WO2010134509A1 - 含フッ素1,6-ジエン型エーテル化合物及び含フッ素重合物 - Google Patents
含フッ素1,6-ジエン型エーテル化合物及び含フッ素重合物 Download PDFInfo
- Publication number
- WO2010134509A1 WO2010134509A1 PCT/JP2010/058327 JP2010058327W WO2010134509A1 WO 2010134509 A1 WO2010134509 A1 WO 2010134509A1 JP 2010058327 W JP2010058327 W JP 2010058327W WO 2010134509 A1 WO2010134509 A1 WO 2010134509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- fluorine
- formula
- ether compound
- diene
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C43/00—Ethers; Compounds having groups, groups or groups
- C07C43/02—Ethers
- C07C43/18—Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring
- C07C43/192—Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring containing halogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F216/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
- C08F216/12—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
- C08F216/125—Monomers containing two or more unsaturated aliphatic radicals, e.g. trimethylolpropane triallyl ether or pentaerythritol triallyl ether
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/06—Systems containing only non-condensed rings with a five-membered ring
- C07C2601/10—Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated
Definitions
- the present invention relates to a fluorine-containing 1,6-diene ether compound, a fluorine-containing polymer obtained using the same, and a method for producing the same.
- PTFE Polytetrafluoroethylene
- Cytop (registered trademark) and Teflon (registered trademark) AF are amorphous and solvent-soluble transparent polymers, which are used for low-reflective films, etc., but have a low glass transition point and their uses. Subject to restrictions.
- octafluorocyclopentene is an industrially produced cycloolefin, but its use as a monomer is very few because of poor polymerizability.
- the present applicant has already reported that a fluorine-containing polymer having a high glass transition point can be obtained by polymerizing a 1,6-diene ether compound obtained by reacting OFCP with homoallyl alcohol. (See Patent Document 1). However, a material satisfying all the characteristics of refractive index, heat resistance and glass transition point has not yet been obtained.
- the present inventors have used a specific fluorine-containing 1,6-diene ether compound as a raw material monomer, so that a low refractive index, a high glass transition point, a high The inventors have found that a highly functional fluorine-containing polymer exhibiting transparency and solvent solubility can be obtained, and the present invention has been completed.
- a fluorine-containing polymer obtained by 5 A fluorine-containing polymer comprising a structural unit represented by the formula [3] and / or the formula [4], (Wherein R 1 represents an optionally substituted alkyl group having 1 to 12 carbon atoms.) 6). 5 a fluorine-containing polymer, wherein R 1 is an alkyl group having 1 to 12 carbon atoms or a fluoroalkyl group having 1 to 12 carbon atoms; 7).
- a thin film comprising any of the fluoropolymers 4 to 7, 10.
- Two or three 1,6-diene ether compounds, or two or three 1,6-diene ether compounds and a 1,6-diene ether compound represented by the formula [2] are used as radical generators.
- the fluorine-containing polymer of the present invention is a high-functional polymer exhibiting a low refractive index, a high glass transition point, high transparency, and solvent solubility, and many uses are expected as a coating material and a bulk material. For example, it is effective for applications in advanced technology fields such as optical materials such as low-reflection films and cladding of optical waveguides, semiconductor materials such as pellicles and resists in semiconductor lithography, and protective film materials, insulating film materials, and water-repellent materials. is there.
- This fluorine-containing polymer provides a material that gives desired properties by adjusting not only high transparency, high heat resistance, low refractive index, low dielectric constant, and low surface energy but also refractive index and heat resistance. .
- the 1,6-diene ether compound of the present invention is a compound represented by the above formula [1].
- R 1 represents an optionally substituted alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 18 carbon atoms.
- R 1 include a linear alkyl group, a linear fluoroalkyl group, a branched alkyl group, a branched fluoroalkyl group, a cyclic alkyl group, a cyclic fluoroalkyl group, and a phenyl group.
- a linear alkyl group, a linear fluoroalkyl group, a branched alkyl group, a branched fluoroalkyl group, a cyclic alkyl group, and a cyclic fluoroalkyl group are preferable, and low refractive index From the viewpoint of obtaining a polymer having a high molecular weight, a linear fluoroalkyl group, a branched fluoroalkyl group, and a cyclic fluoroalkyl group are more preferable. preferable.
- linear, branched or cyclic alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, s-butyl group, tert-butyl, cyclobutyl, 1-methylcyclopropyl, 2-methylcyclopropyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n -Butyl group, 1,1-dimethyl-n-propyl group, 1,2-dimethyl-n-propyl group, 2,2-dimethyl-n-propyl group, 1-ethyl-n-propyl group, cyclopentyl group, 1 -Methylcyclobutyl, 2-methylcyclobutyl, 3-methylcyclobutyl, 1,2-dimethylcyclopropyl, 2,3-dimethylcyclopropyl
- linear, branched or cyclic fluoroalkyl group include trifluoromethyl group, pentafluoroethyl group, 2,2,2-trifluoroethyl group, heptafluoropropyl group, 2,2, 3,3,3-pentafluoropropyl group, 2,2,3,3-tetrafluoropropyl group, 2,2,2-trifluoro-1- (trifluoromethyl) ethyl group, nonafluorobutyl group, 4, 4,4-trifluorobutyl group, undecafluoropentyl group, 2,2,3,3,4,4,5,5,5-nonafluoropentyl group, 2,2,3,3,4,4,4 5,5-octafluoropentyl group, tridecafluorohexyl group, 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl group, 2,2,3, 3,4,4,5,5,6,6- Perfluoro hexyl group,
- the method for producing the 1,6-diene ether compound of the present invention is not particularly limited. As an example, there may be mentioned a method comprising a first step of producing a homoallyl alcohol derivative and a second step of producing a 1,6-diene ether compound using this homoallyl alcohol derivative as one raw material.
