏡レンズ
JP2008046264A (ja) 光学物品
JP2010271479A (ja) 光学製品及び眼鏡プラスチックレンズ
JP2011113050A (ja) プラスチック光学部材
JP2008081710A (ja) ハードコート組成物及びプラスチック光学製品
JP2008185956A (ja) 反射防止膜および反射防止膜付き透明基材
JP5651838B2 (ja) ミラーコート層を有する光学物品の製造方法及び同方法で製造した光学物品
JP2000119846A (ja) 薄膜の製造方法
WO2017125999A1 (ja) 光学部品
JPH10232301A (ja) 反射防止膜及び光学素材
CN114503016A (zh) 具有涂覆有临时超疏水膜的亲水表面的制品及获得其的方法
JP2009092949A (ja) 光学部材及びその製造方法
JP2005234311A (ja) 光学素子および光学素子の製造方法
JP2005199572A (ja) 汚染防止型反射防止膜及び表示装置
JP2001141905A (ja) プラスチックレンズの製造方法及びプラスチックレンズ
WO2022264458A1 (ja) 表面層、光学部材、眼鏡、及び表面層形成用材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080026893.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789423

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010789423

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117029911

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE