WO2010137197A1 - シフトレジスタ - Google Patents

シフトレジスタ Download PDF

Info

Publication number
WO2010137197A1
WO2010137197A1 PCT/JP2009/071617 JP2009071617W WO2010137197A1 WO 2010137197 A1 WO2010137197 A1 WO 2010137197A1 JP 2009071617 W JP2009071617 W JP 2009071617W WO 2010137197 A1 WO2010137197 A1 WO 2010137197A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
clock
shift register
output
gate
Prior art date
Application number
PCT/JP2009/071617
Other languages
English (en)
French (fr)
Inventor
哲郎 菊池
信也 田中
周郎 山崎
純也 嶋田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN200980159346.3A priority Critical patent/CN102428521B/zh
Priority to US13/264,828 priority patent/US8559588B2/en
Publication of WO2010137197A1 publication Critical patent/WO2010137197A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present invention relates to a shift register, and more particularly to a shift register suitably used for a display device drive circuit and the like.
  • the active matrix display device displays an image by selecting pixel circuits arranged in a two-dimensional manner in units of rows and writing a voltage corresponding to display data into the selected pixel circuits.
  • a shift register that sequentially shifts output signals based on clock signals is used as a scanning signal line driving circuit.
  • a similar shift register is provided in the data signal line driving circuit.
  • the scanning signal line driving circuit may be formed integrally with the pixel circuit by using a manufacturing process for forming a TFT (Thin Film Transistor) in the pixel circuit.
  • a TFT Thin Film Transistor
  • the shift register functioning as a scanning signal line driver circuit is formed using a transistor having the same conductivity type as the TFT (specifically, an N-channel transistor).
  • a bootstrap circuit shown in FIG. 18 is used to output a clock signal at the same voltage level.
  • the potential of the node N9 also changes to a high level via the diode-connected transistor 92, so that the transistor 91 is turned on.
  • the transistor 92 is turned off and the node N9 is in a floating state, but the transistor 91 is kept on.
  • shift registers including a bootstrap circuit are described in Patent Documents 1 to 3, for example.
  • the conventional shift register has a problem that the output signal becomes dull because the gate potential of the output transistor fluctuates due to the leakage current.
  • a transistor 94 is provided between the node N9 and the ground in order to change the potential of the node N9 to a low level after outputting the clock signal CK (see FIG. 19). While the potential of the node N9 is equal to or higher than Vck, the transistor 94 is controlled to be turned off using the control signal CTRL.
  • some amorphous silicon TFT liquid crystal panels require higher scanning signal line high-level potential than general TN (Twisted Nematic) mode liquid crystal panels.
  • TN Transmission Nematic
  • the scanning signal line driver circuit is integrally formed in such a liquid crystal panel, a voltage exceeding 40 V may be applied between the drain and source of the transistor in the shift register.
  • the output signal is likely to become dull. Further, the dullness of the output signal is likely to occur even at high temperatures.
  • the output signal of the shift register is dull, a display device including the shift register is likely to malfunction.
  • an object of the present invention is to provide a shift register that prevents the output signal from becoming dull.
  • a first aspect of the present invention is a shift register configured by connecting unit circuits in multiple stages,
  • the unit circuit is An output transistor that is provided between the clock terminal and the output terminal and switches whether to pass the clock signal according to the gate potential;
  • One or more control transistors connected to a gate of the output transistor, and
  • the gate potential of the output transistor is configured to be higher than the high level potential of the clock signal in a clock passing period in which the output signal is on and the clock signal is at a high level.
  • the control transistor includes a transistor having a channel length longer than that of the output transistor.
  • the control transistor includes a transistor in which a low-level potential is applied to the gate during the clock passage period to be turned off, and a low-level potential is applied to the other conduction terminal. It is characterized by being longer than the channel length of the output transistor.
  • the control transistor includes a transistor in which a low level potential is applied to the gate during the clock passage period and is turned off, and the low level potential is fixedly applied to the other conduction terminal.
  • the length is longer than the channel length of the output transistor.
  • the control transistor includes a transistor in which a low level potential is applied to the gate during the clock passing period and the transistor is turned off, and a signal that is set to a low level during the clock passing period is applied to the other conduction terminal.
  • the channel length of the output transistor is longer than the channel length of the output transistor.
  • the control transistor includes a plurality of transistors in which a low level potential is applied to the gate during the clock passage period to be turned off and a low level potential is applied to the other conduction terminal.
  • the length is longer than the channel length of the output transistor.
  • the control transistor includes a transistor having a channel length longer than the output transistor by 0.5 ⁇ m or more.
  • the gate of the output transistor is capacitively coupled to a conduction terminal on the output terminal side of the output transistor.
  • An eighth aspect of the present invention includes a plurality of pixel circuits arranged in a two-dimensional manner, And a driving circuit including a shift register according to any one of the first to seventh aspects.
  • the leakage current flowing through the control transistor during the clock passing period is reduced, and the gate potential of the output transistor is reduced. Variations can be suppressed. Thereby, blunting of the output signal can be prevented.
  • the gate of the output transistor is connected to the transistor in which the low level potential is applied to the gate during the clock passing period and is turned off, and the other conduction terminal is applied with the low level potential.
  • the leakage current flowing through the transistor is reduced during the clock passage period, and the fluctuation of the gate potential of the output transistor is suppressed, thereby preventing the output signal from becoming dull. Can do.
  • a transistor in which a low level potential is applied to the gate of an output transistor during a clock passing period and the gate is turned off and the low level potential is fixedly applied to the other conduction terminal. Is connected, the channel length of the transistor is increased to reduce the leakage current flowing through the transistor during the clock passage period, and the fluctuation of the gate potential of the output transistor is suppressed, and the output signal becomes dull. Can be prevented.
  • a low level potential is applied to the gate of the output transistor during the clock passing period and the gate is turned off, and a signal that is low during the clock passing period is applied to the other conduction terminal.
  • the channel length of the transistor is increased, thereby reducing the leakage current flowing through the transistor during the clock passage period, suppressing the fluctuation of the gate potential of the output transistor, and Dullness can be prevented.
  • a plurality of transistors having a low level potential applied to the gate of the output transistor are applied to the gate of the output transistor during the clock passing period and the low level potential is applied to the other conduction terminal.
  • the leakage current flowing through the plurality of transistors is reduced during the clock passing period, and the fluctuation of the gate potential of the output transistor is suppressed, so that the output signal Can be effectively prevented.
  • the channel length of the control transistor connected to the gate of the output transistor is 0.5 ⁇ m or more longer than the channel length of the output transistor. Even when manufacturing variations of a certain degree occur, it is possible to suppress the fluctuation of the gate potential of the output transistor and prevent the output signal from becoming dull.
  • the gate potential of the output transistor is higher than the high level potential of the clock signal during the clock passage period by capacitively coupling the gate of the output transistor to the conduction terminal on the output terminal side.
  • the circuit can be easily configured.
  • the malfunction of the display device can be prevented by using the drive circuit including the shift register that prevents the output signal from becoming dull.
  • FIG. 2 is a circuit diagram of a unit circuit included in the shift register shown in FIG. 1.
  • 2 is a timing chart of the shift register shown in FIG.
  • It is a block diagram which shows the structure of the liquid crystal display device containing the shift register shown in FIG. It is a figure which shows the relationship between the channel length of a transistor, and leakage current.
  • FIG. 7 is a circuit diagram of a unit circuit included in the shift register shown in FIG. 6. 7 is a timing chart of the shift register shown in FIG. 6.
  • FIG. 10 is a circuit diagram of a unit circuit included in the shift register shown in FIG. 9. 10 is a timing chart of the shift register shown in FIG. 9. It is a block diagram which shows the structure of the shift register which concerns on the 4th Embodiment of this invention.
  • FIG. 13 is a circuit diagram of a unit circuit included in the shift register shown in FIG. 12. 13 is a timing chart of the shift register shown in FIG. It is a block diagram which shows the structure of the shift register which concerns on the 5th Embodiment of this invention.
  • FIG. 16 is a circuit diagram of a unit circuit included in the shift register shown in FIG. 15.
  • FIG. 16 is a timing chart of the shift register shown in FIG. It is a circuit diagram of a bootstrap circuit. It is a figure which shows the reason for which the output signal of a bootstrap circuit becomes blunt. It is a figure which shows a mode that the output signal of a bootstrap circuit blunts.
  • n and m are integers of 2 or more, i is an integer of 1 to n, and j is an integer of 1 to m.
  • FIG. 1 is a block diagram showing a configuration of a shift register according to the first embodiment of the present invention.
  • the shift register 1 shown in FIG. 1 is configured by connecting n unit circuits 10 in multiple stages.
  • the unit circuit 10 has input terminals INa and INb, a clock terminal CK, a power supply terminal VSS, and an output terminal OUT.
  • the shift register 1 is supplied with a start pulse SP, an end pulse EP, two-phase clock signals CK1 and CK2, and a low level potential VSS from the outside.
  • the start pulse SP is given to the input terminal INa of the unit circuit 10 at the first stage.
  • the end pulse EP is supplied to the input terminal INb of the nth unit circuit 10.
  • the clock signal CK1 is supplied to the clock terminal CK of the odd-numbered unit circuit 10.
  • the clock signal CK2 is given to the clock terminal CK of the even-numbered unit circuit 10.
  • the low level potential VSS is given to the power supply terminal VSS of all the unit circuits 10.
  • the output signal OUT of the unit circuit 10 is output to the outside as output signals SROUT1 to SROUTn, and is given to the input terminal INa of the subsequent unit circuit 10 and the input terminal INb of the previous unit circuit 10.
  • FIG. 2 is a circuit diagram of the unit circuit 10 included in the shift register 1.
  • the circuit configuration of the unit circuit 10 is the same as the circuit described in Patent Document 1.
  • the unit circuit 10 is different from the circuit described in Patent Document 1 in that the size of the transistor has the characteristics described later.
  • the unit circuit 10 includes N-channel type transistors 11 to 15 and a capacitor 16.
  • the drain of the transistor 11 is connected to the clock terminal CK, and the source is connected to the output terminal OUT.
  • the drain and gate of the transistor 12 are connected to the input terminal INa, and the source is connected to the gate of the transistor 11.
  • a capacitor 16 is provided between the gate and source of the transistor 11.
  • the drain of the transistor 13 is connected to the output terminal OUT, and the drain of the transistor 14 is connected to the gate of the transistor 11.
  • the gates of the transistors 13 and 14 are connected to the input terminal INb, and the sources are connected to the power supply terminal VSS.
  • the drain of the transistor 15 is connected to the gate of the transistor 11, the gate is connected to the clock terminal CK, and the source is connected to the output terminal OUT.
  • the transistor 11 is provided between the clock terminal and the output terminal, and functions as an output transistor for switching whether or not to pass the clock signal according to the gate potential.
  • the gate of the transistor 11 is capacitively coupled to a conduction terminal (source) on the output terminal OUT side of the transistor 11. Therefore, as described later, in a period in which the transistor 11 is on and the clock signal CK is at a high level (hereinafter referred to as a clock passing period), the gate potential of the transistor 11 is higher than the high level potential of the clock signal CK. Become.
  • the node to which the gate of the transistor 11 is connected is referred to as N1.
  • FIG. 3 is a timing chart of the shift register 1.
  • FIG. 3 shows changes in the input / output signals of the odd-numbered unit circuit 10 and the potential of the node N1.
  • the odd-numbered unit circuit 10 is supplied with the clock signal CK1 from the clock terminal CK.
  • the clock signal CK1 is a clock signal whose length of the high-level period is slightly shorter than 1 ⁇ 2 cycle.
  • the clock signal CK2 is a signal obtained by delaying the clock signal CK1 by 1 ⁇ 2 period.
  • the start pulse SP (not shown) becomes high level for the same length of time as the high level period of the clock signal CK1 before the start of the shift operation.
  • the end pulse EP (not shown) becomes a high level for the same length of time as the high level period of the clock signal CK1 after the end of the shift operation.
  • the potential of the node N1 also changes to high level via the diode-connected transistor 12, and the transistor 11 Turns on.
  • the transistor 12 is turned off and the node N1 is in a floating state, but the transistor 11 is kept on.
  • the transistors 13 and 14 are turned on. While the transistor 13 is on, a low level potential is applied to the output terminal OUT. Further, when the transistor 14 is turned on, the potential of the node N1 is changed to a low level, and the transistor 11 is turned off.
  • the transistor 15 is turned on when the clock signal CK is at a high level. For this reason, whenever the clock signal CK becomes high level while the output signal OUT is low level, the potential of the output terminal OUT (low level potential) is applied to the node N1. As described above, the transistor 15 has a function of preventing a change in the potential of the node N1.
  • the shift register 1 is used, for example, for a drive circuit of a display device.
  • FIG. 4 is a block diagram illustrating a configuration of a liquid crystal display device including the shift register 1.
  • a liquid crystal display device 100 illustrated in FIG. 4 includes a pixel array 101, a display control circuit 102, a scanning signal line driving circuit 103, and a data signal line driving circuit 104.
  • the shift register 1 is used as the scanning signal line driving circuit 103.
  • the pixel array 101 shown in FIG. 4 includes n scanning signal lines G1 to Gn, m data signal lines S1 to Sm, and (m ⁇ n) pixel circuits Pij.
  • the scanning signal lines G1 to Gn are arranged in parallel to each other, and the data signal lines S1 to Sm are arranged in parallel to each other so as to be orthogonal to the scanning signal lines G1 to Gn.
  • a pixel circuit Pij is disposed near the intersection of the scanning signal line Gi and the data signal line Sj. In this way, the (m ⁇ n) pixel circuits Pij are two-dimensionally arranged in m rows in the row direction and n in the column direction.
  • the scanning signal line Gi is connected in common to the pixel circuit Pij arranged in the i-th row, and the data signal line Sj is connected in common to the pixel circuit Pij arranged in the j-th column.
  • Control signals such as a horizontal synchronization signal HSYNC and a vertical synchronization signal VSYNC and display data DT are supplied from the outside of the liquid crystal display device 100. Based on these signals, the display control circuit 102 outputs clock signals CK1 and CK2 and a start pulse SP to the scanning signal line driving circuit 103, and controls the control signal SC and display data DT to the data signal line driving circuit 104. Is output.
  • the scanning signal line driving circuit 103 is composed of an n-stage shift register 1.
  • the shift register 1 controls the output signals SROUT1 to SROUTn to a high level (indicating a selected state) one by one based on the clock signals CK1 and CK2.
  • Output signals SROUT1 to SROUTn are applied to scanning signal lines G1 to Gn, respectively.
  • the scanning signal lines G1 to Gn are sequentially selected one by one, and the pixel circuits Pij for one row are collectively selected.
  • the data signal line driving circuit 104 applies a voltage corresponding to the display data DT to the data signal lines S1 to Sm based on the control signal SC and the display data DT. As a result, a voltage corresponding to the display data DT is written into the selected pixel circuit Pij for one row. In this way, the liquid crystal display device 100 displays an image.
  • transistors 12, 14, and 15 are connected to the node N ⁇ b> 1 in the unit circuit 10.
  • the transistors 12 and 14 are turned off when a low-level potential is applied to the gate during the clock passing period.
  • an input signal INa that is at a low level during the clock passage period is applied to the drain of the transistor 12, and a low-level potential is fixedly applied to the source of the transistor 14.
  • the channel length (drain-source gap length) of the transistors 12 and 14 is set to the channel of the transistor 11 in order to prevent the potential fluctuation (potential drop) of the node N 1 due to the leakage current during the clock passing period. Make it longer than the length.
  • the channel lengths of the transistors 12 and 14 are increased by a factor of 1.5 while keeping the sizes of the transistors 11, 13, and 15 unchanged, and the channel widths of the transistors 12 and 14 are increased by a factor of 1.5 according to this. .
  • the channel width W and the channel length L of the transistors 12 and 14 are as follows.
  • an on-current Ion flowing through a transistor is given by the following equation (1).
  • is the mobility
  • W is the channel width of the transistor
  • L is the channel length of the transistor
  • Cgi is the capacitance per unit area of the gate insulating film
  • Vg is the gate voltage of the transistor
  • Vth is the transistor It is a threshold voltage.
  • Ion 1/2 ⁇ ⁇ ⁇ (W / L) ⁇ Cgi ⁇ (Vg ⁇ Vth) 2 (1)
  • the on-current Ion is proportional to (W / L). Therefore, when the channel length L of the transistor is increased, if the channel width W is increased at the same rate, the same amount of on-current can be supplied as before the channel length is increased, and the same on characteristics can be realized.
  • FIG. 5 is a diagram showing the relationship between the channel length of the transistor and the leakage current.
  • the leakage current decreases. For example, when the channel length is increased from 4 ⁇ m to 6 ⁇ m, the leakage current is reduced to about 1/5.
  • the leakage current is significantly reduced from 1 / k times. For this reason, when the channel length L of the transistor is increased as described above, if the channel width W is increased at the same rate, the leakage current is reduced more than before the channel length is increased.
  • the shift register 1 In the shift register 1 according to the present embodiment, of the transistors 12, 14, and 15 whose one conduction terminal is connected to the gate of the transistor 11 (output transistor), a low level potential is applied to the gate during the clock passing period and the shift register 1 is turned off.
  • the channel length of the transistors 12 and 14 in which the low-level potential is applied to the other conduction terminal is longer than the channel length of the transistor 11. For this reason, compared with the conventional shift register, the leakage current flowing through the transistors 12 and 14 is reduced in the clock passing period, the fluctuation of the potential of the node N1 (the gate potential of the output transistor) is suppressed, and the output signal OUT Dullness can be reduced. Therefore, the shift register 1 according to the present embodiment can prevent the output signal OUT from becoming dull. In addition, by using the shift register 1 that prevents the output signal from becoming dull as a scanning signal line driver circuit of the display device, the scanning signal line can be driven correctly and malfunction of the display device can be prevented.
  • a potential difference (2 ⁇ Vck) is not applied between the drains and sources of the transistors 11, 13, and 15. For this reason, the leakage current flowing through the transistors 11, 13, and 15 is smaller than the leakage current flowing through the transistors 12 and 14.
  • Increasing the channel length of the transistors 11, 13, and 15 does not contribute to prevention of the dullness of the output signal OUT, but increases the circuit amount. Therefore, it is preferable to use the values obtained by the conventional design method for the channel lengths of the transistors 11, 13, and 15.
  • the channel length of the transistors 12 and 14 when the channel length of the transistors 12 and 14 is increased, it is necessary to increase the channel length to some extent in consideration of manufacturing variations. For example, assuming that the manufacturing variation of about ⁇ 0.2 ⁇ m at maximum occurs in the channel length of the transistor, in the worst case, the channel length of the transistors 12 and 14 becomes 0.2 ⁇ m shorter than the design value, and the transistor 11 The channel length is 0.2 ⁇ m longer than the design value. Therefore, when the above manufacturing variation occurs, the channel lengths of the transistors 12 and 14 are set longer than the channel length of the transistor 11 by 0.5 ⁇ m or more. Thereby, even when a manufacturing variation of about ⁇ 0.2 ⁇ m occurs in the channel length of the transistor, it is possible to suppress the fluctuation of the gate potential of the transistor 11 and to prevent the output signal from becoming dull.
  • FIG. 6 is a block diagram showing the configuration of the shift register according to the second embodiment of the present invention.
  • the shift register 2 shown in FIG. 6 is configured by connecting n unit circuits 20 in multiple stages.
  • the unit circuit 20 has input terminals INa and INb, clock terminals CK and CKB, a power supply terminal VSS, a clear terminal CLR, and an output terminal OUT.
  • the shift register 2 is supplied with a start pulse SP, an end pulse EP, two-phase clock signals CK1 and CK2, a clear pulse CP, and a low level potential VSS from the outside.
  • the start pulse SP is given to the input terminal INa of the unit circuit 20 at the first stage.
  • the end pulse EP is given to the input terminal INb of the nth unit circuit 20.
  • the clock signal CK1 is supplied to the clock terminal CK of the odd-numbered unit circuit 20 and the clock terminal CKB of the even-numbered unit circuit 20.
  • the clock signal CK2 is supplied to the clock terminal CK of the even-numbered unit circuit 20 and the clock terminal CKB of the odd-numbered unit circuit 20.
  • the clear pulse CP is applied to the clear terminal CLR of all the unit circuits 20.
  • the low level potential VSS is applied to the power supply terminal VSS of all the unit circuits 20.
  • the output signal OUT of the unit circuit 20 is output to the outside as output signals SROUT1 to SROUTn, and is applied to the input terminal INa of the subsequent unit circuit 20 and the input terminal INb of the previous unit circuit 20.
  • FIG. 7 is a circuit diagram of the unit circuit 20 included in the shift register 2. As shown in FIG. 7, the unit circuit 20 includes N-channel transistors 11 to 15, 21, 22 and a capacitor 16. The unit circuit 20 is obtained by adding transistors 21 and 22 to the unit circuit 10 according to the first embodiment. Among the constituent elements of the unit circuit 20, the same constituent elements as those of the unit circuit 10 are denoted by the same reference numerals and description thereof is omitted.
  • the drain of the transistor 21 is connected to the output terminal OUT, the gate is connected to the clock terminal CKB, and the source is connected to the power supply terminal VSS.
  • the drain of the transistor 22 is connected to the gate of the transistor 11, the gate is connected to the clear terminal CLR, and the source is connected to the power supply terminal VSS.
  • N2 the node to which the gate of the transistor 11 is connected.
  • FIG. 8 is a timing chart of the shift register 2.
  • the timing chart shown in FIG. 8 is the same as the timing chart shown in FIG. FIG. 8 shows changes in the input / output signals of the odd-numbered unit circuits 20 and the potential of the node N2.
  • the odd-numbered unit circuit 20 is supplied with the clock signal CK1 from the clock terminal CK and the clock signal CK2 from the clock terminal CKB.
  • the clear pulse CP (not shown) becomes a high level for a predetermined time before the start of the shift operation.
  • the transistor 21 is turned on when the clock signal CKB (clock signal CK2) is at a high level. Therefore, a low level potential is applied to the output terminal OUT every time the clock signal CKB becomes high level. Thus, the transistor 21 has a function of repeatedly setting the output signal OUT to the low level and stabilizing the output signal OUT.
  • the transistor 22 is turned on when the clear signal CLR (clear pulse CP) is at a high level. At this time, a low level potential is applied to the node N2. As described above, the transistor 22 has a function of initializing the potential of the node N2 to a low level.
  • the shift register 2 is used in the same form as the shift register 1 according to the first embodiment.
  • transistors 12, 14, 15, and 22 are connected to the node N2 in the unit circuit 20.
  • the transistors 12, 14, and 22 are turned off when a low-level potential is applied to the gate during the clock passing period.
  • an input signal INa that is at a low level during the clock passage period is applied to the drain of the transistor 12, and a low level potential is fixedly applied to the sources of the transistors 14 and 22.
  • the unit circuit 20 it is possible to prevent the output signal OUT from becoming dull by making the channel lengths of the transistors 12, 14, and 22 longer than the channel length of the transistor 11.
  • FIG. 9 is a block diagram showing a configuration of a shift register according to the third embodiment of the present invention.
  • the shift register 3 shown in FIG. 9 is configured by connecting n unit circuits 30 in multiple stages.
  • the unit circuit 30 has input terminals INa and INb, clock terminals CK and CKB, a power supply terminal VSS, a clear terminal CLR, and an output terminal OUT.
  • the connection form of the signal lines between the unit circuits 30 in the shift register 3 is the same as in the second embodiment.
  • FIG. 10 is a circuit diagram of the unit circuit 30 included in the shift register 3.
  • the unit circuit 30 includes N-channel type transistors 11 to 14, 21, 22, 31 to 34, and a capacitor 16.
  • the unit circuit 30 is obtained by deleting the transistor 15 from the unit circuit 20 according to the second embodiment and adding transistors 31 to 34.
  • the same constituent elements as those of the unit circuits 10 and 20 are denoted by the same reference numerals and description thereof is omitted.
  • the drain of the transistor 31 is connected to the gate of the transistor 21, and the source is connected to the power supply terminal VSS.
  • the gate of the transistor 31 is connected to the source of the transistor 32 and the drains of the transistors 33 and 34.
  • the drain and gate of the transistor 32 are connected to the clock terminal CKB.
  • the gate of the transistor 33 is connected to the gate of the transistor 11, and the source is connected to the power supply terminal VSS.
  • the gate of the transistor 34 is connected to the clock terminal CK, and the source is connected to the power supply terminal VSS.
  • N3 the node to which the gate of the transistor 11 is connected
  • N31 the node to which the gate of the transistor 31 is connected
  • FIG. 11 is a timing chart of the shift register 3.
  • the timing chart shown in FIG. 11 is the same as the timing chart shown in FIG. FIG. 11 shows changes in the input / output signals of the odd-numbered unit circuit 30 and the potentials of the nodes N3 and N31.
  • the transistor 32 is turned on when the clock signal CKB (clock signal CK2) is at a high level. At this time, the high level potential of the clock signal CKB is applied to the node N31.
  • the transistor 33 is turned on when the potential of the node N3 is Vck or higher. At this time, a low level potential is applied to the node N31.
  • the transistor 34 is turned on when the clock signal CK (clock signal CK1) is at a high level. At this time, a low level potential is applied to the node N31.
  • the potential of the node N31 becomes high level when the clock signal CK is low level, the clock signal CKB is high level, and the potential of the node N3 is low level, otherwise it becomes low level.
  • the transistor 31 is turned on when the potential of the node N31 is high. At this time, a low level potential is applied to the node N3.
  • the transistors 31 to 34 have a function of maintaining the low level potential applied to the potential of the node N3.
  • the shift register 3 is used in the same form as the shift register 1 according to the first embodiment.
  • transistors 12, 14, 22, 31, and 33 are connected to the node N3 in the unit circuit 30.
  • the transistors 12, 14, 22, and 31 are turned off when a low level potential is applied to the gate during the clock passing period.
  • an input signal INa that is at a low level during a clock passing period is applied to the drain of the transistor 12, and a low level potential is fixedly applied to the sources of the transistors 14, 22, and 31.
  • the output signal OUT can be prevented from becoming dull by making the channel length of the transistors 12, 14, 22, and 31 longer than the channel length of the transistor 11.
  • FIG. 12 is a block diagram showing a configuration of a shift register according to the fourth embodiment of the present invention.
  • the shift register 4 shown in FIG. 12 is configured by connecting n unit circuits 40 in multiple stages.
  • the unit circuit 40 has an input terminal IN, clock terminals CKa and CKb, power supply terminals VDD and VSS, and an output terminal OUT.
  • the n unit circuits 40 include a first group including a first stage, a fourth stage, a seventh stage, etc., a second group including a second stage, a fifth stage, an eighth stage, and the like, a third stage, It is divided into a third group including the sixth and ninth stages.
  • the start register SP, the three-phase clock signals CK1 to CK3, the high level potential VDD, and the low level potential VSS are supplied to the shift register 4 from the outside.
  • the start pulse SP is given to the input terminal IN of the unit circuit 40 at the first stage.
  • the clock signal CK1 is supplied to the clock terminal CKa of the unit circuit 40 in the first group and the clock terminal CKb of the unit circuit 40 in the second group.
  • the clock signal CK2 is supplied to the clock terminal CKa of the unit circuit 40 in the second group and the clock terminal CKb of the unit circuit 40 in the third group.
  • the clock signal CK3 is supplied to the clock terminal CKa of the unit circuit 40 in the third group and the clock terminal CKb of the unit circuit 40 in the first group.
  • the high level potential VDD is applied to the power supply terminals VDD of all the unit circuits 40.
  • the low level potential VSS is supplied to the power supply terminal VSS of all the unit circuits 40.
  • the output signal OUT of the unit circuit 40 is output to the outside as output signals SROUT1 to SROUTn, and is given to the input terminal IN of the subsequent unit circuit 40.
  • FIG. 13 is a circuit diagram of the unit circuit 40 included in the shift register 4.
  • the circuit configuration of the unit circuit 40 is the same as the circuit described in Patent Document 2. However, in FIG. 13, capacitors that are not explicitly described in Patent Document 2 are explicitly described.
  • the unit circuit 40 is different from the circuit described in Patent Document 2 in that the transistor size has the same characteristics as the first embodiment.
  • the unit circuit 40 includes N-channel type transistors 41 to 46 and a capacitor 47.
  • the drain of the transistor 41 is connected to the clock terminal CKa, and the source is connected to the output terminal OUT.
  • the drain of the transistor 42 is connected to the power supply terminal VDD, the gate is connected to the input terminal IN, and the source is connected to the gate of the transistor 41.
  • a capacitor 47 is provided between the gate and source of the transistor 41.
  • the drain of the transistor 43 is connected to the output terminal OUT, and the drain of the transistor 44 is connected to the gate of the transistor 41.
  • the gates of the transistors 43 and 44 are connected to each other, and the source is connected to the power supply terminal VSS.
  • the drain of the transistor 45 is connected to the power supply terminal VDD, the gate is connected to the clock terminal CKb, and the gate is connected to the gates of the transistors 43 and 44.
  • the drain of the transistor 46 is connected to the gates of the transistors 43 and 44, the gate is connected to the input terminal IN, and the source is connected to the power supply terminal VSS.
  • the transistor 41 is provided between the clock terminal and the output terminal, and functions as an output transistor that switches whether the clock signal is allowed to pass according to the gate potential.
  • the gate of the transistor 41 is capacitively coupled to a conduction terminal (source) on the output terminal OUT side of the transistor 41. Therefore, the gate potential of the transistor 41 is higher than the high level potential of the clock signal CKa in the clock passing period in which the transistor 41 is on and the clock signal CKa is at a high level.
  • the node to which the gate of the transistor 41 is connected is referred to as N4, and the node to which the gates of the transistors 43 and 44 are connected is referred to as N41.
  • FIG. 14 is a timing chart of the shift register 4.
  • FIG. 14 shows changes in the input / output signals of the unit circuits 40 in the first group and the potentials of the nodes N4 and N41.
  • the unit circuit 40 in the first group is supplied with the clock signal CK1 from the clock terminal CKa and the clock signal CK3 from the clock terminal CKb.
  • the clock signal CK1 is a clock signal in which the length of the high level period is approximately 1 ⁇ 2 cycle.
  • the clock signal CK2 is a signal obtained by delaying the clock signal CK1 by 1/3 period.
  • the clock signal CK3 is a signal obtained by delaying the clock signal CK1 by 2/3 period.
  • the transistor 45 is turned on.
  • the potential of the node N41 is at a high level. Therefore, the transistors 43 and 44 are turned on. While the transistor 43 is on, a low level potential is applied to the output terminal OUT. Further, when the transistor 44 is turned on, the potential of the node N4 is changed to a low level, and the transistor 41 is turned off. Until the input signal IN next becomes a high level, the transistor 41 remains off and the output signal OUT maintains a low level.
  • the shift register 4 is used in the same form as the shift register 1 according to the first embodiment.
  • transistors 42 and 44 are connected to the node N4 in the unit circuit 40. Among these, the transistor 44 is turned off when a low-level potential is applied to the gate during the clock passage period. A low level potential is fixedly applied to the source of the transistor 44. In the unit circuit 40, by making the channel length of the transistor 44 longer than the channel length of the transistor 41, the output signal OUT can be prevented from being dull.
  • FIG. 15 is a block diagram showing a configuration of a shift register according to the fifth embodiment of the present invention.
  • the shift register 5 shown in FIG. 15 is configured by connecting n unit circuits 50 in multiple stages.
  • the unit circuit 50 has input terminals INa and INb, a clock terminal CK, a power supply terminal VSS, and an output terminal OUT.
  • the n unit circuits 50 are classified into three groups as in the fourth embodiment.
  • the shift register 5 is supplied with a start pulse SP, end pulses EP1, EP2, three-phase clock signals CK1 to CK3, and a low level potential VSS from the outside.
  • the start pulse SP is given to the input terminal INa of the unit circuit 50 at the first stage.
  • the end pulse EP1 is given to the input terminal INb of the unit circuit 50 in the (n ⁇ 1) th stage.
  • the end pulse EP2 is given to the input terminal INb of the nth unit circuit 50.
  • the clock signals CK1 to CK3 are applied to the clock terminals CK of the unit circuits 50 in the first to third groups, respectively.
  • the low level potential VSS is supplied to the power supply terminal VSS of all the unit circuits 50.
  • the output signal OUT of the unit circuit 50 is output to the outside as output signals SROUT1 to SROUTn, and is given to the input terminal INa of the subsequent unit circuit 50 and the input terminal INb of the previous unit circuit 50.
  • FIG. 16 is a circuit diagram of the unit circuit 50 included in the shift register 5.
  • the circuit configuration of the unit circuit 50 is the same as the circuit described in Patent Document 3.
  • the unit circuit 50 is different from the circuit described in Patent Document 3 in that the transistor size has the same characteristics as those of the first embodiment.
  • the unit circuit 50 includes N-channel type transistors 51 to 54 and a capacitor 55.
  • the drain of the transistor 51 is connected to the clock terminal CK, and the source is connected to the output terminal OUT.
  • the drain and gate of the transistor 52 are connected to the input terminal INa, and the source is connected to the gate of the transistor 51.
  • a capacitor 55 is provided between the gate and source of the transistor 51.
  • the drain of the transistor 53 is connected to the output terminal OUT, a predetermined voltage Vc1 is applied to the gate, and the source is connected to the power supply terminal VSS.
  • the voltage Vc1 is a voltage that turns on the transistor 53.
  • the transistor 53 functions as a pull-down transistor that continuously applies a low-level potential to the output terminal OUT.
  • the drain of the transistor 54 is connected to the gate of the transistor 51, the gate is connected to the input terminal INb, and the source is connected to the power supply terminal VSS.
  • the transistor 51 is provided between the clock terminal and the output terminal, and functions as an output transistor that switches whether the clock signal is allowed to pass according to the gate potential.
  • the gate of the transistor 51 is capacitively coupled to a conduction terminal (source) on the output terminal OUT side of the transistor 51. Therefore, the gate potential of the transistor 51 is higher than the high level potential of the clock signal CK in the clock passing period in which the transistor 51 is on and the clock signal CK is at the high level.
  • the node to which the gate of the transistor 51 is connected is referred to as N5.
  • FIG. 17 is a timing chart of the shift register 5.
  • FIG. 17 shows input / output signals of the unit circuits 50 in the first group and changes in the potential of the node N5.
  • the clock signal CK1 is supplied from the clock terminal CK to the unit circuits 50 in the first group.
  • the clock signal CK1 is a clock signal in which the length of the high level period is slightly shorter than 1/3 period.
  • the clock signal CK2 is a signal obtained by delaying the clock signal CK1 by 1/3 period.
  • the clock signal CK3 is a signal obtained by delaying the clock signal CK1 by 2/3 period.
  • the transistor 54 is turned on. At this time, the potential of the node N5 changes to a low level, and the transistor 51 is turned off. Until the input signal INa becomes the next high level, the transistor 51 remains off and the output signal OUT remains at the low level.
  • the shift register 5 is used in the same form as the shift register 1 according to the first embodiment.
  • transistors 52 and 54 are connected to the node N5 in the unit circuit 50.
  • the transistors 52 and 54 are turned off when a low-level potential is applied to the gates during the clock passage period. Further, an input signal INa that is at a low level during the clock passage period is applied to the drain of the transistor 52, and a low-level potential is fixedly applied to the source of the transistor 54.
  • the output signal OUT can be prevented from being dull.
  • the channel lengths of the plurality of transistors are all made longer than the channel length of the output transistor. Thereby, blunting of the output signal can be effectively prevented.
  • only a part of the transistors may have a channel length longer than the channel length of the output transistor. For example, only the channel length of the transistor having the maximum leakage current among the plurality of transistors satisfying the above conditions may be longer than the channel length of the output transistor.
  • the bootstrap circuit capacitor is provided in the unit circuit.
  • a parasitic capacitance existing between the gate and the source of the output transistor may be used as the bootstrap capacitor.
  • the shift register of the present invention by increasing the channel length of the control transistor connected to the gate of the output transistor, the leakage current flowing through the control transistor during the clock passing period is reduced, and the output transistor The fluctuation of the gate potential can be suppressed, and the output signal can be prevented from becoming dull.
  • the shift register of the present invention has an effect of preventing the output signal from becoming dull, it can be used for a drive circuit of a display device (for example, a liquid crystal display device).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Shift Register Type Memory (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 ブートストラップ回路を含む単位回路10を多段接続してシフトレジスタを構成する。単位回路10では、トランジスタ11がオン状態で、クロック信号CKがハイレベルとなる期間が、クロック通過期間となる。一方の導通端子がトランジスタ11のゲートに接続されるトランジスタの中で、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にローレベル電位が印加されるトランジスタ12、14のチャネル長をトランジスタ11のチャネル長よりも長くする。これにより、クロック通過期間におけるリーク電流を削減し、トランジスタ11のゲート電位の変動を抑制して、出力信号の鈍りを防止する。

Description

シフトレジスタ
 本発明は、シフトレジスタに関し、特に、表示装置の駆動回路などに好適に使用されるシフトレジスタに関する。
 アクティブマトリクス型の表示装置は、2次元状に配置された画素回路を行単位で選択し、選択した画素回路に表示データに応じた電圧を書き込むことにより、画像を表示する。画素回路を行単位で選択するためには、走査信号線駆動回路として、クロック信号に基づき出力信号を順にシフトするシフトレジスタが用いられる。点順次駆動を行う表示装置では、データ信号線駆動回路の内部に同様のシフトレジスタが設けられる。
 また、液晶表示装置などでは、画素回路内のTFT(Thin Film Transistor)を形成するための製造プロセスを用いて、走査信号線駆動回路を画素回路と一体に形成することがある。この場合には、製造コストを削減するために、走査信号線駆動回路として機能するシフトレジスタを、TFTと同じ導電型のトランジスタ(具体的には、Nチャネル型トランジスタ)で形成することが好ましい。
 Nチャネル型トランジスタで構成されたシフトレジスタでは、クロック信号をそのままの電圧レベルで出力するために、図18に示すブートストラップ回路が使用される。図18に示す回路では、入力信号INがローレベルからハイレベルに変化すると、ダイオード接続されたトランジスタ92を介してノードN9の電位もハイレベルに変化し、トランジスタ91はオン状態になる。その後に入力信号INがローレベルに変化すると、トランジスタ92はオフ状態になり、ノードN9はフローティング状態になるが、トランジスタ91はオン状態を保つ。
 この状態でクロック信号CKがローレベルからハイレベルに変化すると、トランジスタ91のゲート・ソース間に存在するコンデンサ93の作用(ブートストラップ効果)によって、ノードN9の電位は(2×Vck)程度にまで上昇する(ただし、Vckはクロック信号CKの振幅)。このため、振幅Vckを有するクロック信号CKはトランジスタ91を電圧降下することなく通過し、出力端子OUTからはクロック信号CKがそのままの電圧レベルで出力される。
 なお、ブートストラップ回路を含むシフトレジスタについては、例えば、特許文献1~3に記載されている。
日本国特開2005-50502号公報 国際公開第92/15992号パンフレット 日本国特開平8-87897号公報
 上記従来のシフトレジスタには、出力トランジスタのゲート電位がリーク電流によって変動するために、出力信号が鈍るという問題がある。図18に示す回路には、クロック信号CKを出力した後にノードN9の電位をローレベルに変化させるために、ノードN9と接地の間にトランジスタ94が設けられる(図19を参照)。ノードN9の電位がVck以上である間、トランジスタ94は制御信号CTRLを用いてオフ状態に制御される。
 ところが、トランジスタ94のドレイン・ソース間に電位差(2×Vck)が印加されている間、トランジスタ94には通常よりも大きなリーク電流が流れる。このため、ノードN9の電位は(2×Vck)から時間の経過と共に低下し、出力信号OUTに鈍りが発生する(図20を参照)。
 例えば、アモルファスシリコンTFT液晶パネルの中には、一般的なTN(Twisted Nematic )モード液晶パネルと比べて、走査信号線のハイレベル電位を高くする必要があるものがある。このような液晶パネルに走査信号線駆動回路を一体に形成する場合、シフトレジスタ内のトランジスタのドレイン・ソース間に40Vを高い超える電圧が印加されることがある。このように高いハイレベル電位が必要とされる場合には、出力信号に鈍りが発生しやすい。また、出力信号の鈍りは、高温時にも発生しやすい。シフトレジスタの出力信号が鈍ると、シフトレジスタを含む表示装置などが誤動作しやすくなる。
 それ故に、本発明は、出力信号の鈍りを防止したシフトレジスタを提供することを目的とする。
 本発明の第1の局面は、単位回路を多段接続して構成されたシフトレジスタであって、
 前記単位回路は、
  クロック端子と出力端子の間に設けられ、ゲート電位に応じてクロック信号を通過させるか否かを切り替える出力トランジスタと、
  一方の導通端子が前記出力トランジスタのゲートに接続された1以上の制御トランジスタとを含み、
  前記出力トランジスタがオン状態で前記クロック信号がハイレベルとなるクロック通過期間では、前記出力トランジスタのゲート電位が前記クロック信号のハイレベル電位よりも高くなるように構成されており、
 前記制御トランジスタの中に、前記出力トランジスタよりもチャネル長が長いトランジスタが含まれていることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記制御トランジスタの中に、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にローレベル電位が印加されるトランジスタが含まれており、当該トランジスタのチャネル長が前記出力トランジスタのチャネル長よりも長いことを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 前記制御トランジスタの中に、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にローレベル電位が固定的に印加されるトランジスタが含まれており、当該トランジスタのチャネル長が前記出力トランジスタのチャネル長よりも長いことを特徴とする。
 本発明の第4の局面は、本発明の第2の局面において、
 前記制御トランジスタの中に、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にクロック通過期間ではローレベルとなる信号が与えられるトランジスタが含まれており、当該トランジスタのチャネル長が前記出力トランジスタのチャネル長よりも長いことを特徴とする。
 本発明の第5の局面は、本発明の第2の局面において、
 前記制御トランジスタの中に、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にローレベル電位が印加されるトランジスタが複数含まれており、当該複数のトランジスタのチャネル長がいずれも前記出力トランジスタのチャネル長よりも長いことを特徴とする。
 本発明の第6の局面は、本発明の第1の局面において、
 前記制御トランジスタの中に、前記出力トランジスタよりもチャネル長が0.5μm以上長いトランジスタが含まれていることを特徴とする。
 本発明の第7の局面は、本発明の第1の局面において、
 前記出力トランジスタのゲートは、前記出力トランジスタの前記出力端子側の導通端子と容量結合されていることを特徴とする。
 本発明の第8の局面は、2次元状に配置された複数の画素回路と、
 第1~第7のいずれかの局面に係るシフトレジスタを含んだ駆動回路とを備えた表示装置である。
 本発明の第1の局面によれば、出力トランジスタのゲートに接続された制御トランジスタのチャネル長を長くすることにより、クロック通過期間において制御トランジスタを流れるリーク電流を削減し、出力トランジスタのゲート電位の変動を抑制することができる。これにより、出力信号の鈍りを防止することができる。
 本発明の第2の局面によれば、出力トランジスタのゲートに、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にローレベル電位が印加されるトランジスタが接続されている場合に、当該トランジスタのチャネル長を長くすることにより、クロック通過期間において当該トランジスタを流れるリーク電流を削減し、出力トランジスタのゲート電位の変動を抑制して、出力信号の鈍りを防止することができる。
 本発明の第3の局面によれば、出力トランジスタのゲートに、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にローレベル電位が固定的に印加されるトランジスタが接続されている場合に、当該トランジスタのチャネル長を長くすることにより、クロック通過期間において当該トランジスタを流れるリーク電流を削減し、出力トランジスタのゲート電位の変動を抑制して、出力信号の鈍りを防止することができる。
 本発明の第4の局面によれば、出力トランジスタのゲートに、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にクロック通過期間ではローレベルとなる信号が与えられるトランジスタが接続されている場合に、当該トランジスタのチャネル長を長くすることにより、クロック通過期間において当該トランジスタを流れるリーク電流を削減し、出力トランジスタのゲート電位の変動を抑制して、出力信号の鈍りを防止することができる。
 本発明の第5の局面によれば、出力トランジスタのゲートに、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にローレベル電位が印加されるトランジスタが複数接続されている場合に、当該複数のトランジスタのチャネル長をすべて長くすることにより、クロック通過期間において当該複数のトランジスタを流れるリーク電流を削減し、出力トランジスタのゲート電位の変動を抑制して、出力信号の鈍りを効果的に防止することができる。
 本発明の第6の局面によれば、出力トランジスタのゲートに接続された制御トランジスタのチャネル長を出力トランジスタのチャネル長よりも0.5μm以上長くすることにより、トランジスタのチャネル長に±0.2μm程度の製造ばらつきが発生する場合でも、出力トランジスタのゲート電位の変動を抑制し、出力信号の鈍りを防止する効果を奏することができる。
 本発明の第7の局面によれば、出力トランジスタのゲートを出力端子側の導通端子と容量結合することにより、クロック通過期間では出力トランジスタのゲート電位がクロック信号のハイレベル電位よりも高くなる単位回路を容易に構成することができる。
 本発明の第8の局面によれば、出力信号の鈍りを防止したシフトレジスタを含む駆動回路を用いることにより、表示装置の誤動作を防止することができる。
本発明の第1の実施形態に係るシフトレジスタの構成を示すブロック図である。 図1に示すシフトレジスタに含まれる単位回路の回路図である。 図1に示すシフトレジスタのタイミングチャートである。 図1に示すシフトレジスタを含む液晶表示装置の構成を示すブロック図である。 トランジスタのチャネル長とリーク電流の関係を示す図である。 本発明の第2の実施形態に係るシフトレジスタの構成を示すブロック図である。 図6に示すシフトレジスタに含まれる単位回路の回路図である。 図6に示すシフトレジスタのタイミングチャートである。 本発明の第3の実施形態に係るシフトレジスタの構成を示すブロック図である。 図9に示すシフトレジスタに含まれる単位回路の回路図である。 図9に示すシフトレジスタのタイミングチャートである。 本発明の第4の実施形態に係るシフトレジスタの構成を示すブロック図である。 図12に示すシフトレジスタに含まれる単位回路の回路図である。 図12に示すシフトレジスタのタイミングチャートである。 本発明の第5の実施形態に係るシフトレジスタの構成を示すブロック図である。 図15に示すシフトレジスタに含まれる単位回路の回路図である。 図15に示すシフトレジスタのタイミングチャートである。 ブートストラップ回路の回路図である。 ブートストラップ回路の出力信号が鈍る理由を示す図である。 ブートストラップ回路の出力信号が鈍る様子を示す図である。
 以下、図面を参照して、本発明の各実施形態に係るシフトレジスタについて説明する。以下の説明では、特に断らない限り、ハイレベル電位をVck、ローレベル電位を0とする。また、回路のある端子経由で入力または出力される信号を当該端子と同じ名称で呼ぶ(例えば、クロック端子CK経由で入力される信号をクロック信号CKという)。nとmは2以上の整数、iは1以上n以下の整数、jは1以上m以下の整数であるとする。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係るシフトレジスタの構成を示すブロック図である。図1に示すシフトレジスタ1は、n個の単位回路10を多段接続して構成されている。単位回路10は、入力端子INa、INb、クロック端子CK、電源端子VSS、および、出力端子OUTを有する。
 シフトレジスタ1には外部から、スタートパルスSP、エンドパルスEP、2相のクロック信号CK1、CK2、および、ローレベル電位VSSが供給される。スタートパルスSPは、1段目の単位回路10の入力端子INaに与えられる。エンドパルスEPは、n段目の単位回路10の入力端子INbに与えられる。クロック信号CK1は、奇数段目の単位回路10のクロック端子CKに与えられる。クロック信号CK2は、偶数段目の単位回路10のクロック端子CKに与えられる。ローレベル電位VSSは、すべての単位回路10の電源端子VSSに与えられる。単位回路10の出力信号OUTは、出力信号SROUT1~SROUTnとして外部に出力されると共に、後段の単位回路10の入力端子INaと前段の単位回路10の入力端子INbに与えられる。
 図2は、シフトレジスタ1に含まれる単位回路10の回路図である。単位回路10の回路構成は、特許文献1に記載された回路と同じである。単位回路10は、トランジスタのサイズに後述する特徴を有する点で、特許文献1に記載された回路と相違する。
 図2に示すように、単位回路10は、Nチャネル型のトランジスタ11~15、および、コンデンサ16を含んでいる。トランジスタ11のドレインはクロック端子CKに接続され、ソースは出力端子OUTに接続される。トランジスタ12のドレインとゲートは入力端子INaに接続され、ソースはトランジスタ11のゲートに接続される。トランジスタ11のゲート・ソース間には、コンデンサ16が設けられる。トランジスタ13のドレインは出力端子OUTに接続され、トランジスタ14のドレインはトランジスタ11のゲートに接続される。トランジスタ13、14のゲートは入力端子INbに接続され、ソースは電源端子VSSに接続される。トランジスタ15のドレインはトランジスタ11のゲートに接続され、ゲートはクロック端子CKに接続され、ソースは出力端子OUTに接続される。
 トランジスタ11は、クロック端子と出力端子の間に設けられ、ゲート電位に応じてクロック信号を通過させるか否かを切り替える出力トランジスタとして機能する。また、トランジスタ11のゲートは、トランジスタ11の出力端子OUT側の導通端子(ソース)と容量結合されている。このため、後述するように、トランジスタ11がオン状態で、クロック信号CKがハイレベルとなる期間(以下、クロック通過期間という)では、トランジスタ11のゲート電位はクロック信号CKのハイレベル電位よりも高くなる。以下、トランジスタ11のゲートが接続されたノードをN1という。
 図3は、シフトレジスタ1のタイミングチャートである。図3には、奇数段目の単位回路10の入出力信号とノードN1の電位の変化が記載されている。奇数段目の単位回路10には、クロック端子CKからクロック信号CK1が与えられる。クロック信号CK1は、ハイレベル期間の長さが1/2周期よりもやや短いクロック信号である。クロック信号CK2は、クロック信号CK1を1/2周期だけ遅延させた信号である。スタートパルスSP(図示せず)は、シフト動作の開始前に、クロック信号CK1のハイレベル期間と同じ長さの時間だけハイレベルになる。エンドパルスEP(図示せず)は、シフト動作の終了後に、クロック信号CK1のハイレベル期間と同じ長さの時間だけハイレベルになる。
 時刻t1において、入力信号INa(前段の単位回路10の出力信号)がローレベルからハイレベルに変化すると、ダイオード接続されたトランジスタ12を介してノードN1の電位もハイレベルに変化し、トランジスタ11はオン状態になる。時刻t2において、入力信号INaがローレベルに変化すると、トランジスタ12はオフ状態になり、ノードN1はフローティング状態になるが、トランジスタ11はオン状態を保つ。
 時刻t3において、クロック信号CK(クロック信号CK1)がローレベルからハイレベルに変化すると、ブートストラップ効果によってノードN1の電位は(2×Vck)程度にまで上昇する。トランジスタ11のゲート電位が十分に高いので、クロック信号CKはトランジスタ11を電圧降下することなく通過する。クロック信号CKがハイレベルとなる時刻t3から時刻t4までの間、ノードN1の電位は(2×Vck)程度になり、出力信号OUTはハイレベルになる。時刻t4において、ノードN1の電位はハイレベルになり、出力信号OUTはローレベルになる。
 時刻t5において、入力信号INb(後段の単位回路10の出力信号)がローレベルからハイレベルに変化すると、トランジスタ13、14はオン状態になる。トランジスタ13がオン状態である間、出力端子OUTにはローレベル電位が印加される。また、トランジスタ14がオン状態になると、ノードN1の電位はローレベルに変化し、トランジスタ11はオフ状態になる。
 時刻t6において、入力信号INbがローレベルに変化すると、トランジスタ13、14はオフ状態になる。このとき、ノードN1はフローティング状態になるが、トランジスタ11はオフ状態を保つ。入力信号INaが次にハイレベルになるまで、トランジスタ11はオフ状態を保ち、出力信号OUTはローレベルを保つ。
 トランジスタ15は、クロック信号CKがハイレベルのときにオン状態になる。このため、出力信号OUTがローレベルである間に、クロック信号CKがハイレベルになるたびに、ノードN1には出力端子OUTの電位(ローレベル電位)が印加される。このようにトランジスタ15は、ノードN1の電位の変動を防止する機能を有する。
 シフトレジスタ1は、例えば、表示装置の駆動回路などに使用される。図4は、シフトレジスタ1を備えた液晶表示装置の構成を示すブロック図である。図4に示す液晶表示装置100は、画素アレイ101、表示制御回路102、走査信号線駆動回路103、および、データ信号線駆動回路104を備えている。液晶表示装置100では、シフトレジスタ1は走査信号線駆動回路103として使用される。
 図4に示す画素アレイ101は、n本の走査信号線G1~Gn、m本のデータ信号線S1~Sm、および、(m×n)個の画素回路Pijを含んでいる。走査信号線G1~Gnは互いに平行に配置され、データ信号線S1~Smは走査信号線G1~Gnと直交するように互いに平行に配置される。走査信号線Giとデータ信号線Sjの交点近傍には、画素回路Pijが配置される。このように(m×n)個の画素回路Pijは、行方向にm個ずつ、列方向にn個ずつ、2次元状に配置される。走査信号線Giはi行目に配置された画素回路Pijに共通して接続され、データ信号線Sjはj列目に配置された画素回路Pijに共通して接続される。
 液晶表示装置100の外部からは、水平同期信号HSYNC、垂直同期信号VSYNCなどの制御信号と表示データDTが供給される。表示制御回路102は、これらの信号に基づき、走査信号線駆動回路103に対してクロック信号CK1、CK2とスタートパルスSPを出力し、データ信号線駆動回路104に対して制御信号SCと表示データDTを出力する。
 走査信号線駆動回路103は、n段のシフトレジスタ1で構成されている。シフトレジスタ1は、クロック信号CK1、CK2に基づき、出力信号SROUT1~SROUTnを1つずつ順にハイレベル(選択状態を示す)に制御する。出力信号SROUT1~SROUTnは、それぞれ、走査信号線G1~Gnに与えられる。これにより、走査信号線G1~Gnが1本ずつ順に選択され、1行分の画素回路Pijが一括して選択される。
 データ信号線駆動回路104は、制御信号SCと表示データDTに基づき、データ信号線S1~Smに対して表示データDTに応じた電圧を与える。これにより、選択された1行分の画素回路Pijに表示データDTに応じた電圧が書き込まれる。このようにして、液晶表示装置100は画像を表示する。
 以下、本実施形態に係るシフトレジスタ1の特徴である、単位回路10内のトランジスタのサイズについて説明する。単位回路10内のノードN1には、トランジスタ11以外に、トランジスタ12、14、15が接続されている。このうちトランジスタ12、14は、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となる。また、トランジスタ12のドレインにはクロック通過期間ではローレベルとなる入力信号INaが印加されており、トランジスタ14のソースにはローレベル電位が固定的に印加されている。そこで、単位回路10では、クロック通過期間におけるリーク電流によるノードN1の電位の変動(電位降下)を防止するために、トランジスタ12、14のチャネル長(ドレイン・ソース間ギャップ長)をトランジスタ11のチャネル長よりも長くする。
 例えば、従来の設計方法でトランジスタ11~15のチャネル幅Wとチャネル長Lを求めると、以下の結果が得られたとする。
  トランジスタ11:W/L=5000/4μm
  トランジスタ12:W/L= 750/4μm
  トランジスタ13:W/L=1000/4μm
  トランジスタ14:W/L= 750/4μm
  トランジスタ15:W/L= 500/4μm
 本実施形態では、トランジスタ11、13、15のサイズをそのままにして、トランジスタ12、14のチャネル長を1.5倍にし、これに合わせてトランジスタ12、14のチャネル幅を1.5倍にする。この結果、トランジスタ12、14のチャネル幅Wとチャネル長Lは、以下のようになる。
  トランジスタ12:W/L=1125/6μm
  トランジスタ14:W/L=1125/6μm
 一般に、トランジスタを流れるオン電流Ionは、次式(1)で与えられる。ただし、式(1)において、μは移動度、Wはトランジスタのチャネル幅、Lはトランジスタのチャネル長、Cgiはゲート絶縁膜の単位面積あたりの容量、Vgはトランジスタのゲート電圧、Vthはトランジスタの閾値電圧である。
  Ion=1/2×μ×(W/L)×Cgi×(Vg-Vth)2 … (1)
 式(1)に示すように、オン電流Ionは(W/L)に比例する。したがって、トランジスタのチャネル長Lを長くしたときに、チャネル幅Wを同じ割合で長くすれば、チャネル長を長くする前と同じ量のオン電流を流し、同じオン特性を実現することができる。
 以下、本実施形態に係るシフトレジスタ1の効果を説明する。図19と図20を参照して説明したように、ブートストラップ回路を含む従来のシフトレジスタには、出力トランジスタのゲート電位がリーク電流によって変動するために、出力信号が鈍るという問題がある。図5は、トランジスタのチャネル長とリーク電流の関係を示す図である。図5に示すように、チャネル長を長くすると、リーク電流は減少する。例えば、チャネル長を4μmから6μmに長くすると、リーク電流は約1/5に減少する。また、図5から分かるように、チャネル長をk倍(ただし、k>1)にしたとき、リーク電流は1/k倍よりも大幅に減少する。このため、上記のようにトランジスタのチャネル長Lを長くしたときに、チャネル幅Wを同じ割合で長くすれば、リーク電流はチャネル長を長くする前よりも減少する。
 本実施形態に係るシフトレジスタ1は、一方の導通端子がトランジスタ11(出力トランジスタ)のゲートに接続されたトランジスタ12、14、15のうち、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にローレベル電位が印加されるトランジスタ12、14のチャネル長は、トランジスタ11のチャネル長よりも長いという特徴を有する。このため、従来のシフトレジスタと比べて、クロック通過期間において、トランジスタ12、14を流れるリーク電流を削減し、ノードN1の電位(出力トランジスタのゲート電位)の変動を抑制して、出力信号OUTの鈍りを小さくすることができる。したがって、本実施形態に係るシフトレジスタ1によれば、出力信号OUTの鈍りを防止することができる。また、出力信号の鈍りを防止したシフトレジスタ1を表示装置の走査信号線駆動回路として用いることにより、走査信号線を正しく駆動し、表示装置の誤動作を防止することができる。
 なお、単位回路10では、トランジスタ11、13、15のドレイン・ソース間に、電位差(2×Vck)が印加されることはない。このため、トランジスタ11、13、15を流れるリーク電流は、トランジスタ12、14を流れるリーク電流よりも少ない。トランジスタ11、13、15のチャネル長を長くしても、出力信号OUTの鈍りの防止には寄与しない一方で、回路量は増加する。したがって、トランジスタ11、13、15のチャネル長には、従来の設計方法で求めた値を使用することが好ましい。
 また、トランジスタ12、14のチャネル長を長くするときには、製造ばらつきを考慮して、チャネル長をある程度以上長くする必要がある。例えば、トランジスタのチャネル長に最大で±0.2μm程度の製造ばらつきが発生すると仮定すると、最悪の場合には、トランジスタ12、14のチャネル長が設計値よりも0.2μm短くなり、トランジスタ11のチャネル長が設計値よりも0.2μm長くなる。そこで、上記の製造ばらつきが発生する場合には、トランジスタ12、14のチャネル長をトランジスタ11のチャネル長よりも0.5μm以上長くする。これにより、トランジスタのチャネル長に±0.2μm程度の製造ばらつきが発生する場合でも、トランジスタ11のゲート電位の変動を抑制し、出力信号の鈍りを防止する効果を奏することができる。
 (第2の実施形態)
 図6は、本発明の第2の実施形態に係るシフトレジスタの構成を示すブロック図である。図6に示すシフトレジスタ2は、n個の単位回路20を多段接続して構成されている。単位回路20は、入力端子INa、INb、クロック端子CK、CKB、電源端子VSS、クリア端子CLR、および、出力端子OUTを有する。
 シフトレジスタ2には外部から、スタートパルスSP、エンドパルスEP、2相のクロック信号CK1、CK2、クリアパルスCP、および、ローレベル電位VSSが供給される。スタートパルスSPは、1段目の単位回路20の入力端子INaに与えられる。エンドパルスEPは、n段目の単位回路20の入力端子INbに与えられる。クロック信号CK1は、奇数段目の単位回路20のクロック端子CKと偶数段目の単位回路20のクロック端子CKBに与えられる。クロック信号CK2は、偶数段目の単位回路20のクロック端子CKと奇数段目の単位回路20のクロック端子CKBに与えられる。クリアパルスCPは、すべての単位回路20のクリア端子CLRに与えられる。ローレベル電位VSSは、すべての単位回路20の電源端子VSSに与えられる。単位回路20の出力信号OUTは、出力信号SROUT1~SROUTnとして外部に出力されると共に、後段の単位回路20の入力端子INaと前段の単位回路20の入力端子INbに与えられる。
 図7は、シフトレジスタ2に含まれる単位回路20の回路図である。図7に示すように、単位回路20は、Nチャネル型のトランジスタ11~15、21、22、および、コンデンサ16を含んでいる。単位回路20は、第1の実施形態に係る単位回路10にトランジスタ21、22を追加したものである。単位回路20の構成要素のうち、単位回路10と同じ構成要素については、同一の参照符号を付して説明を省略する。
 トランジスタ21のドレインは出力端子OUTに接続され、ゲートはクロック端子CKBに接続され、ソースは電源端子VSSに接続される。トランジスタ22のドレインはトランジスタ11のゲートに接続され、ゲートはクリア端子CLRに接続され、ソースは電源端子VSSに接続される。以下、トランジスタ11のゲートが接続されたノードをN2という。
 図8は、シフトレジスタ2のタイミングチャートである。図8に示すタイミングチャートは、図3に示すタイミングチャートと同様である。図8には、奇数段目の単位回路20の入出力信号とノードN2の電位の変化が記載されている。奇数段目の単位回路20には、クロック端子CKからクロック信号CK1が与えられ、クロック端子CKBからクロック信号CK2が与えられる。クリアパルスCP(図示せず)は、シフト動作の開始前に、所定時間だけハイレベルになる。
 トランジスタ21は、クロック信号CKB(クロック信号CK2)がハイレベルのときにオン状態になる。このため、クロック信号CKBがハイレベルになるたびに、出力端子OUTにはローレベル電位が印加される。このようにトランジスタ21は、出力信号OUTを繰り返しローレベルに設定し、出力信号OUTを安定させる機能を有する。
 トランジスタ22は、クリア信号CLR(クリアパルスCP)がハイレベルのときにオン状態になる。このとき、ノードN2にはローレベル電位が印加される。このようにトランジスタ22は、ノードN2の電位をローレベルに初期化する機能を有する。シフトレジスタ2は、第1の実施形態に係るシフトレジスタ1と同様の形態で使用される。
 単位回路20内のノードN2には、トランジスタ11以外に、トランジスタ12、14、15、22が接続されている。このうちトランジスタ12、14、22は、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となる。また、トランジスタ12のドレインにはクロック通過期間ではローレベルとなる入力信号INaが印加されており、トランジスタ14、22のソースにはローレベル電位が固定的に印加されている。単位回路20では、トランジスタ12、14、22のチャネル長をトランジスタ11のチャネル長よりも長くすることにより、出力信号OUTの鈍りを防止することができる。
 (第3の実施形態)
 図9は、本発明の第3の実施形態に係るシフトレジスタの構成を示すブロック図である。図9に示すシフトレジスタ3は、n個の単位回路30を多段接続して構成されている。単位回路30は、入力端子INa、INb、クロック端子CK、CKB、電源端子VSS、クリア端子CLR、および、出力端子OUTを有する。シフトレジスタ3における単位回路30間の信号線の接続形態は、第2の実施形態と同じである。
 図10は、シフトレジスタ3に含まれる単位回路30の回路図である。図10に示すように、単位回路30は、Nチャネル型のトランジスタ11~14、21、22、31~34、および、コンデンサ16を含んでいる。単位回路30は、第2の実施形態に係る単位回路20からトランジスタ15を削除し、トランジスタ31~34を追加したものである。単位回路30の構成要素のうち、単位回路10、20と同じ構成要素については、同一の参照符号を付して説明を省略する。
 トランジスタ31のドレインはトランジスタ21のゲートに接続され、ソースは電源端子VSSに接続される。トランジスタ31のゲートには、トランジスタ32のソース、および、トランジスタ33、34のドレインが接続される。トランジスタ32のドレインとゲートは、クロック端子CKBに接続される。トランジスタ33のゲートはトランジスタ11のゲートに接続され、ソースは電源端子VSSに接続される。トランジスタ34のゲートはクロック端子CKに接続され、ソースは電源端子VSSに接続される。以下、トランジスタ11のゲートが接続されたノードをN3、トランジスタ31のゲートが接続されたノードをN31という。
 図11は、シフトレジスタ3のタイミングチャートである。図11に示すタイミングチャートは、図3に示すタイミングチャートと同様である。図11には、奇数段目の単位回路30の入出力信号とノードN3、N31の電位の変化が記載されている。
 トランジスタ32は、クロック信号CKB(クロック信号CK2)がハイレベルのときにオン状態になる。このとき、ノードN31には、クロック信号CKBのハイレベル電位が印加される。トランジスタ33は、ノードN3の電位がVck以上のときにオン状態になる。このとき、ノードN31にはローレベル電位が印加される。トランジスタ34は、クロック信号CK(クロック信号CK1)がハイレベルのときにオン状態になる。このとき、ノードN31にはローレベル電位が印加される。
 このため、ノードN31の電位は、クロック信号CKがローレベル、クロック信号CKBがハイレベル、かつ、ノードN3の電位がローレベルのときにはハイレベルになり、それ以外のときにはローレベルになる。トランジスタ31は、ノードN31の電位がハイレベルのときにはオン状態になる。このとき、ノードN3には、ローレベル電位が印加される。このようにトランジスタ31~34は、ノードN3の電位に印加されたローレベル電位を維持する機能を有する。シフトレジスタ3は、第1の実施形態に係るシフトレジスタ1と同様の形態で使用される。
 単位回路30内のノードN3には、トランジスタ11以外に、トランジスタ12、14、22、31、33が接続されている。このうちトランジスタ12、14、22、31は、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となる。また、トランジスタ12のドレインにはクロック通過期間ではローレベルとなる入力信号INaが印加されており、トランジスタ14、22、31のソースにはローレベル電位が固定的に印加されている。単位回路30では、トランジスタ12、14、22、31のチャネル長をトランジスタ11のチャネル長よりも長くすることにより、出力信号OUTの鈍りを防止することができる。
 (第4の実施形態)
 図12は、本発明の第4の実施形態に係るシフトレジスタの構成を示すブロック図である。図12に示すシフトレジスタ4は、n個の単位回路40を多段接続して構成されている。単位回路40は、入力端子IN、クロック端子CKa、CKb、電源端子VDD、VSS、および、出力端子OUTを有する。n個の単位回路40は、1段目、4段目、7段目などを含む第1グループと、2段目、5段目、8段目などを含む第2グループと、3段目、6段目、9段目などを含む第3グループとに分けられる。
 シフトレジスタ4には外部から、スタートパルスSP、3相のクロック信号CK1~CK3、ハイレベル電位VDD、および、ローレベル電位VSSが供給される。スタートパルスSPは、1段目の単位回路40の入力端子INに与えられる。クロック信号CK1は、第1グループ内の単位回路40のクロック端子CKaと、第2グループ内の単位回路40のクロック端子CKbに与えられる。クロック信号CK2は、第2グループ内の単位回路40のクロック端子CKaと、第3グループ内の単位回路40のクロック端子CKbに与えられる。クロック信号CK3は、第3グループ内の単位回路40のクロック端子CKaと、第1グループ内の単位回路40のクロック端子CKbに与えられる。ハイレベル電位VDDは、すべての単位回路40の電源端子VDDに与えられる。ローレベル電位VSSは、すべての単位回路40の電源端子VSSに与えられる。単位回路40の出力信号OUTは、出力信号SROUT1~SROUTnとして外部に出力されると共に、後段の単位回路40の入力端子INに与えられる。
 図13は、シフトレジスタ4に含まれる単位回路40の回路図である。単位回路40の回路構成は、特許文献2に記載された回路と同じである。ただし、図13には、特許文献2では明示的に記載されていないコンデンサが、明示的に記載されている。単位回路40は、トランジスタのサイズに第1の実施形態と同様の特徴を有する点で、特許文献2に記載された回路と相違する。
 図13に示すように、単位回路40は、Nチャネル型のトランジスタ41~46、および、コンデンサ47を含んでいる。トランジスタ41のドレインはクロック端子CKaに接続され、ソースは出力端子OUTに接続される。トランジスタ42のドレインは電源端子VDDに接続され、ゲートは入力端子INに接続され、ソースはトランジスタ41のゲートに接続される。トランジスタ41のゲート・ソース間には、コンデンサ47が設けられる。
 トランジスタ43のドレインは出力端子OUTに接続され、トランジスタ44のドレインはトランジスタ41のゲートに接続される。トランジスタ43、44のゲートは互いに接続され、ソースは電源端子VSSに接続される。トランジスタ45のドレインは電源端子VDDに接続され、ゲートはクロック端子CKbに接続され、ゲートはトランジスタ43、44のゲートに接続される。トランジスタ46のドレインはトランジスタ43、44のゲートに接続され、ゲートは入力端子INに接続され、ソースは電源端子VSSに接続される。トランジスタ41は、クロック端子と出力端子の間に設けられ、ゲート電位に応じてクロック信号を通過させるか否かを切り替える出力トランジスタとして機能する。また、トランジスタ41のゲートは、トランジスタ41の出力端子OUT側の導通端子(ソース)と容量結合されている。このため、トランジスタ41がオン状態で、クロック信号CKaがハイレベルとなるクロック通過期間では、トランジスタ41のゲート電位はクロック信号CKaのハイレベル電位よりも高くなる。以下、トランジスタ41のゲートが接続されたノードをN4、トランジスタ43、44のゲートが接続されたノードをN41という。
 図14は、シフトレジスタ4のタイミングチャートである。図14には、第1グループ内の単位回路40の入出力信号とノードN4、N41の電位の変化が記載されている。第1グループ内の単位回路40には、クロック端子CKaからクロック信号CK1が与えられ、クロック端子CKbからクロック信号CK3が与えられる。クロック信号CK1は、ハイレベル期間の長さがほぼ1/2周期となるクロック信号である。クロック信号CK2は、クロック信号CK1を1/3周期遅延させた信号である。クロック信号CK3は、クロック信号CK1を2/3周期遅延させた信号である。
 時刻t1において、クロック信号CKb(クロック信号CK3)と入力信号IN(前段の単位回路40の出力信号)がローレベルからハイレベルに変化すると、トランジスタ42、45、46はオン状態になる。このとき、ノードN4の電位はハイレベルになり、トランジスタ41はオン状態になる。また、トランジスタ46のサイズはトランジスタ45のサイズよりも十分に大きいので、ノードN41の電位はローレベルになる。このため、トランジスタ43、44はオフ状態になる。
 時刻t2において、クロック信号CKa(クロック信号CK1)がローレベルからハイレベルに変化すると、ブートストラップ効果によってノードN4の電位は(2×Vck)程度にまで上昇する。トランジスタ41のゲート電位が十分に高いので、クロック信号CKaはトランジスタ41を電圧降下することなく通過する。クロック信号CKaがハイレベルとなる時刻t2から時刻t4までの間、ノードN4の電位は(2×Vck)程度になり、出力信号OUTはハイレベルになる。時刻t4において、ノードN4の電位はハイレベルになり、出力信号OUTはローレベルになる。
 なお、時刻t3において、クロック信号CKbと入力信号INがローレベルに変化し、トランジスタ42、45、46はオフ状態になる。このとき、ノードN4、N41はフローティング状態になるが、ノードN1、N41の電位は変化しないので、トランジスタ41、43、44の状態は変化しない。
 時刻t5において、クロック信号CKbがハイレベルに変化すると、トランジスタ45はオン状態になる。このとき、入力信号INはローレベルで、トランジスタ46はオフ状態であるので、ノードN41の電位はハイレベルになる。このため、トランジスタ43、44はオン状態になる。トランジスタ43がオン状態である間、出力端子OUTにはローレベル電位が印加される。また、トランジスタ44がオン状態になると、ノードN4の電位はローレベルに変化し、トランジスタ41はオフ状態になる。入力信号INが次にハイレベルになるまで、トランジスタ41はオフ状態を保ち、出力信号OUTはローレベルを保つ。シフトレジスタ4は、第1の実施形態に係るシフトレジスタ1と同様の形態で使用される。
 単位回路40内のノードN4には、トランジスタ41以外に、トランジスタ42、44が接続されている。このうちトランジスタ44は、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となる。また、トランジスタ44のソースにはローレベル電位が固定的に印加されている。単位回路40では、トランジスタ44のチャネル長をトランジスタ41のチャネル長よりも長くすることにより、出力信号OUTの鈍りを防止することができる。
 (第5の実施形態)
 図15は、本発明の第5の実施形態に係るシフトレジスタの構成を示すブロック図である。図15に示すシフトレジスタ5は、n個の単位回路50を多段接続して構成されている。単位回路50は、入力端子INa、INb、クロック端子CK、電源端子VSS、および、出力端子OUTを有する。n個の単位回路50は、第4の実施形態と同様に、3個のグループに分類される。
 シフトレジスタ5には外部から、スタートパルスSP、エンドパルスEP1、EP2、3相のクロック信号CK1~CK3、および、ローレベル電位VSSが供給される。スタートパルスSPは、1段目の単位回路50の入力端子INaに与えられる。エンドパルスEP1は、(n-1)段目の単位回路50の入力端子INbに与えられる。エンドパルスEP2は、n段目の単位回路50の入力端子INbに与えられる。クロック信号CK1~CK3は、それぞれ、第1~第3グループ内の単位回路50のクロック端子CKに与えられる。ローレベル電位VSSは、すべての単位回路50の電源端子VSSに与えられる。単位回路50の出力信号OUTは、出力信号SROUT1~SROUTnとして外部に出力されると共に、後段の単位回路50の入力端子INaと2段前の単位回路50の入力端子INbに与えられる。
 図16は、シフトレジスタ5に含まれる単位回路50の回路図である。単位回路50の回路構成は、特許文献3に記載された回路と同じである。単位回路50は、トランジスタのサイズに第1の実施形態と同様の特徴を有する点で、特許文献3に記載された回路と相違する。
 図16に示すように、単位回路50は、Nチャネル型のトランジスタ51~54、および、コンデンサ55を含んでいる。トランジスタ51のドレインはクロック端子CKに接続され、ソースは出力端子OUTに接続される。トランジスタ52のドレインとゲートは入力端子INaに接続され、ソースはトランジスタ51のゲートに接続される。トランジスタ51のゲート・ソース間には、コンデンサ55が設けられる。トランジスタ53のドレインは出力端子OUTに接続され、ゲートには所定の電圧Vc1が印加され、ソースは電源端子VSSに接続される。電圧Vc1は、トランジスタ53をオン状態にする電圧である。トランジスタ53は、出力端子OUTにローレベル電位を継続的に印加するプルダウントランジスタとして機能する。トランジスタ54のドレインはトランジスタ51のゲートに接続され、ゲートは入力端子INbに接続され、ソースは電源端子VSSに接続される。
 トランジスタ51は、クロック端子と出力端子の間に設けられ、ゲート電位に応じてクロック信号を通過させるか否かを切り替える出力トランジスタとして機能する。また、トランジスタ51のゲートは、トランジスタ51の出力端子OUT側の導通端子(ソース)と容量結合されている。このため、トランジスタ51がオン状態で、クロック信号CKがハイレベルとなるクロック通過期間では、トランジスタ51のゲート電位はクロック信号CKのハイレベル電位よりも高くなる。以下、トランジスタ51のゲートが接続されたノードをN5という。
 図17は、シフトレジスタ5のタイミングチャートである。図17には、第1グループ内の単位回路50の入出力信号とノードN5の電位の変化が記載されている。第1グループ内の単位回路50には、クロック端子CKからクロック信号CK1が与えられる。図17に示すように、クロック信号CK1は、ハイレベル期間の長さが1/3周期よりもやや短いクロック信号である。クロック信号CK2は、クロック信号CK1を1/3周期だけ遅延させた信号である。クロック信号CK3は、クロック信号CK1を2/3周期だけ遅延させた信号である。
 時刻t1において、入力信号INa(前段の単位回路50の出力信号)がローレベルからハイレベルに変化すると、ダイオード接続されたトランジスタ52を介してノードN5の電位もハイレベルに変化し、トランジスタ51はオン状態になる。時刻t2において、入力信号INaがローレベルに変化すると、トランジスタ52はオフ状態になり、ノードN5はフローティング状態になるが、トランジスタ51はオン状態を保つ。
 時刻t3において、クロック信号CK(クロック信号CK1)がローレベルからハイレベルに変化すると、ブートストラップ効果によってノードN5の電位は(2×Vck)程度にまで上昇する。トランジスタ51のゲート電位が十分に高いので、クロック信号CKはトランジスタ51を電圧降下することなく通過する。クロック信号CKがハイレベルとなる時刻t3から時刻t4までの間、ノードN5の電位は(2×Vck)程度になり、出力信号OUTはハイレベルになる。時刻t4において、ノードN5の電位はハイレベルになり、出力信号OUTはローレベルになる。
 時刻t5において、入力信号INb(2段後の単位回路50の出力信号)がローレベルからハイレベルに変化すると、トランジスタ54はオン状態になる。このとき、ノードN5の電位はローレベルに変化し、トランジスタ51はオフ状態になる。入力信号INaが次にハイレベルになるまで、トランジスタ51はオフ状態を保ち、出力信号OUTはローレベルを保つ。シフトレジスタ5は、第1の実施形態に係るシフトレジスタ1と同様の形態で使用される。
 単位回路50内のノードN5には、トランジスタ51以外に、トランジスタ52、54が接続されている。トランジスタ52、54は、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となる。また、トランジスタ52のドレインにはクロック通過期間ではローレベルとなる入力信号INaが印加されており、トランジスタ54のソースにはローレベル電位が固定的に印加されている。単位回路50では、トランジスタ52、54のチャネル長をトランジスタ51のチャネル長よりも長くすることにより、出力信号OUTの鈍りを防止することができる。
 なお、以上の説明では、一方の導通端子が出力トランジスタのゲートに接続される制御トランジスタの中に、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にローレベル電位が印加されるトランジスタが複数含まれている場合に、当該複数のトランジスタのチャネル長をいずれも出力トランジスタのチャネル長よりも長くすることとした。これにより、出力信号の鈍りを効果的に防止することができる。これに代えて、上記条件を満たすトランジスタが単位回路内に複数含まれる場合でも、そのうち一部のトランジスタについてのみ、チャネル長を出力トランジスタのチャネル長よりも長くしてもよい。例えば、上記条件を満たす複数のトランジスタのうちリーク電流が最大となるトランジスタのチャネル長のみを出力トランジスタのチャネル長よりも長くしてもよい。
 また、以上の説明では、単位回路にブートストラップ回路用のコンデンサを設けることとしたが、出力トランジスタのゲート・ソース間に存在する寄生容量をブートストラップ用のコンデンサとして用いてもよい。
 以上に示すように、本発明のシフトレジスタによれば、出力トランジスタのゲートに接続された制御トランジスタのチャネル長を長くすることにより、クロック通過期間において制御トランジスタを流れるリーク電流を削減し、出力トランジスタのゲート電位の変動を抑制し、出力信号の鈍りを防止することができる。
 本発明のシフトレジスタは、出力信号の鈍りを防止できるという効果を奏するので、表示装置(例えば、液晶表示装置)の駆動回路などに利用することができる。
 1、2、3、4、5…シフトレジスタ
 10、20、30、40、50…単位回路
 11~15、21、22、31~34、41~46、51~54…トランジスタ
 16、47、55…コンデンサ
 100…液晶表示装置
 101…画素アレイ
 102…表示制御回路
 103…走査信号線駆動回路
 104…データ信号線駆動回路

Claims (8)

  1.  単位回路を多段接続して構成されたシフトレジスタであって、
     前記単位回路は、
      クロック端子と出力端子の間に設けられ、ゲート電位に応じてクロック信号を通過させるか否かを切り替える出力トランジスタと、
      一方の導通端子が前記出力トランジスタのゲートに接続された1以上の制御トランジスタとを含み、
      前記出力トランジスタがオン状態で前記クロック信号がハイレベルとなるクロック通過期間では、前記出力トランジスタのゲート電位が前記クロック信号のハイレベル電位よりも高くなるように構成されており、
     前記制御トランジスタの中に、前記出力トランジスタよりもチャネル長が長いトランジスタが含まれていることを特徴とする、シフトレジスタ。
  2.  前記制御トランジスタの中に、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にローレベル電位が印加されるトランジスタが含まれており、当該トランジスタのチャネル長が前記出力トランジスタのチャネル長よりも長いことを特徴とする、請求項1に記載のシフトレジスタ。
  3.  前記制御トランジスタの中に、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にローレベル電位が固定的に印加されるトランジスタが含まれており、当該トランジスタのチャネル長が前記出力トランジスタのチャネル長よりも長いことを特徴とする、請求項2に記載のシフトレジスタ。
  4.  前記制御トランジスタの中に、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にクロック通過期間ではローレベルとなる信号が与えられるトランジスタが含まれており、当該トランジスタのチャネル長が前記出力トランジスタのチャネル長よりも長いことを特徴とする、請求項2に記載のシフトレジスタ。
  5.  前記制御トランジスタの中に、クロック通過期間ではゲートにローレベル電位が与えられてオフ状態となり、他方の導通端子にローレベル電位が印加されるトランジスタが複数含まれており、当該複数のトランジスタのチャネル長がいずれも前記出力トランジスタのチャネル長よりも長いことを特徴とする、請求項2に記載のシフトレジスタ。
  6.  前記制御トランジスタの中に、前記出力トランジスタよりもチャネル長が0.5μm以上長いトランジスタが含まれていることを特徴とする、請求項1に記載のシフトレジスタ。
  7.  前記出力トランジスタのゲートは、前記出力トランジスタの前記出力端子側の導通端子と容量結合されていることを特徴とする、請求項1に記載のシフトレジスタ。
  8.  2次元状に配置された複数の画素回路と、
     請求項1~7のいずれかに記載のシフトレジスタを含んだ駆動回路とを備えた、表示装置。
PCT/JP2009/071617 2009-05-28 2009-12-25 シフトレジスタ WO2010137197A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN200980159346.3A CN102428521B (zh) 2009-05-28 2009-12-25 移位寄存器
US13/264,828 US8559588B2 (en) 2009-05-28 2009-12-25 Shift register