- the first step for producing a homoallyl alcohol derivative can be carried out by a method of reacting an aldehyde with an allyl metal compound or a method of reducing in a reaction system after reacting a carboxylic acid ester with an allyl metal compound.
- the method of reacting an aldehyde and an allyl metal compound is to produce a homoallyl alcohol derivative by nucleophilic addition of an allyl metal compound to an aldehyde.
- allyl metal compound to be used examples include allyl magnesium halide, allyl aluminum halide, allyl lithium, allyl trialkyl tin, allyl tin halide, allyl trialkyl silicon, allyl silicon halide, allyl trialkoxy silicon, among others. It is preferable to use allylmagnesium bromide.
- the amount of the allyl metal compound used is preferably 0.1 to 10 mol times, more preferably 0.2 to 5 mol times relative to the aldehyde.
- aliphatic hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, etc .
- diethyl ether diisopropyl ether, dibutyl ether
- Ethers such as cyclopentyl methyl ether, tetrahydrofuran, 1,4-dioxane
- aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene
- alcohols such as methanol, ethanol, 2-propanol, 2-butanol, etc.
- the amount of the solvent is usually 0.1 to 100 parts by mass with respect to 1 part by mass of the aldehyde, but 1 to 20 parts by mass is preferable from the viewpoint of safety, economy and the like.
- the reaction temperature is usually ⁇ 100 to 200 ° C., preferably ⁇ 20 to 30 ° C.
- the reaction time is usually 0.1 to 48 hours, preferably 12 to 24 hours.
- the desired product can be obtained by performing general post-treatment and purifying as necessary. Examples of the purification method include a silica gel column chromatography method, a distillation method, and the like, but a distillation method is preferred because of the ease of operation.
- the method in which the carboxylic acid ester and the allyl metal compound are reacted and then reduced in the reaction system is a method in which a reaction intermediate formed by nucleophilic addition of the allyl metal compound to the carboxylic acid ester is converted into a metal reducing agent or a Mayan wine.
- a homoallylic alcohol derivative is produced by reduction by addition of a reaction accelerator that promotes Pondolf-Varley reduction.
- allyl metal compound to be used examples include allyl magnesium halide, allyl aluminum halide, allyl lithium, allyl trialkyl tin, allyl tin halide, allyl trialkyl silicon, allyl silicon halide, allyl trialkoxy silicon, among others. It is preferable to use allylmagnesium bromide.
- the amount of the allyl metal compound used is preferably 0.1 to 10 moles, more preferably 0.2 to 5 moles, relative to the carboxylic acid ester.
- the types of metal reducing agents used include aluminum hydride compounds such as lithium aluminum hydride, diisobutylaluminum hydride and sodium bis (2-methoxyethoxy) aluminum hydride; hydrogen such as sodium borohydride and lithium borohydride.
- aluminum hydride compounds such as lithium aluminum hydride, diisobutylaluminum hydride and sodium bis (2-methoxyethoxy) aluminum hydride
- hydrogen such as sodium borohydride and lithium borohydride.
- alkali metal hydrides such as borohydride compounds, sodium hydride and potassium hydride.
- sodium borohydride is preferably used.
- the amount of the metal reducing agent used is preferably 0.1 to 10 mol times, more preferably 0.2 to 5 mol times based on the carboxylic acid ester.
- the reaction accelerator to be used include alcohols such as methanol, ethanol, 2-propanol, and 2-butanol. Among them, 2-propanol is preferable.
- solvents can be used as long as they do not affect the reaction, but aliphatic hydrocarbons such as pentane, hexane, heptane, octane, cyclohexane, etc .; diethyl ether, diisopropyl ether, dibutyl ether, Ethers such as cyclopentyl methyl ether, tetrahydrofuran and 1,4-dioxane; aromatic hydrocarbons such as benzene, toluene, xylene and mesitylene can be used.
- the amount of the solvent is usually 0.1 to 100 parts by mass with respect to 1 part by mass of the carboxylic acid ester, but 1 to 20 parts by mass is preferable from the viewpoint of safety and economy.
- the reaction temperature is usually ⁇ 100 to 200 ° C., preferably ⁇ 20 to 100 ° C.
- the reaction time is usually 0.1 to 48 hours, preferably 12 to 24 hours.
- the desired product can be obtained by performing general post-treatment and purifying as necessary. Examples of the purification method include a silica gel column chromatography method, a distillation method, and the like, but a distillation method is preferred because of the ease of operation.
- the second step is a step of obtaining the 1,6-diene ether compound by reacting the homoallyl alcohol derivative obtained in the first step with OFCP in the presence of a base.
- a homoallyl alcohol derivative is led to its alkoxide by a base, and this alkoxide is reacted with OFCP to obtain a 1,6-diene ether compound.
- the amount of OFCP used is preferably 0.1 to 10 mol times, more preferably 0.2 to 5 mol times relative to the homoallyl alcohol derivative.
- Usable bases include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide; alkali metal alkoxides such as sodium methoxide, sodium ethoxide, sodium tert-butoxide and potassium tert-butoxide; hydrogen Examples thereof include alkali metal hydrides such as sodium hydride, among which potassium hydroxide is preferable.
- the amount of the base used is preferably 0.5 to 10 mol times, more preferably 1 to 5 mol times the homoallylic alcohol derivative of the substrate.
- a solvent may or may not be used.
- the type thereof is not particularly limited as long as it does not adversely influence the reaction.
