WO2010140309A1 - シラン変性カチオン化高分子化合物及びその製造方法 - Google Patents
シラン変性カチオン化高分子化合物及びその製造方法 Download PDFInfo
- Publication number
- WO2010140309A1 WO2010140309A1 PCT/JP2010/003352 JP2010003352W WO2010140309A1 WO 2010140309 A1 WO2010140309 A1 WO 2010140309A1 JP 2010003352 W JP2010003352 W JP 2010003352W WO 2010140309 A1 WO2010140309 A1 WO 2010140309A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer compound
- water
- silane
- cationized polymer
- cationized
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B15/00—Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
- C08B15/05—Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
- C08B15/06—Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/02—Cellulose; Modified cellulose
Definitions
- the present invention relates to a silane-modified cationized polymer compound obtained by treating a cationized polymer compound with an aminosilane compound and a method for producing the same.
- cationized polymer compounds such as cationized cellulose have hydrophilicity and viscosity, they are widely used in various fields such as thickeners, adhesives, dispersants, and emulsion stabilizers.
- the cationized polymer compound is generally used after being dissolved in water or a mixed solvent containing water (hereinafter sometimes referred to as an aqueous solvent).
- an aqueous solvent a mixed solvent containing water
- a cationized polymer compound has very high solubility in water or an aqueous solvent, when it is poured into water or an aqueous solvent as it is, only the surface of each particle gets wet and dissolves in water, Particles adhere to each other to form a lump, so-called mako. Once this mako is formed, the contact area between the cationized polymer compound and water is extremely reduced, so it takes time to completely dissolve the cationized polymer compound. It becomes.
- glyoxal treatment is known in which a water-soluble polymer compound such as cationized cellulose is treated with glyoxal to increase hydrophobicity and improve water dispersibility (hereinafter referred to as water dispersibility).
- glyoxal reacts with the hydroxyl group of the water-soluble polymer compound, and glyoxal and the water-soluble polymer compound are cross-linked by a hemiacetal bond. Since this crosslinking is hydrolyzed by alkali or heat, the water-soluble polymer compound treated with glyoxal disperses with excellent water dispersibility when introduced into water or an aqueous solvent, and then is superior to alkali or heat. It exhibits high solubility. However, since glyoxal is designated as a mutagenic substance, an alternative technique is required for glyoxal treatment.
- silane modification treatment in which a cationized polymer compound is treated with an aminosilane compound has been proposed (see Patent Documents 2 to 3).
- water dispersibility is improved by hydrophobizing the particle surface of the cationized polymer compound. Therefore, the formation of mako is suppressed and water solubility is improved.
- the water-soluble polymer compound is cationized under strong alkaline conditions and neutralized, and then the resulting cationized polymer compound is used in an organic solvent such as a lower alcohol.
- a silane-modified cationized polymer compound is produced by reacting with an aminosilane compound in the presence.
- the silane-modified cationized polymer compound produced by the production method described in Patent Documents 1 and 2 has good water dispersibility, similar to the glyoxal-treated one.
- the organic solvent used in the production process is sufficiently removed even if the silane-modified cationized polymer compound powder obtained by the above production method is subjected to a drying treatment.
- This problem is required to be improved in terms of odor and environmental maintenance during handling. In order to remove the organic solvent, it is conceivable to increase the temperature or lengthen the drying time.
- the drying temperature is increased, it is difficult to reduce the amount of residual organic solvent, and there are also problems that the water dispersibility, solubility, color tone, etc. of the resulting silane-modified cationized polymer compound powder deteriorate. End up. Further, it is not preferable to lengthen the drying time in terms of production efficiency, and even if the drying time is lengthened, it is difficult to reduce the amount of residual organic solvent within an industrially practical time. Further, according to the study by the present inventors, the above manufacturing method has a problem that the manufacturing efficiency is not very good.
- the present invention has been made in view of the above circumstances, and can produce a silane-modified cationized polymer compound powder that can reduce the amount of residual organic solvent by a short drying process and can efficiently produce a silane-modified cationized polymer compound powder excellent in water dispersibility. It is an object of the present invention to provide a silane-modified cationized polymer compound having a reduced amount of residual method and organic solvent and excellent water dispersibility.
- the present inventors have found that the amount of the remaining organic solvent can be reduced by a short drying process by performing a two-stage drying process under specific conditions. It has been found that a silane-modified cationized polymer compound excellent in water dispersibility can be efficiently produced by setting the pH at the time of treatment with an aminosilane compound to a specific strong alkali region and the use amount of the aminosilane compound within a specific range. It was.
- the present invention for solving the above problems ⁇ 1> a step (1) of obtaining a slurry containing a cationized polymer compound by cationizing a water-soluble polymer compound in a mixed solvent of a water-compatible organic solvent and water in the presence of an alkali; Adding an aminosilane compound to the slurry or cake thereof and treating the cationized polymer compound with the aminosilane compound (2); An optional step (3) of adding an acid to the slurry obtained in step (1) or the product obtained in step (2); And a step (4) of drying the product obtained in the step (2) or the product obtained by performing the step (3) after the step (2).
- a manufacturing method comprising: A primary drying treatment step in which the drying step of the step (4) is performed at a temperature of 50 to 140 ° C. and a vacuum degree of 4.0 to 53.3 kPa; And a secondary drying treatment step of drying the product after the primary drying treatment at a temperature of 90 to 155 ° C., which is a method for producing a silane-modified cationized polymer compound.
- the addition amount of the aminosilane compound in the step (2) is 0.05 to 20% by mass with respect to the water-soluble polymer compound, and the cationized polymer by the aminosilane compound
- the present invention provides ⁇ 3> the primary drying treatment step in the step (4), wherein the degree of vacuum is 4.0 to 20.0 kPa when the temperature is 50 ° C. or higher and lower than 70 ° C.
- the method for producing a silane-modified cationized polymer compound according to ⁇ 1> or ⁇ 2> which is carried out at a vacuum degree of 13.3 to 53.3 kPa at a temperature of 0.0 to 53.3 kPa and a temperature of 110 ° C. to 140 ° C.
- the present invention provides ⁇ 4> a step of obtaining a slurry containing a cationized polymer compound by cationizing a water-soluble polymer compound in the presence of an alkali in a mixed solvent of a water-compatible organic solvent and water ( 1) and Adding an aminosilane compound to the slurry or cake thereof and treating the cationized polymer compound with the aminosilane compound (2); A step (4) of drying the product obtained in the step (2), and a method for producing a silane-modified cationized polymer compound,
- the amount of the aminosilane compound added in the step (2) is 0.05 to 20% by mass relative to the water-soluble polymer compound, and the treatment of the cationized polymer compound with the aminosilane compound is carried out at a pH of 10 or more.
- a primary drying treatment in which the product is treated at a temperature of 50 to 120 ° C. and a degree of vacuum of 13.4 to 53.3 kPa, and the product after the primary drying treatment is treated at a temperature of
- a method for producing a silane-modified cationized polymer compound characterized by performing a secondary drying treatment at 90 to 150 ° C. and a vacuum degree of 13.3 kPa or less.
- the present invention is the method for producing a silane-modified cationized polymer compound according to ⁇ 4>, further comprising ⁇ 5> a step (3) of adding an acid to the product obtained in the step (2).
- the present invention provides ⁇ 6> the silane-modified cationization step according to any one of ⁇ 1> to ⁇ 5>, wherein the primary drying treatment step is performed until the residual organic solvent amount is 0.20% by mass or less. It is a manufacturing method of a molecular compound. Furthermore, the present invention provides ⁇ 7> producing the silane-modified cationized polymer compound according to any one of ⁇ 1> to ⁇ 6>, wherein the secondary drying treatment step is performed until the loss on drying is 2% by mass or less. Is the method.
- the present invention is ⁇ 8> the method for producing a silane-modified cationized polymer compound according to any one of ⁇ 1> to ⁇ 5>, wherein the cationized polymer compound is cationized cellulose. Furthermore, the present invention provides a silane-modified cationization characterized in that the residual amount of the water-compatible organic solvent used in ⁇ 9> cationization is less than 0.10% by mass and the dispersion time in water is 60 seconds or less. It is a polymer compound. Furthermore, the present invention is the silane-modified cationized polymer compound according to ⁇ 9>, wherein ⁇ 10> loss on drying is 2% by mass or less.
- the present invention is the silane-modified cationized polymer compound according to ⁇ 9> or ⁇ 10>, wherein the adsorption amount of ⁇ 11> aminosilane compound is 0.03 to 10%. Further, the present invention is the silane-modified cationized polymer compound according to any one of ⁇ 9> to ⁇ 11>, wherein the ⁇ 12> cationized polymer compound is cationized cellulose.
- the amount of residual organic solvent can be reduced by a short drying process, and a silane-modified cationized polymer compound excellent in water dispersibility can be efficiently produced.
- the manufacturing method of this invention has the following process (1), process (2), and process (4), and also has process (3) optionally.
- the production method of the present invention may optionally further include other steps than those described above.
- a water-compatible organic solvent addition treatment is performed before the step (2) and after performing the step (3) after the step (1) or the step (1).
- a step of reducing moisture in the solvent during the treatment with the aminosilane compound in step (2) is preferably performed in the order of the following A or B.
- A it is preferable to perform a process (3) after a process (2)
- B it is preferable to perform the said water compatible organic solvent addition process after a process (3).
- step (3) may be performed again between step (2) and step (4). It is more preferable to carry out by the above A in that good water dispersibility and solubility can be obtained with a smaller amount of the aminosilane compound added in the step (2).
- each process will be described in more detail.
- the water-soluble polymer compound is cationized in a mixed solvent of a water-compatible organic solvent and water in the presence of an alkali to obtain a slurry containing the cationized polymer compound.
- a cationized high molecular compound It can select suitably from well-known things. Specific examples include cationized cellulose, cationized starch, cationized guar gum, cationized locust bean gum, cationized cod gum, cationized collagen, cationized hydrolyzed keratin, and cationized hydrolyzed silk.
- cationized cellulose, cationized starch, cationized guar gum, cationized locust bean gum, and the like are preferable from the viewpoint of excellent usefulness of the present invention and industrial utility. preferable.
- the degree of cationization of the cationized polymer compound is not particularly limited, and can be appropriately selected depending on the intended use of the finally obtained silane-modified cationized polymer compound powder.
- the content is preferably 0.3 to 2.5% by mass, and more preferably 0.5 to 2.0% by mass.
- the degree of cationization is 0.3% by mass or more, the cationicity of the cationized polymer compound, and thus the cationicity of the silane-modified cationized polymer compound, improves its function (thickening, etc.). .
- the degree of cationization of the cationized polymer compound can be adjusted by adjusting the amount of cationizing agent used at the time of production.
- the degree of cationization of the cationized polymer compound can be measured by a known measurement method.
- the degree of cationization of cationized cellulose means the ratio of nitrogen atoms per glucose residue unit skeleton of the cationized cellulose, and O- [2-hydroxychloride] of Quasi-drug Raw Material Standard 2006 (Pharmaceutical Daily). It can be measured by the method described on the page of -3- (trimethylammonio) propyl] hydroxyethylcellulose.
- the nitrogen atom is derived from a cationizing agent.
- the mixed solvent used in this step is a mixture of a water-compatible organic solvent and water.
- the “water-compatible organic solvent” means an organic solvent that becomes a uniform solution when water and the organic solvent are mixed at a ratio of 1: 1 (mass ratio) at 30 ° C.
- the water-compatible organic solvent is not particularly limited as long as it meets the above definition, and examples thereof include alcohols having 1 to 4 carbon atoms and acetone. Among these, alcohols having 1 to 4 carbon atoms are preferable. Specific examples include methanol, ethanol, isopropanol, n-propanol, t-butanol and the like. Among these, ethanol, isopropanol, and t-butanol are preferable from the viewpoint of price and safety.
- the ratio of water in the mixed solvent is preferably 12 to 30% by mass, and more preferably 12 to 20% by mass from the viewpoint of suppressing side reactions and allowing the cationization reaction to proceed efficiently. By setting it to the lower limit or more, the cationization reaction can proceed more efficiently. If the upper limit is exceeded, gelation may occur due to dissolution of the produced cationized polymer compound or water-soluble polymer compound in water, and yield, handleability, productivity, and the like may be reduced.
- alkali examples include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide.
- alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide.
- sodium hydroxide is preferable because it is inexpensive.
- the water-soluble polymer compound preferably has a viscosity of 5 to 35,000 mPa ⁇ s at 20 ° C. in a 2% by mass aqueous solution.
- the viscosity refers to a viscosity one minute after the start of measurement with a B-type viscometer.
- the type of the water-soluble polymer compound may be appropriately selected according to the target cationized polymer compound. For example, when the cationized polymer compound is cationized cellulose, a water-soluble cellulose ether is preferably used as the water-soluble polymer compound. Examples of the water-soluble cellulose ether include hydroxyalkyl cellulose ether.
- Hydroxyalkyl cellulose ether is obtained by bonding a hydroxyalkyl group as a substituent to a hydroxyl group of cellulose.
- the hydroxyalkyl group is a group represented by the general formula — (A—O) n H.
- A is an alkylene group having 2 to 3 carbon atoms, preferably an ethylene group or a propylene group, and more preferably an ethylene group.
- n is the average number of moles of alkylene oxide added, and the average number of moles added is preferably 0.5 to 3.5 moles per mole of glucose residue (unit skeleton) of the water-soluble cellulose ether. 2.5 moles is more preferred.
- hydroxyalkyl cellulose ethers such as hydroxyalkyl cellulose ethers may be conventionally called cellulose in the art.
- the cellulose ether is sometimes simply referred to as cellulose.
- hydroxyalkyl cellulose ether and hydroxyalkyl cellulose refer to the same compound.
- the hydroxyalkyl cellulose ether may have a substituent other than the hydroxyalkyl group. Examples of the substituent include an alkyl group having 1 to 3 carbon atoms.
- hydroxyalkyl cellulose ether examples include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose (HPC), methyl-hydroxyethyl cellulose (MHEC), methyl-hydroxypropyl cellulose (MHPC), and ethyl-hydroxyethyl cellulose (EHEC). It is done. Among them, HEC is preferable because it is inexpensive and generally used for thickeners and the like. These may use any 1 type and may use 2 or more types together. Such hydroxyalkyl cellulose ethers may be commercially available or synthesized. Hydroxyalkyl cellulose ether can be synthesized, for example, by subjecting cellulose to alkali treatment to obtain alkali cellulose and reacting this with alkylene oxide.
- HEC Daicel SE550 , SE600, SE900 and the like As commercial products, manufactured by Sumitomo Seika: HEC AL-15, AH-15, AX-15, LF-15, SH-15, SW-25, SG-25, SY-25, and Daicel Chemical Industries: HEC Daicel SE550 , SE600, SE900 and the like.