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009128445 2009-05-28
JP2009-128445 2009-05-28

Publications (1)

Publication Number Publication Date
WO2010137197A1 true WO2010137197A1 (ja) 2010-12-02

Family

ID=43222331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071617 WO2010137197A1 (ja) 2009-05-28 2009-12-25 シフトレジスタ

Country Status (3)

Country Link
US (1) US8559588B2 (ja)
CN (1) CN102428521B (ja)
WO (1) WO2010137197A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164327A (ja) * 2010-02-09 2011-08-25 Sony Corp 表示装置および電子機器
JP2012221551A (ja) * 2011-04-07 2012-11-12 Beijing Boe Optoelectronics Technology Co Ltd シフトレジスタとゲートライン駆動装置
WO2012161042A1 (ja) * 2011-05-23 2012-11-29 シャープ株式会社 走査信号線駆動回路、それを備えた表示装置、および走査信号線の駆動方法
WO2013157285A1 (ja) 2012-04-20 2013-10-24 シャープ株式会社 表示装置
WO2013172243A1 (ja) 2012-05-16 2013-11-21 シャープ株式会社 液晶ディスプレイ
WO2014148171A1 (ja) * 2013-03-21 2014-09-25 シャープ株式会社 シフトレジスタ

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2482620B1 (en) * 2009-09-25 2018-02-28 Panasonic Intellectual Property Management Co., Ltd. Light-emitting module device, light-emitting module used in the device, and lighting apparatus provided with the device
DE112011106185B3 (de) * 2010-03-02 2023-05-04 Semiconductor Energy Laboratory Co., Ltd. Impulssignal-Ausgangsschaltung und Schieberegister
CN103988252B (zh) * 2011-12-15 2016-06-22 夏普株式会社 液晶显示装置及其驱动方法
JP6116664B2 (ja) 2013-03-21 2017-04-19 シャープ株式会社 シフトレジスタ
KR102072214B1 (ko) * 2013-07-09 2020-02-03 삼성디스플레이 주식회사 주사 구동 장치 및 이를 포함하는 표시 장치
CN103400558B (zh) * 2013-07-31 2015-09-09 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路及显示装置
CN105513556B (zh) * 2016-02-19 2019-03-22 武汉天马微电子有限公司 一种栅极驱动电路、显示面板及显示装置
CN109952607B (zh) * 2016-08-05 2021-08-24 堺显示器制品株式会社 驱动电路以及显示装置
TWI625578B (zh) * 2017-05-17 2018-06-01 友達光電股份有限公司 顯示面板及其畫素電路
CN107591139B (zh) * 2017-09-22 2020-12-25 京东方科技集团股份有限公司 扫描触发单元、栅极驱动电路及其驱动方法和显示装置
JP2019090927A (ja) * 2017-11-15 2019-06-13 シャープ株式会社 走査信号線駆動回路およびそれを備えた表示装置
CN110688024B (zh) * 2018-07-04 2023-05-26 鸿富锦精密工业(深圳)有限公司 移位寄存器及具有移位寄存器的触控显示装置
CN109712551B (zh) * 2019-01-31 2020-07-28 京东方科技集团股份有限公司 栅极驱动电路及其驱动方法、显示装置及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964375A (ja) * 1995-08-28 1997-03-07 Casio Comput Co Ltd 表示駆動装置
JP2006277860A (ja) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp シフトレジスタ回路およびそれを備える画像表示装置
JP2008140489A (ja) * 2006-12-04 2008-06-19 Seiko Epson Corp シフトレジスタ、走査線駆動回路、データ線駆動回路、電気光学装置及び電子機器
JP2008140490A (ja) * 2006-12-04 2008-06-19 Seiko Epson Corp シフトレジスタ、走査線駆動回路、電気光学装置及び電子機器
JP2008193545A (ja) * 2007-02-07 2008-08-21 Mitsubishi Electric Corp 半導体装置およびシフトレジスタ回路
JP2009252269A (ja) * 2008-04-03 2009-10-29 Sony Corp シフトレジスタ回路、表示パネル及び電子機器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222082A (en) 1991-02-28 1993-06-22 Thomson Consumer Electronics, S.A. Shift register useful as a select line scanner for liquid crystal display
US5434899A (en) 1994-08-12 1995-07-18 Thomson Consumer Electronics, S.A. Phase clocked shift register with cross connecting between stages
US6367148B1 (en) 1997-06-25 2002-04-09 Panduit Corp. Terminal applicator movement control mechanism
US6611248B2 (en) * 2000-05-31 2003-08-26 Casio Computer Co., Ltd. Shift register and electronic apparatus
US7369111B2 (en) * 2003-04-29 2008-05-06 Samsung Electronics Co., Ltd. Gate driving circuit and display apparatus having the same
US7486269B2 (en) 2003-07-09 2009-02-03 Samsung Electronics Co., Ltd. Shift register, scan driving circuit and display apparatus having the same
JP4439358B2 (ja) * 2003-09-05 2010-03-24 株式会社東芝 電界効果トランジスタ及びその製造方法
JP4762655B2 (ja) * 2005-09-28 2011-08-31 株式会社 日立ディスプレイズ 表示装置
CN100565711C (zh) * 2006-02-23 2009-12-02 三菱电机株式会社 移位寄存器电路及设有该电路的图像显示装置
JP2008181039A (ja) * 2007-01-26 2008-08-07 Sony Corp 表示装置、表示装置の駆動方法および電子機器
JP5295529B2 (ja) * 2007-08-13 2013-09-18 株式会社ジャパンディスプレイ 半導体装置
MX2011002580A (es) * 2008-09-23 2011-04-26 3M Innovative Properties Co Cierre de distribucion de fibra con organizador extraible.
US8319528B2 (en) * 2009-03-26 2012-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having interconnected transistors and electronic device including semiconductor device
DE112011106185B3 (de) * 2010-03-02 2023-05-04 Semiconductor Energy Laboratory Co., Ltd. Impulssignal-Ausgangsschaltung und Schieberegister
CN102783025B (zh) * 2010-03-02 2015-10-07 株式会社半导体能源研究所 脉冲信号输出电路和移位寄存器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0964375A (ja) * 1995-08-28 1997-03-07 Casio Comput Co Ltd 表示駆動装置
JP2006277860A (ja) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp シフトレジスタ回路およびそれを備える画像表示装置
JP2008140489A (ja) * 2006-12-04 2008-06-19 Seiko Epson Corp シフトレジスタ、走査線駆動回路、データ線駆動回路、電気光学装置及び電子機器
JP2008140490A (ja) * 2006-12-04 2008-06-19 Seiko Epson Corp シフトレジスタ、走査線駆動回路、電気光学装置及び電子機器
JP2008193545A (ja) * 2007-02-07 2008-08-21 Mitsubishi Electric Corp 半導体装置およびシフトレジスタ回路
JP2009252269A (ja) * 2008-04-03 2009-10-29 Sony Corp シフトレジスタ回路、表示パネル及び電子機器

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164327A (ja) * 2010-02-09 2011-08-25 Sony Corp 表示装置および電子機器
US8669971B2 (en) 2010-02-09 2014-03-11 Japan Display West Inc. Display device and electronic apparatus
JP2012221551A (ja) * 2011-04-07 2012-11-12 Beijing Boe Optoelectronics Technology Co Ltd シフトレジスタとゲートライン駆動装置
CN103503057B (zh) * 2011-05-23 2016-02-10 夏普株式会社 扫描信号线驱动电路、具备它的显示装置和扫描信号线的驱动方法
WO2012161042A1 (ja) * 2011-05-23 2012-11-29 シャープ株式会社 走査信号線駆動回路、それを備えた表示装置、および走査信号線の駆動方法
JP5372268B2 (ja) * 2011-05-23 2013-12-18 シャープ株式会社 走査信号線駆動回路、それを備えた表示装置、および走査信号線の駆動方法
CN103503057A (zh) * 2011-05-23 2014-01-08 夏普株式会社 扫描信号线驱动电路、具备它的显示装置和扫描信号线的驱动方法
US9362892B2 (en) 2011-05-23 2016-06-07 Sharp Kabushiki Kaisha Scanning signal line drive circuit, display device having the same, and driving method for scanning signal line
KR101552420B1 (ko) 2011-05-23 2015-09-10 샤프 가부시키가이샤 주사 신호선 구동 회로, 그것을 구비한 표시 장치 및 주사 신호선의 구동 방법
WO2013157285A1 (ja) 2012-04-20 2013-10-24 シャープ株式会社 表示装置
KR20140133924A (ko) 2012-04-20 2014-11-20 샤프 가부시키가이샤 표시 장치
US9223161B2 (en) 2012-04-20 2015-12-29 Sharp Kabushiki Kaisha Display device
WO2013172243A1 (ja) 2012-05-16 2013-11-21 シャープ株式会社 液晶ディスプレイ
US10838259B2 (en) 2012-05-16 2020-11-17 Sharp Kabushiki Kaisha Liquid crystal display
WO2014148171A1 (ja) * 2013-03-21 2014-09-25 シャープ株式会社 シフトレジスタ
US9632527B2 (en) 2013-03-21 2017-04-25 Sharp Kabushiki Kaisha Shift register

Also Published As

Publication number Publication date
US8559588B2 (en) 2013-10-15
CN102428521A (zh) 2012-04-25
CN102428521B (zh) 2015-02-18
US20120032615A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
WO2010137197A1 (ja) シフトレジスタ
JP4990034B2 (ja) シフトレジスタ回路およびそれを備える画像表示装置
US8031827B2 (en) Shift register
KR102024116B1 (ko) 게이트 구동 회로 및 이를 이용한 표시 장치
JP5128102B2 (ja) シフトレジスタ回路およびそれを備える画像表示装置
JP4912186B2 (ja) シフトレジスタ回路およびそれを備える画像表示装置
US7636412B2 (en) Shift register circuit and image display apparatus equipped with the same
JP5165153B2 (ja) 走査信号線駆動回路およびそれを備えた表示装置、ならびに走査信号線の駆動方法
KR100847092B1 (ko) 시프트 레지스터 회로 및 그것을 구비하는 화상표시장치
TWI529682B (zh) A scanning signal line driving circuit, a display device including the same, and a driving method of a scanning signal line
JP6116664B2 (ja) シフトレジスタ
JP6116665B2 (ja) シフトレジスタ
WO2009084267A1 (ja) シフトレジスタおよび表示装置
WO2012137728A1 (ja) 走査信号線駆動回路およびそれを備えた表示装置
JP2007317344A (ja) シフトレジスタ回路およびそれを備える画像表示装置
WO2011092924A1 (ja) シフトレジスタおよび表示装置
JP2007207411A (ja) シフトレジスタ回路およびそれを備える画像表示装置
CN100412942C (zh) 显示装置
KR101027827B1 (ko) 쉬프트 레지스터 및 그 구동 방법
US20130258225A1 (en) Liquid crystal display device
KR101143803B1 (ko) 쉬프트 레지스터 및 그 구동 방법
KR101073263B1 (ko) 쉬프트 레지스터 및 그 구동 방법
JP2007212916A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159346.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845256

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13264828

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP