WO2010146680A1 - 磁性粉末の製造方法及びその製造装置 - Google Patents
磁性粉末の製造方法及びその製造装置 Download PDFInfo
- Publication number
- WO2010146680A1 WO2010146680A1 PCT/JP2009/061076 JP2009061076W WO2010146680A1 WO 2010146680 A1 WO2010146680 A1 WO 2010146680A1 JP 2009061076 W JP2009061076 W JP 2009061076W WO 2010146680 A1 WO2010146680 A1 WO 2010146680A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic powder
- metal
- hard magnetic
- chamber
- producing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0572—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/003—Apparatus, e.g. furnaces
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C2202/00—Physical properties
- C22C2202/02—Magnetic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/08—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/086—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
Definitions
- the present invention relates to a method for manufacturing magnetic powder and an apparatus for manufacturing the same, and more particularly, to a method for manufacturing magnetic powder suitable for manufacturing a sintered magnet having excellent magnetic properties and an apparatus for manufacturing the same.
- Permanent magnets obtained by sintering magnetic powder such as Nd—Fe—B system have been widely used in recent years due to their excellent magnetic properties. Permanent magnets such as Nd 2 Fe 14 B system in which such powder is sintered as the range of application of magnets has expanded to respond to environmental problems, including home appliances, industrial equipment, electric vehicles, and wind power generation. There is a demand for higher performance.
- the magnitude of the residual magnetic flux density and the coercive force can be given.
- increasing the residual magnetic flux density of an Nd—Fe—B based sintered magnet can be achieved by increasing the volume fraction of the Nd 2 Fe 14 B compound and improving the degree of crystal orientation.
- Various process improvements have been made to achieve this.
- the coercive force in order to increase the coercive force, it can be achieved by various approaches, such as a method of refining crystal grains, a method using a composition alloy with an increased amount of Nd, or a method of adding an effective element. Can do.
- the most common technique is to increase the coercive force by using a composition alloy in which a part of Nd is substituted with Dy or Tb. Specifically, by substituting these elements for Nd in the Nd 2 Fe 14 B compound, the anisotropic magnetic field of the compound increases, thereby increasing the coercive force.
- Tb can be cited as a rare earth element that exhibits the same effect as Dy for the purpose of achieving a high coercive force, but the abundance of Tb is much lower than Dy.
- the coercive force of Nd—Fe—B based sintered magnets has been significantly improved compared to the early stage of development by adding such a trace amount of elements and searching for heat treatment conditions. Accordingly, in view of such an improvement effect, it is unavoidable to reduce the amount of Dy or Tb added as a trace element.
- a technique is employed in which Dy and Tb are concentrated only at the grain boundaries of the magnet or in the vicinity thereof.
- a two-alloy method is proposed in which a powder in which Dy and Tb are contained in a larger amount than the main phase (Nd 2 Fe 14 B) and a powder in which these elements are not mixed are sintered in advance (for example, a patent) Reference 1).
- a method is proposed in which a fluorine compound such as Dy or Tb is applied to the surface of a sintered magnet, and Dy or Tb is diffused and penetrated into grain boundaries near the surface by heat treatment (for example, Patent Documents). 2).
- the particle size of hard magnetic powders for sintering rare earth magnets at present is about 3 to 5 ⁇ m, and these transition elements (transition metals) and the like are magnetic powders having a thickness of several nanometers to several tens of nanometers. It is extremely difficult to uniformly coat around.
- rare earth metals easily react with moisture, and basically, it is difficult to coat rare earth metals around powders in a wet environment.
- magnetic powders of about 3 to 5 ⁇ m tend to agglomerate with each other and form solidified particles with these dozens of magnetic powders, and the surface of each magnetic powder can be uniformly coated with transition elements. It's not easy.
- this hard magnetic powder due to the nature of rare earth metal, it is a fine powder with a particle size of 3-5 ⁇ m. It is difficult to avoid surface oxidation of the powder. And when a sintered magnet is molded using magnetic powder whose surface has been oxidized, the magnetic properties are lowered. Moreover, even if it carries out by a dry type, the aggregation of the magnetic powder mentioned above cannot be avoided.
- the present invention has been made in view of the above-described problems, and the magnetic properties of a sintered magnet can be improved by uniformly coating the surface of a hard magnetic powder with a metal such as a transition metal. It aims at providing the manufacturing method of a powder, and the manufacturing apparatus of a magnetic powder.
- the inventors have made extensive studies and as a principle of attaching a metal such as a transition metal to the surface of the hard magnetic powder, pay attention to the thermophoresis phenomenon and use this phenomenon. As a result, a new finding has been obtained that a small amount of metal can be uniformly attached (coated) to the surface of the magnetic powder.
- the present invention is based on the inventors' new knowledge, and a method for producing a magnetic powder according to the present invention includes a step of aerosolizing a hard magnetic powder with an inert gas, and a metal under an inert gas atmosphere. Heating and vaporizing, and attaching the vaporized metal to the surface of the aerosolized hard magnetic powder.
- an aerosol of hard magnetic powder is generated, and the aerosolized hard magnetic powder is dispersed in an inert gas (aerosol). Then, vaporized metal is attached to the surface of the dispersed magnetic powder in an inert gas atmosphere. At this time, the vaporized metal, that is, the vapor particles of the metal has a higher temperature than the hard magnetic powder. Since there is a large thermal gradient between the hard magnetic powder and the vapor particles, the vapor particles having a higher temperature than the hard magnetic powder exert a force (thermophoretic force) to be attracted to the hard magnetic powder having a lower temperature. . As a result, the vapor particles are densely and firmly adsorbed (coated) on the surface of the magnetic powder. In addition, since the vaporized metal (vapor particles) is several tens of nanometers and smaller than the hard magnetic powder, a small amount of vapor particles are uniformly distributed on the surface of the hard magnetic powder as compared with the conventional method. Can be attached.
- aerosol refers to a substance in which a large number of hard magnetic powders are floated in a gas
- aerosolization means that a number of hard magnetic powders are floated in a gas.
- the “hard magnetic powder” according to the present invention is a powder that does not retain magnetization when a magnetic field is removed after applying a magnetic field, and is a powder for producing a permanent magnet.
- the powder that remains magnetized even if the magnetic field is removed and the magnetized state is maintained is soft magnetic powder.
- examples of the inert gas include He, N 2 , and Ar gases, and are particularly limited as long as they do not oxidize the hard magnetic powder and the vaporized metal (vapor particles). is not.
- the deposition method is not particularly limited as long as the vaporized metal can be adhered to the surface of the aerosolized hard magnetic powder.
- the aerosolized hard magnetic powder and the vaporized metal are carried in an air stream, and the vaporized metal is allowed to collide with the aerosolized hard magnetic powder.
- the flow velocity of the vaporized metal air flow is more preferably equal to or higher than the flow velocity of the aerosolized hard magnetic powder.
- the vaporized metal (vapor particles) is several tens of nanometers as described above, and when the vapor particles are carried in an air stream, compared to the hard magnetic powder. Almost accelerated. Thereby, the vaporized metal can be collided with the aerosolized hard magnetic powder with higher energy. In this way, the vapor particles can be more firmly and densely attached to the surface of the hard magnetic powder.
- the aerosolized hard magnetic powder is placed on the airflow means that the aerosol of the hard magnetic powder itself is transported.
- the metal to be attached to the hard magnetic powder for use in the method for producing the magnetic powder of the present invention is preferably a transition metal or an alloy metal thereof.
- a more preferable transition metal is a rare earth metal (third transition element (4f transition element)), and among these, Dy, Tb, or Pr is more preferable. Since these rare earth metals are elements having a higher anisotropic magnetic field than other metals, the magnets produced thereby can improve the magnetic properties.
- the metal to be deposited may be an alloy metal of Dy, Tb or Pr and Nd. These alloy metals are easy to dissolve into the grain boundaries as compared with Dy, Tb or Pr alone.
- other metals to be deposited include Al, Cu, Zn, In, Si, P, S, Ti, V, Cr, Mn, Ni, Co, Ga, Ge, Zr, Nb, Mo, Pd, Examples thereof include Ag, Cd, Sn, Sb, Hf, Ta, W, and alloy metals thereof.
- a highly anisotropic metal or a nonmagnetic metal is desirable, and Al and Cu are more preferable. Both Al and Cu are easily melted into a magnet during sintering, and can form a Nd-rich phase and a low-melting eutectic alloy to improve the wettability at the grain boundary. Since it can be made discontinuous, the magnetic properties can be improved.
- the hard magnetic powder is not particularly limited as long as it can produce a permanent magnet by sintering.
- R 2 Tm 14 (B, C) 1 series examples thereof include magnetic powder (R is a rare earth metal, Tm is a transition metal excluding the rare earth metal, etc.).
- the rare earth metal include Sc, Y, La, Ce, Pr, Sm, Eu, Gd, Ho, Er, Yb, and Lu.
- transition metals excluding rare earth metals Al, Cu, Zn, In, Si, P, S, Ti, V, Cr, Mn, Ni, Co, Ga, Ge, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Hf, Ta, W, etc. can be mentioned.
- the hard magnetic powder is an Nd—Fe—B based magnetic powder. According to the present invention, such a magnetic powder has a higher holding force and excellent magnetic properties than other combinations.
- the magnetic powder thus produced is suitable for use as a magnet by sintering.
- An apparatus for producing a magnetic powder suitable for producing the above-described magnetic powder includes an aerosol chamber for aerosolizing a hard magnetic powder with an inert gas, a vapor generation chamber for heating and vaporizing a metal in an inert gas atmosphere, and the vaporized metal It is characterized by comprising: an attaching portion for attaching the metal to the surface of the aerosolized hard magnetic powder; and a discharge chamber for releasing the hard magnetic powder to which the metal is attached.
- the hard magnetic powder can be aerosolized with an inert gas in the aerosol chamber, while the metal can be heated and vaporized in an inert gas atmosphere in the vapor generation chamber. Then, the vaporized metal can be adhered to the surface of the aerosolized hard magnetic powder at the adhesion portion, and the hard magnetic powder with the metal adhered can be discharged in the discharge chamber. At this time, the vaporized metal can be uniformly adsorbed on the surface of the hard magnetic powder dispersed in the aerosol by the thermophoretic phenomenon described above.
- the apparatus for producing the magnetic powder according to the present invention is not particularly limited as long as the vaporized metal can be adhered to the surface of the aerosolized hard magnetic powder.
- the adhering portion includes a main transfer pipe connected to the aerosol chamber, and a sub-transfer pipe connected to the vapor generation chamber,
- the sub-transport pipe is connected to the main transport pipe so that the vaporized metal can adhere to the hard magnetic powder.
- the aerosolized hard magnetic powder is carried by the main carrier tube on the air stream and conveyed toward the discharge chamber (the aerosol itself is conveyed toward the discharge chamber), and the sub-carrier tube is used for vaporization.
- the converted metal (vapor particles) can be carried in an air stream and conveyed toward the discharge chamber.
- the sub-transport pipe is connected to the main transport pipe so that the vapor particles can adhere to the hard magnetic powder, so that the vapor particles can collide with the aerosolized hard magnetic powder.
- the number of the steam generation chambers is not particularly limited, but more preferably, the magnetic powder manufacturing apparatus according to the present invention includes the steam generation chamber and the sub-transport pipe connected to the steam generation chamber. And the plurality of sub-transport pipes are connected to the outer periphery of the main transport pipe at equal intervals.
- a plurality of pairs of steam generation chambers and sub-transport pipes are provided, and each sub-transport pipe is connected (flighted) to the outer circumference of the main transport pipe at equal intervals.
- Vapor particles can be uniformly and uniformly attached to the surface of the hard magnetic powder contained in the aerosol. Further, since different metals can be vaporized in the plurality of vapor generation chambers, a multifunctional magnetic powder can be produced.
- the magnetic powder manufacturing apparatus more preferably includes a tube heating unit for heating the sub-transport tube.
- a tube heating unit for heating the sub-transport tube.
- the aerosol chamber and the steam generation chamber of the manufacturing apparatus are provided with a supply pipe for supplying the inert gas, and the supply pipe removes oxygen contained in the inert gas. More preferably, an oxygen removing device is provided.
- the oxidation of the hard magnetic powder and the vapor particles can be suppressed by reducing the oxygen concentration contained in the inert gas.
- vapor particles of rare earth metals are preferable because they are easily oxidized.
- the magnetic properties of a sintered magnet using this powder can be improved by uniformly coating the surface of the hard magnetic powder with a metal such as a transition metal.
- FIG. 1 It is a whole block diagram of the manufacturing apparatus of the magnetic powder which concerns on 1st embodiment. It is a schematic diagram of the magnetic powder manufactured by the manufacturing method of the magnetic powder which concerns on 1st embodiment.
- FIG. 2nd embodiment (a) is a whole block diagram of the manufacturing apparatus of magnetic powder, (b) is b part shown to (a).
- C) is an AA ′ cross-sectional view of (b).
- SYMBOLS 11 Hard magnetic powder supply source, 12 ... Powder supply piping, 13a ... Oxygen removal apparatus, 13b ... Oxygen removal apparatus, 16 ... Inert gas piping, 17 ... Inert gas piping, 18 ... Cooler, 20 ... Aerosol chamber, DESCRIPTION OF SYMBOLS 21 ... Aerosol production
- Transport pipe 49 ... Nozzle section, 50 ... Release chamber, 53: Receiving section, 58 ... Inert gas pipe, 100 ... Magnetic powder production equipment, 100A ... Magnetic powder production equipment, AG ... Aerosol, P ... Hard magnetic powder, PV ... Magnetic powder, V ... Vapor particles (vaporized metal)
- FIG. 1 is an overall configuration diagram of a magnetic powder manufacturing apparatus according to the first embodiment for suitably performing the magnetic powder manufacturing method according to the present invention.
- FIG. 2 is a schematic view of a magnetic powder produced by the magnetic powder production method according to the first embodiment.
- the magnetic powder manufacturing apparatus 100 includes at least an aerosol chamber 20, a vapor generation chamber 30, an attachment portion 40, and a discharge chamber 50.
- the aerosol chamber 20 is a chamber for aerosolizing the hard magnetic powder with an inert gas, and the aerosol chamber 20 is provided with a jet mill or the like via the powder supply pipe 12 to supply the hard magnetic powder P into the chamber. It is connected to a hard magnetic powder supply source 11 having both a pulverizer and an air classifier.
- the aerosol chamber 20 is provided with an aerosol generating unit 21 that aerosolizes the hard magnetic powder P supplied into the chamber, that is, generates an aerosol of the hard magnetic powder P below the chamber.
- the aerosol generation unit 21 is connected to the inert gas pipe 16 and is disposed in the aerosol generation unit 21 so as to be able to release the inert gas G3 toward the bottom of the room in order to make the hard magnetic powder into an aerosol.
- a plurality of discharge ports 21a are formed.
- the aerosol generation unit 21 may be, for example, a mechanism used in the aerosol deposition technique.
- a mechanism for stirring the hard magnetic powder P with the inert gas G3 or a container containing the hard magnetic powder P may be used.
- a mechanism for swinging can be used.
- the inert gas pipe 16 is connected with an oxygen removing device 13a for removing oxygen gas contained in the inert gas G3 and a gas cooler 18 for cooling the inert gas G3. Furthermore, the aerosol chamber 20 is connected to an inert gas pipe 17 that replaces the gas in the chamber with the inert gas G2, and the inert gas pipe 17 similarly contains oxygen gas contained in the inert gas G2. An oxygen removing device 13a for removal is connected.
- the inside of the aerosol chamber 20 is set to be pressurized to a pressure (120,000 Pa or less) higher than that of the discharge chamber 50 described later by the inert gas G2, and the aerosol chamber 20 and the discharge chamber 50 are separated from each other. Due to the differential pressure, the aerosolized hard magnetic powder in the aerosol chamber 20 can be conveyed to the discharge chamber 50.
- the inert gases G2, G3 supplied into the aerosol chamber 20 are gases such as He, N 2 , or Ar, and it is desirable that these gases have a purity of 99.999% or more.
- the oxygen concentration in the gas is preferably at least 1.0 ⁇ 10 ⁇ 6 atmO 2 or less in terms of partial pressure.
- the upper part of the aerosol chamber 20 is connected to a main transport pipe 41 that constitutes an adhesion portion 40 described later, and this main transport pipe 41 is a pipe that transports the aerosolized hard magnetic powder P.
- the steam generation chamber 30 is a chamber for heating and vaporizing rare earth metals such as Dy, Tb, or Pr, and other transition metals.
- Dy is used as the rare earth metal.
- the steam generation chamber 30 includes a metal melting furnace 32 and a heating device 33 that heats and melts the metal in the metal melting furnace 32.
- the heating device 33 is not particularly limited as long as the metal in the metal melting furnace 32 can be melted.
- examples of the heating method include heat ray melting, high frequency melting, arc melting, laser heating melting, and electron beam melting.
- the vapor generation chamber 30 is pressurized to a pressure higher than that of the discharge chamber 50, which will be described later, by the inert gas G 2, and is pressurized to a pressure equal to or higher than the pressure of the aerosol chamber 20.
- a shutter for making the inside of the aerosol chamber 20 a sealed space may be provided.
- the vaporized metal in the steam generation chamber 30 can be transported to the discharge chamber 50 due to the differential pressure between the steam generation chamber 30 and the discharge chamber 50.
- the flight speed of the vaporized metal (evaporated particles) V flying in the sub-transport pipe 42 is higher than the flight speed of the hard magnetic powder P flying in the main transport pipe 41. Can also be faster.
- the pressure of the steam generating chamber 30, the following inert gas atmosphere 120000Pa, the oxygen concentration of the gas it is desirable to at least 1.0 ⁇ 10 -8 atm0 2 or less at a partial pressure.
- the aerosol chamber 20 and the vapor generation chamber 30 are connected to a vacuum exhaust system including a vacuum pump through an exhaust pipe 25. Thereby, the gas in the aerosol chamber 20 and the vapor generation chamber 30 can be easily replaced with the inert gas G2.
- the adhering portion 40 is a portion for adhering the vaporized metal V to the surface of the hard magnetic powder P that has been aerosolized.
- the attachment unit 40 includes a main transport pipe 41 connected to the upper part of the aerosol chamber 20 and a sub-transport pipe 42 connected to the upper part of the vapor generation chamber 30. Further, the adhering portion 40 forms a confluence portion 45 in which the sub conveying pipe 42 is connected to the main conveying pipe 41 so that the vaporized metal V can adhere to the hard magnetic powder P. Further, a nozzle portion 49 extending from below the discharge chamber 50 to the inside thereof is formed further downstream of the merge portion 45.
- the discharge chamber 50 is a chamber for discharging (jetting) hard magnetic powder (magnetic powder) PV to which metal is adhered.
- the discharge chamber 50 has such a size that the magnetic powder PV naturally falls without colliding with the indoor wall surface due to the differential pressure between the aerosol chamber 20 and the vapor generation chamber 30.
- the discharge chamber 50 is provided with a receiving portion 53 for receiving the dropped magnetic powder PV.
- the discharge chamber 50 is connected to the vacuum exhaust system via the exhaust pipe 25, whereby the discharge chamber 50 is connected to 1.0 ⁇ 10 ⁇ 6.
- a vacuum of atm or less is desirable.
- the aerosol chamber 20 and the steam generating chamber 30 it may be a room in an inert gas atmosphere, in this case, an inert gas, to an oxygen concentration of 1.0 ⁇ 10 -7 atm0 2 below Is effective.
- the discharge chamber 50 is connected to a gas circulation system via a gas circulation pipe 54 in order to reuse the inert gas.
- the aerosol chamber 20 and the vapor generation chamber 30 are evacuated, and an inert gas is introduced into these chambers through the oxygen removing device 13b, whereby these chambers are made an inert gas atmosphere.
- the pressure in the aerosol chamber 20 and the vapor generation chamber 30 is 120,000 Pa or less
- the oxygen concentration is 1.0 ⁇ 10 ⁇ 7 to 10 ⁇ 8 atmO 2 or less
- the pressure in the vapor generation chamber 30 is the aerosol.
- the pressure in the chamber 20 is increased.
- the inside of the discharge chamber 50 is evacuated to a pressure lower than that of the aerosol chamber 20 and the vapor generation chamber 30. At this time, if there is a shutter in each chamber, this is used to achieve the set pressure.
- an Nd—Fe—B system (Nd 2 Fe 14 B) classified into an average particle size of 1 to 10 ⁇ m from a hard magnetic powder supply source 11 such as a jet mill through a powder supply pipe 12.
- the hard magnetic powder P is supplied into the aerosol chamber 20.
- the inert gas G3 is cooled by the gas cooler 18, cooled to a temperature of about 20 ° C., and the cooled inert gas G3 is removed. Introduced into the aerosol generator 21.
- the cooled inert gas G3 is discharged from the plurality of discharge ports 21a of the aerosol generating unit 21 toward the bottom of the aerosol chamber 20, and the hard magnetic powder P at the bottom is shaken and stirred, and the aerosol Floating in the chamber 20, an aerosol of magnetic particles is generated (the hard magnetic powder P is aerosolized).
- the rare earth metal Dy disposed in the metal melting furnace 32 in the steam generation chamber 30 is heated by the heating device 33 to be vaporized.
- the aerosolized hard magnetic powder P is transported in the main transport pipe 41 toward the discharge chamber 50 due to a differential pressure with the discharge chamber 50.
- the vaporized metal (vapor particles) V is also transported in the sub transport pipe 42 toward the discharge chamber 50.
- the hard magnetic powder P that has been aerosolized by the main transport pipe 41 is carried on the airflow and transported toward the discharge chamber 50 (the aerosol itself is transported toward the discharge chamber 50), and the sub-transport pipe By 42, the vapor particles V are carried on the airflow and conveyed toward the discharge chamber 50. And since the sub conveyance pipe 42 is connected to the main conveyance pipe 41 so that the vapor particle V can adhere to the hard magnetic powder P, the vapor particle V is converted into the vapor particle V at the junction 45 of the adhesion part. Can collide with.
- the aerosolized hard magnetic powder P is cooled by the cooler 18, while the vapor particles V are vaporized by heating, and therefore, as shown in the schematic diagram of FIG. Vapor particles V having a size of about 1 nm to 100 nm can be attached to the surface of the hard magnetic powder P classified in the range of 1 to 10 ⁇ m.
- the vapor particles V collide with the hard magnetic powder P due to its thermal motion under the condition that the hard magnetic powder P is suspended in the gas.
- the vapor particles V having a higher temperature than the hard magnetic powder P have a force so as to be attracted to the hard magnetic powder P having a low temperature. (Thermophoretic force) is exerted.
- the vapor particles V are densely and firmly attached (coated) to the surface of the hard magnetic powder P.
- the aerosolized hard magnetic powder P has a particle size on the order of several ⁇ m, and the vapor particles V have a particle size on the order of several tens of nm, the vapor particles V are smaller than the hard magnetic powder P. Therefore, it is easy to get on the airflow and is accelerated. That is, the flight speed of the vapor particles V is faster than the flight speed of the hard magnetic powder P due to the above-described differential pressure in each chamber and the size of the particles. Thereby, the vapor particles V can be densely and firmly attached to the surface of the hard magnetic powder P. In this way, the vapor particles V adhere to the surface of the hard magnetic powder P as shown in FIG.
- the hard magnetic powder (hard magnetic powder coated with Dy particles) PV to which the vapor particles V adhere is discharged into the discharge chamber 50 through the nozzle portion 49, and the receiving portion 53 has a magnetic property.
- Powder PV and vapor particles V are deposited. And these can be classified using an airflow classifier, and only magnetic powder PV can be obtained.
- the magnetic powder (hard magnetic powder coated with Dy particles) PV thus obtained is molded at a predetermined pressure while being oriented in a magnetic field. Then, the compact can be sintered in a sintering furnace under an inert gas atmosphere, and then subjected to a predetermined heat treatment to produce a magnet.
- the magnet obtained in this way can obtain a holding force more than conventional magnets by using a rare earth metal such as Dy slightly compared to the conventional magnets.
- FIG. 4 is a diagram for explaining a magnetic powder production apparatus according to the second embodiment, (a) is an overall configuration diagram of the magnetic powder production apparatus, and (b) is a diagram of (a).
- FIG. 2B is an enlarged view of a portion b
- FIG. 3C is a cross-sectional view taken along line AA ′ of FIG.
- the manufacturing apparatus according to the second embodiment is mainly different from the apparatus according to the first embodiment in that a plurality of steam generation chambers are provided and the configuration of the adhesion portion connected to these steam generation chambers. Is different. That is, the difference is that a plurality of sets of steam generation chambers and sub-transport pipes are provided. Only differences from the first embodiment will be described below.
- the magnetic powder manufacturing apparatus 100 ⁇ / b> A includes three steam generation chambers 30, 30, 30.
- Each steam generation chamber 30 has the same configuration as the steam generation chamber shown in the first embodiment.
- the sub conveyance pipe 42 of 40 A of adhesion parts is connected to the upper part of the steam generation chamber 30.
- Each sub-transport pipe 42 is connected to the main transport pipe 41 at the junction 45A so that the vaporized metal V can adhere to the hard magnetic powder P.
- junction portion 45A three sub-transport pipes 42 are connected to the outer periphery of the main transport pipe 41 at equal intervals. As described above, in the junction 45A, the sub-transport pipes 42 are connected to the outer periphery of the main transport pipe 41 at equal intervals, so that the hard magnetic powder contained in the aerosol AG passing (flighting) the main transport pipe 41. Vapor particles V can be uniformly and uniformly attached to the surface of P.
- a conveyance tube heater (tube heating unit) 44 is disposed. By heating these tubes with the transfer tube heater 44, it is possible to prevent the vapor particles V from adhering to the inner wall surfaces of these transfer tubes.
- the discharge chamber 50 is connected to an inert gas pipe 58 that replaces the room gas with the inert gas G2, and the inert gas pipe 17 is similarly included in the inert gas G2.
- An oxygen removing device 13b for removing the oxygen gas is connected. Thereby, the inert gas can be filled in the discharge chamber 50.
- Example 1 Nd, Al, Fe, Cu having a purity of 99.5% or more and ferroboron are dissolved at high frequency in an Ar gas atmosphere, and then Nd is 13.5 atomic%, Al is 0.5 atomic%, and Cu is 0.3 A strip cast of an alloy consisting of atomic%, B of 5.8 atomic%, and the balance of Fe and inevitable impurities was manufactured. This alloy was occluded with hydrogen at 0.1 MPa, dehydrated at 520 ° C., cooled and sieved to produce Nd—Fe—B magnetic coarse powder (hard magnetic coarse powder) of 50 mesh or less.
- the average particle size was pulverized to 4.2 ⁇ m with a jet mill, and the hard magnetic coarse powder was fed into an aerosol chamber of 1.0 ⁇ 10 ⁇ 6 atm Ar gas.
- the oxygen was increased to a concentration of 1.0 ⁇ 10 ⁇ 11 atmO 2 with a zirconia oxygen pump.
- the residual gas in the room was replaced with Ar gas having a reduced concentration.
- Ar gas whose gas temperature was adjusted to 20 ° C. by a cooler while the pressure in the chamber was 1.0 ⁇ 10 ⁇ 6 atm was used as the aerosol gas.
- the Nd—Fe—B based magnetic powder in the room was agitated and agitated to aerosolize the Nd—Fe—B based magnetic powder (an Nd—Fe—B based magnetic particle aerosol was generated).
- the vapor generation chamber similarly to the aerosol chamber, after the chamber was evacuated to 1.0 ⁇ 10 ⁇ 11 atm, the O 2 concentration was reduced to a concentration of 1.0 ⁇ 10 ⁇ 11 atmO 2 with a zirconia oxygen pump. Was replaced with Ar gas with reduced pressure, and the pressure in the room was 1.0 ⁇ 10 ⁇ 5 atm.
- Dy has a melting point of 844 ° C. under a pressure environment of 1.0 ⁇ 10 ⁇ 5 atm.
- the heater shown in FIG. 1 is set so that the temperature of at least the inner wall of the sub-transport pipe from the steam generation chamber shown in FIG. 1 to the adhering portion (region until the vapor metal is covered) becomes 844 ° C. or higher. And heated. This is to prevent the Dy nano vapor particles from adhering and laminating on the inner wall surfaces of the sub-transport pipe and the merging portion.
- the discharge chamber was similarly evacuated to 1.0 ⁇ 10 ⁇ 11 atm, and then Ar 2 was reduced in O 2 concentration to 1.0 ⁇ 10 ⁇ 11 atmO 2 with a zirconia oxygen pump.
- the interior of the chamber was replaced with gas, and the internal pressure was set to 1.0 ⁇ 10 ⁇ 7 atm.
- the hard magnetic powder in the aerosol chamber flies through the main conveyance pipe and travels toward the discharge chamber due to the differential pressure between the aerosol chamber and the discharge chamber.
- the Dy nano vapor particles in the vapor generation chamber also fly in the sub-transport pipe due to the differential pressure between the vapor generation chamber and the discharge chamber, and go to the discharge chamber.
- the Dy nano vapor particles collide with or adsorb to the hard magnetic powder having a temperature lower than that, and adhere to cover the surface of the hard magnetic powder.
- the Nd—Fe—B based magnetic powder has an average particle diameter of 4.2 ⁇ m in this example, and the Dy nano vapor particles have a diameter of about 20 nm. Since the diameter is about 200 times larger, the vapor particles are easier to ride on the airflow and are more easily accelerated. Then, when the above-mentioned differential pressures of the chambers are provided and the size of the particles is taken into consideration, the flight speed of the Dy nano-vapor particles up to the collision chamber and the discharge chamber is the flight speed of the Nd—Fe—B based magnetic powder. The relative speed is estimated to be 100 m / s or higher. Due to such a relative speed, the Dy nano vapor particles are densely adhered and coated on the surface of the Nd—Fe—B based magnetic powder.
- the hard magnetic powder (magnetic powder) to which the Dy nano vapor particles are attached in this manner is discharged into the discharge chamber through the nozzle portion and allowed to cool, so that the Dy nano vapor particles attached to the hard magnetic powder are converted into the Dy nano particles. It was.
- the magnetic powder and the Dy nanoparticles that did not adhere to the magnetic powder were deposited on the receiving part in the discharge chamber, and these were classified by an airflow classifier to obtain only the magnetic powder.
- the hard magnetic powder coated with the Dy nanoparticles thus obtained was molded at a pressure of 100 MPa while being oriented in a magnetic field of 15 kOe in an Ar gas atmosphere of 1.0 ⁇ 10 ⁇ 11 atmO 2. It compacted in the mold. Next, this compact was put into a sintering furnace under an Ar gas atmosphere of 1.0 ⁇ 10 ⁇ 11 atmO 2 and sintered at 1067 ° C. for 2 hours. Furthermore, a heat treatment was performed under the treatment conditions of 820 ° C. for 5 hours, and subsequently, a heat treatment was performed for 520 ° C. for 1.5 hours to produce a magnet block.
- the magnet block was processed into a size of 5 ⁇ 5 ⁇ 2 mm with a diamond cutter, and then subjected to magnetic measurement with a BH tracer (VSM (Lakeshore 7400)).
- the measurement contents are residual magnetization Br, coercive force Hcj, and maximum energy product (BH) max.
- the results are shown in Table 1 and FIGS.
- Example 2 A magnet block was manufactured in the same manner as in Example 1. The difference from Example 1 is that Nd, Al, Fe, Cu, Dy having a purity of 99.5% or more and ferroboron are dissolved at high frequency in an Ar gas atmosphere, and then Nd is 11.5 atomic% and Dy is , 5.0 atomic%, Al 0.5 atomic%, Cu 0.3 atomic%, B 5.8 atomic%, the balance being the only alloy strip cast made of Fe and inevitable impurities It is. Then, as in Example 1, the remanent magnetization Br, the coercive force Hcj, and the maximum energy product (BH) max of the manufactured magnetic block were measured. The results are shown in Table 1 and FIGS.
- Example 1 A magnetic block was manufactured in the same manner as in Example 1. The difference from Example 1 is that the Dy vapor particles were not adhered. Specifically, the average particle size was pulverized to 4.2 ⁇ m with a jet mill, and the same conditions as in Example 1 were applied. A magnetic block was manufactured by sintering the magnetic powder after molding. Then, as in Example 1, the remanent magnetization Br, the coercive force Hcj, and the maximum energy product (BH) max of the manufactured magnetic block were measured. The results are shown in Table 1 and FIGS.
- Example 2 A magnetic block was produced in the same manner as in Example 2. The difference from Example 2 is that Dy vapor particles were not adhered. Specifically, the average particle size was pulverized to 4.2 ⁇ m with a jet mill, and the hard particles were subjected to the same conditions as in Example 2. A magnetic block was manufactured by sintering the magnetic powder after molding. Then, as in Example 1, the produced magnetic remanent magnetization Br, coercive force Hcj, and maximum energy product (BH) max were measured. The results are shown in Table 1 and FIGS.
- Example 3 A magnetic block was manufactured in the same manner as in Example 1. The difference from Example 1 is that Dy vapor particles are not adhered, and instead, the following Dy surface diffusion method is used. Specifically, the average particle size was pulverized to 4.2 ⁇ m with a jet mill, and this hard magnetic powder was molded under the same conditions as in Example 1.
- the hard magnetic powder coated with the Dy nanoparticles thus obtained was molded at a pressure of 100 MPa while being oriented in a magnetic field of 15 kOe in an Ar gas atmosphere of 1.0 ⁇ 10 ⁇ 11 atmO 2. It compacted in the mold. Next, this compact was put into a sintering furnace under an Ar gas atmosphere of 1.0 ⁇ 10 ⁇ 11 atmO 2 and sintered at 1067 ° C. for 2 hours, and the magnet block was measured with a diamond cutter in a size of 5 ⁇ 5 ⁇ 2 mm. Processed into a magnet.
- the magnet was immersed for 30 seconds while applying ultrasonic waves to a turbid liquid in which dysprosium fluoride with an average particle size of 10 ⁇ m was mixed with ethanol at a mass fraction of 50%, and placed in a vacuum desiccator. And dried for 30 minutes in an exhaust atmosphere. Further, the magnet covered with dysprosium fluoride was heat-treated at 800 ° C. for 10 hours in an Ar gas atmosphere, and further subjected to aging treatment at 510 ° C. for 1 hour to rapidly cool the magnet. Then, as in Example 1, the produced magnetic remanent magnetization Br, coercive force Hcj, and maximum energy product (BH) max were measured. The results are shown in Table 1 and FIGS.
- Example 1 and Example 2 had higher coercive force and larger maximum energy product than those of Comparative Examples 1 to 3. This is considered due to the fact that Dy is uniformly and densely arranged at the grain boundaries of the particles made of magnetic powder.
- the magnet of Comparative Example 2 has a low coercive force and a small maximum energy product in spite of having a large Dy content as compared with the magnet of Example 1, because Dy does not exist at the grain boundaries. It is thought that.
- the magnet of Comparative Example 3 since Dy is not sufficiently diffused to the inside, it is considered that the coercive force is lower and the maximum energy product is smaller than that of the magnet of Example 1.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
硬磁性粉末の表面に、遷移金属等の金属を均一に被覆することにより、焼結磁石の磁気特性の向上を図る磁性粉末の製造方法を提供する。 このような磁性粉末の製造方法は、硬磁性粉末を不活性ガスによりエアロゾル化する工程と、金属を加熱して蒸気化する工程と、該蒸気化した金属を、前記エアロゾル化した硬磁性粉末の表面に付着させる工程とを含む。
Description
本発明は、磁性粉末の製造方法及びその製造装置に係り、特に、磁気特性が優れた焼結磁石を製造するに好適な磁性粉末の製造方法及びその製造装置に関する。
Nd-Fe-B系などの磁性粉末を焼結させた永久磁石(希土類磁石)は、その優れた磁気特性のために、近年、その用途が広がってきている。環境問題への対応から家電をはじめ、産業機器、電気自動車、風力発電へ磁石の応用の幅が広がったことに伴い、このような粉末を焼結させたNd2Fe14B系などの永久磁石の高性能化が要求されている。
磁石の性能の指標として、残留磁束密度と保磁力との大きさを挙げることができる。例えば、Nd-Fe-B系焼結磁石の残留磁束密度を増大させるには、Nd2Fe14B化合物の体積率を増大させ、結晶配向度を向上させることにより達成することができ、これを達成すべく、これまでに種々のプロセスの改善が行われてきている。
一方、保磁力を増大させるには、結晶粒の微細化を図る方法や、Nd量を増やした組成合金を用いる方法や、あるいは効果のある元素を添加する方法等、様々なアプローチにより達成することができる。特に、これらのアプローチの中でも、DyやTbでNdの一部を置換した組成合金を用いることで、保磁力の増大を図ることが最も一般的な手法である。具体的には、Nd2Fe14B化合物のNdをこれらの元素で置換することで、化合物の異方性磁界が増大し、これにより保磁力が増大する。
ただし、Dyは、その使用量が希土類元素の自然存在比を大きく超えているうえに、現在商業的に開発されている鉱床の推定埋没量が少なく、鉱床存在地域でも世界的に偏在していることから、元素戦略の必要性が認識されるに至っている。高保磁力を図る目的でDyと同様の効果を発揮する希土類元素としてはTbを挙げることができるが、Tbの存在率は、Dyよりもはるかに低い。現在まで、Nd-Fe-B系焼結磁石の保磁力は、このような微量な元素の添加、熱処理条件の探索により、既に開発初期と比較すると著しく改善されている。従って、このような改善効果を鑑みると、微量元素として、DyまたはTbの添加量を削減することは、避けることができなくなっている。
一方で、DyやTbによる置換は、化合物の飽和磁気分極を減少させる。従って、上記手法で保持力の増大を図る限りでは、残留磁束密度の低下は避けることができない。さらに、DyやTbは、高価であり、埋蔵量も少ないため資源として利用するリスクも高い。従って、使用量をできるだけ減らすことが望ましい。
このような観点から、DyやTbを、磁石の粒界またはその近傍のみに濃化させる手法が採られている。例えば、DyやTbを主相(Nd2Fe14B)より多く含む粉末と、これらの元素を含まない粉末を、予め混ぜた粉末を焼結させる2合金法が提案されている(例えば、特許文献1参照)。また、別の方法として、焼結磁石の表面にDyやTbのフッ素化合物を塗って、熱処理で表面近傍の粒界に、DyやTbを拡散浸透させる方法が提案されている(例えば、特許文献2参照)。
一方で、DyやTbを、磁石の粒界に集中させることにより、その使用量を減らし、その領域が厚さ数mmの成形体磁石の中心にまで及ばせる方法としては、焼結用粉末を予めDyやTbでコーティングしておく方法も考えられる。
特開平6-207203号公報
特開2006-303433号公報
しかしながら、現状の希土類磁石の焼結用の硬磁性粉末の粒径は、3~5μm程度であり、これらの遷移元素(遷移金属)等を、数nm~数十nmの厚さで、磁性粉末の周りに均一にコーティングすることは極めて困難である。
例えば、遷移金属の中でも希土類金属は、水分と反応し易く、基本的には、湿式環境下では、希土類金属を粉末の周りに被覆することが難しい。また、3~5μm程度の磁性粉末は、互いに凝集しやすく、これらの数十の磁性粉末で固まった粒子を形成してしまい、個々の磁性粉末の表面に、遷移元素を均一に被覆することは容易ではない。
この点を考えて、乾式で、この硬磁性粉末に遷移金属等の金属を被覆しようとしても、希土類金属という性質上、また、この粒径が3~5μmの微粉であるということで、硬磁性粉末の表面酸化を避けることが難しい。そして、表面が酸化した磁性粉末を用いて、焼結磁石を成型した場合には、磁気特性の低下を招くことになる。また、乾式で行ったとしても、前述した磁性粉末の凝集は避けることができない。
本発明は、上記する問題に鑑みてなされたものであり、硬磁性粉末の表面に、遷移金属等の金属を均一に被覆することにより、焼結磁石の磁気特性の向上を図ることができる磁性粉末の製造方法及び磁性粉末の製造装置を提供することを目的とするものである。
前記目的を達成すべく、発明者らは、鋭意検討を重ねた結果、硬磁性粉末の表面に、遷移金属等の金属を付着させる原理として、熱泳動現象に着眼し、この現象を利用することにより、磁性粉末に表面に金属を少量かつ均一に付着(被覆)させることができるとの新たな知見を得た。
本発明は、前記発明者らの新たな知見に基づくものであり、本発明に係る磁性粉末の製造方法は、硬磁性粉末を不活性ガスによりエアロゾル化する工程と、金属を不活性ガス雰囲気下で加熱して蒸気化する工程と、該蒸気化した金属を、前記エアロゾル化した硬磁性粉末の表面に付着させる工程と、を含むことを特徴とする。
本発明によれば、硬磁性粉末のエアロゾルを生成し、エアロゾル化した硬磁性粉末は、不活性ガス(エアロゾル)中に分散している。そして、この分散した磁性粉末の表面に、不活性ガス雰囲気下で蒸気化した金属を付着させる。このとき、蒸気化した金属、すなわち、金属の蒸気粒子は、硬磁性粉末よりも、温度が高い。硬磁性粉末と蒸気粒子との間に大きな熱勾配があるので、硬磁性粉末よりも高温である蒸気粒子には、低温である硬磁性粉末に引き付けられるように力(熱泳動力)が及ぼされる。この結果、磁性粉末の表面に、緻密で強固に蒸気粒子が吸着する(被覆される)。また、蒸気化した金属(蒸気粒子)は、数十nmであり、硬磁性粉末よりも小さいため、従来の方法に比べて、僅かな量の蒸気粒子を、硬磁性粉末の表面に、均一に付着させることができる。
ここで、本発明でいう「エアロゾル」とは、気体の中に硬磁性粉末が多数浮かんだものをいい、エアロゾル化とは、多数の硬磁性粉末を気体中に浮かばせることをいう。また、本発明に係る「硬磁性粉末」とは、磁界を加えた後、磁界を取り除いた時に磁化が残らない粉末であり、永久磁石を製造するための粉末のことをいう。これとは逆に、磁界を加えた後、磁界を取り除いても磁化が残り、磁化された状態が持続される粉末が、軟磁性粉末である。