- Cationization can be performed by reacting a water-soluble polymer compound and a cationizing agent in a mixed solvent in the presence of an alkali.
- Any cationizing agent may be used as long as it reacts with the active hydrogen possessed by the water-soluble polymer compound, for example, the hydrogen atom of the hydroxyl group of the water-soluble cellulose ether (active hydrogen) to impart cationicity to the water-soluble polymer compound.
- glycidyltrialkylammonium halides such as glycidyltrimethylammonium chloride, glycidyltriethylammonium chloride, glycidyltrimethylammonium bromide, glycidyltriethylammonium bromide, dimethyldiallylammonium chloride, methacryloyloxyethylenetrimethylammonium chloride, 3-chloro- Examples thereof include ammonium halide compounds such as 2-hydroxypropyltrimethylammonium chloride. Among these, glycidyltrimethylammonium chloride is preferable from the viewpoint of low cost and high reactivity.
- the water-soluble polymer compound and the cationizing agent can be reacted by mixing and stirring the water-soluble polymer compound, the mixed solvent and the alkali, and then adding the cationizing agent to a predetermined reaction temperature.
- the amount of the mixed solvent used is based on 100 parts by mass of the water-soluble polymer compound from the viewpoint of avoiding the cationization of the water-soluble polymer compound from proceeding locally and increasing the volumetric efficiency of the reactor. 200 to 1500 parts by mass is preferable, and 300 to 800 parts by mass is more preferable.
- the amount of alkali used is preferably such that the alkali content is 0.1 to 10% by mass relative to the water-soluble polymer compound.
- the pH after addition of the alkali is 10 or more.
- the pH is preferably 10 to 14, and more preferably 12 to 13.
- alkali is added so that the pH in the reaction system after the cationization reaction is the same as the pH when the aminosilane compound and the cationized polymer compound are reacted in the subsequent step (2), the step (2 There is an advantage that the labor of pH adjustment at the time of carrying out is saved.
- the pH is the pH at the reaction temperature when the water-soluble polymer compound and the cationizing agent are reacted.
- a cationizing agent suitably considering the desired degree of cationization of a cationized high molecular compound, a yield, economical efficiency (whether there exists an effect commensurate with the usage-amount), etc.
- the amount of the cationizing agent used is based on the glucose residue unit skeleton in the water-soluble cellulose ether.
- An amount of 0.1 to 1.4 mol is preferable, and an amount of 0.3 to 1.2 mol is more preferable.
- the reaction temperature is usually within the range of 40 to 60 ° C., preferably 45 to 55 ° C., from the viewpoint of promoting the reaction and shortening the reaction time and avoiding the rapid progress of the reaction.
- the reaction time varies depending on the reaction temperature and cannot be determined unconditionally, but it is usually about 2 to 4 hours.
- the slurry obtained in the step (1) may be subjected to the step (2) as it is, or may be subjected to liquid removal treatment and may be subjected to the step (2) as a cake.
- the liquid removal treatment method is not particularly limited, and a conventionally known solid-liquid separation method such as filtration or centrifugation can be used. For example, it can be carried out by using a centrifugal drainer with a filter cloth.
- the liquid removal treatment at this time is preferably performed so that the solid content in the obtained cake is 30 to 90% by mass.
- the solid content is calculated from the difference between before and after 1 g of cake is dried at 105 ° C. for 2 hours.
- an acid may be added to make the pH less than 10, for example, a neutral to acidic region. If the pH when the aminosilane compound and the cationized polymer compound are reacted in the subsequent step (2) is 10 or more, the effect of the present invention can be obtained even if the previous pH is less than 10.
- the acid used for the pH adjustment include the same acids as those mentioned in the step (3) described later, and examples of the alkali include the same acids as described above.
- the water used at the time of cationization remains together with the cationized polymer compound, and moisture in all the solvents (mother liquor) contained in the slurry, that is, cationization
- the water content in the total solvent in contact with the polymer compound is usually 12 to 30% by mass.
- the water content in all the solvents is almost the same even when the slurry is drained into a cake.
- the water-compatible organic solvent addition treatment is performed on the slurry or cake, the water content in the entire solvent can be reduced.
- the water-compatible organic solvent addition treatment is not necessarily required, and the water-compatible organic solvent addition step may not be performed. Even when the above step is not performed, a silane-modified cationized polymer compound having good water dispersibility and solubility can be obtained.
- the fact that such a water-compatible organic solvent addition treatment is not required is industrially advantageous, because a rectifying column for preparing a high-purity water-compatible organic solvent is unnecessary.
- Examples of the water-compatible organic solvent used in the water-compatible organic solvent addition treatment include the same as those mentioned as the water-compatible organic solvent used in the cationization.
- the said water-compatible organic solvent may be used individually by 1 type, and may use 2 or more types together.
- the water-compatible organic solvent may be added as a mixed solvent with water.
- the ratio of water in the mixed solvent is such that the water in the entire solvent (mother liquor) contained in the slurry or cake of the cationized polymer compound after adding the mixed solvent is less than that before the addition. What is necessary is just to select suitably according to the moisture content in the slurry or cake to which the said mixed solvent is added.
- the water content in the total solvent after the addition of the water-compatible organic solvent or the mixed solvent is preferably 10% by mass or less, more preferably 2 to 7% by mass.
- Method (1) A method in which a water-compatible organic solvent or a mixed solvent of a water-compatible organic solvent and water is added to the slurry and mixed.
- Method (2) A method of removing the slurry from the slurry and adding a water-compatible organic solvent or a mixed solvent of water-compatible organic solvent and water to the obtained cake.
- the water-compatible organic solvent or the mixed solvent may be added so that the moisture in the entire solvent (mother liquor) contained in the slurry after the addition becomes a desired value.
- the liquid removal treatment method is not particularly limited, and a conventionally known solid-liquid separation method such as filtration or centrifugation can be used. For example, it can be carried out by using a centrifugal drainer with a filter cloth.
- the liquid removal treatment at this time is preferably performed so that the solid content in the cake is 30 to 90% by mass. The solid content is calculated from the difference between before and after 1 g of cake is dried at 105 ° C. for 2 hours.
- Method (2) the following method (2a), (2b), etc. are mentioned as a method of adding a water compatible organic solvent or a mixed solvent of a water compatible organic solvent and water to the obtained cake. It is done.
- Method (2a) A method in which the obtained cake is redispersed in a water-compatible organic solvent or mixed solvent to form a slurry.
- Method (2b) A method of showering a water-compatible organic solvent or mixed solvent on the obtained cake.
- the amount of the water-compatible organic solvent or mixed solvent used may be appropriately set so that the water content in the entire solvent (mother liquor) contained in the slurry after redispersion becomes a desired value.
- the shower may be performed until the moisture in the mother liquor contained in the cake finally reaches a desired value.
- a continuous processing method can be used in which the cake is placed on a belt conveyor and the shower is performed thereon.
- the “water in all solvents” refers to, for example, a method in which the slurry is allowed to stand or be centrifuged, and the supernatant is collected to measure the moisture, and the slurry or cake is removed after addition of the water-compatible organic solvent or mixed solvent. This can be confirmed by measuring the moisture in the drained liquid.
- the amount of moisture in the liquid can be measured by a Karl Fischer method using a commercially available moisture measuring device such as a trace moisture measuring device AQV-7 manufactured by Hiranuma Sangyo Co., Ltd.
- the water-compatible organic solvent addition treatment can also serve as a purification treatment for the cationized polymer compound.
- the resulting slurry contains a salt generated by neutralization. By performing this treatment, this salt can be removed by washing.
- a water-compatible organic solvent is used for this treatment, or if a mixed solvent with a small amount of water is used, the neutralization salt removal efficiency decreases, and the neutralized salt remains in the resulting cationized polymer compound. There is a fear. Therefore, when acid is added after performing the above step (1), from the viewpoint of the removal efficiency of the neutralized salt, a water-solubility having a water content of about 15 to 30% by mass is separately provided before this treatment. It is preferable to carry out purification treatment (washing) of the cationized polymer compound using a mixed solvent of an organic solvent and water.
- the slurry or its cake after the water-compatible organic solvent addition treatment may be directly subjected to the step (2) or may be subjected to a liquid removal treatment before the step (2).
- the liquid removal treatment method is not particularly limited, and a conventionally known solid-liquid separation method such as filtration or centrifugation can be used. For example, it can be carried out by using a centrifugal drainer with a filter cloth.
- the liquid removal treatment at this time is preferably performed so that the solid content in the obtained cake is 30 to 90% by mass.
- the solid content is calculated from the difference between before and after 1 g of cake is dried at 105 ° C. for 2 hours.
- a cationized high molecular compound is more than 10 mass% of water
- step (2) an aminosilane compound is added to the slurry or cake thereof obtained in step (1), and the cationized polymer compound is treated with the aminosilane compound. Thereby, a silane-modified cationized polymer compound is formed.
- the silane-modified cationized polymer compound formed in the step (2) is considered to have a structure in which a hydrolyzate of an aminosilane compound is adsorbed on the surface of the cationized polymer compound. That is, water is contained in the slurry or cake thereof obtained in the step (1).
- a hydrolyzable group bonded to the Si atom in the aminosilane compound (a hydrolyzable group capable of generating a hydroxyl group by hydrolysis, for example, an alkoxy group) is hydrolyzed to produce a silanol group (Si -OH) is formed. It is presumed that this silanol group is adsorbed by a hydrogen bond to a hydroxyl group of the cationized polymer compound (for example, a hydroxyl group of cationized cellulose or a hydroxyl group after epoxy cleavage of a cationizing agent).
- the step (2) may be performed after adjusting the pH by the step (3) described later after the step (1), or may be performed after the step (1) without adjusting the pH.
- the pH is not particularly limited, but the amount of aminosilane compound added is 0.05 with respect to the water-soluble polymer compound (water-soluble polymer compound used as a raw material for the cationized polymer compound treated with the aminosilane compound).
- the treatment of the cationized polymer compound with the aminosilane compound is preferably performed under alkaline conditions of pH 10 or higher.
- the amount of the aminosilane compound added is 0.3 to obtain sufficient water dispersibility.
- the step (2) is carried out under alkaline conditions of pH 10 or higher, when the added amount of the aminosilane compound is 0.05% by mass or more, the water dispersibility of the resulting silane-modified cationized polymer compound is improved. Can be improved. Further, when the addition amount is 20% by mass or less, sufficient water dispersibility can be obtained. On the other hand, when it exceeds 20% by mass, the water dispersibility can be ensured, but the effective component amount of the cationized polymer compound. Is reduced and the cost is increased, which is not industrially preferable.
- the added amount exceeds 50% by mass, water dispersibility deteriorates.
- the pH is 10 or more, sufficient water dispersibility can be obtained with a smaller addition amount of the aminosilane compound.
- the amount of the aminosilane compound added in the step (2) under alkaline conditions of pH 10 or higher is more preferably 0.1 to 15% by mass, and preferably 0.2 to 10% by mass with respect to the water-soluble polymer compound. Is more preferable, and 0.5 to 5% by mass is particularly preferable.
- the pH during the silane treatment is preferably 10 to 14, and more preferably 11 to 13.
- the pH is the pH at the treatment temperature during the silane treatment.
- pH adjustment is not necessary if the pH of the slurry or cake obtained in the step (1) is 10 or more, but the pH of the slurry or cake thereof is less than 10. Is adjusted to a predetermined pH by adding an alkali. In addition, as long as the pH is in the range of 10 or more, an acid may be added to the slurry obtained in (1) or the cake thereof.
- the alkali used for the pH adjustment include the same alkalis as those mentioned in the step (1), and examples of the acid include the same acids as those mentioned in the step (3) described later. It is preferable to adjust the pH before adding the aminosilane compound.
- the reason why the water dispersibility is improved may be that the adsorption of the aminosilane compound to the cationized polymer compound particles is uniform. That is, when the pH in the reaction system is low as in the conventional method or when the concentration of the aminosilane compound is high, it is presumed that the aminosilane compound is oligomerized by self-condensation and exists in that state. In the case of the oligomer, it is bulky, so it does not adsorb inside the cationized polymer compound particles, and the adsorption to the particle surface becomes non-uniform, so it is estimated that the effect of silane treatment was not sufficiently obtained. .
- the stability of the aminosilane compound is good and self-condensation does not occur or a small amount of it occurs. Is presumed to exist. Therefore, the surface of the cationized polymer compound particles is uniformly coated, adsorbed to the inside of the particles, and the effect of the silane treatment is sufficiently exhibited. Even if the adsorption amount is equivalent to that of the oligomer, excellent water It is estimated that dispersibility is obtained.
- aminosilane compound those usually used as an aminosilane coupling agent can be used, and examples thereof include compounds represented by the following general formula (I).
- R 1 and R 2 each independently represent a hydrogen atom or an organic group
- R 3 represents an alkylene group
- X represents a hydrolyzable group that generates a hydroxyl group upon hydrolysis
- R 4 represents an alkyl group.
- n is an integer of 1 to 3.
- Examples of the organic group for R 1 and R 2 include an alkyl group, an aminoalkyl group, a carboalkoxyalkyl group, and the like.
- the alkylene group for R 3 is preferably an alkylene group having 1 to 5 carbon atoms.
- an alkoxy group is preferable.
- the alkoxy group preferably has 1 to 3 carbon atoms.
- the alkyl group for R 4 is preferably an alkyl group having 1 to 3 carbon atoms.
- n is preferably 2 or 3, and most preferably 3.
- aminosilane compound examples include, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethylethoxysilane, N-2-aminoethyl- 3-aminopropyltrimethoxysilane, N-2-aminoethyl-3-aminopropyltriethoxysilane, 3-aminopropyldiethoxysilane, 4-aminobutylmethyldiethoxysilane, and N-2-carboethoxyethyl-3 -Aminopropyltriethoxysilane and the like.
- silane, N-2-carboethoxyethyl-3-aminopropyltriethoxysilane, etc. are used in the final silane-modified cationized polymer compound for shampoos, body soaps, etc., release of methanol, etc. It is preferable in that it does not occur.
- aminosilane compound commercially available products such as Shin-Etsu Chemical Co., Ltd .: KBE-903, KBE-603, or KBE-9103, or Toray Dow Corning: AY43-059 can be used.
- the addition of the aminosilane compound can be performed by a known method. For example, the method of spraying an aminosilane compound with a spray etc. with respect to the slurry of the said cationized high molecular compound or its cake is mentioned. After the aminosilane compound is added, stirring is preferably performed in order to uniformly perform the silane treatment.
- stirring is preferably performed in order to uniformly perform the silane treatment.
- the temperature is preferably 20 to 80 ° C, more preferably 25 to 75 ° C, and further preferably 30 to 70 ° C. When the treatment temperature is 20 ° C.
- the silane treatment proceeds sufficiently, and the resulting silane-modified cationized polymer compound powder has good water dispersibility, and when it is 80 ° C. or lower, the silane-modified cationization
- the color tone of the polymer compound powder is good.
- the treatment time is not particularly limited and can be appropriately selected according to the treatment temperature, purpose and the like. The time is preferably 5 to 120 minutes, more preferably 10 to 100 minutes, and even more preferably 15 to 80 minutes. When the treatment time is 5 minutes or longer, the silane treatment sufficiently proceeds, and the resulting silane-modified cationized polymer compound powder has good water dispersibility.
- the color tone of the molecular compound powder is good.
- the product (slurry or cake containing the silane-modified cationized polymer compound) obtained in the step (2) is subjected to a liquid removal treatment as it is or optionally, and subjected to the next step (3) or (4). May be.
- a liquid removal treatment as it is or optionally, and subjected to the next step (3) or (4). May be.
- the step (3) is performed next, it is preferable not to perform the liquid removal treatment from the viewpoint of reducing the number of steps.
- the step (4) is performed without performing the step (3) next, it is preferable to perform a liquid removal treatment from the viewpoint of reducing the drying load.
- the liquid removal treatment method is not particularly limited, and a conventionally known solid-liquid separation method such as filtration or centrifugation can be used. For example, it can be carried out by using a centrifugal drainer with a filter cloth.
- the liquid removal treatment at this time is preferably performed so that the solid content in the obtained cake is 30 to 90% by mass.
- the solid content is calculated from the difference between before and after 1 g of cake is dried at 105 ° C. for 2 hours.
- the process which adds a water compatible organic solvent with respect to the product obtained at the process (2) (water compatible organic solvent addition process) May be performed.
- the product contains water as in the slurry obtained in the step (1).
- the water-compatible organic solvent addition process can be performed in the same manner as the water-compatible organic solvent addition process described in the step (1).
- step (3) an acid is added to the slurry obtained in step (1) or the product obtained in step (2) (a slurry or cake containing a silane-modified cationized polymer compound).
- the final silane-modified cationized polymer compound can be adjusted so that the pH when it is made into an aqueous solution is weakly alkaline to acidic.
- step (3) is an optional step that is not necessarily performed, and step (3) may not be performed.
- the acid used in the step (3) may be any acid that can neutralize the alkali used in the step (1) or (2).
- strong acids such as sulfuric acid, hydrochloric acid, nitric acid, acetic acid, phosphorus
- weak acids such as acids.
- hydrochloric acid, sulfuric acid, or nitric acid is preferable because it is inexpensive.
- the usage-amount of an acid is not specifically limited, What is necessary is just to adjust suitably in consideration of pH after an acid addition.
- the pH after addition of the acid is preferably 4.0 to 7.0 under the condition of 50 ° C. in consideration of the pH when the silane-modified cationized polymer compound finally obtained is an aqueous solution. ⁇ 6.5 is more preferred.
- the resulting slurry contains a salt produced by neutralization.
- a purification treatment for washing and removing the salt may be performed.
- the product obtained by performing the step (3) on the product of the step (2) may be subjected to a liquid removal treatment as it is or arbitrarily and may be subjected to the next step (4).
- a liquid removal treatment method is not particularly limited, and a conventionally known solid-liquid separation method such as filtration or centrifugation can be used. For example, it can be carried out by using a centrifugal drainer with a filter cloth.
- the liquid removal treatment at this time is preferably performed so that the solid content in the obtained cake is 30 to 90% by mass. The solid content is calculated from the difference between before and after 1 g of cake is dried at 105 ° C.
- the product contains water in the same manner as the slurry obtained in the step (1) and the product obtained in the step (2).
- moisture in the entire solvent can be reduced.
- the water-compatible organic solvent addition process can be performed in the same manner as the water-compatible organic solvent addition process described in the step (1).
- step (4) the product (slurry or cake containing a silane-modified cationized polymer compound) obtained in step (2) or (3) is dried. Thereby, a silane modified cationized polymer compound can be obtained as a powder.
- a primary drying process in which drying is performed under mild drying conditions mainly for the purpose of reducing the residual organic solvent, and the product after the primary drying process is mainly dried.
- the “vacuum degree” indicates a pressure based on an absolute pressure.
- an organic solvent (water-compatible organic solvent) used for production in the powder obtained after the drying treatment Has a problem that it remains without being sufficiently removed.
- the problem of residual organic solvent is required to be improved in terms of odor and environmental maintenance during handling.
- it is conceivable to increase the temperature or lengthen the drying time in order to remove the organic solvent it is difficult to reduce the amount of the remaining organic solvent even if the drying temperature is simply increased, and the resulting silane modification
- the water dispersibility, solubility, color tone and the like of the cationized polymer compound powder deteriorate.
- the amount of residual organic solvent can be reduced in a short time by performing the two-stage drying process as described above, and the silane-modified cationization with good quality such as water dispersibility.
- a polymer powder is obtained.
- the reason why the water dispersibility is improved by the secondary drying treatment is that a silanol group generated by hydrolysis of the aminosilane compound and a hydroxyl group of the cationized polymer compound undergo a dehydration condensation reaction to form a chemical bond. Or, when not chemically bonded, it is considered that the surface of the cationized polymer compound becomes more hydrophobic by removing the water hydrogen bonded to the silanol group or hydroxyl group.
- the product is treated by drying under reduced pressure at a temperature of 50 to 140 ° C. and a degree of vacuum of 4.0 to 53.3 kPa (30 to 400 Torr). If the temperature and the degree of vacuum are out of the above ranges, the residual organic solvent in the silane-modified cationized polymer compound may not be sufficiently reduced.
- the primary drying process is mainly performed for reducing the residual organic solvent.
- a higher temperature is required as described in the secondary drying treatment described later. Under certain conditions, it is necessary to dry the weight loss to 2% by weight or less.
- the residual organic solvent can be reduced even if the drying loss can be reduced by evaporation of moisture unless drying is performed under moderate drying conditions in which the temperature and vacuum degree are in a specific range. Is insufficient. According to the study by the present inventors, it has been found that the residual organic solvent is difficult to evaporate under the condition that the evaporation rate of the water evaporated and removed simultaneously with the residual organic solvent is high. On the other hand, it is not preferable that the moisture evaporation rate is too low because the drying time is extended.
- the treatment temperature of the primary drying treatment is preferably 60 ° C or higher, and the upper limit is preferably 120 ° C or lower, more preferably 100 ° C or lower, and even more preferably 95 ° C or lower.
- the degree of vacuum is preferably 13.3 kPa (100 Torr) or more, preferably 16.6 to 40.0 kPa (125 to 300 Torr), more preferably 20.0 to 33.3 kPa (150 to 250 Torr).
- the following conditions are preferable. At a temperature of 50 ° C.
- the degree of vacuum is preferably 4.0 kPa or more, and more preferably 6.7 kPa (50 Torr) or more.
- the upper limit of the degree of vacuum is preferably 20.0 kPa or less, and more preferably 13.3 kPa or less.
- the degree of vacuum is preferably 10.0 kPa (75 Torr) or higher, and more preferably 13.3 kPa or higher.
- the upper limit of the degree of vacuum may be 53.3 kPa or less, but more preferably 46.7 kPa (350 Torr) or less.
- the degree of vacuum is preferably 10.0 kPa or higher, and more preferably 13.3 kPa or higher.
- the upper limit of the degree of vacuum is 53.3 kPa or less.
- the degree of vacuum is preferably 13.3 kPa or higher, and more preferably 20.0 kPa or higher.
- the upper limit of the degree of vacuum is 53.3 kPa or less.
- the primary drying treatment can be performed by a known method except that the temperature and the degree of vacuum are within a predetermined range.
- the primary drying treatment can be performed using a generally used reduced-pressure drying apparatus.
- the vacuum drying apparatus include a stirring and pulverizing vacuum dryer, a vibration vacuum dryer, a vacuum stirring dryer, a swing vacuum dryer, and a drum vacuum dryer.
- a stirring and pulverizing vacuum dryer is particularly preferable from the viewpoint of suppressing adhesion of the product to the drying apparatus during the treatment.
- the stirring-disintegrating vacuum dryer has a stirring shaft with a stirring blade (excavator, agitator, etc.) attached to the center of a cylindrical mixing tank, and a chopper is provided on the inner wall of the mixing tank.
- a stirring and pulverizing vacuum dryer having such a structure
- devices conventionally used for stirring and granulation can be used.
- Henschel mixer manufactured by Mitsui Miike Chemical Co., Ltd.
- high speed mixer Fujie Industry
- a vertical granulator manufactured by POWREC Co., Ltd.
- it is a horizontal mixing tank having a stirring shaft at the center of a cylinder, and a mixer of a type in which stirring blades are attached to this shaft to mix powder, such as a Redige mixer (manufactured by Matsubo Co., Ltd.), and Broshear mixer (manufactured by Taihei Kiko Co., Ltd.).
- Stirring conditions when using a stirring and pulverizing vacuum dryer should be set appropriately in consideration of the capacity of the mixing tank, the type of stirring blade, peeling of deposits, crushing of lumps, improvement of thermal efficiency by stirring and mixing, etc. Good.
- the excavator rotation speed is 80 to 160 rpm (clearance 1.5 to 2 mm)
- the chopper rotation is performed.
- the number is preferably 500 to 3000 rpm. Note that when the water-based organic solvent is removed by the primary drying process and becomes rich in moisture, the product is likely to adhere to the dryer.
- the loss on drying (% by mass) is determined by the following procedure.
- the weighing bottle is weighed in advance and its mass (mass A) is accurately measured.
- 1 g (mass B) of the sample to be measured is accurately weighed in the weighing bottle, heated at 105 ° C. for 2 hours, allowed to cool to room temperature in a desiccator, and then its mass (mass C). Weigh.
- the loss on drying is calculated from the mass A, the mass B, and the mass C by the following formula.
- the primary drying treatment is preferably performed until the loss on drying is 30% or less, preferably 25% or less, more preferably 20% or less.
- the organic solvent in the product is sufficiently removed, and as a final product, a silane-treated cationized polymer compound having a residual organic solvent amount of less than 0.10% by mass can be obtained.
- the lower limit of the loss on drying is not particularly limited, and may be 0% by mass. In consideration of production efficiency, it is preferably 1% by mass or more, and more preferably 5% by mass or more.
- the primary drying treatment conditions are appropriately set according to the purpose so that the residual organic solvent amount of the target silane-modified cationized polymer compound powder becomes the target amount in combination with the subsequent secondary drying treatment.
- the residual organic solvent amount of the target silane-modified cationized polymer compound powder is preferably less than 0.10% by mass, and for this purpose, the residual organic solvent at the end of the primary drying treatment
- the amount is preferably 0.20% by mass or less, and more preferably 0.10% by mass or less.
- the lower limit of the amount of the remaining organic solvent is not particularly limited, and is preferably as small as possible.
- the primary drying treatment is preferably performed until the amount of the remaining organic solvent reaches the preferable value.
- examples of the organic solvent remaining in the silane-modified cationized polymer compound include the water-compatible organic solvent used in preparing the slurry.
- the amount of the remaining organic solvent can be measured by a known method such as gas chromatography, and examples thereof include the method described in Examples below when isopropanol is used as the organic solvent.
- the product after the primary drying treatment is treated at a temperature of 90 to 155 ° C.
- the degree of vacuum is not particularly limited and can be appropriately selected according to the purpose of drying. However, in view of drying efficiency, the degree of vacuum is preferably 13.3 kPa (100 Torr) or less.
- the temperature and the degree of vacuum are out of the above ranges, the water dispersibility and solubility of the resulting silane-modified cationized polymer compound powder may be reduced. In particular, if the temperature is too high, the color tone may be deteriorated.
- the treatment temperature of the secondary drying treatment is preferably 90 to 150 ° C, more preferably 105 to 145 ° C, and still more preferably 105 to 125 ° C.
- the degree of vacuum is more preferably 6.7 kPa (50 Torr) or less, and even more preferably 1.3 kPa (10 Torr) or less.
- the secondary drying process can be performed by the same method as the primary drying process except that the temperature and the degree of vacuum are within the predetermined ranges.
- the secondary drying treatment is preferably carried out until the loss on drying (% by mass) is 2% by mass or less because the silane-modified cationized polymer compound powder is excellent in water dispersibility.
- the drying loss is more preferably 1% by mass or less, and may be 0.
- the loss on drying is determined by the same procedure as described above.
- the primary drying step and the secondary drying step may be performed continuously or intermittently. Moreover, you may perform the drying process on the conditions which do not correspond to a primary drying process or a secondary drying process between a primary drying process and a secondary drying process. For example, when performing the secondary drying process continuously from the primary drying process, intermediate processing conditions (for example, a vacuum degree of less than 13.4 kPa and more than 13.3 kPa) may be passed.
- intermediate processing conditions for example, a vacuum degree of less than 13.4 kPa and more than 13.3 kPa
- the particle size of the silane-modified cationized polymer compound obtained as described above may be appropriately selected in consideration of the purpose of use and the like.
- the thickness is preferably 10 to 1,000 ⁇ m, more preferably 30 to 800 ⁇ m, still more preferably 50 to 600 ⁇ m.
- the particle diameter is 10 ⁇ m or more, water dispersibility is improved, dust is hardly generated during use, and handling properties are good.
- the solubility to water is favorable in it being 1,000 micrometers or less.
- the silane-modified cationized polymer compound preferably has a pH of 5 to 7.5 under the condition of 25 ° C. when it is made into a 2% by mass aqueous solution.
- a silane-modified cationized polymer compound excellent in water dispersibility with a reduced amount of residual organic solvent can be produced.
- an aqueous solvent such as water or a mixed solvent of water and a water-compatible organic solvent
- water dispersibility can be evaluated by the method shown in the examples below.
- the silane-modified cationization has excellent water dispersibility of 60 seconds or less, more preferably 30 seconds or less. A polymer compound can be obtained efficiently.
- a silane-modified cationized polymer compound powder having a reduced amount of residual organic solvent such as a silane-modified cation having a residual organic solvent amount of less than 0.10% by mass.
- the silane-modified cationized polymer compound powder having a reduced amount of the residual organic solvent is less likely to cause problems such as odor and coloring, and is excellent from the viewpoint of safety and environmental maintenance during handling. Further, it is considered that the silane-modified cationized polymer compound has improved interaction with various components blended in various cosmetic compositions by the silane modification treatment.
- the silane-modified cationized polymer compound obtained by the production method of the present invention includes, for example, conditioning agents for shampoos and body soaps, hair cosmetics, basic cosmetics, makeup cosmetics, aromatic cosmetics, tanning cosmetics, and sunscreen cosmetics. It is useful for a wide range of applications such as cosmetics for nails or cosmetics for bathing, and is particularly useful as a conditioning agent.
- the production method for silane treatment under alkaline conditions of the present invention is simple and has fewer steps than the conventional method in which neutralization treatment is performed after cationization and before silane treatment.
- the neutralized salt produced by neutralization may adversely affect the silane treatment, so it may be necessary to carry out treatments such as washing for cleaning and liquid removal before the silane treatment.
- the steps before drying can be carried out continuously in the same reactor, which is industrially useful.
- Example 1 the drying process (primary drying process and secondary drying process) is performed by a rotary vacuum evaporator: manufactured by EYELA N -N series and 500 mL eggplant flasks were used. Moreover, in Example 7, the drying process (primary drying process, secondary drying process) was performed using the Redige mixer (made by Matsubo Co., Ltd.).
- IPA isopropyl alcohol
- mass ratio 120 g (400 parts by mass) of the mixed solvent to be 85/15
- silane-modified cationized cellulose slurry was drained, and the resulting cake (solid content 60%) was subjected to a primary drying treatment at a temperature of 80 ° C. and a vacuum degree of 20.0 kPa for 1 hour. Thereafter, a secondary drying treatment at a temperature of 110 ° C. and a degree of vacuum of 1.3 kPa was further performed for 1 hour to obtain a target silane-modified cationized cellulose powder.
- Example 2 The same silane-modified cationized cellulose powder was obtained as in Example 1, except that the amount of 3-aminopropyltriethoxysilane added was 0.15 g (0.5 parts by mass).
- Example 3 The same silane-modified cationized cellulose powder was obtained as in Example 1, except that the amount of 3-aminopropyltriethoxysilane added was 3.0 g (10 parts by mass).
- Example 4 After cationization, the pH of the reaction slurry is adjusted to 13 with a 25% aqueous sodium hydroxide solution, and the primary drying treatment is performed at a temperature of 100 ° C. for 1 hour at a vacuum degree of 33.3 kPa, and the secondary drying treatment is performed at a temperature of 140 ° C.
- the same operation as in Example 1 was performed except that the degree of vacuum was 12.0 kPa for 1 hour to obtain a target silane-modified cationized cellulose powder.
- Example 5 After the cationization, the same operation as in Example 1 was performed except that the pH of the reaction slurry was adjusted to 11 with a 10% hydrochloric acid IPA aqueous solution to obtain the target silane-modified cationized cellulose powder.
- Example 6 After the cationization, the same operation as in Example 1 was performed except that the pH of the reaction slurry was adjusted to 10 with a 10% hydrochloric acid IPA aqueous solution to obtain the target silane-modified cationized cellulose powder.
- Example 7 The drying process (primary drying process, secondary drying process) was the same as that of Example 1 except that it was performed under the following conditions using a model No. VT-20, 20L capacity readyge mixer (manufactured by Matsubo Co., Ltd.).
- the target silane-modified cationized cellulose powder was obtained under the conditions shown in Table 2.
- Primary treatment initial stage shovel 120 rpm [clearance 1.5-2 mm], chopper 3000 rpm.
- Late primary treatment to early secondary treatment (period in which adhesion is likely to occur): excavator 50 rpm, chopper 1000 rpm.
- Secondary treatment middle to late (period in which adhesion is difficult to occur): excavator 160 rpm, chopper 500 rpm.
- Example 8 After adding the 10 mass% hydrochloric acid IPA solution and before removing the silane-modified cationized cellulose slurry, 265 g of 100% isopropyl alcohol is added to the reaction slurry to add a water-compatible organic solvent. The same operation as in Example 1 was performed except that the drying treatment was performed at a temperature of 90 ° C. and a vacuum degree of 26.7 kPa for 1 hour, and the secondary drying treatment was performed at a temperature of 125 ° C. and a vacuum degree of 1.3 kPa for 1 hour. A silane-modified cationized cellulose was obtained.
- Example 9 to [Example 12] The same operation as Example 1 was performed on the conditions shown in Table 2, and the target silane modified cationized cellulose powder was obtained.
- Example 13 After cationization in the same manner as in Example 1, a 10% by mass IPA hydrochloric acid solution was added to adjust the pH to 4 to obtain a cationized cellulose slurry. Subsequently, 250 g of IPA (purity 99.5%) was added to the cationized cellulose slurry, and the mixture was stirred and mixed for 15 minutes. At this time, the water content in the cationized cellulose slurry was 5%. Thereafter, stirring was stopped and the mixture was allowed to stand to remove 250 g of the supernatant.
- IPA purity 99.5%
- Example 13 a silane-modified cationized cellulose powder of Example 13 was obtained.
- IPA isopropyl alcohol
- water (mass ratio) 120 g (400 parts by mass) of the mixed solvent to be 85/15, and further 9.9 g (33 parts by mass) of a 9% by mass aqueous sodium hydroxide solution were added and mixed.
- silane-modified cationized guar gum slurry was drained, and the resulting cake (solid content 60%) was subjected to a primary drying treatment at a temperature of 80 ° C. and a degree of vacuum of 26.6 kPa for 0.5 hours. Thereafter, a secondary drying treatment at a temperature of 140 ° C. and a degree of vacuum of 1.3 kPa was further performed for 0.5 hours to obtain a target silane-modified cationized guar gum powder.
- Example 1 The target silane-modified cationized cellulose powder was subjected to the same operation as in Example 1 except that only the secondary drying treatment was performed for 1 hour at a temperature of 110 ° C. and a vacuum of 1.3 kPa without performing the primary drying treatment. Got.
- Example 2 [Comparative Example 4] The same operation as in Example 13 was performed under the conditions shown in Table 4 to obtain a silane-modified cationized cellulose slurry. Then, in Comparative Example 2, the primary drying process was not performed, and only the secondary drying process was performed. Only the next drying treatment was performed under the drying conditions shown in Table 4, respectively.
- a calibration curve was prepared by taking the emission intensity of the analysis result on the y axis and the SC agent concentration (0.1 ppm, 1 ppm, 5 ppm, 10 ppm, 50 ppm) on the x axis. At the same time, a calibration curve was obtained by linear approximation. In addition, the slope of the approximate linear equation obtained at this time is p, and the intercept is q. [3] Calculation of SC agent adsorption amount (%) in sample: From the results of [1] and [2] above, the SC agent adsorption amount (%) in each sample (silane-modified cationized cellulose powder) was calculated by the following formula.
- Tables 1 to 4 show the pH during SC agent treatment in each Example and Comparative Example, the SC agent addition amount (% vs. HEC or guar gum), and the results of the above analysis and evaluation.
- the SC agent addition amount (% vs. HEC) is the ratio (%) of the SC agent addition amount (parts by mass) to the amount of raw material hydroxyethyl cellulose used (parts by mass). The same applies to guar gum.
- the silane-modified cationized celluloses obtained in Examples 1 to 8 each showed excellent water dispersibility.
- the silane-modified cationized cellulose obtained in Example 9 showed good water dispersibility despite the small amount of SC agent added.
- the Example product which performed the primary drying process and the secondary drying process also had little residual IPA amount.
- a silane-modified cationized polymer compound excellent in water dispersibility can be efficiently produced.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Materials Engineering (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Cosmetics (AREA)
Abstract
Description
本願は、2009年6月4日に、日本に出願された特願2009-134908号に基づき優先権を主張し、その内容をここに援用する。
これらの用途において、カチオン化高分子化合物は、一般的に、水、又は水を含む混合溶媒(以下、水系溶媒ということがある。)に溶解して用いられるため、通常、溶解性を考慮して、粉末状~微粒子状にして用いられている。
しかし、このようなカチオン化高分子化合物は、水又は水系溶媒への溶解性が非常に高いため、そのまま水又は水系溶媒に投入した際に、各粒子の表面だけが水に濡れて溶解し、粒子同士が付着して塊、いわゆるママコが形成されてしまう。一旦このママコが形成されると、カチオン化高分子化合物と水との接触面積が極度に減少するため、カチオン化高分子化合物を完全に溶解するのに時間がかかってしまい、工業プロセス上、問題となる。
このような問題に対し、カチオン化セルロース等の水溶性高分子化合物をグリオキサールで処理し、疎水性を高めて水への分散性(以下、水分散性という)を向上させるグリオキサール処理が知られている(たとえば特許文献1参照)。グリオキサール処理によれば、グリオキサールが水溶性高分子化合物の水酸基と反応し、ヘミアセタール結合により、グリオキサールと水溶性高分子化合物とが架橋する。この架橋は、アルカリや熱により加水分解するため、グリオキサール処理された水溶性高分子化合物は、水又は水系溶媒に投入した際には優れた水分散性により分散し、その後、アルカリや熱により優れた溶解性を発現する。
しかし、グリオキサール処理は、グリオキサールが変異源性物質として指定されていることから、その代替技術が求められている。
グリオキサール処理の代替技術として、カチオン化高分子化合物をアミノシラン系化合物で処理するシラン変性処理が提案されている(特許文献2~3参照)。前記処理によれば、カチオン化高分子化合物の粒子表面が疎水化されることで水分散性が向上する。そのためママコの形成が抑制され、水溶解性が向上する。これらの文献に記載の方法では、具体的には、水溶性高分子化合物を強アルカリ条件下でカチオン化し、中和した後、得られたカチオン化高分子化合物を、低級アルコール等の有機溶媒の存在下にてアミノシラン系化合物と反応させることによりシラン変性カチオン化高分子化合物を製造している。
しかしながら、本発明者らの検討によれば、上記製造方法により得られるシラン変性カチオン化高分子化合物粉末には、乾燥処理を行っていても、製造工程において使用した有機溶媒が充分には除去されずに残留している問題もある。この問題は、臭気や取り扱い時の環境整備等の点から、その改善が求められる。
有機溶媒を除去すべく、温度を高くしたり、乾燥時間を長くすることが考えられる。しかし、乾燥温度を高くしても、残存有機溶媒量を低減することは難しく、また、得られるシラン変性カチオン化高分子化合物粉末の水分散性や溶解性、色調等が悪化する問題も生じてしまう。また、乾燥時間を長くすることは、製造効率上、好ましくなく、また乾燥時間を長くしても工業的に実用的な時間内では残存有機溶媒量を低減することは困難である。
さらに、本発明者らの検討によれば、上記製造方法は、製造効率があまり良いとはいえない問題がある。たとえば、シラン変性処理によってグリオキサール処理と同等の水分散性を発現させるためには、アミノシラン化合物を、グリオキサールに比べて多量に使用する必要がある。
本発明は、上記事情に鑑みてなされたものであって、短時間の乾燥処理で残存有機溶媒量を低減でき、水分散性に優れたシラン変性カチオン化高分子化合物粉末を効率よく製造できる製造方法及び有機溶媒の残存量が低減され且つ、水分散性に優れたシラン変性カチオン化高分子化合物を提供することを目的とする。
上記課題を解決する本発明は、
<1> 水溶性高分子化合物を、水相溶性有機溶媒と水との混合溶媒中、アルカリ存在下にてカチオン化して、カチオン化高分子化合物を含有するスラリーを得る工程(1)と、
前記スラリー又はそのケーキにアミノシラン化合物を添加し、前記アミノシラン化合物により前記カチオン化高分子化合物を処理する工程(2)と、
前記工程(1)で得たスラリー又は前記工程(2)で得た生成物に酸を添加する任意の工程(3)と、
さらに、前記工程(2)で得た生成物又は前記工程(2)の後に工程(3)を行って得た生成物を乾燥させる工程(4)と、を有するシラン変性カチオン化高分子化合物の製造方法であって、
前記工程(4)の乾燥工程が、温度50~140℃、真空度4.0~53.3kPaで乾燥を行う1次乾燥処理工程と、
前記1次乾燥処理後の前記生成物を、温度90~155℃で乾燥する2次乾燥処理工程と、を有することを特徴とするシラン変性カチオン化高分子化合物の製造方法である。
さらに本発明は、<2> 前記工程(2)における前記アミノシラン化合物の添加量が、前記水溶性高分子化合物に対して0.05~20質量%であり、前記アミノシラン化合物による前記カチオン化高分子化合物の処理を、pH10以上のアルカリ条件下にて行う<1>記載のシラン変性カチオン化高分子化合物の製造方法である。
さらに本発明は、<3> 前記工程(4)における1次乾燥処理工程を、温度50℃以上70℃未満では真空度4.0~20.0kPa、温度70℃以上110℃未満では真空度10.0~53.3kPa、温度110℃以上140℃以下では真空度13.3~53.3kPaで行う<1>又は<2>記載のシラン変性カチオン化高分子化合物の製造方法である。
さらに本発明は、<4> 水溶性高分子化合物を、水相溶性有機溶媒と水との混合溶媒中、アルカリ存在下にてカチオン化して、カチオン化高分子化合物を含有するスラリーを得る工程(1)と、
前記スラリー又はそのケーキにアミノシラン化合物を添加し、前記アミノシラン化合物により前記カチオン化高分子化合物を処理する工程(2)と、
前記工程(2)で得た生成物を乾燥させる工程(4)と、を有するシラン変性カチオン化高分子化合物の製造方法であって、
前記工程(2)における前記アミノシラン化合物の添加量が、前記水溶性高分子化合物に対して0.05~20質量%であり、前記アミノシラン化合物による前記カチオン化高分子化合物の処理を、pH10以上のアルカリ条件下にて行い、さらに、
前記工程(4)にて、前記生成物を温度50~120℃、真空度13.4~53.3kPaにて処理する1次乾燥処理と、前記1次乾燥処理後の前記生成物を、温度90~150℃、真空度13.3kPa以下にて処理する2次乾燥処理と、を行うことを特徴とするシラン変性カチオン化高分子化合物の製造方法である。
さらに本発明は、<5> 前記工程(2)で得た生成物に酸を添加する工程(3)を有する<4>に記載のシラン変性カチオン化高分子化合物の製造方法である。
さらに本発明は、<6> 前記1次乾燥処理工程を残存有機溶媒量が0.20質量%以下となるまで行う<1>~<5>のいずれか一項に記載のシラン変性カチオン化高分子化合物の製造方法である。
さらに本発明は、<7> 前記2次乾燥処理工程を乾燥減量が2質量%以下となるまで行う<1>~<6>のいずれか一項に記載のシラン変性カチオン化高分子化合物の製造方法である。
さらに本発明は、<8> 前記カチオン化高分子化合物がカチオン化セルロースである<1>~<5>のいずれか一項に記載のシラン変性カチオン化高分子化合物の製造方法である。
さらに本発明は、<9> カチオン化時に使用した水相溶性有機溶媒の残存量が0.10質量%未満で、水への分散時間が60秒以下であることを特徴とするシラン変性カチオン化高分子化合物である。
さらに本発明は、<10> 乾燥減量が2質量%以下である<9>記載のシラン変性カチオン化高分子化合物である。
さらに本発明は、<11> アミノシラン化合物の吸着量が0.03~10%である<9>又は<10>記載のシラン変性カチオン化高分子化合物である。
さらに本発明は、<12> カチオン化高分子化合物がカチオン化セルロースである<9>~<11>のいずれか一項に記載のシラン変性カチオン化高分子化合物である。
水溶性高分子化合物を、水相溶性有機溶媒と水との混合溶媒中、アルカリ存在下にてカチオン化して、カチオン化高分子化合物を含有するスラリーを得る工程(1)。
前記スラリー又はそのケーキにアミノシラン化合物を添加し、前記アミノシラン化合物により前記カチオン化高分子化合物を処理する工程(2)。
前記工程(1)で得たスラリー又は前記工程(2)で得た生成物に酸を添加する工程(3)。
前記工程(2)又は(3)で得た生成物を乾燥させる工程(4)。
本発明の製造方法は、任意に、さらに上記以外の他の工程を有してもよい。前記他の工程として好ましい工程としては、前記工程(2)の前であって、前記工程(1)或いは工程(1)の後に工程(3)を行った後に、水相溶性有機溶媒添加処理を行い、工程(2)のアミノシラン化合物による処理時の溶媒中の水分を低減させる工程が挙げられる。
本発明の製造方法は、次のA又はBの順に行うことが好ましい。
A. 工程(1)→工程(2)→工程(4)
B. 工程(1)→工程(3)→工程(2)→工程(4)
さらにAでは工程(2)の後に工程(3)を行うことが好ましく、Bでは工程(3)の後に前記水相溶性有機溶媒添加処理を行うことが好ましい。また、Bでは工程(2)と工程(4)の間で再度工程(3)を行ってもよい。
工程(2)におけるアミノシラン化合物の添加量がより少ない量で良好な水分散性及び溶解性が得られる点で前記Aにより行うことがより好ましい。
以下、各工程についてより詳細に説明する。
本工程では、水溶性高分子化合物を、水相溶性有機溶媒と水との混合溶媒中、アルカリ存在下にてカチオン化して、カチオン化高分子化合物を含有するスラリーを得る。
カチオン化高分子化合物としては、特に制限はなく、公知のもののなかから適宜選択することができる。具体的には、たとえばカチオン化セルロース、カチオン化デンプン、カチオン化グアーガム、カチオン化ローカストビーンガム、カチオン化タラガム、カチオン化コラーゲン、カチオン化加水分解ケラチン、及びカチオン化加水分解シルク等が挙げられる。これらの中でも、本発明の有用性に優れる点、産業上の有用性の点などから、カチオン化セルロース、カチオン化デンプン、カチオン化グアーガム、及びカチオン化ローカストビーンガム等が好ましく、特にカチオン化セルロースが好ましい。
カチオン化高分子化合物のカチオン化度は、公知の測定方法により測定できる。たとえばカチオン化セルロースのカチオン化度は、前記カチオン化セルロースのグルコース残基単位骨格当たりの窒素原子の割合を意味し、医薬部外品原料規格2006(薬事日報社)の塩化O-[2-ヒドロキシ-3-(トリメチルアンモニオ)プロピル]ヒドロキシエチルセルロースの頁に記載の方法により測定できる。前記窒素原子は、カチオン化剤に由来するものである。
「水相溶性有機溶媒」は、水と前記有機溶媒とを、30℃の条件下、1:1(質量比)で混合した際に均一な溶液となる有機溶媒を意味する。
水相溶性有機溶媒としては、上記定義に当てはまるものであればよく、たとえば、炭素数1~4のアルコール、アセトン等が挙げられる。これらの中でも、炭素数1~4のアルコールが好ましい。具体的には、メタノール、エタノール、イソプロパノール、n-プロパノール、t-ブタノール等が挙げられる。これらの中で、エタノール、イソプロパノール、t-ブタノールが価格・安全性面から好ましい。
混合溶媒中の水の割合は、副反応を抑制し、カチオン化反応を効率よく進行させる観点から、12~30質量%が好ましく、12~20質量%がより好ましい。下限以上とすることでカチオン化反応をより効率よく進行させることができる。上限を超えると、生成したカチオン化高分子化合物や水溶性高分子化合物が水に溶解することによるゲル化が生じ、歩留まりや取り扱い性、製造性等が低下するおそれがある。
水溶性高分子化合物の種類は、目的のカチオン化高分子化合物に応じて適宜選択すればよい。たとえばカチオン化高分子化合物がカチオン化セルロースである場合、水溶性高分子化合物としては、水溶性セルロースエーテルが好ましく用いられる。
水溶性セルロースエーテルとしては、たとえば、ヒドロキシアルキルセルロースエーテルが挙げられる。
ヒドロキシアルキルセルロースエーテルは、セルロースの水酸基に、置換基として、ヒドロキシアルキル基が結合したものである。前記ヒドロキシアルキル基は、一般式-(A-O)nHで表される基である。式中、Aは、炭素数2~3のアルキレン基であり、エチレン基又はプロピレン基が好ましく、エチレン基がより好ましい。nはアルキレンオキサイドの平均付加モル数であり、前記平均付加モル数は、水溶性セルロースエーテルのグルコース残基(単位骨格)1モルに対して、0.5~3.5モルが好ましく、1~2.5モルがより好ましい。
なお、ヒドロキシアルキルセルロースエーテル等のセルロースエーテルは、当該技術分野において、慣用的にセルロースと呼称される場合がある。本明細書においても、セルロースエーテルを単にセルロースと称する場合がある。したがって、たとえば、ヒドロキシアルキルセルロースエーテルとヒドロキシアルキルセルロースは同じ化合物を指す。
ヒドロキシアルキルセルロースエーテルは、ヒドロキシアルキル基以外の置換基を有してもよい。前記置換基としては、たとえば炭素数1~3のアルキル基等が挙げられる。
かかるヒドロキシアルキルセルロースエーテルは、市販のものを用いてもよく、合成してもよい。ヒドロキシアルキルセルロースエーテルは、たとえば、セルロースをアルカリ処理してアルカリセルロースとし、これにアルキレンオキサイドを反応させることにより合成できる。市販品として、住友精化製:HEC AL‐15、AH‐15、AX‐15、LF‐15、SH‐15、SW‐25、SG‐25、SY‐25及びダイセル化学工業製:HECダイセル SE550、SE600、SE900などがある。
カチオン化剤としては、水溶性高分子化合物が有する活性水素、たとえば水溶性セルロースエーテルの水酸基の水素原子(活性水素)と反応して前記水溶性高分子化合物にカチオン性を与えるものであればよく、具体的には、グリシジルトリメチルアンモニウムクロリド、グリシジルトリエチルアンモニウムクロリド、グリシジルトリメチルアンモニウムブロミド、グリシジルトリエチルアンモニウムブロミド等のグリシジルトリアルキルアンモニウムハライドや、ジメチルジアリルアンモニウムクロリド、メタクリロイルオキシエチレントリメチルアンモニウムクロリド、3-クロロ-2-ヒドロキシプロピルトリメチルアンモニウムクロリドなどのアンモニウムハライド化合物が挙げられる。これらの中では、安価で反応性が高い観点から、グリシジルトリメチルアンモニウムクロリドが好ましい。
混合溶媒の使用量は、水溶性高分子化合物のカチオン化が局部的に進行することを回避する観点、及び反応器の容積効率を高める観点から、水溶性高分子化合物100質量部に対して、200~1500質量部が好ましく、300~800質量部がより好ましい。
アルカリの使用量は、水溶性高分子化合物に対してアルカリの含有量が0.1~10質量%となる量が好ましい。中でも、前記アルカリ添加後のpH(カチオン化反応時のpH)が10以上となる量が好ましい。pHを10以上とすることにより反応性が向上する。前記pHは、10~14が好ましく、12~13がより好ましい。
特に、カチオン化反応後の反応系内のpHが、後の工程(2)においてアミノシラン化合物とカチオン化高分子化合物とを反応させる際のpHと同様となるようにアルカリを添加すると、工程(2)を行う際のpH調節の手間が省ける等の利点がある。
なお、前記pHは、水溶性高分子化合物とカチオン化剤とを反応させる際の反応温度におけるpHである。
カチオン化剤の使用量は、カチオン化高分子化合物の所望のカチオン化度、収率、経済性(使用量に見合う効果があるかどうか等)等を考慮して適宜設定すればよい。たとえば水溶性セルロースエーテルをカチオン化してカチオン化度0.3~2.5質量%のカチオン化セルロースを得る場合、カチオン化剤の使用量は、水溶性セルロースエーテル中のグルコース残基単位骨格当たりに対して0.1~1.4モルとなる量が好ましく、0.3~1.2モルとなる量がより好ましい。
反応温度は、反応を促進させ、反応時間を短縮させる観点及び反応が急激に進行するのを回避する観点から、通常、40~60℃の範囲内であり、好ましくは45~55℃である。
反応時間は、反応温度によって異なるので一概には決定することができないが、通常、2~4時間程度である。
脱液処理方法は特に限定されず、ろ過や遠心分離などの従来公知の固液分離方法を利用できる。たとえば、濾布を用いて遠心脱液機を使用することにより実施できる。
このときの脱液処理は、得られるケーキ中の固形分が30~90質量%となるように行うことが好ましい。前記固形分量は、1gのケーキを105℃、2時間乾燥させて、その前後の差分量から算出する。
また、必要に応じて、工程(2)を行う前に、上記スラリー又はケーキに酸又はアルカリを添加してpH調整を行ってもよい。たとえば酸を添加してpHを10未満、たとえば中性~酸性領域としてもよい。この後の工程(2)においてアミノシラン化合物とカチオン化高分子化合物とを反応させる際のpHが10以上であれば、その前のpHが10未満となっていても、本発明の効果は得られる。前記pH調整に用いる酸としては、後述する工程(3)で挙げる酸と同様のものが挙げられ、アルカリとしては前記と同様のものが挙げられる。
ただし本発明において、水相溶性有機溶媒添加処理は必ずしも必要ではなく、水相溶性有機溶媒添加工程を行わなくてもよい。前記工程を行わない場合でも、水分散性、溶解性等の良好なシラン変性カチオン化高分子化合物を得ることができる。このような、水相溶性有機溶媒添加処理を行わなくてもよいことは、高純度の水相溶性有機溶媒の調製のための精留塔が不要であるなど、工業的に有利である。
また、水相溶性有機溶媒は、水との混合溶媒として添加してもよい。この場合、前記混合溶媒中の水の割合は、前記混合溶媒を添加した後のカチオン化高分子化合物のスラリー又はケーキ中に含まれる全溶媒(母液)中の水分が、添加前よりも少なくなる範囲であればよく、前記混合溶媒を添加するスラリー又はケーキ中の水分量に応じて適宜選択すればよい。
水相溶性有機溶媒添加処理を行う場合、水相溶性有機溶媒又は前記混合溶媒の添加後の全溶媒中の水分は、10質量%以下が好ましく、2~7質量%がより好ましい。
方法(1):前記スラリーに対して水相溶性有機溶媒又は水相溶性有機溶媒と水との混合溶媒を添加して混合する方法。
方法(2):前記スラリーの脱液処理を行い、得られたケーキに水相溶性有機溶媒、又は水相溶性有機溶媒と水との混合溶媒を添加する方法。
方法(2)において、脱液処理方法は特に限定されず、ろ過や遠心分離などの従来公知の固液分離方法を利用できる。たとえば、濾布を用いて遠心脱液機を使用することにより実施できる。
このときの脱液処理は、ケーキ中の固形分が30~90質量%となるように行うことが好ましい。前記固形分量は、1gのケーキを105℃にて、2時間乾燥させて、その前後の差分量から算出する。
方法(2a):得られたケーキを水相溶性有機溶媒又は混合溶媒中に再分散させてスラリーとする方法。
方法(2b):得られたケーキ上に水相溶性有機溶媒又は混合溶媒をシャワーする方法。
方法(2a)において、水相溶性有機溶媒又は混合溶媒の使用量は、再分散後のスラリーに含まれる全溶媒(母液)中の水分が所望の値となるように適宜設定すればよい。
方法(2b)のようにシャワーによりケーキの処理を行なう場合は、最終的にケーキに含まれる母液中の水分が所望の値となるまでシャワーすればよい。
シャワーによりケーキの処理を行なう場合は、ケーキをベルトコンベアなどにのせて、その上にシャワーをする連続的な処理方法もとることができる。
液中の水分量は、カールフィッシャー法により、市販の水分測定装置、たとえば平沼産業株式会社製、微量水分測定装置AQV-7等を使用して測定できる。
ただし、本処理に水相溶性有機溶媒を用いると、又は水分量が少ない混合溶媒を用いると、中和塩の除去効率が低下し、得られるカチオン化高分子化合物中に中和塩が残存するおそれがある。そのため、前記工程(1)を行った後に酸の添加を行った場合は、中和塩の除去効率の観点から、本処理の前に、別途、水分量が15~30質量%程度の水溶性有機溶媒と水との混合溶媒を用いて、カチオン化高分子化合物の精製処理(洗浄)を行うことが好ましい。
脱液処理方法は特に限定されず、ろ過や遠心分離などの従来公知の固液分離方法を利用できる。たとえば、濾布を用いて遠心脱液機を使用することにより実施できる。
このときの脱液処理は、得られるケーキ中の固形分が30~90質量%となるように行うことが好ましい。前記固形分量は、1gのケーキを105℃にて、2時間乾燥させて、その前後の差分量から算出する。
なお、工程(2)を行う前に水相溶性有機溶媒添加処理を行った場合は、前記処理による効果を損なわないために、前記処理後、カチオン化高分子化合物を、水分10質量%超の溶媒(水の割合が10質量%以上の混合溶媒等)とは接触させずに工程(2)を行うことが好ましい。
工程(2)では、前記工程(1)で得たスラリー又はそのケーキにアミノシラン化合物を添加し、前記アミノシラン化合物により前記カチオン化高分子化合物を処理する。これにより、シラン変性カチオン化高分子化合物が形成される。
工程(2)で形成されるシラン変性カチオン化高分子化合物は、カチオン化高分子化合物の表面にアミノシラン化合物の加水分解物が吸着した構造を有すると考えられる。すなわち、前記工程(1)で得たスラリー又はそのケーキ中には水が含まれている。そのため、そこにアミノシラン化合物を添加すると、アミノシラン化合物中のSi原子に結合した加水分解性基(加水分解により水酸基を生成し得る加水分解性基。たとえばアルコキシ基。)の加水分解によりシラノール基(Si-OH)が生成する。このシラノール基が、カチオン化高分子化合物の水酸基(たとえばカチオン化セルロースの水酸基やカチオン化剤のエポキシ解裂後の水酸基)に水素結合により吸着していると推測される。
工程(2)の前に後記工程(3)の酸添加工程を行ってpHを10よりも低く調整した場合、前記アミノシラン化合物の添加量は、十分な水分散性を得るために、0.3~20質量%が好ましく、0.5~15質量%がより好ましく、0.9~12質量%がさらに好ましく、1.0~6質量%が最も好ましい。これに対してpH10以上のアルカリ条件下で工程(2)を行う場合、前記アミノシラン化合物の添加量が0.05質量%以上であると、得られるシラン変性カチオン化高分子化合物の水分散性を向上させることができる。
また、前記添加量が20質量%以下の量で十分な水分散性を得ることができ、一方で20質量%を超えると、水分散性は確保できるものの、カチオン化高分子化合物の有効成分量が減少し、コストが増大するため、工業的に好ましくない。特に、前記添加量が50質量%を超えると水分散性が悪化する。また、前記pHが10以上であると、より少ないアミノシラン化合物の添加量で充分な水分散性を得ることができる。
pH10以上のアルカリ条件下で工程(2)を行う場合の前記アミノシラン化合物の添加量は、前記水溶性高分子化合物に対し、0.1~15質量%がより好ましく、0.2~10質量%がさらに好ましく、0.5~5質量%が特に好ましい。
前記シラン処理時のpHは、10~14が好ましく、11~13がより好ましい。
前記pHは、シラン処理時の処理温度におけるpHである。
pH10以上のアルカリ条件とするには、前記工程(1)で得たスラリー又はそのケーキのpHが10以上であればpH調整は不要であるが、前記スラリー又はそのケーキのpHが10未満の場合はアルカリを添加して所定のpHに調整する。
なお、pHが10以上となる範囲であれば、前記(1)で得たスラリー又はそのケーキに酸を添加してもよい。
前記pH調整に用いるアルカリとしては前記工程(1)で挙げたアルカリと同様のものが挙げられ、酸としては、後述する工程(3)で挙げる酸と同様のものが挙げられる。
pHの調整は、アミノシラン化合物を添加する前に実施することが好ましい。
上記のように、アミノシラン化合物の添加量及びシラン処理時のpHを上記範囲とすることにより、得られるシラン変性カチオン化高分子化合物の水分散性が向上する理由の1つとして、カチオン化高分子化合物に対するアミノシラン化合物の吸着効率が向上することが挙げられる。
すなわち、本発明者らが、シラン処理時のpHとアミノシラン化合物の吸着量との関係について検討を行ったところ、アミノシラン化合物の添加量を固定した条件下で、pHを4~13の範囲で変化させてシラン処理を行った場合、pHが10未満では、そのpHの吸着量への影響はほとんど見られないが、pHが10以上になると、前記pHに比例して吸着量が急激に増大するとの結果を得ている。たとえば後述する実施例1、4、5、6及び比較例2の結果に示すとおり、水溶性高分子化合物としてHECを用い、アミノシラン化合物として3-アミノプロピルトリエトキシシランをHECに対して2質量%添加した場合、添加量が同じであっても吸着量は異なり、たとえばpHが12の場合の吸着量は、pH7の場合の約2.3倍量になっている。
また、水分散性が向上する理由として、上記のような吸着効率の向上に加えて、アミノシラン化合物のカチオン化高分子化合物粒子への吸着が均一になっていることも考えられる。
すなわち、従来法のように反応系内のpHが低い場合やアミノシラン化合物の濃度が高濃度の場合、アミノシラン化合物が自己縮合によりオリゴマー化し、その状態で存在すると推測される。オリゴマーの場合、嵩高いため、カチオン化高分子化合物粒子の内部にまでは吸着せず、前記粒子表面への吸着も不均一になるため、シラン処理による効果が充分に得られなかったと推測される。
一方、反応系内のpHが10以上であり、かつアミノシラン化合物の濃度が低濃度の場合、アミノシラン化合物の安定性が良好で、自己縮合を起こさないか、起こしても少量で、そのほとんどがモノマーとして存在すると推測される。そのため、カチオン化高分子化合物粒子の表面を均一に被覆し、前記粒子の内部まで吸着し、シラン処理による効果が充分に発揮され、たとえ吸着量がオリゴマーの場合と同等であっても優れた水分散性が得られると推測される。
(R1)(R2)N-R3-Si(X)n(R4)3-n …(I)
[式中、R1及びR2はそれぞれ独立に水素原子又は有機基であり、R3はアルキレン基であり、Xは加水分解により水酸基を生成する加水分解性基であり、R4はアルキル基であり、nは1~3の整数である。]
R1及びR2における有機基としては、たとえば、アルキル基、アミノアルキル基、カルボアルコキシアルキル基等が挙げられる。
R3におけるアルキレン基としては、炭素数1~5のアルキレン基が好ましい。
Xにおける加水分解性基としては、アルコキシ基が好ましい。前記アルコキシ基の炭素数は1~3が好ましい。
R4におけるアルキル基としては、炭素数1~3のアルキル基が好ましい。
nは2又は3が好ましく、3が最も好ましい。
アミノシラン化合物としては、信越化学工業製:KBE-903、KBE-603、若しくはKBE-9103、又は東レ・ダウコーニング製:AY43-059などの市販品を利用できる。
アミノシラン化合物を添加後、均一にシラン処理を行なうために、攪拌を行なうことが好ましい。
シラン処理時の処理温度は、特に制限はなく、目的に応じて適宜選択することができる。好ましくは20~80℃であり、25~75℃がより好ましく、30~70℃がさらに好ましい。前記処理温度が20℃以上であると、シラン処理が充分に進行し、得られるシラン変性カチオン化高分子化合物粉末の水分散性が良好であり、80℃以下であると、前記シラン変性カチオン化高分子化合物粉末の色調が良好である。
処理時間は、特に制限はなく、処理温度、目的等に応じて適宜選択することができる。好ましくは5~120分間であり、10~100分間がより好ましく、15~80分間がさらに好ましい。前記処理時間が5分間以上であるとシラン処理が充分に進行し、得られるシラン変性カチオン化高分子化合物粉末の水分散性が良好であり、120分間以内であると、前記シラン変性カチオン化高分子化合物粉末の色調が良好である。
脱液処理方法は特に限定されず、ろ過や遠心分離などの従来公知の固液分離方法を利用できる。たとえば、濾布を用いて遠心脱液機を使用することにより実施できる。
このときの脱液処理は、得られるケーキ中の固形分が30~90質量%となるように行うことが好ましい。前記固形分量は、1gのケーキを105℃にて、2時間乾燥させて、その前後の差分量から算出する。
また、必要に応じて、工程(3)又は(4)を行う前に、工程(2)で得た生成物に対し、水相溶性有機溶媒を添加する処理(水相溶性有機溶媒添加処理)を行ってもよい。前記生成物中には、シラン変性カチオン化高分子化合物のほか、前記工程(1)で得たスラリーと同様、水が含まれている。工程(2)で得た生成物について水相溶性有機溶媒添加処理を行うと、前記全溶媒中の水分を低減させることができる。前記水分を低減することにより、工程(4)を行う際に前記生成物が乾燥機に付着するのを抑制できるなど、生産性の向上やハンドリング向上の効果が期待できる。
前記水相溶性有機溶媒添加処理は、前記工程(1)で説明した水相溶性有機溶媒添加処理と同様にして実施できる。
工程(3)では、前記工程(1)で得たスラリー或いは工程(2)で得た生成物(シラン変性カチオン化高分子化合物を含有するスラリー又はケーキ)に酸を添加する。これにより、最終的に得られるシラン変性カチオン化高分子化合物について、水溶液とした際のpHが弱アルカリ~酸性となるように調整できる。
ただし本発明において、工程(3)は必ずしも行う必要はない任意の工程であり、工程(3)を行わなくてもよい。
酸の使用量は、特に限定されず、酸添加後のpHを考慮して適宜調整すればよい。
酸添加後のpHは、最終的に得られるシラン変性カチオン化高分子化合物を水溶液とした際のpHを考慮すると、50℃の条件下で、4.0~7.0が好ましく、5.0~6.5がより好ましい。
前記精製処理を行う場合、中和塩の除去効率の観点から、水溶性有機溶媒と水との混合溶媒を用いることが好ましく、特に、水分量が15~30質量%程度の水溶性有機溶媒と水との混合溶媒を用いることが好ましい。
脱液処理方法は特に限定されず、ろ過や遠心分離などの従来公知の固液分離方法を利用できる。たとえば、濾布を用いて遠心脱液機を使用することにより実施できる。
このときの脱液処理は、得られるケーキ中の固形分が30~90質量%となるように行うことが好ましい。前記固形分量は、1gのケーキを105℃にて、2時間乾燥させて、その前後の差分量から算出する。
また、必要に応じて、工程(4)を行う前に、工程(3)で得た生成物に対し、水相溶性有機溶媒を添加する処理(水相溶性有機溶媒添加処理)を行ってもよい。前記生成物中には、シラン変性カチオン化高分子化合物のほか、前記工程(1)で得たスラリーや工程(2)で得た生成物と同様、水が含まれている。工程(3)で得た生成物について水相溶性有機溶媒添加処理を行うと、前記全溶媒中の水分を低減させることができる。前記水分を低減することにより、工程(4)を行う際に前記生成物が乾燥機に付着するのを抑制できるなど、生産性の向上やハンドリング向上の効果が期待できる。
前記水相溶性有機溶媒添加処理は、前記工程(1)で説明した水相溶性有機溶媒添加処理と同様にして実施できる。
工程(4)では、前記工程(2)又は(3)で得た生成物(シラン変性カチオン化高分子化合物を含有するスラリー又はケーキ)を乾燥させる。これにより、シラン変性カチオン化高分子化合物を粉末として得ることができる。
本発明においては、工程(4)において、主に残存有機溶媒の低減を目的に緩やかな乾燥条件で乾燥を行う1次乾燥処理と、前記1次乾燥処理後の前記生成物を、主に乾燥減量の低減を目的により高温の乾燥条件で乾燥を行う2次乾燥処理と、を行うことで、得られるシラン変性カチオン化高分子化合物粉末の水分散性が向上するとともに、さらに、前記粉末中に残留する水系有機溶媒の低減効率が向上し、短時間の乾燥処理で、残存有機溶媒量の少ないシラン変性カチオン化高分子化合物粉末を得ることができる。
ここで、本明細書及び特許請求の範囲において、「真空度」は、絶対圧基準での圧力を示す。
本発明者らの検討によれば、背景技術で挙げた特許文献1~2等に記載の方法では、乾燥処理後、得られる粉末中に、製造に使用した有機溶媒(水相溶性有機溶媒)が充分には除去されずに残留している問題がある。残留有機溶媒の問題は、臭気や取り扱い時の環境整備等の点から、その改善が求められる。有機溶媒を除去すべく、温度を高くしたり、乾燥時間を長くすることが考えられるが、単に乾燥温度を高くしても、残存有機溶媒量を低減することは難しく、また、得られるシラン変性カチオン化高分子化合物粉末の水分散性や溶解性、色調等が悪化する問題も生じてしまう。また、乾燥時間を長くすることは、製造効率上、好ましくない。
このような問題に対し、上記のような2段階での乾燥処理を行うことで、短時間の乾燥処理で残存有機溶媒量を低減でき、しかも水分散性等の品質の良好なシラン変性カチオン化高分子化合物粉末が得られる。
なお、上記2次乾燥処理により水分散性が向上する理由としては、アミノシラン化合物の加水分解により生じるシラノール基と、カチオン化高分子化合物の水酸基とが脱水縮合反応して化学結合が形成されるか、或いは、化学結合していない場合はシラノール基や水酸基に水素結合した水分が除去されることにより、カチオン化高分子化合物の表面がより疎水的になることによると考えられる。
1次乾燥処理では、前記生成物を温度50~140℃、真空度4.0~53.3kPa(30~400Torr)にて減圧乾燥により処理する。前記温度及び真空度が上記範囲をはずれると、シラン変性カチオン化高分子化合物中の残存有機溶媒を充分に低減できないおそれがある。
1次乾燥処理は、主に残存有機溶媒の低減のために行う。前記工程(2)又は(3)で得られるシラン変性カチオン化高分子化合物を含有するスラリー又はケーキを水分散性に優れた粉末とするためには、後記2次乾燥処理で述べるようにより高温の条件下で乾燥減量を2重量%以下にまで乾燥する必要がある。しかし、この乾燥を減圧乾燥法により行う場合、初期に温度、真空度を特定の範囲とした緩やかな乾燥条件で乾燥を行わないと水分の蒸発により乾燥減量を低減できても残存有機溶媒の低減が不十分となる。
本発明者らの検討によると、残存有機溶媒と同時に蒸発除去される水分の蒸発速度が大きい条件下では、残存有機溶媒が蒸発し難くなることが見出された。一方で水分の蒸発速度が小さい条件にし過ぎても乾燥時間の延長につながるため好ましくない。
1次乾燥処理の処理温度は、60℃以上が好ましく、上限は120℃以下が好ましく、100℃以下がより好ましく、95℃以下がさらにより好ましい。また、真空度は、13.3kPa(100Torr)以上が好ましく、16.6~40.0kPa(125~300Torr)が好ましく、20.0~33.3kPa(150~250Torr)がより好ましい。
残存有機溶媒をより効率よく低減するためには、前記温度、真空度の範囲内でさらに温度の低い領域ではより高い真空度で、高い温度領域ではより低い真空度で減圧乾燥を行うことが好ましい。具体的には、下記の条件が好ましい。
50℃以上70℃未満の温度では、真空度4.0kPa以上が好ましく、6.7kPa(50Torr)以上がより好ましい。真空度の上限は20.0kPa以下が好ましく、13.3kPa以下がより好ましい。
70℃以上90℃未満の温度では、真空度10.0kPa(75Torr)以上が好ましく、13.3kPa以上がより好ましい。真空度の上限は53.3kPa以下でよいが、46.7kPa(350Torr)以下がより好ましい。
90℃以上110℃未満の温度では、真空度10.0kPa以上が好ましく、13.3kPa以上がより好ましい。真空度の上限は53.3kPa以下である。
110℃以上140℃未満の温度では、真空度13.3kPa以上が好ましく、20.0kPa以上がより好ましい。真空度の上限は53.3kPa以下である。
減圧乾燥装置としては、たとえば撹拌解砕式減圧乾燥機、振動式真空乾燥機、真空撹拌ドライヤー、スイング式真空式乾燥機、ドラム式真空乾燥機等が挙げられる。
本発明においては、特に、処理時における前記生成物の乾燥装置への付着を抑制する観点から、撹拌解砕式減圧乾燥機が好ましい。
撹拌解砕式減圧乾燥機は、円筒型の混合槽の中心に、撹拌羽根(ショベル、アジテーター等)が取り付けられた撹拌軸を有し、前記混合槽の内壁にチョッパーを備える構造の減圧乾燥機である。このような構造を有する撹拌解砕式減圧乾燥機は、従来、攪拌造粒等に用いられている装置が利用でき、たとえばヘンシェルミキサー(三井三池化工機株式会社製)、ハイスピードミキサー(深江工業株式会社製)、バーチカルグラニュレーター(株式会社パウレック製)等の装置が挙げられる。特に好ましくは横型の混合槽で、円筒の中心に撹拌軸を有し、この軸に撹拌羽根を取付けて粉末の混合を行う形式のミキサーであり、たとえばレディゲミキサー(株式会社マツボー製)、及びブロシェアミキサー(大平洋機工株式会社製)等である。
撹拌解砕式減圧乾燥機を用いる際の撹拌条件は、混合槽の容量、撹拌羽根の種類、付着物の剥離、ダマの解砕、撹拌混合による熱効率の向上等を考慮して適宜設定すればよい。具体例を挙げると、たとえば型番VT-20、容量20L型のレディゲミキサー(株式会社マツボー製)を使用する場合、ショベルの回転数を80~160rpm(クリアランス1.5~2mm)、チョッパーの回転数を500~3000rpmとすることが好ましい。
なお、1次乾燥処理により水系有機溶媒が除去されて水分リッチになると、前記生成物が乾燥機に付着しやすくなる。また、乾燥が進行して水分が減ると(たとえば乾燥減量が15%以下程度になると)付着が起こりにくくなる。
そのため、1次乾燥処理により水系有機溶媒が除去されはじめた後(1次乾燥処理の後期~2次乾燥処理の前期)は、ショベルの回転数を落とすことが、付着が抑制され都合がよい。また、2次乾燥処理の中期~後期に、再び回転数を高めて熱効率をあげることが、乾燥時間が短くなり都合がよい。
また、チョッパーは、解砕が主な目的なので、乾燥が進行し、付着物やダマがなくなった段階(たとえば2次乾燥処理の中期~後期)では不要になる。その段階でチョッパーの回転数を落とすか止めてしまうことが、粉塵の発生を抑制できるため都合がよい。
秤量瓶を予め恒量化し、その質量(質量A)を正確に量る。次に、前記秤量瓶に測定対象試料1g(質量B)を正確に量り取り、これを105℃にて、2時間加熱し、デシケータ内で室温まで放冷させてから、その質量(質量C)を量る。質量A、質量B、及び質量Cから以下の数式により乾燥減量が算出される。
1次乾燥処理条件は、次に行う2次乾燥処理と合わせて目的物であるシラン変性カチオン化高分子化合物粉末の残存有機溶媒量が目標とする量となるように目的に応じて適宜条件を設定することができるが、目的物であるシラン変性カチオン化高分子化合物粉末の残存有機溶媒量は0.10質量%未満とすることが好ましく、そのためには1次乾燥処理終了時の残存有機溶媒量は、0.20質量%以下とすることが好ましく、0.10質量%以下とすることがより好ましい。前記残存有機溶媒量の下限は特に限定されず、限りなく少ないことが好ましい。
1次乾燥処理は残存有機溶媒量が前記好ましい値に到達するまで行うことが好ましい。
ここで、シラン変性カチオン化高分子化合物中に残存する有機溶媒としては、スラリー調製時に用いた水相溶性有機溶媒が挙げられる。
残存有機溶媒量は、ガスクロマトフラフィー等の公知の方法により測定でき、たとえば有機溶媒としてイソプロパノールを使用した場合の後記実施例に記載の方法が挙げられる。
2次乾燥処理では、前記1次乾燥処理後の生成物を、温度90~155℃にて処理する。真空度は特に限定はなく乾燥の目的に応じて適宜選択できるが、乾燥効率の点で真空度13.3kPa(100Torr)以下にて処理することが好ましい。前記温度及び真空度が上記範囲をはずれると、得られるシラン変性カチオン化高分子化合物粉末の水分散性や溶解性が低下するおそれがある。特に温度が高すぎると、色調が悪化するおそれもある。
2次乾燥処理の処理温度は、90~150℃が好ましく、105~145℃がより好ましく、105~125℃がさらにより好ましい。また、真空度は、6.7kPa(50Torr)以下がより好ましく、1.3kPa(10Torr)以下がさらにより好ましい。
2次乾燥処理は、温度及び真空度を所定の範囲内とする以外は1次乾燥処理と同様の方法により行うことができる。
前記乾燥減量は、前記と同様の手順で求められる。
また、1次乾燥工程及び2次乾燥工程の間に、1次乾燥処理にも2次乾燥処理にも該当しない条件での乾燥処理を行ってもよい。たとえば1次乾燥処理から連続的に2次乾燥処理を行う際に、中間的な処理条件(たとえば真空度13.4kPa未満13.3kPa超の真空度)を経由してもよい。
また、前記シラン変性カチオン化高分子化合物は、2質量%水溶液とした際のpHが、25℃の条件下で、5~7.5であることが好ましい。
特に、前記1次乾燥処理及び2次乾燥処理を行った場合、残存有機溶媒量の低減されたシラン変性カチオン化高分子化合物粉末、たとえば残存有機溶媒量が0.10質量%未満のシラン変性カチオン化高分子化合物粉末を短時間の乾燥処理で製造できる。このように残存有機溶媒量の低減されたシラン変性カチオン化高分子化合物粉末は、臭気、着色等の問題を生じにくく、また、安全性、取り扱い時の環境整備等の観点からも優れている。
さらに、前記シラン変性カチオン化高分子化合物は、シラン変性処理により、各種化粧品組成物に配合されている各種成分との相互作用が向上していることが考えられる。
そのため、本発明の製造方法により得られるシラン変性カチオン化高分子化合物は、たとえばシャンプーやボディーソープ用のコンディショニング剤、頭髪化粧品、基礎化粧品、メークアップ化粧品、芳香化粧品、日焼け用化粧品、日焼け止め用化粧品、爪化粧品、又は入浴用化粧品など、幅広い用途に有用であり、なかでもコンディショニング剤として有用である。
また、本発明のアルカリ条件下でシラン処理を行なう製造方法は、カチオン化後、シラン処理を行う前に中和処理を行っていた従来法に比べて、工程数が少なく、簡便である。たとえば中和により生成する中和塩は、シラン処理に悪影響を与えるおそれがあるため、シラン処理の前に、精製のための洗浄、脱液等の処理を行うことが必要になる場合があるが、本発明の製造方法では、乾燥を行う前までの工程を同一の反応器で連続して実施でき、工業的に有用である。
以下、特に断りのない限り、「%」、「ppm」は、それぞれ質量による値である。
以下の実施例及び比較例中、実施例1~6、8~15及び比較例1~6においては、乾燥処理(1次乾燥処理、2次乾燥処理)を、ロターリーバキュームエバポレーター:EYELA製 N-Nシリーズ及び500mLナスフラスコを用いて行った。
また、実施例7においては、乾燥処理(1次乾燥処理、2次乾燥処理)を、レディゲミキサー(株式会社マツボー製)を用いて行った。
<測定方法>
(a)水分(%)(カールフィッシャー法):
平沼産業株式会社製、微量水分測定装置AQV-7を用い、分析試料0.3gを分析に供した。
(b)pH:
横河電気株式会社製のpHメータ「PH71」を用いて、反応温度(カチオン化、シラン処理)におけるpHを測定した。
以下に示す実施例及び比較例において、カチオン化及びシラン処理における反応温度はいずれも50℃である。
ガラス製の蓋付き秤量瓶を105℃にて、1時間加熱し、恒量化した。これをデシケータ内で室温(25℃)まで放冷させてから、その質量(質量A)を正確に量った。
次に、恒量化した秤量瓶に分析試料1g(質量B)を正確に量り取った。これを105℃にて、2時間加熱し、デシケータ内で室温まで放冷させてから、その質量(質量C)を量った。質量A、質量B、質量Cから以下の数式を用いて乾燥減量を算出した。
分析試料0.5gを正確に量りとり、正確に量りとった蒸留水49.5gで溶解させた。得られた水溶液を、ADVANTEC社製ウルトラフィルターユニットUSY-1を用いて限外濾過した。
この抽出液を分析サンプルとしてガスクロマトフラフィー(SHIMADZU製 GC-2010)を用いて分析を行った。
(分析条件)
分析カラム:Rtx-200(30m×0.32mm 1μm df) RESTEK社製
カラム温度:40℃(5分間保持)→昇温30℃/分→290℃(5分間保持)
注入温度:260℃
線速度:25cm/秒 ヘリウム
検出器:FID 290℃
スプリット比:1/20
試料注入量:1μL
(定量法)
2-プロパノール(関東化学製 UGRグレード 有効分:99.9%)を用い、2ppm、5ppm、10ppm、20ppm、50ppm、100ppmとなる2-プロパノール水溶液を調製して検量線を作成し、前記検量線から、分析試料中に残存するIPAを定量した。なお、0.02%以下は検出限界(N.D.)とした。
ヒドロキシエチルセルロース(住友精化製:SH-15、2質量%水溶液粘度(25℃):1,200mPa・s)30g(100質量部)に対して、イソプロピルアルコール(IPA)/水(質量比)=85/15となる混合溶媒を120g(400質量部)、更に25質量%水酸化ナトリウム水溶液を1.8g(6質量部)加えて混合した。そして、50℃まで昇温させ、カチオン化剤としてグリシジルトリメチルアンモニウムクロライド(阪本薬品製:SY-GTA80、有効分:73%水溶液)を15.8g(53質量部)加えて、3時間反応させることによりカチオン化を行った。この時、反応スラリーのpHは12であった。そこに、アミノシラン系カップリング剤として、3-アミノプロピルトリエトキシシラン(信越化学製、KBE-903、有効分:100%)を0.6g(2質量部)添加して混合し、50℃で45分間処理した。その後、10質量%塩酸IPA溶液を加えて、pH6に調製して、シラン変性カチオン化セルローススラリーを得た。前記シラン変性カチオン化セルローススラリーを脱液し、得られたケーキ(固形分60%)に対し、温度80℃、真空度20.0kPaの1次乾燥処理を1時間行った。その後、さらに温度110℃、真空度1.3kPaの2次乾燥処理を1時間行うことにより、目的のシラン変性カチオン化セルロース粉末を得た。
3-アミノプロピルトリエトキシシランの添加量を0.15g(0.5質量部)にした以外は、実施例1と同様の操作を行い、目的のシラン変性カチオン化セルロース粉末を得た。
3-アミノプロピルトリエトキシシランの添加量を3.0g(10質量部)にした以外は、実施例1と同様の操作を行い、目的のシラン変性カチオン化セルロース粉末を得た。
カチオン化後、25%水酸化ナトリウム水溶液により反応スラリーのpHを13に調整し、かつ、1次乾燥処理を温度100℃、真空度33.3kPaで1時間、2次乾燥処理を温度140℃、真空度12.0kPaで1時間行った以外は、実施例1と同様の操作を行い、目的のシラン変性カチオン化セルロース粉末を得た。
カチオン化後、10%塩酸IPA水溶液により反応スラリーのpHを11に調整した以外は、実施例1と同様の操作を行い、目的のシラン変性カチオン化セルロース粉末を得た。
カチオン化後、10%塩酸IPA水溶液により反応スラリーのpHを10に調整した以外は、実施例1と同様の操作を行い、目的のシラン変性カチオン化セルロース粉末を得た。
乾燥処理(1次乾燥処理、2次乾燥処理)を、型番VT-20、容量20L型のレディゲミキサー(株式会社マツボー製)を用い、下記条件にて行った以外は、実施例1と同様の操作を行い、表2に示す条件で目的のシラン変性カチオン化セルロース粉末を得た。
1次処理初期:ショベル120rpm[クリアランス1.5~2mm]、チョッパー3000rpm。
1次処理後期~2次処理前期(付着が起こりやすい期間):ショベル50rpm、チョッパー1000rpm。
2次処理中期~後期(付着が起こりにくい期間):ショベル160rpm、チョッパー500rpm。
10質量%塩酸IPA溶液を加えた後、シラン変性カチオン化セルローススラリーを脱液する前に、反応スラリーに100%濃度のイソプロピルアルコール265gを添加することにより水相溶性有機溶媒添加処理を行い、一次乾燥処理を温度90℃、真空度26.7kPaで1時間、二次乾燥処理を温度125℃、真空度1.3kPaで1時間行った以外は、実施例1と同様の操作を行い、目的のシラン変性カチオン化セルロースを得た。
表2に示す条件で実施例1と同様の操作を行い、目的のシラン変性カチオン化セルロース粉末を得た。
実施例1と同様にカチオン化を行った後、10質量%塩酸IPA溶液を加えてpH4に調製し、カチオン化セルローススラリーを得た。続いてこのカチオン化セルローススラリー中に、IPA(純度99.5%)を250g加えて15分間攪拌・混合した。この時、カチオン化セルローススラリー中の水分は5%であった。その後、攪拌を止めて静置してその上澄み液250g除去した。その後、アミノシラン系カップリング剤として、3-アミノプロピルトリエトキシシラン(信越化学製、KBE-903、有効分:100%)を2g(7質量部)加えて混合し、50℃で45分間反応させた。その後、10質量%塩酸IPA溶液を加えてpH6に調製して、シラン変性カチオン化セルローススラリーを得た。
前記シラン変性カチオン化セルローススラリーを脱液し、得られたケーキ(固形分70%)に対し、温度90℃、真空度20.0kPaの1次乾燥処理を2時間行った。その後、さらに温度125℃、真空度1.3kPa(10Torr)の2次乾燥処理を1時間行うことにより、実施例13のシラン変性カチオン化セルロース粉末を得た。
さらに、表3に示す条件で実施例13と同様の操作を行い、実施例14、及び15のシラン変性カチオン化セルロース粉末を得た。
グアーガム(三晶製:メイプログアーCSA200/50、1質量%水溶液粘度(25℃):5,000mPa・s以上)30g(100質量部)に対して、イソプロピルアルコール(IPA)/水(質量比)=85/15となる混合溶媒を120g(400質量部)、更に9質量%水酸化ナトリウム水溶液を9.9g(33質量部)加えて混合した。そして、50℃まで昇温させ、カチオン化剤としてグリシジルトリメチルアンモニウムクロライド(阪本薬品製:SY-GTA80、有効分:74%水溶液)を3.7g(12質量部)加えて、3時間反応させることによりカチオン化を行った。この時、反応スラリーのpHは12であった。そこに、アミノシラン系カップリング剤として、3-アミノプロピルトリエトキシシラン(信越化学製、KBE-903、有効分:100%)を0.6g(2質量部)添加して混合し、50℃で45分間処理した。その後、10質量%塩酸IPA溶液を加えて、pH6に調製して、シラン変性カチオン化グアガムスラリーを得た。前記シラン変性カチオン化グアガムスラリーを脱液し、得られたケーキ(固形分60%)に対し、温度80℃、真空度26.6kPaの1次乾燥処理を0.5時間行った。その後、さらに温度140℃、真空度1.3kPaの2次乾燥処理を0.5時間行うことにより、目的のシラン変性カチオン化グアーガム粉末を得た。
1次乾燥処理を行わず、温度110℃、真空度1.3kPaで1時間の2次乾燥処理のみを行った以外は、実施例1と同様の操作を行い、目的のシラン変性カチオン化セルロース粉末を得た。
表4に示す条件で実施例13と同様の操作を行い、シラン変性カチオン化セルローススラリーを得た後、比較例2では1次乾燥処理を行わず2次乾燥処理のみを、比較例4では1次乾燥処理のみを、それぞれ表4に示す乾燥条件で行った。
それぞれ表4に示す条件で、1次乾燥処理を行わず、2次乾燥処理のみを行った以外は、実施例1と同様の操作を行い、目的のシラン変性カチオン化セルロース粉末を得た。
〔分析方法〕
以下の手順で、カチオン化セルロースに対するアミノシラン化合物(以下、SC剤という。)の吸着量を求めた。カチオン化グアーガムについても同様に測定した。
[1]ICP分析:
各サンプル(シラン変性カチオン化セルロース粉末)を蒸留水で約3000倍に希釈し、分析サンプルとした。
各分析サンプルについて、以下の分析条件にてICP発光分析を行った。
(ICP分析条件)
装置:PerkinElmer Optima5300DV、RF出力:1300W、Arガス流量/プラズマ:15L/min、補助:0.2L/min、キャリア:0.7L/min、ポンプ流量:1.0ml/min、測定波長:251.611nm、測定回数:3回。
[2]検量線作成:
3-アミノプロピルトリエトキシシラン(KBE-903)を蒸留水で0.1ppm、1ppm、5ppm、10ppm又は50ppmに希釈し、検量線サンプルとした。
各検量線サンプルについて、前記[1]と同じ分析条件にてICP発光分析を行った。その分析結果の発光強度をy軸に、SC剤濃度(0.1ppm、1ppm、5ppm、10ppm、50ppm)をx軸にとり、検量線を作成した。同時に検量線を直線時近似により求めた。また、この時求めた近似直線式の傾きをp、切片をqとした。
[3]サンプル中のSC剤吸着量(%)の算出:
上記[1]及び[2]の結果から、下記式により、各サンプル(シラン変性カチオン化セルロース粉末)中のSC剤吸着量(%)を算出した。
各実施例及び比較例で得たシラン変性カチオン化セルロース、シラン変性カチオン化グアーガム粉末をそれぞれふるいにかけて粒径850μm以下のものを分別し、これを試料粉末として以下の評価を行った。
[水分散性]:
100mLビーカーに蒸留水50gを入れ、ここに、試料粉末0.5gを、水面から高さ4cmのところから投入した。試料粉末を投入し終わってから、前記試料粉末が水面に残らず水中に完全に分散するまでの時間を測定し、これを「分散時間」とした。前記分散時間から、下記評価基準により水分散性を評価した。
(評価基準)
◎:30秒以下、○:30秒超60秒以下、△:60秒超300秒以下、×:300秒超。
[残存イソプロパノール(IPA)量]:
前記の1次乾燥処理終了時の残存イソプロパノール(IPA)量と同様の方法で分析を行った。
前記IPA量から、下記評価基準により残存IPA量を評価した。
(評価基準)
○:0.10%未満、△:0.10%以上1.0%未満、×:1.0%以上。
これらの結果から明らかなように、実施例1~8で得たシラン変性カチオン化セルロースは、それぞれ、優れた水分散性を示した。また、実施例9で得たシラン変性カチオン化セルロースは、SC剤添加量が微量であるにもかかわらず、良好な水分散性を示した。さらに、1次乾燥処理及び2次乾燥処理を行った実施例品は、残存IPA量も少なかった。
Claims (12)
- 水溶性高分子化合物を、水相溶性有機溶媒と水との混合溶媒中、アルカリ存在下にてカチオン化して、カチオン化高分子化合物を含有するスラリーを得る工程(1)と、
前記スラリー又はそのケーキにアミノシラン化合物を添加し、前記アミノシラン化合物により前記カチオン化高分子化合物を処理する工程(2)と、
前記工程(1)で得たスラリー又は前記工程(2)で得た生成物に酸を添加する任意の工程(3)と、
さらに、前記工程(2)で得た生成物又は前記工程(2)の後に工程(3)を行って得た生成物を乾燥させる工程(4)と、を有するシラン変性カチオン化高分子化合物の製造方法であって、
前記工程(4)の乾燥工程が、温度50~140℃、真空度4.0~53.3kPaで乾燥を行う1次乾燥処理工程と、
前記1次乾燥処理後の前記生成物を、温度90~155℃で乾燥する2次乾燥処理工程と、を有することを特徴とするシラン変性カチオン化高分子化合物の製造方法。 - 前記工程(2)における前記アミノシラン化合物の添加量が、前記水溶性高分子化合物に対して0.05~20質量%であり、前記アミノシラン化合物による前記カチオン化高分子化合物の処理を、pH10以上のアルカリ条件下にて行う請求項1記載のシラン変性カチオン化高分子化合物の製造方法。
- 前記工程(4)における1次乾燥処理工程を、温度50℃以上70℃未満では真空度4.0~20.0kPa、温度70℃以上110℃未満では真空度10.0~53.3kPa、温度110℃以上140℃以下では真空度13.3~53.3kPaで行う請求項1又は2記載のシラン変性カチオン化高分子化合物の製造方法。
- 水溶性高分子化合物を、水相溶性有機溶媒と水との混合溶媒中、アルカリ存在下にてカチオン化して、カチオン化高分子化合物を含有するスラリーを得る工程(1)と、
前記スラリー又はそのケーキにアミノシラン化合物を添加し、前記アミノシラン化合物により前記カチオン化高分子化合物を処理する工程(2)と、
前記工程(2)で得た生成物を乾燥させる工程(4)と、を有するシラン変性カチオン化高分子化合物の製造方法であって、
前記工程(2)における前記アミノシラン化合物の添加量が、前記水溶性高分子化合物に対して0.05~20質量%であり、前記アミノシラン化合物による前記カチオン化高分子化合物の処理を、pH10以上のアルカリ条件下にて行い、さらに、
前記工程(4)にて、前記生成物を温度50~120℃、真空度13.4~53.3kPaにて処理する1次乾燥処理と、前記1次乾燥処理後の前記生成物を、温度90~150℃、真空度13.3kPa以下にて処理する2次乾燥処理と、を行うことを特徴とするシラン変性カチオン化高分子化合物の製造方法。 - 前記工程(2)で得た生成物に酸を添加する工程(3)を有する請求項4に記載のシラン変性カチオン化高分子化合物の製造方法。
- 前記1次乾燥処理工程を残存有機溶媒量が0.20質量%以下となるまで行う請求項1~5のいずれか一項に記載のシラン変性カチオン化高分子化合物の製造方法。
- 前記2次乾燥処理工程を乾燥減量が2質量%以下となるまで行う請求項1~6のいずれか一項に記載のシラン変性カチオン化高分子化合物の製造方法。
- 前記カチオン化高分子化合物がカチオン化セルロースである請求項1~5のいずれか一項に記載のシラン変性カチオン化高分子化合物の製造方法。
- カチオン化時に使用した水相溶性有機溶媒の残存量が0.10質量%未満で、水への分散時間が60秒以下であることを特徴とするシラン変性カチオン化高分子化合物。
- 乾燥減量が2質量%以下である請求項9記載のシラン変性カチオン化高分子化合物。
- アミノシラン化合物の吸着量が0.03~10%である請求項9又は10記載のシラン変性カチオン化高分子化合物。
- カチオン化高分子化合物がカチオン化セルロースである請求項9~11のいずれか一項に記載のシラン変性カチオン化高分子化合物。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/320,787 US8981080B2 (en) | 2009-06-04 | 2010-05-18 | Silane-modified cationized polymeric compound and process for production thereof |
JP2011518235A JP5577331B2 (ja) | 2009-06-04 | 2010-05-18 | シラン変性カチオン化高分子化合物の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-134908 | 2009-06-04 | ||
JP2009134908 | 2009-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010140309A1 true WO2010140309A1 (ja) | 2010-12-09 |
Family
ID=43297452
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/003352 WO2010140309A1 (ja) | 2009-06-04 | 2010-05-18 | シラン変性カチオン化高分子化合物及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8981080B2 (ja) |
JP (1) | JP5577331B2 (ja) |
KR (1) | KR20120033301A (ja) |
WO (1) | WO2010140309A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017197710A (ja) * | 2016-04-27 | 2017-11-02 | コーン プロダクツ ディベロップメント,インコーポレイティド | 変性多糖 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104193835B (zh) * | 2014-08-15 | 2016-10-05 | 浙江蓝宇数码科技有限公司 | 一种阳离子硅烷化淀粉、制备方法及用途 |
KR102268923B1 (ko) * | 2019-02-20 | 2021-06-24 | 주식회사 로빈첨단소재 | 표면 개질된 나노 셀룰로오스의 제조방법 및 이에 의해 제조된 나노 셀룰로오스 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS512103B1 (ja) * | 1971-04-20 | 1976-01-23 | ||
JP2007211167A (ja) * | 2006-02-10 | 2007-08-23 | Lion Corp | 易水分散性カチオン化高分子化合物及びその製造方法 |
WO2009025354A1 (ja) * | 2007-08-22 | 2009-02-26 | Lion Corporation | シラン変性カチオン化セルロースの製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3310088A1 (de) * | 1983-03-21 | 1984-09-27 | Dynamit Nobel Ag, 5210 Troisdorf | Verfahren zur modifizierung von staerke im waessrigen medium |
JP2007084680A (ja) | 2005-09-22 | 2007-04-05 | Toho Chem Ind Co Ltd | 水易溶性高分子化合物及びその製造方法 |
-
2010
- 2010-05-18 JP JP2011518235A patent/JP5577331B2/ja active Active
- 2010-05-18 WO PCT/JP2010/003352 patent/WO2010140309A1/ja active Application Filing
- 2010-05-18 US US13/320,787 patent/US8981080B2/en not_active Expired - Fee Related
- 2010-05-18 KR KR1020117026764A patent/KR20120033301A/ko not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS512103B1 (ja) * | 1971-04-20 | 1976-01-23 | ||
JP2007211167A (ja) * | 2006-02-10 | 2007-08-23 | Lion Corp | 易水分散性カチオン化高分子化合物及びその製造方法 |
WO2009025354A1 (ja) * | 2007-08-22 | 2009-02-26 | Lion Corporation | シラン変性カチオン化セルロースの製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017197710A (ja) * | 2016-04-27 | 2017-11-02 | コーン プロダクツ ディベロップメント,インコーポレイティド | 変性多糖 |
JP7032040B2 (ja) | 2016-04-27 | 2022-03-08 | コーンプロダクツ ディベロップメント インコーポレーテッド | 変性多糖 |
Also Published As
Publication number | Publication date |
---|---|
JP5577331B2 (ja) | 2014-08-20 |
KR20120033301A (ko) | 2012-04-06 |
US8981080B2 (en) | 2015-03-17 |
JPWO2010140309A1 (ja) | 2012-11-15 |
US20120065388A1 (en) | 2012-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5298018B2 (ja) | シラン変性カチオン化セルロースの製造方法 | |
KR101709930B1 (ko) | 신규한 고점도 카복시메틸 셀룰로스 및 제조방법 | |
EP2706072B1 (en) | Method for producing alkali cellulose | |
US11453729B2 (en) | Reversibly crosslinked cellulose ethers and process for the production thereof by selective oxidation of vicinal OH groups | |
JP2005502740A (ja) | 粉砕及び乾燥したセルロースエーテルを酸−酸化分解することによって低粘度セルロースエーテルを製造する方法 | |
KR100362421B1 (ko) | 개질 셀룰로오스 에테르 | |
WO2011108505A1 (ja) | カチオン化セルロース及びカチオン化ヒドロキシアルキルセルロースの製造方法 | |
JP5586475B2 (ja) | 洗浄剤組成物 | |
JP5577331B2 (ja) | シラン変性カチオン化高分子化合物の製造方法 | |
JP5489484B2 (ja) | シラン変性カチオン化高分子化合物粉末の製造方法 | |
WO2018061890A1 (ja) | 水溶性ヒドロキシエチルセルロースの製造方法 | |
US6090928A (en) | Process for the preparation and work-up of N-hydroxyalkylchitosans soluble in aqueous medium | |
JP2007211167A (ja) | 易水分散性カチオン化高分子化合物及びその製造方法 | |
EP2736614B1 (en) | Method of removing alkylene halogenohydrin from cellulose ether | |
JP2010013549A (ja) | カルボキシルエチルセルロース | |
JP5237518B2 (ja) | 良好に湿潤し得る、少なくともアルキル化された水溶性で粉末状の非イオン性セルロースエーテルを製造する方法 | |
WO2010037986A1 (fr) | Procede de silanisation de polysaccharides | |
JP2022084367A (ja) | 多糖誘導体水系溶液の製造方法 | |
JP2014201582A (ja) | 粉末状水溶性多糖の水系溶媒に対する溶解速度を向上させる方法 | |
JP2020147678A (ja) | セルロース誘導体の製造方法 | |
JP2022084365A (ja) | 多糖誘導体水系溶液の製造方法 | |
JPH0140841B2 (ja) | ||
JPS5996103A (ja) | 水溶液が透明性に優れたガラクトマンナンのヒドロキシアルキルエ−テルの製法 | |
JP2003137902A (ja) | カルボキシメチルセルロースアルカリ金属塩の製造法 | |
JP2001122902A (ja) | 粗カルボキシメチルセルロースの精製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10783097 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011518235 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20117026764 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13320787 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10783097 Country of ref document: EP Kind code of ref document: A1 |