WO2010140700A1 - 可視光応答性を有し、光触媒活性に優れたチタン系材料およびその製造方法 - Google Patents

可視光応答性を有し、光触媒活性に優れたチタン系材料およびその製造方法 Download PDF

Info

Publication number
WO2010140700A1
WO2010140700A1 PCT/JP2010/059583 JP2010059583W WO2010140700A1 WO 2010140700 A1 WO2010140700 A1 WO 2010140700A1 JP 2010059583 W JP2010059583 W JP 2010059583W WO 2010140700 A1 WO2010140700 A1 WO 2010140700A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
photocatalytic activity
based material
visible light
pure
Prior art date
Application number
PCT/JP2010/059583
Other languages
English (en)
French (fr)
Inventor
金子 道郎
徳野 清則
清水 寛史
和夫 山岸
麻実 下村
光行 長谷川
瑠理子 横山
Original Assignee
新日本製鐵株式会社
株式会社東陽理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社, 株式会社東陽理化学研究所 filed Critical 新日本製鐵株式会社
Priority to CN201080034173.5A priority Critical patent/CN102481565B/zh
Priority to JP2010545298A priority patent/JP5197766B2/ja
Priority to US13/261,058 priority patent/US8865612B2/en
Priority to KR1020117030243A priority patent/KR101394595B1/ko
Priority to EP10783482.2A priority patent/EP2438990B1/en
Publication of WO2010140700A1 publication Critical patent/WO2010140700A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a titanium-based material having visible light response and excellent photocatalytic activity, a method for producing the same, and a plate-like body and a net-like structure using the material. Furthermore, the present invention relates to a titanium-based material comprising titanium oxide particles having visible light responsiveness and excellent photocatalytic activity, and a method for producing the same.
  • Patent Document 1 discloses that photocatalytic activity is exhibited by combining a anodic oxidation method and heating in an oxidizing atmosphere using a titanium base material.
  • Patent Document 2 discloses a titanium-based metal material having excellent photocatalytic activity by laminating a titanium oxide powder-containing film on an anodized layer. These titanium-based materials having photocatalytic activity can be used in various corrosive environments since the base material is titanium having extremely excellent corrosion resistance, and can be used in various applications such as building materials, vehicle exterior materials, and home appliances. Used in various shapes depending on the product.
  • Patent Documents 3 to 5 disclose that titanium oxide is formed as a network structure, and its photocatalytic activity is used for purification, sterilization, etc. of seawater, sewage, fresh water and the like. Furthermore, Patent Document 6 and Patent Document 7 disclose that titanium particles having photocatalytic activity are obtained by performing anodizing treatment in a bath to which titanium oxide powder is added, and have these photocatalytic activities. Titanium particles are used for improving the stain resistance and antibacterial properties of various base materials by applying in combination with a binder.
  • Patent Document 2 Although the present inventors anodized pure titanium according to Patent Document 1 and then heated to the atmosphere, sufficient photocatalytic activity was not obtained.
  • Patent Document 2 a titanium oxide-containing powder layered on an anodized titanium layer is laminated, but this is because a high photocatalytic activity could not be obtained by a simple combination of anodization and atmospheric heating. Inferred.
  • stacking a titanium oxide layer after anodic oxidation as in Patent Document 2 is problematic from the viewpoint of adhesion. Furthermore, the cost increases because the titanium oxide-containing powder is laminated.
  • titanium-based material does not have sufficient adhesion between the base material and the anodic oxide film, the material is peeled between the base material and the anodic oxide film when the material is pressed into a plate-like body. As a result, it was difficult to perform a molding process according to the application.
  • the photocatalytic activity of titanium oxide is usually exhibited by ultraviolet irradiation, in the case of titanium oxide of a network structure used in an underwater environment such as Patent Documents 3 to 5 and titanium particles of Patent Documents 6 and 7, In the light irradiation by light and a lighting fixture, since the amount of ultraviolet rays is small, there is a problem that the photocatalytic activity cannot be sufficiently exhibited.
  • the present invention is a titanium-based material in which a titanium oxide layer is formed on the surface of a base material made of pure titanium or a titanium alloy, and has excellent adhesion between the base material and the titanium oxide layer.
  • the present invention also provides a titanium-based material having visible light responsiveness and excellent photocatalytic activity, a plate-like body and a net-like structure using the material, and a method for producing them using an anodizing process having excellent productivity.
  • the present invention aims to provide a titanium-based material comprising titanium oxide particles having visible light responsiveness and excellent photocatalytic activity, and a method for producing the same using an anodizing process excellent in productivity. To do.
  • the present invention focused on the types of oxides in the titanium oxide layer on the surface of pure titanium and titanium alloys, carbon and nitrogen contained in the oxides, and further intensively studied on the coloring bath composition of anodic oxidation.
  • the gist thereof is as follows.
  • Pure titanium or a titanium alloy is used as a base material, the thickness of the titanium oxide layer existing on the surface thereof is in the range of 0.1 ⁇ m to 5.0 ⁇ m, and the titanium oxide layer is made of anatase type titanium dioxide and a hydroxyl group.
  • the titanium-based material as described in (1) or (2) above, wherein the pure titanium or titanium alloy base material is a network structure.
  • Visible light responsiveness characterized by comprising titanium oxide particles containing anatase-type titanium dioxide and titanium bonded to a hydroxyl group, and further containing 0.5 to 30% by mass of nitrogen and carbon in titanium oxide, respectively.
  • a titanium-based material that has excellent photocatalytic activity (8) The titanium-based material having visible light responsiveness and excellent photocatalytic activity according to (7), wherein at least one of titanium carbide and titanium nitride is contained in the titanium oxide.
  • the method for producing a titanium-based material having visible light responsiveness and excellent photocatalytic activity according to (1) or (2).
  • a base material made of pure titanium or titanium alloy is anodized for 30 seconds to 60 minutes in an aqueous solution containing nitrate ions having a saturation concentration from 0.01 M to less than 100 V, and then 200 ° C.
  • the method for producing a titanium-based material having visible light responsiveness and excellent photocatalytic activity as described in (1) or (2) above.
  • Titanium oxide particles are produced by anodizing a pure titanium or titanium alloy in an aqueous solution containing nitrate ions having a saturation concentration from 0.01 M to 10 V to 100 V (7) ) Or (8), the method for producing a titanium-based material having visible light responsiveness and excellent photocatalytic activity.
  • Pure titanium or titanium alloy is anodized in an aqueous solution containing nitrate ions having a saturation concentration of 0.01 M to a saturation concentration of 10 V or more and less than 100 V, and then 1 minute or more in a temperature range of 200 ° C. to 750 ° C.
  • the pure titanium or the titanium alloy is anodized in an aqueous solution containing nitrate ions at a saturation concentration of 0.01 M to a pH of 12 or more and 15 or less, as described in (12) above
  • a method for producing a titanium-based material having visible light responsiveness and excellent photocatalytic activity is described in (12) above.
  • the titanium-based material according to the present invention has visible light responsiveness, excellent photocatalytic activity, and good adhesion between the substrate and the oxide layer. As a result, when processing such as press molding is performed, the titanium oxide layer is not peeled off, and can be processed into various shapes according to the application without impairing the photocatalytic activity. Furthermore, according to the present invention, it is possible to obtain a beautiful color plate by adjusting the anodic oxidation voltage. In addition, since the titanium oxide particles according to the present invention have visible light responsiveness and excellent photocatalytic activity, by applying these titanium oxide particles in combination with various binders, the amount of ultraviolet rays can be reduced. Even so, sufficient photocatalytic activity can be exhibited.
  • the present inventors include anatase-type titanium dioxide and titanium bonded to a hydroxyl group, and have a thickness of 0.1 to A titanium oxide layer of 5.0 ⁇ m is formed on a pure titanium or titanium alloy substrate, and has a visible light response by containing a predetermined amount of nitrogen and carbon in the titanium oxide layer.
  • the present inventors have found that a titanium-based material having extremely excellent photocatalytic activity can be obtained.
  • the present inventors similarly include titanium oxide particles and titanium bonded to a hydroxyl group in the titanium oxide particles, and further, by adding a predetermined amount of nitrogen and carbon in the titanium oxide, the visible light response.
  • the present inventors have found that titanium oxide particles having high properties and excellent photocatalytic activity can be obtained.
  • the thickness of the titanium oxide layer needs to be 0.1 ⁇ m or more. If the thickness of the titanium oxide layer is less than 0.1 ⁇ m, sufficient photocatalytic activity cannot be expressed. On the other hand, if the thickness of the titanium oxide layer exceeds 5.0 ⁇ m, the photocatalytic activity value is almost saturated, and the adhesion between the substrate and the titanium oxide layer is lowered, so 5.0 ⁇ m is the upper limit.
  • the thickness of the titanium oxide layer is determined by measuring the element concentration distribution of titanium, oxygen, carbon, and nitrogen in the depth direction from the surface using a glow discharge emission spectrometer. Determined as thickness. For the identification of depth, after analysis, the depth obtained by glow discharge is measured using a stylus type surface roughness meter (resolution: 0.1 ⁇ m), and divided by the measurement time to quantitatively evaluate the depth. To implement.
  • anatase-type titanium dioxide is present in the titanium oxide layer or in the titanium oxide particles.
  • the presence of anatase-type titanium dioxide in the titanium oxide layer is as follows: X-ray: Cu / 50kV / 200mA Goniometer: RINT1000 Wide-angle goniometer Attachment: Rotating specimen stand for thin film Filter: Not used Incident monochrome: Not used Counter monochrometer: Fully automatic monochromator Diverging slit: 0.2mm Divergence length restriction slit: 5mm Receiving slit: Open Scattering slit: Open Counter: Scintillation counter (SC50) Scan mode: Continuous Scan speed: 2.000 ° / min Sampling width: 0.010 ° Scanning axis: 2 ⁇ Scanning range: 10.000-100.000 ° Fixed angle: 1.500 ° In the X-ray diffraction under the above condition, it is determined that the anatase type titanium dioxide exists when the peak
  • titanium bonded to a hydroxyl group be present in the titanium oxide layer or titanium oxide particles.
  • the reason why titanium bonded to a hydroxyl group is necessary for improving photocatalytic activity is not clarified at present, but only the conventional anatase type titanium dioxide is completely different from the conventional knowledge required for improving photocatalytic activity. .
  • a method for forming a titanium oxide layer using an aqueous solution is required, and an anodic oxidation method is one of them.
  • the verification method for the presence of titanium bonded to a hydroxyl group in the oxide layer is that hydrogen is detected in the oxide film from the same position as oxygen and titanium using a glow discharge emission spectrometer or a secondary ion mass spectrometer, and It is judged that hydrated titanium dioxide is formed if the concentration is at least 5 times the hydrogen concentration of the titanium substrate.
  • XPS X-ray Photoelectron Spectroscopy, hereinafter abbreviated as XPS
  • XPS X-ray Photoelectron Spectroscopy
  • the titanium oxide layer or the titanium oxide particles must contain nitrogen and carbon, and the respective concentrations must be 0.5% by mass or more. If it is less than 0.5% by mass, excellent photocatalytic activity is not exhibited. On the other hand, if it exceeds 30% by mass, the effect of improving the photocatalytic activity is reduced, so 30% by mass is made the upper limit.
  • a more preferable range for carbon is 3.0 mass% to 10 mass%.
  • the more preferable range of nitrogen is 0.9 mass% to 3.9 mass%.
  • the concentration of carbon and nitrogen in the titanium oxide layer is an average value of the concentration over the entire thickness of the oxide layer determined by the above method. In order to obtain a highly accurate value for each concentration in the titanium oxide layer, the data capture time in the glow discharge emission spectrometer is required to be about 0.1 second / point.
  • the carbon concentration in the titanium oxide particles can be measured by a combustion infrared absorption method.
  • the nitrogen concentration (mass%) in the titanium oxide particles can be measured by using a thermal conductivity detector after the titanium oxide particles are put in a nickel holder and melted. it can.
  • the presence state of carbon or nitrogen is at least one of titanium carbide and titanium nitride.
  • the existence state of carbon and nitrogen can be judged by examining the binding energy state of carbon and nitrogen using XPS. That is, since the binding energy of the XPS carbon 1S spectrum shows a peak at 282 eV, the presence of this peak determines the presence of titanium carbide. As for titanium nitride, since the binding energy of the XPS nitrogen 1S spectrum shows a peak at 397 eV, the presence of this peak makes it possible to determine the presence of titanium nitride.
  • titanium carbonitride Ti (C, N)
  • Ti (C, N) titanium carbonitride
  • the effect of supporting photocatalytic activity is not significantly different from that of titanium carbide or titanium nitride, and Ti (C, N). Does not adversely affect the photocatalytic activity.
  • formation of titanium nitride having a composition other than titanium nitride does not adversely affect the photocatalytic activity.
  • the photocatalytic activity is significantly improved when carbon or nitrogen takes the above-described state in the titanium oxide layer or in the titanium oxide particles, which is a phenomenon found for the first time in the present invention. It has been technically proven including reproducibility.
  • One of the above-described titanium-based material in which a titanium oxide layer is formed on a pure titanium or titanium alloy base material and a method for producing the above-described titanium oxide particles include an anodic oxidation method.
  • An anodized film is a film of titanium oxide formed on a titanium surface in an aqueous solution, which is different from titanium oxide formed by a method that does not use an aqueous solution such as PVD, CVD, thermal spraying, and atmospheric oxidation.
  • the fact that carbon, nitrogen, titanium carbide or titanium nitride is contained in the oxide film or titanium oxide particles formed by anodic oxidation significantly improves the photocatalytic activity is a completely new phenomenon that has not been reported so far. is there.
  • titanium oxide is formed on the surface of titanium or a titanium alloy by PVD, CVD, thermal spraying, etc.
  • it is preferably anodized in an electrolytic solution containing sulfuric acid and phosphoric acid.
  • an electrolytic solution containing sulfuric acid and phosphoric acid.
  • titanium oxide is doped with nitrogen or the like to exhibit a photocatalytic action in the visible light region, but in a titanium oxide film formed by anodizing treatment, Therefore, there is no hydrated titanium dioxide in the film, so that it cannot be said that the visible light responsiveness is sufficient.
  • the anodic oxidation method is an industrially established method, in which pure titanium or a titanium alloy is immersed in an appropriate aqueous solution having ion conductivity, and is chemically stable and conductive in the aqueous solution.
  • a cathode plate (usually stainless steel) is immersed and various voltages are applied using titanium or alloy titanium as an anode.
  • the presence of carbon in the anodic oxide film or titanium oxide particles can be achieved, for example, by pre-carburizing pure titanium or a titanium alloy surface layer ( ⁇ m order) or by forming titanium carbide. .
  • rolling is performed such that carbon caused by lubricating oil penetrates into titanium during cold rolling. Can be achieved.
  • a carburized layer can be formed on the surface layer by heat treatment.
  • a carburized layer is formed on the surface layer of titanium or titanium alloy by applying carbon or an organic or inorganic compound containing carbon to the surface of titanium or titanium alloy and heat-treating it. There is. After carburizing, both the carburized layer and the nitrided layer are heated by heating titanium or titanium alloy in a mixed gas atmosphere of nitrogen or other inert gas or a gas that does not react with titanium or titanium alloy. May be made.
  • pure titanium and titanium alloy pickled in a mixed acid solution of nitric acid and hydrofluoric acid are subjected to an anodic oxidation method described in the following paragraphs. Since carbon and nitrogen are contained in the anodized film to such an extent that the photocatalytic activity is manifested, pure titanium and titanium alloy subjected to pickling finish may be used.
  • the present inventors have good adhesion between the pure titanium or titanium alloy of the base material and the titanium oxide layer, and are excellent in visible light responsiveness and photocatalytic activity, and also beautiful colored titanium or visible light responsiveness.
  • intensive studies were conducted to produce titanium oxide particles having excellent photocatalytic activity. As a result, it has been found that when anodizing is performed by applying a voltage using an appropriate metal as a cathode plate and pure titanium or a titanium alloy as an anode, an excellent photocatalytic activity can be obtained by including nitrate ions in the solution. It is a thing.
  • nitrate ion concentration 0.01 M or more is required. Since nitrate ions are not adversely affected by increasing the addition amount thereof, the upper limit of the addition amount of nitrate ions is set to the saturated concentration of each nitrate.
  • Nitric acid ions can be added as an aqueous nitric acid solution or nitrate. Typical nitrates include sodium nitrate, potassium nitrate, lithium nitrate, and ammonium nitrate, but other metal nitrates may be used.
  • the upper limit of the nitrate ion addition amount is not particularly limited, and the effect can be exhibited up to the saturation concentration of each nitrate.
  • the more preferable range of nitrate ion addition amount is 0.1 M or more and a saturated concentration.
  • the anodic oxidation voltage is set as follows in order to form the titanium oxide layer and titanium oxide particles as described above.
  • an anodic oxidation voltage of at least 10 V for 30 seconds to 60 minutes. If the anodic oxidation voltage is less than 10 V, sufficient photocatalytic activity cannot be obtained. Further, even if the anodization time is less than 30 seconds, sufficient photocatalytic activity cannot be obtained. On the other hand, even if the anodization time exceeds 60 minutes, the thickness of the produced anodized film hardly changes.
  • the upper limit is 60 minutes. However, there is no problem even if anodization is carried out for a longer time than this, but the upper limit is set to 60 minutes from the viewpoint of work efficiency.
  • the appearance of the formed titanium oxide layer varies depending on the anodic oxidation voltage.
  • the anodic oxidation voltage is 10 V or more and less than 18 V, it is possible to obtain a beautiful appearance of interference color as well as excellent photocatalytic activity.
  • the anodic oxidation voltage is 18 V or more and less than 25 V, a calm amber appearance can be obtained with excellent photocatalytic activity. If it is less than 18V or 25V or more, a calm amber appearance cannot be obtained.
  • the anodic oxidation time at these voltages is not less than 30 seconds and not more than 60 minutes as described above. However, there is no problem even if the anodic oxidation is carried out over 60 minutes.
  • the anodic oxidation voltage When the anodic oxidation voltage is 25 V or more, a gray appearance with a lower brightness can be obtained together with excellent photocatalytic activity. However, when the anodic oxidation voltage is 100 V or higher, partial dissolution of titanium occurs, and the elution of titanium becomes remarkably significant. Therefore, the anodic oxidation voltage is set to less than 100 V. Also in this case, the anodic oxidation time is 30 seconds or more and 60 minutes or less. However, in this voltage region, since the elution of titanium itself is remarkable as described above, it is not preferable to anodize over 60 minutes.
  • titanium oxide particles In order to form titanium oxide particles, it is necessary to apply an anodic oxidation voltage of at least 10 V or more. Titanium oxide particles are formed by peeling off the titanium oxide layer on the surface of pure titanium or titanium alloy used as the anode. When the anodic oxidation voltage is low, a long anodic oxidation time is required. A short anodic oxidation time is sufficient for the voltage. When the anodic oxidation voltage is less than 10 V, generation of titanium oxide particles does not occur on the surface of pure titanium or the like. In addition, since the produced titanium oxide particles remain on the surface of pure titanium or the like and precipitate in the solution, the titanium oxide particles can be obtained by separating the solution. A more preferable anode voltage range is 30 V or more and less than 100 V.
  • the anodization time is less than 30 seconds, sufficient photocatalytic activity cannot be obtained.
  • the anodization time exceeds 60 minutes, the elution of the titanium-based material itself becomes remarkable as described above.
  • the upper limit is preferably 60 minutes. However, there is no problem even if anodization is performed for a longer time than this, but the upper limit is preferably 60 minutes from the viewpoint of yield reduction.
  • the photocatalytic activity can be further improved by a subsequent heat treatment in the atmosphere.
  • it is necessary to heat at a temperature of at least 200 ° C. after the anodizing treatment.
  • 750 ° C. is the upper limit.
  • a sufficient photocatalytic activity improvement effect cannot be obtained unless heating is performed for at least 1 minute in the atmosphere.
  • 24 hours is the upper limit because the effect of the photocatalytic activity is saturated even if heating is performed for more than 24 hours.
  • This is an excellent photocatalytic activity that can be obtained for the first time by purely anodizing pure titanium or a titanium alloy in an aqueous solution containing nitrate ions.
  • a more preferable heating temperature range is 300 ° C to 600 ° C.
  • the photocatalytic activity of the anodized material can be significantly improved by adjusting the pH of the aqueous solution containing nitrate ions to 12 or more and 15 or less.
  • the cation species when the aqueous solution is alkalinized does not have a great influence. Therefore, caustic soda, potassium hydroxide, lithium hydroxide, ammonium hydroxide or metal hydroxide may be used.
  • pH 15 is made the upper limit.
  • the anodic oxidation voltage needs to be at least 10 V or more, but when it becomes 100 V or more, the dissolution reaction of titanium is remarkably promoted, so it is set to less than 100 V.
  • the anodic oxidation time needs to be at least 30 seconds, but if it exceeds 60 minutes, the effect is saturated, so the upper limit is 60 minutes.
  • pure titanium JIS type 1 to 4 types
  • titanium alloy JIS type 11, type 12, type 13, type 21, type 60E, type 61, ASTM Gr. 12, etc.
  • anodizing treatment as described above has visible light responsiveness and excellent photocatalytic activity.
  • Get titanium-based material If the base material of the titanium-based material is a plate-like body or a linear body, it can be industrially mass-produced as a continuous long coil and processed into various shapes depending on the application. it can.
  • the titanium-based material is a network structure, it can be made into a network structure using a linear material that has been previously anodized to impart photocatalytic activity, or a network structure made of a linear material that has not been anodized. After the structure is formed, the entire network structure can be anodized to give a network structure to which photocatalytic activity is imparted.
  • the net-like structure is not limited to one formed using a linear material, and may be an expanded metal produced by making a number of cuts in the plate-like body and pulling and expanding the plate-like body.
  • titanium oxide particles pure titanium and titanium alloy as described above are used as materials, and anodizing treatment as described above is performed to obtain a titanium-based material having visible light responsiveness and excellent photocatalytic activity. .
  • a continuous long coil material was produced by cold rolling to a thickness of 1 mm, and in argon gas at temperatures of 570 ° C. to 700 ° C. without cleaning.
  • Test substrates made of pure titanium and various titanium alloys were prepared by changing the carbon concentration and carburized layer depth by heating for 5 hours. Further, a part of the test substrate cold-rolled to the thickness of 1 mm is further cold-rolled to a thickness of 15 ⁇ m and heat-treated for 20 seconds to 70 seconds at a temperature of 750 ° C. to 950 ° C. in an argon atmosphere or a nitrogen atmosphere. As a result, pure titanium foil and titanium alloy foil test substrates were produced.
  • Anodization is performed by applying a voltage of 24 to 80 V at room temperature for 2 minutes at a room temperature using a test substrate made of pure titanium and various titanium alloys as an anode and SUS304 steel as a cathode in an ammonium nitrate solution of 5 to 20 g / l. Samples were prepared in which the thickness of the oxide layer, the presence or absence of titanium bonded to anatase-type titanium dioxide and hydroxyl groups, and the nitrogen concentration and carbon concentration in the anodized film were changed.
  • the peak height (detection frequency) or 397 eV (nitrogen) of XPS analysis is used in XPS analysis.
  • the peak height of the 1S spectrum binding energy is 1.3 times or more of the background level height, it is determined that there is titanium carbide or titanium nitride, respectively. Judged that there was no.
  • the photocatalytic activity was evaluated as follows. In the transparent plastic case with an upper lid, the above-mentioned various types of anode titanium cut into dimensions of 15 mm in width, 25 mm in length, and 0.4 mm in thickness are placed with the plate surface facing up. 50cc of 0.1M potassium iodide solution was put there, and the case was irradiated for 30 minutes with two 15W black lights (FL-15BLB-A, manufactured by Toshiba Lighting & Technology Co., Ltd.) from the top. Absorbance at 287 nm was measured using a photometer (Hitachi: U-2910), and the absorbance of the solution without a test piece was subtracted as a blank, and the value was used for evaluation of photocatalytic activity.
  • the container containing the solution used at that time was a quartz cell having a thickness of 1.2 mm and a length of 10 mm.
  • a similar cell containing distilled water was simultaneously measured to remove the background of the apparatus. Said evaluation test was implemented in the room
  • the absorbance at 287 nm was measured using a meter, and the absorbance of only the solution without the test piece was subtracted as a blank, and the value was used for evaluation of photocatalytic activity. Said evaluation test was implemented in the room
  • Examples A1 to A18 of Table 1, A19 to A45 of Table 2, and A46 to A71 of Table 3 are examples of the present invention.
  • the thickness of the oxide layer is 0.1-5 ⁇ m, anatase-type titanium dioxide and titanium bonded with hydroxyl groups are present, and the oxide film contains 0.5-30% by mass of nitrogen and carbon, respectively.
  • the present inventions A1 to A18 exhibit good photocatalytic activity.
  • nitrogen is 0.9 to 3.9% or carbon is 3 to 10%, it is more excellent as shown in Invention Examples A4, 6, 7, 8, 13, 14, 15, 16, and 17
  • photocatalytic activity is shown.
  • visible light responsiveness was also exhibited.
  • Table 4 is a comparative example of the present invention.
  • the thickness of the oxide layer is less than 0.1 ⁇ m (Comparative Examples B1 to B3), when there is no anatase type titanium dioxide (Comparative Example B4), or when there is no titanium bonded to a hydroxyl group (Comparative Example B5), Alternatively, when the nitrogen or carbon concentration in the oxide layer is less than 0.5% (Comparative Examples B6 to B12), it can be seen that no photocatalytic activity occurs.
  • Comparative Example B5 after anodic oxidation, heat treatment was performed at 700 ° C. for 48 hours in a vacuum of 1 ⁇ 10 ⁇ 6 torr.
  • Tables 5 and 6 are examples in which anodic oxidation was performed under various conditions using the above-described pure titanium or titanium alloy material, and then the photocatalytic activity was evaluated.
  • the pH of the solution was adjusted using sulfuric acid or sodium hydroxide solution.
  • the present invention 2 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 35, 37, 39, 41, 43 of Tables 5-6.
  • the inventions 1 to 16 correspond to the embodiment of the invention of claim 3, the inventions 17 to 35 correspond to the embodiment of the invention of claim 4, and the inventions 36 to 61 correspond to the embodiment of claim 5, respectively.
  • the present inventions 1 to 16 are embodiments adapted to the manufacturing conditions of claim 9
  • the present inventions 17 to 35 are embodiments adapted to the manufacturing conditions of claim 10
  • the present inventions 36 to 61 are production conditions of claim 11. It is an embodiment suitable for
  • the present inventions 1 to 60 all have excellent photocatalytic activity. However, when the present inventions 1 to 16 and 17 to 35 are compared, the heat treatment in the atmosphere is performed at a predetermined temperature for a predetermined time. It can be seen that the present inventions 17 to 35 are more improved in photocatalytic activity than the present inventions 1 to 16. Further, when the present invention 1 to 35 and the present invention 36 to 61 are compared, the present invention 36 in which the pH of the aqueous solution containing nitrate ions having a saturated concentration from 0.01 M is adjusted to 12 or more and 15 or less and the anodization treatment is performed. It can be seen that ⁇ 61 has a more excellent photocatalytic activity as compared with the present inventions 1 to 35 having a pH of less than 12.
  • Table 7 shows a comparative example.
  • the comparative example uses the same pure titanium and various titanium alloy cold-rolled and annealed materials as in the present invention, and performs anodization under various conditions that deviate from the anodization conditions of the present invention. Similarly, the photocatalytic activity was evaluated.
  • Comparative Examples 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 use sodium nitrate as a nitrate ion source, and the pH of the solution is adjusted in the same manner as described above. went.
  • a titanium oxide adhesion test was conducted.
  • the adhesion test was performed by the following method. A grid was made based on JIS G3312, and a tape test was performed based on JIS H8504, and the number of peeled pieces out of 100 squares was measured using a magnifying glass. Furthermore, a close contact bending test was carried out in accordance with JIS G3312, and after the test, the presence or absence of peeling was judged by visual observation. The results are shown in Tables 8 and 9. Further, for the present inventions 1 to 61, an adhesion test similar to the above was conducted. The results are shown in Tables 10 and 11. In any case, it can be seen that excellent adhesion is exhibited.
  • the pure titanium and titanium alloy plate-like materials of the present invention have excellent adhesion of the titanium oxide layer to the base material and good workability.
  • the titanium layer does not peel off.
  • Example 1 A network structure made of pure titanium or a titanium alloy in which the carbon concentration and the carburized layer depth were changed by heating under the same conditions was prepared.
  • Anodization was performed using pure titanium and various titanium alloys as an anode and SUS304 steel as a cathode under the same conditions as in Example 1.
  • the thickness of the anodized layer, the presence or absence of anatase titanium dioxide and titanium bonded to a hydroxyl group, and anodization Samples were prepared with varying nitrogen and carbon concentrations in the film.
  • the confirmation of the presence of titanium carbide and titanium nitride in the titanium oxide layer present on the surface of the network structure was determined by the peak height in the XPS analysis as in Example 1.
  • the present inventions A1 to A18 show good photocatalytic activity. Among them, when nitrogen is 0.9 to 3.9% or carbon is 3 to 10%, it is more excellent as shown in Invention Examples A4, 6, 7, 8, 13, 14, 15, 16, and 17 It turns out that photocatalytic activity is shown. Further, as can be seen from the “photocatalyst evaluation test result (ultraviolet ray shielding and fluorescent lamp irradiation)”, visible light responsiveness was also exhibited in all cases. Further, from the results of the present inventions A19 to A71 in Tables 13 to 14, when the presence state of nitrogen or carbon is titanium nitride or titanium carbide, it has particularly high visible light responsiveness and exhibits extremely good photocatalytic activity. I understand. Further, any of the present inventions A19 to A71 also showed visible light responsiveness.
  • Table 15 is a comparative example of the present invention.
  • the thickness of the oxide layer is less than 0.1 ⁇ m (Comparative Examples B1 to B3), when there is no anatase type titanium dioxide (Comparative Example B4), or when there is no titanium bonded to a hydroxyl group (Comparative Example B5), Alternatively, when the nitrogen or carbon concentration in the oxide layer is less than 0.5% (Comparative Examples B6 to B12), it can be seen that no photocatalytic activity occurs.
  • Comparative Example B5 is a case where heat treatment was performed at 700 ° C. for 48 hours in a vacuum of 1 ⁇ 10 ⁇ 6 torr after anodic oxidation.
  • Tables 16 and 17 are examples in which anodization was performed under various conditions using the above-described linear material made of pure titanium or a titanium alloy, and then photocatalytic activity was evaluated.
  • the pH of the solution was adjusted using sulfuric acid or sodium hydroxide solution.
  • the present invention 2 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 35, 37, 39, 41, 43 in Tables 16 and 17 45, 47, 49, 51, 53, 55, 57, 59, 61 used sodium nitrate as a nitrate ion source, and the pH of the solution was adjusted in the same manner as described above.
  • the present inventions 1 to 16 are embodiments adapted to the manufacturing conditions of claim 9
  • the present inventions 17 to 35 are embodiments adapted to the manufacturing conditions of claim 10
  • the present inventions 36 to 61 are production conditions of claim 11. It is an embodiment suitable for
  • the present inventions 1 to 61 all have excellent photocatalytic activity. However, when the present inventions 1 to 16 and 17 to 35 are compared, the heat treatment in the atmosphere is performed at a predetermined temperature for a predetermined time. It can be seen that the present inventions 17 to 35 are more improved in photocatalytic activity than the present inventions 1 to 16. Further, when the present invention 1 to 35 and the present invention 36 to 61 are compared, the present invention 36 in which the pH of the aqueous solution containing nitrate ions having a saturated concentration from 0.01 M is adjusted to 12 or more and 15 or less and the anodization treatment is performed. It can be seen that ⁇ 61 has a more excellent photocatalytic activity as compared with the present inventions 1 to 35 having a pH of less than 12.
  • Table 18 shows a comparative example.
  • the comparative example uses a linear material made of pure titanium or a titanium alloy obtained by performing cold rolling and annealing similar to the present invention, and anodized under various conditions that deviate from the anodic oxidation conditions of the present invention to form a network.
  • a structure was prepared, and then the photocatalytic activity was evaluated in the same manner as in the present invention.
  • Comparative Examples 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 use sodium nitrate as a nitrate ion source, and the pH of the solution is adjusted in the same manner as described above. went.
  • the network structure obtained had visible light responsiveness and was excellent.
  • the photocatalytic activity is inferior when the production conditions deviate from the present invention.
  • the peak height (detection frequency) of 282 eV (bonding energy of 1S spectrum of carbon) or 397 eV (binding energy of 1S spectrum of nitrogen) is used in XPS analysis.
  • the peak height was 1.3 times or more of the background level height, it was judged that there was titanium carbide or titanium nitride, respectively.
  • Evaluation of the photocatalytic activity was carried out by attaching 40 mg of titanium oxide particles produced by an anodic oxidation method to the adhesive surface of an adhesive tape of 15 mm ⁇ 25 mm, and placing the adhesive surface upward in a transparent plastic case with an upper lid. Put 50cc of 1M potassium iodide solution and irradiate two 15W black lights (Toshiba Lighting & Technology Co., Ltd., FL-15BLB-A) for 30 minutes from the top.
  • spectrophotometer manufactured by Hitachi: U-2910
  • the container containing the solution is a quartz cell having a thickness of 1.2 mm and a length of 10 mm.
  • a similar cell containing distilled water was simultaneously measured to remove the background of the apparatus. Said evaluation test was implemented in the room
  • the visible light response was evaluated by attaching an ultraviolet shielding film to a transparent plastic case, confirming that the ultraviolet rays were shielded, and irradiating two 15 W fluorescent lamps from the top for 300 minutes.
  • the absorbance at 287 nm was measured using a meter, and the absorbance of only the solution without the test piece was subtracted as a blank, and the value was used for evaluation of photocatalytic activity.
  • Said evaluation test was implemented in the room
  • the background removal method of the used cell and apparatus was carried out in the same manner as described above.
  • Tables 19 to 21 are examples of the present invention.
  • titanium oxide particles containing anatase-type titanium dioxide and titanium bonded to a hydroxyl group and containing 0.5 to 30% by weight of nitrogen and carbon, for example, the present inventions A1 to A18 have good photocatalytic activity. It can be seen that Among them, when nitrogen is 0.9 to 3.9% or carbon is 3 to 10%, it is more excellent as shown in Invention Examples A4, 6, 7, 8, 13, 14, 15, 16, and 17 It turns out that photocatalytic activity is shown. Further, as can be seen from the “photocatalyst evaluation test result (ultraviolet ray shielding and fluorescent lamp irradiation)”, visible light responsiveness was also exhibited in all cases.
  • Table 22 is a comparative example of the present invention.
  • Comparative Example B5 is a case where heat treatment was performed at 700 ° C. for 48 hours in a vacuum of 1 ⁇ 10 ⁇ 6 torr after anodic oxidation.
  • Tables 23 and 24 are examples in which the above-described pure titanium or titanium alloy was used for anodic oxidation under various conditions, and then the photocatalytic activity was evaluated.
  • the pH of the solution was adjusted using sulfuric acid or sodium hydroxide solution.
  • the present invention 2 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 35, 37, 39, 41, 43 of Tables 23 and 24 45, 47, 49, 51, 53, 55, 57, 59, 61 used sodium nitrate as a nitrate ion source, and the pH of the solution was adjusted in the same manner as described above.
  • the present inventions 1 to 16 are embodiments adapted to the manufacturing conditions of claim 12
  • the present inventions 17 to 35 are embodiments adapted to the manufacturing conditions of claim 13
  • the present inventions 36 to 61 are production conditions of claim 14. It is an embodiment suitable for
  • the present inventions 1 to 60 all have excellent photocatalytic activity. However, when the present inventions 1 to 16 and 17 to 35 are compared, the heat treatment in the atmosphere is performed at a predetermined temperature for a predetermined time. It can be seen that the present inventions 17 to 35 are more improved in photocatalytic activity than the present inventions 1 to 16. Further, when the present invention 1 to 35 and the present invention 36 to 61 are compared, the present invention 36 in which the pH of the aqueous solution containing nitrate ions having a saturated concentration from 0.01 M is adjusted to 12 or more and 15 or less and the anodization treatment is performed. It can be seen that ⁇ 61 has a more excellent photocatalytic activity as compared with the present inventions 1 to 35 having a pH of less than 12.
  • Table 25 shows a comparative example.
  • pure titanium and various titanium alloys similar to the present invention were used, and anodization was performed under various conditions that deviated from the anodic oxidation conditions of the present invention. Thereafter, photocatalytic activity was obtained in the same manner as in the present invention. evaluated.
  • Comparative Examples 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 use sodium nitrate as a nitrate ion source, and the pH of the solution is adjusted in the same manner as described above. went.
  • the titanium oxide particles subjected to anodizing treatment or further heat treatment under the conditions of the production method of the present invention have excellent photocatalytic activity, whereas the production conditions of the present invention When it deviates, it turns out that photocatalytic activity is inferior.
  • the colored titanium-based material of the present invention has visible light responsiveness and exhibits excellent photocatalytic activity, and is therefore suitable for applications such as stain resistance and antibacterial properties, and is applicable in the building materials, medical fields, and water treatment fields. Suitable for In the case where the titanium-based material of the present invention is a plate-like body, it has excellent adhesion to the base material, so it can be formed into an arbitrary shape by processing and can be applied to a wider range of fields. it can. When the titanium-based material of the present invention is a network structure, it has visible light responsiveness and exhibits excellent photocatalytic activity, and thus is suitable for uses such as purification, sterilization, and the like of seawater, sewage, fresh water, and the like. When the titanium-based material of the present invention is titanium oxide particles, it can be applied regardless of the type of substrate by combining with a binder, and can be applied to a wider range of fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 基材の純チタンおよびチタン合金との密着性が良好で光触媒活性に優れ、さらには、意匠性に優れた 美麗な発色チタンおよび生産性に優れた陽極酸化プロセスを用いたそれらの製造方法を提供することを 目的としてなされたもので、純チタンおよびチタン合金からなる基材の表面に存在する酸化チタン層の 厚みが0.1μmから5.0μmの範囲であり、かつ、該酸化チタン層がアナターゼ型二酸化チタンと 水酸基と結合したチタンを含み、さらに、該酸化チタン層中に窒素および炭素をそれぞれ0.5~30 質量%含有する可視光応答性を有し光触媒活性に優れたチタン系材料、および、0.01Mから飽和濃 度の硝酸イオンを含むアルカリ水溶液中で陽極酸化処理することによるその製造方法を提供する。

Description

可視光応答性を有し、光触媒活性に優れたチタン系材料およびその製造方法
 本発明は、可視光応答性を有し、光触媒活性に優れたチタン系材料及びその製造方法、並びにその材料を用いた板状体、網状構造体に関するものである。
 さらに、本発明は、可視光応答性を有し、光触媒活性に優れる酸化チタン粒子からなるチタン系材料とその製造方法に関するものである。
 二酸化チタンの光触媒活性を用いた抗菌、抗臭、耐汚染性等を示す多くの製品が市場に出ている。また、チタン基材を用いて陽極酸化法と酸化性雰囲気での加熱を組み合わせることによって光触媒活性を発現することは特許文献1に開示されている。さらに、特許文献2では、陽極酸化層に酸化チタン粉体含有膜を積層することによって優れた光触媒活性を有するチタン系金属材料が開示されている。
 これらの光触媒活性を有するチタン系材料は、基材が耐食性に極めて優れたチタンであることから各種の腐食環境でも使用することができ、さまざまな用途、例えば、建築物材、車両外装材、家電製品等、に応じて各種の形状に加工されて使用されている。
 また、特許文献3~5には、酸化チタンを網状構造体として形成し、その光触媒活性を利用して海水、汚水、真水等の浄化、殺菌等に利用することが開示されている。
 さらに、特許文献6、特許文献7では、酸化チタンの粉末を添加した浴中で陽極酸化処理を行うことによって、光触媒活性を有するチタン粒子を得ることが開示されており、これらの光触媒活性を有するチタン粒子は、バインダーと組み合わせて塗布することで各種の基材の耐汚染性、抗菌性向上等に利用されている。
特開平8−246192号公報 特開平10−121266号公報 特開2000−61458号公報 特開2006−149363号公報 特開2008−187910号公報 特開2002−38298号公報 特開2003−129290号公報
 本発明者らは特許文献1に従って純チタンを陽極酸化し、しかる後大気加熱したが、十分な光触媒活性は得られなかった。特許文献2では陽極酸化チタン層に積層した酸化チタン含有粉体を積層しているが、このようにするは陽極酸化と大気加熱の単なる組み合わせでは高い光触媒活性を得ることができなかったことによると推察される。ただし、特許文献2のように陽極酸化後、さらに酸化チタン層を積層することは、密着性の観点から問題がある。さらに酸化チタン含有粉体を積層する分、コストが増大することになる。
 さらに、上記のチタン系材料は、基材と陽極酸化被膜の密着性が十分でないために、その材料を板状体にしてプレス加工等を行った場合に、基材−陽極酸化被膜間に剥離が生じやすく、その結果、用途に応じた成形加工を行うことが困難であった。
 また、通常、酸化チタンの光触媒活性は紫外線照射によって発揮されることから、特許文献3~5のような水中環境で用いられる網状構造体の酸化チタンや特許文献6、7のチタン粒子では、太陽光、照明器具による光照射では、紫外線量が少ないために、その光触媒活性を十分に発揮し得ないという問題点もあった。
 本発明は、このような現状に鑑み、純チタンまたはチタン合金からなる基材の表面に酸化チタン層が形成されたチタン系材料であって、基材と酸化チタン層との密着性に優れ、かつ、可視光応答性を有し光触媒活性に優れるチタン系材料及びその材料を用いた板状体、網状構造体、並びに、生産性に優れた陽極酸化プロセスを用いたそれらの製造方法を提供することを目的とする。
 さらに、本発明は、可視光応答性を有し、光触媒活性に優れる酸化チタン粒子からなるチタン系材料、及び、生産性に優れた陽極酸化プロセスを用いたその製造方法を提供することを目的とする。
 本発明は、純チタンおよびチタン合金表面の酸化チタン層中の酸化物の種類および酸化物中に含有される炭素と窒素に着目し、更には陽極酸化の発色浴組成に着目して鋭意検討した結果、完成されたものであって、その要旨とするところは、以下の通りである。
(1)純チタンまたはチタン合金を基材とし、その表面に存在する酸化チタン層の厚みが0.1μmから5.0μmの範囲であり、かつ、該酸化チタン層がアナターゼ型二酸化チタンと水酸基と結合したチタンを含み、さらに、該酸化チタン層中に窒素および炭素をそれぞれ0.5~30質量%含有することを特徴とする可視光応答性を有し、光触媒活性に優れたチタン系材料。
(2)炭化チタンおよび窒化チタンの少なくとも1種以上が前記酸化チタン層に含有されていることを特徴とする前記(1)に記載の可視光応答性を有し光触媒活性に優れたチタン系材料。
(3)前記純チタンまたはチタン合金の基材が板状体であることを特徴とする前記(1)または(2)に記載のチタン系材料。
(4)前記純チタンまたはチタン合金の基材が箔であることを特徴とする前記(1)または(2)に記載のチタン系材料。
(5)前記純チタンまたはチタン合金の基材が板状体または箔の連続長尺コイルであることを特徴とする前記(1)または(2)に記載のチタン系材料。
(6)前記純チタンまたはチタン合金の基材が網状構造体であることを特徴とする前記(1)または(2)に記載のチタン系材料。
(7)アナターゼ型二酸化チタンと水酸基と結合したチタンを含み、さらに、酸化チタン中に窒素および炭素をそれぞれ0.5~30質量%含有する酸化チタン粒子からなることを特徴とする可視光応答性を有し、光触媒活性に優れるチタン系材料。
(8)炭化チタンおよび窒化チタンの少なくとも1種以上が前記酸化チタンに含有されていることを特徴とする前記(7)に記載の可視光応答性を有し、光触媒活性に優れるチタン系材料。
(9)0.01Mから飽和濃度の硝酸イオンを含む水溶液中で、純チタンまたはチタン合金からなる基材を10V以上100V未満で30秒以上60分以下、陽極酸化処理することを特徴とする前記(1)または(2)に記載の可視光応答性を有し光触媒活性に優れたチタン系材料の製造方法。
(10)0.01Mから飽和濃度の硝酸イオンを含む水溶液中で、純チタンまたはチタン合金からなる基材を10V以上100V未満で30秒以上60分以下、陽極酸化処理し、しかる後、200℃から750℃の温度域で1分以上24時間以下熱処理することを特徴とする前記(1)または(2)に記載の可視光応答性を有し光触媒活性に優れたチタン系材料の製造方法。
(11)0.01Mから飽和濃度の硝酸イオンを含み、かつpHが12以上15以下である水溶液中で、純チタンまたはチタン合金からなる基材を30秒以上60分以下、陽極酸化することを特徴とする前記(9)に記載の可視光応答性を有し光触媒活性に優れたチタン系材料の製造方法。
(12)0.01Mから飽和濃度の硝酸イオンを含む水溶液中で、純チタンまたはチタン合金を、10V以上100V以下で陽極酸化処理することにより酸化チタン粒子を生成させることを特徴とする前記(7)または(8)に記載の可視光応答性を有し、光触媒活性に優れるチタン系材料の製造方法。
(13)0.01Mから飽和濃度の硝酸イオンを含む水溶液中で、純チタンまたはチタン合金を、10V以上100V未満で陽極酸化処理し、しかる後、200℃から750℃の温度域で1分以上24時間以下熱処理することにより酸化チタン粒子を生成させることを特徴とする前記(7)または(8)に記載の可視光応答性を有し、光触媒活性に優れるチタン系材料の製造方法。
(14)0.01Mから飽和濃度の硝酸イオンを含み、かつpHが12以上15以下である水溶液中で、純チタンまたはチタン合金を、陽極酸化することを特徴とする前記(12)に記載の可視光応答性を有し、光触媒活性に優れるチタン系材料の製造方法。
 本発明によるチタン系材料は、可視光応答性を有し、優れた光触媒活性を有するとともに基材と酸化物層との密着性も良好である。
 この結果、プレス成形等の加工を施した際に、酸化チタン層の剥離等を生じることはなく、光触媒活性を損なうことなく用途に応じた種々の形状に加工することが可能である。さらに、本発明によれば、陽極酸化電圧を調節することで美麗な発色板を得ることも可能となる。
 また、本発明による酸化チタン粒子は、可視光応答性を有し、優れた光触媒活性を有することから、これらの酸化チタン粒子を種々のバインダーと組み合わせて塗布することにより、紫外線量が少ない環境下であっても十分な光触媒活性を発揮することができる。
 本発明者らは、光触媒活性に優れた純チタンおよびチタン合金を基材とするチタン系材料を得るべく鋭意努力した結果、アナターゼ型二酸化チタン及び水酸基と結合したチタンを含み、厚み0.1~5.0μmの酸化チタン層が純チタンまたはチタン合金の基材上に形成されており、しかも、該酸化チタン層中に所定量の窒素と炭素を含有させることによって、可視光応答性を有し、光触媒活性に極めて優れたチタン系材料を得ることができることを見出したものである。
 さらに、本発明者らは、酸化チタン粒子においても、同様に、アナターゼ型二酸化チタンと水酸基と結合したチタンを含み、さらに、酸化チタン中に所定量の窒素と炭素を含有させることによって可視光応答性を有し、光触媒活性に極めて優れた酸化チタン粒子を得ることができることを見出したものである。
 以下、このような酸化チタン層あるいは酸化チタン粒子の要件について説明する。
 上記チタン系材料において、上記のような効果を得るには、少なくとも酸化チタン層の厚みは0.1μm以上必要となる。酸化チタン層の厚みが0.1μm未満では十分な光触媒活性を発現することができない。一方、酸化チタン層の厚みが5.0μmを超えると光触媒活性値はほぼ飽和してくること、基材と酸化チタン層の密着性が低下することから5.0μmを上限とする。
 酸化チタン層の厚みは、グロー放電発光分析装置を用いて表面から深さ方向にチタン、酸素、炭素、窒素の元素濃度分布を測定し、表面での酸素濃度が半減する位置を酸化チタン層の厚みと定める。なお、深さの同定は、分析後、触針式の表面粗度計(分解能0.1μm)を用いてグロー放電でえぐられた深さを測定し、測定時間で割って深さの定量評価を実施する。
 光触媒活性の向上には、酸化チタン層中あるいは酸化チタン粒子中にアナターゼ型二酸化チタンが存在することが必要となる。
酸化チタン層中のアナターゼ型二酸化チタンの存在は、以下の条件、即ち、
 X線:Cu/50kV/200mA
 ゴニオメータ:RINT1000 広角ゴニオメータ
 アタッチメント:薄膜用回転試料台
 フィルタ:不使用
 インシデントモノクロ:不使用
 カウンタモノクロメータ:全自動モノクロメータ
 発散スリット:0.2mm
 発散縦制限スリット:5mm
 受光スリット:開放
 散乱スリット:開放
 カウンタ:シンチレーションカウンタ(SC50)
 走査モード:連続
 スキャンスピード:2.000°/min
 サンプリング幅:0.010°
 走査軸:2θ
 走査範囲:10.000~100.000°
 固定角:1.500°
という条件でのX線回折において、アナターゼ型二酸化チタンの(101)面のピーク(2θ=25.281度)が少なくとも20カウント/秒以上得られる場合にアナターゼ型二酸化チタンが存在すると判断される。
酸化チタン粒子中のアナターゼ型二酸化チタンの存在は、以下の条件、即ち、
 X線:Cu/40kV/150mA
 ゴニオメータ:RINT1000 広角ゴニオメータ
 アタッチメント:43サンプルチェンジャー(横型)
 フィルタ:不使用
 インシデントモノクロ:不使用
 カウンタモノクロメータ:全自動モノクロメータ
 発散スリット:1°
 散乱スリット:1°
 受光スリット:0.15mm
 モノクロ受光スリット:0.8mm
 カウンタ:シンチレーションカウンタ(SC50)
 走査モード:連続
 スキャンスピード:5.000°/min
 サンプリング幅:0.020°
 走査軸:2θ/θ
 走査範囲;5.000~100.000°
 θオフセット:0.000°
という条件でのX線回折において、アナターゼ型二酸化チタンの(101)面のピーク(2θ=25.281度)が少なくとも100カウント/秒以上得られる場合にアナターゼ型二酸化チタンが存在すると判断される。
 更に、酸化チタン層中あるいは酸化チタン粒子中には、水酸基と結合したチタンが存在することが必要である。
 水酸基と結合したチタンが光触媒活性向上に必要な理由は、現時点では解明されていないが、従来のアナターゼ型二酸化チタンのみが光触媒活性向上に必要とされる従来知見とは全く異なる新たな知見である。
 水酸基と結合したチタンを形成するには、水溶液を用いた酸化チタン層の形成処理方法が必要であり、陽極酸化法は、その一つである。なお、チタンと結合した水酸基は、真空中で高温で加熱することによって、消失する。
 酸化層中に水酸基と結合したチタンが存在することの検証方法は、グロー放電発光分析装置あるいは2次イオン質量分析計を用いて酸化皮膜中に水素が酸素とチタンと同じ位置から検出され、かつチタン素地の水素濃度の少なくとも5倍以上の濃度であれば水和した二酸化チタンが形成されていると判断される。
 また、酸化チタン粒子中に水酸基と結合したチタンが存在することの検証方法は、XPS(X−ray Photoelectron Spectroscopy、以後XPSと略記する)分析を用いる。そして、XPSによる表面測定を行って得られるOlsスペクトルにおいて、TiOに起因する530eVのピークの高エネルギー側に、水酸基の結合に起因するピークが重なるため、531.5~532eV付近にショルダーが観察されるので、前記スペクトルを波形解析することにより水酸基と結合したチタンが存在することが分かる。
 更に、酸化チタン層中あるいは酸化チタン粒子中には、窒素および炭素が含有されていることが必要であり、それぞれの濃度は0.5質量%以上必要である。0.5質量%未満では優れた光触媒活性が発現されない。一方、30質量%を超えると光触媒活性の向上効果が低減することから、30質量%を上限とする。炭素についてより好ましい範囲は3.0質量%~10質量%である。一方、窒素のより好ましい範囲は0.9質量%から3.9質量%である。
 なお、酸化チタン層中の炭素および窒素の濃度は、前記の方法で決定された酸化層の厚み全域に渡る濃度の平均値である。
 酸化チタン層中のそれぞれの濃度について精度の高い値を得るためには、グロー放電発光分析装置でのデータの取り込み時間は0.1秒/ポイント程度は必要となる。
 酸化チタン粒子中の炭素濃度は、燃焼赤外線吸収法によって測定することができる。また、酸化チタン粒子中の窒素濃度(質量%)は、ニッケル製ホルダーに酸化チタン粒子を入れて、融解させた後、熱伝導度検出器を用いて窒素濃度(質量%)を測定することができる。
 更に、炭素あるいは窒素の存在状態が炭化チタンおよび窒化チタンの少なくとも1種以上の状態を取る場合に極めて優れた光触媒活性を示す。
 炭素および窒素の存在状態はXPSを用いて炭素および窒素の結合エネルギー状態を調べることによって判断できる。
 すなわち、XPSの炭素の1Sスペクトルの結合エネルギーが282eVにピークを示すことから、このピークの存在によって、炭化チタンの存在が判別される。また、窒化チタンについては、XPSの窒素の1Sスペクトルの結合エネルギーが397eVでピークを示すことから、このピークの存在によって、窒化チタンの存在を判別できる。
 なお、炭窒化チタン[Ti(C,N)]が形成される場合も当然起こるが、光触媒活性を支える効果として、炭化チタンまたは窒化チタンの場合と顕著な違いがなく、Ti(C,N)の形成が光触媒活性に悪影響を及ぼすことはない。さらに窒化チタン以外の組成を有する窒化チタンの形成が光触媒活性に悪影響を及ぼすことはない。
 炭素あるいは窒素が酸化チタン層中あるいは酸化チタン粒子中で上記のような状態を取ると光触媒活性が著しく向上することは本発明で初めて見出した現象であり、未だ機構解明には至ってはいないが、再現性を含めて技術的に実証されたものである。
 上記のような純チタンあるいはチタン合金基材上に酸化チタン層を形成したチタン系材料、及び上記のような酸化チタン粒子を製造する方法のひとつとしては陽極酸化法がある。
 陽極酸化皮膜は水溶液中でチタン表面に形成される酸化チタンの皮膜であり、PVD,CVD、溶射、大気酸化のような水溶液を使用しない方法で形成される酸化チタンとは異なるものであり、陽極酸化皮膜中あるいは陽極酸化によって形成された酸化チタン粒子中に、炭素、窒素、炭化チタンあるいは窒化チタンが含まれることによって光触媒活性が著しく向上することは、今までに報告されていない全く新しい現象である。
 例えば、特開2005−240139号公報等により、チタン又はチタン合金の表面に、PVD、CVD、溶射等でチタン酸化物を形成した後、好ましくは硫酸及びリン酸を含有する電解液中で陽極酸化を行う光触媒用材料の製法が知られているが、陽極酸化皮膜中の炭素、窒素の存在についての知見はなく、また、可視光応答性についての知見もない。
 また、例えば、特許第3601532号明細書等により、酸化チタンに窒素等をドープし、可視光領域において光触媒作用を発現させることが知られているが、陽極酸化処理によって形成される酸化チタン膜ではないため、該膜中には水和した二酸化チタンが存在せず、そのため、可視光応答性が十分であるとはいえない。
 なお、陽極酸化法は、工業的に確立された方法であり、イオン伝導性を有する適当な水溶液中に純チタンあるいはチタン合金を浸けて、上記水溶液中に化学的に安定で導電性を有した陰極版(通常はステンレス鋼)を浸けて、チタンあるいは合金チタンを陽極として各種の電圧をかけるものである。
 陽極酸化皮膜中あるいは酸化チタン粒子中に炭素を存在させるには、例えば、純チタンあるいはチタン合金の表面層(μmオーダー)に予め浸炭させておくか、炭化チタンを形成させておくことによって達成できる。
 このような純チタンあるいはチタン合金よりなる基材を、工業的なチタン薄板の製造方法により得るには、冷間圧延時に潤滑油に起因した炭素がチタン中に侵入させるような圧延を行うことで達成できる。その後、熱処理することによって表面層に浸炭層を形成させることができる。
 また、酸化チタン粒子にも適用できる方法としては、炭素あるいは炭素を含む有機、無機化合物をチタンあるいはチタン合金表面に塗布し、熱処理することによってチタンあるいはチタン合金の表面層に浸炭層を形成する方法がある。
 なお、浸炭後、チタンあるいはチタン合金を窒素、あるいは窒素と他の不活性ガスあるいはチタンあるいはチタン合金と反応を生じないガスとの混合ガス雰囲気中で加熱して、浸炭層、浸窒化層の両者を作っても良い。
 また、このような浸炭層あるいは窒化層を形成せずに、例えば、硝酸とフッ酸の混合酸溶液中で酸洗した純チタンおよびチタン合金を、以下の段落で説明する陽極酸化法を施すと、光触媒活性が発現する程度には、陽極酸化膜中に炭素および窒素が含有されるため、酸洗仕上げした純チタンおよびチタン合金を用いてもよい。
 さらに本発明者らは、基材の純チタンあるいはチタン合金と酸化チタン層との密着性が良好で、かつ可視光応答性および光触媒活性に優れ、更には美麗な発色チタン、あるいは可視光応答性および光触媒活性に優れた酸化チタン粒子を製造するべく鋭意検討した。
 その結果、適当な金属を陰極板とし、純チタンあるいはチタン合金を陽極として電圧を印加して陽極酸化をする際に、溶液中に硝酸イオンを含有させることで優れた光触媒活性を得ることを見いだしたものである。
 上記のような効果を発現するには、少なくとも硝酸イオン濃度は0.01M以上必要である。硝酸イオンは、その添加量を増加したことによって特段の悪影響を及ぼすことはないので、硝酸イオンの添加量の上限は、それぞれの硝酸塩の飽和濃度とする。
 硝酸イオンとしては、硝酸水溶液あるいは硝酸塩として添加することができる。代表的な硝酸塩としては、硝酸ナトリウム、硝酸カリウム、硝酸リチウム、硝酸アンモニムがあるが、他の硝酸金属塩を用いても良い。
 なお、水溶液中に硝酸イオンが含まれる場合に何故、陽極酸化チタンが優れた光触媒活性を示すかは不明な点が多く、比表面積、酸化チタンの結晶構造などだけでは説明できない新たな知見である。先に述べたように、硝酸イオンの添加量の上限には特に制限はなく、各硝酸塩の飽和濃度まで効果を発現することができる。なお、硝酸イオン添加量のより好ましい範囲は、0.1M以上飽和濃度までである。
 陽極酸化電圧については、上記のような酸化チタン層及び酸化チタン粒子を形成するために、以下のような条件とする。
 必要な光触媒活性を有し、厚み0.1~5.0μmの酸化チタン層を形成するために、少なくとも10V以上で30秒以上60分以下の陽極酸化電圧を印加する必要がある。
 陽極酸化電圧が10V未満では十分な光触媒活性を得ることができない。また、陽極酸化時間が30秒未満でも十分な光触媒活性を得ることができず、一方、陽極酸化時間が60分を越えても生成する陽極酸化膜の厚みはほとんど変化しないことから、陽極酸化時間は60分を上限とする。ただし、これより長い時間、陽極酸化を実施しても問題はないが、作業効率の観点から上限を60分と定めるものである。
 また、形成される酸化チタン層の外観は陽極酸化電圧によって変化する。
 陽極酸化電圧を10V以上18V未満とすると、優れた光触媒活性と共に干渉色の美麗な外観を得ることができる。
 陽極酸化電圧が18V以上25V未満の場合には、優れた光触媒活性と共に落ち着いた緋色の外観を得ることができる。18V未満あるいは25V以上では落ち着いた緋色の外観を得ることはできない。
 これらの電圧での陽極酸化時間は、上述と同様に30秒以上60分以下である。ただし、60分を越えて陽極酸化を実施しても何等問題はない。
 陽極酸化電圧が25V以上の場合には、優れた光触媒活性と共により明度の低下した灰色の外観を得ることができる。ただし、陽極酸化電圧が100V以上になるとチタンの部分溶解が生じ、チタンの溶出が著しく顕著となるため陽極酸化電圧は100V未満とする。この場合も陽極酸化時間は30秒以上60分以下とする。ただし、この電圧領域では上述のようにチタン自体の溶出が顕著のため60分を越えて陽極酸化することは好ましくない。
 酸化チタン粒子を形成するためには、少なくとも10V以上の陽極酸化電圧を印加する必要がある。酸化チタン粒子は、陽極として用いた純チタンあるいはチタン合金表面の酸化チタン層が剥離することによって形成されるものであり、陽極酸化電圧が低い場合は長時間の陽極酸化時間が必要であり、高電圧になるほど短い陽極酸化時間でいい。
 陽極酸化電圧が10V未満では、純チタン等の表面上で酸化チタン粒子の生成が生じない。なお、生成した酸化チタン粒子は、純チタン等の表面に残存および溶液中に沈殿するため、溶液を分離することで酸化チタン粒子を得ることができる。なお、より好ましい陽極電圧範囲は、30V以上100V未満である。
 また、陽極酸化時間が30秒未満でも十分な光触媒活性を得ることができず、一方、陽極酸化時間が60分を越えると上述のごとくチタン系材料自体の溶出が顕著となるため、陽極酸化時間は好ましくは60分を上限とする。ただし、これより長い時間、陽極酸化を実施しても問題はないが、歩留まり低下する観点から上限を60分とすることが好ましい。
 なお、陽極酸化は通常、室温で行うため、冬季と夏期で5℃から30℃程度の変動があるが、酸化チタン層及び酸化チタン粒子を形成するいずれの場合でも、光触媒性能に及ぼす温度の影響はない。また、夏期時、陽極酸化時のジュール発熱で溶液温度が50℃近くまで上昇する場合もあるが、光触媒活性に及ぼす悪影響はない。
 また硝酸イオンを含む水溶液中で陽極酸化する場合、その後の大気中での熱処理によって更に光触媒活性を向上させることができる。
 このような効果を発現させるには、陽極酸化処理後に、少なくとも200℃以上の温度で加熱することが必要となる。ただし、750℃を越えて加熱すると光触媒活性が低下するため、750℃を上限とする。
 加熱時間については、大気中で少なくとも1分以上は加熱しないと十分な光触媒活性向上効果を得ることができない。ただし、24時間を超えて加熱しても光触媒活性の効果が飽和するので24時間を上限とする。これは硝酸イオンを含む水溶液中で陽極酸化した純チタンあるいはチタン合金を大気加熱することによって初めて得ることができる優れた光触媒活性である。なお、より好ましい加熱温度範囲は300℃から600℃である。
 また、硝酸イオンを含む水溶液のpHを12以上15以下とすることによって陽極酸化材の光触媒活性を大幅に向上することができる。詳しい機構は不明であるが、水溶液をアルカリにする場合のカチオン種は大きな影響を与えない。したがって、苛性ソーダ、水酸化カリウム、水酸化リチウム、水酸化アンモニウムあるいは金属水酸化物を用いても良い。ただし、pH15を超えると光触媒活性の性能が飽和し、さらに極めて強アルカリ溶液で作業の安全性の観点から問題を生じることからpH15を上限とする。陽極酸化電圧は少なくとも10V以上は必要であるが、100V以上になるとチタンの溶解反応が著しく促進されるため、100V未満とする。また、陽極酸化時間は、少なくとも30秒以上の必要であるが、60分を越えるとその効果が飽和するため、60分を上限とする。
 本発明で使用する素材としては、純チタン(JIS1種から4種)、チタン合金(JIS11種、12種、13種、21種、60種、60E種、61種およびASTM Gr.12などを用いることができる。
 そのような純チタン及びチタン合金を素材として用い、例えば、板状体や線状体に加工した後、上述したような陽極酸化処理をして、可視光応答性を有し、光触媒活性に優れたチタン系材料を得る。
 チタン系材料の基材が板状体や線状体であれば、工業的には、連続長尺コイルとして大量生産が可能であり、かつ、それを用いて用途に応じたさまざまな形状に加工できる。板状体の場合、さらに箔に加工すれば、既存のものの表面への適用が容易になる。
 また、チタン系材料としては、素材をあらかじめ用途に応じた形状に加工してから陽極酸化処理をしたものでもよい。
 チタン系材料が網状構造体の場合、予め陽極酸化処理を施して光触媒活性を付与した線状材料を用いて網状構造体とすることもできるし、陽極酸化処理をしていない線状材料で網状構造体を形成した後に、網状構造体全体に対して陽極酸化処理を施すことによって光触媒活性が付与された網状構造体とすることもできる。
 さらに、網状構造体は、線状材料を用いて形成したものに限らず、板状体に多数の切れ目を入れ、その板状体を引っ張って拡張することにより製造するエキスパンドメタルであってもよい。
 酸化チタン粒子の場合は、上記のような純チタン及びチタン合金を素材として用い、上述したような陽極酸化処理をして、可視光応答性を有し、光触媒活性に優れたチタン系材料を得る。
 表1~4で示す純チタンおよび各種チタン合金を素材として用い、1mm厚さまで冷延して連続した長尺コイル材を作製し、洗浄無しで570℃から700℃の各温度においてアルゴンガス中で5時間加熱することによって炭素濃度、浸炭層深さを変化させた純チタンおよび各種チタン合金製の試験基材を準備した。
 また上記1mm厚さまで冷延した試験基材の一部をさらに15μmの厚さまで冷延し、アルゴン雰囲気中あるいは窒素雰囲気中で750℃から950℃の各温度で20秒から70秒の各時間熱処理することによって純チタン箔およびチタン合金箔の試験基材を製造した。
 陽極酸化は、5g/lから20g/lの硝酸アンモニウム溶液中で純チタンおよび各種チタン合金製の試験基材を陽極、SUS304鋼を陰極として室温で24Vから80Vの電圧を2分間かけることによって、陽極酸化層の厚み、アナターゼ型二酸化チタンおよび水酸基と結合したチタンの有無および陽極酸化皮膜中の窒素濃度および炭素濃度を変化させた試料を準備した。
 チタン基材表面に存在する酸化チタン層中の炭化チタンまたは窒化チタンの存在の確認には、XPS解析において、282eV(炭素の1Sスペクトルの結合エネルギー)のピーク高さ(検出頻度)または397eV(窒素の1Sスペクトルの結合エネルギー)のピーク高さが、それぞれバックグランドレベル高さの1.3倍以上である場合に、それぞれ、炭化チタンまたは窒化チタンが有ると判断し、その高さ未満ではそれらが無いと判断した。
 光触媒活性の評価は、次のようにして行った。
 上蓋付きの透明プラスチックケースに、幅15mm、長さ25mm、厚み0.4mmの寸法に切断した上記の各種の陽極チタンを、板面を上にして入れる。そこに0.1Mのヨウ化カリウム溶液50ccを入れて、ケースを上部から15Wのブラックライト2本(東芝ライテック(株)社製、FL−15BLB−A)により30分間照射し、照射後、分光光度計(日立製:U−2910)を用いて287nmでの吸光度を測定し、試験片を入れていない溶液の吸光度をブランクとして差し引き、その値を光触媒活性の評価に用いた。その際に用いた溶液を入れた容器は、厚み1.2mmの石英製のセルで、長さは10mmである。
 なお、装置自体のバックグランドを除去するために、吸光度の測定時には、蒸留水を入れた同様なセルを同時に測定して装置のバックグラウンドを除去した。
 上記の評価試験は、20℃に設定した室内で実施した。なお可視光応答性の評価は、紫外線遮蔽フィルムを透明プラスチックケースに貼り付け、紫外線が遮蔽されていることを確認し、上部から15Wの蛍光灯2本により300分間照射し、照射後、分光光度計を用いて287nmでの吸光度を測定し、試験片を入れていない溶液のみの吸光度をブランクとして差し引き、その値を光触媒活性の評価に用いた。上記の評価試験は20℃に設定した室内で実施した。用いたセルおよび装置のバックグラウンドの除去方法は、上述と同様な方法で実施した。
 なお、ブランクの吸光度を差し引いた後、数値がマイナスとなった場合には、便宜上、0.00と表中に記した。
 この数値が0.00の場合は、光触媒活性(応答性)無し、0.01以上で光触媒活性(応答性)有りと判断できる。
 表1の本発明A1~A18、表2のA19~A45及び表3の本発明A46~A71が、本発明の実施例である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1の結果から、酸化層の厚みが0.1~5μmでアナターゼ型二酸化チタンと水酸基と結合したチタンが存在し、かつ酸化皮膜中に窒素と炭素をそれぞれ0.5~30質量%含む、例えば、本発明A1~A18は良好な光触媒活性を示すことが分かる。その中でも、窒素が0.9~3.9%あるいは炭素が3~10%の場合に本発明例A4,6,7,8,13,14,15,16,17に示すように更に優れた光触媒活性を示すことが分かる。またいずれの場合も、「光触媒評価試験結果(紫外線遮蔽し蛍光灯照射)」からも分かるように、可視光応答性も示した。
 更に、表2、3の本発明A19~A71の結果から、窒素あるいは炭素の存在状態が窒化チタン,炭化チタンを採るときには、特に高い可視光応答性を有し極めて良好な光触媒活性を示すことが分かる。また、本発明A19~A71についても、いずれも可視光応答性も示した。
 表4は本発明の比較例である。酸化層の厚みが0.1μm未満の場合(比較例B1~B3)、あるいはアナターゼ型二酸化チタンが存在しない場合(比較例B4)、あるいは水酸基と結合したチタンが存在しない場合(比較例B5)、あるいは酸化層中の窒素あるいは炭素濃度が0.5%未満の場合(比較例B6~B12)、光触媒活性が生じていないことが分かる。
 比較例B5は、陽極酸化後、1×10−6torrの真空中において700℃で48時間の熱処理を実施した。
Figure JPOXMLDOC01-appb-T000004
 表5、6は、前述の純チタンあるいはチタン合金素材を用いて各種条件で陽極酸化を実施し、しかる後、光触媒活性を評価した実施例である。
 表5、6の本発明1、3,5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、34、36、38、40、42、44,46,48、50,52、54、56、58、60は、硝酸イオンは硝酸アンモニウムを用いて添加した。なお、溶液のpH調整は硫酸あるいは水酸化ナトリウム溶液を用いて実施した。
 また、表5~6の本発明2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、35、37、39、41、43、45、47、49、51、53、55、57、59、61は、硝酸イオン源として硝酸ナトリウムを用い、溶液のpH調整は上述と同様な方法で行った。
 なお、本発明1~16は請求項3の発明の実施例、本発明17~35は請求項4の発明の実施例、本発明36~61は請求項5の実施例に、それぞれ相当する。
 なお、本発明1~16は請求項9の製造条件に適合する実施例、本発明17~35は請求項10の製造条件に適合する実施例、本発明36~61は請求項11の製造条件に適合する実施例である。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表5、6の結果から、本発明1~60は、いずれもすぐれた光触媒活性を備えるが、本発明1~16と本発明17~35を比べると、所定温度で所定時間大気中熱処理を施した本発明17~35は、本発明1~16に比して光触媒活性がより向上することがわかる。
 また、本発明1~35と本発明36~61を比べると、0.01Mから飽和濃度の硝酸イオンを含む水溶液のpHを、12以上15以下に調整して陽極酸化処理を行った本発明36~61では、pHが12未満の本発明1~35に比べて、より一段と優れた光触媒活性を備えるようになることがわかる。
 表7に比較例を示す。
 比較例は、本発明と同様な純チタンおよび各種チタン合金の冷延、焼鈍材を用い、本発明の陽極酸化条件からは外れる各種条件で陽極酸化を実施し、しかる後、本発明の場合と同様にして光触媒活性を評価した。
 なお、比較例の1、3、5、7、9、11、13、15、17、19、21、23、25は、硝酸イオン源として硝酸アンモニウムを用い、溶液のpH調整は上述と同様な方法で行った。
 また、比較例の2、4、6、8、10、12、14、16、18、20、22、24は、硝酸イオン源として硝酸ナトリウムを用い、溶液のpH調整は上述と同様な方法で行った。
Figure JPOXMLDOC01-appb-T000007
 表5、6と表7とを対比すると、硝酸イオン濃度が0.01M未満の比較例1~4,18,19では、本発明1~16に比して光触媒活性が劣ることが分かる。また、比較例5~8,24,25と本発明17~35の結果の比較から、硝酸イオン濃度が0.01M未満であっては、陽極酸化処理後に大気中熱処理を行っても、光触媒活性に特別の改善効果は認められない。
 比較例9~12の結果から、陽極酸化処理時間が30秒未満の場合には、陽極酸化処理後の大気中熱処理の有無にかかわらず、光触媒活性の改善効果は認められない。
 比較例13~17,比較例20~23の結果から、陽極酸化処理時の印加電圧が10V未満では、陽極酸化処理後の大気中熱処理の有無にかかわらず、光触媒活性の改善効果は認められない。
 上記のとおり、表5~7の結果から、本発明製造方法の条件で陽極酸化処理あるいはさらに熱処理を行った純チタン、チタン合金は、すぐれた光触媒活性を備えるのに対して、本発明の製造条件から外れた場合には、光触媒活性が劣ることがわかる。
 次に、本発明A1~A71について、酸化チタンの密着性試験実施した。
 密着性試験については、以下の方法で実施した。
 JISG3312に基づいて碁盤目を入れ、それをJIS H8504に基づいてテープ試験を実施し、100個のマス目の内、剥離した個数を拡大鏡を用いて測定した。
 さらにJISG3312に準拠して密着曲げ試験を実施し、試験後、目視観察で剥離の有無を判断した。
その結果を表8、9に示す。
 さらに本発明1~61についても上記と同様な密着性試験を実施した。
 その結果を表10、11に示す。
 いずれの場合も優れた密着性を示すことが分かる。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表8~11の結果から、本発明の純チタン、チタン合金製板状材は、基材に対する酸化チタン層の密着性が優れ、かつ、加工性も良好であるため、いずれの場合にも酸化チタン層の剥離が生じることはない。
 素材として表12~15に示す純チタンおよび各種チタン合金を用い、これを1mm厚さまで冷延し、さらにこれに切れ目を入れて引張ることによって平板状の網状構造体にし、その後、実施例1と同じ条件で加熱することによって炭素濃度、浸炭層深さを変化させた純チタンまたはチタン合金からなる網状構造体を準備した。
 陽極酸化は、純チタンおよび各種チタン合金を陽極、SUS304鋼を陰極として、実施例1と同じ条件で実施し、陽極酸化層の厚み、アナターゼ型二酸化チタンおよび水酸基と結合したチタンの有無および陽極酸化皮膜中の窒素濃度および炭素濃度を変化させた試料を準備した。
 上記網状構造体表面に存在する酸化チタン層中の炭化チタンおよび窒化チタンの存在の確認は、実施例1と同様に、XPS解析におけるピーク高さで判断した。
 光触媒活性の評価は、上記線状材料から15mm×25mm、平均網目間隔2.5mmの形状の平板状網状構造体試験片を作製し、その試験片を用いて実施例1と同様に評価した。
 表12の本発明A1~A18及び表13、表14の本発明A19~A71が、本発明の実施例である。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
 表12の結果から、本発明A1~A18は良好な光触媒活性を示すことが分かる。その中でも、窒素が0.9~3.9%あるいは炭素が3~10%の場合に本発明例A4,6,7,8,13,14,15,16,17に示すように更に優れた光触媒活性を示すことが分かる。また、「光触媒評価試験結果(紫外線遮蔽し蛍光灯照射)」からも分かるように、いずれの場合も可視光応答性も示した。
 更に、表13~14の本発明A19~A71の結果から、窒素あるいは炭素の存在状態が窒化チタン,炭化チタンを採るときには、特に高い可視光応答性を有し極めて良好な光触媒活性を示すことが分かる。また、本発明A19~A71のいずれも、可視光応答性も示した。
 表15は本発明の比較例である。酸化層の厚みが0.1μm未満の場合(比較例B1~B3)、あるいはアナターゼ型二酸化チタンが存在しない場合(比較例B4)、あるいは水酸基と結合したチタンが存在しない場合(比較例B5)、あるいは酸化層中の窒素あるいは炭素濃度が0.5%未満の場合(比較例B6~B12)、光触媒活性が生じていないことが分かる。
 比較例B5は、陽極酸化後、1×10−6torrの真空中において700℃で48時間の熱処理を実施した場合である。
Figure JPOXMLDOC01-appb-T000015
 表16、17は、前述の純チタンまたはチタン合金からなる線状材料を用いて各種条件で陽極酸化を実施し、しかる後、光触媒活性を評価した実施例である。
 表16、17の本発明1、3,5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、34、36、38、40、42、44,46,48、50,52、54、56、58、60は、硝酸イオンは硝酸アンモニウムを用いて添加した。なお、溶液のpH調整は硫酸あるいは水酸化ナトリウム溶液を用いて実施した。
 また、表16、17の本発明2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、35、37、39、41、43、45、47、49、51、53、55、57、59、61は、硝酸イオン源として硝酸ナトリウムを用い、溶液のpH調整は上述と同様な方法で行った。
 なお、本発明1~16は請求項9の製造条件に適合する実施例、本発明17~35は請求項10の製造条件に適合する実施例、本発明36~61は請求項11の製造条件に適合する実施例である。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 表16、17の結果から、本発明1~61は、いずれもすぐれた光触媒活性を備えるが、本発明1~16と本発明17~35を比べると、所定温度で所定時間大気中熱処理を施した本発明17~35は、本発明1~16に比して光触媒活性がより向上することがわかる。
 また、本発明1~35と本発明36~61を比べると、0.01Mから飽和濃度の硝酸イオンを含む水溶液のpHを、12以上15以下に調整して陽極酸化処理を行った本発明36~61では、pHが12未満の本発明1~35に比べて、より一段と優れた光触媒活性を備えるようになることがわかる。
 表18に比較例を示す。
 比較例は、本発明と同様な冷延、焼鈍を行って得た純チタンまたはチタン合金からなる線状材料を用い、本発明の陽極酸化条件からは外れる各種条件で陽極酸化を実施して網状構造体を作製し、しかる後、本発明の場合と同様にして光触媒活性を評価した。
 なお、比較例の1、3、5、7、9、11、13、15、17、19、21、23、25は、硝酸イオン源として硝酸アンモニウムを用い、溶液のpH調整は上述と同様な方法で行った。
 また、比較例の2、4、6、8、10、12、14、16、18、20、22、24は、硝酸イオン源として硝酸ナトリウムを用い、溶液のpH調整は上述と同様な方法で行った。
Figure JPOXMLDOC01-appb-T000018
 表16、17と表18とを対比すると、硝酸イオン濃度が0.01M未満の比較例1~4,18,19では、本発明1~16に比して光触媒活性が劣ることが分かる。また、比較例5~8,24,25と本発明17~35の結果の比較から、硝酸イオン濃度が0.01M未満であっては、陽極酸化処理後に大気中熱処理を行っても、光触媒活性に特別の改善効果は認められない。
 比較例9~12の結果から、陽極酸化処理時間が30秒未満の場合には、陽極酸化処理後の大気中熱処理の有無にかかわらず、光触媒活性の改善効果は認められない。
 比較例13~17,比較例20~23の結果から、陽極酸化処理時の印加電圧が10V未満では、陽極酸化処理後の大気中熱処理の有無にかかわらず、光触媒活性の改善効果は認められない。
 上記のとおり、表16~18の結果から、本発明の純チタンあるいはチタン合金製網状構造体およびその製造方法によれば、得られた網状構造体は、可視光応答性を有し、優れた光触媒活性を備えるのに対して、本発明の製造条件から外れた場合には、光触媒活性が劣ることがわかる。
 素材として表19~22に示す純チタンおよび各種チタン合金を用い、570℃から700℃の各温度においてアルゴンガス中で5時間加熱することによって炭素濃度、浸炭層深さを変化させた素材を準備した。
 陽極酸化は、5g/lから20g/lの硝酸アンモニウム溶液中で純チタンおよび各種チタン合金を陽極、SUS304鋼を陰極として室温で24Vから80Vの電圧を2から10分間かけることによって、水酸基と結合し、さらにアナターゼ型二酸化チタンを含有し、さらに酸化チタン粒子中の窒素濃度および炭素濃度を変化させた酸化チタン粒子を準備した。
 酸化チタン粒子中の炭化チタンまたは窒化チタンの存在の確認には、XPS解析において、282eV(炭素の1Sスペクトルの結合エネルギー)のピーク高さ(検出頻度)または397eV(窒素の1Sスペクトルの結合エネルギー)のピーク高さが、それぞれバックグランドレベル高さの1.3倍以上である場合に、それぞれ、炭化チタンまたは窒化チタンが有ると判断し、その高さ未満では無しと判断した。
 光触媒活性の評価は、陽極酸化法によって作製された酸化チタン粒子40mgを15mm×25mmの粘着テープの粘着面に付着させ、上蓋付きの透明プラスチックケースに、付着面を上にして入れ、そこに0.1Mのヨウ化カリウム溶液50ccを入れて、上部から15Wのブラックライト2本(東芝ライテック(株)社製、FL−15BLB−A)を30分間照射し、照射後、分光光度計(日立製:U−2910)を用いて287nmでの吸光度を測定し、試験片を入れていない溶液の吸光度をブランクとして差し引き、その値を光触媒活性の評価に用いた。溶液を入れた容器は厚み1.2mmの石英製のセルで、長さは10mmである。なお、装置自体のバックグランドを除去するために、吸光度の測定時には、蒸留水を入れた同様なセルを同時に測定して装置のバックグラウンドを除去した。
 上記の評価試験は、20℃に設定した室内で実施した。なお可視光応答性の評価は、紫外線遮蔽フィルムを透明プラスチックケースに貼り付け、紫外線が遮蔽されていることを確認し、上部から15Wの蛍光灯2本を300分間照射し、照射後、分光光度計を用いて287nmでの吸光度を測定し、試験片を入れていない溶液のみの吸光度をブランクとして差し引き、その値を光触媒活性の評価に用いた。上記の評価試験は20℃に設定した室内で実施した。用いたセルおよび装置のバックグラウンドの除去方法は、上述と同様な方法で実施した。
 なお、ブランクの吸光度を差し引いた後、数値がマイナスとなった場合には、便宜上、0.00と表中に記した。この数値が0.00の場合は、光触媒活性(応答性)無し、0.01以上で光触媒活性(応答性)有りと判断できる。
 表19~21が、本発明の実施例である。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 表19の結果から、アナターゼ型二酸化チタンと水酸基と結合したチタンが存在し、かつ窒素と炭素をそれぞれ0.5~30重量%含む酸化チタン粒子、例えば、本発明A1~A18は良好な光触媒活性を示すことが分かる。その中でも、窒素が0.9~3.9%あるいは炭素が3~10%の場合に本発明例A4,6,7,8,13,14,15,16,17に示すように更に優れた光触媒活性を示すことが分かる。また、「光触媒評価試験結果(紫外線遮蔽し蛍光灯照射)」からも分かるように、いずれの場合も可視光応答性も示した。
 更に、表20、21の本発明A19~A71の結果から、窒素あるいは炭素の存在状態が窒化チタン,炭化チタンを採るときには、特に高い可視光応答性を有し極めて良好な光触媒活性を示すことが分かる。また、本発明A19~A71についても、いずれも可視光応答性も示した。
 表22は本発明の比較例である。酸化チタン粒子中に炭素が存在しない場合(比較例B1,B2)、あるいはアナターゼ型二酸化チタンが存在しない場合(比較例B4)、あるいは水酸基と結合したチタンが存在しない場合(比較例B5)、あるいは酸化チタン中の窒素あるいは炭素濃度が0.5%未満の場合(比較例B6~B12)、光触媒活性が生じていないことが分かる。
 比較例B5は、陽極酸化後、1×10−6torrの真空中において700℃で48時間の熱処理を実施した場合である。
Figure JPOXMLDOC01-appb-T000022
 表23、24は、前述の純チタンあるいはチタン合金を用いて各種条件で陽極酸化を実施し、しかる後、光触媒活性を評価した実施例である。
 表23、24の本発明1、3,5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、34、36、38、40、42、44,46,48、50,52、54、56、58、60は、硝酸イオンは硝酸アンモニウムを用いて添加した。なお、溶液のpH調整は硫酸あるいは水酸化ナトリウム溶液を用いて実施した。
 また、表23、24の本発明2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、35、37、39、41、43、45、47、49、51、53、55、57、59、61は、硝酸イオン源として硝酸ナトリウムを用い、溶液のpH調整は上述と同様な方法で行った。
 なお、本発明1~16は請求項12の製造条件に適合する実施例、本発明17~35は請求項13の製造条件に適合する実施例、本発明36~61は請求項14の製造条件に適合する実施例である。
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 表23、24の結果から、本発明1~60は、いずれもすぐれた光触媒活性を備えるが、本発明1~16と本発明17~35を比べると、所定温度で所定時間大気中熱処理を施した本発明17~35は、本発明1~16に比して光触媒活性がより向上することがわかる。
 また、本発明1~35と本発明36~61を比べると、0.01Mから飽和濃度の硝酸イオンを含む水溶液のpHを、12以上15以下に調整して陽極酸化処理を行った本発明36~61では、pHが12未満の本発明1~35に比べて、より一段と優れた光触媒活性を備えるようになることがわかる。
 表25に比較例を示す。
 比較例は、本発明と同様な純チタンおよび各種チタン合金を用い、本発明の陽極酸化条件からは外れる各種条件で陽極酸化を実施し、しかる後、本発明の場合と同様にして光触媒活性を評価した。
 なお、比較例の1、3、5、7、9、11、13、15、17、19、21、23、25は、硝酸イオン源として硝酸アンモニウムを用い、溶液のpH調整は上述と同様な方法で行った。
 また、比較例の2、4、6、8、10、12、14、16、18、20、22、24は、硝酸イオン源として硝酸ナトリウムを用い、溶液のpH調整は上述と同様な方法で行った。
Figure JPOXMLDOC01-appb-T000025
 表23、24と表25とを対比すると、硝酸イオン濃度が0.01M未満の比較例1~4,18,19では、本発明1~16に比して光触媒活性が劣ることが分かる。また、比較例5~8,24,25と本発明17~35の結果の比較から、硝酸イオン濃度が0.01M未満であっては、陽極酸化処理後に大気中熱処理を行っても、光触媒活性に特別の改善効果は認められない。
 比較例9~12の結果から、陽極酸化処理時間が30秒未満の場合には、陽極酸化処理後の大気中熱処理の有無にかかわらず、光触媒活性の改善効果は認められない。
 比較例13~17,比較例20~23の結果から、陽極酸化処理時の印加電圧が10V未満では、陽極酸化処理後の大気中熱処理の有無にかかわらず、光触媒活性の改善効果は認められない。
 上記のとおり、表23~25の結果から、本発明製造方法の条件で陽極酸化処理あるいはさらに熱処理を行った酸化チタン粒子は、すぐれた光触媒活性を備えるのに対して、本発明の製造条件から外れた場合には、光触媒活性が劣ることがわかる。
 本発明の発色チタン系材料は、可視光応答性を有し、優れた光触媒活性を示すため、耐汚染性、抗菌性等の用途に適しており、建材、医療分野、水処理分野での適用に適している。
 本発明のチタン系材料が板状体の場合は、基材との密着性に優れているので、加工を施すことによって任意の形状に成形可能であり、より広い範囲の分野に適用することができる。
 本発明のチタン系材料が網状構造体の場合は、可視光応答性を有し、優れた光触媒活性を示すため、海水、汚水、真水等の浄化、殺菌等の用途に好適である。
 本発明のチタン系材料が酸化チタン粒子の場合は、バインダーと組み合わせることにより、基材の種類を問わず塗布することができ、より広い範囲の分野に適用することができる。

Claims (14)

  1.  純チタンまたはチタン合金を基材とし、その表面に存在する酸化チタン層の厚みが0.1μmから5.0μmの範囲であり、かつ、該酸化チタン層がアナターゼ型二酸化チタンと水酸基と結合したチタンを含み、さらに、該酸化チタン層中に窒素および炭素をそれぞれ0.5~30質量%含有することを特徴とする可視光応答性を有し、光触媒活性に優れたチタン系材料。
  2.  炭化チタンおよび窒化チタンの少なくとも1種以上が前記酸化チタン層に含有されていることを特徴とする請求項1に記載の可視光応答性を有し光触媒活性に優れたチタン系材料。
  3.  前記純チタンまたはチタン合金の基材が板状体であることを特徴とする請求項1または2に記載のチタン系材料。
  4.  前記純チタンまたはチタン合金の基材が箔であることを特徴とする請求項1または2に記載のチタン系材料。
  5.  前記純チタンまたはチタン合金の基材が板状体または箔の連続長尺コイルであることを特徴とする請求項1または2に記載のチタン系材料。
  6.  前記純チタンまたはチタン合金の基材が網状構造体であることを特徴とする請求項1または2に記載のチタン系材料。
  7.  アナターゼ型二酸化チタンと水酸基と結合したチタンを含み、さらに、酸化チタン中に窒素および炭素をそれぞれ0.5~30質量%含有する酸化チタン粒子であることを特徴とする可視光応答性を有し、光触媒活性に優れるチタン系材料。
  8.  炭化チタンおよび窒化チタンの少なくとも1種以上が前記酸化チタン層に含有されていることを特徴とする請求項7に記載の可視光応答性を有し、光触媒活性に優れるチタン系材料。
  9.  0.01Mから飽和濃度の硝酸イオンを含む水溶液中で、純チタンまたはチタン合金からなる基材を10V以上100V未満で30秒以上60分以下、陽極酸化処理することを特徴とする請求項1または2に記載の可視光応答性を有し光触媒活性に優れたチタン系材料の製造方法。
  10.  0.01Mから飽和濃度の硝酸イオンを含む水溶液中で、純チタンまたはチタン合金からなる基材を10V以上100V未満で30秒以上60分以下、陽極酸化処理し、しかる後、200℃から750℃の温度域で1分以上24時間以下熱処理することを特徴とする請求項1または2に記載の可視光応答性を有し光触媒活性に優れたチタン系材料の製造方法。
  11.  0.01Mから飽和濃度の硝酸イオンを含み、かつpHが12以上15以下である水溶液中で、純チタンまたはチタン合金からなる基材を30秒以上60分以下、陽極酸化することを特徴とする請求項9に記載の可視光応答性を有し光触媒活性に優れたチタン系材料の製造方法。
  12.  0.01Mから飽和濃度の硝酸イオンを含む水溶液中で、純チタンまたはチタン合金を、10V以上100V以下で陽極酸化処理することにより酸化チタン粒子を生成させることを特徴とする請求項7または8に記載の可視光応答性を有し、光触媒活性に優れるチタン系材料の製造方法。
  13.  0.01Mから飽和濃度の硝酸イオンを含む水溶液中で、純チタンまたはチタン合金を、10V以上100V未満で陽極酸化処理し、しかる後、200℃から750℃の温度域で1分以上24時間以下熱処理することにより酸化チタン粒子を生成させることを特徴とする請求項7または8に記載の可視光応答性を有し、光触媒活性に優れるチタン系材料の製造方法。
  14.  0.01Mから飽和濃度の硝酸イオンを含み、かつpHが12以上15以下である水溶液中で、純チタンおよびチタン合金を、陽極酸化することを特徴とする請求項12に記載の可視光応答性を有し、光触媒活性に優れるチタン系材料の製造方法。
PCT/JP2010/059583 2009-06-01 2010-06-01 可視光応答性を有し、光触媒活性に優れたチタン系材料およびその製造方法 WO2010140700A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080034173.5A CN102481565B (zh) 2009-06-01 2010-06-01 具有可见光响应性且光催化活性优异的钛系材料及其制造方法
JP2010545298A JP5197766B2 (ja) 2009-06-01 2010-06-01 可視光応答性を有し、光触媒活性に優れたチタン系材料およびその製造方法
US13/261,058 US8865612B2 (en) 2009-06-01 2010-06-01 Titanium-based material having visible light response and excellent in photocatalytic activity and method of production of same
KR1020117030243A KR101394595B1 (ko) 2009-06-01 2010-06-01 가시광 응답성을 가지고, 광 촉매 활성이 우수한 티타늄계 재료 및 그 제조 방법
EP10783482.2A EP2438990B1 (en) 2009-06-01 2010-06-01 Titanium-based material responsive to visible light and having excellent photocatalytic activity, and process for producing same

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2009131757 2009-06-01
JP2009-131757 2009-06-01
JP2009-193294 2009-08-24
JP2009193294 2009-08-24
JP2009-212604 2009-09-15
JP2009212604 2009-09-15
JP2009-277231 2009-12-07
JP2009277231 2009-12-07
JP2010-096899 2010-04-20
JP2010096897 2010-04-20
JP2010096898 2010-04-20
JP2010096899 2010-04-20
JP2010-096897 2010-04-20
JP2010-096898 2010-04-20

Publications (1)

Publication Number Publication Date
WO2010140700A1 true WO2010140700A1 (ja) 2010-12-09

Family

ID=43297831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059583 WO2010140700A1 (ja) 2009-06-01 2010-06-01 可視光応答性を有し、光触媒活性に優れたチタン系材料およびその製造方法

Country Status (6)

Country Link
US (1) US8865612B2 (ja)
EP (1) EP2438990B1 (ja)
JP (1) JP5197766B2 (ja)
KR (1) KR101394595B1 (ja)
CN (1) CN102481565B (ja)
WO (1) WO2010140700A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038634A (ja) * 2010-08-10 2012-02-23 Doshisha チタニアナノチューブアレイおよびチタニア電極の作成方法、チタニア電極、並びにこのチタニア電極を適用した色素増感太陽電池
JP2012115753A (ja) * 2010-11-30 2012-06-21 Nippon Steel Corp 可視光応答性を有し、光触媒活性に優れた酸化チタン系材料
JPWO2013065661A1 (ja) * 2011-11-01 2015-04-02 株式会社昭和 洗浄方法及び洗浄装置
US20160002765A1 (en) * 2013-02-26 2016-01-07 Showa Co., Ltd. Method for producing surface-treated metal titanium material or titanium alloy material, and surface-treated material
WO2018147444A1 (ja) * 2017-02-13 2018-08-16 サンスター技研株式会社 光触媒担持網状シート、空気清浄機、及び光触媒担持網状シートの製造方法
CN108620111A (zh) * 2017-03-16 2018-10-09 中国科学院金属研究所 一种纳米氮化钛基复合材料及其制备方法和应用
JP6440916B1 (ja) * 2018-06-18 2018-12-19 新日鐵住金株式会社 チタン材
WO2020054072A1 (ja) * 2018-09-14 2020-03-19 日本製鉄株式会社 チタン箔及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140700A1 (ja) * 2009-06-01 2010-12-09 新日本製鐵株式会社 可視光応答性を有し、光触媒活性に優れたチタン系材料およびその製造方法
CN105637120B (zh) * 2013-10-31 2018-04-06 惠普发展公司,有限责任合伙企业 处理金属表面的方法
JP5688588B1 (ja) * 2014-07-16 2015-03-25 Pps株式会社 酸化チタン水質浄化体、同酸化チタン水質浄化体の製造方法および同酸化チタン水質浄化体による水質浄化方法
JP5717264B1 (ja) * 2014-10-10 2015-05-13 Pps株式会社 酸化チタン水質浄化体、同酸化チタン水質浄化体の製造方法および同酸化チタン水質浄化体による水質浄化方法
ES2616276B2 (es) * 2015-12-11 2018-02-09 Universidad Politécnica de Madrid Procedimiento para obtener una chapa de titanio con actividad fotocatalítica
JP6119927B1 (ja) * 2016-07-08 2017-04-26 新日鐵住金株式会社 チタン板及びその製造方法
CN111902222B (zh) * 2018-04-03 2022-07-26 日本制铁株式会社 钛板
CN112691641B (zh) * 2020-12-08 2023-09-15 辽宁大学 一种羟基修饰的银耳状三维碳纳米片及其制备方法和在回收镓中的应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246192A (ja) 1995-03-03 1996-09-24 Kobe Steel Ltd 光触媒活性を有する酸化処理チタン又はチタン基合金材及びその製法
JPH10121266A (ja) 1996-08-22 1998-05-12 Takenaka Komuten Co Ltd 光触媒活性を有する金属材料及びその製造方法
JPH11315398A (ja) * 1998-02-20 1999-11-16 Daiwa House Ind Co Ltd 光触媒用チタン陽極酸化皮膜の生成方法
JP2000061458A (ja) 1998-08-20 2000-02-29 Tokyo Nisshin Jabara Kk 汚水等の浄化・活性化装置
JP2000271493A (ja) * 1999-03-25 2000-10-03 Takehisa Ito 光触媒材料の製造方法
JP2002038298A (ja) 2000-07-25 2002-02-06 Daiwa House Ind Co Ltd 光触媒用チタン陽極酸化被膜の生成方法
JP2003129290A (ja) 2001-10-17 2003-05-08 Daiwa House Ind Co Ltd 光触媒用チタン陽極酸化皮膜の生成方法
JP3601532B2 (ja) 1999-08-05 2004-12-15 株式会社豊田中央研究所 光触媒物質、光触媒体およびこれらの製造方法
WO2005056866A1 (ja) * 2003-12-09 2005-06-23 Central Research Institute Of Electric Power Industry 炭素ドープ酸化チタン層を有する多機能材
JP2005240139A (ja) 2004-02-27 2005-09-08 Nara Prefecture 陽極電解酸化処理によるアナターゼ型酸化チタン皮膜の製造方法
JP2005254128A (ja) * 2004-03-11 2005-09-22 Toshiba Ceramics Co Ltd 光触媒粒子およびその固定化方法ならびに光触媒性部材
JP2006075794A (ja) * 2004-09-13 2006-03-23 National Institute For Materials Science 可視光を吸収する薄片状酸化チタンの製造方法
JP2006149363A (ja) 2004-11-08 2006-06-15 Kiyoshi Kato 光触媒殺菌網
JP2008187910A (ja) 2007-02-01 2008-08-21 Osaka Titanium Technologies Co Ltd 水産養殖用網状構成体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306343B1 (en) * 1996-11-25 2001-10-23 Ecodevice Laboratory Co., Ltd Photocatalyst having visible light activity and uses thereof
WO2001010552A1 (fr) * 1999-08-05 2001-02-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Materiau photocatalytique, article photocatalytique et procede de preparation de ceux-ci
WO2001054811A1 (fr) * 2000-01-27 2001-08-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Photo-catalyseur
JP3566930B2 (ja) 2000-02-23 2004-09-15 新日本製鐵株式会社 大気環境中において変色を生じにくいチタンおよびその製造方法
US6649561B2 (en) * 2001-02-26 2003-11-18 United Technologies Corporation Titania-coated honeycomb catalyst matrix for UV-photocatalytic oxidation of organic pollutants, and process for making
US7449245B2 (en) * 2002-07-09 2008-11-11 Leibniz-Institut Fuer Neue Materialien Gemeinnuetzige Gmbh Substrates comprising a photocatalytic TiO2 layer
EP1400491A3 (en) 2002-09-18 2005-01-19 Toshiba Ceramics Co., Ltd. Titanium dioxide fine particles and method for producing the same, and method for producing visible light activatable photocatalyst
US7211513B2 (en) * 2003-07-01 2007-05-01 Pilkington North America, Inc. Process for chemical vapor desposition of a nitrogen-doped titanium oxide coating
DE602004025843D1 (de) * 2003-12-09 2010-04-15 Central Res Inst Elect Verfahren zur herstellung eines substrats mit einer schicht aus kohlenstoffdotiertem titanoxid
WO2006090631A1 (ja) * 2005-02-24 2006-08-31 Central Research Institute Of Electric Power Industry 多機能材
JP4623503B2 (ja) * 2005-02-28 2011-02-02 財団法人電力中央研究所 多機能性皮膜形成用コーティング組成物
KR100620076B1 (ko) * 2005-04-27 2006-09-06 한국과학기술연구원 C와 n으로 도핑된 박막형 이산화티탄계 광촉매 및 자성물질과 그 제조 방법
JP5072019B2 (ja) * 2007-03-29 2012-11-14 Jx日鉱日石金属株式会社 燃料電池用セパレータ材料及び燃料電池用セパレータ
GB0804365D0 (en) * 2008-03-10 2008-04-16 Dublin Inst Of Technology Synthesis of nanoporous semi-conducting oxides
JP5584923B2 (ja) * 2008-06-27 2014-09-10 国立大学法人東北大学 ルチル型二酸化チタン光触媒
WO2010140700A1 (ja) * 2009-06-01 2010-12-09 新日本製鐵株式会社 可視光応答性を有し、光触媒活性に優れたチタン系材料およびその製造方法
JP5644430B2 (ja) * 2010-11-30 2014-12-24 新日鐵住金株式会社 可視光応答性を有し、光触媒活性に優れた酸化チタン系材料

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246192A (ja) 1995-03-03 1996-09-24 Kobe Steel Ltd 光触媒活性を有する酸化処理チタン又はチタン基合金材及びその製法
JPH10121266A (ja) 1996-08-22 1998-05-12 Takenaka Komuten Co Ltd 光触媒活性を有する金属材料及びその製造方法
JPH11315398A (ja) * 1998-02-20 1999-11-16 Daiwa House Ind Co Ltd 光触媒用チタン陽極酸化皮膜の生成方法
JP2000061458A (ja) 1998-08-20 2000-02-29 Tokyo Nisshin Jabara Kk 汚水等の浄化・活性化装置
JP2000271493A (ja) * 1999-03-25 2000-10-03 Takehisa Ito 光触媒材料の製造方法
JP3601532B2 (ja) 1999-08-05 2004-12-15 株式会社豊田中央研究所 光触媒物質、光触媒体およびこれらの製造方法
JP2002038298A (ja) 2000-07-25 2002-02-06 Daiwa House Ind Co Ltd 光触媒用チタン陽極酸化被膜の生成方法
JP2003129290A (ja) 2001-10-17 2003-05-08 Daiwa House Ind Co Ltd 光触媒用チタン陽極酸化皮膜の生成方法
WO2005056866A1 (ja) * 2003-12-09 2005-06-23 Central Research Institute Of Electric Power Industry 炭素ドープ酸化チタン層を有する多機能材
JP2005240139A (ja) 2004-02-27 2005-09-08 Nara Prefecture 陽極電解酸化処理によるアナターゼ型酸化チタン皮膜の製造方法
JP2005254128A (ja) * 2004-03-11 2005-09-22 Toshiba Ceramics Co Ltd 光触媒粒子およびその固定化方法ならびに光触媒性部材
JP2006075794A (ja) * 2004-09-13 2006-03-23 National Institute For Materials Science 可視光を吸収する薄片状酸化チタンの製造方法
JP2006149363A (ja) 2004-11-08 2006-06-15 Kiyoshi Kato 光触媒殺菌網
JP2008187910A (ja) 2007-02-01 2008-08-21 Osaka Titanium Technologies Co Ltd 水産養殖用網状構成体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2438990A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012038634A (ja) * 2010-08-10 2012-02-23 Doshisha チタニアナノチューブアレイおよびチタニア電極の作成方法、チタニア電極、並びにこのチタニア電極を適用した色素増感太陽電池
JP2012115753A (ja) * 2010-11-30 2012-06-21 Nippon Steel Corp 可視光応答性を有し、光触媒活性に優れた酸化チタン系材料
JPWO2013065661A1 (ja) * 2011-11-01 2015-04-02 株式会社昭和 洗浄方法及び洗浄装置
US20160002765A1 (en) * 2013-02-26 2016-01-07 Showa Co., Ltd. Method for producing surface-treated metal titanium material or titanium alloy material, and surface-treated material
US10053762B2 (en) * 2013-02-26 2018-08-21 Showa Co., Ltd. Method for producing surface-treated metal titanium material or titanium alloy material, and surface-treated material
WO2018147444A1 (ja) * 2017-02-13 2018-08-16 サンスター技研株式会社 光触媒担持網状シート、空気清浄機、及び光触媒担持網状シートの製造方法
JPWO2018147444A1 (ja) * 2017-02-13 2019-06-27 サンスター技研株式会社 光触媒担持網状シート、空気清浄機、及び光触媒担持網状シートの製造方法
CN108620111A (zh) * 2017-03-16 2018-10-09 中国科学院金属研究所 一种纳米氮化钛基复合材料及其制备方法和应用
CN108620111B (zh) * 2017-03-16 2021-01-22 中国科学院金属研究所 一种纳米氮化钛基复合材料及其制备方法和应用
JP6440916B1 (ja) * 2018-06-18 2018-12-19 新日鐵住金株式会社 チタン材
WO2019244206A1 (ja) * 2018-06-18 2019-12-26 日本製鉄株式会社 チタン材
WO2020054072A1 (ja) * 2018-09-14 2020-03-19 日本製鉄株式会社 チタン箔及びその製造方法

Also Published As

Publication number Publication date
CN102481565A (zh) 2012-05-30
JPWO2010140700A1 (ja) 2012-11-22
CN102481565B (zh) 2015-03-25
EP2438990B1 (en) 2020-07-29
US8865612B2 (en) 2014-10-21
EP2438990A1 (en) 2012-04-11
JP5197766B2 (ja) 2013-05-15
KR20120029432A (ko) 2012-03-26
EP2438990A4 (en) 2013-05-01
KR101394595B1 (ko) 2014-05-14
US20120135855A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5197766B2 (ja) 可視光応答性を有し、光触媒活性に優れたチタン系材料およびその製造方法
Kern et al. Electrolytic deposition of titania films as interference coatings on biomedical implants: Microstructure, chemistry and nano-mechanical properties
JP3566930B2 (ja) 大気環境中において変色を生じにくいチタンおよびその製造方法
RU2321676C2 (ru) Способ изготовления подложки со слоем легированного углеродом оксида титана
TWI549812B (zh) 容器用鋼板及容器用鋼板之製造方法
US8445401B2 (en) Rutile-type titanium dioxide photocatalyst
Deguchi et al. Rapid electroplating of photocatalytically highly active TiO2-Zn nanocomposite films on steel
JP6806151B2 (ja) Snめっき鋼板
JP5515030B2 (ja) 可視光応答性ルチル型二酸化チタン光触媒
JP5644430B2 (ja) 可視光応答性を有し、光触媒活性に優れた酸化チタン系材料
KR20060057641A (ko) 탄소 도핑된 산화 티탄층을 가지는 다기능재
JPWO2005056870A1 (ja) 可視光で光触媒活性を有するTi酸化物膜およびその製造方法
JP6786893B2 (ja) チタン材及びチタン材の製造方法
JP2018104806A (ja) チタン材、セパレータ、セル、および固体高分子形燃料電池
CN101163550B (zh) 多功能材料
JP3912976B2 (ja) 光触媒膜を有するチタン基材の製造方法及びチタン基材表面の親水化方法
JP2018145494A (ja) チタン材及びチタン材の製造方法
EP1323471A1 (en) Process for the preparation of articles in titanium coated with a thick layer of anatase, articles so obtainable and use thereof as photocatalysts
JP6361628B2 (ja) 容器用鋼板の製造方法
JP2005272870A (ja) 大気環境中において変色を生じにくいチタンまたはチタン合金
EP3388148A1 (en) Method for obtaining a sheet of titanium with photocatalytic activity
Yonekura et al. Influence of Heat Treatment Conditions on Photocatalytic Properties of Oxidized TiN Film
WO2015020053A1 (ja) 容器用鋼板
JP2006242589A (ja) 測定・測量器具
JP2015140468A (ja) 容器用鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034173.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010545298

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783482

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 9432/DELNP/2011

Country of ref document: IN

Ref document number: 2010783482

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117030243

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13261058

Country of ref document: US