WO2010140524A1 - 空気入りタイヤ - Google Patents

空気入りタイヤ Download PDF

Info

Publication number
WO2010140524A1
WO2010140524A1 PCT/JP2010/058962 JP2010058962W WO2010140524A1 WO 2010140524 A1 WO2010140524 A1 WO 2010140524A1 JP 2010058962 W JP2010058962 W JP 2010058962W WO 2010140524 A1 WO2010140524 A1 WO 2010140524A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
dimple
less
tread
dimples
Prior art date
Application number
PCT/JP2010/058962
Other languages
English (en)
French (fr)
Inventor
林 聡
明夫 今村
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009132110A external-priority patent/JP5208857B2/ja
Priority claimed from JP2009132237A external-priority patent/JP5299913B2/ja
Priority claimed from JP2009136130A external-priority patent/JP2010280322A/ja
Priority claimed from JP2009136238A external-priority patent/JP5294997B2/ja
Priority to US13/320,490 priority Critical patent/US20120060994A1/en
Priority to KR1020117030496A priority patent/KR101350682B1/ko
Priority to CN2010800236758A priority patent/CN102448746A/zh
Priority to BRPI1011635A priority patent/BRPI1011635A2/pt
Priority to KR1020137017868A priority patent/KR20130085448A/ko
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to RU2011150658/11A priority patent/RU2509655C2/ru
Priority to EP20100783308 priority patent/EP2431197B1/en
Publication of WO2010140524A1 publication Critical patent/WO2010140524A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C13/00Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C13/00Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
    • B60C13/02Arrangement of grooves or ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/0009Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising sidewall rubber inserts, e.g. crescent shaped inserts

Definitions

  • the present invention relates to a pneumatic tire. Specifically, the present invention relates to an improvement in the side surface of a pneumatic tire.
  • ⁇ Runflat tires with a support layer inside the sidewall have been developed and are becoming popular.
  • This support layer a highly hard crosslinked rubber is used.
  • This run flat tire is called a side reinforcing type.
  • This run flat tire when the internal pressure is reduced by puncture, the load is supported by the support layer.
  • This support layer suppresses the bending of the tire in the puncture state. Even if traveling is continued in a punctured state, the hardened crosslinked rubber suppresses heat generation in the support layer.
  • This run-flat tire can travel a certain distance even in a punctured state. Automobiles equipped with this run-flat tire need not have spare tires. By adopting this run flat tire, tire replacement at an inconvenient place can be avoided.
  • Japanese Unexamined Patent Application Publication No. 2007-50854 discloses a run flat tire having a groove on the surface of a sidewall.
  • the side wall provided with the groove has a large surface area. Therefore, the contact area of the tire with the atmosphere is large. The large contact area facilitates heat dissipation from the tire to the atmosphere. This tire is difficult to heat up.
  • An object of the present invention is to provide a pneumatic tire having excellent durability.
  • the pneumatic tire according to the present invention is A tread whose outer surface forms a tread surface, A pair of sidewalls each extending substantially inward in the radial direction from the end of the tread, A pair of beads each positioned substantially radially inward of the sidewalls; And a carcass extending along the tread and the sidewall and spanned between the beads.
  • This tire has a large number of dimples on the side surface.
  • the surface shape of each dimple is an ellipse.
  • the surface shape of the dimple is an ellipse.
  • the dimple has a flat bottom surface.
  • the dimple has a slope surface. The slope surface extends from the edge of the dimple to the bottom surface. The slope surface is inclined with respect to the radial direction of the tire.
  • the tire further includes a support layer positioned on the inner side in the axial direction of the sidewall.
  • the pneumatic tire according to the present invention is: A tread whose outer surface forms a tread surface, A pair of sidewalls each extending substantially inward in the radial direction from the end of the tread, A pair of beads each positioned substantially radially inward of the sidewalls; And a carcass extending along the tread and the sidewall and spanned between the beads.
  • This tire has a land and a large number of dimples recessed from the land on a side surface. Each dimple has a bottom surface and a slope surface. This slope surface extends from the edge of the dimple to the bottom surface. The angle of the slope surface relative to the land upstream of the virtual air flow direction is smaller than the angle of the slope surface relative to the land downstream of this flow direction.
  • the surface shape of the dimple is a circle, and the contour of the bottom surface is also a circle.
  • the center of the bottom circle is located downstream of the center of the surface shape circle in the virtual air flow direction.
  • the bottom surface is flat.
  • the tire further includes a support layer positioned on the inner side in the axial direction of the sidewall.
  • the pneumatic tire according to the present invention is: A tread whose outer surface forms a tread surface, A pair of sidewalls each extending substantially inward in the radial direction from the end of the tread, A pair of beads each positioned substantially radially inward of the sidewalls; And a carcass extending along the tread and the sidewall and spanned between the beads.
  • This tire has a large number of dimples on the side surface. The surface shape of each dimple is a polygon.
  • the surface shape of the dimple is a regular polygon.
  • the surface shape of the dimple is a regular triangle, a square, or a regular hexagon.
  • one side of the dimple is arranged substantially parallel to the side of another dimple adjacent to this side.
  • the dimple has a flat bottom surface.
  • the dimple has a slope surface. The slope surface extends from the edge of the dimple to the bottom surface. The slope surface is inclined with respect to the radial direction of the tire.
  • the tire further includes a support layer positioned on the inner side in the axial direction of the sidewall.
  • the pneumatic tire according to the present invention is: A tread whose outer surface forms a tread surface, A pair of sidewalls each extending substantially inward in the radial direction from the end of the tread, A pair of beads each positioned substantially radially inward of the sidewalls; And a carcass extending along the tread and the sidewall and spanned between the beads.
  • An uneven pattern is formed on the side surface of the tire.
  • This uneven corrugated pattern consists of many elements in which the axial direction follows a specific direction. Each element has a first slope surface inclined downward along a specific direction and a second slope surface inclined upward along the specific direction. The inclination angle ⁇ of the second slope surface is larger than the inclination angle ⁇ of the first slope surface.
  • the difference ( ⁇ ) between the inclination angle ⁇ and the inclination angle ⁇ is not less than 5 ° and not more than 80 °.
  • the element has a shape that is part of a cylinder.
  • a large surface area of the side surface is achieved by the dimples.
  • the large surface area facilitates heat dissipation from the tire to the atmosphere.
  • the dimple further generates turbulence around the tire. This turbulent flow promotes heat dissipation from the tire to the atmosphere. In this tire, air retention is unlikely to occur. This tire is difficult to heat up. In this tire, damage to the rubber member due to heat and peeling between the rubber members hardly occur. This tire is excellent in durability.
  • FIG. 1 is a cross-sectional view showing a part of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is an enlarged front view showing a part of the sidewall of the tire of FIG. 1.
  • FIG. 3 is an enlarged front view showing a part of the sidewall of FIG.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view showing a part of a tire according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a part of a tire according to still another embodiment of the present invention.
  • FIG. 7 is a front view showing a part of a tire according to still another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a part of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is an enlarged front view showing a part of the sidewall of the tire of FIG. 1.
  • FIG. 3 is an
  • FIG. 8 is a front view showing a part of a sidewall of a tire according to still another embodiment of the present invention.
  • FIG. 9 is an enlarged front view showing a part of the sidewall of FIG.
  • FIG. 10 is a cross-sectional view taken along line XX of FIG.
  • FIG. 11 is an enlarged cross-sectional view showing a part of the sidewall of FIG.
  • FIG. 12 is a schematic front view showing the tire of FIG.
  • FIG. 13 is a front view showing a part of a sidewall of a tire according to still another embodiment of the present invention.
  • FIG. 14 is an enlarged front view showing a part of the sidewall of FIG.
  • FIG. 15 is a cross-sectional view taken along line XV-XV in FIG. FIG.
  • FIG. 16 is an enlarged front view showing a part of the sidewall of FIG.
  • FIG. 17 is a front view showing a part of a tire according to still another embodiment of the present invention.
  • FIG. 18 is a front view showing a part of a tire according to still another embodiment of the present invention.
  • FIG. 19 is a cross-sectional view showing a part of a pneumatic tire according to still another embodiment of the present invention.
  • FIG. 20 is an enlarged front view showing a part of the sidewall of the tire of FIG.
  • FIG. 21 is an enlarged front view showing a part of the sidewall of FIG. 22 is a cross-sectional view taken along line XXII-XXII in FIG.
  • FIG. 23 is an enlarged cross-sectional view showing a part of the sidewall of FIG.
  • FIG. 24 is a cross-sectional view showing a part of a pneumatic tire according to still another embodiment of the present invention.
  • FIG. 1 shows a run flat tire 2 that can run in a puncture state.
  • the vertical direction is the radial direction
  • the horizontal direction is the axial direction
  • the direction perpendicular to the paper surface is the circumferential direction.
  • the tire 2 has a substantially bilaterally symmetric shape centered on a one-dot chain line Eq in FIG. This alternate long and short dash line Eq represents the equator plane of the tire 2.
  • Eq represents the equator plane of the tire 2.
  • what is indicated by a double arrow H is the height of the tire 2 from the reference line BL (detailed later).
  • the tire 2 includes a tread 4, a wing 6, a sidewall 8, a clinch portion 10, a bead 12, a carcass 14, a support layer 16, a belt 18, a band 20, an inner liner 22, and a chafer 24.
  • the belt 18 and the band 20 constitute a reinforcing layer.
  • the reinforcing layer may be formed only from the belt 18.
  • the reinforcing layer may be configured only from the band 20.
  • the tread 4 has a shape protruding outward in the radial direction.
  • the tread 4 forms a tread surface 26 that contacts the road surface.
  • a groove 28 is carved in the tread surface 26.
  • the groove 28 forms a tread pattern.
  • the tread 4 has a cap layer 30 and a base layer 32.
  • the cap layer 30 is made of a crosslinked rubber.
  • the base layer 32 is made of other crosslinked rubber.
  • the cap layer 30 is located on the radially outer side of the base layer 32.
  • the cap layer 30 is laminated on the base layer 32.
  • the sidewall 8 extends substantially inward in the radial direction from the end of the tread 4.
  • the sidewall 8 is made of a crosslinked rubber.
  • the sidewall 8 prevents the carcass 14 from being damaged.
  • the side wall 8 includes a rib 34.
  • the rib 34 protrudes outward in the axial direction. When traveling in a puncture state, the rib 34 comes into contact with the flange 36 of the rim. Due to this contact, deformation of the bead 12 can be suppressed.
  • the tire 2 in which the deformation is suppressed is excellent in durability in a puncture state.
  • the clinch portion 10 is located substantially inside the sidewall 8 in the radial direction.
  • the clinch portion 10 is located outside the beads 12 and the carcass 14 in the axial direction.
  • the clinch portion 10 is in contact with the flange 36 of the rim.
  • the bead 12 is located inside the sidewall 8 in the radial direction.
  • the bead 12 includes a core 38 and an apex 40 that extends radially outward from the core 38.
  • the core 38 is ring-shaped and includes a wound non-stretchable wire (typically a steel wire).
  • the apex 40 is tapered outward in the radial direction.
  • the apex 40 is made of a highly hard crosslinked rubber.
  • the ratio (Ha / H) of the height Ha of the apex 40 to the height H of the tire 2 is preferably 0.1 or more and 0.7 or less.
  • the apex 40 having a ratio (Ha / H) of 0.1 or more can support the vehicle weight in a punctured state.
  • the apex 40 contributes to the durability of the tire 2 in a punctured state.
  • the ratio (Ha / H) is more preferably equal to or greater than 0.2.
  • the tire 2 having a ratio (Ha / H) of 0.7 or less is excellent in ride comfort. In this respect, the ratio (Ha / H) is more preferably equal to or less than 0.6.
  • the carcass 14 includes a carcass ply 42.
  • the carcass ply 42 is bridged between the beads 12 on both sides, and extends along the tread 4 and the sidewall 8.
  • the carcass ply 42 is folded around the core 38 from the inner side to the outer side in the axial direction. By this folding, a main portion 44 and a folding portion 46 are formed in the carcass ply 42.
  • the end 48 of the folded portion 46 reaches just below the belt 18. In other words, the folded portion 46 overlaps the belt 18.
  • the carcass 14 has a so-called “super high turn-up structure”.
  • the carcass 14 having an ultra high turn-up structure contributes to the durability of the tire 2 in a punctured state.
  • the carcass 14 contributes to durability in the puncture state.
  • the carcass ply 42 includes a large number of cords arranged in parallel and a topping rubber.
  • the absolute value of the angle formed by each cord with respect to the equator plane is 45 ° to 90 °, and further 75 ° to 90 °.
  • the carcass 14 has a radial structure.
  • the cord is made of organic fiber. Examples of preferable organic fibers include polyester fibers, nylon fibers, rayon fibers, polyethylene naphthalate fibers, and aramid fibers.
  • the support layer 16 is located on the inner side in the axial direction of the sidewall 8.
  • the support layer 16 is sandwiched between the carcass 14 and the inner liner 22.
  • the support layer 16 tapers inward and outwards in the radial direction.
  • the support layer 16 has a shape similar to that of a crescent moon.
  • the support layer 16 is made of a highly hard crosslinked rubber. When the tire 2 is punctured, the support layer 16 supports the load.
  • the support layer 16 allows the tire 2 to travel a certain distance even in a puncture state.
  • the run flat tire 2 is a side reinforcing type.
  • the tire 2 may include a support layer having a shape different from the shape of the support layer 16 illustrated in FIG.
  • the portion of the carcass 14 that overlaps the support layer 16 is separated from the inner liner 22. In other words, the carcass 14 is curved due to the presence of the support layer 16.
  • a compressive load is applied to the support layer 16
  • a tensile load is applied to a region of the carcass 14 that is close to the support layer 16. Since the support layer 16 is a rubber lump, it can sufficiently withstand the compressive load.
  • the cord of the carcass 14 can sufficiently withstand a tensile load.
  • the support layer 16 and the carcass cord suppress vertical deflection of the tire 2 in a punctured state.
  • the tire 2 in which the vertical deflection is suppressed is excellent in handling stability in the puncture state.
  • the hardness of the support layer 16 is preferably 60 or more, and more preferably 65 or more. From the viewpoint of riding comfort in a normal state (a state where a normal internal pressure is applied to the tire 2), the hardness is preferably 90 or less, and more preferably 80 or less. The hardness is measured with a type A durometer in accordance with the rules of “JIS K6253”. The durometer is pressed against the cross section shown in FIG. 1, and the hardness is measured. The measurement is made at a temperature of 23 ° C.
  • the lower end 50 of the support layer 16 is located on the inner side in the radial direction than the upper end 52 of the apex 40. In other words, the support layer 16 overlaps the apex 40.
  • an arrow L ⁇ b> 1 indicates a radial distance between the lower end 50 of the support layer 16 and the upper end 52 of the apex 40.
  • the distance L1 is preferably 5 mm or greater and 50 mm or less. In the tire 2 in which the distance L1 is within this range, a uniform rigidity distribution is obtained.
  • the distance L1 is more preferably 10 mm or more.
  • the distance L1 is more preferably 40 mm or less.
  • the upper end 54 of the support layer 16 is located on the inner side in the axial direction than the end 56 of the belt 18. In other words, the support layer 16 overlaps the belt 18.
  • an arrow L ⁇ b> 2 indicates an axial distance between the upper end 54 of the support layer 16 and the end 56 of the belt 18.
  • the distance L2 is preferably 2 mm or greater and 50 mm or less. In the tire 2 in which the distance L2 is within this range, a uniform rigidity distribution is obtained.
  • the distance L2 is more preferably 5 mm or more.
  • the distance L1 is more preferably 40 mm or less.
  • the maximum thickness of the support layer 16 is preferably 3 mm or more, more preferably 4 mm or more, and particularly preferably 7 mm or more. In light of light weight of the tire 2, the maximum thickness is preferably equal to or less than 25 mm, and more preferably equal to or less than 20 mm.
  • the belt 18 is located on the radially outer side of the carcass 14.
  • the belt 18 is laminated with the carcass 14.
  • the belt 18 reinforces the carcass 14.
  • the belt 18 includes an inner layer 58 and an outer layer 60.
  • the width of the inner layer 58 is slightly larger than the width of the outer layer 60.
  • each of the inner layer 58 and the outer layer 60 is composed of a large number of cords arranged in parallel and a topping rubber. Each cord is inclined with respect to the equator plane.
  • the absolute value of the tilt angle is usually 10 ° to 35 °.
  • the inclination direction of the cord of the inner layer 58 with respect to the equator plane is opposite to the inclination direction of the cord of the outer layer 60 with respect to the equator plane.
  • a preferred material for the cord is steel.
  • An organic fiber may be used for the cord.
  • the axial width of the belt 18 is preferably 0.85 to 1.0 times the maximum width of the tire 2.
  • the belt 18 may include three or more layers.
  • the band 20 covers the belt 18.
  • the band 20 is composed of a cord and a topping rubber.
  • the cord is wound in a spiral.
  • the band 20 has a so-called jointless structure.
  • the cord extends substantially in the circumferential direction.
  • the angle of the cord with respect to the circumferential direction is 5 ° or less, and further 2 ° or less. Since the belt 18 is restrained by this cord, the lifting of the belt 18 is suppressed.
  • the cord is made of organic fiber. Examples of preferable organic fibers include nylon fibers, polyester fibers, rayon fibers, polyethylene naphthalate fibers, and aramid fibers.
  • the tire 2 may include an edge band that covers only the vicinity of the end of the belt 18 instead of the band 20.
  • the tire 2 may include an edge band together with the band 20.
  • the inner liner 22 is joined to the inner peripheral surface of the carcass 14.
  • the inner liner 22 is made of a crosslinked rubber.
  • the inner liner 22 is made of rubber having excellent air shielding properties.
  • the inner liner 22 holds the internal pressure of the tire 2.
  • the tire 2 includes a large number of dimples 62 on the side surface.
  • the side surface means a region of the outer surface of the tire 2 that can be viewed from the axial direction.
  • the dimple 62 is formed on the outer surface of the sidewall 8 or the outer surface of the clinch portion 10.
  • FIG. 2 is an enlarged front view showing a part of the sidewall 8 of the tire 2 of FIG.
  • FIG. 2 shows a large number of dimples 62.
  • the surface shape of each dimple 62 is an elongated circle. Specifically, this surface shape is an ellipse.
  • the surface shape means the contour shape of the dimple 62 when the dimple 62 is viewed from infinity.
  • the ellipse has two fixed points. At all points on the contour of the dimple 62, the sum of the distance from the first fixed point and the distance from the second fixed point is constant.
  • FIG. 3 is an enlarged front view showing a part of the sidewall 8 of FIG.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • the vertical direction in FIG. 3 is the radial direction of the tire 2.
  • the dimple 62 is recessed.
  • a region other than the dimples 62 on the side surface is a land 64.
  • the surface area of the side surface having the dimple 62 is larger than the surface area of the side surface when it is assumed that there is no dimple 62.
  • the contact area between the tire 2 and the atmosphere is large. Due to the large contact area, heat radiation from the tire 2 to the atmosphere is promoted.
  • the dimple 62 includes a slope surface 66 and a bottom surface 68.
  • the slope surface 66 has a ring shape.
  • the slope surface 66 is inclined with respect to the radial direction of the tire 2.
  • the slope surface 66 extends from the edge Ed of the dimple 62 to the bottom surface 68.
  • the bottom surface 68 is flat.
  • the air flow F around the tire 2 is indicated by a two-dot chain line.
  • the tire 2 rotates during traveling.
  • the vehicle on which the tire 2 is mounted proceeds. Air flows across the dimples 62 due to the rotation of the tire 2 and the progress of the vehicle.
  • the air flows along the land 64, flows along the slope surface 66, and flows into the bottom surface 68. This air flows through the dimple 62, flows along the slope surface 66 on the downstream side, and flows out of the dimple 62.
  • the air further flows along the downstream lands 64.
  • the dimple 62 also contributes to the durability of the tire 2 in a normal state. Due to the carelessness of the driver, traveling may be performed in a state where the internal pressure is smaller than a normal value. The dimple 62 can also contribute to the durability in this case.
  • the air forming the vortex flows along the slope surface 66 and the bottom surface 68 inside the dimple 62. This air flows out of the dimple 62 smoothly.
  • the flat bottom surface 68 facilitates smooth outflow.
  • the retention seen in the conventional tire having a convex portion and the conventional tire having a groove hardly occurs. Therefore, heat dissipation is not hindered by the stay.
  • the tire 2 is extremely excellent in durability.
  • the tire 2 since the temperature rise is suppressed by the dimple 62, even if the support layer 16 is thin, the tire 2 can run for a long time in a punctured state.
  • the light weight of the tire 2 is achieved by the thin support layer 16.
  • the thin support layer 16 suppresses rolling resistance.
  • the tire 2 that is lightweight and has low rolling resistance contributes to low fuel consumption of the vehicle. Furthermore, an excellent riding comfort is also achieved by the thin support layer 16.
  • the line segment indicated by reference numeral 70 is a major axis.
  • the long axis 70 is the longest line segment that can be drawn within the outline of the dimple 62.
  • the line segment indicated by reference numeral 72 is a minor axis.
  • the short axis 72 is the longest line segment drawn within the outline of the dimple 62 and orthogonal to the long axis 70.
  • the length La of the major axis 70 is larger than the length Li of the minor axis 72.
  • “oval” means a figure having a major axis 70 and a minor axis 72 and having no vertex.
  • the minor axis 72 intersects the major axis 70.
  • the major axis 70 intersects the minor axis 72 at the center of the minor axis 72.
  • the oval contour does not have an inwardly convex portion.
  • the angle ⁇ is set to be ⁇ 90 ° or more and less than 90 °.
  • the angle ⁇ is ⁇ 90 °
  • the long axis 70 coincides with the circumferential direction of the tire 2.
  • the angle ⁇ is 0 °
  • the long axis 70 coincides with the radial direction of the tire 2.
  • the angle ⁇ is determined according to the direction of air flow generated by the rotation of the tire 2 and the traveling of the vehicle. Heat dissipation from the tire 2 is promoted by the dimples 62 having an appropriate angle ⁇ .
  • the ellipse has directionality.
  • the pitch between the dimples in the radial direction can be changed without changing the pitch between the dimples in the circumferential direction.
  • the pitch between the dimples in the circumferential direction can be changed without changing the pitch between the dimples in the radial direction.
  • This dimple pattern has a higher degree of freedom in the pitch between dimples than a pattern consisting of only circular dimples. Heat dissipation from the tire 2 is promoted by an appropriate pattern.
  • the ratio (La / Li) is preferably 1.2 / 1 or more, more preferably 1.5 / 1 or more, and particularly preferably 1.8 / 1 or more. From the viewpoint that air retention can be suppressed, the ratio (La / Li) is preferably 5/1 or less, more preferably 3/1 or less, and particularly preferably 2/1 or less.
  • the tire 2 may have two or more types of dimples having different ratios (La / Li).
  • the length La is preferably 3 mm or more and 70 mm or less. Air sufficiently flows into the dimple 62 having a length La of 3 mm or more, so that sufficient turbulence is generated. Due to the dimple 62, the temperature rise of the tire 2 is suppressed.
  • the length La is more preferably 4 mm or more, and particularly preferably 6 mm or more.
  • turbulent flow can occur at a number of locations.
  • the surface area of the side surface is large. Due to the large surface area, heat dissipation from the tire 2 is promoted.
  • the length La is more preferably equal to or less than 50 mm, and particularly preferably equal to or less than 30 mm.
  • the tire 2 may have two or more types of dimples having different lengths La.
  • the length Li is preferably 2 mm or more and 55 mm or less. Air sufficiently flows into the dimple 62 having a length Li of 2 mm or more, so that sufficient turbulence is generated. Due to the dimple 62, the temperature rise of the tire 2 is suppressed. In this respect, the length Li is more preferably 3 mm or more. In the tire 2 having the dimple 62 having a length Li of 55 mm or less, turbulent flow can occur at a number of locations. Furthermore, in the tire 2 having the dimple 62 having a length Li of 55 mm or less, the surface area of the side surface is large. Due to the large surface area, heat dissipation from the tire 2 is promoted.
  • the length Li is more preferably equal to or less than 40 mm, and particularly preferably equal to or less than 20 mm.
  • the tire 2 may have two or more types of dimples having different lengths Li.
  • the two-dot chain line Sg in FIG. 4 is a line segment drawn from one edge Ed of the dimple 62 to the other edge Ed.
  • the depth De is the distance between the deepest part of the dimple 62 and the line segment Sg.
  • the depth De is preferably 0.2 mm or greater and 7 mm or less.
  • the depth De is more preferably equal to or greater than 0.5 mm, and particularly preferably equal to or greater than 1.0 mm.
  • the sidewall 8, the clinch portion 10, etc. have sufficient thickness.
  • the depth De is more preferably 4 mm or less, and particularly preferably 3.0 mm or less.
  • the tire 2 may have two or more types of dimples having different depths De.
