WO2010137742A1 - ビニルエーテルの製造方法 - Google Patents

ビニルエーテルの製造方法 Download PDF

Info

Publication number
WO2010137742A1
WO2010137742A1 PCT/JP2010/059488 JP2010059488W WO2010137742A1 WO 2010137742 A1 WO2010137742 A1 WO 2010137742A1 JP 2010059488 W JP2010059488 W JP 2010059488W WO 2010137742 A1 WO2010137742 A1 WO 2010137742A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl ether
reaction
group
acetylene
formula
Prior art date
Application number
PCT/JP2010/059488
Other languages
English (en)
French (fr)
Inventor
眞一 柿沼
真哉 三田
昌宏 室谷
Original Assignee
日本カーバイド工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本カーバイド工業株式会社 filed Critical 日本カーバイド工業株式会社
Priority to US13/375,180 priority Critical patent/US9000228B2/en
Priority to EP10780693.7A priority patent/EP2436665B1/en
Priority to JP2011516091A priority patent/JP5734182B2/ja
Publication of WO2010137742A1 publication Critical patent/WO2010137742A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/70One oxygen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/05Preparation of ethers by addition of compounds to unsaturated compounds
    • C07C41/06Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only
    • C07C41/08Preparation of ethers by addition of compounds to unsaturated compounds by addition of organic compounds only to carbon-to-carbon triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to a method for producing vinyl ether by reacting a low-reactivity tertiary alcohol with acetylene in the presence of a base.
  • Vinyl ether is used as a monomer component for paint resins, adhesives, pressure-sensitive adhesives, printing inks, resist resins, etc., and can give various properties to synthetic resins, as well as intermediates for pharmaceuticals, agricultural chemicals, etc. It is an industrially important compound that is used.
  • 1-adamantyl vinyl ether and 1-methylcyclohexyl vinyl ether which are one of the compounds produced according to the present invention, are excellent in transparency at short wavelength light and resistance to dry etching. Therefore, short wavelength light such as ArF excimer laser is used. It is expected to be used as a resist composition suitable for resist applications as a light source or for electron beam lithography.
  • Vinyl ether is conventionally produced by a Reppe reaction in which an alcohol and acetylene are reacted at a high temperature of 120 to 200 ° C. in the presence of an alkali metal catalyst.
  • the Reppe reaction proceeds quickly and becomes an effective means for producing vinyl ether.
  • alcohols with low reactivity such as tertiary alcohols, there is a problem that the conversion of the alcohol is not sufficient and the progress of vinylation is incomplete (Non-Patent Documents 1 and 2). .
  • Non-patent Document 3 a method of efficiently producing vinyl ether by performing a reaction in an aprotic polar solvent using an alkali metal hydroxide as a catalyst has been reported.
  • this method is fast for primary and secondary alcohols and provides good results for both alcohol conversion and vinyl ether production, but it does not work for tertiary alcohol vinylation. There is a problem that the rate is low.
  • Non-Patent Document 4 a method for accelerating the reaction by generating anhydrous cesium hydroxide in the reaction system and using it as a catalyst has been reported.
  • the conversion rate of tertiary alcohol t-butanol is 25% and the yield of vinyl ether is 8%, which is insufficient.
  • no trace amount of t-butyl vinyl ether was detected when the acetylene pressure was reacted under atmospheric pressure.
  • a catalyst was prepared by reacting tertiary alcohols 1-adamantanol and tri (n-propyl) carbinol with metal potassium in a toluene solvent, and then vinyl at an initial pressure of acetylene of 18 kg / cm 2.
  • acetylene 18 kg / cm 2.
  • Non-patent Document 6 a method of reacting n-butyl vinyl ether with tertiary alcohols t-butanol and 1-adamantanol in the presence of a palladium catalyst that is stable in air has been reported (Non-patent Document 6).
  • this method has a low yield of 72 to 61%, requires a long time of 32 to 48 hours for equilibration, and uses 20 times the amount of alkyl vinyl ether relative to the alcohol, resulting in low productivity. There was a problem.
  • Patent Document 1 discloses a method in which an alcohol is reacted with acetylenes in the liquid phase in the presence of a basic alkali metal compound and a co-catalyst such as 1,4-diethoxybutane or 1,4-divinyloxybutane. It is disclosed.
  • a basic alkali metal compound and a co-catalyst such as 1,4-diethoxybutane or 1,4-divinyloxybutane. It is disclosed.
  • an acetylene pressure as high as about 20 kg / cm 2 (absolute pressure) is required as disclosed in the Examples.
  • Patent Document 1 describes that phenol is used as a raw material and phenyl vinyl ether is synthesized in an N-methyl-2-pyrrolidone solvent, but what is described when a tertiary solid alcohol is used as a raw material. It has not been.
  • a method in which a vinyl ester compound and alcohol are reacted in the presence of a metal catalyst to obtain a corresponding vinyl ether is known.
  • a method is disclosed in which an iridium compound is used as a transition metal catalyst and a target product is obtained by transesterification of vinyl acetate and 1-adamantanol in a toluene solvent in the presence of sodium carbonate (Patent Document 2).
  • Patent Document 2 the conversion rate of 1-adamantanol reaches 93%, and the yield of the target product is as high as 91%.
  • the unconverted alcohol about 1% of unnecessary by-products are produced, which is not a sufficient method for obtaining a high-purity product.
  • there are still problems to be solved such as the use of an expensive iridium catalyst, the reaction system is lean, and the productivity is low.
  • tertiary alcohols cannot be vinylated at a high conversion rate under a low acetylene pressure. Therefore, a method for producing vinyl ether by safely and industrially vinylating a low-reactivity tertiary alcohol is required.
  • 1-methylcyclohexyl vinyl ether according to the present invention has not been reported so far and is considered to be a novel compound.
  • the present inventors use a cyclic urea compound, a glyme-based compound or a mixture thereof as a solvent, and react acetylene with a tertiary alcohol in the presence of a base. As a result, a production method for vinylating tertiary alcohol safely and industrially has been found, and the present invention has been completed.
  • the present invention is a method for producing a vinyl ether represented by the following formula (1) from acetylene and a tertiary alcohol in the presence of a base.
  • the tertiary alcohol is an alcohol represented by the following formula (2):
  • the present invention provides a method for producing a vinyl ether, characterized by reacting a cyclic urea compound represented by the following formula (3), a glyme compound represented by the following formula (4) or a mixture thereof as a solvent.
  • R 1 to R 3 are each independently a hydrocarbon group having 1 or more carbon atoms represented by the above formula (5) [where X is a carbon atom, V and W is independently hydrogen or a hydrocarbon group having 1 or more carbon atoms which may have a substituent (provided that the carbon directly bonded to X of V or W is a tertiary alcohol (2 ) And a cis-type primary or secondary hydroxyl group), and Y is hydrogen or a hydrocarbon group having 1 or more carbon atoms which may have a substituent (provided that Y In which carbon directly bonded to X has a hydroxyl group of the tertiary alcohol (2) and a cis-type primary or secondary hydroxyl group as a substituent, or a tertiary hydroxyl group or an alkoxy group indicates alkylsulfanyl is one selected from the Le group], 2 of R 1 ⁇ R 3 Above may form a condensed ring (excluding the case
  • a tertiary alcohol having low reactivity can be vinylated efficiently under a low acetylene pressure in a short time to produce a high purity vinyl ether.
  • FIG. 1 is a 1 H-NMR chart of 1 -methylcyclohexyl vinyl ether synthesized in Example 11.
  • FIG. 2 is a 13 C-NMR chart of 1-methylcyclohexyl vinyl ether synthesized in Example 11.
  • the present invention is a method for producing a vinyl ether represented by the following formula (1) from acetylene and a tertiary alcohol in the presence of a base,
  • the tertiary alcohol is an alcohol represented by the following formula (2):
  • the present invention provides a method for producing a vinyl ether by reacting a cyclic urea compound represented by the following formula (3), a glyme compound represented by the following formula (4) or a mixture thereof as a solvent.
  • R 1 to R 3 are each independently a hydrocarbon group having 1 or more carbon atoms represented by the above formula (5) [where X is a carbon atom, V and W is independently hydrogen or a hydrocarbon group having 1 or more carbon atoms which may have a substituent (provided that the carbon directly bonded to X of V or W is a tertiary alcohol (2 ) And a cis-type primary or secondary hydroxyl group), and Y is hydrogen or a hydrocarbon group having 1 or more carbon atoms which may have a substituent (provided that Y In which carbon directly bonded to X has a hydroxyl group of the tertiary alcohol (2) and a cis-type primary or secondary hydroxyl group as a substituent, or a tertiary hydroxyl group or an alkoxy group indicates alkylsulfanyl is one selected from the Le group], 2 of R 1 ⁇ R 3 Above may form a condensed ring (excluding the case
  • the tertiary alcohol used in the present invention is preferably one that does not preferentially form an acetal ring in the molecule under the reaction conditions.
  • the tertiary alcohol used in the present invention has two or more hydroxyl groups in the molecule, when the reaction proceeds and one of the two or more hydroxyl groups is vinylated, the vinyl group and the other hydroxyl group are cyclic in the molecule. May form an acetal ring.
  • this intramolecular cyclization reaction which is a side reaction, is given priority, the target product may not be obtained, which is not preferable.
  • R 1 to R 3 are independently a hydrocarbon group having 1 or more carbon atoms represented by the formula (5) [where X Is a carbon atom, and V and W are independently a hydrocarbon group having 1 or more carbon atoms which may have hydrogen or a substituent (provided that the carbon directly bonded to X of V or W is a substituent. And the hydroxyl group of the tertiary alcohol (2) and a cis-type primary or secondary hydroxyl group are excluded), and Y has 1 carbon atom which may have hydrogen or a substituent.
  • Each of the aforementioned substituents in each formula of the present invention may be any structure that is inert or does not inhibit the reaction in the reaction system, and examples thereof include an alkoxy group, an alkylsulfanyl group, and a hydroxyl group.
  • Preferred examples of R 1, R 2 and R 3 include a substituted or unsubstituted alkyl group and a cycloalkyl group, and an unsubstituted alkyl group and a cycloalkyl group are particularly preferred.
  • alcohol in the present invention examples include t-butanol, 2-methyl-2-butanol, 2-methyl-2-pentanol, 2-methyl-2-hexanol, 3-ethyl-3-pentanol, 9- Octyl-9-heptadecanol, 2,3-dimethyl-2-butanol, 2,5-dimethyl-2,5-hexanediol, 2,6-dimethyl-2-heptanol, 3-methyl-1,3-butane Diol, 3,3,4-trimethyl-1,4-pentanediol, 1-methylcyclohexanol, 1,1,1-tricyclohexylmethanol, 1-adamantanol, adamantane-1,3-diol, 2-methyl- 2-adamantanol, 2- (1-adamantyl) propan-2-ol, terpinen-4-ol, ⁇ -terpineol, 2 Methyl-3-buten-2
  • the base in the production method of the present invention is not particularly limited, and an alkali metal compound can be used.
  • the alkali metal compound include sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, and alcoholates obtained by reacting these hydroxides with alcohols.
  • Particularly preferred bases include potassium hydroxide and t-butoxy potassium.
  • the amount of the base used is not particularly limited, but is usually about 1 to 200 mol%, preferably 5 to 100 mol%, more preferably 10 to 60 mol%, based on the alcohol.
  • the pressure of the acetylene in the production process of the present invention is not particularly limited, in view preferably 2 kg / cm 2 (gauge pressure) or less from a safety, still more preferably not lower than atmospheric pressure, 1,8kg / cm 2 (gauge Pressure) or less.
  • the reaction temperature in the production method of the present invention is not particularly limited, but is preferably 120 to 180 ° C, more preferably 140 to 160 ° C.
  • a cyclic urea compound represented by the following formula (3), a glyme compound represented by the following formula (4) or a mixture thereof is used as a reaction solvent in the production method of the present invention.
  • R 4 to R 9 are independently hydrogen, an alkyl group having 1 or more carbon atoms, or — (CH 2 CH 2 O) m R 10 , and R 10 and R 11 is independently hydrogen or a C 1 -C 4 saturated or unsaturated hydrocarbon group, l and m are each an integer of 1 or more, and n is an integer of 1 to 4.
  • R 4 and R 9 include a chain or branched alkyl group, a group having an alkyl or alkenyl terminal and an oxyethyl unit as a repeating unit, and a particularly preferable one. Is a methyl group. Further, preferred as R 5 to R 8 are hydrogen, a chain or branched alkyl group, and particularly preferred is hydrogen.
  • R 10 and R 11 are a saturated or unsaturated hydrocarbon group and hydrogen, and particularly preferred are a methyl group and an ethenyl group.
  • reaction solvent in the production method of the present invention it is possible to use one or more selected from a cyclic urea compound represented by the above formula (3) and a glyme compound represented by the above formula (4), and Other aprotic polar solvents and aprotic nonpolar solvents can also be used in combination.
  • the reaction solvent in the present invention it is preferable that the content of the cyclic urea compound represented by the above formula (3) or the glyme compound represented by the above formula (4) is high from the viewpoint of efficiently proceeding the reaction, More preferably, a solvent comprising only one or more kinds selected from the cyclic urea compound represented by the above formula (3) and the glyme compound represented by the above formula (4) is used.
  • cyclic urea compound in the production method of the present invention include 1,3-dimethyl-2-imidazolidinone, 1,3,4-trimethyl-2-imidazolidinone, and 1,3-diethyl-2.
  • -Imidazolidinone, 1,3-diisopropyl-2-imidazolidinone, 1,3-dimethyltetrahydropyrimidi-2-one and the like may be mentioned, but are not limited thereto.
  • 1,3-dimethyl-2-imidazolidinone and 1,3-dimethyltetrahydropyrimidi-2-one are preferably used.
  • Typical examples of the glyme compound in the production method of the present invention include diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, tetraethylene glycol divinyl ether, diethylene glycol, and triethylene.
  • Examples include, but are not limited to, glycol, tetraethylene glycol, diethylene glycol monovinyl ether, triethylene glycol monovinyl ether, and tetraethylene glycol monovinyl ether.
  • the total amount of alcohol and the generated vinyl ether is preferably kept at a concentration of 17% by weight or more based on the total amount of the other, more preferably
  • the reaction is carried out in a concentration range of 25 to 90% by weight.
  • solid alcohol When solid alcohol is used as a raw material, it can be reacted in a slurry state, but since the absorption rate of acetylene decreases and the productivity deteriorates, the raw alcohol is dissolved in a solvent at the reaction temperature. preferable.
  • the reaction can be carried out under such a condition that the total of the starting alcohol and the generated vinyl ether in the reaction system is at a concentration of 17% by weight or more. preferable.
  • the total of the raw tertiary alcohol (2) and the vinyl ether to be produced in the reaction system is reacted at a concentration of 25 to 90% by weight. It is preferable.
  • R 1 to R 3 are each independently a hydrocarbon group having 1 or more carbon atoms represented by the above formula (5) [where X is a carbon atom, V and W is independently hydrogen or a hydrocarbon group having 1 or more carbon atoms which may have a substituent (provided that the carbon directly bonded to X of V or W is a tertiary alcohol (2 ) And a cis-type primary or secondary hydroxyl group), and Y is independently hydrogen or a hydrocarbon group having 1 or more carbon atoms which may have a substituent.
  • the production method of the present invention can be carried out in any reaction mode of a continuous process, a semi-continuous process, or a batch process.
  • a continuous process alcohol, a basic compound, a solvent, and acetylene can be continuously supplied, and the reaction mixture can be continuously discharged.
  • the semi-continuous process a part of the alcohol, basic compound, solvent, and acetylene can be continuously supplied, and the reaction mixture can be continuously discharged.
  • a part of the alcohol, basic compound, solvent, and acetylene can be charged in advance into the reactor, and the reaction mixture can be discharged after completion of the reaction.
  • Example 1 In a 2000 ml SUS autoclave equipped with a stirrer, pressure gauge, thermometer, gas introduction pipe, and gas purge line, 266.8 g of 1,3-dimethyl-2-imidazolidinone and 159.9 g of 1-adamantanol (1 0.05 mol) and a purity of 95% by weight of potassium hydroxide 6.40 g (0.11 mol) were charged, nitrogen gas was allowed to flow for about 60 minutes with stirring, and the inside of the container was replaced with nitrogen. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2, and the reaction was carried out for about 1.9 hours after the reaction vessel internal temperature exceeded 121 ° C.
  • the temperature inside the reaction vessel was controlled so as not to exceed 160 ° C., and the pressure inside the reaction vessel was always kept at 1.8 kg / cm 2 by successively replenishing acetylene gas.
  • the remaining acetylene gas was purged and the reaction solution was collected and analyzed by gas chromatography.
  • the conversion of 1-adamantanol was 97.9%
  • the selectivity of 1-adamantyl vinyl ether was 97. 3%. Since the volume of acetylene absorbed (including the amount dissolved in the reaction solution) was 28.0 liters and 120% of the theoretical amount, 81% of acetylene was effectively utilized for vinylation. Met.
  • Example 2 In a 2000 ml SUS autoclave equipped with a stirrer, pressure gauge, thermometer, gas inlet tube, and gas purge line, 266.4 g of 1,3-dimethyl-2-imidazolidinone and 159.7 g of 1-adamantanol (1 .05 mol) and 12.4 g (0.11 mol) of t-butoxypotassium having a purity of 98% by weight were charged, nitrogen gas was allowed to flow for about 60 minutes with stirring, and the inside of the container was replaced with nitrogen. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2, and the reaction was carried out for about 4.5 hours after the reaction vessel internal temperature exceeded 133 ° C. During this time, the temperature in the reaction vessel was controlled so as not to exceed 145 ° C., and acetylene gas was replenished successively to keep the pressure in the reaction vessel constantly at 1.8 kg / cm 2 . After completion of the reaction, the remaining acetylene gas was purged to collect the reaction solution, and as a result of gas chromatography analysis, the conversion of 1-adamantanol was 98.1%, and the selectivity of 1-adamantyl vinyl ether was 96. It was 8%. The volume of acetylene absorbed (including the amount dissolved in the reaction solution) was 28.7 liters and was 123% of the theoretical amount. Therefore, 79% of acetylene effectively used for vinylation was 79%. Met.
  • Example 3 In a 2000 ml SUS autoclave equipped with a stirrer, pressure gauge, thermometer, gas inlet tube, and gas purge line, 266.4 g of 1,3-dimethyl-2-imidazolidinone and 160.3 g of 1-adamantanol (1 .05 mol) and 12.4 g (0.11 mol) of t-butoxypotassium having a purity of 98% by weight were charged, nitrogen gas was allowed to flow for about 60 minutes with stirring, and the inside of the container was replaced with nitrogen. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2, and the reaction was carried out for about 1.8 hours after the reaction vessel internal temperature exceeded 158 ° C. During this time, the temperature in the reaction vessel was controlled so as not to exceed 175 ° C., and acetylene gas was replenished successively to keep the pressure in the reaction vessel constantly at 1.8 kg / cm 2 . After the reaction was completed, the remaining acetylene gas was purged to obtain 482.5 g of a reaction solution. As a result of gas chromatography analysis, the conversion of 1-adamantanol was 99.9%, and the selectivity of 1-adamantyl vinyl ether was 97.1%. Since the volume of acetylene absorbed (including the amount dissolved in the reaction solution) was 31.4 liters and was 135% of the theoretical amount, 72% of acetylene was effectively utilized for vinylation. Met.
  • Example 4 In a 2000 ml SUS autoclave equipped with a stirrer, pressure gauge, thermometer, gas inlet tube, and gas purge line, 47,0 g of 1,3-dimethyl-2-imidazolidinone, 288.4 g of 1-adamantanol (1 .88 mol) and 22.4 g (0.20 mol) of t-butoxypotassium having a purity of 98% by weight were charged, and nitrogen gas was allowed to flow for about 60 minutes with stirring to replace the inside of the container with nitrogen. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2, and the reaction was carried out for about 8.5 hours after the reaction vessel internal temperature exceeded 155 ° C. During this time, the temperature inside the reaction vessel was controlled so as not to exceed 165 ° C., and the pressure inside the reaction vessel was always kept at 1.8 kg / cm 2 by replenishing acetylene gas successively. After completion of the reaction, the remaining acetylene gas was purged to obtain 874.9 g of a reaction solution. As a result of gas chromatography analysis, the conversion of 1-adamantanol was 99.8%, and the selectivity of 1-adamantyl vinyl ether was 98.3%. The volume of acetylene absorbed (including the amount dissolved in the reaction solution) was 70.5 liters and was 168% of the theoretical amount, so 59% of acetylene was effectively utilized for vinylation. Met.
  • Example 5 In a 2000 ml SUS autoclave equipped with a stirrer, pressure gauge, thermometer, gas inlet tube, and gas purge line, 345.1 g of 1,3-dimethyl-2-imidazolidinone and 75.0 g of 1-adamantanol (0 .49 mol) and 2.95 g (0.05 mol) of potassium hydroxide having a purity of 95% by weight, nitrogen gas was allowed to flow for about 60 minutes with stirring, and the inside of the container was replaced with nitrogen. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • Example 6 In a 2000 ml SUS autoclave equipped with a stirrer, pressure gauge, thermometer, gas inlet tube, and gas purge line, 376.7 g of 1,3-dimethyl-2-imidazolidinone and 250.5 g of 1-adamantanol (1 .65 mol) and 95 wt% purity potassium hydroxide (11.1 g, 0.19 mol) were charged, and nitrogen gas was allowed to flow for about 60 minutes with stirring to replace the inside of the container with nitrogen.
  • the atmosphere in the reaction vessel was switched from nitrogen gas to acetylene gas, and acetylene gas was aerated under atmospheric pressure at a flow rate of 0.3 ml / min after the vessel internal temperature reached 147 ° C. Starting at this point, the reaction was allowed to proceed for about 62 hours. During this time, 11.8 g (0.20 mol) of potassium hydroxide was added in the middle to prevent the reaction rate from decreasing, and the internal temperature of the reaction vessel was controlled not to exceed 160 ° C. After completion of the reaction, the remaining acetylene gas was purged to obtain 686.2 g of a reaction solution.
  • Example 6 the total amount of aerated acetylene was 1107 L, but if desired, the method of circulating unreacted acetylene again to the reaction vessel could effectively reuse the acetylene and suppress the net consumption. You can also
  • Example 7 In a 2000 ml SUS autoclave equipped with a stirrer, pressure gauge, thermometer, gas introduction pipe, and gas purge line, 265.3 g of 1,3-dimethyltetrahydropyrimidi-2-one and 161.1 g of 1-adamantanol ( 1.06 mol) and 95 wt% purity potassium hydroxide (6.37 g, 0.11 mol) were charged, and nitrogen gas was allowed to flow for about 60 minutes with stirring to replace the interior of the container with nitrogen. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2, and the reaction was carried out for about 6.8 hours after the reaction vessel internal temperature exceeded 132 ° C.
  • the temperature inside the reaction vessel was controlled so as not to exceed 146 ° C., and the pressure inside the reaction vessel was always kept at 1.8 kg / cm 2 by successively replenishing acetylene gas.
  • the remaining acetylene gas was purged and the reaction solution was collected and analyzed by gas chromatography.
  • the conversion of 1-adamantanol was 50.0%, and the selectivity of 1-adamantyl vinyl ether was 49. 0.7%. Since the volume of acetylene absorbed (including the amount dissolved in the reaction solution) was 17.7 liters and 75% of the theoretical amount, 66% of acetylene was effectively used for vinylation. Met.
  • Example 8 In a 2000 ml SUS autoclave equipped with a stirrer, pressure gauge, thermometer, gas inlet tube, and gas purge line, 266.8 g of triethylene glycol dimethyl ether, 155.8 g of 1-adamantanol (1.02 mol), purity of 95 weight % Potassium hydroxide 6.39 g (0.11 mol) was charged, nitrogen gas was allowed to flow for about 60 minutes with stirring, and the inside of the container was replaced with nitrogen. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2, and the reaction was carried out for about 19.2 hours after the reaction vessel internal temperature exceeded 137 ° C.
  • the temperature inside the reaction vessel was controlled so as not to exceed 170 ° C., and the pressure inside the reaction vessel was always kept at 1.8 kg / cm 2 by replenishing acetylene gas successively.
  • the remaining acetylene gas was purged and the reaction solution was collected and analyzed by gas chromatography.
  • the conversion of 1-adamantanol was 77.5%
  • the selectivity of 1-adamantyl vinyl ether was 77. 1%. Since the volume of acetylene absorbed (including the amount dissolved in the reaction solution) was 23.3 liters and was 103% of the theoretical amount, 75% of acetylene was effectively utilized for vinylation. Met.
  • Example 9 In a 2000 ml SUS autoclave equipped with a stirrer, pressure gauge, thermometer, gas inlet tube, and gas purge line, 265.5 g of tetraethylene glycol dimethyl ether, 160.1 g (1.05 mol) of 1-adamantanol, purity of 95 weight % Potassium hydroxide 6.39 g (0.11 mol) was charged, nitrogen gas was allowed to flow for about 60 minutes with stirring, and the inside of the container was replaced with nitrogen. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2, and the reaction was carried out for about 13.3 hours after the temperature inside the reaction vessel exceeded 137 ° C.
  • the temperature inside the reaction vessel was controlled so as not to exceed 146 ° C., and the pressure inside the reaction vessel was always kept at 1.8 kg / cm 2 by successively replenishing acetylene gas.
  • the remaining acetylene gas was purged to collect the reaction solution, and as a result of gas chromatography analysis, the conversion of 1-adamantanol was 37.4%, and the selectivity of 1-adamantyl vinyl ether was 36. 8%.
  • the volume of acetylene absorbed was 13.3 liters and was 57% of the theoretical amount. Therefore, 65% of acetylene was effectively utilized for vinylation. Met.
  • Example 10 In a 2000 ml SUS autoclave equipped with a stirrer, pressure gauge, thermometer, gas introduction pipe, and gas purge line, 395.8 g of 1,3-dimethyl-2-imidazolidinone and 25.1 g of 1-adamantanol (0 .16 mol) and 0.98 g (0.02 mol) of potassium hydroxide having a purity of 95% by weight, nitrogen gas was allowed to flow for about 60 minutes with stirring, and the inside of the container was replaced with nitrogen. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2, and the reaction was carried out for about 4.3 hours after the reaction vessel internal temperature exceeded 137 ° C.
  • the temperature inside the reaction vessel was controlled so as not to exceed 147 ° C., and the pressure inside the reaction vessel was always kept at 1.8 kg / cm 2 by successively replenishing acetylene gas.
  • the remaining acetylene gas was purged and the reaction solution was collected and analyzed by gas chromatography.
  • the conversion of 1-adamantanol was 27.8%
  • the selectivity of 1-adamantyl vinyl ether was 27. 1%. Since the volume of acetylene absorbed (including the amount dissolved in the reaction solution) was 3.6 liters and 98% of the theoretical amount, 28% of acetylene was effectively utilized for vinylation. Met.
  • Example 11 In a 2000 ml SUS autoclave equipped with a stirrer, pressure gauge, thermometer, gas introduction pipe and gas purge line, 260.7 g of 1,3-dimethyl-2-imidazolidinone, 80.5 g of 1-methylcyclohexanol ( 20.5 g (0.35 mol) of potassium hydroxide having a purity of 96% and 0.68 mol) and a purity of 95% by weight were charged, nitrogen gas was allowed to flow for about 60 minutes with stirring, and the inside of the container was replaced with nitrogen. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2, and the reaction was carried out for about 9.4 hours after the reaction vessel internal temperature exceeded 130 ° C.
  • the temperature in the reaction vessel was controlled so as not to exceed 145 ° C., and acetylene gas was replenished successively to keep the pressure in the reaction vessel constantly at 1.8 kg / cm 2 .
  • the remaining acetylene gas was purged and the reaction solution was collected and analyzed by gas chromatography.
  • the conversion rate of 1-methylcyclohexanol was 30.5%, and the selectivity of 1-methylcyclohexyl vinyl ether was 29.4%. Since the volume of acetylene absorbed (including the amount dissolved in the reaction solution) was 5.9 liters and 39% of the theoretical amount, 76% of acetylene was effectively utilized for vinylation. Met.
  • Example 11 A part of the reaction solution obtained in Example 11 (38.9% based on the total amount of the reaction solution) was collected, the reaction solvent was removed by washing with water, distilled under atmospheric pressure, and distilled at 165 ° C. A 3.0 g minute was collected. As a result of analysis by NMR, it was 1-methylcyclohexyl vinyl ether represented by the following formula (7).
  • Example 12 A SUS autoclave having a capacity of 2000 ml equipped with a stirrer, pressure gauge, thermometer, gas introduction pipe and gas purge line was charged with 337.2 g of 1,3-dimethyl-2-imidazolidinone and 13.8 g of 1-methylcyclohexanol ( Purity 96%, 0.12 mol) and 95% by weight potassium hydroxide 3.6 g (0.06 mol) were charged, nitrogen gas was allowed to flow for about 60 minutes with stirring, and the inside of the container was replaced with nitrogen. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2, and the reaction was carried out for about 0.9 hours after the reaction vessel internal temperature exceeded 130 ° C.
  • the temperature in the reaction vessel was controlled so as not to exceed 145 ° C., and acetylene gas was replenished successively to keep the pressure in the reaction vessel constantly at 1.8 kg / cm 2 .
  • the remaining acetylene gas was purged and the reaction solution was collected and analyzed by gas chromatography.
  • the conversion of 1-methylcyclohexanol was 8.3%
  • the selectivity of 1-methylcyclohexyl vinyl ether was 8.3%. Since the volume of acetylene absorbed (including the amount dissolved in the reaction solution) was 1.1 liters and was 42% of the theoretical amount, 20% of acetylene was effectively utilized for vinylation. Met.
  • Example 13 In a 2000 ml capacity SUS autoclave equipped with a stirrer, pressure gauge, thermometer, gas introduction pipe and gas purge line, 266.8 g of 1,3-dimethyl-2-imidazolidinone, 2,5-dimethyl-2,5 -Hexanediol (160.2 g, purity 99%, 1.08 mol) and 95 wt% purity potassium hydroxide (29.3 g, 0.50 mol) were charged, and nitrogen gas was allowed to flow for about 60 minutes with stirring. Replaced with. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2 , and the reaction was continued for about 11.7 hours after the reaction vessel internal temperature exceeded 150 ° C.
  • the temperature in the reaction vessel was controlled so as not to exceed 161 ° C., and acetylene gas was replenished successively to keep the pressure in the reaction vessel constantly at 1.8 kg / cm 2 .
  • the remaining acetylene gas was purged and the reaction solution was collected and analyzed by gas chromatography. As a result, the conversion of 2,5-dimethyl-2,5-hexanediol was 62.7%.
  • the selectivity of 1,5-dimethyl-2,5-hexanediol monovinyl ether was 38.9%, and the selectivity of 2,5-dimethyl-2,5-hexanediol divinyl ether was 4.2%. Since the volume of acetylene absorbed (including the amount dissolved in the reaction solution) was 34.1 liters and 70% of the theoretical amount, 61% of acetylene was effectively utilized for vinylation. Met.
  • Example 14 To a 2000 ml SUS autoclave equipped with a stirrer, pressure gauge, thermometer, gas introduction pipe, and gas purge line, 401.2 g of 1,3-dimethyl-2-imidazolidinone, 2,5-dimethyl-2,5 -45.0 g of hexanediol (purity 99%, 0.30 mol) and 8.1 g (0.14 mol) of potassium hydroxide with a purity of 95% by weight were charged, and nitrogen gas was allowed to flow for about 60 minutes with stirring. Replaced with. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2, and the reaction was carried out for about 1.7 hours after the reaction vessel internal temperature exceeded 150 ° C. During this time, the temperature in the reaction vessel was controlled so as not to exceed 161 ° C., and acetylene gas was replenished successively to keep the pressure in the reaction vessel constantly at 1.8 kg / cm 2 . After stopping the reaction, the remaining acetylene gas was purged and the reaction solution was collected and analyzed by gas chromatography.
  • Comparative Example 1 In a 2000 ml SUS autoclave equipped with a stirrer, a pressure gauge, a thermometer, a gas introduction pipe, and a gas purge line, 266.6 g of N-methyl-2-pyrrolidone, 160.3 g (1.05 mol) of 1-adamantanol, 6.38 g (0.11 mol) of potassium hydroxide having a purity of 95% by weight was charged, nitrogen gas was allowed to flow for about 60 minutes with stirring, and the inside of the container was replaced with nitrogen. Next, the reaction vessel was sealed, and acetylene gas was injected into the vessel at a pressure of 1.8 kg / cm 2 .
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2, and the reaction was carried out for about 4.0 hours after the reaction vessel internal temperature exceeded 136 ° C.
  • the temperature in the reaction vessel was controlled so as not to exceed 143 ° C., and acetylene gas was replenished successively to keep the pressure in the reaction vessel constantly at 1.8 kg / cm 2 .
  • the remaining acetylene gas was purged and the reaction solution was collected and analyzed by gas chromatography.
  • the conversion of 1-adamantanol was 1.3% and the selectivity of 1-adamantyl vinyl ether was 0. 8%. Since the volume of acetylene absorbed (including the amount dissolved in the reaction solution) was 2.3 liters and 10% of the theoretical amount, 8% of acetylene was effectively utilized for vinylation. Met.
  • the temperature was gradually raised while maintaining the gauge pressure at 1.8 kg / cm 2, and the reaction was allowed to proceed for about 5 hours after the internal temperature of the reaction vessel exceeded 118 ° C.
  • the temperature inside the reaction vessel was controlled so as not to exceed 165 ° C., and the pressure inside the reaction vessel was always kept at 1.8 kg / cm 2 by replenishing acetylene gas successively.
  • the remaining acetylene gas was purged and the reaction solution was collected and analyzed by gas chromatography.
  • the conversion of 1-adamantanol was 11.3% and the selectivity of 1-adamantyl vinyl ether was 10%. 9%. Since the volume of acetylene absorbed (including the amount dissolved in the reaction solution) was 13.8 liters and 59% of the theoretical amount, 18% of acetylene was effectively utilized for vinylation. Met.
  • Examples 1 to 14 using the vinyl ether production method of the present invention a tertiary alcohol having low reactivity can be vinylated in a short time and efficiently under a low acetylene pressure. Vinyl ether can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 塩基の存在下に、アセチレンと第3級アルコールとを、溶媒として、環状尿素化合物もしくはグライ ム系化合物またはこれらの混合物を用いて反応させ、反応性の低い第3級アルコールから効率的に高純 度の下記式(1)で示されるビニルエーテルを製造する方法を提供する。

Description

ビニルエーテルの製造方法
 本発明は、塩基の存在下に、反応性の低い第3級アルコールをアセチレンと反応させて、ビニルエーテルを製造する方法に関する。
 ビニルエーテルは、塗料用樹脂、接着剤、粘着剤、印刷インキ、レジスト樹脂等のモノマー成分として用いられ、合成樹脂等に様々な特性を付与する事が出来る他、医薬、農薬等の中間体にも利用され工業上重要な化合物である。例えば、本発明により製造される化合物の一つである1−アダマンチルビニルエーテルや1−メチルシクロヘキシルビニルエーテルは、短光波長光における透明性、ドライエッチング耐性に優れるため、ArFエキシマレーザー等の短波長光を光源とするレジスト用途での、或いは電子線リソグラフィーに好適なレジスト組成物としての使用が期待される。
 ビニルエーテルは、従来、アルカリ金属触媒の存在下に、アルコールとアセチレンとを120~200℃の高温下で反応させるレッペ反応により製造される。前記レッペ反応は、原料アルコールが第1級及び第2級アルコールのように反応性に富む場合には、速やかに進行しビニルエーテル製造の有効な手段となる。しかしながら、第3級アルコールのように反応性の低いアルコールに対しては、アルコールの転化が十分でなく、さらにビニル化の進行が不完全であるという問題があった(非特許文献1,2)。
 また、アルコールとアセチレンの反応を所謂超塩基性媒体中で行う方法が報告されている。例えば、アルカリ金属水酸化物を触媒として反応を非プロトン性極性溶媒中で行い、効率的にビニルエーテルを製造する方法が報告されている(非特許文献3)。しかし、この方法は、第1級及び第2級アルコールでは、反応が速く、アルコールの転化率、ビニルエーテルの生成率ともに良好な結果が得られるものの、第3級アルコールのビニル化の場合には収率が低いという問題がある。
 さらに、超塩基性媒体中でアルコールをアセチレンと反応させる方法の改良法も報告されている。すなわち、反応系中で無水水酸化セシウムを生成させて触媒として用いることで反応を加速する方法が報告されている(非特許文献4)。しかしながら、この方法においても、アセチレン初期圧16気圧にて反応させた場合、第3級アルコールであるt−ブタノールの転化率は25%、ビニルエーテルの収率は8%と不十分なものである。尚、アセチレン圧を大気圧下で反応させた場合には、痕跡量のt−ブチルビニルエーテルも検出されなかったことも記載されている。
 また、第3級アルコールである1−アダマンタノール及びトリ(n−プロピル)カルビノールを、トルエン溶媒中で金属カリウムと作用させて触媒を調製した後、18kg/cmのアセチレン初期圧にてビニル化する方法が報告されている(非特許文献5)。しかしながら、この方法においても、高いアセチレン圧にて反応させているにもかかわらず、収率は67~40%と低く十分な方法とはいえない。
 さらに、比較的入手し易いアルキルビニルエーテルを用いて、アルコールを金属触媒の存在下にエーテル交換反応させ、目的とするビニルエーテルを得る方法が知られている。例えば、空気中で安定なパラジウム触媒の存在下に、n−ブチルビニルエーテルと第3級アルコールであるt−ブタノール及び1−アダマンタノールを反応させる方法が報告されている(非特許文献6)。しかし、この方法では、収率が72~61%と低く、平衡化に32~48時間と長時間を要し、更にアルコールに対して20倍量のアルキルビニルエーテルを使用するなど生産性が低いという問題があった。
 上述のように、従来のビニルエーテルの製造方法において、アルコールのビニル化が不十分な場合、ビニルエーテルとアルコールとは類似した構造を有するため、蒸留での分離は効率の良いものでない。そのため、高純度ビニルエーテルの製造は、精製工程での負荷が高くなり、収率も低下するため、製造コストが高くなるという問題があった。
 この解決策として、反応性の低いアルコールを効率的にビニル化する方法が提案されている。特許文献1には、液相中、塩基性アルカリ金属化合物及び1,4−ジエトキシブタン又は1,4−ジビニロキシブタン等の共触媒の存在下に、アルコールをアセチレン類と反応させる方法が開示されている。しかし、この方法で短時間にアルコールを十分に転化させるには、その実施例に開示されているように約20kg/cm(絶対圧)と高いアセチレン圧力を必要とする。アセチレンは、2kg/cm(ゲージ圧)を越える圧力下では非常に不安定であり、自己分解爆発を起こし易く、高圧になるほどその危険性は高く、上記方法は安全上好ましくない。また特許文献1には、原料としてフェノールを用い、N−メチル−2−ピロリドン溶媒中でフェニルビニルエーテルを合成することは記載されているものの、原料として第3級の固体アルコールを用いる場合は何ら記載されていない。
 その他の方法として、ビニルエステル化合物とアルコールを金属触媒の存在下に反応させて、対応するビニルエーテルを得る方法が知られている。例えば、遷移金属触媒としてイリジウム化合物を使用し、トルエン溶媒中、炭酸ナトリウムの存在下に、酢酸ビニルと1−アダマンタノールをエステル交換反応させて目的物を得る方法が開示されている(特許文献2)。この方法では、1−アダマンタノールの転化率は93%に達し、目的物の収率も91%と高い。しかしながら、未転化のアルコールの他に1%程度の不要な副生物を生じ、高純度の製品を得るには十分な方法とはいえない。さらに、高価なイリジウム触媒を使用し、反応系が希薄であり生産性が低いなど、尚解決すべき課題があった。
Ind.Eng.Chem.Prod.Res.Dev.,Vol.2,No.4,1963,293−296. J.Org.Chem.,Vol.24,1959,1752−1755 Z.Chem.Bd.26,1986,Heft2,41−49. Russian Journal of Organic Chemistry,Vol.41,No.5,2005,656−660. Journal of Polymer Science,Polymer Chemistry Edition,1973,11(5),1043−1051. J.Org.Chem.,Vol.68,2003,5225−5227.
特許公表2003−530375 特開2003−73321
 上述のとおり、これまで報告されたビニルエーテルの合成方法では、第3級アルコールを、低アセチレン圧下で、高い転化率でビニル化することはできない。従って、反応性の低い第3級アルコールを安全かつ工業的にビニル化してビニルエーテルを製造する方法が求められている。なお本発明に係る1−メチルシクロヘキシルビニルエーテルは、従来報告例がなく、新規化合物であると考えられる。
 本発明者らは、上記課題を解決するために鋭意検討した結果、溶媒として環状尿素化合物もしくはグライム系化合物またはこれらの混合物を用い、塩基の存在下に、アセチレンと第3級アルコールとを反応させることによって、第3級アルコールを安全かつ工業的にビニル化する製造方法を見出し、本発明を完成するに至った。
 すなわち本発明は、塩基の存在下に、アセチレンと第3級アルコールとから下記式(1)で示されるビニルエーテルを製造する方法であって
Figure JPOXMLDOC01-appb-I000007
前記第3級アルコールが下記式(2)で示されるアルコールであり、
Figure JPOXMLDOC01-appb-I000008
下記式(3)で示される環状尿素化合物或いは下記式(4)で示されるグライム系化合物またはこれらの混合物を溶媒として用いて反応させることを特徴とするビニルエーテルの製造方法を提供するものである。
Figure JPOXMLDOC01-appb-I000009
 上記式(1)~(4)において、R~Rは、独立に、上記式(5)で示される炭素数1以上の炭化水素基[ここで、Xは炭素原子であり、VおよびWは、独立に、水素または置換基を有しても良い炭素数が1以上の炭化水素基(但し、VまたはWのXに直接結合する炭素が、置換基として、第3級アルコール(2)の水酸基とシス型配置の第1級または第2級水酸基を有する場合を除く)であり、Yは水素もしくは置換基を有しても良い炭素数が1以上の炭化水素基(但し、YのXに直接結合する炭素が、置換基として、第3級アルコール(2)の水酸基とシス型配置の第1級または第2級水酸基を有する場合を除く)、または第3級水酸基、アルコキシ基、アルキルスルファニル基から選択される1種である]を示し、R~Rの2以上が縮合して環を形成しても良く(但し、R~Rの2以上が縮合して芳香族環を形成する場合を除く)、また、R~Rは、独立に、水素若しくは炭素数1以上のアルキル基又は−(CHCHO)10を示し、R10、R11は、独立に、水素又はC~Cの飽和若しくは不和炭化水素基を示し、lおよびmは、独立に、1以上の整数であり、nは1~4の整数である。
 本発明によれば、反応性の低い第3級アルコールを、低アセチレン圧下で短時間かつ効率的にビニル化して、高純度のビニルエーテルを製造することができる。
 図1は実施例11で合成した1−メチルシクロヘキシルビニルエーテルのH−NMRチャートである。
 図2は実施例11で合成した1−メチルシクロヘキシルビニルエーテルの13C−NMRチャートである。
 以下本発明について詳細に説明する。
 本発明は、塩基の存在下に、アセチレンと第3級アルコールとから下記式(1)で示されるビニルエーテルを製造する方法であって、
Figure JPOXMLDOC01-appb-I000010
前記第3級アルコールが下記式(2)で示されるアルコールであり、
Figure JPOXMLDOC01-appb-I000011
溶媒として、下記式(3)で示される環状尿素化合物もしくは下記式(4)で示されるグライム系化合物またはこれらの混合物を用いて反応させ、ビニルエーテルを製造する方法を提供するものである。
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
 上記式(1)~(4)において、R~Rは、独立に、上記式(5)で示される炭素数1以上の炭化水素基[ここで、Xは炭素原子であり、VおよびWは、独立に、水素または置換基を有しても良い炭素数が1以上の炭化水素基(但し、VまたはWのXに直接結合する炭素が、置換基として、第3級アルコール(2)の水酸基とシス型配置の第1級または第2級水酸基を有する場合を除く)であり、Yは水素もしくは置換基を有しても良い炭素数が1以上の炭化水素基(但し、YのXに直接結合する炭素が、置換基として、第3級アルコール(2)の水酸基とシス型配置の第1級または第2級水酸基を有する場合を除く)、または第3級水酸基、アルコキシ基、アルキルスルファニル基から選択される1種である]を示し、R~Rの2以上が縮合して環を形成しても良く(但し、R~Rの2以上が縮合して芳香族環を形成する場合を除く)、また、R~Rは、独立に、水素若しくは炭素数1以上のアルキル基又は−(CHCHO)10であり、R10及びR11は、独立に、水素又はC~Cの飽和若しくは不飽和炭化水素基を示し、lおよびmは、独立に、1以上の整数であり、nは1~4の整数である。
 本発明に用いる第3級アルコールは、反応条件下、分子内でアセタール環を優先的に形成しないものが好ましい。本発明で用いる第3級アルコールが分子内に2以上の水酸基を有する場合、反応が進行して2以上の水酸基の一つがビニル化されると、このビニル基と他の水酸基が分子内で環化しアセタール環を形成する場合がある。この副反応である分子内環化反応が優先すると、目的物が得られない場合があり好ましくない。従って、本発明で用いる前記式(2)で示す第3級アルコールにおいて、R~Rは、独立に、上記式(5)で示される炭素数1以上の炭化水素基[ここで、Xは炭素原子であり、VおよびWは、独立に、水素または置換基を有しても良い炭素数が1以上の炭化水素基(但し、VまたはWのXに直接結合する炭素が、置換基として、第3級アルコール(2)の水酸基とシス型配置の第1級または第2級水酸基を有する場合を除く)であり、Yは、水素もしくは置換基を有しても良い炭素数が1以上の炭化水素基(但し、YのXに直接結合する炭素が、置換基として、第3級アルコール(2)の水酸基とシス型配置の第1級または第2級水酸基を有する場合を除く)、または第3級水酸基、アルコキシ基、アルキルスルファニル基から選択される1種である]を示し、R~Rの2以上が縮合して環を形成しても良い(但し、R~Rの2以上が縮合して芳香族環を形成する場合を除く)。
 本発明の各式における前述の各置換基は、反応系中で不活性であるか反応を阻害しない構造であれば良く、例えばアルコキシ基、アルキルスルファニル基、水酸基などを挙げることができる。好ましいR1、2、としては、置換又は非置換のアルキル基、シクロアルキル基が挙げられ、特に非置換のアルキル基、シクロアルキル基が好ましい。
 本発明におけるアルコールの具体例としては、t−ブタノール、2−メチル−2−ブタノール、2−メチル−2−ペンタノール、2−メチル−2−ヘキサノール、3−エチル−3−ペンタノール、9−オクチル−9−ヘプタデカノール、2,3−ジメチル−2−ブタノール、2,5−ジメチル−2,5−ヘキサンジオール、2,6−ジメチル−2−ヘプタノール、3−メチル−1,3−ブタンジオール、3,3,4−トリメチル−1,4−ペンタンジオール、1−メチルシクロヘキサノール、1,1,1−トリシクロヘキシルメタノール、1−アダマンタノール、アダマンタン−1,3−ジオール、2−メチル−2−アダマンタノール、2−(1−アダマンチル)プロパン−2−オール、テルピネン−4−オール、α−テルピネオール、2−メチル−3−ブテン−2−オール、リナロール、ゲラニルリナロール、イソフィトール、ジヒドロミルセノール、25−ヒドロキシビタミン D2、2−メチル−1−フェニル−2−プロパノール、2−フェニル−2−プロパノール、2−フェニルペンタン−2−オール、1,1−ジフェニルエタノール、1,1,1−トリフェニルメタノール、1−シクロプロピル−1,1−ジフェニルメタノール、1−フェニル−1−シクロヘキサノール、1,1−ジシクロプロピル−1−フェニルメタノール、ビス−(4−ヒドロキシ−1−ナフチル)フェニルメタノール、9−フェニル−9−フルオレノールなどが挙げられるが、これらに限定するものではない。
 本発明の製造方法における塩基としては、特に制限するものではないが、アルカリ金属化合物を用いることができる。アルカリ金属化合物としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、これら水酸化物とアルコールを反応して得られるアルコラートなどが挙げられる。特に好ましい塩基としては、水酸化カリウム、t−ブトキシカリウムが挙げられる。塩基の使用量についての制限は特にないが、通常アルコールに対して1~200モル%程度使用し、5~100モル%使用することが好ましく、10~60モル%使用することが更に好ましい。
 本発明の製造方法におけるアセチレンの圧力には、特に制限はないが、安全上の観点から2kg/cm(ゲージ圧)以下が好ましく、更に好ましくは大気圧以上、1,8kg/cm(ゲージ圧)以下である。
 本発明の製造方法における反応温度には、特に制限はないが、120~180℃が好ましく、更に好ましくは140~160℃である。
 本発明の製造方法における反応溶媒としては、下記式(3)で示される環状尿素化合物もしくは下記式(4)で示されるグライム系化合物またはこれらの混合物を用いる。
Figure JPOXMLDOC01-appb-I000014
 上記式(3)および(4)において、R~Rは、独立に、水素、若しくは炭素数1以上のアルキル基又は−(CHCHO)10であり、R10及びR11は、独立に、水素又はC~Cの飽和若しくは不飽和炭化水素基であり、lおよびmはそれぞれ1以上の整数であり、nは1~4の整数である。
 上記式(3)において、R及びRとして好ましいものには、鎖状又は分枝のアルキル基、末端がアルキル又はアルケニルであってオキシエチル単位を繰返し単位とする基が挙げられ、特に好ましいものはメチル基である。また、R~Rとして好ましいものとしては、水素、鎖状又は分枝のアルキル基が挙げられ、特に好ましいものは水素である。
 上記式(4)において、R10及びR11として好ましいものには、飽和又は不飽和の炭化水素基、水素が挙げられ、特に好ましいものは、メチル基、エテニル基である。
 本発明の製造方法における反応溶媒としては、上記式(3)で示される環状尿素化合物および上記式(4)で示されるグライム系化合物から選択される1種以上を用いることが可能であり、さらに他の非プロトン性極性溶媒や非プロトン性無極性溶媒を併用することもできる。本発明における反応溶媒としては、効率的に反応を進行させる観点から、上記式(3)で示される環状尿素化合物又は上記式(4)で示されるグライム系化合物の含有率が高いことが好ましく、更に好ましくは、上記式(3)で示される環状尿素化合物および上記式(4)で示されるグライム系化合物から選択される1種以上のみからなる溶媒を使用することである。
 本発明の製造方法における環状尿素化合物として代表的にものには、1,3−ジメチル−2−イミダゾリジノン、1,3,4−トリメチル−2−イミダゾリジノン、1,3−ジエチル−2−イミダゾリジノン、1,3−ジイソプロピル−2−イミダゾリジノン、1,3−ジメチルテトラヒドロピリミジ−2−オン等が挙げられるが、これらに限定するものではない。本発明における環状尿素化合物としては、1,3−ジメチル−2−イミダゾリジノン、1,3−ジメチルテトラヒドロピリミジ−2−オンを用いることが好ましい。
 本発明の製造方法におけるグライム系化合物として代表的なものには、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジエチレングリコールモノビニルエーテル、トリエチレングリコールモノビニルエーテル、テトラエチレングリコールモノビニルエーテルなどが挙げられるが、これらに限定するものではない。
 本発明の製造方法において、上記特定の溶媒の存在下に、アルコールと生成したビニルエーテルの合計量は、その他全量に対して、17重量%以上の濃度に保って反応させることが好ましく、更に好ましくは、25~90重量%の濃度範囲に保って反応させる。固体アルコールを原料に使用する場合、スラリーの状態で反応させることもできるが、アセチレンの吸収速度が低下し生産性が悪化するため、反応温度下において原料のアルコールは溶媒に溶解している状態が好ましい。
 本発明の下記式(1)で示されるビニルエーテルの製造方法において、アルコールと生成したビニルエーテルの合計が、その他全量に対して、17重量%未満の濃度であると、アセチレンがアルコールの転化のために有効に消費されず効率的でない場合がある。従って、本発明の下記式(1)で示されるビニルエーテルの製造方法において、反応系内の、原料のアルコールと生成するビニルエーテルの合計が17重量%以上の濃度であるような条件で反応させることが好ましい。特に、本発明の下記式(1)で示されるビニルエーテルの製造方法では、反応系内の、原料の第3級アルコール(2)と生成するビニルエーテルの合計を25~90重量%の濃度で反応させることが好ましい。
Figure JPOXMLDOC01-appb-I000015
 上記式(1)及び(2)において、R~Rは、独立に、上記式(5)で示される炭素数1以上の炭化水素基[ここで、Xは炭素原子であり、VおよびWは、独立に、水素または置換基を有しても良い炭素数が1以上の炭化水素基(但し、VまたはWのXに直接結合する炭素が、置換基として、第3級アルコール(2)の水酸基とシス型配置の第1級または第2級水酸基を有する場合を除く)であり、Yは、独立に、水素もしくは置換基を有しても良い炭素数が1以上の炭化水素基(但し、YのXに直接結合する炭素が、置換基として、第3級アルコール(2)の水酸基とシス型配置の第1級または第2級水酸基を有する場合を除く)、または第3級水酸基、アルコキシ基、アルキルスルファニル基から選択される1種である]であり、R~Rの2以上が縮合して環を形成しても良い(但し、R~Rの2以上が縮合して芳香族環を形成する場合を除く)。
 本発明の製造方法は、連続工程、半連続工程又はバッチ工程のいずれの反応様式でも実施することができる。連続工程では、アルコール、塩基性化合物、溶媒、アセチレンを連続的に供給し、反応混合物を連続的に排出することができる。半連続工程では、アルコール、塩基性化合物、溶媒、アセチレンのうちの一部を連続的に供給し、反応混合物を連続的に排出することができる。バッチ工程では、アルコール、塩基性化合物、溶媒、アセチレンのうち一部は予め全量反応器に装入し、反応終了後に反応混合物を排出することができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明を、これら実施例に限定するものでないことはいうまでもない。
 実施例1
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、1,3−ジメチル−2−イミダゾリジノン266.8g、1−アダマンタノール159.9g(1.05mol)、純度95重量%の水酸化カリウム6.40g(0.11mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が121℃を越えてから約1.9時間反応させた。この間、反応容器内温が160℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応終了後、残留するアセチレンガスをパージして反応液を採取し、ガスクロ分析を行った結果、1−アダマンタノールの転化率は97.9%であり、1−アダマンチルビニルエーテルの選択率は97.3%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は28.0リットルであり、理論量に対して120%であったことから、ビニル化に有効に利用されたアセチレンは81%であった。
 実施例2
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、1,3−ジメチル−2−イミダゾリジノン266.4g、1−アダマンタノール159.7g(1.05mol)、純度98重量%のt−ブトキシカリウム12.4g(0.11mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が133℃を越えてから約4.5時間反応させた。この間、反応容器内温が145℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応終了後、残留するアセチレンガスをパージして反応液を採取し、ガスクロ分析を行った結果、1−アダマンタノールの転化率は98.1%であり、1−アダマンチルビニルエーテルの選択率は96.8%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は28.7リットルであり、理論量に対して123%であったことから、ビニル化に有効に利用されたアセチレンは79%であった。
 実施例3
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、1,3−ジメチル−2−イミダゾリジノン266.4g、1−アダマンタノール160.3g(1.05mol)、純度98重量%のt−ブトキシカリウム12.4g(0.11mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が158℃を越えてから約1.8時間反応させた。この間、反応容器内温が175℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応終了後、残留するアセチレンガスをパージして反応液482.5gを得た。ガスクロ分析の結果、1−アダマンタノールの転化率は99.9%であり、1−アダマンチルビニルエーテルの選択率は97.1%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は31.4リットルであり、理論量に対して135%であったことから、ビニル化に有効に利用されたアセチレンは72%であった。
 実施例4
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、1,3−ジメチル−2−イミダゾリジノン478.0g、1−アダマンタノール288.4g(1.88mol)、純度98重量%のt−ブトキシカリウム22.4g(0.20mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が155℃を越えてから約8.5時間反応させた。この間、反応容器内温が165℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応終了後、残留するアセチレンガスをパージして反応液874.9gを得た。ガスクロ分析の結果、1−アダマンタノールの転化率は99.8%であり、1−アダマンチルビニルエーテルの選択率は98.3%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は70.5リットルであり、理論量に対して168%であったことから、ビニル化に有効に利用されたアセチレンは59%であった。
 実施例3及び4で得られた反応液を一つにまとめ、減圧蒸留、再沈殿及び再結晶操作による通常の精製を経て、451.4gの乾燥結晶を得た。NMRによる分析の結果、高純度の1−アダマンチルビニルエーテルであった(ガスグロマトグラフィーによる純度99.7%、収率86.7%)。
 得られた1−アダマンチルビニルエーテルのNMR測定結果を示す。
 H−NMR(CDCl、TMS、400MHz):δppm 1.59−1.83(m,12H),2.18(brs,3H),4.02(dd,1H,J=6.2,0.7Hz),4.42(dd,1H,J=13.7,0.7Hz),6.59(dd,1H,J=13.7,6.2Hz)
 13C−NMR(CDCl、100MHz):δppm 30.6,36.2,41.8,75.3,90.3,145.0
 実施例5
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、1,3−ジメチル−2−イミダゾリジノン345.1g、1−アダマンタノール75.0g(0.49mol)、純度95重量%の水酸化カリウム2.89g(0.05mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が137℃を越えてから約3.7時間反応させた。この間、反応容器内温が146℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応終了後、残留するアセチレンガスをパージして反応液を採取し、ガスクロ分析を行った結果、1−アダマンタノールの転化率は56.8%であり、1−アダマンチルビニルエーテルの選択率は55.9%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は13.0リットルであり、理論量に対して119%であったことから、ビニル化に有効に利用されたアセチレンは47%であった。
 実施例6
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、1,3−ジメチル−2−イミダゾリジノン376.7g、1−アダマンタノール250.5g(1.65mol)、純度95重量%の水酸化カリウム11.1g(0.19mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、昇温しながら反応容器内の雰囲気を窒素ガスからアセチレンガスに切り替え、容器内温が147℃に達してから流速0.3ml/分にて、大気圧下にアセチレンガスを通気した。この時点を起点として、約62時間反応させた。尚この間、反応速度の低下を防ぐために、途中で水酸化カリウム11.8g(0.20mol)を追加し、反応容器内温が160℃を越えないように制御した。反応終了後、残留するアセチレンガスをパージして反応液686.2gを得た。ガスクロ分析の結果、1−アダマンタノールの転化率は97.2%であり、1−アダマンチルビニルエーテルの選択率は97.1%であった。実施例6において、通気したアセチレンの総量は1107Lであったが、所望により、未反応のアセチレンを再び反応槽に循環させる方法をとることで、有効にアセチレンを再利用し正味の消費量を抑制することも出来る。
 実施例7
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、1,3−ジメチルテトラヒドロピリミジ−2−オン265.3g、1−アダマンタノール161.1g(1.06mol)、純度95重量%の水酸化カリウム6.37g(0.11mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が132℃を越えてから約6.8時間反応させた。この間、反応容器内温が146℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応を停止後、残留するアセチレンガスをパージして反応液を採取し、ガスクロ分析を行った結果、1−アダマンタノールの転化率は50.0%であり、1−アダマンチルビニルエーテルの選択率は49.7%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は17.7リットルであり、理論量に対して75%であったことから、ビニル化に有効に利用されたアセチレンは66%であった。
 実施例8
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、トリエチレングリコールジメチルエーテル266.8g、1−アダマンタノール155.8g(1.02mol)、純度95重量%の水酸化カリウム6.39g(0.11mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が137℃を越えてから約19.2時間反応させた。この間、反応容器内温が170℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応終了後、残留するアセチレンガスをパージして反応液を採取し、ガスクロ分析を行った結果、1−アダマンタノールの転化率は77.5%であり、1−アダマンチルビニルエーテルの選択率は77.1%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は23.3リットルであり、理論量に対して103%であったことから、ビニル化に有効に利用されたアセチレンは75%であった。
 実施例9
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、テトラエチレングリコールジメチルエーテル265.5g、1−アダマンタノール160.1g(1.05mol)、純度95重量%の水酸化カリウム6.39g(0.11mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が137℃を越えてから約13.3時間反応させた。この間、反応容器内温が146℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応を停止後、残留するアセチレンガスをパージして反応液を採取し、ガスクロ分析を行った結果、1−アダマンタノールの転化率は37.4%であり、1−アダマンチルビニルエーテルの選択率は36.8%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は13.3リットルであり、理論量に対して57%であったことから、ビニル化に有効に利用されたアセチレンは65%であった。
 実施例10
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、1,3−ジメチル−2−イミダゾリジノン395.8g、1−アダマンタノール25.1g(0.16mol)、純度95重量%の水酸化カリウム0.98g(0.02mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が137℃を越えてから約4.3時間反応させた。この間、反応容器内温が147℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応終了後、残留するアセチレンガスをパージして反応液を採取し、ガスクロ分析を行った結果、1−アダマンタノールの転化率は27.8%であり、1−アダマンチルビニルエーテルの選択率は27.1%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は3.6リットルであり、理論量に対して98%であったことから、ビニル化に有効に利用されたアセチレンは28%であった。
 実施例11
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、1,3−ジメチル−2−イミダゾリジノン260.7g、1−メチルシクロヘキサノール80.5g(純度96%、0.68mol)、純度95重量%の水酸化カリウム20.5g(0.35mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が130℃を越えてから約9.4時間反応させた。この間、反応容器内温が145℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応を停止後、残留するアセチレンガスをパージして反応液を採取し、ガスクロ分析を行った結果、1−メチルシクロヘキサノールの転化率は30.5%であり、1−メチルシクロヘキシルビニルエーテルの選択率は29.4%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は5.9リットルであり、理論量に対して39%であったことから、ビニル化に有効に利用されたアセチレンは76%であった。
 実施例11で得られた反応液の一部(反応液全量に対して38.9%)を分取し、反応溶媒を水洗除去後、大気圧下に蒸留し、165℃で留出した留分3.0gを集めた。NMRによる分析の結果、下記式(7)で示される1−メチルシクロヘキシルビニルエーテルであった。
Figure JPOXMLDOC01-appb-I000016
 得られた1−メチルシクロヘキシルビニルエーテルのNMR測定結果を示す。
 H−NMR(CDCl、TMS、400MHz):δppm 1.21(s,3H;d),1.24−1.78(m,10H;e,f,g),4.03(dd,1H,J=6.2,0.3Hz;Ha),4.43(dd,1H,J=13.8,0.4Hz;Ha),6.44(dd,1H,J=13.7,6.2Hz;Hb)
 13C−NMR(CDCl、100MHz):δppm 21.0(f),24.5(g),24.6(d),35.9(e),75.9(c),89.9(a),144.8(b)
 実施例12
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、1,3−ジメチル−2−イミダゾリジノン337.2g、1−メチルシクロヘキサノール13.8g(純度96%、0.12mol)、純度95重量%の水酸化カリウム3.6g(0.06mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が130℃を越えてから約0.9時間反応させた。この間、反応容器内温が145℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応を停止後、残留するアセチレンガスをパージして反応液を採取し、ガスクロ分析を行った結果、1−メチルシクロヘキサノールの転化率は8.3%であり、1−メチルシクロヘキシルビニルエーテルの選択率は8.3%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は1.1リットルであり、理論量に対して42%であったことから、ビニル化に有効に利用されたアセチレンは20%であった。
 実施例13
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、1,3−ジメチル−2−イミダゾリジノン266.8g、2,5−ジメチル−2,5−ヘキサンジオール160.2g(純度99%、1.08mol)、純度95重量%の水酸化カリウム29.3g(0.50mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が150℃を越えてから約11.7時間反応させた。この間、反応容器内温が161℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応を停止後、残留するアセチレンガスをパージして反応液を採取し、ガスクロ分析を行った結果、2,5−ジメチル−2,5−ヘキサンジオールの転化率は62.7%であり、2,5−ジメチル−2,5−ヘキサンジオールモノビニルエーテルの選択率は38.9%、2,5−ジメチル−2,5−ヘキサンジオールジビニルエーテルの選択率は4.2%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は34.1リットルであり、理論量に対して70%であったことから、ビニル化に有効に利用されたアセチレンは61%であった。
 実施例14
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、1,3−ジメチル−2−イミダゾリジノン401.2g、2,5−ジメチル−2,5−ヘキサンジオール45.0g(純度99%、0.30mol)、純度95重量%の水酸化カリウム8.1g(0.14mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が150℃を越えてから約1.7時間反応させた。この間、反応容器内温が161℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応を停止後、残留するアセチレンガスをパージして反応液を採取し、ガスクロ分析を行った結果、2,5−ジメチル−2,5−ヘキサンジオールの転化率は59.4%であり、2,5−ジメチル−2,5−ヘキサンジオールモノビニルエーテルの選択率は14.8%、2,5−ジメチル−2,5−ヘキサンジオールジビニルエーテルの選択率は2.7%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は10.0リットルであり、理論量に対して73%であったことから、ビニル化に有効に利用されたアセチレンは24%であった。
 比較例1
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、N−メチル−2−ピロリドン266.6g、1−アダマンタノール160.3g(1.05mol)、純度95重量%の水酸化カリウム6.38g(0.11mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が136℃を越えてから約4.0時間反応させた。この間、反応容器内温が143℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応を停止後、残留するアセチレンガスをパージして反応液を採取し、ガスクロ分析を行った結果、1−アダマンタノールの転化率は1.3%であり、1−アダマンチルビニルエーテルの選択率は0.8%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は2.3リットルであり、理論量に対して10%であったことから、ビニル化に有効に利用されたアセチレンは8%であった。
 比較例2
 攪拌器、圧力ゲージ、温度計、ガス導入管、ガスパージラインを備えた容量2000mlのSUS製オートクレーブに、ジメチルスルホキシド267.8g、1−アダマンタノール159.9g(1.05mol)、純度95重量%の水酸化カリウム6.35g(0.11mol)を仕込み、攪拌下に約60分間窒素ガスを流し、容器内を窒素にて置換した。次いで、反応容器を密封し、容器内にアセチレンガスを1.8kg/cmの圧力で圧入した。次いで、ゲージ圧力を1.8kg/cmに保ちながら徐々に昇温し、反応容器内温が118℃を越えてから約5時間反応させた。この間、反応容器内温が165℃を越えないように制御し、逐次アセチレンガスを補充して反応容器内の圧力は常に1.8kg/cmに保った。反応を停止後、残留するアセチレンガスをパージして反応液を採取し、ガスクロ分析を行った結果、1−アダマンタノールの転化率は11.3%であり、1−アダマンチルビニルエーテルの選択率は10.9%であった。吸収されたアセチレンの体積(反応液中への溶解分を含む)は13.8リットルであり、理論量に対して59%であったことから、ビニル化に有効に利用されたアセチレンは18%であった。
Figure JPOXMLDOC01-appb-T000017
 上記表1の比較例2の結果から明らかなように、従来のアルコールとアセチレンの反応において、多くの刊行物中に代表的に記載されているジメチルスルホキシドを使用した場合には、消費したアセチレンの量に対して十分なアルコールの転化が得られず、効率的でない。また比較例1の結果より、N−メチル−2−ピロリドンを使用した場合には、同様にアルコールの転化が十分でなく、更に低アセチレン圧下においては有意なアセチレンの吸収を示さない。
 一方、本発明のビニルエーテルの製造方法を用いた実施例1~14では、反応性の低い第3級アルコールを、低アセチレン圧下で、短時間かつ効率的にビニル化することができ、高純度のビニルエーテルを得ることができる。

Claims (10)

  1. 塩基の存在下に、アセチレンと第3級アルコールとから式(1):
    Figure JPOXMLDOC01-appb-I000001
    で示されるビニルエーテルを製造する方法であって、前記第3級アルコールが式(2):
    Figure JPOXMLDOC01-appb-I000002
    で示されるアルコールであり、溶媒として、式(3):
    Figure JPOXMLDOC01-appb-I000003
    で示される環状尿素化合物もしくは式(4):
    Figure JPOXMLDOC01-appb-I000004
    で示されるグライム系化合物またはこれらの混合物を用いて反応させることを特徴とするビニルエーテルの製造方法:
     上記式(1)~(4)において、R~Rは、独立に、式(5):
    Figure JPOXMLDOC01-appb-I000005
    で示される炭素数1以上の炭化水素基[ここで、Xは炭素原子であり、VおよびWは、独立に、水素または置換基を有しても良い炭素数が1以上の炭化水素基(但し、VまたはWのXに直接結合する炭素が、置換基として、第3級アルコール(2)の水酸基とシス型配置の第1級または第2級水酸基を有する場合を除く)であり、Yは水素もしくは置換基を有しても良い炭素数が1以上の炭化水素基(但し、YのXに直接結合する炭素が、置換基として、第3級アルコール(2)の水酸基とシス型配置の第1級または第2級水酸基を有する場合を除く)、または第3級水酸基、アルコキシ基、アルキルスルファニル基から選択される1種である]を示し、R~Rの2以上が縮合して環を形成しても良く(但し、R~Rの2以上が縮合して芳香族環を形成する場合を除く)、また、R~Rは、独立に、水素若しくは炭素数1以上のアルキル基又は−(CHCHO)10を示し、R10およびR11は、独立に、水素又はC~Cの飽和若しくは不飽和炭化水素基を示し、lおよびmは、独立に、1以上の整数であり、nは1~4の整数である。
  2. 前記第3級アルコールが2,5−ジメチル−2,5−ヘキサンジオール、1−メチルシクロヘキサノール、1−アダマンタノール、アダマンタン−1,3−ジオールからなる群から選択される少なくとも1種である請求項1に記載のビニルエーテルの製造方法。
  3. 反応系内の、前記アルコールと生成する前記ビニルエーテルとの濃度の合計量が17重量%以上である請求項1又は2に記載のビニルエーテルの製造方法。
  4. 反応系内の、前記第3級アルコールと生成する前記ビニルエーテルとの濃度の合計量が25~90重量%である請求項1又は2に記載のビニルエーテルの製造方法。
  5. 前記環状尿素化合物として、前記式(3)において、R及びRが、独立に、アルキル基であり、R5、6、及びRが、独立に、水素又はアルキル基である環状尿素化合物を用いる請求項1~4のいずれか1項に記載のビニルエーテルの製造方法。
  6. 前記環状尿素化合物が1,3−ジメチル−2−イミダゾリジノンもしくは1,3−ジメチルテトラヒドロピリミジ−2−オンまたはこれらの混合物である請求項1~5のいずれか1項に記載の製造方法。
  7. 前記グライム系化合物として、前記式(4)において、R10及びR11が、独立に、メチル基またはエテニル基であり、lは2以上70以下の整数である化合物を用いる請求項1~6のいずれか1項に記載のビニルエーテルの製造方法。
  8. 前記グライム系化合物がジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ジエチレングリコール、トリエチレングリコール及びテトラエチレングリコールからなる群から選択される少なくとも1種である請求項1~7のいずれか1項に記載のビニルエーテルの製造方法。
  9. 前記塩基が水酸化カリウム、水酸化ナトリウム及びt−ブトキシカリウムからなる群から選択される少なくとも1種である請求項1~8のいずれか1項に記載のビニルエーテルの製造方法。
  10. 下記式(6):
    Figure JPOXMLDOC01-appb-I000006
    で示される1−メチルシクロヘキシルビニルエーテル。
PCT/JP2010/059488 2009-05-29 2010-05-28 ビニルエーテルの製造方法 WO2010137742A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/375,180 US9000228B2 (en) 2009-05-29 2010-05-28 Method for producing vinyl ether
EP10780693.7A EP2436665B1 (en) 2009-05-29 2010-05-28 Process for producing vinyl ether
JP2011516091A JP5734182B2 (ja) 2009-05-29 2010-05-28 ビニルエーテルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009129969 2009-05-29
JP2009-129969 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010137742A1 true WO2010137742A1 (ja) 2010-12-02

Family

ID=43222840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059488 WO2010137742A1 (ja) 2009-05-29 2010-05-28 ビニルエーテルの製造方法

Country Status (4)

Country Link
US (1) US9000228B2 (ja)
EP (1) EP2436665B1 (ja)
JP (1) JP5734182B2 (ja)
WO (1) WO2010137742A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136355A1 (ja) * 2010-04-28 2011-11-03 日本カーバイド工業株式会社 1,1-ビス[(エテニロキシ)メチル]シクロヘキサン及びその製造方法
WO2012147511A1 (ja) * 2011-04-28 2012-11-01 日本カーバイド工業株式会社 4,4-ビス[(エテニロキシ)メチル]シクロヘキセンおよびその製造方法
WO2015190376A1 (ja) * 2014-06-13 2015-12-17 丸善石油化学株式会社 新規なジビニルエーテル化合物およびその製造法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114736101B (zh) * 2022-04-19 2023-11-28 河北凯瑞化工有限公司 一种支化乙烯基醚的制备方法及应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB616197A (en) * 1946-08-29 1949-01-18 Distillers Co Yeast Ltd Manufacture of vinyl ethers
JPS4810013U (ja) * 1971-06-08 1973-02-03
JPH04198144A (ja) * 1990-11-29 1992-07-17 Denki Kagaku Kogyo Kk アルキルビニルエーテルの製造方法
JPH10182536A (ja) * 1996-12-20 1998-07-07 Maruzen Petrochem Co Ltd 高沸点ビニルエーテルの連続的製造方法
JPH10279513A (ja) * 1997-04-07 1998-10-20 Denki Kagaku Kogyo Kk 水素化ビスフェノールa−ジビニルエーテルおよびその製造方法
JP2003073321A (ja) 2001-08-30 2003-03-12 Daicel Chem Ind Ltd ビニルエーテル化合物の製造法
JP2003286216A (ja) * 2002-03-28 2003-10-10 Kansai Paint Co Ltd 水素化ビスフェノールa−4,4’−ジビニルエ−テル化合物、その製造法および該化合物を含有してなるフォトレジスト組成物
JP2003530375A (ja) 2000-04-06 2003-10-14 ビーエーエスエフ アクチェンゲゼルシャフト アルケニルエーテルを製造する方法
JP2005187703A (ja) * 2003-12-26 2005-07-14 Maruzen Petrochem Co Ltd シクロアルキルビニルエーテル−無水マレイン酸共重合体、該共重合体を含む硬化剤及び硬化性樹脂組成物
JP2008137974A (ja) * 2006-12-05 2008-06-19 Nippon Carbide Ind Co Inc 1−インダニルビニルエーテル

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB838020A (en) 1955-10-05 1960-06-22 Rohm & Haas Preparation of vinyl ethers
JPS60112495A (ja) 1983-11-25 1985-06-18 Fuji Photo Film Co Ltd 電子写真平版印刷版用版面洗浄剤
JP5345357B2 (ja) * 2008-08-29 2013-11-20 日本カーバイド工業株式会社 1,3−アダマンタンジメタノールモノビニルエーテル及び1,3−アダマンタンジメタノールジビニルエーテル並びにその製法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB616197A (en) * 1946-08-29 1949-01-18 Distillers Co Yeast Ltd Manufacture of vinyl ethers
JPS4810013U (ja) * 1971-06-08 1973-02-03
JPH04198144A (ja) * 1990-11-29 1992-07-17 Denki Kagaku Kogyo Kk アルキルビニルエーテルの製造方法
JPH10182536A (ja) * 1996-12-20 1998-07-07 Maruzen Petrochem Co Ltd 高沸点ビニルエーテルの連続的製造方法
JPH10279513A (ja) * 1997-04-07 1998-10-20 Denki Kagaku Kogyo Kk 水素化ビスフェノールa−ジビニルエーテルおよびその製造方法
JP2003530375A (ja) 2000-04-06 2003-10-14 ビーエーエスエフ アクチェンゲゼルシャフト アルケニルエーテルを製造する方法
JP2003073321A (ja) 2001-08-30 2003-03-12 Daicel Chem Ind Ltd ビニルエーテル化合物の製造法
JP2003286216A (ja) * 2002-03-28 2003-10-10 Kansai Paint Co Ltd 水素化ビスフェノールa−4,4’−ジビニルエ−テル化合物、その製造法および該化合物を含有してなるフォトレジスト組成物
JP2005187703A (ja) * 2003-12-26 2005-07-14 Maruzen Petrochem Co Ltd シクロアルキルビニルエーテル−無水マレイン酸共重合体、該共重合体を含む硬化剤及び硬化性樹脂組成物
JP2008137974A (ja) * 2006-12-05 2008-06-19 Nippon Carbide Ind Co Inc 1−インダニルビニルエーテル

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Journal of Polymer Science", vol. 11, 1973, pages: 1043 - 1051
IND. ENG. CHEM. PROD. RES. DEV., vol. 2, no. 4, 1963, pages 293 - 296
J. ORG. CHEM., vol. 24, 1959, pages 1752 - 1755
J. ORG. CHEM., vol. 68, 2003, pages 5225 - 5227
RUSSIAN JOURNAL OF ORGANIC CHEMISTRY, vol. 41, no. 5, 2005, pages 656 - 660
See also references of EP2436665A4 *
Z. CHEM., vol. 26, no. 2, 1986, pages 41 - 49

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136355A1 (ja) * 2010-04-28 2011-11-03 日本カーバイド工業株式会社 1,1-ビス[(エテニロキシ)メチル]シクロヘキサン及びその製造方法
US9096506B2 (en) 2010-04-28 2015-08-04 Nippon Carbide Industries Co., Inc. 1,1-BIS[(ethenyloxy)methyl]cyclohexane and method of production of same
WO2012147511A1 (ja) * 2011-04-28 2012-11-01 日本カーバイド工業株式会社 4,4-ビス[(エテニロキシ)メチル]シクロヘキセンおよびその製造方法
US9156762B2 (en) 2011-04-28 2015-10-13 Nippon Carbide Industries Co., Inc. 4,4-bis[(ethenyloxy)methyl]cyclohexene and method for producing same
JP5893008B2 (ja) * 2011-04-28 2016-03-23 日本カーバイド工業株式会社 4,4−ビス[(エテニロキシ)メチル]シクロヘキセンおよびその製造方法
WO2015190376A1 (ja) * 2014-06-13 2015-12-17 丸善石油化学株式会社 新規なジビニルエーテル化合物およびその製造法

Also Published As

Publication number Publication date
US20120083628A1 (en) 2012-04-05
EP2436665A4 (en) 2012-10-24
JP5734182B2 (ja) 2015-06-17
EP2436665A1 (en) 2012-04-04
US9000228B2 (en) 2015-04-07
EP2436665B1 (en) 2015-07-08
JPWO2010137742A1 (ja) 2012-11-15

Similar Documents

Publication Publication Date Title
JP4934940B2 (ja) 含フッ素エステル化合物の製造方法
JP5734182B2 (ja) ビニルエーテルの製造方法
US10106477B2 (en) Process for preparing 1,4-bis(ethoxymethyl)cyclohexane
CN107108445B (zh) 用于生产加香成分的中间体化合物
JP2010053087A (ja) 1,3−アダマンタンジメタノールモノビニルエーテル及び1,3−アダマンタンジメタノールジビニルエーテル並びにその製法
EP1270563B1 (en) Fluorinated oxetane derivatives and production process thereof
US7994371B2 (en) Process for making chlorotrifluoroethylene from 1,1,2-trichlorotrifluoroethane
EP2626342B1 (en) Novel vinyl-ether compound and manufacturing method therefor
EP2522648B1 (en) Process for producing difluorocyclopropane compound
JP3887373B2 (ja) アリルエーテル化合物
EP2109597A1 (en) Process for preparing dienones
US20030045733A1 (en) Process for preparing 3-fluoroalkoxymethyl-3-alkyloxetanes
KR20000068405A (ko) 알킨 디올, 또는 알킨 디올과 알킨 모노올의 혼합물의 제조방법
JP2007056024A (ja) ノルボルネン誘導体の製造方法
JP6014486B2 (ja) ビス(アセチルアセトナト)オキソバナジウム(iv)を用いたファルネサールの製造方法
EP2703379B1 (en) 4,4-bis[(ethenyloxy)methyl]cyclohexene and method for producing same
JP7279702B2 (ja) 芳香族ヒドロキシ化合物の製造方法
CN113527079A (zh) 制备2-异丙烯基-5-甲基-4-己烯酸及衍生醇及其羧酸酯的方法
JP5498753B2 (ja) 脂環構造と芳香環構造とを併せもつビニルエーテル
JP5157839B2 (ja) 新規ナフトール化合物とその製造方法
JP2006028116A (ja) オキセタンエーテル化合物の製造方法
JPH1053540A (ja) 蒸留塔式製造方法
JP2000281669A (ja) α−ヒドロキシアルキル−γ−ブチロラクトン類の製造方法
JP2005187423A (ja) 含フッ素アルコールの製造方法
WO2004080987A1 (ja) ポリアルキルエーテル類を用いるオキセタン化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011516091

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13375180

Country of ref document: US

Ref document number: 2010780693

Country of ref document: EP