また、不活性ガスとしては、He、N2、又はArなどのガスを挙げることができ、硬磁性粉末及び蒸気化した金属(蒸気粒子)を酸化させないためのものであれば特に限定されるものではない。
また、蒸気化した金属を、エアロゾル化した硬磁性粉末の表面に付着させることができるのであれば、その付着方法は特に限定されるものではない。しかしながら、より好ましくは、前記付着工程において、前記エアロゾル化した硬磁性粉末及び蒸気化した金属を気流に乗せて搬送し、前記蒸気化した金属を、前記エアロゾル化した硬磁性粉末に衝突させることがより好ましく、蒸気化した金属の気流の流速を、エアロゾル化した硬磁性粉末の気流の流速以上にすることがより好ましい。
本発明によれば、上述したように、蒸気化した金属(蒸気粒子)は、上述したように数十nmであり、この蒸気粒子を気流に乗せて搬送した場合には、硬磁性粉末に比べて加速され易い。これにより、前記蒸気化した金属を、より高いエネルギーで前記エアロゾル化した硬磁性粉末に衝突させることができる。このようにして、蒸気粒子を、硬磁性粉末の表面に、より強固かつ緻密に付着させることができる。なお、本発明にいう、「エアロゾル化した硬磁性粉末を気流に乗せる」とは、硬磁性粉末のエアロゾルそのものを搬送することをいう。
本発明の磁性粉末の製造方法に用いるための硬磁性粉末に付着させる金属は、遷移金属またはこれらの合金金属が好ましい。より好ましい遷移金属は、希土類金属(第三遷移元素(4f遷移元素))であり、このなかでも、Dy、Tb又はPrがより好ましい。これらの希土類金属は他の金属に比べて異方性磁界が高い元素であるので、これにより製造された磁石は、磁気特性を向上させることができる。付着させる金属は、Dy、Tb又はPrと、Ndと、の合金金属であってもよい。これらの合金金属は、Dy、Tb又はPrの単体に比べて、粒界に溶け込みやすい。
また、この他にも、付着させる金属として、Al、Cu,Zn、In、Si、P、S、Ti、V,Cr、Mn、Ni、Co、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta、W、またはこれらの合金金属などを挙げることができる。これらのうち、基本的には、異方性が高い金属、または、非磁性の金属が望ましく、Al、Cuがより好ましい。Al、Cuはいずれも、磁石に焼結時において、溶融し易く、Ndリッチ相と、低融点の共晶合金を形成し、粒界での濡れ性を向上させることができたり、磁気的に不連続にしたりすることができるので、磁気特性を向上させることができる。
ここで、硬磁性粉末は、焼結により永久磁石を製造することができるものであれば、特にその粉末の種類は限定されるものではなく、例えば、R2Tm14(B,C)1系磁性粉末(Rは希土類金属、Tmは希土類金属を除く遷移金属等)を挙げることができる。希土類金属としては、Sc、Y、La、Ce、Pr、Sm、Eu、Gd、Ho、Er、Yb、Luなどを挙げることができる。また、希土類金属を除くその他の遷移金属等としては、Al、Cu,Zn、In、Si、P、S、Ti、V、Cr、Mn、Ni、Co、Ga、Ge、Zr、Nb、Mo、Pd、Ag、Cd、Sn、Sb、Hf、Ta、Wなどを挙げることができる。より好ましくは、硬磁性粉末は、Nd-Fe-B系磁性粉末である。本発明によれば、このような磁性粉末は、他の組み合わせに比べて、保持力が高く、磁気特性が優れている。このようにして製造された磁性粉末は、焼結により磁石として使用することに好適である。
本発明として、前述した磁性粉末を製造するに好適な磁性粉末の製造装置を以下に開示する。本発明に係る磁性粉末の製造装置は、硬磁性粉末を不活性ガスによりエアロゾル化するエアロゾル室と、金属を不活性ガス雰囲気下で加熱して蒸気化する蒸気生成室と、該蒸気化した金属を前記エアロゾル化した硬磁性粉末の表面に付着させる付着部と、前記金属が付着した硬磁性粉末を放出する放出室と、を備えることを特徴とする。
本発明によれば、エアロゾル室において、不活性ガスにより硬磁性粉末をエアロゾル化し、一方、蒸気生成室において、金属を不活性ガス雰囲気下で加熱して蒸気化することができる。そして、付着部において、蒸気化した金属を前記エアロゾル化した硬磁性粉末の表面に付着させ、放出室において、金属が付着した硬磁性粉末を放出することができる。このとき、上述した熱泳動現象により、エアロゾル中に分散した硬磁性粉末の表面に、蒸気化した金属を、均一に吸着させることができる。
本発明に係る磁性粉末の製造装置は、蒸気化した金属を、エアロゾル化した硬磁性粉末の表面に付着させることができるのであれば、その付着部の装置構成は特に限定されるものではない。
しかしながら、より好ましくは、本発明に係る磁性粉末の製造装置は、前記付着部が、前記エアロゾル室に接続された主搬送管と、前記蒸気生成室に接続された副搬送管と、を備え、該副搬送管は、前記蒸気化した金属が前記硬磁性粉末に付着可能なように、前記主搬送管に接続されている。
本発明によれば、主搬送管により、エアロゾル化した硬磁性粉末を、気流に乗せて、放出室に向けて搬送し(エアロゾルそのものを放出室に向けて搬送し)、副搬送管により、蒸気化した金属(蒸気粒子)を気流に乗せて、放出室に向けて搬送することができる。そして、副搬送管は、蒸気粒子が硬磁性粉末に付着可能なように、主搬送管に接続されているので、蒸気粒子を、エアロゾル化した硬磁性粉末に衝突させることできる。さらに、蒸気粒子の気流の流速を、エアロゾル化した硬磁性粉末の気流の流速以上にすることも可能である。このようにして、蒸気粒子を、硬磁性粉末の表面に、より強固かつ緻密に付着させることができる。
また、蒸気生成室の個数は特に限定されるものではないが、より好ましくは、本発明に係る磁性粉末の製造装置は、前記蒸気生成室と、該蒸気生成室に接続された前記副搬送管とを複数備え、該複数の副搬送管が、前記主搬送管の外周に等間隔に接続されている。
本発明によれば、蒸気生成室と副搬送管との組を複数備え、各副搬送管が、主搬送管の外周に等間隔に接続されることにより、主搬送管を通過(飛行)するエアロゾルに含まれる硬磁性粉末の表面に、ムラ無く均一に、蒸気粒子を付着させることができる。また、複数の蒸気生成室に、異なる金属を蒸気化することができるので、多機能の磁性粉末を製造することができる。
また、本発明に係る磁性粉末の製造装置は、前記副搬送管を加熱する管加熱部を備えることがより好ましい。本発明によれば、管加熱部により副搬送管を加熱するので、搬送管の内壁面に、蒸気粒子が付着積層するのを防止することができる。
また、本発明に係る前記製造装置の前記エアロゾル室及び蒸気生成室は、前記不活性ガスを供給する供給管を設けており、該供給管には、不活性ガス中に含まれる酸素を除去する酸素除去装置が配設されていることがより好ましい。本発明によれば、不活性ガスに含有する酸素濃度を低減することにより、硬磁性粉末及び蒸気粒子の酸化を抑制することができる。特に、蒸気粒子が、希土類金属の蒸気粒子は、酸化し易いので好適である。
本発明によれば、硬磁性粉末の表面に、遷移金属等の金属を均一に被覆することにより、この粉末を用いた焼結磁石の磁気特性の向上を図ることができる。
11…硬磁性粉末供給源,12…粉末供給配管,13a…酸素除去装置,13b…酸素除去装置,16…不活性ガス配管,17…不活性ガス配管,18…冷却器,20…エアロゾル室,21…エアロゾル生成部,21a…放出口,25…排気管,30…蒸気生成室,32…金属溶解炉,33…加熱装置,40…付着部,40A…付着部,41…主搬送管,42…副搬送管,44…搬送管ヒータ,45:合流部、45A…合流部,48…搬送管,49…ノズル部,50…放出室,53:受け部、58…不活性ガス配管,100…磁性粉末の製造装置,100A…磁性粉末の製造装置、AG…エアロゾル,P…硬磁性粉末,PV…磁性粉末,V…蒸気粒子(蒸気化した金属)
以下に、図面を参照して、本発明に係る磁性粉末の製造装置、及び、この製造装置を用いた磁性粉末の製造方法、を2つの実施形態に基づいて説明する。
図1は、本発明に係る磁性粉末の製造方法を好適に行うための第一実施形態に係る磁性粉末の製造装置の全体構成図である。図2は、第一実施形態に係る磁性粉末の製造方法により製造された磁性粉末の模式図である。
図1に示すように、本実施形態に係る磁性粉末の製造装置100は、エアロゾル室20と、蒸気生成室30と、付着部40と、放出室50と、を少なくとも備えている。
エアロゾル室20は、硬磁性粉末を不活性ガスによりエアロゾル化するための室であり、エアロゾル室20は、硬磁性粉末Pを室内に供給すべく、粉末供給配管12を介して、ジェットミル等の粉砕機と気流分級装置を兼ね備えた硬磁性粉末供給源11に接続されている。
また、エアロゾル室20は、室内に供給された硬磁性粉末Pをエアロゾル化する、すなわち、硬磁性粉末Pのエアロゾルを生成するエアロゾル生成部21を室内の下方に備えている。エアロゾル生成部21は、不活性ガス配管16に接続されており、硬磁性粉末をエアロゾル化すべく、エアロゾル生成部21には、室内の底部に向かって不活性ガスG3を放出可能なように配置された複数の放出口21aが形成されている。エアロゾル生成部21は、例えば、エアロゾルデポジィションの技術で使用されるような機構であってもよく、不活性ガスG3で硬磁性粉末Pを攪拌する機構や、硬磁性粉末Pを収容した容器を揺動させる機構などを挙げることができる。
また、不活性ガス配管16には、不活性ガスG3に含まれる酸素ガスを除去する酸素除去装置13aと、不活性ガスG3を冷却するガス冷却器18と、が接続されている。さらに、エアロゾル室20は、室内のガスを不活性ガスG2に置換する不活性ガス配管17に接続されており、不活性ガス配管17には、同様に、不活性ガスG2に含まれる酸素ガスを除去する酸素除去装置13aが接続されている。
また、このエアロゾル室20内は、この不活性ガスG2により、後述する放出室50よりも高い圧力(120000Pa以下)に加圧されるように設定されており、エアロゾル室20と放出室50との差圧により、エアロゾル室20内のエアロゾル化した硬磁性粉末を、放出室50に搬送することができる。また、エアロゾル室20内に供給される不活性ガスG2、G3は、He、N2、又はArなどのガスであり、これらのガスが純度99.999%以上であることが望ましい。
なお、そのガス中の酸素濃度は、分圧で少なくとも1.0×10-6atmO2以下にしておくことが望ましい。この分圧は低ければ低いほどよく、酸素除去装置13a又は13bを介して、1.0×10-7atmO2以下にすることが有効であり、必要に応じて、1.0×10-30atmO2まで酸素濃度を低下させるとよい。
一方、エアロゾル室20の上部は、後述する付着部40を構成する主搬送管41に接続されており、この主搬送管41は、エアロゾル化した硬磁性粉末Pを搬送する管である。
蒸気生成室30は、例えば、Dy、Tb、又はPrなどの希土類金属や、その他遷移金属などの金属を加熱して蒸気化するための室である。ここでは、希土類金属としてDyを用いている。また、蒸気生成室30には、金属溶解炉32と、金属溶解炉32内の金属を加熱して溶解させる加熱装置33と、を備えている。この加熱装置33は、金属溶解炉32内の金属を溶解させることができるのであれば、特にその方式は、限定されるものではない。たとえば、加熱方法としては、熱線輻射式溶解、高周波溶解、アーク式溶解、レーザ加熱式溶解、電子ビーム式溶解などを挙げることができる。
また、蒸気生成室30は、エアロゾル室20と同様に、不活性ガスG2により、後述する放出室50よりも高い圧力に加圧され、かつ、エアロゾル室20の圧力以上の圧力に加圧されるように設定されている。このような圧力を保持するために、エアロゾル室20内を密閉空間にするためのシャッターが設けられていてもよい。
このようにして、蒸気生成室30と放出室50との差圧により、蒸気生成室30内の蒸気化した金属を、放出室50に搬送することができる。また、エアロゾル室以上の圧力にしたことにより、副搬送管42内を飛行する、蒸気化金属(蒸発粒子)Vの飛行速度を、主搬送管41内を飛行する硬磁性粉末Pの飛行速度よりも速くすることができる。この結果として、合流部45で、硬磁性粉末Pに蒸気粒子Vを強く衝突させることにより、硬磁性粉末Pの表面に、より強固な蒸気粒子Vを被覆することができる。なお、蒸気生成室30の圧力は、120000Pa以下の不活性ガス雰囲気で、そのガス中の酸素濃度は、分圧で少なくとも1.0×10-8atm02以下にしておくことが望ましい。
また、エアロゾル室20及び蒸気生成室30は、排気管25を介して真空ポンプを含む真空排気系に接続されている。これにより、エアロゾル室20及び蒸気生成室30内のガスを、不活性ガスG2に入れ替えることが容易にできる。
付着部40は、蒸気化した金属Vをエアロゾル化した硬磁性粉末Pの表面に付着させる部分である。付着部40は、エアロゾル室20の上部に接続された主搬送管41と、蒸気生成室30の上部に接続された副搬送管42と、を備えている。さらに、付着部40は、蒸気化した金属Vが硬磁性粉末Pに付着可能なように、副搬送管42が主搬送管41に連通可能に接続された合流部45を形成している。また、合流部45のさらに下流には、放出室50の下方からその内部に延在したノズル部49が形成されている。
放出室50は、金属が付着した硬磁性粉末(磁性粉末)PVを放出(噴出)する室である。ここで、放出室50は、前述したように、エアロゾル室20及び蒸気生成室30の差圧により、磁性粉末PVが室内壁面に衝突することなく、自然落下するような大きさとなっている。また、放出室50には、落下した磁性粉末PVを受けるための受け部53が設けられている。
さらに、放出室50は、エアロゾル室20及び蒸気生成室30と同様に、排気管25を介して、真空排気系に接続されており、これにより、放出室50を、1.0×10-6atm以下の真空にすることが望ましい。また、エアロゾル室20及び蒸気生成室30と同じように、室内を不活性ガス雰囲気にしてもよく、この場合、不活性ガスを、1.0×10-7atm02以下の酸素濃度にすることが有効である。さらに、放出室50には、不活性ガスを再利用するために、ガス循環配管54を介して、ガス循環系統に接続されている。
このような磁性粉末の製造装置100を用いた磁性粉末PVの製造方法を以下に示す。まず、エアロゾル室20及び蒸気生成室30内を真空排気し、酸素除去装置13bを介して、これらの室に不活性ガスを導入することにより、これらの室内を不活性ガス雰囲気とする。ここで、エアロゾル室20及び蒸気生成室30内の圧力は、120000Pa以下とし、酸素濃度は、1.0×10-7~10-8atmO2以下とし、蒸気生成室30内の圧力を、エアロゾル室20内の圧力以上にする。一方、放出室50内を、真空排気して、エアロゾル室20及び蒸気生成室30よりも低圧にする。このとき、各室にシャッターがある場合には、これを利用して、設定圧力になるようにする。
次に、ジェットミル等の硬磁性粉末供給源11から、粉末供給配管12を介して、平均粒径が1~10μmの範囲に分級されたNd-Fe-B系(Nd2Fe14B)の硬磁性粉末Pをエアロゾル室20内に供給する。一方、不活性ガスG3に含まれる酸素ガスを酸素除去装置13aで除去後、ガス冷却器18で不活性ガスG3を冷却し、20℃程度の温度に冷却し、この冷却した不活性ガスG3を、エアロゾル生成部21に導入する。
これにより、エアロゾル生成部21の複数の放出口21aから、冷却された不活性ガスG3がエアロゾル室20の底部に向かって放出され、底部の硬磁性粉末Pが揺動し攪拌されると共に、エアロゾル室20内を浮遊して、磁性粒子のエアロゾルが生成される(硬磁性粉末Pがエアロゾル化する)。一方、蒸気生成室30内の金属溶解炉32内に配置された希土類金属であるDyを、加熱装置33で加熱して、蒸気化する。
エアロゾル化した硬磁性粉末Pは、放出室50との差圧により、放出室50に向かって主搬送管41内を搬送される。また、蒸気化した金属(蒸気粒子)Vも、同様に、放出室50に向かって副搬送管42内を搬送される。
具体的には、主搬送管41により、エアロゾル化した硬磁性粉末Pを、気流に乗せて、放出室50に向けて搬送し(エアロゾルそのものを放出室50に向けて搬送し)、副搬送管42により、蒸気粒子Vを気流に乗せて、放出室50に向けて搬送する。そして、副搬送管42が、蒸気粒子Vが硬磁性粉末Pに付着可能なように、主搬送管41に接続されているので、付着部の合流部45で、蒸気粒子Vを、蒸気粒子Vに衝突させることができる。
ここで、エアロゾル化した硬磁性粉末Pは、冷却器18により冷却され、一方、蒸気粒子Vは、加熱により蒸気化したものであるので、熱泳動現象により、図2の模式図に示すように、1~10μmの範囲に分級された硬磁性粉末Pの表面に、1nm~100nm程度の大きさの蒸気粒子Vを付着させることができる。
具体的には、図3に示すように、気体中に硬磁性粉末Pが浮遊している状況下で、蒸気粒子Vは、その熱運動により、硬磁性粉末Pに衝突する。特に、この硬磁性粉末Pと蒸気粒子Vとの間に大きな熱勾配があるので、硬磁性粉末Pよりも高温である蒸気粒子Vには、低温である硬磁性粉末Pに引き付けられるように力(熱泳動力)が及ぼされる。この結果、硬磁性粉末Pの表面に、緻密で強固に蒸気粒子Vが付着する(被覆される)。
さらに、エアロゾル化した硬磁性粉末Pは数μmオーダの粒径であり、蒸気粒子Vは、数十数nmオーダの粒径であることから、蒸気粒子Vは、硬磁性粉末Pに比べて小さいため、気流に乗り易く加速される。すなわち、上述した各室の差圧と粒子の大きさから、蒸気粒子Vの飛行速度は、硬磁性粉末Pの飛行速度よりも速くなる。これにより、蒸気粒子Vを硬磁性粉末Pの表面に緻密かつ強固に付着させることができる。このようにして、硬磁性粉末Pの表面に、蒸気粒子Vが、図2に示す如く付着する。
このように、蒸気粒子Vが付着した硬磁性粉末(Dy粒子が被覆された硬磁性粉末)PVは、ノズル部49を通過して、放出室50内に放出され、受け部53には、磁性粉末PVと、蒸気粒子Vとが堆積する。そして、これらを、気流分級装置を用いて分級し、磁性粉末PVのみを得ることができる。
このようにして得られた磁性粉末(Dy粒子が被覆された硬磁性粉末)PVを、磁界中で、配向させながら、所定の圧力で成形する。ついで、この成形体を、不活性ガス雰囲気下の焼結炉内で焼結し、その後、所定の熱処理を行って、磁石を製造することができる。このようにして得られた磁石は、これまでに比べてDyなどの希土類金属を僅かに使用するだけで、これまでの磁石に比べてより保持力を得ることができる。
図4は、第二実施形態に係る磁性粉末の製造装置を説明するための図であり、(a)は、磁性粉末の製造装置の全体構成図であり、(b)は、(a)に示すb部の拡大図、(c)は、(b)のA-A’断面図である。第二実施形態に係る製造装置が、第一実施形態に係る装置と相違する点は、蒸気生成室を複数設けた点と、これら蒸気生成室に接続された付着部の構成と、が主に相違する。すなわち、蒸気生成室と副搬送管の組を複数備えた点が、相違する。第一実施形態と相違する点のみ、以下に説明する。
図4に示すように、第二実施形態に係る磁性粉末の製造装置100Aは、3つの蒸気生成室30,30,30を備えている。各蒸気生成室30は、第一実施形態に示す蒸気生成室と同様の構成になっている。そして、蒸気生成室30の上部には、付着部40Aの副搬送管42が接続されている。各副搬送管42は、蒸気化した金属Vが硬磁性粉末Pに付着可能なように、合流部45Aで、主搬送管41に接続されている。
また、合流部45Aでは、3つの副搬送管42が、主搬送管41の外周に等間隔に接続されている。このように、合流部45Aにおいて、各副搬送管42が、主搬送管41の外周に等間隔に接続されることにより、主搬送管41を通過(飛行)するエアロゾルAGに含まれる硬磁性粉末Pの表面に、ムラ無く均一に、蒸気粒子Vを付着させることができる。
さらに、付着部40の蒸気化した金属(蒸気粒子V)を搬送する副搬送管42と、蒸気粒子Vが付着した磁性粉末PVを搬送する搬送管(主搬送管の一部)とには、搬送管ヒータ(管加熱部)44が配置されている。この搬送管ヒータ44で、これらの管を加熱することにより、これら搬送管の内壁面に、蒸気粒子Vが付着積層するのを防止することができる。
本実施形態では、放出室50には、室内のガスを不活性ガスG2に置換する不活性ガス配管58に接続されており、不活性ガス配管17には、同様に、不活性ガスG2に含まれる酸素ガスを除去する酸素除去装置13bが接続されている。これにより、放出室50内に不活性ガスを充填することができる。
以下に実施例に基づいて、本発明の磁性粉末の製造方法を説明する。以下に示す実施例は、図1に示す第一実施形態に示す磁性粉末装置を用いて磁性粉末を製造した実施例である。
(実施例1)
純度99.5%以上のNd、Al、Fe、Cuと、フェロボロンを、Arガス雰囲気中で高周波溶解した後、Ndが13.5原子%、Alが0.5原子%、Cuが0.3原子%、Bが、5.8原子%、残部が、Fe及び不可避不純物からなる合金のストリップキャストを製作した。この合金を0.1MPaで水素吸蔵させた後、520℃で脱水処理を行い、冷却後篩にかけて、50メッシュ以下のNd-Fe-B系磁性粗粉末(硬磁性粗粉末)を製造した。
純度99.5%以上のNd、Al、Fe、Cuと、フェロボロンを、Arガス雰囲気中で高周波溶解した後、Ndが13.5原子%、Alが0.5原子%、Cuが0.3原子%、Bが、5.8原子%、残部が、Fe及び不可避不純物からなる合金のストリップキャストを製作した。この合金を0.1MPaで水素吸蔵させた後、520℃で脱水処理を行い、冷却後篩にかけて、50メッシュ以下のNd-Fe-B系磁性粗粉末(硬磁性粗粉末)を製造した。
その後、ジェットミルで平均粒径を4.2μmまで粉砕し、この硬磁性粗粉末を1.0×10-6atmのArガスのエアロゾル室へ粉体送給した。なお、エアロゾル室の室内のガスを排気して、その室内を予め1.0×10-11atmの真空度にした後に、ジルコニア酸素ポンプで1.0×10-11atmO2の濃度まで、酸素濃度を低下させたArガスで、室内の残留ガスを置換した。そして、この室内の圧力を1.0×10-6atmとしながら、冷却器によりガス温度を20℃となるように調整したArガスをエアロゾル用ガスとして使用した。そして、室内のNd-Fe-B系磁性粉末を揺動攪拌させて、Nd-Fe-B系磁性粉末をエアロゾル化した(Nd-Fe-B系磁性粒子エアロゾルを生成した)。
一方、蒸気生成室も、エアロゾル室と同様に、室内を1.0×10-11atmの真空度にした後、ジルコニア酸素ポンプで1.0×10-11atmO2の濃度まで、O2濃度を低下させたArガスで、置換し、室内の圧力を1.0×10-5atmとした。
そして、高周波加熱装置により、カーボンるつぼに入れた純度99.9%Dyを、高周波溶解により、1077℃で溶融させてDy蒸気(Dyナノ蒸気粒子:平均粒径20nm)を生成した。ここで、Dyは、1.0×10-5atmの圧力環境下では融点が844℃である。
なお、図1に示す、蒸気生成室から、付着部(蒸気金属が被覆されるまでの領域)までの少なくとも副搬送管の内壁の温度を844℃以上になるように、図1に示す加熱器を用いて、加熱した。これは、副搬送管及び合流部の内壁面に、Dyナノ蒸気粒子が付着積層するのを防止するためである。
さらに、放出室も、同様に、1.0×10-11atmまで真空引きを行った後、ジルコニア酸素ポンプで、1.0×10-11atmO2の濃度までO2濃度を低下させたArガスで、室内を置換し、その内部の圧力を1.0×10-7atmとした。
このような状態で、エアロゾル室、蒸気室、放出室の連通を遮断するシャッターを開く。このとき、エアロゾル室の硬磁性粉末は、エアロゾル室と放出室との差圧により、主搬送管内を飛行し、放出室へ向かう。一方、蒸気生成室のDyナノ蒸気粒子も、蒸気生成室と放出室との差圧により、副搬送管内を飛行し、放出室へ向かう。
この際に、熱泳動現象により、Dyナノ蒸気粒子は、これに比べて低温の硬磁性粉末と、衝突あるいは吸着し、硬磁性粉末の表面を覆うように付着する。
さらに、前述の図2の説明で述べたように、Nd-Fe-B系磁性粉末は、本実施例では、平均粒径が4.2μmであり、Dyナノ蒸気粒子は、20nm程度であり、その径は、200倍程度の大きさであるので、蒸気粒子の方が気流に乗り易く加速され易い。そして、上述した各室の差圧を設け、粒子の大きさを考慮した場合、衝突時及び放出室に至るまでのDyナノ蒸気粒子の飛行速度は、Nd-Fe-B系磁性粉末の飛行速度よりも速く、相対速度は、100m/s以上になると推察される。このような相対速度により、Nd-Fe-B系磁性粉末の表面に、Dyナノ蒸気粒子が緻密に付着され、被覆される。
このようにDyナノ蒸気粒子が付着した硬磁性粉末(磁性粉末)を、ノズル部を介して、放出室内に放出させて放冷して、硬磁性粉末に付着したDyナノ蒸気粒子をDyナノ粒子とした。磁性粉末及び該磁性粉末に付着しなかったDyナノ粒子は、放出室内の受け部に堆積し、これらを気流分級装置により分級し、磁性粉末のみを得た。
このようにして得られたDyナノ粒子が被覆された硬磁性粉末を、1.0×10-11atmO2のArガス雰囲気下で、15kOeの磁界中で配向させながら、100MPaの圧力で、成形型内において圧粉成形した。次いで、この成形体を1.0×10-11atmO2のArガス雰囲気下の焼結炉内に投入し、1067℃で2時間焼結した。さらに、820℃、5時間の処理条件で、熱処理を行い、続けて、520℃、1.5時間の熱処理を行い、磁石ブロックを製作した。
この磁石ブロックをダイヤモンドカッターにより5×5×2mmの寸法に加工された後、BHトレーサー(VSM(レイクショア7400))により磁気測定を行った。測定内容は、残留磁化Br、保持力Hcj、最大エネルギー積(BH)maxである。この結果を、表1、及び図5、6に示す。
(実施例2)
実施例1と同じようにして、磁石ブロックを製造した。実施例1と相違する点は、純度99.5%以上のNd、Al、Fe、Cu、Dyと、フェロボロンを、Arガス雰囲気中で高周波溶解した後、Ndが11.5原子%、Dyが、5.0原子%、Alが0.5原子%、Cuが0.3原子%、Bが、5.8原子%、残部が、Fe及び不可避不純物からなる合金のストリップキャストを製作した点のみである。そして、実施例1と同じように、製作された磁気ブロックの残留磁化Br、保持力Hcj、最大エネルギー積(BH)maxを測定した。この結果を、表1、及び図5、6に示す。
実施例1と同じようにして、磁石ブロックを製造した。実施例1と相違する点は、純度99.5%以上のNd、Al、Fe、Cu、Dyと、フェロボロンを、Arガス雰囲気中で高周波溶解した後、Ndが11.5原子%、Dyが、5.0原子%、Alが0.5原子%、Cuが0.3原子%、Bが、5.8原子%、残部が、Fe及び不可避不純物からなる合金のストリップキャストを製作した点のみである。そして、実施例1と同じように、製作された磁気ブロックの残留磁化Br、保持力Hcj、最大エネルギー積(BH)maxを測定した。この結果を、表1、及び図5、6に示す。
(比較例1)
実施例1と同じようにして、磁性ブロックを製作した。実施例1と相違する点は、Dy蒸気粒子を付着させなかった点であり、具体的には、ジェットミルで平均粒径を4.2μmまで粉砕し、実施例1と同じ条件で、この硬磁性粉末を成形後に焼結して、磁性ブロックを製作した。そして、実施例1と同じように、製作された磁気ブロックの残留磁化Br、保持力Hcj、最大エネルギー積(BH)maxを測定した。この結果を、表1、及び図5、6に示す。
実施例1と同じようにして、磁性ブロックを製作した。実施例1と相違する点は、Dy蒸気粒子を付着させなかった点であり、具体的には、ジェットミルで平均粒径を4.2μmまで粉砕し、実施例1と同じ条件で、この硬磁性粉末を成形後に焼結して、磁性ブロックを製作した。そして、実施例1と同じように、製作された磁気ブロックの残留磁化Br、保持力Hcj、最大エネルギー積(BH)maxを測定した。この結果を、表1、及び図5、6に示す。
(比較例2)
実施例2と同じようにして、磁性ブロックを製作した。実施例2と相違する点は、Dy蒸気粒子を付着させなかった点であり、具体的には、ジェットミルで平均粒径を4.2μmまで粉砕し、実施例2と同じ条件で、この硬磁性粉末を成形後に焼結して、磁性ブロックを製作した。そして、実施例1と同じように、製作された磁気の残留磁化Br、保持力Hcj、最大エネルギー積(BH)maxを測定した。この結果を、表1、及び図5、6に示す。
実施例2と同じようにして、磁性ブロックを製作した。実施例2と相違する点は、Dy蒸気粒子を付着させなかった点であり、具体的には、ジェットミルで平均粒径を4.2μmまで粉砕し、実施例2と同じ条件で、この硬磁性粉末を成形後に焼結して、磁性ブロックを製作した。そして、実施例1と同じように、製作された磁気の残留磁化Br、保持力Hcj、最大エネルギー積(BH)maxを測定した。この結果を、表1、及び図5、6に示す。
(比較例3)
実施例1と同じようにして、磁性ブロックを製作した。実施例1と相違する点は、Dy蒸気粒子を付着させず、その代わりに以下に示すDy表面拡散法を用いた点である。具体的には、ジェットミルで平均粒径を4.2μmまで粉砕し、実施例1と同じ条件で、この硬磁性粉末を成形した。
実施例1と同じようにして、磁性ブロックを製作した。実施例1と相違する点は、Dy蒸気粒子を付着させず、その代わりに以下に示すDy表面拡散法を用いた点である。具体的には、ジェットミルで平均粒径を4.2μmまで粉砕し、実施例1と同じ条件で、この硬磁性粉末を成形した。
このようにして得られたDyナノ粒子が被覆された硬磁性粉末を、1.0×10-11atmO2のArガス雰囲気下で、15kOeの磁界中で配向させながら、100MPaの圧力で、成形型内において圧粉成形した。次いで、この成形体を1.0×10-11atmO2のArガス雰囲気下の焼結炉内に投入し、1067℃で2時間焼結し、磁石ブロックをダイヤモンドカッターにより5×5×2mm寸法の磁石に加工した。
続いて、平均粒径10μmのフッ化ディスプロシウムを質量分率50%でエタノールと混合した混濁液に超音波を印加しながら磁石を30秒間浸し、真空デシケータに置かれ、室温にてロータリーポンプによる排気雰囲気下で30分間乾燥させた。さらに、フッ化ディスプロシウムにより覆われた磁石に対し、Arガス雰囲気中800℃で10時間熱処理を施し、更に510℃で1時間時効処理して急冷し、磁石を製作した。そして、実施例1と同じように、製作された磁気の残留磁化Br、保持力Hcj、最大エネルギー積(BH)maxを測定した。この結果を、表1、及び図5、6に示す。
(結果及び考察)
実施例1及び実施例2の磁石は、比較例1~3のものに比べて、保磁力は高く、最大エネルギー積も大きかった。これは、磁性粉末からなる粒子の粒界にDyが均一かつ高密度に配置されていることによると考えられる。また、比較例2の磁石は、実施例1の磁石に比べて、Dyの含有量が多いにもかかわらず、保磁力が低く、最大エネルギー積も小さいのは、粒界にDyが存在しないことによると考えられる。また、比較例3の磁石は、内部までDyが充分に拡散していないので、実施例1の磁石よりも、保磁力が低く、最大エネルギー積も小さくなったと考えられる。
実施例1及び実施例2の磁石は、比較例1~3のものに比べて、保磁力は高く、最大エネルギー積も大きかった。これは、磁性粉末からなる粒子の粒界にDyが均一かつ高密度に配置されていることによると考えられる。また、比較例2の磁石は、実施例1の磁石に比べて、Dyの含有量が多いにもかかわらず、保磁力が低く、最大エネルギー積も小さいのは、粒界にDyが存在しないことによると考えられる。また、比較例3の磁石は、内部までDyが充分に拡散していないので、実施例1の磁石よりも、保磁力が低く、最大エネルギー積も小さくなったと考えられる。
以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更があっても、それらは本発明に含まれるものである。
Claims (13)
- 硬磁性粉末を不活性ガスによりエアロゾル化する工程と、金属を不活性ガス雰囲気下で加熱して蒸気化する工程と、該蒸気化した金属を、前記エアロゾル化した硬磁性粉末の表面に付着させる工程と、を含むことを特徴とする磁性粉末の製造方法。
- 前記付着工程において、前記エアロゾル化した硬磁性粉末及び蒸気化した金属を気流に乗せて搬送し、蒸気化した金属を前記エアロゾル化した硬磁性粉末に衝突させることを特徴とする請求項1に記載の磁性粉末の製造方法。
- 前記金属は、遷移金属またはこれらの合金金属であることを特徴とする請求項1又は2に記載の磁性粉末の製造方法。
- 前記遷移金属は、希土類金属であることを特徴とする請求項3に記載の磁性粉末の製造方法。
- 前記希土類金属は、Dy、Tb、又はPrであることを特徴とする請求項4に記載の磁性粉末の製造方法。
- 前記金属は、AlまたはCuであることを特徴とする請求項1又は2に記載の磁性粉末の製造方法。
- 前記硬磁性粉末は、Nd-Fe-B系磁性粉末であることを特徴とする請求項1~6のいずれかに記載の磁性粉末の製造方法。
- 請求項1~7のいずれかに記載の製造方法で製造された磁性粉末を焼結させた磁石。
- 硬磁性粉末を不活性ガスによりエアロゾル化するエアロゾル室と、金属を不活性ガス雰囲気下で加熱して蒸気化する蒸気生成室と、該蒸気化した金属を前記エアロゾル化した硬磁性粉末の表面に付着させる付着部と、前記金属が付着した硬磁性粉末を放出する放出室と、を備えることを特徴とする磁性粉末の製造装置。
- 前記付着部は、前記エアロゾル室に接続された主搬送管と、前記蒸気生成室に接続された副搬送管と、を備え、該副搬送管は、前記蒸気化した金属が前記硬磁性粉末に付着可能なように、前記主搬送管に接続されていることを特徴とする請求項9に記載の磁性粉末の製造装置。
- 前記製造装置は、前記蒸気生成室と、該蒸気生成室に接続された前記副搬送管と、を複数備え、該複数の副搬送管が、前記主搬送管の外周に等間隔に接続されていることを特徴とする請求項10に記載の磁性粉末の製造装置。
- 前記副搬送管を加熱する管加熱部を備えることを特徴とする請求項9又は10に記載の磁性粉末の製造装置。
- 前記エアロゾル室及び蒸気生成室は、前記不活性ガスを供給する供給管を設けており、該供給管には、不活性ガス中に含まれる酸素を除去する酸素除去装置が配設されていることを特徴とする請求項9~12のいずれかに記載の磁性粉末の製造装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011519359A JP5267665B2 (ja) | 2009-06-18 | 2009-06-18 | 磁性粉末の製造方法及びその製造装置 |
EP09846173.4A EP2444984B1 (en) | 2009-06-18 | 2009-06-18 | Method and apparatus for producing magnetic powder |
CN200980159907.XA CN102804296B (zh) | 2009-06-18 | 2009-06-18 | 磁性粉末的制造方法及其制造装置 |
PCT/JP2009/061076 WO2010146680A1 (ja) | 2009-06-18 | 2009-06-18 | 磁性粉末の製造方法及びその製造装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/061076 WO2010146680A1 (ja) | 2009-06-18 | 2009-06-18 | 磁性粉末の製造方法及びその製造装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010146680A1 true WO2010146680A1 (ja) | 2010-12-23 |
Family
ID=43356018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/061076 WO2010146680A1 (ja) | 2009-06-18 | 2009-06-18 | 磁性粉末の製造方法及びその製造装置 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2444984B1 (ja) |
JP (1) | JP5267665B2 (ja) |
CN (1) | CN102804296B (ja) |
WO (1) | WO2010146680A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011061038A (ja) * | 2009-09-10 | 2011-03-24 | Toyota Central R&D Labs Inc | 希土類磁石とその製造方法および磁石複合部材 |
JP2015086413A (ja) * | 2013-10-29 | 2015-05-07 | 大陽日酸株式会社 | 複合超微粒子の製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6552283B2 (ja) * | 2015-06-02 | 2019-07-31 | Dowaエレクトロニクス株式会社 | 磁性コンパウンド、アンテナおよび電子機器 |
CN106229102B (zh) * | 2016-08-23 | 2019-05-31 | 南京工程学院 | 一种超细晶NdFeB永磁材料及其制备方法 |
DE102017215265A1 (de) * | 2017-08-31 | 2019-02-28 | Siemens Aktiengesellschaft | Verfahren zur Herstellung eines Permanentmagneten, Permanentmagnet, elektrische Maschine, Medizingerät und Elektrofahrzeug |
CN107876791A (zh) * | 2017-10-27 | 2018-04-06 | 内蒙古盛本荣科技有限公司 | 生产粉体的装置及其方法 |
CN109954876B (zh) * | 2019-05-14 | 2020-06-16 | 广东工业大学 | 一种抗氧化微纳铜材料的制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02125402A (ja) * | 1988-11-04 | 1990-05-14 | Seiko Epson Corp | 磁性粉末およびその製造方法 |
JPH06142496A (ja) * | 1991-11-25 | 1994-05-24 | Nisshin Flour Milling Co Ltd | 超微粒子で表面が被覆された粒子の製造方法および装置 |
JPH06207203A (ja) | 1991-06-04 | 1994-07-26 | Shin Etsu Chem Co Ltd | 希土類永久磁石の製造方法 |
JP2003183847A (ja) * | 2001-10-11 | 2003-07-03 | National Institute Of Advanced Industrial & Technology | 複合構造物作製方法及び複合構造物作製装置 |
JP2003211030A (ja) * | 2001-11-16 | 2003-07-29 | National Institute Of Advanced Industrial & Technology | 複合構造物作製方法及び複合構造物作製装置 |
JP2004296609A (ja) * | 2003-03-26 | 2004-10-21 | National Institute Of Advanced Industrial & Technology | 永久磁石膜 |
JP2005203653A (ja) * | 2004-01-19 | 2005-07-28 | Yaskawa Electric Corp | 磁石製造方法およびこれに用いる超微粒子磁性粉の製造方法 |
JP2006303433A (ja) | 2005-03-23 | 2006-11-02 | Shin Etsu Chem Co Ltd | 希土類永久磁石 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2948697B2 (ja) * | 1992-06-25 | 1999-09-13 | キヤノン株式会社 | 再生装置 |
JP2517877B2 (ja) * | 1993-11-09 | 1996-07-24 | 工業技術院長 | 微粒子複合体の製造方法 |
JP2001254168A (ja) * | 2000-03-10 | 2001-09-18 | Kinya Adachi | 磁性材料の表面防錆ならびに高性能化処理 |
JP4654709B2 (ja) * | 2004-07-28 | 2011-03-23 | 株式会社日立製作所 | 希土類磁石 |
-
2009
- 2009-06-18 CN CN200980159907.XA patent/CN102804296B/zh active Active
- 2009-06-18 EP EP09846173.4A patent/EP2444984B1/en active Active
- 2009-06-18 WO PCT/JP2009/061076 patent/WO2010146680A1/ja active Application Filing
- 2009-06-18 JP JP2011519359A patent/JP5267665B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02125402A (ja) * | 1988-11-04 | 1990-05-14 | Seiko Epson Corp | 磁性粉末およびその製造方法 |
JPH06207203A (ja) | 1991-06-04 | 1994-07-26 | Shin Etsu Chem Co Ltd | 希土類永久磁石の製造方法 |
JPH06142496A (ja) * | 1991-11-25 | 1994-05-24 | Nisshin Flour Milling Co Ltd | 超微粒子で表面が被覆された粒子の製造方法および装置 |
JP2003183847A (ja) * | 2001-10-11 | 2003-07-03 | National Institute Of Advanced Industrial & Technology | 複合構造物作製方法及び複合構造物作製装置 |
JP2003211030A (ja) * | 2001-11-16 | 2003-07-29 | National Institute Of Advanced Industrial & Technology | 複合構造物作製方法及び複合構造物作製装置 |
JP2004296609A (ja) * | 2003-03-26 | 2004-10-21 | National Institute Of Advanced Industrial & Technology | 永久磁石膜 |
JP2005203653A (ja) * | 2004-01-19 | 2005-07-28 | Yaskawa Electric Corp | 磁石製造方法およびこれに用いる超微粒子磁性粉の製造方法 |
JP2006303433A (ja) | 2005-03-23 | 2006-11-02 | Shin Etsu Chem Co Ltd | 希土類永久磁石 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2444984A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011061038A (ja) * | 2009-09-10 | 2011-03-24 | Toyota Central R&D Labs Inc | 希土類磁石とその製造方法および磁石複合部材 |
JP2015086413A (ja) * | 2013-10-29 | 2015-05-07 | 大陽日酸株式会社 | 複合超微粒子の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5267665B2 (ja) | 2013-08-21 |
EP2444984B1 (en) | 2018-04-18 |
JPWO2010146680A1 (ja) | 2012-11-29 |
EP2444984A1 (en) | 2012-04-25 |
EP2444984A4 (en) | 2015-01-14 |
CN102804296A (zh) | 2012-11-28 |
CN102804296B (zh) | 2015-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5267665B2 (ja) | 磁性粉末の製造方法及びその製造装置 | |
JP4811143B2 (ja) | R−Fe−B系希土類焼結磁石およびその製造方法 | |
JP5477282B2 (ja) | R−t−b系焼結磁石およびその製造方法 | |
JP4748163B2 (ja) | 希土類焼結磁石とその製造方法 | |
JP4677942B2 (ja) | R−Fe−B系希土類焼結磁石の製造方法 | |
JP4962198B2 (ja) | R−Fe−B系希土類焼結磁石およびその製造方法 | |
WO2007102391A1 (ja) | R-Fe-B系希土類焼結磁石およびその製造方法 | |
WO2012099186A1 (ja) | R-t-b系焼結磁石の製造方法 | |
WO2007088718A1 (ja) | R-Fe-B系希土類焼結磁石およびその製造方法 | |
CN108305735B (zh) | 高性能高电阻率烧结钐钴永磁材料、其制备方法与应用 | |
WO2009107397A1 (ja) | R-Fe-B系希土類焼結磁石の製造方法およびその方法によって製造された希土類焼結磁石 | |
CN107808768B (zh) | 磁体镀膜装置及方法 | |
JP5146552B2 (ja) | R−Fe−B系希土類焼結磁石およびその製造方法 | |
WO2018096733A1 (ja) | 希土類鉄窒素系磁性粉末とその製造方法 | |
JP6573708B2 (ja) | R−Fe−B系焼結磁性体の製造方法及びその製造装置 | |
CN104043834B (zh) | 使用热压利用减少的镝或铽制造Nd-Fe-B磁体 | |
JP2009149916A (ja) | 真空蒸気処理装置 | |
JP2018056334A (ja) | R−t−b系焼結磁石の製造方法 | |
JP2016178213A (ja) | 永久磁石 | |
JP2006351688A (ja) | サマリウム−鉄−窒素系磁石微粉末の製造方法 | |
CN106683814A (zh) | 钕铁硼磁体粉末的制备方法 | |
CN106103776B (zh) | 含稀土的合金铸片、其制造方法和烧结磁体 | |
JP2012204823A (ja) | 希土類焼結磁石の製造方法 | |
US9136049B2 (en) | Magnesium—aluminium magnetic powder and method for making same | |
JP2011060965A (ja) | R2Fe14B希土類焼結磁石の製造方法及び製造装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980159907.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09846173 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011519359 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009846173 Country of ref document: EP |