  • the volume of the dimple 62 is preferably 1.0 mm 3 or more and 400 mm 3 or less.
  • the volume is more preferably 1.5 mm 3 or more, 2.0 mm 3 or more is particularly preferable.
  • the volume is more preferably 300 mm 3 or less, particularly preferably 250 mm 3 or less.
  • the total value is more preferably 600 mm 3 or more, 800 mm 3 or more is particularly preferable.
  • the sidewalls 8, the clinch portion 10, and the like have sufficient rigidity. From this viewpoint, the volume is more preferably 1000000Mm 3 or less, 500000Mm 3 or less is particularly preferred.
  • the area of the dimple 62 is preferably 3 mm 2 or more and 4000 mm 2 or less. In the dimple 62 having an area of 3 mm 2 or more, sufficient turbulence is generated. From this viewpoint, the area is more preferably 12 mm 2 or more, 20 mm 2 or more is particularly preferable. In the tire 2 in which the area of the dimple 62 is 4000 mm 2 or less, the sidewall 8, the clinch portion 10, etc. have sufficient strength. In this respect, the area is more preferably equal to or less than 2000 mm 2 and particularly preferably equal to or less than 1300 mm 2 . In the present invention, the area of the dimple 62 means the area of a region surrounded by the outline of the dimple 62.
  • the occupation ratio Y of the dimple 62 is calculated by the following mathematical formula.
  • Y (S1 / S2) * 100
  • S1 is the area of the dimple 62 included in the reference region
  • S2 is the surface area of the reference region when it is assumed that there is no dimple 62.
  • the reference region is a region of the side surface whose height from the reference line BL is 20% or more and 80% or less of the tire 2 height H.
  • the occupation ratio Y is preferably 10% or more and 85% or less. In the tire 2 in which the occupation ratio Y is 10% or more, sufficient heat dissipation is performed. From this viewpoint, the occupation ratio Y is more preferably 30% or more, and particularly preferably 40% or more. In the tire 2 in which the occupation ratio Y is 85% or less, the land has sufficient wear resistance. In this respect, the occupation ratio Y is more preferably equal to or less than 80%, and particularly preferably equal to or less than 75%.
  • the land width (minimum value) between adjacent dimples 62 is preferably 0.05 mm or more and 20 mm or less.
  • the land has sufficient wear resistance.
  • the width is more preferably 0.10 mm or more, and particularly preferably 0.2 mm or more.
  • turbulent flow can occur at a number of locations.
  • the width is more preferably 15 mm or less, and particularly preferably 10 mm or less.
  • the total number of dimples 62 is preferably 50 or more and 5000 or less. In the tire 2 having a total number of 50 or more, turbulent flow can occur at a number of locations. In this respect, the total number is more preferably 100 or more, and particularly preferably 150 or more. In the tire 2 having a total number of 5000 or less, the individual dimples 62 can have a sufficient size. In this respect, the total number is more preferably equal to or less than 2000, and particularly preferably equal to or less than 1000. The total number and the pattern of the dimples 62 can be appropriately determined according to the size of the tire 2 and the area of the side portion.
  • the tire 2 may have dimples having other surface shapes together with the dimples 62 whose surface shape is an ellipse.
  • examples of other surface shapes include a circle, a polygon, and a teardrop (tear drop type).
  • the ratio of the number of dimples 62 whose surface shape is an ellipse to the total number of dimples is preferably 30% or more, and particularly preferably 50% or more.
  • the tire 2 may have a convex portion together with the dimple 62.
  • the cross-sectional shape of the dimple 62 is a trapezoid.
  • the dimple 62 has a large volume for the depth De. Therefore, a sufficient volume and a small depth De can be compatible.
  • the sidewall 8, the clinch portion 10, and the like can have a sufficient thickness immediately below the dimple 62.
  • the dimple 62 can contribute to the rigidity of the side surface.
  • the angle ⁇ is preferably 10 ° or more and 70 ° or less.
  • the angle ⁇ is more preferably 20 ° or more, and particularly preferably 25 ° or more.
  • the angle is more preferably 60 ° or less, and particularly preferably 55 ° or less.
  • the dimple 62 having the above size, shape and total number exerts its effect in the tires 2 of various sizes.
  • the dimple 62 exhibits a particular effect.
  • a plurality of rubber members are assembled to obtain a low cover (unvulcanized tire).
  • This raw cover is put into a mold.
  • the outer surface of the raw cover is in contact with the cavity surface of the mold.
  • the inner surface of the raw cover contacts the bladder or the core.
  • the raw cover is pressurized and heated in the mold.
  • the rubber composition of the raw cover flows by pressurization and heating.
  • the rubber causes a crosslinking reaction by heating, and the tire 2 is obtained.
  • a dimple 62 is formed in the tire 2 by using a mold having pimples on the cavity surface.
  • the dimple 62 has a shape in which the shape of the pimple is inverted.
  • the normal rim means a rim defined in a standard on which the tire 2 depends.
  • “Standard rim” in the JATMA standard, “Design Rim” in the TRA standard, and “Measuring Rim” in the ETRTO standard are regular rims.
  • the normal internal pressure means an internal pressure defined in a standard on which the tire 2 relies.
  • Maximum air pressure in JATMA standard “Maximum value” published in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” in TRA standard, and “INFLATION PRESSURE” in ETRTO standard are normal internal pressures. However, in the case of the passenger car tire 2, the dimensions and angles are measured in a state where the internal pressure is 180 kPa.
  • FIG. 5 is a cross-sectional view showing a part of a tire according to another embodiment of the present invention.
  • FIG. 5 shows the vicinity of the dimple 74.
  • the structure of the tire other than the dimple 74 is the same as that of the tire 2 shown in FIG.
  • the surface shape of the dimple 74 is an ellipse.
  • the cross-sectional shape of the dimple 74 is an arc shape.
  • the air outflow from the dimple 74 is smooth.
  • the retention of air is suppressed. In this tire, sufficient heat dissipation is performed.
  • the curvature radius R is preferably 3 mm or more and 200 mm or less. In the dimple 74 whose curvature radius R is 3 mm or more, air flows smoothly. In this respect, the curvature radius R is more preferably 5 mm or more, and particularly preferably 7 mm or more. With the dimple 74 having a radius of curvature R of 200 mm or less, a sufficient volume can be achieved. In this respect, the curvature radius R is more preferably 100 mm or less, and particularly preferably 50 mm or less.
  • the specifications of the dimple 74 such as length La, length Li, ratio (La / Li), depth De, volume, and area are the same as those of the dimple 62 shown in FIGS.
  • FIG. 6 is a cross-sectional view showing a part of a tire according to still another embodiment of the present invention.
  • FIG. 6 shows the vicinity of the dimple 76.
  • the structure of the tire other than the dimple 76 is the same as that of the tire 2 shown in FIG.
  • the surface shape of the dimple 76 is an ellipse.
  • the dimple 76 includes a first curved surface 78 and a second curved surface 80.
  • the first curved surface 78 has a ring shape.
  • the second curved surface 80 has a bowl shape.
  • a boundary point between the first curved surface 78 and the second curved surface 80 is indicated by a symbol Pb.
  • the second curved surface 80 is in contact with the first curved surface 78 at the boundary point Pb.
  • the dimple 76 is a so-called double radius type.
  • the specifications of the dimple 76 such as the length La, the length Li, the ratio (La / Li), the depth De, the volume, and the area, are the same as those of the dimple 62 shown in FIGS.
  • the radius of curvature of the first curved surface 78 is indicated by the arrow R1
  • the radius of curvature of the second curved surface 80 is indicated by the arrow R2.
  • the curvature radius R1 is smaller than the curvature radius R2.
  • the ratio (R1 / R2) between the curvature radius R1 and the curvature radius R2 is preferably 0.1 or more and 0.8 or less.
  • the ratio (R1 / R2) is more preferably equal to or greater than 0.2 and particularly preferably equal to or greater than 0.3.
  • the ratio (R1 / R2) is more preferably equal to or less than 0.7, and particularly preferably equal to or less than 0.6.
  • FIG. 7 is a front view showing a part of a tire according to still another embodiment of the present invention.
  • FIG. 7 shows the vicinity of the dimple 82.
  • the structure of the tire other than the dimple 82 is the same as that of the tire 2 shown in FIG.
  • the surface shape of the dimple 82 is an ellipse.
  • the contour of the dimple 82 includes a first semicircle 84, a first straight line 86, a second semicircle 88, and a second straight line 90.
  • the first straight line 86 is in contact with the first semicircle 84 at the point P1.
  • the second semicircle 88 is in contact with the first straight line 86 at the point P2.
  • the second straight line 90 is in contact with the second semicircle 88 at the point P3.
  • the first semicircle 84 is in contact with the second straight line 90 at the point P4.
  • the surface shape of the dimple 82 is similar to a track in an athletic field.
  • the line segment indicated by reference numeral 92 is the long axis
  • the line segment indicated by reference numeral 94 is the short axis.
  • the length La of the major axis 92 is larger than the length Li of the minor axis 94.
  • the dimple 82 has directionality.
  • the pattern having the dimples 82 has a high degree of freedom in the pitch between the dimples. The proper pattern promotes heat dissipation from the tire.
  • the ratio (La / Li) is preferably 1.2 / 1 or more, more preferably 1.5 / 1 or more, and particularly preferably 1.8 / 1 or more. From the viewpoint that turbulent flow can occur at a number of locations, the ratio (La / Li) is preferably 5/1 or less, more preferably 3.0 / 1 or less, and particularly preferably 2.5 / 1 or less.
  • the tire may have two or more types of dimples having different ratios (La / Li).
  • the length La is preferably 3 mm or more and 70 mm or less. Since air sufficiently flows into the dimple 82 having a length La of 3 mm or more, turbulence is sufficiently generated. The dimple 82 suppresses the temperature rise of the tire. In this respect, the length La is more preferably 4 mm or more, and particularly preferably 6 mm or more. In the tire having the dimple 82 having a length La of 70 mm or less, turbulent flow can occur at a number of locations. Further, in the tire having the dimple 82 having a length La of 70 mm or less, the surface area of the side surface is large. The large surface area facilitates heat dissipation from the tire. The dimple 82 suppresses the temperature rise of the tire. In this respect, the length La is more preferably equal to or less than 50 mm, and particularly preferably equal to or less than 30 mm. The tire may have two or more types of dimples having different lengths La.
  • the length Li is preferably 3 mm or more and 55 mm or less. Since air sufficiently flows into the dimple 82 having a length Li of 3 mm or more, sufficient turbulence is generated. The dimple 82 suppresses the temperature rise of the tire. In this respect, the length Li is more preferably 4 mm or more. In a tire having dimples 82 having a length Li of 55 mm or less, turbulence can occur at a number of locations. Furthermore, the tire having the dimple 82 having a length Li of 55 mm or less has a large surface area on the side surface. The large surface area facilitates heat dissipation from the tire. The dimple 82 suppresses the temperature rise of the tire. In this respect, the length Li is more preferably equal to or less than 40 mm, and particularly preferably equal to or less than 20 mm. The tire may have two or more types of dimples having different lengths Li.
  • the angle ⁇ is set to be ⁇ 90 ° or more and less than 90 °.
  • the angle ⁇ is determined according to the direction of the air flow generated by the rotation of the tire and the traveling of the vehicle. Heat dissipation from the tire is promoted by dimples having an appropriate angle ⁇ .
  • the specifications of the dimple 82 such as depth De, volume, and area are the same as those of the dimple 62 shown in FIGS.
  • FIG. 8 is a front view showing a part of a tire sidewall 108 according to still another embodiment of the present invention.
  • FIG. 8 shows a large number of dimples 162.
  • the surface shape of each dimple 162 is a circle. In the present invention, the surface shape means the contour shape of the dimple 162 when the dimple 162 is viewed from infinity.
  • the structure of the tire other than the dimple 162 is the same as that of the tire 2 shown in FIG.
  • FIG. 9 is an enlarged front view showing a part of the sidewall 108 of FIG.
  • FIG. 10 is a cross-sectional view taken along line XX of FIG.
  • the vertical direction in FIG. 9 is the radial direction of the tire.
  • the dimple 162 is recessed.
  • a region other than the dimple 162 on the side surface is a land 164.
  • the surface area of the side surface having the dimple 162 is larger than the surface area of the side surface when it is assumed that there is no dimple 162.
  • the contact area of the tire with the atmosphere is large. The large contact area facilitates heat dissipation from the tire to the atmosphere.
  • the dimple 162 includes a slope surface 166 and a bottom surface 168.
  • the slope surface 166 has a ring shape.
  • the slope surface 166 extends from the edge of the dimple 162 to the bottom surface 168.
  • the slope surface 166 is inclined in the depth direction from the edge toward the center of the dimple 162.
  • the bottom surface 168 is flat.
  • the outline of the bottom surface 168 is a circle.
  • the center O2 of the circle that defines the contour of the bottom surface 168 is offset from the center O1 of the circle that defines the contour of the dimple 162.
  • This dimple 162 is referred to as an “offset type” in this specification.
  • a straight line indicated by reference numeral 170 in FIG. 9 passes through the center O2, and further passes through the center O1.
  • An arrow A1 shown in FIG. 9 is a virtual air flow direction. The flow direction A1 will be described in detail later.
  • the direction of the line portion 170 coincides with the flow direction A1.
  • what is indicated by the symbol ⁇ is the angle of the flow direction A1 with respect to the radial direction of the tire.
  • the angle ⁇ is 0 ° or more and less than 360 °.
  • the center O2 of the bottom surface 168 is located downstream of the center O1 of the dimple 162 in the air flow direction A1.
  • the point P1 shown in FIG. 9 is an intersection of a circle that defines the outline of the dimple 162 and the straight line 170.
  • the point P1 is located upstream of the center O1 of the dimple 162 in the flow direction A1.
  • the point P ⁇ b> 2 is an intersection of a circle that defines the outline of the dimple 162 and the straight line 170.
  • the point P2 is located downstream of the center O1 of the dimple 162 in the flow direction A1.
  • Point P 3 is an intersection of a circle that defines the contour of bottom surface 168 and straight line 170.
  • the point P3 is located upstream of the center O2 of the bottom surface 168 in the flow direction A1.
  • Point P 4 is an intersection of a circle that defines the contour of bottom surface 168 and straight line 170.
  • the point P4 is located downstream of the center O2 of the bottom surface 168 in the flow direction A1.
  • the distance between the points P1 and P3 is greater than the distance between the points P4 and P2.
  • FIG. 11 shows two dimples 162a and 162b.
  • the air flowing along the bottom surface 168 of the dimple 162a collides with a downstream portion of the slope surface 166.
  • a vortex is generated by the collision.
  • a turbulent flow is generated in the downstream portion of the slope surface 166. Since the angle ⁇ of this part is large, sufficient turbulence is generated.
  • the turbulent flow moves along the land 164 and reaches the adjacent dimple 162b.
  • the turbulent flow flows along the upstream portion of the slope surface 166 of the dimple 162b. Since the angle ⁇ of this portion is small, the turbulent flow is difficult to peel off from the dimple 162.
  • the slope surface 166 having a small angle ⁇ increases the contact area between the tire surface and the turbulent flow.
  • the turbulence further flows along the bottom surface 168. Since the bottom surface 168 is flat, the turbulent flow is hardly separated from the dimple 162.
  • the flat bottom surface 168 increases the contact area between the tire surface and turbulent flow.
  • the support layer When the tire continues to run in the puncture state, the support layer is repeatedly deformed and restored. By repeating this, heat is generated in the support layer. This heat is conducted to the sidewall 108 and the clinch portion. Turbulence generated in the dimple 162 promotes the release of this heat into the atmosphere. Since the contact area between the tire surface and the turbulent flow is large, sufficient heat is released. In this tire, damage to the rubber member and peeling between the rubber members due to heat are suppressed. This tire can run for a long time in a puncture state. Turbulence also contributes to heat dissipation in normal conditions.
  • the dimple 162 contributes to the durability of the tire in a normal state. Due to the carelessness of the driver, traveling may be performed in a state where the internal pressure is smaller than a normal value. The dimple 162 can also contribute to the durability in this case.
  • a thin support layer achieves light weight of the tire.
  • a thin support layer suppresses rolling resistance.
  • a tire that is lightweight and has low rolling resistance contributes to low fuel consumption of the vehicle. Furthermore, an excellent ride comfort is also achieved by the thin support layer.
  • arrow A2 represents the rotational direction of the tire
  • arrow A3 represents the traveling direction of the vehicle.
  • air flows in the X direction as the tire rotates, and air flows in the X direction as the vehicle travels.
  • Arrow F1 represents the combined flow direction in zone Z1.
  • zone Z2 air flows in the Y direction as the tire rotates, and air flows in the X direction as the vehicle travels.
  • Arrow F2 represents the combined flow direction in zone Z2.
  • zone Z3 air flows in the ⁇ X direction due to the rotation of the tire, and air flows in the X direction as the vehicle travels.
  • Arrow F3 represents the combined flow direction in zone Z3.
  • air flows in the ⁇ Y direction due to the rotation of the tire, and air flows in the X direction as the vehicle travels.
  • Arrow F4 represents the combined flow direction in zone Z4.
  • the rotating tire there is a zone that greatly contributes to heat dissipation.
  • a zone that greatly contributes to heat dissipation is determined.
  • the virtual air flow direction A1 (see FIG. 9) is determined so as to substantially coincide with the combined flow direction in this zone.
  • the angle ⁇ is preferably 15 ° or more and 70 ° or less.
  • the dimple 162 having an angle ⁇ of 15 ° or more has a sufficient depth De.
  • the angle ⁇ is more preferably 20 ° or more, and particularly preferably 25 ° or more.
  • the turbulent flow is hardly separated.
  • the angle ⁇ is more preferably 50 ° or less, and particularly preferably 35 ° or less.
  • the angle ⁇ is preferably 50 ° or more and 90 ° or less.
  • turbulent flow is sufficiently generated.
  • the angle ⁇ is more preferably 60 ° or more, and particularly preferably 65 ° or more.
  • a tire having a dimple 162 having an angle ⁇ of 90 ° or less can be easily manufactured.
  • the difference ( ⁇ ) is preferably 20 ° or more, and particularly preferably 30 ° or more.
  • the difference ( ⁇ ) is preferably 60 ° or less.
  • a two-dot chain line Sg in FIG. 10 is a line segment drawn from one edge P1 of the dimple 162 to the other edge P2.
  • the diameter Di is preferably 2 mm or greater and 70 mm or less. Since air sufficiently flows into the dimple 162 having a diameter Di of 2 mm or more, sufficient turbulence is generated. Due to this dimple 162, the temperature rise of the tire is suppressed.
  • the diameter Di is more preferably 4 mm or more, and particularly preferably 6 mm or more.
  • a tire having a dimple 162 having a diameter Di of 70 mm or less turbulent flow can occur at a number of locations. Furthermore, the tire having the dimple 162 having a diameter Di of 70 mm or less has a large surface area on the side surface. The large surface area facilitates heat dissipation from the tire. Due to this dimple 162, the temperature rise of the tire is suppressed.
  • the diameter Di is more preferably 50 mm or less, and particularly preferably 30 mm or less.
  • the tire may have two or more types of dimples having different diameters Di from each other.
  • the depth De is the distance between the deepest part of the dimple 162 and the line segment Sg.
  • the depth De is preferably 0.2 mm or greater and 7 mm or less.
  • the depth De is more preferably equal to or greater than 0.5 mm, and particularly preferably equal to or greater than 1.0 mm.
  • the depth De is more preferably 4 mm or less, and particularly preferably 3.0 mm or less.
  • the tire may have two or more types of dimples having different depths De.
  • the volume of the dimple 162 is preferably 1.0 mm 3 or more and 400 mm 3 or less.
  • the volume is more preferably 1.5 mm 3 or more, 2.0 mm 3 or more is particularly preferable.
  • the volume is more preferably 300 mm 3 or less, particularly preferably 250 mm 3 or less.
  • the total value of the volume of all the dimples 162, 300 mm 3 or more 5000000Mm 3 or less In a tire having a total value of 300 mm 3 or more, sufficient heat dissipation is performed. From this viewpoint, the total value is more preferably 600 mm 3 or more, 800 mm 3 or more is particularly preferable. In a tire having a total value of 5000000 mm 3 or less, the sidewall 108, the clinch portion, and the like have sufficient rigidity. From this viewpoint, the volume is more preferably 1000000Mm 3 or less, 500000Mm 3 or less is particularly preferred.
  • the occupation ratio Y of the dimple 162 is calculated by the following mathematical formula.
  • Y (S1 / S2) * 100
  • S1 is the area of the dimple 162 included in the reference region
  • S2 is the surface area of the reference region when it is assumed that there is no dimple 162.
  • the reference region is a region of the side surface whose height from the reference line BL is 20% or more and 80% or less of the tire height H.
  • the occupation ratio Y is preferably 10% or more and 85% or less. In a tire where the occupation ratio Y is 10% or more, sufficient heat dissipation is performed. From this viewpoint, the occupation ratio Y is more preferably 30% or more, and particularly preferably 40% or more. In the tire having the occupation ratio Y of 85% or less, the land 164 has sufficient wear resistance. In this respect, the occupation ratio Y is more preferably equal to or less than 80%, and particularly preferably equal to or less than 75%.
  • the width (minimum value) of the land 164 between adjacent dimples 162 is preferably 0.05 mm or more and 20 mm or less.
  • the land 164 has sufficient wear resistance.
  • the width is more preferably 0.10 mm or more, and particularly preferably 0.2 mm or more.
  • turbulent flow can occur at a number of locations.
  • the width is more preferably 15 mm or less, and particularly preferably 10 mm or less.
  • the total number of dimples 162 is preferably 50 or more and 5000 or less. In a tire having a total number of 50 or more, turbulent flow can occur at a number of locations. In this respect, the total number is more preferably 100 or more, and particularly preferably 150 or more. In a tire having a total number of 5000 or less, each dimple 162 may have a sufficient size. In this respect, the total number is more preferably equal to or less than 2000, and particularly preferably equal to or less than 1000. The total number and the pattern of the dimples 162 can be appropriately determined according to the size of the tire and the area of the side portion.
  • the tire may include dimples that are not offset types together with dimples 162 that are offset types.
  • the ratio of the number of dimples 162 of the offset type to the total number of dimples is preferably 30% or more, and particularly preferably 50% or more.
  • the tire may have a convex portion together with the dimple 162.
  • the dimple 162 having the above size, shape and total number exerts its effect on tires of various sizes.
  • the dimple 162 is particularly effective in a passenger car tire having a width of 100 mm to 350 mm, a flatness ratio of 30% to 100%, and a rim diameter of 10 inches to 25 inches.
  • FIG. 13 is a perspective view showing a part of a sidewall 208 of a tire according to still another embodiment of the present invention.
  • FIG. 13 shows a large number of dimples 262.
  • the surface shape of each dimple 262 is a regular hexagon. In the present invention, the surface shape means the contour shape of the dimple 262 when the dimple 262 is viewed from infinity.
  • FIG. 14 is an enlarged front view showing a part of the sidewall 208 of FIG.
  • FIG. 15 is a cross-sectional view taken along line XV-XV in FIG. As shown in FIG. 15, the dimple 262 is recessed. A region other than the dimple 262 on the side surface is a land 264.
  • the surface area of the side surface having the dimple 262 is larger than the surface area of the side surface when the dimple 262 is assumed to be absent.
  • the contact area of the tire with the atmosphere is large. The large contact area facilitates heat dissipation from the tire to the atmosphere.
  • the dimple 262 includes six slope surfaces 266 and a bottom surface 268.
  • Each slope surface 266 is inclined with respect to the radial direction of the tire.
  • the slope surface 266 extends from the edge Ed of the dimple 262 to the bottom surface 268.
  • the bottom surface 268 is flat.
  • the outline of the bottom surface 268 is substantially a regular hexagon.
  • FIG. 14 the flow of air around the tire is indicated by the symbol F.
  • the tire rotates during travel.
  • a vehicle equipped with tires travels. Air flows across the dimples 262 as the tires rotate and the vehicle travels.
  • the air flows along the land 264 (see FIG. 15), flows along the slope surface 266, and flows into the bottom surface 268.
  • the air flows through the dimple 262, flows along the slope surface 266 downstream, and flows out of the dimple 262.
  • the air further flows along the downstream lands 264 and flows into the adjacent dimples 262.
  • the dimple 262 also contributes to the durability of the tire in a normal state. Due to the carelessness of the driver, traveling may be performed in a state where the internal pressure is smaller than a normal value. The dimple 262 can also contribute to the durability in this case.
  • the air forming the vortex flows along the slope surface 266 and the bottom surface 268 inside the dimple 262. This air flows out of the dimple 262 smoothly.
  • the flat bottom surface 268 facilitates smooth outflow.
  • the stagnation seen in the conventional tire having a convex portion and the conventional tire having a groove hardly occurs. Therefore, heat dissipation is not hindered by the stay.
  • This tire is extremely excellent in durability.
  • a thin support layer achieves light weight of the tire.
  • a thin support layer suppresses rolling resistance.
  • a tire that is lightweight and has low rolling resistance contributes to low fuel consumption of the vehicle. Furthermore, an excellent ride comfort is also achieved by the thin support layer.
  • one side 270 of the dimple 262 is disposed substantially parallel to the side 270 of another dimple 262 adjacent to the side 270. Accordingly, the width W of the land 264 is substantially constant. A dimple pattern with a constant width W cannot be achieved with a circular dimple. Since the width W is constant, the air flow F2 is equivalent to the flow F1. Similarly, the flow F3 is equivalent to the flow F1, and the flow F4 is equivalent to the flow F1. With this tire, heat is efficiently dissipated.
  • the sidewall 208 and the clinching part are annular.
  • the dimples 262 are arranged along the circumferential direction. Accordingly, one side 270 of the dimple 262 is not strictly parallel to the side 270 of another dimple 262 adjacent to the side 270. In the present invention, this state is referred to as “substantially parallel”. Since the side 270 and the other side 270 are not strictly parallel, the width W is not strictly constant. In the present invention, this state is referred to as “substantially constant”.
  • a two-dot chain line Sg in FIG. 15 is a line segment drawn from one vertex Pk of the dimple 262 to the other vertex Pk.
  • what is indicated by an arrow D is the length of the line segment Sg and the size of the dimple 262.
  • the surface shape is a regular polygon having an even number of vertices
  • the length from the vertex Pk to the opposing vertex Pk is the size D.
  • the surface shape is a regular polygon having an odd number of vertices
  • the length of the perpendicular drawn from the vertex Pk to the opposite side 270 is the size D.
  • the size D is preferably 2 mm or more and 70 mm or less. Since air sufficiently flows into the dimple 262 having a size D of 2 mm or more, sufficient turbulence is generated. The dimple 262 suppresses the temperature rise of the tire. In this respect, the size D is more preferably 4 mm or more, and particularly preferably 6 mm or more. In a tire having a dimple 262 having a size D of 70 mm or less, turbulence can occur at a number of locations. Further, in the tire having the dimple 262 whose size D is 70 mm or less, the surface area of the side surface is large. The large surface area facilitates heat dissipation from the tire. The dimple 262 suppresses the temperature rise of the tire. In this respect, the size D is more preferably equal to or less than 50 mm, and particularly preferably equal to or less than 30 mm. The tire may have two or more types of dimples having different sizes D from each other.
  • the depth De is the distance between the deepest part of the dimple 262 and the line segment Sg.
  • the depth De is preferably 0.2 mm or greater and 7 mm or less.
  • the depth De is more preferably equal to or greater than 0.5 mm, and particularly preferably equal to or greater than 1.0 mm.
  • the sidewall 208, the clinching portion, and the like have sufficient thickness.
  • the depth De is more preferably 4 mm or less, and particularly preferably 3.0 mm or less.
  • the tire may have two or more types of dimples having different depths De.
  • the volume of the dimple 262 is preferably 1.0 mm 3 or more and 400 mm 3 or less.
  • the volume is more preferably 1.5 mm 3 or more, 2.0 mm 3 or more is particularly preferable.
  • the volume is more preferably 300 mm 3 or less, particularly preferably 250 mm 3 or less.
  • the total value of the volume of all the dimples 262, 300 mm 3 or more 5000000Mm 3 or less In a tire having a total value of 300 mm 3 or more, sufficient heat dissipation is performed. From this viewpoint, the total value is more preferably 600 mm 3 or more, 800 mm 3 or more is particularly preferable. In a tire having a total value of 5000000 mm 3 or less, the sidewall 208, the clinch portion, and the like have sufficient rigidity. From this viewpoint, the volume is more preferably 1000000Mm 3 or less, 500000Mm 3 or less is particularly preferred.
  • the area of the dimple 262 is preferably 3 mm 2 or more and 4000 mm 2 or less. In the dimple 262 having an area of 3 mm 2 or more, sufficient turbulence is generated. From this viewpoint, the area is more preferably 12 mm 2 or more, 20 mm 2 or more is particularly preferable. In the tire in which the area of the dimple 262 is 4000 mm 2 or less, the sidewall 208, the clinch portion, and the like have sufficient strength. In this respect, the area is more preferably equal to or less than 2000 mm 2 and particularly preferably equal to or less than 1300 mm 2 . In the present invention, the area of the dimple 262 means the area of a region surrounded by the outline of the dimple 262.
  • the occupation ratio Y of the dimple 262 is calculated by the following mathematical formula.
  • Y (S1 / S2) * 100
  • S1 is the area of the dimple 262 included in the reference region
  • S2 is the surface area of the reference region when it is assumed that there is no dimple 262.
  • the reference region is a region of the side surface whose height from the reference line BL is 20% or more and 80% or less of the tire height H.
  • the occupation ratio Y is preferably 10% or more and 85% or less. In a tire where the occupation ratio Y is 10% or more, sufficient heat dissipation is performed. From this viewpoint, the occupation ratio Y is more preferably 30% or more, and particularly preferably 40% or more. In the tire in which the occupation ratio Y is 85% or less, the land 264 has sufficient wear resistance. In this respect, the occupation ratio Y is more preferably equal to or less than 80%, and particularly preferably equal to or less than 75%.
  • the width W of the land 264 is preferably 0.05 mm or more and 20 mm or less.
  • the land 264 has sufficient wear resistance.
  • the width is more preferably 0.10 mm or more, and particularly preferably 0.2 mm or more.
  • turbulent flow can occur at a number of locations.
  • the width is more preferably 15 mm or less, and particularly preferably 10 mm or less.
  • the total number of dimples 262 is preferably 50 or more and 5000 or less. In a tire having a total number of 50 or more, turbulent flow can occur at a number of locations. In this respect, the total number is more preferably 100 or more, and particularly preferably 150 or more. In a tire having a total number of 5000 or less, each dimple 262 may have a sufficient size. In this respect, the total number is more preferably equal to or less than 2000, and particularly preferably equal to or less than 1000. The total number and the pattern of the dimples 262 can be appropriately determined according to the size of the tire and the area of the side portion.
  • the tire may have dimples having other surface shapes together with the dimples 262 having a polygonal surface shape.
  • examples of other surface shapes include a circle, an ellipse, an ellipse, and a teardrop (tear drop type).
  • the ratio of the number of dimples 262 having a polygonal surface shape to the total number of dimples is preferably 30% or more, and particularly preferably 50% or more.
  • the tire may have a convex portion together with the dimple 262.
  • the cross-sectional shape of the dimple 262 is a trapezoid.
  • the dimple 262 has a large volume for the depth De. Therefore, a sufficient volume and a small depth De can be compatible.
  • the sidewall 208, the clinch portion, and the like can have a sufficient thickness immediately below the dimple 262.
  • the dimple 262 can contribute to the rigidity of the side surface.
  • is the angle of the slope surface 266.
  • the angle ⁇ is preferably 10 ° or more and 70 ° or less.
  • the angle ⁇ is more preferably 20 ° or more, and particularly preferably 25 ° or more.
  • the angle is more preferably 60 ° or less, and particularly preferably 55 ° or less.
  • the dimple 262 having the above size, shape, and total number exhibits its effect in tires of various sizes.
  • the dimple 262 is particularly effective in a passenger car tire having a width of 100 mm to 350 mm, a flatness ratio of 30% to 100%, and a rim diameter of 10 inches to 25 inches.
  • FIG. 17 is a front view showing a part of a tire according to still another embodiment of the present invention.
  • a sidewall 272 is shown.
  • the sidewall 272 includes a large number of dimples 274.
  • the structure of this tire other than the dimple 274 is the same as that of the tire 2 shown in FIG.
  • the surface shape of the dimple 274 is a regular triangle.
  • the dimple 274 includes three slope surfaces 276 and a bottom surface 278. Similar to the dimples 262 shown in FIG. 15, each slope surface 276 is inclined with respect to the radial direction of the tire. The slope surface 276 extends from the edge of the dimple 274 to the bottom surface 278.
  • the bottom surface 278 is flat.
  • the outline of the bottom surface 278 is substantially an equilateral triangle.
  • the specifications of the dimple 274 such as the size D, depth De, angle ⁇ , volume, area, etc. are the same as those of the dimple 262 shown in FIGS.
  • one side 280 of the dimple 274 is disposed substantially parallel to the side 280 of another dimple 274 adjacent to the side 280. Accordingly, the width W of the land is substantially constant.
  • These dimples 274 are densely arranged. The turbulent flow generated in the dimple 274 promotes heat dissipation. This tire is excellent in durability.
  • FIG. 18 is a front view showing a part of a tire according to still another embodiment of the present invention.
  • a sidewall 282 is shown.
  • the side wall 282 includes a large number of dimples 284.
  • the structure of this tire other than the dimple 284 is the same as that of the tire shown in FIG.
  • the surface shape of the dimple 284 is a square.
  • the dimple 284 includes four slope surfaces 286 and a bottom surface 288. As with the dimples 262 shown in FIG. 15, each slope surface 286 is inclined with respect to the radial direction of the tire. The slope surface 286 extends from the edge of the dimple 284 to the bottom surface 288.
  • the bottom surface 288 is flat.
  • the contour of the bottom surface 288 is substantially square.
  • the specifications of the dimple 284 such as size D, depth De, angle ⁇ , volume, area, etc. are the same as those of the dimple 262 shown in FIGS.
  • one side 290 of the dimple 284 is disposed substantially parallel to the side 290 of another dimple 284 adjacent to the side 290. Accordingly, the width W of the land is substantially constant.
  • the dimples 284 are densely arranged. The turbulent flow generated in the dimple 284 promotes heat dissipation. This tire is excellent in durability.
  • FIG. 19 is a cross-sectional view showing a part of a pneumatic tire 302 according to still another embodiment of the present invention. This tire 302 is similar to the tire 2 shown in FIG. A chafer 324 is provided.
  • the tire 302 has an uneven pattern on its side surface.
  • the side surface means a region of the outer surface of the tire 302 that can be viewed from the axial direction.
  • the uneven pattern is formed on the outer surface of the sidewall 308 or the outer surface of the clinch portion 310.
  • FIG. 20 is an enlarged perspective view showing a part of the sidewall 308 of the tire 302 of FIG.
  • the uneven pattern is composed of a large number of elements 362. As shown in FIG. 22, each element 362 is recessed. A region other than the element 362 on the side surface is a land 364. This uneven pattern has a pattern similar to a fish scale.
  • the surface area of the side surface having the element 362 is larger than the surface area of the side surface when the element 362 is assumed to be absent.
  • the contact area between the tire 302 and the atmosphere is large. Due to the large contact area, heat radiation from the tire 302 to the atmosphere is promoted.
  • the vertical direction is the radial direction of the tire 302.
  • the longest line segment that can be drawn within the outline of the element 362 is indicated by reference numeral Sg.
  • the contour of the element 362 is symmetric with respect to the line segment Sg.
  • Line segment Sg is the axis of element 362.
  • a specific direction is indicated by an arrow A1 in FIG.
  • What is indicated by the angle ⁇ is an angle of the specific direction A1 with respect to the radial direction of the tire 302.
  • the axis Sg of the element 362 is along the specific direction A1.
  • the sign ⁇ is the same.
  • the specific direction A1 coincides with the virtual air flow direction. This flow direction will be described in detail later.
  • the element 362 includes a first slope surface 366, a second slope surface 368, and a deepest portion 370.
  • the first slope surface 366 extends from one land 364 to the deepest portion 370.
  • the second slope surface 368 extends from the deepest part 370 to the other land 364.
  • the first slope surface 366 is inclined downward along the specific direction A1.
  • the second slope surface 368 is inclined upward along the specific direction A1.
  • a virtual cylinder 372 is shown.
  • the element 362 has a shape of a part of the cylinder 372 when the cylinder 372 is cut off in a plane including the line segment Sg.
  • the center line of the cylinder 372 is inclined with respect to this plane.
  • An uneven pattern can be obtained by imagining a large number of cylinders 372 based on the first pitch P1 and the second pitch P2 shown in FIG. Instead of the cylinder 372, a cone, a truncated cone, a prism, a pyramid, a truncated pyramid, or the like may be assumed.
  • the land 364 is a point or a line. Theoretically, the land 364 has no area. In an actual tire 302, the lines and points have a slight width. Accordingly, the land 364 has a slight area.
  • FIG. 23 shows two elements 362a and 362b.
  • FIG. 23 shows an air flow F around the tire 302.
  • the tire 302 rotates during traveling.
  • a vehicle equipped with the tire 302 travels.
  • Air flowing along the first slope surface 366 of the element 362a impinges on the second slope surface 368.
  • a vortex is generated by the collision.
  • a turbulent flow is generated on the second slope surface 368. Since the angle ⁇ of the second slope surface 368 is large, sufficient turbulence is generated.
  • the turbulent flow flows along the first slope surface 366 of the adjacent element 362b. Since the angle ⁇ of the first slope surface 366 is small, the turbulent flow is hardly separated from the first slope surface 366.
  • the first slope surface 366 increases the contact area between the surface of the tire 302 and the turbulent flow.
  • the deformation and restoration of the support layer 316 are repeated. By repeating this, heat is generated in the support layer 316. This heat is conducted to the sidewall 308 and the clinch portion 310.
  • the turbulence generated in the uneven pattern promotes the release of this heat to the atmosphere. In the tire 302, damage to the rubber member and peeling between the rubber members due to heat are suppressed.
  • the tire 302 can travel for a long time in a puncture state. Turbulence also contributes to heat dissipation in normal conditions.
  • the uneven pattern also contributes to the durability of the tire 302 in a normal state. Due to the carelessness of the driver, traveling may be performed in a state where the internal pressure is smaller than a normal value. The uneven pattern can also contribute to the durability in this case.
  • the angle ⁇ of the first slope surface 366 is small, air flows smoothly along the first slope surface 366.
  • the retention seen in the conventional tire having a convex portion and the conventional tire having a groove hardly occurs. Therefore, heat dissipation is not hindered by the stay.
  • the tire 302 is extremely excellent in durability.
  • the tire 302 since the temperature rise is suppressed by the uneven pattern, even if the support layer 316 is thin, the tire 302 can run for a long time in a punctured state.
  • the light weight of the tire 302 is achieved by the thin support layer 316.
  • the thin support layer 316 suppresses rolling resistance.
  • the tire 302 that is lightweight and has low rolling resistance contributes to low fuel consumption of the vehicle. Furthermore, an excellent ride comfort is also achieved by the thin support layer 316.
  • the rotating tire 302 there is a zone that greatly contributes to heat dissipation.
  • a zone that greatly contributes to heat dissipation is determined. Is done.
  • the virtual air flow direction A1 (see FIG. 21) is determined so as to substantially coincide with the combined flow direction in this zone. In other words, a specific direction is determined.
  • the distance D (see FIG. 22) of the axis Sg is preferably 2 mm or more and 70 mm or less. Since air sufficiently flows into the element 362 having the distance D of 2 mm or more, sufficient turbulence is generated. Due to this element 362, the temperature rise of the tire 302 is suppressed. In this respect, the distance D is more preferably 4 mm or more, and particularly preferably 6 mm or more. In the tire 302 having the element 362 having the distance D of 70 mm or less, turbulent flow can occur at a number of locations. Furthermore, in the tire 302 having the element 362 whose distance D is 70 mm or less, the surface area of the side surface is large. Due to the large surface area, heat dissipation from the tire 302 is promoted.
  • the distance D is more preferably 50 mm or less, and particularly preferably 30 mm or less.
  • the tire 302 may include two or more elements 362 having different distances D from each other.
  • the depth De is a distance between the deepest portion 370 of the element 362 and the axis Sg.
  • the depth De is preferably 0.2 mm or greater and 7 mm or less.
  • the depth De is more preferably equal to or greater than 0.5 mm, and particularly preferably equal to or greater than 1.0 mm.
  • the air hardly stays in the deepest portion 370.
  • the sidewall 308, the clinch portion 310, etc. have sufficient thickness.
  • the depth De is more preferably 4 mm or less, and particularly preferably 3.0 mm or less.
  • the tire 302 may include two or more elements having different depths De.
  • the angle ⁇ of the first slope surface 366 is preferably 5 ° or more and 40 ° or less.
  • the element 362 having an angle ⁇ of 5 ° or more has a sufficient depth De.
  • the angle ⁇ is more preferably 10 ° or more, and particularly preferably 15 ° or more.
  • the angle ⁇ is more preferably 35 ° or less, and particularly preferably 30 ° or less.
  • the angle ⁇ of the second slope surface 368 is preferably 50 ° or more and 85 ° or less.
  • the angle ⁇ is more preferably 55 ° or more, and particularly preferably 60 ° or more.
  • the turbulent flow is hardly separated.
  • the angle ⁇ is more preferably 80 ° or less, and particularly preferably 75 ° or less.
  • the difference ( ⁇ ) is preferably 5 ° to 80 °, more preferably 10 ° to 75 °, and particularly preferably 15 ° to 70 °.
  • the volume of the element 362 is preferably 1.0 mm 3 or more and 400 mm 3 or less.
  • the volume is more preferably 1.5 mm 3 or more, 2.0 mm 3 or more is particularly preferable.
  • the volume is more preferably 300 mm 3 or less, particularly preferably 250 mm 3 or less.
  • the total value of the volume of all the elements 362, 300 mm 3 or more 5000000Mm 3 or less In the tire 302 having a total value of 300 mm 3 or more, sufficient heat dissipation is performed. From this viewpoint, the total value is more preferably 600 mm 3 or more, 800 mm 3 or more is particularly preferable. In the tire 302 having a total value of 5000000 mm 3 or less, the sidewall 308, the clinch portion 310, and the like have sufficient rigidity. From this viewpoint, the volume is more preferably 1000000Mm 3 or less, 500000Mm 3 or less is particularly preferred.
  • the area of the element 362 is preferably 3 mm 2 or more and 4000 mm 2 or less. In the element 362 having an area of 3 mm 2 or more, sufficient turbulence is generated. From this viewpoint, the area is more preferably 12 mm 2 or more, 20 mm 2 or more is particularly preferable. In the tire 302 in which the area of the element 362 is 4000 mm 2 or less, the sidewall 308, the clinch portion 310, and the like have sufficient strength. In this respect, the area is more preferably equal to or less than 2000 mm 2 and particularly preferably equal to or less than 1300 mm 2 . In the present invention, the area of the element 362 means the area of a region surrounded by the outline of the element 362.
  • the total number of elements 362 is preferably 50 or more and 5000 or less. In the tire 302 having a total number of 50 or more, turbulent flow can occur at a number of locations. In this respect, the total number is more preferably 100 or more, and particularly preferably 150 or more. In a tire 302 with a total number of 5000 or less, the individual elements 362 can have a sufficient size. In this respect, the total number is more preferably equal to or less than 2000, and particularly preferably equal to or less than 1000. The total number and the pattern of the elements 362 can be appropriately determined according to the size of the tire 302 and the area of the side portion.
  • the element 362 having the above distance, shape, and total number exerts its effect on the tires 302 of various sizes.
  • the passenger car tire 302 having a width of 100 mm or more and 350 mm or less, a flatness ratio of 30% or more and 100% or less, and a rim diameter of 10 inches or more and 25 inches or less, the element 362 is particularly effective.
  • FIG. 24 is a cross-sectional view showing a part of a tire according to still another embodiment of the present invention.
  • two elements 376 are shown.
  • the structure of the tire other than the element 376 is equivalent to that of the tire 302 shown in FIG.
  • this element 376 has a first slope surface 378 and a second slope surface 380.
  • the inclination angle of the second slope surface 380 is larger than the inclination angle of the first slope surface 378.
  • the second slope surface 380 generates a sufficient turbulent flow. On the first slope surface 378, turbulent separation is unlikely to occur.
  • This tire has a land 382 between two elements 376.
  • the land 382 has a width W.
  • the turbulent flow generated on the second slope surface 380 moves over the land 382 and moves to the first slope surface 378 of the adjacent element 376. Since the land 382 is flat, turbulent flow separation at the land 382 is unlikely to occur. This tire is difficult to heat up.
  • Example 1 A tire having the dimples shown in FIGS. 2 to 4 was obtained.
  • the dimple specifications are as follows.
  • the size of this tire is “245 / 40R18”.
  • Example 2 to 5 Tires of Examples 2 to 5 were obtained in the same manner as Example 1 except that the length Li and the angle ⁇ were as shown in Table 1 below.
  • Example 6 A tire of Example 6 was obtained in the same manner as Example 1 except that the dimple specifications were as follows.
  • Comparative Example 1 A tire of Comparative Example 1 was obtained in the same manner as in Example 1 except that the dimple specifications were as follows.
  • Comparative Example 2 A tire of Comparative Example 2 was obtained in the same manner as Example 1 except that no dimples were provided.
  • Example 7 A tire provided with the dimples shown in FIGS. 8 to 11 was obtained.
  • the dimple specifications are as follows.
  • Example 8 to 10 Tires of Examples 8 to 10 were obtained in the same manner as Example 7 except that the angle ⁇ was set as shown in Table 2 below.
  • Example 11 and Comparative Example 3 Tires of Example 11 and Comparative Example 3 were obtained in the same manner as Example 7 except that the angles ⁇ and ⁇ were set as shown in Table 2 below.
  • the dimple of the tire according to Comparative Example 3 is not an offset type.
  • Comparative Example 2 A tire of Comparative Example 4 was obtained in the same manner as Example 7 except that no dimples were provided.
  • Example 12 A tire provided with the dimples shown in FIGS. 13 to 16 was obtained.
  • the dimple specifications are as follows.
  • the size of this tire is “245 / 40R18”.
  • Example 13 to 14 and Comparative Example 5 Tires of Examples 13 to 14 and Comparative Example 5 were obtained in the same manner as Example 12 except that the dimple specifications were as shown in Table 3 below.
  • Comparative Example 6 A tire of Comparative Example 6 was obtained in the same manner as Example 12 except that no dimples were provided.
  • Example 15 A tire having the elements shown in FIGS. 20 to 22 was obtained.
  • the element specifications are as follows. Angle ⁇ : 20 ° Angle ⁇ : 70 ° Angle ⁇ : 45 ° Depth De: 2mm The size of this tire is “245 / 40R18”.
  • Example 16 to 19 and Comparative Example 7 Tires of Examples 16 to 19 and Comparative Example 7 were obtained in the same manner as Example 15 except that the angles ⁇ and ⁇ were set as shown in Table 4 below.
  • Example 20 A tire of Example 20 was obtained in the same manner as Example 15 except that the angle ⁇ was set as shown in Table 4 below.
  • Comparative Example 8 A tire of Comparative Example 8 was obtained in the same manner as Example 15 except that the uneven pattern was not provided.
  • the heat dissipation effect by dimples can be obtained with tires other than run-flat tires.
  • the pneumatic tire according to the present invention can be mounted on various vehicles.

Abstract

【課題】耐久性に優れた空気入りタイヤ2の提供。 【解決手段】タイヤ2は、トレッド4、ウイング6、サイドウォール8、クリンチ部10、ビード12、カーカス14、支持層16、ベルト18及びバンド20を備えている。サイドウォール8は、多数のディンプル62を備えている。ディンプル62に空気が流入するとき、乱流が生じる。この乱流により、タイヤ2の熱が大気へと放出される。それぞれのディンプル62の表面形状は、楕円である。楕円の長軸の長さLaは、短軸の長さLiよりも大きい。比(La/Li)は、1.2/1以上5/1以下である。ディンプル62の深さは、0.2mm以上7mm以下である。クリンチ部10がディンプル62を備えてもよい。

Description

空気入りタイヤ
 本発明は、空気入りタイヤに関する。詳細には、本発明は、空気入りタイヤのサイド面の改良に関する。
 サイドウォールの内側に支持層を備えたランフラットタイヤが開発され、普及しつつある。この支持層には、高硬度な架橋ゴムが用いられている。このランフラットタイヤは、サイド補強型と称されている。このタイプのランフラットタイヤでは、パンクによって内圧が低下すると、支持層によって荷重が支えられる。この支持層は、パンク状態でのタイヤの撓みを抑制する。パンク状態で走行が継続されても、高硬度な架橋ゴムが、支持層での発熱を抑制する。このランフラットタイヤでは、パンク状態でも、ある程度の距離の走行が可能である。このランフラットタイヤが装着された自動車には、スペアタイヤの常備は不要である。このランフラットタイヤの採用により、不便な場所でのタイヤ交換が避けられうる。
 パンク状態にあるランフラットタイヤの走行が継続されると、支持層の変形と復元とが繰り返される。この繰り返しにより支持層で熱が生じ、タイヤが高温に達する。この熱は、タイヤを構成するゴム部材の破損及びゴム部材間の剥離を招来する。破損及び剥離が生じたタイヤでは、走行は不可能である。パンク状態での長時間の走行が可能なランフラットタイヤが望まれている。換言すれば、熱に起因する破損及び剥離が生じにくいランフラットタイヤが望まれている。
 特開2007-50854公報には、サイドウォールの表面に溝を備えたランフラットタイヤが開示されている。この溝を備えたサイドウォールの表面積は、大きい。従って、このタイヤの大気との接触面積は、大きい。大きな接触面積により、タイヤから大気への放熱が促進される。このタイヤは、昇温しにくい。
 国際公開WO2007/32405公報には、サイド部に凸部を備えたランフラットタイヤが開示されている。この凸部は、タイヤの周りに乱流を発生させる。この乱流により、タイヤから大気への放熱が促進される。このタイヤは、昇温しにくい。
特開2007-50854公報 国際公開WO2007/32405公報
 特開2007-50854公報に開示されたランフラットタイヤでは、大きな表面積によって放熱が促進されるが、その効果は限定的である。国際公開WO2007/32405公報に開示されたランフラットタイヤでは、凸部の下流において空気が滞留するので、この凸部の下流における放熱は不十分である。不十分な放熱は、タイヤの耐久性を阻害する。従来のランフラットタイヤの、パンク状態での耐久性には、改善の余地がある。通常状態(タイヤに正規内圧が負荷された状態)におけるタイヤの耐久性にも、改善の余地がある。
 本発明の目的は、耐久性に優れた空気入りタイヤの提供にある。
 本発明に係る空気入りタイヤは、
 その外面がトレッド面をなすトレッド、
 それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォール、
 それぞれが上記サイドウォールよりも半径方向略内側に位置する一対のビード、
並びに
 上記トレッド及びサイドウォールに沿っており、両ビードの間に架け渡されたカーカス
を備える。このタイヤは、サイド面に多数のディンプルを有する。それぞれのディンプルの表面形状は、長円である。
 好ましくは、ディンプルの表面形状は、楕円である。好ましくは、ディンプルは、平坦な底面を有する。好ましくは、ディンプルは、スロープ面を備える。このスロープ面は、ディンプルのエッジから底面に至る。このスロープ面は、タイヤの半径方向に対して傾斜している。
 好ましくは、このタイヤは、サイドウォールの軸方向内側に位置する支持層をさらに備える。
 他の観点によれば、本発明に係る空気入りタイヤは、
 その外面がトレッド面をなすトレッド、
 それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォール、
 それぞれが上記サイドウォールよりも半径方向略内側に位置する一対のビード、
並びに
 上記トレッド及びサイドウォールに沿っており、両ビードの間に架け渡されたカーカス
を備える。このタイヤは、サイド面に、ランドとこのランドから凹陥する多数のディンプルとを有する。それぞれのディンプルは、底面とスロープ面とを有する。このスロープ面は、ディンプルのエッジから底面に至っている。仮想された空気の流れ方向の上流における、ランドに対するスロープ面の角度は、この流れ方向の下流における、ランドに対するスロープ面の角度よりも小さい。
 本発明の一実施形態によれば、ディンプルの表面形状は円であり、底面の輪郭も円である。好ましくは、底面の円の中心は、表面形状の円の中心に対し、仮想された空気の流れ方向の下流に位置する。好ましくは、底面は平坦である。
 好ましくは、このタイヤは、サイドウォールの軸方向内側に位置する支持層をさらに備える。
 さらに他の観点によれば、本発明に係る空気入りタイヤは、
 その外面がトレッド面をなすトレッド、
 それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォール、
 それぞれが上記サイドウォールよりも半径方向略内側に位置する一対のビード、
並びに
 上記トレッド及びサイドウォールに沿っており、両ビードの間に架け渡されたカーカス
を備える。このタイヤは、サイド面に多数のディンプルを有する。それぞれのディンプルの表面形状は、多角形である。
 好ましくは、ディンプルの表面形状は正多角形である。好ましくは、ディンプルの表面形状は正三角形、正方形又は正六角形である。好ましくは、ディンプルの1つの辺は、この辺と隣接する他のディンプルの辺と実質的に平行に配置される。
 好ましくは、ディンプルは、平坦な底面を有する。好ましくは、ディンプルは、スロープ面を備える。このスロープ面は、ディンプルのエッジから底面に至る。このスロープ面は、タイヤの半径方向に対して傾斜している。
 好ましくは、このタイヤは、サイドウォールの軸方向内側に位置する支持層をさらに備える。
 さらに他の観点によれば、本発明に係る空気入りタイヤは、
 その外面がトレッド面をなすトレッド、
 それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォール、
 それぞれが上記サイドウォールよりも半径方向略内側に位置する一対のビード、
並びに
 上記トレッド及びサイドウォールに沿っており、両ビードの間に架け渡されたカーカス
を備える。このタイヤのサイド面には、凹凸模様が形成されている。この凹凸模様は、その軸方向が特定方向に沿う多数の要素からなる。それぞれの要素は、特定方向に沿って下向きに傾斜する第一スロープ面と、特定方向に沿って上向きに傾斜する第二スロープ面とを有する。第二スロープ面の傾斜角度βは、第一スロープ面の傾斜角度αよりも大きい。
 好ましくは、傾斜角度βと傾斜角度αとの差(β-α)は、5°以上80°以下である。好ましくは、要素は、円柱の一部である形状を有する。
 本発明に係るタイヤでは、ディンプルにより、サイド面の大きな表面積が達成される。大きな表面積は、タイヤから大気への放熱を促進する。このディンプルはさらに、タイヤの周囲に乱流を発生させる。この乱流により、タイヤから大気への放熱が促進される。このタイヤでは、空気の滞留が生じにくい。このタイヤは、昇温しにくい。このタイヤでは、熱に起因するゴム部材の破損及びゴム部材間の剥離が生じにくい。このタイヤは、耐久性に優れる。
図1は、本発明の一実施形態に係る空気入りタイヤの一部が示された断面図である。 図2は、図1のタイヤのサイドウォールの一部が示された拡大正面図である。 図3は、図2のサイドウォールの一部が示された拡大正面図である。 図4は、図3のIV-IV線に沿った断面図である。 図5は、本発明の他の実施形態に係るタイヤの一部が示された断面図である。 図6は、本発明のさらに他の実施形態に係るタイヤの一部が示された断面図である。 図7は、本発明のさらに他の実施形態に係るタイヤの一部が示された正面図である。 図8は、本発明のさらに他の実施形態に係るタイヤのサイドウォールの一部が示された正面図である。 図9は、図8のサイドウォールの一部が示された拡大正面図である。 図10は、図9のX-X線に沿った断面図である。 図11は、図8のサイドウォールの一部が示された拡大断面図である。 図12は、図8のタイヤが示された模式的正面図である。 図13は、本発明のさらに他の実施形態に係るタイヤのサイドウォールの一部が示された正面図である。 図14は、図13のサイドウォールの一部が示された拡大正面図である。 図15は、図14のXV-XV線に沿った断面図である。 図16は、図13のサイドウォールの一部が示された拡大正面図である。 図17は、本発明のさらに他の実施形態に係るタイヤの一部が示された正面図である。 図18は、本発明のさらに他の実施形態に係るタイヤの一部が示された正面図である。 図19は、本発明のさらに他の実施形態に係る空気入りタイヤの一部が示された断面図である。 図20は、図19のタイヤのサイドウォールの一部が示された拡大正面図である。 図21は、図20のサイドウォールの一部が示された拡大正面図である。 図22は、図21のXXII-XXII線に沿った断面図である。 図23は、図20のサイドウォールの一部が示された拡大断面図である。 図24は、本発明のさらに他の実施形態に係る空気入りタイヤの一部が示された断面図である。
 以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。
 図1には、パンク状態で走行しうるランフラットタイヤ2が示されている。図1において、上下方向が半径方向であり、左右方向が軸方向であり、紙面との垂直方向が周方向である。このタイヤ2は、図1中の一点鎖線Eqを中心としたほぼ左右対称の形状を呈する。この一点鎖線Eqは、タイヤ2の赤道面を表す。この図1において両矢印Hで示されているのは、基準線BL(後に詳説)からのタイヤ2の高さである。
 このタイヤ2は、トレッド4、ウイング6、サイドウォール8、クリンチ部10、ビード12、カーカス14、支持層16、ベルト18、バンド20、インナーライナー22及びチェーファー24を備えている。ベルト18及びバンド20は、補強層を構成している。ベルト18のみから、補強層が構成されてもよい。バンド20のみから、補強層が構成されてもよい。
 トレッド4は、半径方向外向きに凸な形状を呈している。トレッド4は、路面と接地するトレッド面26を形成する。トレッド面26には、溝28が刻まれている。この溝28により、トレッドパターンが形成されている。トレッド4は、キャップ層30とベース層32とを有している。キャップ層30は、架橋ゴムからなる。ベース層32は、他の架橋ゴムからなる。キャップ層30は、ベース層32の半径方向外側に位置している。キャップ層30は、ベース層32に積層されている。
 サイドウォール8は、トレッド4の端から半径方向略内向きに延びている。このサイドウォール8は、架橋ゴムからなる。サイドウォール8は、カーカス14の外傷を防止する。サイドウォール8は、リブ34を備えている。リブ34は、軸方向外側に向かって突出している。パンク状態での走行のとき、このリブ34がリムのフランジ36と当接する。この当接により、ビード12の変形が抑制されうる。変形が抑制されたタイヤ2は、パンク状態での耐久性に優れる。
 クリンチ部10は、サイドウォール8の半径方向略内側に位置している。クリンチ部10は、軸方向において、ビード12及びカーカス14よりも外側に位置している。クリンチ部10は、リムのフランジ36と当接している。
 ビード12は、サイドウォール8の半径方向内側に位置している。ビード12は、コア38と、このコア38から半径方向外向きに延びるエイペックス40とを備えている。コア38はリング状であり、巻回された非伸縮性ワイヤー(典型的にはスチール製ワイヤー)を含む。エイペックス40は、半径方向外向きに先細りである。エイペックス40は、高硬度な架橋ゴムからなる。
 図1において矢印Haで示されているのは、基準線BLからのエイペックス40の高さである。この基準線BLは、コア38の、半径方向における最も内側地点を通過する。この基準線BLは、軸方向に延びる。タイヤ2の高さHに対するエイペックス40の高さHaの比(Ha/H)は、0.1以上0.7以下が好ましい。比(Ha/H)が0.1以上であるエイペックス40は、パンク状態において車重を支持しうる。このエイペックス40は、パンク状態でのタイヤ2の耐久性に寄与する。この観点から、比(Ha/H)は0.2以上がより好ましい。比(Ha/H)が0.7以下であるタイヤ2は、乗り心地性に優れる。この観点から、比(Ha/H)は0.6以下がより好ましい。
 カーカス14は、カーカスプライ42からなる。カーカスプライ42は、両側のビード12の間に架け渡されており、トレッド4及びサイドウォール8に沿っている。カーカスプライ42は、コア38の周りを、軸方向内側から外側に向かって折り返されている。この折り返しにより、カーカスプライ42には、主部44と折り返し部46とが形成されている。折り返し部46の端48は、ベルト18の直下にまで至っている。換言すれば、折り返し部46はベルト18とオーバーラップしている。このカーカス14は、いわゆる「超ハイターンアップ構造」を有する。超ハイターンアップ構造を有するカーカス14は、パンク状態におけるタイヤ2の耐久性に寄与する。このカーカス14は、パンク状態での耐久性に寄与する。
 カーカスプライ42は、並列された多数のコードとトッピングゴムとからなる。各コードが赤道面に対してなす角度の絶対値は、45°から90°、さらには75°から90°である。換言すれば、このカーカス14はラジアル構造を有する。コードは、有機繊維からなる。好ましい有機繊維としては、ポリエステル繊維、ナイロン繊維、レーヨン繊維、ポリエチレンナフタレート繊維及びアラミド繊維が例示される。
 支持層16は、サイドウォール8の軸方向内側に位置している。支持層16は、カーカス14とインナーライナー22とに挟まれてる。支持層16は、半径方向において、内向きに先細りであり外向きにも先細りである。この支持層16は、三日月に類似の形状である。支持層16は、高硬度な架橋ゴムからなる。タイヤ2がパンクしたとき、この支持層16が荷重を支える。この支持層16により、パンク状態であっても、タイヤ2はある程度の距離を走行しうる。このランフラットタイヤ2は、サイド補強型である。タイヤ2が、図1に示された支持層16の形状とは異なる形状を有する支持層を備えてもよい。
 カーカス14のうち、支持層16とオーバーラップしている部分は、インナーライナー22と離れている。換言すれば、支持層16の存在により、カーカス14は湾曲されられている。パンク状態のとき、支持層16には圧縮荷重がかかり、カーカス14のうち支持層16と近接している領域には引張り荷重がかかる。支持層16はゴム塊なので、圧縮荷重に十分に耐えうる。カーカス14のコードは、引張り荷重に十分に耐えうる。支持層16とカーカスコードとにより、パンク状態でのタイヤ2の縦撓みが抑制される。縦撓みが抑制されたタイヤ2は、パンク状態での操縦安定性に優れる。
 パンク状態での縦歪みの抑制の観点から、支持層16の硬度は60以上が好ましく、65以上がより好ましい。通常状態(タイヤ2に正規内圧が負荷された状態)の乗り心地性の観点から、硬度は90以下が好ましく、80以下がより好ましい。硬度は、「JIS K6253」の規定に準じ、タイプAのデュロメータによって測定される。図1に示された断面にこのデュロメータが押し付けられ、硬度が測定される。測定は、23℃の温度下でなされる。
 支持層16の下端50は、エイペックス40の上端52よりも、半径方向において内側に位置している。換言すれば、支持層16はエイペックス40とオーバーラップしている。図1において矢印L1で示されているのは、支持層16の下端50とエイペックス40の上端52との半径方向距離である。距離L1は、5mm以上50mm以下が好ましい。距離L1がこの範囲であるタイヤ2では、均一な剛性分布が得られる。距離L1は10mm以上がより好ましい。距離L1は40mm以下がより好ましい。
 支持層16の上端54は、ベルト18の端56よりも軸方向において内側に位置している。換言すれば、支持層16はベルト18とオーバーラップしている。図1において矢印L2で示されているのは、支持層16の上端54とベルト18の端56との軸方向距離である。距離L2は、2mm以上50mm以下が好ましい。距離L2がこの範囲であるタイヤ2では、均一な剛性分布が得られる。距離L2は5mm以上がより好ましい。距離L1は40mm以下がより好ましい。
 パンク状態での縦歪みの抑制の観点から、支持層16の最大厚みは3mm以上が好ましく、4mm以上がより好ましく、7mm以上が特に好ましい。タイヤ2の軽量の観点から、最大厚みは、25mm以下が好ましく、20mm以下がより好ましい。
 ベルト18は、カーカス14の半径方向外側に位置している。ベルト18は、カーカス14と積層されている。ベルト18は、カーカス14を補強する。ベルト18は、内側層58及び外側層60からなる。図1から明らかなように、内側層58の幅は、外側層60の幅よりも若干大きい。図示されていないが、内側層58及び外側層60のそれぞれは、並列された多数のコードとトッピングゴムとからなる。各コードは、赤道面に対して傾斜している。傾斜角度の絶対値は、通常は10°以上35°以下である。内側層58のコードの赤道面に対する傾斜方向は、外側層60のコードの赤道面に対する傾斜方向とは逆である。コードの好ましい材質は、スチールである。コードに、有機繊維が用いられてもよい。ベルト18の軸方向幅は、タイヤ2の最大幅の0.85倍以上1.0倍以下が好ましい。ベルト18が、3以上の層を備えてもよい。
 バンド20は、ベルト18を覆っている。図示されていないが、このバンド20は、コードとトッピングゴムとからなる。コードは、螺旋状に巻かれている。このバンド20は、いわゆるジョイントレス構造を有する。コードは、実質的に周方向に延びている。周方向に対するコードの角度は、5°以下、さらには2°以下である。このコードによりベルト18が拘束されるので、ベルト18のリフティングが抑制される。コードは、有機繊維からなる。好ましい有機繊維としては、ナイロン繊維、ポリエステル繊維、レーヨン繊維、ポリエチレンナフタレート繊維及びアラミド繊維が例示される。
 タイヤ2が、バンド20に代えて、ベルト18の端の近傍のみを覆うエッジバンドを備えてもよい。タイヤ2が、バンド20と共に、エッジバンドを備えてもよい。
 インナーライナー22は、カーカス14の内周面に接合されている。インナーライナー22は、架橋ゴムからなる。インナーライナー22には、空気遮蔽性に優れたゴムが用いられている。インナーライナー22は、タイヤ2の内圧を保持する。
 図1に示されるように、このタイヤ2は、そのサイド面に多数のディンプル62を備えている。本発明においてサイド面とは、タイヤ2の外面のうち軸方向から目視されうる領域を意味する。典型的には、ディンプル62は、サイドウォール8の外面又はクリンチ部10の外面に形成される。
 図2は、図1のタイヤ2のサイドウォール8の一部が示された拡大正面図である。図2には、多数のディンプル62が示されている。それぞれのディンプル62の表面形状は、長円(elongated circle)である。具体的には、この表面形状は楕円である。本発明において表面形状とは、ディンプル62が無限遠から見られたときのディンプル62の輪郭の形状を意味する。楕円は、2つの定点を有する。ディンプル62の輪郭上の全ての点において、第一の定点からの距離と、第二の定点からの距離との和は、一定である。
 図3は、図2のサイドウォール8の一部が示された拡大正面図である。図4は、図3のIV-IV線に沿った断面図である。図3における上下方向は、タイヤ2の半径方向である。図4に示されるように、ディンプル62は凹陥している。サイド面のうちディンプル62以外の領域は、ランド64である。
 ディンプル62を有するサイド面の表面積は、ディンプル62がないと仮定されたときのサイド面の表面積よりも大きい。このタイヤ2の大気との接触面積は、大きい。大きな接触面積により、タイヤ2から大気への放熱が促進される。
 図4に示されるように、ディンプル62は、スロープ面66と底面68とを備えている。スロープ面66は、リング状である。スロープ面66は、タイヤ2の半径方向に対して傾斜している。スロープ面66は、ディンプル62のエッジEdから底面68にまで至っている。底面68は、平坦である。
 図3において、タイヤ2の周りの空気の流れFが二点鎖線で示されている。タイヤ2は、走行時に回転する。タイヤ2が装着された車両は、進行する。タイヤ2の回転と車両の進行とにより、ディンプル62を横切って空気が流れる。空気は、ランド64に沿って流れ、スロープ面66に沿って流れ、底面68へと流入する。この空気はディンプル62の中を流れ、下流のスロープ面66に沿って流れ、ディンプル62から流出する。空気はさらに、下流のランド64に沿って流れる。
 図3に示されるように、ディンプル62に流入するとき、空気の流れに渦が生じる。換言すれば、ディンプル62の入口において乱流が生じる。パンク状態においてタイヤ2の走行が継続されると、支持層16の変形と復元とが繰り返される。この繰り返しにより、支持層16で熱が生じる。この熱は、サイドウォール8及びクリンチ部10に伝導する。ディンプル62において生じる乱流は、この熱の大気への放出を促進する。このタイヤ2では、熱によるゴム部材の破損及びゴム部材間の剥離が抑制される。このタイヤ2は、パンク状態での長時間の走行が可能である。乱流は、通常状態での放熱にも寄与する。ディンプル62は、通常状態でのタイヤ2の耐久性にも寄与する。運転者の不注意により、内圧が正規値よりも小さい状態で走行がなされることがある。この場合の耐久性にも、ディンプル62は寄与しうる。
 渦を形成した空気は、ディンプル62の内部において、スロープ面66及び底面68に沿って流れる。この空気は、円滑にディンプル62から流出する。平坦な底面68は、円滑な流出を促す。このタイヤ2では、凸部を有する従来のタイヤ及び溝を有する従来のタイヤに見られる滞留が生じにくい。従って、滞留によって放熱が阻害されることがない。このタイヤ2は、耐久性に極めて優れる。
 このタイヤ2では、ディンプル62によって昇温が抑制されるので、支持層16が薄くても、パンク状態での長時間の走行が可能である。薄い支持層16により、タイヤ2の軽量が達成される。薄い支持層16により、転がり抵抗が抑制される。軽量でかつ転がり抵抗が小さなタイヤ2は、車両の低燃費に寄与する。さらに、薄い支持層16により、優れた乗り心地も達成される。
 図3において、符号70で示されている線分は、長軸(major axis)である。長軸70は、ディンプル62の輪郭内に画かれうる最長の線分である。図3において、符号72で示されている線分は、短軸(minor axis)である。短軸72は、ディンプル62の輪郭内に画かれかつ長軸70と直交する線分の中で最長のものである。長軸70の長さLaは、短軸72の長さLiよりも大きい。
 本発明において「長円」とは、長軸70と短軸72とを備え、かつ頂点を有さない図形を意味する。好ましくは、長軸70の中心において、この長軸70に短軸72が交差する。好ましくは、短軸72の中心において、この短軸72に長軸70が交差する。好ましくは、長円の輪郭は、内向きに凸な部位を有さない。厳密には楕円ではないが、楕円に近似した図形は、長円の概念に含まれる。後述される、陸上競技場のトラックに類似の形状も、長円の概念に含まれる。表面形状が楕円であるディンプル62が、最も好ましい。
 図3において符号θで示されているのは、タイヤ2の半径方向に対する長軸70の角度である。角度θは、-90°以上90°未満で設定される。角度θが-90°であるとき、長軸70はタイヤ2の周方向と一致する。角度θが0°であるとき、長軸70はタイヤ2の半径方向と一致する。タイヤ2の回転と車両の進行とによって生じる空気の流れの方向に応じ、角度θが決定される。角度θが適正であるディンプル62により、タイヤ2からの放熱が促進される。
 長円は、方向性を有する。輪郭が長円であるディンプル62を備えたパターンでは、周方向におけるディンプル間ピッチを変化させることなく、半径方向におけるディンプル間ピッチを変化させることができる。さらにこのパターンでは、半径方向におけるディンプル間ピッチを変化させることなく、周方向におけるディンプル間ピッチを変化させることができる。このディンプルパターンでは、円形ディンプルのみからなるパターンに比べ、ディンプル間ピッチの自由度が高い。適正なパターンにより、タイヤ2からの放熱が促進される。
 パターンの自由度の観点から、比(La/Li)は1.2/1以上が好ましく、1.5/1以上がより好ましく、1.8/1以上が特に好ましい。空気の滞留が抑制されうるとの観点から、比(La/Li)は5/1以下が好ましく、3/1以下がより好ましく、2/1以下が特に好ましい。タイヤ2が、比(La/Li)の異なる2種以上のディンプルを有してもよい。
 長さLaは、3mm以上70mm以下が好ましい。長さLaが3mm以上であるディンプル62には十分に空気が流入するので、十分に乱流が発生する。このディンプル62により、タイヤ2の昇温が抑制される。この観点から、長さLaは4mm以上がより好ましく、6mm以上が特に好ましい。長さLaが70mm以下であるディンプル62を有するタイヤ2では、多数の箇所で乱流が発生しうる。さらに、長さLaが70mm以下であるディンプル62を有するタイヤ2では、サイド面の表面積が大きい。大きな表面積により、タイヤ2からの放熱が促進される。このディンプル62により、タイヤ2の昇温が抑制される。この観点から、長さLaは50mm以下がより好ましく、30mm以下が特に好ましい。タイヤ2が、長さLaの異なる2種以上のディンプルを有してもよい。
 長さLiは、2mm以上55mm以下が好ましい。長さLiが2mm以上であるディンプル62には十分に空気が流入するので、十分に乱流が発生する。このディンプル62により、タイヤ2の昇温が抑制される。この観点から、長さLiは3mm以上がより好ましい。長さLiが55mm以下であるディンプル62を有するタイヤ2では、多数の箇所で乱流が発生しうる。さらに、長さLiが55mm以下であるディンプル62を有するタイヤ2では、サイド面の表面積が大きい。大きな表面積により、タイヤ2からの放熱が促進される。このディンプル62により、タイヤ2の昇温が抑制される。この観点から、長さLiは40mm以下がより好ましく、20mm以下が特に好ましい。タイヤ2が、長さLiの異なる2種以上のディンプルを有してもよい。
 図4における二点鎖線Sgは、ディンプル62の一方のエッジEdから他方のエッジEdまで引かれた線分である。図4において矢印Deで示されているのは、ディンプル62の深さである。深さDeは、ディンプル62の最深部と線分Sgとの距離である。深さDeは、0.2mm以上7mm以下が好ましい。深さDeが0.2mm以上であるディンプル62では、十分な乱流が生じる。この観点から、深さDeは0.5mm以上がより好ましく、1.0mm以上が特に好ましい。深さDeが7mm以下であるディンプル62では、底において空気が滞留しにくい。さらに、深さDeが7mm以下であるタイヤ2では、サイドウォール8、クリンチ部10等が十分な厚みを有する。この観点から、深さDeは4mm以下がより好ましく、3.0mm以下が特に好ましい。タイヤ2が、深さDeの異なる2種以上のディンプルを有してもよい。
 ディンプル62の容積は、1.0mm以上400mm以下が好ましい。容積が1.0mm以上であるディンプル62では、十分な乱流が生じる。この観点から、容積は1.5mm以上がより好ましく、2.0mm以上が特に好ましい。容積が400mm以下であるディンプル62では、底において空気が滞留しにくい。さらに、ディンプル62の容積が400mm以下であるタイヤ2では、サイドウォール8、クリンチ部10等が十分な剛性を有する。この観点から、容積は300mm以下がより好ましく、250mm以下が特に好ましい。
 全てのディンプル62の容積の合計値は、300mm以上5000000mm以下が好ましい。合計値が300mm以上であるタイヤ2では、十分な放熱がなされる。この観点から、合計値は600mm以上がより好ましく、800mm以上が特に好ましい。合計値が5000000mm以下であるタイヤ2では、サイドウォール8、クリンチ部10等が十分な剛性を有する。この観点から、容積は1000000mm以下がより好ましく、500000mm以下が特に好ましい。
 ディンプル62の面積は、3mm以上4000mm以下が好ましい。面積が3mm以上であるディンプル62では、十分な乱流が生じる。この観点から、面積は12mm以上がより好ましく、20mm以上が特に好ましい。ディンプル62の面積が4000mm以下であるタイヤ2では、サイドウォール8、クリンチ部10等が十分な強度を有する。この観点から、面積は2000mm以下がより好ましく、1300mm以下が特に好ましい。本発明においてディンプル62の面積は、ディンプル62の輪郭に囲まれた領域の面積を意味する。
 本発明においてディンプル62の占有率Yは、下記数式によって算出される。
 Y = (S1 / S2) * 100
この数式において、S1は基準領域に含まれるディンプル62の面積であり、S2はディンプル62がないと仮定されたときの基準領域の表面積である。基準領域は、サイド面のうち、基準線BLからの高さがタイヤ2高さHの20%以上80%以下である領域である。占有率Yは、10%以上85%以下が好ましい。占有率Yが10%以上であるタイヤ2では、十分な放熱がなされる。この観点から、占有率Yは30%以上がより好ましく、40%以上が特に好ましい。占有率Yが85%以下であるタイヤ2では、ランドが十分な耐摩耗性を有する。この観点から、占有率Yは80%以下がより好ましく、75%以下が特に好ましい。
 隣接するディンプル62同士の間のランドの幅(最小値)は、0.05mm以上20mm以下が好ましい。幅が0.05mm以上であるタイヤ2では、ランドが十分な耐摩耗性を有する。この観点から、幅は0.10mm以上がより好ましく、0.2mm以上が特に好ましい。幅が20mm以下であるタイヤ2では、多数の箇所で乱流が発生しうる。この観点から、幅は15mm以下がより好ましく、10mm以下が特に好ましい。
 ディンプル62の総数は、50個以上5000個以下が好ましい。総数が50個以上であるタイヤ2では、多数の箇所で乱流が発生しうる。この観点から、総数は100個以上がより好ましく、150個以上が特に好ましい。総数が5000個以下であるタイヤ2では、個々のディンプル62が十分なサイズを有しうる。この観点から、総数は2000個以下がより好ましく、1000個以下が特に好ましい。総数及びディンプル62のパターンは、タイヤ2のサイズ及びサイド部の面積に応じて適宜決定されうる。
 タイヤ2が、表面形状が長円であるディンプル62と共に、他の表面形状を有するディンプルを有してもよい。他の表面形状としては、円、多角形及び涙形(ティアドロップタイプ)が例示される。表面形状が長円であるディンプル62の数の、ディンプルの総数に対する比率は30%以上が好ましく、50%以上が特に好ましい。タイヤ2が、ディンプル62と共に凸部を有してもよい。
 図4に示されるように、ディンプル62の断面形状は台形である。このディンプル62では、深さDeの割には容積が大きい。従って、十分な容積と小さな深さDeとが両立されうる。小さな深さDeが設定されることにより、サイドウォール8、クリンチ部10等が、ディンプル62の直下において十分な厚みを有しうる。このディンプル62は、サイド面の剛性に寄与しうる。
 図4において符号αで示されているのは、スロープ面66の角度である。角度αは、10°以上70°以下が好ましい。角度αが10°以上であるディンプル62では、十分な容積と小さな深さDeとが両立されうる。この観点から、角度αは20°以上がより好ましく、25°以上が特に好ましい。角度αが70°以下であるディンプル62では、空気が円滑に流れる。この観点から、角度は60°以下がより好ましく、55°以下が特に好ましい。
 上記サイズ、形状及び総数を有するディンプル62は、種々のサイズのタイヤ2においてその効果を発揮する。幅が100mm以上350mm以下であり、偏平率が30%以上100%以下であり、リム径が10インチ以上25インチ以下である乗用車タイヤ2において、上記ディンプル62は特に効果を発揮する。
 このタイヤ2の製造では、複数のゴム部材がアッセンブリーされて、ローカバー(未加硫タイヤ)が得られる。このローカバーが、モールドに投入される。ローカバーの外面は、モールドのキャビティ面と当接する。ローカバーの内面は、ブラダー又は中子に当接する。ローカバーは、モールド内で加圧及び加熱される。加圧及び加熱により、ローカバーのゴム組成物が流動する。加熱によりゴムが架橋反応を起こし、タイヤ2が得られる。そのキャビティ面にピンプルを有するモールドが用いられることにより、タイヤ2にディンプル62が形成される。ディンプル62は、ピンプルの形状が反転した形状を有する。
 タイヤ2の各部位の寸法及び角度は、特に言及のない限り、タイヤ2が正規リムに組み込まれ、正規内圧となるようにタイヤ2に空気が充填された状態で測定される。測定時には、タイヤ2には荷重がかけられない。本明細書において正規リムとは、タイヤ2が依拠する規格において定められたリムを意味する。JATMA規格における「標準リム」、TRA規格における「Design Rim」、及びETRTO規格における「Measuring Rim」は、正規リムである。本明細書において正規内圧とは、タイヤ2が依拠する規格において定められた内圧を意味する。JATMA規格における「最高空気圧」、TRA規格における「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に掲載された「最大値」、及びETRTO規格における「INFLATION PRESSURE」は、正規内圧である。但し、乗用車タイヤ2の場合、内圧が180kPaの状態で、寸法及び角度が測定される。
 図5は、本発明の他の実施形態に係るタイヤの一部が示された断面図である。図5には、ディンプル74の近傍が示されている。このタイヤの、ディンプル74以外の構造は、図1に示されたタイヤ2のそれと同等である。
 このディンプル74の表面形状は、長円である。このディンプル74の断面形状は、円弧状である。このタイヤでは、ディンプル74からの空気の流出が円滑である。このディンプル74では、空気の滞留が抑制される。このタイヤでは、十分な放熱がなされる。
 図5において矢印Rで示されているのは、ディンプル74の曲率半径である。曲率半径Rは、3mm以上200mm以下が好ましい。曲率半径Rが3mm以上であるディンプル74では、空気が円滑に流れる。この観点から、曲率半径Rは5mm以上がより好ましく、7mm以上が特に好ましい。曲率半径Rが200mm以下であるディンプル74では、十分な容積が達成されうる。この観点から、曲率半径Rは100mm以下がより好ましく、50mm以下が特に好ましい。このディンプル74の長さLa、長さLi、比(La/Li)、深さDe、容積、面積等の仕様は、図3及び4に示されたディンプル62のそれらと同等である。
 図6は、本発明のさらに他の実施形態に係るタイヤの一部が示された断面図である。図6には、ディンプル76の近傍が示されている。このタイヤの、ディンプル76以外の構造は、図1に示されたタイヤ2のそれと同等である。
 このディンプル76の表面形状は、長円である。このディンプル76は、第一曲面78と第二曲面80とを備えている。第一曲面78は、リング状である。第二曲面80は、碗状である。図6において符号Pbで示されているのは、第一曲面78と第二曲面80との境界点である。第二曲面80は、境界点Pbにおいて、第一曲面78と接している。このディンプル76は、いわゆるダブルラジアスタイプである。このディンプル76の、長さLa、長さLi、比(La/Li)、深さDe、容積、面積等の仕様は、図3及び4に示されたディンプル62のそれらと同等である。
 図6において、矢印R1で示されているのは第一曲面78の曲率半径であり、矢印R2で示されているのは第二曲面80の曲率半径である。曲率半径R1は、曲率半径R2よりも小さい。曲率半径R1と曲率半径R2との比(R1/R2)は、0.1以上0.8以下が好ましい。比(R1/R2)が0.1以上であるディンプル76では、空気が円滑に流れる。この観点から、比(R1/R2)は0.2以上がより好ましく、0.3以上が特に好ましい。比(R1/R2)が0.8以下であるディンプル76では、十分な容積と小さな深さDeとが両立されうる。この観点から、比(R1/R2)は0.7以下がより好ましく、0.6以下が特に好ましい。
 図7は、本発明のさらに他の実施形態に係るタイヤの一部が示された正面図である。図7には、ディンプル82の近傍が示されている。このタイヤの、ディンプル82以外の構造は、図1に示されたタイヤ2のそれと同等である。
 このディンプル82の表面形状は、長円である。このディンプル82の輪郭は、第一半円84、第一直線86、第二半円88及び第二直線90からなる。第一直線86は、点P1において第一半円84と接している。第二半円88は、点P2において第一直線86と接している。第二直線90は、点P3において第二半円88と接している。第一半円84は、点P4において第二直線90と接している。このディンプル82の表面形状は、陸上競技場のトラックに類似している。
 図7において、符号92で示された線分は長軸であり、符号94で示された線分は短軸である。長軸92の長さLaは、短軸94の長さLiよりも大きい。このディンプル82は、方向性を有する。このディンプル82を有するパターンでは、ディンプル間ピッチの自由度が高い。適正なパターンにより、タイヤからの放熱が促進される。
 パターンの自由度の観点から、比(La/Li)は1.2/1以上が好ましく、1.5/1以上がより好ましく、1.8/1以上が特に好ましい。多数の箇所で乱流が発生しうるとの観点から、比(La/Li)は5/1以下が好ましく、3.0/1以下がより好ましく、2.5/1以下が特に好ましい。タイヤが、比(La/Li)の異なる2種以上のディンプルを有してもよい。
 長さLaは、3mm以上70mm以下が好ましい。長さLaが3mm以上であるディンプル82には十分に空気が流入するので、十分に乱流が発生する。このディンプル82により、タイヤの昇温が抑制される。この観点から、長さLaは4mm以上がより好ましく、6mm以上が特に好ましい。長さLaが70mm以下であるディンプル82を有するタイヤでは、多数の箇所で乱流が発生しうる。さらに、長さLaが70mm以下であるディンプル82を有するタイヤでは、サイド面の表面積が大きい。大きな表面積により、タイヤからの放熱が促進される。このディンプル82により、タイヤの昇温が抑制される。この観点から、長さLaは50mm以下がより好ましく、30mm以下が特に好ましい。タイヤが、長さLaの異なる2種以上のディンプルを有してもよい。
 長さLiは、3mm以上55mm以下が好ましい。長さLiが3mm以上であるディンプル82には十分に空気が流入するので、十分に乱流が発生する。このディンプル82により、タイヤの昇温が抑制される。この観点から、長さLiは4mm以上がより好ましい。長さLiが55mm以下であるディンプル82を有するタイヤでは、多数の箇所で乱流が発生しうる。さらに、長さLiが55mm以下であるディンプル82を有するタイヤでは、サイド面の表面積が大きい。大きな表面積により、タイヤからの放熱が促進される。このディンプル82により、タイヤの昇温が抑制される。この観点から、長さLiは40mm以下がより好ましく、20mm以下が特に好ましい。タイヤが、長さLiの異なる2種以上のディンプルを有してもよい。
 図7において符号θで示されているのは、タイヤの半径方向に対する長軸92の角度である。角度θは、-90°以上90°未満で設定される。タイヤの回転と車両の進行とによって生じる空気の流れの方向に応じ、角度θが決定される。角度θが適正であるディンプルにより、タイヤからの放熱が促進される。
 このディンプル82の、深さDe、容積、面積等の仕様は、図3及び4に示されたディンプル62のそれらと同等である。
 図8は、本発明のさらに他の実施形態に係るタイヤのサイドウォール108の一部が示された正面図である。図8には、多数のディンプル162が示されている。それぞれのディンプル162の表面形状は、円である。本発明において表面形状とは、ディンプル162が無限遠から見られたときのディンプル162の輪郭の形状を意味する。このタイヤの、ディンプル162以外の構造は、図1に示されたタイヤ2のそれと同等である。
 図9は、図8のサイドウォール108の一部が示された拡大正面図である。図10は、図9のX-X線に沿った断面図である。図9における上下方向は、タイヤの半径方向である。図10に示されるように、ディンプル162は凹陥している。サイド面のうちディンプル162以外の領域は、ランド164である。
 ディンプル162を有するサイド面の表面積は、ディンプル162がないと仮定されたときのサイド面の表面積よりも大きい。このタイヤの大気との接触面積は、大きい。大きな接触面積により、タイヤから大気への放熱が促進される。
 図10に示されるように、ディンプル162は、スロープ面166と底面168とを備えている。スロープ面166は、リング状である。スロープ面166は、ディンプル162のエッジから底面168に至っている。スロープ面166は、エッジからディンプル162の中心に向かって深さ方向に傾斜している。底面168は、平坦である。底面168の輪郭は、円である。
 図9及び10から明らかなように、底面168の輪郭を画定する円の中心O2は、ディンプル162の輪郭を画定する円の中心O1からずれている。このディンプル162は、本明細書において、「オフセットタイプ」と称される。図9において符号170で示された直線は、中心O2を通過し、さらに中心O1を通過する。図9に示された矢印A1は、仮想された空気の流れ方向である。流れ方向A1は、後に詳説される。線部170の方向は、流れ方向A1と一致している。図9において符号θで示されているのは、タイヤの半径方向に対する流れ方向A1の角度である。角度θは、0°以上360°未満である。底面168の中心O2は、ディンプル162の中心O1に対し、空気の流れ方向A1の下流に位置している。
 図9に示された点P1は、ディンプル162の輪郭を画定する円と直線170との交点である。点P1は、ディンプル162の中心O1に対し、流れ方向A1の上流に位置している。点P2は、ディンプル162の輪郭を画定する円と直線170との交点である。点P2は、ディンプル162の中心O1に対し、流れ方向A1の下流に位置している。点P3は、底面168の輪郭を画定する円と直線170との交点である。点P3は、底面168の中心O2に対し、流れ方向A1の上流に位置している。点P4は、底面168の輪郭を画定する円と直線170との交点である。点P4は、底面168の中心O2に対し、流れ方向A1の下流に位置している。点P1と点P3との距離は、点P4と点P2との距離よりも大きい。
 図10において符号αで示されているのは、流れ方向A1の上流における、ランド164に対するスロープ面166の角度である。符号βで示されているのは、この流れ方向A1の下流における、ランド164に対するスロープ面166の角度である。角度αは、角度βよりも小さい。
 図11には、2つのディンプル162a、162bが示されている。ディンプル162aの底面168に沿って流れる空気は、スロープ面166のうち下流の部位に衝突する。衝突により、渦が生じる。換言すれば、スロープ面166のうち下流の部位において乱流が生じる。この部位の角度βが大きいので、十分な乱流が発生する。図11に示されるように、乱流はランド164に沿って移動し、隣接するディンプル162bに至る。乱流は、このディンプル162bのスロープ面166のうち、上流の部位に沿って流れる。この部位の角度αが小さいので、乱流はディンプル162から剥離しにくい。角度αが小さいスロープ面166は、タイヤの表面と乱流との接触面積を高める。乱流はさらに、底面168に沿って流れる。底面168が平坦なので、乱流はディンプル162から剥離しにくい。平坦な底面168は、タイヤの表面と乱流との接触面積を高める。
 パンク状態においてタイヤの走行が継続されると、支持層の変形と復元とが繰り返される。この繰り返しにより、支持層で熱が生じる。この熱は、サイドウォール108及びクリンチ部に伝導する。ディンプル162において生じる乱流は、この熱の大気への放出を促進する。タイヤの表面と乱流との接触面積が大きいので、熱が十分に放出される。このタイヤでは、熱によるゴム部材の破損及びゴム部材間の剥離が抑制される。このタイヤは、パンク状態での長時間の走行が可能である。乱流は、通常状態での放熱にも寄与する。ディンプル162は、通常状態でのタイヤの耐久性にも寄与する。運転者の不注意により、内圧が正規値よりも小さい状態で走行がなされることがある。この場合の耐久性にも、ディンプル162は寄与しうる。
 このタイヤでは、ディンプル162によって昇温が抑制されるので、支持層が薄くても、パンク状態での長時間の走行が可能である。薄い支持層により、タイヤの軽量が達成される。薄い支持層により、転がり抵抗が抑制される。軽量でかつ転がり抵抗が小さなタイヤは、車両の低燃費に寄与する。さらに、薄い支持層により、優れた乗り心地も達成される。
 図12において、矢印A2はタイヤの回転方向を表し、矢印A3は車両の進行方向を表す。ゾーンZ1では、タイヤの回転によってX方向へ空気が流れ、車両の進行によってX方向へ空気が流れる。矢印F1は、ゾーンZ1における合成された流れ方向を表す。ゾーンZ2では、タイヤの回転によってY方向へ空気が流れ、車両の進行によってX方向へ空気が流れる。矢印F2は、ゾーンZ2における合成された流れ方向を表す。ゾーンZ3では、タイヤの回転によって-X方向へ空気が流れ、車両の進行によってX方向へ空気が流れる。矢印F3は、ゾーンZ3における合成された流れ方向を表す。ゾーンZ4では、タイヤの回転によって-Y方向へ空気が流れ、車両の進行によってX方向へ空気が流れる。矢印F4は、ゾーンZ4における合成された流れ方向を表す。
 回転中のタイヤでは、放熱に大きく寄与するゾーンが存在する。ディンプル162の位置、タイヤのサイズ、パンク時のタイヤの形状、車両のフェンダーの形状、ホイールの形状、車両におけるタイヤの取り付け位置等の影響が考慮され、放熱に大きく寄与するゾーンが決定される。このゾーンにおける、合成された流れ方向とほぼ一致するように、仮想された空気の流れ方向A1(図9参照)が決定される。
 角度αは、15°以上70°以下が好ましい。角度αが15°以上であるディンプル162は、十分な深さDeを有する。この観点から、角度αは20°以上がより好ましく、25°以上が特に好ましい。角度αが70°以下であるディンプル162では、乱流が剥離しにくい。この観点から、角度αは50°以下がより好ましく、35°以下が特に好ましい。
 角度βは、50°以上90°以下が好ましい。角度βが50°以上であるディンプル162では、乱流が十分に発生する。この観点から、角度βは60°以上がより好ましく、65°以上が特に好ましい。角度βが90°以下であるディンプル162を有するタイヤは、容易に製造されうる。
 十分な乱流の発生と、乱流の剥離の抑制の観点から、差(β-α)は20°以上が好ましく、30°以上が特に好ましい。差(β-α)は、60°以下が好ましい。
 図10における二点鎖線Sgは、ディンプル162の一方のエッジP1から他方のエッジP2まで引かれた線分である。図10において矢印Diで示されているのは、線分Sgの長さであり、ディンプル162の直径である。直径Diは、2mm以上70mm以下が好ましい。直径Diが2mm以上であるディンプル162には十分に空気が流入するので、十分に乱流が発生する。このディンプル162により、タイヤの昇温が抑制される。この観点から、直径Diは4mm以上がより好ましく、6mm以上が特に好ましい。直径Diが70mm以下であるディンプル162を有するタイヤでは、多数の箇所で乱流が発生しうる。さらに、直径Diが70mm以下であるディンプル162を有するタイヤでは、サイド面の表面積が大きい。大きな表面積により、タイヤからの放熱が促進される。このディンプル162により、タイヤの昇温が抑制される。この観点から、直径Diは50mm以下がより好ましく、30mm以下が特に好ましい。タイヤが、互いに直径Diの異なる2種以上のディンプルを有してもよい。
 図10において矢印Deで示されているのは、ディンプル162の深さである。深さDeは、ディンプル162の最深部と線分Sgとの距離である。深さDeは、0.2mm以上7mm以下が好ましい。深さDeが0.2mm以上であるディンプル162では、十分な乱流が生じる。この観点から、深さDeは0.5mm以上がより好ましく、1.0mm以上が特に好ましい。深さDeが7mm以下であるディンプル162では、底において空気が滞留しにくい。さらに、深さDeが7mm以下であるタイヤでは、サイドウォール108、クリンチ部等が十分な厚みを有する。この観点から、深さDeは4mm以下がより好ましく、3.0mm以下が特に好ましい。タイヤが、深さDeの異なる2種以上のディンプルを有してもよい。
 ディンプル162の容積は、1.0mm以上400mm以下が好ましい。容積が1.0mm以上であるディンプル162では、十分な乱流が生じる。この観点から、容積は1.5mm以上がより好ましく、2.0mm以上が特に好ましい。容積が400mm以下であるディンプル162では、底において空気が滞留しにくい。さらに、ディンプル162の容積が400mm以下であるタイヤでは、サイドウォール108、クリンチ部等が十分な剛性を有する。この観点から、容積は300mm以下がより好ましく、250mm以下が特に好ましい。
 全てのディンプル162の容積の合計値は、300mm以上5000000mm以下が好ましい。合計値が300mm以上であるタイヤでは、十分な放熱がなされる。この観点から、合計値は600mm以上がより好ましく、800mm以上が特に好ましい。合計値が5000000mm以下であるタイヤでは、サイドウォール108、クリンチ部等が十分な剛性を有する。この観点から、容積は1000000mm以下がより好ましく、500000mm以下が特に好ましい。
 ディンプル162の面積は、3mm以上4000mm以下が好ましい。面積が3mm以上であるディンプル162では、十分な乱流が生じる。この観点から、面積は12mm以上がより好ましく、20mm以上が特に好ましい。ディンプル162の面積が4000mm以下であるタイヤでは、サイドウォール108、クリンチ部等が十分な強度を有する。この観点から、面積は2000mm以下がより好ましく、1300mm以下が特に好ましい。本発明においてディンプル162の面積は、ディンプル162の輪郭に囲まれた領域の面積を意味する。円形ディンプル162の場合は、下記数式によって面積Sが算出される。
  S = (Di / 2) * π
 本発明においてディンプル162の占有率Yは、下記数式によって算出される。
 Y = (S1 / S2) * 100
この数式において、S1は基準領域に含まれるディンプル162の面積であり、S2はディンプル162がないと仮定されたときの基準領域の表面積である。基準領域は、サイド面のうち、基準線BLからの高さがタイヤ高さHの20%以上80%以下である領域である。占有率Yは、10%以上85%以下が好ましい。占有率Yが10%以上であるタイヤでは、十分な放熱がなされる。この観点から、占有率Yは30%以上がより好ましく、40%以上が特に好ましい。占有率Yが85%以下であるタイヤでは、ランド164が十分な耐摩耗性を有する。この観点から、占有率Yは80%以下がより好ましく、75%以下が特に好ましい。
 隣接するディンプル162同士の間のランド164の幅(最小値)は、0.05mm以上20mm以下が好ましい。幅が0.05mm以上であるタイヤでは、ランド164が十分な耐摩耗性を有する。この観点から、幅は0.10mm以上がより好ましく、0.2mm以上が特に好ましい。幅が20mm以下であるタイヤでは、多数の箇所で乱流が発生しうる。この観点から、幅は15mm以下がより好ましく、10mm以下が特に好ましい。
 ディンプル162の総数は、50個以上5000個以下が好ましい。総数が50個以上であるタイヤでは、多数の箇所で乱流が発生しうる。この観点から、総数は100個以上がより好ましく、150個以上が特に好ましい。総数が5000個以下であるタイヤでは、個々のディンプル162が十分なサイズを有しうる。この観点から、総数は2000個以下がより好ましく、1000個以下が特に好ましい。総数及びディンプル162のパターンは、タイヤのサイズ及びサイド部の面積に応じて適宜決定されうる。
 タイヤが、オフセットタイプであるディンプル162と共に、オフセットタイプでないディンプルを備えてもよい。オフセットタイプであるディンプル162の数の、ディンプルの総数に対する比率は30%以上が好ましく、50%以上が特に好ましい。タイヤが、ディンプル162と共に凸部を有してもよい。
 上記サイズ、形状及び総数を有するディンプル162は、種々のサイズのタイヤにおいてその効果を発揮する。幅が100mm以上350mm以下であり、偏平率が30%以上100%以下であり、リム径が10インチ以上25インチ以下である乗用車タイヤにおいて、上記ディンプル162は特に効果を発揮する。
 図13は、本発明のさらに他の実施形態に係るタイヤのサイドウォール208の一部が示された斜視図である。図13には、多数のディンプル262が示されている。それぞれのディンプル262の表面形状は、正六角形である。本発明において表面形状とは、ディンプル262が無限遠から見られたときのディンプル262の輪郭の形状を意味する。
 図14は、図13のサイドウォール208の一部が示された拡大正面図である。図15は、図14のXV-XV線に沿った断面図である。図15に示されるように、ディンプル262は凹陥している。サイド面のうちディンプル262以外の領域は、ランド264である。
 ディンプル262を有するサイド面の表面積は、ディンプル262がないと仮定されたときのサイド面の表面積よりも大きい。このタイヤの大気との接触面積は、大きい。大きな接触面積により、タイヤから大気への放熱が促進される。
 図15に示されるように、ディンプル262は、6個のスロープ面266と底面268とを備えている。それぞれのスロープ面266は、タイヤの半径方向に対して傾斜している。スロープ面266は、ディンプル262のエッジEdから底面268にまで至っている。底面268は、平坦である。底面268の輪郭は、実質的に正六角形である。
 図14において、タイヤの周りの空気の流れが、符号Fで示されている。タイヤは、走行時に回転する。タイヤが装着された車両は、進行する。タイヤの回転と車両の進行とにより、ディンプル262を横切って空気が流れる。空気は、ランド264(図15参照)に沿って流れ、スロープ面266に沿って流れ、底面268へと流入する。この空気はディンプル262の中を流れ、下流のスロープ面266に沿って流れ、ディンプル262から流出する。空気はさらに、下流のランド264に沿って流れ、隣接するディンプル262へと流入する。
 図14に示されるように、スロープ面266を通過するとき、空気の流れに渦が生じる。換言すれば、ディンプル262の入口及び出口において乱流が生じる。パンク状態においてタイヤの走行が継続されると、支持層16の変形と復元とが繰り返される。この繰り返しにより、支持層16で熱が生じる。この熱は、サイドウォール208及びクリンチ部に伝導する。ディンプル262において生じる乱流は、この熱の大気への放出を促進する。このタイヤでは、熱によるゴム部材の破損及びゴム部材間の剥離が抑制される。このタイヤでは、パンク状態での長時間の走行が可能である。乱流は、通常状態での放熱にも寄与する。ディンプル262は、通常状態でのタイヤの耐久性にも寄与する。運転者の不注意により、内圧が正規値よりも小さい状態で走行がなされることがある。この場合の耐久性にも、ディンプル262は寄与しうる。
 渦を形成した空気は、ディンプル262の内部において、スロープ面266及び底面268に沿って流れる。この空気は、円滑にディンプル262から流出する。平坦な底面268は、円滑な流出を促す。このタイヤでは、凸部を有する従来のタイヤ及び溝を有する従来のタイヤに見られる滞留が生じにくい。従って、滞留によって放熱が阻害されることがない。このタイヤは、耐久性に極めて優れる。
 このタイヤでは、ディンプル262によって昇温が抑制されるので、支持層が薄くても、パンク状態での長時間の走行が可能である。薄い支持層により、タイヤの軽量が達成される。薄い支持層により、転がり抵抗が抑制される。軽量でかつ転がり抵抗が小さなタイヤは、車両の低燃費に寄与する。さらに、薄い支持層により、優れた乗り心地も達成される。
 図16から明らかなように、ディンプル262の1つの辺270は、この辺270と隣接する他のディンプル262の辺270と実質的に平行に配置されている。従って、ランド264の幅Wは、実質的に一定である。幅Wが一定であるディンプルパターンは、円形ディンプルでは達成され得ない。幅Wが一定なので、空気の流れF2は流れF1と同等である。同様に、流れF3も流れF1と同等であり、流れF4も流れF1と同等である。このタイヤでは、効率よく放熱がなされる。
 サイドウォール208及びクリンチ部は、環状である。ディンプル262は、周方向に沿って配置される。従って、ディンプル262の1つの辺270は、この辺270と隣接する他のディンプル262の辺270と、厳密には平行ではない。本発明では、この状態が「実質的に平行」と称される。辺270と他の辺270とが厳密には平行でないので、幅Wは厳密には一定ではない。本発明では、この状態が「実質的に一定」と称される。
 円形ディンプルからなるパターンでは、これらディンプルが稠密に配置された場合でも、3つのディンプルに囲まれたランドが生じる。このランドの面積は、大きい。従って、ディンプルの密度は高くない。表面形状が多角形であるディンプルが配置されることにより、大きな面積を有するランドの数が少ないパターンが得られうる。このパターンのディンプルの密度は、大きい。従って、効率よく放熱がなされる。対称性に優れているとの理由から、表面形状が正多角形であるディンプルが好ましい。高い密度が達成されうるとの観点から、表面形状が正三角形、正方形又は正六角形であるディンプルが好ましい。対称性と密度との観点から、表面形状が正六角形であるディンプル262が最も好ましい。
 図15における二点鎖線Sgは、ディンプル262の一方の頂点Pkから他方の頂点Pkまで引かれた線分である。図15において矢印Dで示されているのは、線分Sgの長さであり、ディンプル262のサイズである。表面形状が、頂点数が偶数である正多角形である場合、頂点Pkから対向する頂点Pkまでの長さが、サイズDである。表面形状が、頂点数が奇数である正多角形である場合、頂点Pkから対辺270に降ろされた垂線の長さが、サイズDである。
 サイズDは、2mm以上70mm以下が好ましい。サイズDが2mm以上であるディンプル262には十分に空気が流入するので、十分に乱流が発生する。このディンプル262により、タイヤの昇温が抑制される。この観点から、サイズDは4mm以上がより好ましく、6mm以上が特に好ましい。サイズDが70mm以下であるディンプル262を有するタイヤでは、多数の箇所で乱流が発生しうる。さらに、サイズDが70mm以下であるディンプル262を有するタイヤでは、サイド面の表面積が大きい。大きな表面積により、タイヤからの放熱が促進される。このディンプル262により、タイヤの昇温が抑制される。この観点から、サイズDは50mm以下がより好ましく、30mm以下が特に好ましい。タイヤが、互いにサイズDの異なる2種以上のディンプルを有してもよい。
 図15において矢印Deで示されているのは、ディンプル262の深さである。深さDeは、ディンプル262の最深部と線分Sgとの距離である。深さDeは、0.2mm以上7mm以下が好ましい。深さDeが0.2mm以上であるディンプル262では、十分な乱流が生じる。この観点から、深さDeは0.5mm以上がより好ましく、1.0mm以上が特に好ましい。深さDeが7mm以下であるディンプル262では、底において空気が滞留しにくい。さらに、深さDeが7mm以下であるタイヤでは、サイドウォール208、クリンチ部等が十分な厚みを有する。この観点から、深さDeは4mm以下がより好ましく、3.0mm以下が特に好ましい。タイヤが、深さDeの異なる2種以上のディンプルを有してもよい。
 ディンプル262の容積は、1.0mm以上400mm以下が好ましい。容積が1.0mm以上であるディンプル262では、十分な乱流が生じる。この観点から、容積は1.5mm以上がより好ましく、2.0mm以上が特に好ましい。容積が400mm以下であるディンプル262では、底において空気が滞留しにくい。さらに、ディンプル262の容積が400mm以下であるタイヤでは、サイドウォール208、クリンチ部等が十分な剛性を有する。この観点から、容積は300mm以下がより好ましく、250mm以下が特に好ましい。
 全てのディンプル262の容積の合計値は、300mm以上5000000mm以下が好ましい。合計値が300mm以上であるタイヤでは、十分な放熱がなされる。この観点から、合計値は600mm以上がより好ましく、800mm以上が特に好ましい。合計値が5000000mm以下であるタイヤでは、サイドウォール208、クリンチ部等が十分な剛性を有する。この観点から、容積は1000000mm以下がより好ましく、500000mm以下が特に好ましい。
 ディンプル262の面積は、3mm以上4000mm以下が好ましい。面積が3mm以上であるディンプル262では、十分な乱流が生じる。この観点から、面積は12mm以上がより好ましく、20mm以上が特に好ましい。ディンプル262の面積が4000mm以下であるタイヤでは、サイドウォール208、クリンチ部等が十分な強度を有する。この観点から、面積は2000mm以下がより好ましく、1300mm以下が特に好ましい。本発明においてディンプル262の面積は、ディンプル262の輪郭に囲まれた領域の面積を意味する。
 本発明においてディンプル262の占有率Yは、下記数式によって算出される。
 Y = (S1 / S2) * 100
この数式において、S1は基準領域に含まれるディンプル262の面積であり、S2はディンプル262がないと仮定されたときの基準領域の表面積である。基準領域は、サイド面のうち、基準線BLからの高さがタイヤ高さHの20%以上80%以下である領域である。占有率Yは、10%以上85%以下が好ましい。占有率Yが10%以上であるタイヤでは、十分な放熱がなされる。この観点から、占有率Yは30%以上がより好ましく、40%以上が特に好ましい。占有率Yが85%以下であるタイヤでは、ランド264が十分な耐摩耗性を有する。この観点から、占有率Yは80%以下がより好ましく、75%以下が特に好ましい。
 ランド264の幅Wは、0.05mm以上20mm以下が好ましい。幅が0.05mm以上であるタイヤでは、ランド264が十分な耐摩耗性を有する。この観点から、幅は0.10mm以上がより好ましく、0.2mm以上が特に好ましい。幅が20mm以下であるタイヤでは、多数の箇所で乱流が発生しうる。この観点から、幅は15mm以下がより好ましく、10mm以下が特に好ましい。
 ディンプル262の総数は、50個以上5000個以下が好ましい。総数が50個以上であるタイヤでは、多数の箇所で乱流が発生しうる。この観点から、総数は100個以上がより好ましく、150個以上が特に好ましい。総数が5000個以下であるタイヤでは、個々のディンプル262が十分なサイズを有しうる。この観点から、総数は2000個以下がより好ましく、1000個以下が特に好ましい。総数及びディンプル262のパターンは、タイヤのサイズ及びサイド部の面積に応じて適宜決定されうる。
 タイヤが、表面形状が多角形あるディンプル262と共に、他の表面形状を有するディンプルを有してもよい。他の表面形状としては、円、楕円、長円及び涙形(ティアドロップタイプ)が例示される。表面形状が多角形であるディンプル262の数の、ディンプルの総数に対する比率は30%以上が好ましく、50%以上が特に好ましい。タイヤが、ディンプル262と共に凸部を有してもよい。
 図15に示されるように、ディンプル262の断面形状は台形である。このディンプル262では、深さDeの割には容積が大きい。従って、十分な容積と小さな深さDeとが両立されうる。小さな深さDeが設定されることにより、サイドウォール208、クリンチ部等が、ディンプル262の直下において十分な厚みを有しうる。このディンプル262は、サイド面の剛性に寄与しうる。
 図15において符号αで示されているのは、スロープ面266の角度である。角度αは、10°以上70°以下が好ましい。角度αが10°以上であるディンプル262では、十分な容積と小さな深さDeとが両立されうる。この観点から、角度αは20°以上がより好ましく、25°以上が特に好ましい。角度αが70°以下であるディンプル262では、空気が円滑に流れる。この観点から、角度は60°以下がより好ましく、55°以下が特に好ましい。
 上記サイズ、形状及び総数を有するディンプル262は、種々のサイズのタイヤにおいてその効果を発揮する。幅が100mm以上350mm以下であり、偏平率が30%以上100%以下であり、リム径が10インチ以上25インチ以下である乗用車タイヤにおいて、上記ディンプル262は特に効果を発揮する。
 図17は、本発明のさらに他の実施形態に係るタイヤの一部が示された正面図である。図17には、サイドウォール272が示されている。サイドウォール272は、多数のディンプル274を備えている。このタイヤの、ディンプル274以外の構造は、図1に示されたタイヤ2のそれと同等である。
 このディンプル274の表面形状は、正三角形である。このディンプル274は、3個のスロープ面276と底面278とを備えている。図15に示されたディンプル262と同様、それぞれのスロープ面276は、タイヤの半径方向に対して傾斜している。スロープ面276は、ディンプル274のエッジから底面278にまで至っている。底面278は、平坦である。底面278の輪郭は、実質的に正三角形である。このディンプル274のサイズD、深さDe、角度α、容積、面積等の仕様は、図14及び15に示されたディンプル262のそれらと同等である。
 図17から明らかなように、ディンプル274の1つの辺280は、この辺280と隣接する他のディンプル274の辺280と実質的に平行に配置されている。従って、ランドの幅Wは、実質的に一定である。これらディンプル274は、密に配置されている。このディンプル274において生じる乱流は、放熱を促進する。このタイヤは、耐久性に優れる。
 図18は、本発明のさらに他の実施形態に係るタイヤの一部が示された正面図である。図18には、サイドウォール282が示されている。サイドウォール282は、多数のディンプル284を備えている。このタイヤの、ディンプル284以外の構造は、図1に示されたタイヤのそれと同等である。
 このディンプル284の表面形状は、正方形である。このディンプル284は、4個のスロープ面286と底面288とを備えている。図15に示されたディンプル262と同様、それぞれのスロープ面286は、タイヤの半径方向に対して傾斜している。スロープ面286は、ディンプル284のエッジから底面288にまで至っている。底面288は、平坦である。底面288の輪郭は、実質的に正方形である。このディンプル284のサイズD、深さDe、角度α、容積、面積等の仕様は、図14及び15に示されたディンプル262のそれらと同等である。
 図18から明らかなように、ディンプル284の1つの辺290は、この辺290と隣接する他のディンプル284の辺290と実質的に平行に配置されている。従って、ランドの幅Wは、実質的に一定である。ディンプル284は、密に配置されている。このディンプル284において生じる乱流は、放熱を促進する。このタイヤは、耐久性に優れる。
 図19は、本発明のさらに他の実施形態に係る空気入りタイヤ302の一部が示された断面図である。このタイヤ302は、図1に示されたタイヤ2と同様、トレッド304、ウイング306、サイドウォール308、クリンチ部310、ビード312、カーカス314、支持層316、ベルト318、バンド320、インナーライナー322及びチェーファー324を備えている。
 図19に示されるように、このタイヤ302は、そのサイド面に凹凸模様を備えている。本発明においてサイド面とは、タイヤ302の外面のうち軸方向から目視されうる領域を意味する。典型的には、凹凸模様は、サイドウォール308の外面又はクリンチ部310の外面に形成される。
 図20は、図19のタイヤ302のサイドウォール308の一部が示された拡大斜視図である。凹凸模様は、多数の要素362からなる。図22に示されるように、それぞれの要素362は凹陥している。サイド面のうち要素362以外の領域は、ランド364である。この凹凸模様は、魚のウロコに類似のパターンを有する。
 要素362を有するサイド面の表面積は、要素362がないと仮定されたときのサイド面の表面積よりも大きい。このタイヤ302の大気との接触面積は、大きい。大きな接触面積により、タイヤ302から大気への放熱が促進される。
 図21において、上下方向がタイヤ302の半径方向である。図21において符号Sgで示されているのは、要素362の輪郭内に画かれうる最長の線分である。図21から明らかなように、要素362の輪郭は、この線分Sgに対して対称である。線分Sgは、要素362の軸である。図21において矢印A1で示されているのは、特定方向である。角度θで示されているのは、タイヤ302の半径方向に対する特定方向A1の角度である。この実施形態では、要素362の軸Sgは、特定方向A1に沿っている。全ての要素362において、符号θは同一である。特定方向A1は、仮想された空気の流れ方向と一致する。この流れ方向は、後に詳説される。
 図21及び22に示されるように、要素362は、第一スロープ面366、第二スロープ面368及び最深部370を備えている。第一スロープ面366は、一方のランド364から最深部370に至っている。第二スロープ面368は、最深部370から他方のランド364に至っている。第一スロープ面366は、特定方向A1に沿って下向きに傾斜している。第二スロープ面368は、特定方向A1に沿って上向きに傾斜している。図22に、仮想の円柱372が示されている。要素362は、線分Sgを含む平面で円柱372が切り取られた場合の、円柱372の一部の形状を有する。この平面に対し、円柱372の中心線は傾斜している。図20に示された第一ピッチP1及び第二ピッチP2に基づいて多数の円柱372が仮想されることにより、凹凸模様が得られうる。円柱372に代えて、円錐、円錐台、角柱、角錐、角錐台等が仮想されてもよい。
 この凹凸模様では、ランド364は点又は線である。理論上は、ランド364は面積を有さない。実際のタイヤ302では、線及び点は若干の幅を有する。従って、ランド364は若干の面積を有する。
 図22において符号αで示されているのは、軸Sgに対する第一スロープ面366の傾斜角度である。符号βで示されているのは、軸Sgに対する第二スロープ面368の傾斜角度である。角度βは、角度αよりも大きい。
 図23には、2つの要素362a、362bが示されている。図23には、タイヤ302の周りの空気の流れFが示されている。タイヤ302は、走行時に回転する。タイヤ302が装着された車両は、進行する。タイヤ302の回転と車両の進行とにより、要素362を横切って空気が流れる。要素362aの第一スロープ面366に沿って流れる空気は、第二スロープ面368に衝突する。衝突により、渦が生じる。換言すれば、第二スロープ面368において乱流が生じる。第二スロープ面368の角度βが大きいので、十分な乱流が発生する。図23に示されるように、乱流は隣接する要素362bの第一スロープ面366に沿って流れる。第一スロープ面366の角度αが小さいので、乱流はこの第一スロープ面366から剥離しにくい。この第一スロープ面366は、タイヤ302の表面と乱流との接触面積を高める。
 パンク状態においてタイヤ302の走行が継続されると、支持層316の変形と復元とが繰り返される。この繰り返しにより、支持層316で熱が生じる。この熱は、サイドウォール308及びクリンチ部310に伝導する。凹凸模様において生じる乱流は、この熱の大気への放出を促進する。このタイヤ302では、熱によるゴム部材の破損及びゴム部材間の剥離が抑制される。このタイヤ302は、パンク状態での長時間の走行が可能である。乱流は、通常状態での放熱にも寄与する。凹凸模様は、通常状態でのタイヤ302の耐久性にも寄与する。運転者の不注意により、内圧が正規値よりも小さい状態で走行がなされることがある。この場合の耐久性にも、凹凸模様は寄与しうる。
 第一スロープ面366の角度αが小さいので、この第一スロープ面366に沿って空気は円滑に流れる。このタイヤ302では、凸部を有する従来のタイヤ及び溝を有する従来のタイヤに見られる滞留が、生じにくい。従って、滞留によって放熱が阻害されることがない。このタイヤ302は、耐久性に極めて優れる。
 このタイヤ302では、凹凸模様によって昇温が抑制されるので、支持層316が薄くても、パンク状態での長時間の走行が可能である。薄い支持層316により、タイヤ302の軽量が達成される。薄い支持層316により、転がり抵抗が抑制される。軽量でかつ転がり抵抗が小さなタイヤ302は、車両の低燃費に寄与する。さらに、薄い支持層316により、優れた乗り心地も達成される。
 図12に示されるように、ゾーンZ1では、タイヤ302の回転によってX方向へ空気が流れ、車両の進行によってX方向へ空気が流れる。矢印F1は、ゾーンZ1における合成された流れ方向を表す。ゾーンZ2では、タイヤ302の回転によってY方向へ空気が流れ、車両の進行によってX方向へ空気が流れる。矢印F2は、ゾーンZ2における合成された流れ方向を表す。ゾーンZ3では、タイヤ302の回転によって-X方向へ空気が流れ、車両の進行によってX方向へ空気が流れる。矢印F3は、ゾーンZ3における合成された流れ方向を表す。ゾーンZ4では、タイヤ302の回転によって-Y方向へ空気が流れ、車両の進行によってX方向へ空気が流れる。矢印F4は、ゾーンZ4における合成された流れ方向を表す。
 回転中のタイヤ302では、放熱に大きく寄与するゾーンが存在する。要素362の位置、タイヤ302のサイズ、パンク時のタイヤ302の形状、車両のフェンダーの形状、ホイールの形状、車両におけるタイヤ302の取り付け位置等の影響が考慮され、放熱に大きく寄与するゾーンが決定される。このゾーンにおける、合成された流れ方向とほぼ一致するように、仮想された空気の流れ方向A1(図21参照)が決定される。換言すれば、特定方向が決定される。
 軸Sgの距離D(図22参照)は、2mm以上70mm以下が好ましい。距離Dが2mm以上である要素362には十分に空気が流入するので、十分に乱流が発生する。この要素362により、タイヤ302の昇温が抑制される。この観点から、距離Dは4mm以上がより好ましく、6mm以上が特に好ましい。距離Dが70mm以下である要素362を有するタイヤ302では、多数の箇所で乱流が発生しうる。さらに、距離Dが70mm以下である要素362を有するタイヤ302では、サイド面の表面積が大きい。大きな表面積により、タイヤ302からの放熱が促進される。この要素362により、タイヤ302の昇温が抑制される。この観点から、距離Dは50mm以下がより好ましく、30mm以下が特に好ましい。タイヤ302が、互いに距離Dの異なる2種以上の要素362を有してもよい。
 図22において矢印Deで示されているのは、要素362の深さである。深さDeは、要素362の最深部370と軸Sgとの距離である。深さDeは、0.2mm以上7mm以下が好ましい。深さDeが0.2mm以上である要素362では、十分な乱流が生じる。この観点から、深さDeは0.5mm以上がより好ましく、1.0mm以上が特に好ましい。深さDeが7mm以下である要素362では、最深部370において空気が滞留しにくい。さらに、深さDeが7mm以下であるタイヤ302では、サイドウォール308、クリンチ部310等が十分な厚みを有する。この観点から、深さDeは4mm以下がより好ましく、3.0mm以下が特に好ましい。タイヤ302が、深さDeの異なる2種以上の要素を有してもよい。
 第一スロープ面366の角度αは、5°以上40°以下が好ましい。角度αが5°以上である要素362は、十分な深さDeを有する。この観点から、角度αは10°以上がより好ましく、15°以上が特に好ましい。角度αが40°以下である要素362では、空気が滞留しにくい。この観点から、角度αは35°以下がより好ましく、30°以下が特に好ましい。
 第二スロープ面368の角度βは、50°以上85°以下が好ましい。角度βが50°以上である要素362では、乱流が十分に発生する。この観点から、角度βは55°以上がより好ましく、60°以上が特に好ましい。角度βが85°以下である要素362では、乱流が剥離しにくい。この観点から、角度αは80°以下がより好ましく、75°以下が特に好ましい。
 十分な放熱がなされるとの観点から、差(β-α)は5°以上80°以下が好ましく、10°以上75°以下がより好ましく、15°以上70°以下が特に好ましい。
 要素362の容積は、1.0mm以上400mm以下が好ましい。容積が1.0mm以上である要素362では、十分な乱流が生じる。この観点から、容積は1.5mm以上がより好ましく、2.0mm以上が特に好ましい。容積が400mm以下である要素362では、最深部370において空気が滞留しにくい。さらに、要素362の容積が400mm以下であるタイヤ302では、サイドウォール308、クリンチ部310等が十分な剛性を有する。この観点から、容積は300mm以下がより好ましく、250mm以下が特に好ましい。
 全ての要素362の容積の合計値は、300mm以上5000000mm以下が好ましい。合計値が300mm以上であるタイヤ302では、十分な放熱がなされる。この観点から、合計値は600mm以上がより好ましく、800mm以上が特に好ましい。合計値が5000000mm以下であるタイヤ302では、サイドウォール308、クリンチ部310等が十分な剛性を有する。この観点から、容積は1000000mm以下がより好ましく、500000mm以下が特に好ましい。
 要素362の面積は、3mm以上4000mm以下が好ましい。面積が3mm以上である要素362では、十分な乱流が生じる。この観点から、面積は12mm以上がより好ましく、20mm以上が特に好ましい。要素362の面積が4000mm以下であるタイヤ302では、サイドウォール308、クリンチ部310等が十分な強度を有する。この観点から、面積は2000mm以下がより好ましく、1300mm以下が特に好ましい。本発明において要素362の面積は、要素362の輪郭に囲まれた領域の面積を意味する。
 要素362の総数は、50個以上5000個以下が好ましい。総数が50個以上であるタイヤ302では、多数の箇所で乱流が発生しうる。この観点から、総数は100個以上がより好ましく、150個以上が特に好ましい。総数が5000個以下であるタイヤ302では、個々の要素362が十分なサイズを有しうる。この観点から、総数は2000個以下がより好ましく、1000個以下が特に好ましい。総数及び要素362のパターンは、タイヤ302のサイズ及びサイド部の面積に応じて適宜決定されうる。
 上記距離、形状及び総数を有する要素362は、種々のサイズのタイヤ302においてその効果を発揮する。幅が100mm以上350mm以下であり、偏平率が30%以上100%以下であり、リム径が10インチ以上25インチ以下である乗用車タイヤ302において、上記要素362は特に効果を発揮する。
 図24は、本発明のさらに他の実施形態に係るタイヤの一部が示された断面図である。図24には、2つの要素376が示されている。このタイヤの、要素376以外の構造は、図19に示されたタイヤ302のそれと同等である。
 図21及び22に示された要素362と同様、この要素376は、第一スロープ面378と第二スロープ面380とを有している。第二スロープ面380の傾斜角度は、第一スロープ面378の傾斜角度よりも大きい。この第二スロープ面380により、十分な乱流が発生する。第一スロープ面378では、乱流の剥離が生じにくい。
 このタイヤは、2つの要素376の間に、ランド382を備えている。ランド382は、幅Wを有している。第二スロープ面380で発生した乱流は、ランド382を乗り越えて、隣接する要素376の第一スロープ面378へ移動する。ランド382は平坦なので、ランド382における乱流の剥離は生じにくい。このタイヤは、昇温しにくい。
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。
[実験1]
[実施例1]
 図2から4に示されるディンプルを備えたタイヤを得た。ディンプルの仕様は、以下の通りである。
  表面形状:楕円
  長さLa:8mm
  長さLi:4mm
  比(La/Li):2/1
  深さDe:2.0mm
  角度α:45°
  ディンプルの総数:200
このタイヤのサイズは、「245/40R18」である。
[実施例2から5]
 長さLi及び角度θを下記表1に示される通りとした他は実施例1と同様にして、実施例2から5のタイヤを得た。
[実施例6]
 ディンプルの仕様を下記の通りとした他は実施例1と同様にして、実施例6のタイヤを得た。
  表面形状:陸上競技場のトラック
  長さLa:8mm
  長さLi:4mm
  比(La/Li):2/1
  深さDe:2.0mm
  角度α:45°
  ディンプルの総数:200
[比較例1]
 ディンプルの仕様を下記の通りとした他は実施例1と同様にして、比較例1のタイヤを得た。
  表面形状:円形
  断面形状:円錐台
  直径:8mm
  深さDe:2.0mm
  角度α:45°
  ディンプルの総数:200
[比較例2]
 ディンプルを設けなかった他は実施例1と同様にして、比較例2のタイヤを得た。
[走行試験]
 タイヤを「18×8.5J」のリムに組み込み、このタイヤに内圧が230kPaとなるように空気を充填した。このタイヤを、排気量が4300ccであり、フロントエンジン-リアドライブの乗用車の左後のホイールに装着した。このタイヤのバルブコアを抜き取り、タイヤの内部を大気と連通させた。この乗用車の、左前、右前及び右後のホイールには、内圧が230kPaであるタイヤを装着した。ドライバーに、この乗用車を、テストコースで80km/hの速度で運転させた。タイヤが破壊するまでの走行距離を測定した。この結果が、指数として、下記の表1に示されている。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、各実施例のタイヤの走行距離は、比較例1及び2のそれよりも大きい。この評価結果から、本発明の優位性は明らかである。
[実験2]
[実施例7]
 図8から11に示されるディンプルを備えたタイヤを得た。ディンプルの仕様は、以下の通りである。
  ディンプルの輪郭:円
  底面の輪郭:円
  角度α:30°
  角度β:70°
  直径Di:12mm
  深さDe:2.0mm
  ディンプルの総数:200
このタイヤのサイズは、「245/40R18」である。
[実施例8から10]
 角度θを下記表2に示される通りとした他は実施例7と同様にして、実施例8から10のタイヤを得た。
[実施例11及び比較例3]
 角度α及びβを下記表2に示される通りとした他は実施例7と同様にして、実施例11及び比較例3のタイヤを得た。比較例3に係るタイヤのディンプルは、オフセットタイプではない。
[比較例2]
 ディンプルを設けなかった他は実施例7と同様にして、比較例4のタイヤを得た。
[走行試験]
 タイヤを「18×8.5J」のリムに組み込み、このタイヤに内圧が230kPaとなるように空気を充填した。このタイヤを、排気量が4300ccであり、フロントエンジン-リアドライブの乗用車の左後のホイールに装着した。このタイヤのバルブコアを抜き取り、タイヤの内部を大気と連通させた。この乗用車の、左前、右前及び右後のホイールには、内圧が230kPaであるタイヤを装着した。ドライバーに、この乗用車を、テストコースで80km/hの速度で運転させた。タイヤが破壊するまでの走行距離を測定した。この結果が、指数として、下記の表2に示されている。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、各実施例のタイヤの走行距離は、比較例3及び4のそれよりも大きい。この評価結果から、本発明の優位性は明らかである。
[実験3]
[実施例12]
 図13から16に示されるディンプルを備えたタイヤを得た。ディンプルの仕様は、以下の通りである。
  表面形状:正六角形
  サイズD:9.2mm
  深さDe:2.0mm
  角度α:45°
  ランドの幅W:約2mm
このタイヤのサイズは、「245/40R18」である。
[実施例13から14及び比較例5]
 ディンプルの仕様を下記表3に示される通りとした他は実施例12と同様にして、実施例13から14及び比較例5のタイヤを得た。
[比較例6]
 ディンプルを設けなかった他は実施例12と同様にして、比較例6のタイヤを得た。
[走行試験]
 タイヤを「18×8.5J」のリムに組み込み、このタイヤに内圧が230kPaとなるように空気を充填した。このタイヤを、排気量が4300ccであり、フロントエンジン-リアドライブの乗用車の左後のホイールに装着した。このタイヤのバルブコアを抜き取り、タイヤの内部を大気と連通させた。この乗用車の、左前、右前及び右後のホイールには、内圧が230kPaであるタイヤを装着した。ドライバーに、この乗用車を、テストコースで80km/hの速度で運転させた。タイヤが破壊するまでの走行距離を測定した。この結果が、指数として、下記の表3に示されている。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、各実施例のタイヤの走行距離は、比較例5及び6のそれよりも大きい。この評価結果から、本発明の優位性は明らかである。
[実験4]
[実施例15]
 図20から22に示される要素を備えたタイヤを得た。要素の仕様は、以下の通りである。
  角度α:20°
  角度β:70°
  角度θ:45°
  深さDe:2mm
このタイヤのサイズは、「245/40R18」である。
[実施例16から19及び比較例7]
 角度α及びβを下記の表4に示される通りとした他は実施例15と同様にして、実施例16から19及び比較例7のタイヤを得た。
[実施例20]
 角度θを下記の表4に示される通りとした他は実施例15と同様にして、実施例20のタイヤを得た。
[比較例8]
 凹凸模様を設けなかった他は実施例15と同様にして、比較例8のタイヤを得た。
[走行試験]
 タイヤを「18×8.5J」のリムに組み込み、このタイヤに内圧が230kPaとなるように空気を充填した。このタイヤを、排気量が4300ccであり、フロントエンジン-リアドライブの乗用車の左後のホイールに装着した。このタイヤのバルブコアを抜き取り、タイヤの内部を大気と連通させた。この乗用車の、左前、右前及び右後のホイールには、内圧が230kPaであるタイヤを装着した。ドライバーに、この乗用車を、テストコースで80km/hの速度で運転させた。タイヤが破壊するまでの走行距離を測定した。この結果が、指数として、下記の表4に示されている。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、各実施例のタイヤの走行距離は、比較例7及び8のそれよりも大きい。この評価結果から、本発明の優位性は明らかである。
 ディンプルによる放熱効果は、ランフラットタイヤ以外のタイヤでも得られる。本発明に係る空気入りタイヤは、種々の車両に装着されうる。
 2・・・タイヤ
 4・・・トレッド
 8・・・サイドウォール
 10・・・クリンチ部
 12・・・ビード
 14・・・カーカス
 16・・・支持層
 18・・・ベルト
 20・・・バンド
 62、74、76、82・・・ディンプル
 64・・・ランド
 66・・・スロープ面
 68・・・底面
 70、92・・・長軸
 72、94・・・短軸
 78・・・第一曲面
 80・・・第二曲面
 84・・・第一半円
 86・・・第一直線
 88・・・第二半円
 90・・・第二半円
 108・・・サイドウォール
 162・・・ディンプル
 164・・・ランド
 166・・・スロープ面
 168・・・底面
 208、272、282・・・サイドウォール
 262、274、284・・・ディンプル
 264・・・ランド
 266、276、286・・・スロープ面
 268、278、288・・・底面
 270、290・・・辺
 302・・・タイヤ
 304・・・トレッド
 308・・・サイドウォール
 310・・・クリンチ部
 312・・・ビード
 314・・・カーカス
 316・・・支持層
 318・・・ベルト
 320・・・バンド
 362、376・・・要素
 364、382・・・ランド
 366、378・・・第一スロープ面
 368、380・・・第二スロープ面
 370・・・最深部

Claims (19)

  1.  その外面がトレッド面をなすトレッド、
     それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォール、
     それぞれが上記サイドウォールよりも半径方向略内側に位置する一対のビード、
    並びに
     上記トレッド及びサイドウォールに沿っており、両ビードの間に架け渡されたカーカス
    を備えており、
     そのサイド面に多数のディンプルを有しており、
     それぞれのディンプルの表面形状が長円である空気入りタイヤ。
  2.  上記ディンプルの表面形状が楕円である請求項1に記載のタイヤ。
  3.  上記ディンプルが、平坦な底面を有している請求項1に記載のタイヤ。
  4.  上記ディンプルが、そのエッジから上記底面に至っておりかつタイヤの半径方向に対して傾斜しているスロープ面を有する請求項3に記載のタイヤ。
  5.  上記サイドウォールの軸方向内側に位置する支持層をさらに備えた請求項1に記載のタイヤ。
  6.  その外面がトレッド面をなすトレッド、
     それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォール、
     それぞれが上記サイドウォールよりも半径方向略内側に位置する一対のビード、
    並びに
     上記トレッド及びサイドウォールに沿っており、両ビードの間に架け渡されたカーカス
    を備えており、
     そのサイド面に、ランドとこのランドから凹陥する多数のディンプルとを有しており、
     それぞれのディンプルが、底面とスロープ面とを有しており、
     このスロープ面が、ディンプルのエッジから上記底面に至っており、
     仮想された空気の流れ方向の上流における、ランドに対するスロープ面の角度が、この流れ方向の下流における、ランドに対するスロープ面の角度よりも小さい空気入りタイヤ。
  7.  上記ディンプルの表面形状が円であり、底面の輪郭が円であり、
     底面の円の中心が、表面形状の円の中心に対し、仮想された空気の流れ方向の下流に位置している請求項6に記載のタイヤ。
  8.  上記底面が平坦である請求項6に記載のタイヤ。
  9.  上記サイドウォールの軸方向内側に位置する支持層をさらに備えた請求項6に記載のタイヤ。
  10.  その外面がトレッド面をなすトレッド、
     それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォール、
     それぞれが上記サイドウォールよりも半径方向略内側に位置する一対のビード、
    並びに
     上記トレッド及びサイドウォールに沿っており、両ビードの間に架け渡されたカーカス
    を備えており、
     そのサイド面に多数のディンプルを有しており、
     それぞれのディンプルの表面形状が多角形である空気入りタイヤ。
  11.  上記ディンプルの表面形状が正多角形である請求項10に記載のタイヤ。
  12.  上記ディンプルの表面形状が、正三角形、正方形又は正六角形である請求項11に記載のタイヤ。
  13.  上記ディンプルの1つの辺が、この辺と隣接する他のディンプルの辺と実質的に平行に配置されている請求項12に記載のタイヤ。
  14.  上記ディンプルが、平坦な底面を有している請求項10に記載のタイヤ。
  15.  上記ディンプルが、エッジから上記底面に至っておりかつタイヤの半径方向に対して傾斜しているスロープ面を有する請求項14に記載のタイヤ。
  16.  上記サイドウォールの軸方向内側に位置する支持層をさらに備えた請求項10に記載のタイヤ。
  17.  その外面がトレッド面をなすトレッド、
     それぞれが上記トレッドの端から半径方向略内向きに延びる一対のサイドウォール、
     それぞれが上記サイドウォールよりも半径方向略内側に位置する一対のビード、
    並びに
     上記トレッド及びサイドウォールに沿っており、両ビードの間に架け渡されたカーカス
    を備えており、
     そのサイド面に凹凸模様が形成されており、
     上記凹凸模様が、その軸方向が特定方向に沿う多数の要素からなり、
     それぞれの要素が、特定方向に沿って下向きに傾斜する第一スロープ面と、特定方向に沿って上向きに傾斜する第二スロープ面とを有しており、
     上記第二スロープ面の傾斜角度βが、上記第一スロープ面の傾斜角度αよりも大きい空気入りタイヤ。
  18.  上記傾斜角度βと傾斜角度αとの差(β-α)が5°以上80°以下である請求項17に記載のタイヤ。
  19.  上記要素が、円柱の一部である形状を有する請求項17に記載のタイヤ。
PCT/JP2010/058962 2009-06-01 2010-05-27 空気入りタイヤ WO2010140524A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20100783308 EP2431197B1 (en) 2009-06-01 2010-05-27 Pneumatic tire
RU2011150658/11A RU2509655C2 (ru) 2009-06-01 2010-05-27 Пневматическая шина
US13/320,490 US20120060994A1 (en) 2009-06-01 2010-05-27 Pneumatic tire
KR1020137017868A KR20130085448A (ko) 2009-06-01 2010-05-27 공기 타이어
KR1020117030496A KR101350682B1 (ko) 2009-06-01 2010-05-27 공기 타이어
CN2010800236758A CN102448746A (zh) 2009-06-01 2010-05-27 充气轮胎
BRPI1011635A BRPI1011635A2 (pt) 2009-06-01 2010-05-27 pneu

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009132110A JP5208857B2 (ja) 2009-06-01 2009-06-01 空気入りタイヤ
JP2009-132110 2009-06-01
JP2009132237A JP5299913B2 (ja) 2009-06-01 2009-06-01 空気入りタイヤ
JP2009-132237 2009-06-01
JP2009-136238 2009-06-05
JP2009136238A JP5294997B2 (ja) 2009-06-05 2009-06-05 空気入りタイヤ
JP2009136130A JP2010280322A (ja) 2009-06-05 2009-06-05 空気入りタイヤ
JP2009-136130 2009-06-05

Publications (1)

Publication Number Publication Date
WO2010140524A1 true WO2010140524A1 (ja) 2010-12-09

Family

ID=43297660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058962 WO2010140524A1 (ja) 2009-06-01 2010-05-27 空気入りタイヤ

Country Status (7)

Country Link
US (1) US20120060994A1 (ja)
EP (1) EP2431197B1 (ja)
KR (2) KR20130085448A (ja)
CN (1) CN102448746A (ja)
BR (1) BRPI1011635A2 (ja)
RU (1) RU2509655C2 (ja)
WO (1) WO2010140524A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020672A (ja) * 2010-07-15 2012-02-02 Bridgestone Corp 空気入りタイヤ
WO2013018644A1 (ja) * 2011-07-29 2013-02-07 住友ゴム工業株式会社 空気入りタイヤ
KR20140019243A (ko) * 2012-08-06 2014-02-14 스미토모 고무 고교 가부시키가이샤 런 플랫 타이어
CN103874591A (zh) * 2011-10-12 2014-06-18 住友橡胶工业株式会社 充气轮胎
US20140238571A1 (en) * 2011-10-31 2014-08-28 Sumitomo Rubber Industries, Ltd. Pneumatic tire
CN104245364A (zh) * 2012-02-27 2014-12-24 住友橡胶工业株式会社 充气轮胎
JP2019167067A (ja) * 2018-03-26 2019-10-03 住友ゴム工業株式会社 タイヤ
WO2020250533A1 (ja) * 2019-06-11 2020-12-17 株式会社ブリヂストン タイヤ

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5467081B2 (ja) 2011-08-10 2014-04-09 住友ゴム工業株式会社 空気入りタイヤ
JP5662971B2 (ja) * 2012-07-11 2015-02-04 住友ゴム工業株式会社 タイヤのシミュレーション方法
WO2014010297A1 (ja) * 2012-07-11 2014-01-16 横浜ゴム株式会社 空気入りタイヤ
FR2997900A1 (fr) * 2012-11-09 2014-05-16 Michelin & Cie Pneu ayant des flancs reduisant la trainee aerodynamique
JP5789274B2 (ja) * 2013-01-16 2015-10-07 住友ゴム工業株式会社 空気入りタイヤ
CN105263723B (zh) * 2013-06-11 2017-11-10 住友橡胶工业株式会社 免充气轮胎
JP6121285B2 (ja) 2013-08-21 2017-04-26 住友ゴム工業株式会社 空気入りタイヤ
JP6186334B2 (ja) * 2014-10-20 2017-08-23 住友ゴム工業株式会社 空気入りタイヤ
JP6434284B2 (ja) * 2014-11-19 2018-12-05 株式会社ブリヂストン 空気入りタイヤ
JP6381075B2 (ja) * 2015-04-06 2018-08-29 住友ゴム工業株式会社 二輪自動車用空気入りタイヤ
JP6619959B2 (ja) * 2015-06-30 2019-12-11 株式会社ブリヂストン タイヤ
US11225112B2 (en) 2017-07-24 2022-01-18 Bridgestone Americas Tire Operations, Llc Sidewall treatment for cooling and aerodynamics
JP6890086B2 (ja) * 2017-12-12 2021-06-18 株式会社ブリヂストン 重荷重用タイヤ
JP7347745B2 (ja) * 2019-12-06 2023-09-20 Toyo Tire株式会社 空気入りタイヤ
US20220194145A1 (en) * 2020-12-21 2022-06-23 Nexen Tire America Inc. Tire and wheel assembly including the same
KR102561573B1 (ko) * 2021-07-14 2023-07-31 한국타이어앤테크놀로지 주식회사 타이어

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297310A (ja) * 1991-03-27 1992-10-21 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2000016030A (ja) * 1998-07-07 2000-01-18 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP2007050854A (ja) 2005-08-19 2007-03-01 Sumitomo Rubber Ind Ltd ランフラットタイヤ
WO2007032405A1 (ja) 2005-09-13 2007-03-22 Bridgestone Corporation 空気入りタイヤ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238703A (ja) * 1991-01-10 1992-08-26 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JPH05294112A (ja) * 1992-04-23 1993-11-09 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP3419881B2 (ja) * 1994-04-05 2003-06-23 株式会社ブリヂストン 空気入りタイヤ
JPH08258518A (ja) * 1995-03-24 1996-10-08 Bridgestone Corp リム・ガードを備えた空気入りタイヤ
JPH1058925A (ja) * 1996-08-21 1998-03-03 Bridgestone Corp サイド部下方領域に多数のディンプルを備えた空気入りタイヤ
JP2000025423A (ja) * 1998-05-01 2000-01-25 Bridgestone Corp 乗用車用空気入りタイヤ
JP3391711B2 (ja) * 1998-09-04 2003-03-31 住友ゴム工業株式会社 重荷重用タイヤ
JP4826110B2 (ja) * 2005-03-16 2011-11-30 横浜ゴム株式会社 空気入りラジアルタイヤ
JP2008001249A (ja) * 2006-06-23 2008-01-10 Yokohama Rubber Co Ltd:The 空気入りタイヤ
BRPI0621889A2 (pt) * 2006-07-13 2014-04-29 Michelin Rech Tech Pneu.
JP2009119949A (ja) * 2007-11-13 2009-06-04 Bridgestone Corp タイヤ
JP5254126B2 (ja) * 2008-05-16 2013-08-07 住友ゴム工業株式会社 空気入りタイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297310A (ja) * 1991-03-27 1992-10-21 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2000016030A (ja) * 1998-07-07 2000-01-18 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP2007050854A (ja) 2005-08-19 2007-03-01 Sumitomo Rubber Ind Ltd ランフラットタイヤ
WO2007032405A1 (ja) 2005-09-13 2007-03-22 Bridgestone Corporation 空気入りタイヤ

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020672A (ja) * 2010-07-15 2012-02-02 Bridgestone Corp 空気入りタイヤ
US9493040B2 (en) 2011-07-29 2016-11-15 Sumitomo Rubber Industries, Ltd. Pneumatic tire
EP2738020A4 (en) * 2011-07-29 2015-09-16 Sumitomo Rubber Ind PNEUMATIC
RU2564464C2 (ru) * 2011-07-29 2015-10-10 Сумитомо Раббер Индастриз, Лтд. Пневматическая шина
JP2013028300A (ja) * 2011-07-29 2013-02-07 Sumitomo Rubber Ind Ltd 空気入りタイヤ
WO2013018644A1 (ja) * 2011-07-29 2013-02-07 住友ゴム工業株式会社 空気入りタイヤ
RU2563508C1 (ru) * 2011-10-12 2015-09-20 Сумитомо Раббер Индастриз, Лтд. Пневматическая шина
CN103874591A (zh) * 2011-10-12 2014-06-18 住友橡胶工业株式会社 充气轮胎
EP2752312A4 (en) * 2011-10-12 2015-06-03 Sumitomo Rubber Ind TIRE
CN103874591B (zh) * 2011-10-12 2016-05-04 住友橡胶工业株式会社 充气轮胎
US20140238571A1 (en) * 2011-10-31 2014-08-28 Sumitomo Rubber Industries, Ltd. Pneumatic tire
CN104245364A (zh) * 2012-02-27 2014-12-24 住友橡胶工业株式会社 充气轮胎
KR20140019243A (ko) * 2012-08-06 2014-02-14 스미토모 고무 고교 가부시키가이샤 런 플랫 타이어
KR101972175B1 (ko) 2012-08-06 2019-04-24 스미토모 고무 고교 가부시키가이샤 런 플랫 타이어
JP2019167067A (ja) * 2018-03-26 2019-10-03 住友ゴム工業株式会社 タイヤ
JP7040200B2 (ja) 2018-03-26 2022-03-23 住友ゴム工業株式会社 タイヤ
WO2020250533A1 (ja) * 2019-06-11 2020-12-17 株式会社ブリヂストン タイヤ
JP7136746B2 (ja) 2019-06-11 2022-09-13 株式会社ブリヂストン タイヤ

Also Published As

Publication number Publication date
US20120060994A1 (en) 2012-03-15
EP2431197A4 (en) 2013-08-28
EP2431197A1 (en) 2012-03-21
EP2431197B1 (en) 2015-05-06
CN102448746A (zh) 2012-05-09
RU2509655C2 (ru) 2014-03-20
BRPI1011635A2 (pt) 2016-03-22
KR101350682B1 (ko) 2014-01-10
KR20120038940A (ko) 2012-04-24
KR20130085448A (ko) 2013-07-29
RU2011150658A (ru) 2013-07-20

Similar Documents

Publication Publication Date Title
WO2010140524A1 (ja) 空気入りタイヤ
JP5254126B2 (ja) 空気入りタイヤ
JP5457415B2 (ja) ランフラットタイヤ
JP5589015B2 (ja) 空気入りタイヤ
WO2013018644A1 (ja) 空気入りタイヤ
JP5299913B2 (ja) 空気入りタイヤ
JP2010280322A (ja) 空気入りタイヤ
JP5695543B2 (ja) 空気入りタイヤ
JP5467081B2 (ja) 空気入りタイヤ
JP5474444B2 (ja) 空気入りタイヤ
JP2012131254A (ja) ランフラットタイヤ
JP5497721B2 (ja) 空気入りタイヤ
JP5294997B2 (ja) 空気入りタイヤ
JP2012116382A (ja) ランフラットタイヤ
JP5480984B2 (ja) 空気入りタイヤ
JP6121215B2 (ja) 空気入りタイヤ
JP5208857B2 (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080023675.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4611/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13320490

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010783308

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117030496

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011150658

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1011635

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1011635

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111201