- aliphatic hydrocarbons such as pentane, hexane, heptane, octane and cyclohexane; diethyl ether, diisopropyl ether, dibutyl ether, cyclopentylmethyl
- ethers such as ether, tetrahydrofuran, and 1,4-dioxane
- aromatic hydrocarbons such as benzene, toluene, xylene, and mesitylene.
- the reaction temperature is usually ⁇ 100 to 200 ° C., preferably ⁇ 20 to 20 ° C.
- the reaction time is usually 0.1 to 24 hours, preferably 1 to 5 hours.
- the desired product can be obtained by performing general post-treatment and purifying as necessary. Examples of the purification method include a silica gel column chromatography method, a distillation method, and the like, but a distillation method is preferred because the operation is simple.
- the fluorine-containing polymer of the present invention is obtained by polymerizing 1,6-diene ether compounds represented by the following formula [1] in the presence of a radical generator, or 1,6 represented by the formula [1]. It can be obtained by polymerizing a diene ether compound and a 1,6-diene ether compound represented by the formula [2] in the presence of a radical generator.
- R 1 represents an optionally substituted alkyl group having 1 to 12 carbon atoms.
- the compounds represented by the formula [1] may be used alone or in combination of two or more. That is, the fluorine-containing polymer of the present invention is obtained by polymerizing a homopolymer obtained by polymerizing one type of compound represented by the formula [1] and two or more types of compounds represented by the formula [1].
- the radical generator is not particularly limited, and examples thereof include acetyl peroxide, benzoyl peroxide, methyl ethyl ketone peroxide, cyclohexanone peroxide, hydrogen peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, ditert-butyl peroxide, Peroxides such as dicumyl peroxide, dilauroyl peroxide, tert-butylperoxyacetate, tert-butylperoxypivalate; 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4- Dimethylvaleronitrile), (1-phenylethyl) azodiphenylmethane, 2,2'-azobis
- the temperature of the polymerization reaction can be appropriately selected according to the type of radical generator used, but is preferably 60 to 120 ° C.
- the polymerization time is preferably 4 to 48 hours.
- R 1 represents an optionally substituted alkyl group having 1 to 12 carbon atoms.
- the fluorine-containing polymer of the present invention exhibits a low refractive index as described above, but the refractive index at a wavelength of 633 nm is preferably 1.30 to 1.45.
- the fluorine-containing polymer of the present invention described above can be used as a varnish because it is solvent-soluble.
- the solvent used for the preparation of the varnish is not particularly limited as long as the fluorine-containing polymer and, if necessary, the additive added can be dissolved or dispersed uniformly, but particularly the fluorine-containing polymer is uniformly dissolved. Those are preferred.
- the solid content concentration in the varnish is not particularly limited as long as the fluorine-containing polymer is uniformly dissolved or dispersed, but the solid content concentration is preferably 0.1 to 50% by mass, more preferably 0.8. 1 to 20% by mass.
- Examples of the solvent used for the preparation of the varnish include ester series such as diethyl oxalate, ethyl acetoacetate, ethyl acetate, isobutyl acetate, ethyl butyrate, ethyl lactate, ethyl 3-methoxypropionate, and methyl 2-hydroxyisobutyrate.
- ester series such as diethyl oxalate, ethyl acetoacetate, ethyl acetate, isobutyl acetate, ethyl butyrate, ethyl lactate, ethyl 3-methoxypropionate, and methyl 2-hydroxyisobutyrate.
- Solvents such as methyl ethyl ketone, methyl isobutyl ketone, 2-hexanone and cyclohexanone; propylene glycol solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate; cellosolv solvents such as methyl cellosolve and methyl cellosolve acetate; Ether solvents such as dibutyl ether, tetrahydrofuran and 1,4-dioxane; alcohol solvents such as ethanol, isopropanol and isopentyl alcohol; toluene, Aromatic hydrocarbon solvents cyclohexylene and the like; dichloromethane, 1,2-dichloroethane, and chlorinated hydrocarbon solvents trichlorethylene, and the like. These solvents may be used alone or as a mixed solvent of two or more as required.
- the thin film can be formed by applying the above-described varnish to a substrate or the like and then heating as necessary.
- the coating method is arbitrary, and examples thereof include a roll coating method, a micro gravure coating method, a gravure coating method, a flow coating method, a bar coating method, a spray coating method, a die coating method, a spin coating method, and a dip coating method.
- the optimum coating method can be determined in consideration of the balance of productivity, film thickness controllability, yield, and the like.
- the manufacturing method of a thin film is not limited to the said coating method, You may use other methods, such as a vapor deposition method.
- Measurement solvent CDCl 3 (Example 5), (CD 3 ) 2 CO (Example 6) Reference substance: Tetramethylsilane (0 ppm) [2] 19 F NMR (1) Synthesis Example 1 and Examples 1 and 3 Equipment: R-1200F manufactured by Hitachi, Ltd. Measurement solvent: diethyl ether Reference material: trifluoroacetic acid (0 ppm) (2) Example 5 Equipment: INOVA-400 manufactured by Varian Technologies Japan Limited Measuring solvent: CDCl 3 Reference substance: trifluoroacetic acid (0 ppm) [3] Gel permeation chromatography (GPC) (1) Examples 2 and 4 Equipment: LC-2000 Plus series manufactured by JASCO Corporation Column: Polymer Laboratories Ltd.
- Example 2 Homofluoropolymerization of 1- (1,1,1-trifluoro-4-penten-2-yloxy) -2,3,3,4,4,5,5-heptafluorocyclopentene Glass polymerization To the tube, 1- (1,1,1-trifluoro-4-penten-2-yloxy) -2,3,3,4,4,5,5-heptafluorocyclopentene obtained in Example 1 was added. 33 g (1.0 mmol) and 2 mg of benzoyl peroxide (manufactured by Kishida Chemical Co., Ltd., 25% water content) (0.5 mol%) were added, (1) degassing under cooling at -78 ° C., and (2) room temperature melting 3 Repeated and sealed.
- benzoyl peroxide manufactured by Kishida Chemical Co., Ltd., 25% water content
- the obtained polymer was dissolved in a small amount of tetrahydrofuran, dropped into methanol, reprecipitated and decanted, and then the solvent contained was distilled off under reduced pressure to give 1- (1,1,1- 0.071 g (22% yield) of a polymer of trifluoro-4-penten-2-yloxy) -2,3,3,4,4,5,5-heptafluorocyclopentene was obtained.
- the weight average molecular weight Mw measured by polystyrene conversion by GPC of the obtained polymer was 15,800.
- Example 4 Single bulk polymerization of 1- (1-cyclohexyl-3-buten-1-yloxy) -2,3,3,4,4,5,5-heptafluorocyclopentene 1- (1-Cyclohexyl-3-buten-1-yloxy) -2,3,3,4,4,5,5-heptafluorocyclopentene obtained in 3 and 0.3 mg of benzoyl peroxide (Kishida Chemical Co., Ltd., 25% water content) (0.5 mol%) was added, and (1) degassing under cooling at -78 ° C and (2) room temperature melting were repeated three times and sealed. After polymerization at 80 ° C.
- the obtained polymer was dissolved in a small amount of tetrahydrofuran and dropped into methanol. After reprecipitation and decantation, the solvent contained was distilled off under reduced pressure to give 1- (1-cyclohexyl-3- 0.048 g (yield 14%) of a polymer of buten-1-yloxy) -2,3,3,4,4,5,5-heptafluorocyclopentene was obtained.
- the weight average molecular weight Mw measured by polystyrene conversion by GPC of the obtained polymer was 11,600.
- Example 6 Single bulk polymerization of 1- (4-penten-2-yloxy) -2,3,3,4,4,5,5-heptafluorocyclopentene A glass polymerization tube was obtained in Example 5.
- Example 7 Measurement of refractive index 3 parts by mass of the polymer obtained in Example 2, Example 4 and Example 6 were each dissolved in 97 parts by mass of ethyl acetate, and a varnish having a solid content concentration of 3% by mass was obtained. Prepared. Each varnish was applied on a glass substrate by spin coating (300 rpm ⁇ 5 seconds, followed by 1,500 rpm ⁇ 30 seconds). The glass substrate is heated on a hot plate at 60 ° C. for 30 minutes to remove the solvent in the coating film, and the polymer coating films obtained in Example 2, Example 4 and Example 6 are obtained. It was.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
また、サイトップ(登録商標)やテフロン(登録商標)AFは、非晶質、かつ、溶剤可溶の透明ポリマーで、低反射膜などに利用されているが、ガラス転移点が低く、その用途に制限を受ける。
本出願人は、OFCPとホモアリルアルコールとを反応させて得られる1,6-ジエン型エーテル化合物を重合することで、高いガラス転移点を有する含フッ素重合体が得られることを既に報告している(特許文献1参照)。
しかし、屈折率、耐熱性およびガラス転移点の全ての特性を満足する材料は未だ得られていない。
1. 式[1]で表されることを特徴とする1,6-ジエン型エーテル化合物、
2. 前記R1が、置換されていてもよい炭素原子数1~12のアルキル基である1の1,6-ジエン型エーテル化合物、
3. 前記R1が、炭素原子数1~12のアルキル基または炭素原子数1~12のフルオロアルキル基である2の1,6-ジエン型エーテル化合物、
4. 2もしくは3の1,6-ジエン型エーテル化合物同士の重合により、または2もしくは3の1,6-ジエン型エーテル化合物と式[2]で表される1,6-ジエン型エーテル化合物との重合により得られることを特徴とする含フッ素重合物、
6. 前記R1が、炭素原子数1~12のアルキル基または炭素原子数1~12のフルオロアルキル基である5の含フッ素重合物、
7. 波長633nmにおける屈折率が、1.30~1.45である4~6のいずれかの含フッ素重合物、
8. 4~7のいずれかの含フッ素重合物を含むワニス、
9. 4~7のいずれかの含フッ素重合物を含む薄膜、
10. 2もしくは3の1,6-ジエン型エーテル化合物同士、または2もしくは3の1,6-ジエン型エーテル化合物と式[2]で表される1,6-ジエン型エーテル化合物とを、ラジカル発生剤の存在下で重合させることを特徴とする式[3]および/または式[4]で表される構造単位を含む含フッ素重合物の製造方法
を提供する。
この含フッ素重合物は、高透明、高耐熱、低屈折率、低誘電率、低表面エネルギーだけで無く、屈折率や耐熱性を調節することにより所望の特性を与える素材を提供するものである。
本発明の1,6-ジエン型エーテル化合物は、上記式[1]で表される化合物である。
式[1]において、R1は、置換されていてもよい炭素原子数1~12のアルキル基または炭素原子数6~18のアリール基を表す。
R1の具体例としては、直鎖状アルキル基、直鎖状フルオロアルキル基、分岐状アルキル基、分岐状フルオロアルキル基、環状アルキル基、環状フルオロアルキル基、フェニル基等が挙げられる。
これらの中でも、化合物の重合反応性の観点から、直鎖状アルキル基、直鎖状フルオロアルキル基、分岐状アルキル基、分岐状フルオロアルキル基、環状アルキル基、環状フルオロアルキル基が好ましく、低屈折率の重合物を得る観点から直鎖状フルオロアルキル基、分岐状フルオロアルキル基、環状フルオロアルキル基がより好ましく、化合物の生体安全性の観点から、炭素原子数1~6のフルオロアルキル基が特に好ましい。
これらのアルキル基はさらに置換されていてもよい。
なお、本発明の1,6-ジエン型エーテル化合物は、25℃において液状であることが好ましい。
アルデヒドとアリル金属化合物とを反応させる方法は、アリル金属化合物をアルデヒドに求核付加させることにより、ホモアリルアルコール誘導体を製造するものである。
使用するアリル金属化合物の種類としては、アリルマグネシウムハライド、アリルアルミニウムハライド、アリルリチウム、アリルトリアルキルスズ、アリルスズハライド、アリルトリアルキルケイ素、アリルケイ素ハライド、アリルトリアルコキシケイ素等が挙げられるが、中でもアリルマグネシウムブロミドを用いることが好ましい。
アリル金属化合物の使用量は、アルデヒドに対して0.1~10モル倍が好ましく、0.2~5モル倍がより好ましい。
溶媒量は、通常、アルデヒド1質量部に対し、0.1~100質量部であるが、安全性、経済性等の観点から、1~20質量部が好ましい。
反応時間は、通常、0.1~48時間であるが、12~24時間が好ましい。
反応終了後は、一般的な後処理をし、必要に応じて精製することで、目的物を得ることができる。
精製法は、シリカゲルカラムクロマトグラフィーによる方法、蒸留による方法等が挙げられるが、操作の簡便さから蒸留による方法が好ましい。
使用するアリル金属化合物の種類としては、アリルマグネシウムハライド、アリルアルミニウムハライド、アリルリチウム、アリルトリアルキルスズ、アリルスズハライド、アリルトリアルキルケイ素、アリルケイ素ハライド、アリルトリアルコキシケイ素等が挙げられるが、中でもアリルマグネシウムブロミドを用いることが好ましい。
アリル金属化合物の使用量は、カルボン酸エステルに対して0.1~10モル倍が好ましく、0.2~5モル倍がより好ましい。
金属還元剤の使用量は、カルボン酸エステルに対して0.1~10モル倍が好ましく、0.2~5モル倍がより好ましい。
使用する反応促進剤の種類としては、メタノール、エタノール、2-プロパノール、2-ブタノール等のアルコール類が挙げられるが、中でも2-プロパノールが好ましい。
溶媒量は、通常、カルボン酸エステル1質量部に対し、0.1~100質量部であるが、安全性、経済性の観点から、1~20質量部が好ましい。
反応時間は、通常、0.1~48時間であるが、12~24時間が好ましい。
反応終了後は、一般的な後処理をし、必要に応じて精製することで、目的物を得ることができる。
精製法は、シリカゲルカラムクロマトグラフィーによる方法、蒸留による方法等が挙げられるが、操作の簡便さから蒸留による方法が好ましい。
この反応は、ホモアリルアルコール誘導体を塩基によってそのアルコキシドへと導き、このアルコキシドとOFCPとを反応させて1,6-ジエン型エーテル化合物を得るものである。
この場合、OFCPの使用量は、ホモアリルアルコール誘導体に対して0.1~10モル倍が好ましく、0.2~5モル倍がより好ましい。
塩基の使用量は、基質のホモアリルアルコール誘導体に対して0.5~10モル倍が好ましく、1~5モル倍がより好ましい。
溶媒の使用量は特に制限はないが、多量に使用することは経済性の面から好ましくない。
反応時間は、通常、0.1~24時間であるが、1~5時間であることが好ましい。
反応終了後は、一般的な後処理をし、必要に応じて精製することで、目的物を得ることができる。
精製法としては、シリカゲルカラムクロマトグラフィーによる方法、蒸留による方法等が挙げられるが、操作が簡便であるため蒸留による方法が好ましい。
すなわち、本発明の含フッ素重合物には、1種類の式[1]で表される化合物を重合させてなるホモポリマー、2種以上の式[1]で表される化合物を重合させてなるコポリマー、1種類の式[1]で表される化合物と式[2]で表される化合物とを重合させてなるコポリマー、2種類以上の式[1]で表される化合物と式[2]で表される化合物とを重合させてなるコポリマーが含まれる。
上記ラジカル発生剤としては、特に限定されるものではないが、例えば、アセチルペルオキシド、ベンゾイルペルオキシド、メチルエチルケトンペルオキシド、シクロヘキサノンペルオキシド、過酸化水素、tert-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジtert-ブチルペルオキシド、ジクミルペルオキシド、ジラウロイルペルオキシド、tert-ブチルペルオキシアセテート、tert-ブチルペルオキシピバラート等の過酸化物類;2,2′-アゾビスイソブチロニトリル、2,2′-アゾビス(2,4-ジメチルバレロニトリル)、(1-フェニルエチル)アゾジフェニルメタン、2,2′-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル2,2′-アゾビスイソブチラート、2,2′-アゾビス(2-メチルブチロニトリル)、1,1′-アゾビス(1-シクロヘキサンカルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2,2′-アゾビス(2,4,4-トリメチルペンタン)、2-フェニルアゾ-2,4-ジメチル-4-メトキシバレロニトリル、2,2′-アゾビス(2-メチルプロパン)等のアゾ系化合物類;過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩類などが挙げられる。
重合時間は、4~48時間が好ましい。
以上のような重合反応によって、式[3]および/または式[4]で表される構造単位を含むと推測される、含フッ素重合物を得ることができる。
この場合、含フッ素重合物において、式[3]および/または式[4]で表される構造単位の含有量は、重合物中1~100質量%が好ましい。
ワニスの調製に用いられる溶剤は、含フッ素重合物および必要に応じて添加する添加剤が、均一に溶解または分散するものであれば特に制限はないが、特に含フッ素重合物を均一に溶解するものが好ましい。
ワニス中の固形分濃度は、含フッ素重合物が均一に溶解または分散する範囲であれば特に限定されるものではないが、固形分濃度0.1~50質量%が好ましく、より好ましくは0.1~20質量%である。
なお、本発明のワニスには、必要に応じ、目的とする特性を発揮する各種添加剤を加えてもよい。
塗布方法は任意であり、例えば、ロールコート法、マイクログラビアコート法、グラビアコート法、フローコート法、バーコート法、スプレーコート法、ダイコート法、スピンコート法、ディップコート法等が挙げられ、これらの方法の中から、生産性、膜厚コントロール性、歩留まり等のバランスを考慮して、最適な塗布法を決定することができる。
なお、薄膜の製造方法は、上記塗布法に限定されるものではなく、蒸着法等のその他の方法を用いてもよい。
[1]1H NMR
(1)合成例1,2および実施例1,3
装置:日本電子(株)製 GSX-400
測定溶媒:CDCl3
基準物質:テトラメチルシラン(0ppm)
(2)実施例5,6
装置:日本電子(株)製 JNM-ECX300
測定溶媒:CDCl3(実施例5),(CD3)2CO(実施例6)
基準物質:テトラメチルシラン(0ppm)
[2]19F NMR
(1)合成例1および実施例1,3
装置:(株)日立製作所製 R-1200F
測定溶媒:ジエチルエーテル
基準物質:トリフルオロ酢酸(0ppm)
(2)実施例5
装置:バリアン・テクノロジーズ・ジャパン・リミテッド製 INOVA-400
測定溶媒:CDCl3
基準物質:トリフルオロ酢酸(0ppm)
[3]ゲル浸透クロマトグラフィー(GPC)
(1)実施例2,4
装置:日本分光(株)製 LC-2000Plus series
カラム:Polymer Laboratories Ltd.製 PLgel 5μ MIXED-C×2本
カラム温度:35℃
検出器:RI
溶離液:THF
カラム流速:1.0mL/分
(2)実施例6
装置:東ソー(株)製 HLC-8220GPC
カラム:SHODEX GPC-8051×2本 + SHODEX GPC KF-G(ガードカラム)
リファレンスカラム:SHODEX GPC KF-800RH×2本
カラム温度:40℃
検出器:RI
溶離液:THF
カラム流速:1.0mL/分
リファレンスカラム流速:0.2mL/分
[4]屈折率
装置:ジェー・エー・ウーラム・ジャパン(株)製 高速分光エリプソメトリー M2000-VI
アルゴン雰囲気下、1.0Mアリルマグネシウムブロミド/ジエチルエーテル溶液40ml(40mmol)を、0℃に冷却したトリフルオロ酢酸エチル5.68g(40mmol)に滴下した。この反応液をそのまま0℃で30分間撹拌した後、20℃に昇温し、さらに2時間撹拌した。次に、この反応液に2-プロパノール5.0ml(65mmol)を加えて24時間加熱還流した。その後、反応液に3.0M塩酸を加え、飽和食塩水で3回洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を留去し、得られた粗生成物をクーゲルロールによる蒸留(オーブン温度140℃,大気圧下)で精製し、1,1,1-トリフルオロ-4-ペンテン-2-オール3.85g(収率69%)を得た。得られた目的物の1H NMR、19F NMRの結果を以下に示す。
1H NMR(400MHz):δ 2.20~2.30(1H,m),2.34~2.43(1H,m),2.49~2.55(1H,m),3.95~4.03(1H,m),5.22~5.27(2H,m),5.78~5.89(1H,m)ppm.
19F NMR(56.46MHz):δ -1.83(3F,s)ppm.
アルゴン雰囲気下、1.0Mアリルマグネシウムブロミド/ジエチルエーテル溶液20ml(20mmol)を、0℃に冷却したシクロヘキサンカルボキシアルデヒド2.24g(20mmol)に滴下した。この反応液をそのまま0℃で30分間撹拌した後、20℃に昇温し、さらに24時間撹拌した。その後、反応液に3.0M塩酸を加え、飽和食塩水で3回洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を留去し、得られた粗生成物をクーゲルロールによる減圧蒸留(オーブン温度160℃,4mmHg)で精製し、1-シクロへキシル-3-ブテン-1-オール2.70g(収率88%)を得た。得られた目的物の1H NMRの結果を以下に示す。
1H NMR(400MHz):δ 0.93~21.41(6H,m),1.53~1.91(6H,m),2.07~2.22(1H,m),2.26~2.38(1H,m),3.35~3.46(1H,m),5.10~5.13(1H,m),5.13~5.17(1H,m),5.76~5.94(1H,m)ppm.
1H NMR(400MHz):δ 2.65(2H,dd,J=6Hz,6Hz),4.76~4.86(1H,m),5.26~5.33(2H,m),5.71~5.84(2H,m)ppm.
19F NMR(56.46MHz):δ -77.5~-80.9(1F,m),-53.2~-55.0(2F,m),-37.4~-40.9(4F,m),-0.81(3F,s)ppm.
ガラス製重合管に、実施例1で得られた1-(1,1,1-トリフルオロ-4-ペンテン-2-イルオキシ)-2,3,3,4,4,5,5-ヘプタフルオロシクロペンテン0.33g(1.0mmol)およびベンゾイルペルオキシド2mg(キシダ化学(株)製,25%含水)(0.5mol%)を入れ、(1)-78℃冷却下脱気、および(2)室温融解を3回繰り返し、封管した。80℃で24時間重合後、得られたポリマーを少量のテトラヒドロフランに溶かし、メタノール中に滴下し、再沈殿、デカンテーションの後、含有溶媒を減圧留去し、1-(1,1,1-トリフルオロ-4-ペンテン-2-イルオキシ)-2,3,3,4,4,5,5-ヘプタフルオロシクロペンテンの重合物0.071g(収率22%)を得た。得られた重合物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは、15,800であった。
1H NMR(400MHz):δ 0.93~1.39(6H,m),1.56~1.88(6H,m),1.95~2.48(2H,m),3.35~3.46(1H,m),5.10~5.13(1H,m),5.13~5.17(1H,m),5.76~5.94(1H,m)ppm.
19F NMR(56.46MHz):δ -81.8~-87.0(1F,m),-51.0~-53.7(2F,m),-37.2~-40.0(2F,m),-35.4~-37.2(2F,m)ppm.
ガラス製重合管に、実施例3で得られた1-(1-シクロヘキシル-3-ブテン-1-イルオキシ)-2,3,3,4,4,5,5-ヘプタフルオロシクロペンテン0.35g(1.0mmol)およびベンゾイルペルオキシド2mg(キシダ化学(株)製,25%含水)(0.5mol%)を入れ、(1)-78℃冷却下脱気、および(2)室温融解を3回繰り返し、封管した。80℃で24時間重合後、得られたポリマーを少量のテトラヒドロフランに溶かし、メタノール中に滴下し、再沈殿、デカンテーションの後、含有溶媒を減圧留去し、1-(1-シクロヘキシル-3-ブテン-1-イルオキシ)-2,3,3,4,4,5,5-ヘプタフルオロシクロペンテンの重合物0.048g(収率14%)を得た。得られた重合物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは、11,600であった。
1H NMR(300MHz):δ 1.35~1.42(3H,m),2.30~2.56(2H,m),4.69(1H,dq,J=2Hz,6Hz),5.09~5.22(2H,m),5.66~5.85(1H,m)ppm.
19F NMR(376MHz):δ -85.4~-85.7(1F,m),-53.9~-54.1(2F,m),-40.6~-40.9(2F,m),-38.8~-39.0(2F,m)ppm.
ガラス製重合管に、実施例5で得られた1-(4-ペンテン-2-イルオキシ)-2,3,3,4,4,5,5-ヘプタフルオロシクロペンテン0.83g(3.0mmol)およびベンゾイルペルオキシド4mg(キシダ化学(株)製,25%含水)(0.5mol%)を入れ、室温下(およそ20℃)、4mmHgで30分間脱気し、封管した。80℃で24時間重合後、得られたポリマーを少量の酢酸エチルに溶かし、メタノール中に滴下し、再沈殿、デカンテーションの後、含有溶媒を減圧留去し、1-(4-ペンテン-2-イルオキシ)-2,3,3,4,4,5,5-ヘプタフルオロシクロペンテンの重合物0.65g(収率78%)を得た。得られた重合物のGPCによるポリスチレン換算で測定される重量平均分子量Mwは、36,700であった。得られた目的物の1H NMRの結果を以下に示す。
1H NMR(300MHz):δ 1.15~1.69(3H,m),1.69~3.48(5H,m),4.19~4.79(1H,m)ppm.
実施例2、実施例4および実施例6で得られた重合物3質量部を、それぞれ酢酸エチル97質量部に溶解させ、固形分濃度3質量%のワニスを調製した。このワニスをそれぞれガラス基板上にスピンコート法(300rpm×5秒間、引き続いて1,500rpm×30秒間)によって塗布した。このガラス基板を、ホットプレート上60℃にて30分間加熱することで塗布膜中の溶媒を除去し、実施例2、実施例4および実施例6で得られた重合物の塗膜をそれぞれ得た。
得られたそれぞれの塗膜の波長633nmにおける屈折率を測定したところ、それぞれ1.36(実施例2の重合物の塗膜)、1.42(実施例4の重合物の塗膜)および1.39(実施例6の重合物の塗膜)であった。
Claims (10)
- 前記R1が、置換されていてもよい炭素原子数1~12のアルキル基である請求項1記載の1,6-ジエン型エーテル化合物。
- 前記R1が、炭素原子数1~12のアルキル基または炭素原子数1~12のフルオロアルキル基である請求項2記載の1,6-ジエン型エーテル化合物。
- 前記R1が、炭素原子数1~12のアルキル基または炭素原子数1~12のフルオロアルキル基である請求項5記載の含フッ素重合物。
- 波長633nmにおける屈折率が、1.30~1.45である請求項4~6のいずれか1項記載の含フッ素重合物。
- 請求項4~7のいずれか1項記載の含フッ素重合物を含むワニス。
- 請求項4~7のいずれか1項記載の含フッ素重合物を含む薄膜。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011514413A JP5652919B2 (ja) | 2009-05-19 | 2010-05-18 | 含フッ素1,6−ジエン型エーテル化合物及び含フッ素重合物 |
US13/321,311 US20120065320A1 (en) | 2009-05-19 | 2010-05-18 | Fluorine-containing 1,6-diene ether compound and fluorine-containing polymer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-120528 | 2009-05-19 | ||
JP2009120528 | 2009-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010134509A1 true WO2010134509A1 (ja) | 2010-11-25 |
Family
ID=43126187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/058327 WO2010134509A1 (ja) | 2009-05-19 | 2010-05-18 | 含フッ素1,6-ジエン型エーテル化合物及び含フッ素重合物 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120065320A1 (ja) |
JP (1) | JP5652919B2 (ja) |
TW (1) | TW201114734A (ja) |
WO (1) | WO2010134509A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9695203B2 (en) * | 2015-03-26 | 2017-07-04 | The United States Of America As Represented By The Secretary Of The Air Force | Fluorinated cycloalkene functionalized silicas |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08504810A (ja) * | 1992-12-21 | 1996-05-28 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | フッ素置換モノマー類およびポリマー類 |
JPH08337609A (ja) * | 1995-06-09 | 1996-12-24 | Yasuhiro Koike | 屈折率分布型光ファイバー及びその母材の製造方法 |
JP2001206864A (ja) * | 2000-01-25 | 2001-07-31 | Asahi Glass Co Ltd | 含フッ素化合物、その製造方法およびその重合体 |
JP2001272504A (ja) * | 2000-03-24 | 2001-10-05 | Central Glass Co Ltd | 反射防止膜形成用組成物 |
JP2007314586A (ja) * | 2006-05-23 | 2007-12-06 | Ibaraki Univ | 新規な含フッ素重合体、その重合体の製造法および1,6―ジエン型エーテルの製造法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2468779A4 (en) * | 2009-08-19 | 2013-01-02 | Univ Ibaraki | TRANSPARENT POLYMER WITH FLUORINE CONTENT |
-
2010
- 2010-05-18 WO PCT/JP2010/058327 patent/WO2010134509A1/ja active Application Filing
- 2010-05-18 JP JP2011514413A patent/JP5652919B2/ja active Active
- 2010-05-18 US US13/321,311 patent/US20120065320A1/en not_active Abandoned
- 2010-05-19 TW TW099115948A patent/TW201114734A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08504810A (ja) * | 1992-12-21 | 1996-05-28 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | フッ素置換モノマー類およびポリマー類 |
JPH08337609A (ja) * | 1995-06-09 | 1996-12-24 | Yasuhiro Koike | 屈折率分布型光ファイバー及びその母材の製造方法 |
JP2001206864A (ja) * | 2000-01-25 | 2001-07-31 | Asahi Glass Co Ltd | 含フッ素化合物、その製造方法およびその重合体 |
JP2001272504A (ja) * | 2000-03-24 | 2001-10-05 | Central Glass Co Ltd | 反射防止膜形成用組成物 |
JP2007314586A (ja) * | 2006-05-23 | 2007-12-06 | Ibaraki Univ | 新規な含フッ素重合体、その重合体の製造法および1,6―ジエン型エーテルの製造法 |
Also Published As
Publication number | Publication date |
---|---|
US20120065320A1 (en) | 2012-03-15 |
JPWO2010134509A1 (ja) | 2012-11-12 |
TW201114734A (en) | 2011-05-01 |
JP5652919B2 (ja) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW593346B (en) | Fluorinated compound, fluoropolymer and process for its production | |
KR20060134133A (ko) | 광학 재료용 화합물 및 이의 제조 방법 | |
US20150005467A1 (en) | Method for producing homopolymer or random copolymer of hydroxyl group-containing vinyl ether | |
US20060217507A1 (en) | Novel polymerizable acrylate compound containing hexafluorocarbinol group and polymer made therefrom | |
JPWO2019039083A1 (ja) | 含フッ素化合物、組成物、コーティング液、および含フッ素化合物の製造方法 | |
JP5652919B2 (ja) | 含フッ素1,6−ジエン型エーテル化合物及び含フッ素重合物 | |
KR20180067448A (ko) | 과불소계 공중합체 및 이를 포함하는 방오성 광경화 수지 조성물 | |
JP5737656B2 (ja) | 透明含フッ素重合物 | |
TWI591049B (zh) | Fluorine aldehyde, fluorine-containing propylene glycol and fluorine-containing alcohol monomer manufacturing method | |
US7649065B2 (en) | Fluoroadamantane derivative, fluorine-containing polymer and production method | |
JP4399608B2 (ja) | 新規な含フッ素重合体、その重合体の製造法および1,6―ジエン型エーテルの製造法 | |
WO2004018534A1 (ja) | 含フッ素化合物、含フッ素ポリマー及びその製造方法 | |
US20060122301A1 (en) | Fluorinated divinyl ethers | |
JP7381948B2 (ja) | 含フッ素重合体の製造方法及び組成物 | |
JP7071675B1 (ja) | 含フッ素重合体 | |
JP3916425B2 (ja) | 含フッ素アクリレート誘導体とその製造法、およびそれを用いた高分子化合物 | |
JP5082907B2 (ja) | 新規トリ(メタ)アクリレートおよび硬化性組成物 | |
JP4166076B2 (ja) | 含フッ素ビニルエーテルおよびそれを使用した含フッ素重合体、ならびに含フッ素重合体を使用したレジスト材料 | |
CN115667197A (zh) | 含氟醚化合物、含氟醚组合物、涂布液、高氧溶解度液体和物品 | |
JP2003300939A (ja) | 含フッ素シクロアルカン誘導体およびその製造方法 | |
JP2003342240A (ja) | 含フッ素シクロアルカン誘導体 | |
KR20030073312A (ko) | 광통신용 불소 혹은/및 염소함유 퓨마릭계 단량체, 그의단일중합체 및 공중합체 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10777742 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011514413 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13321311 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10777742 Country of ref document: EP Kind code of ref document: A1 |