WO2010131839A2 - 고분자 전해질 다층박막 촉매 및 그 제조 방법 - Google Patents

고분자 전해질 다층박막 촉매 및 그 제조 방법 Download PDF

Info

Publication number
WO2010131839A2
WO2010131839A2 PCT/KR2010/002137 KR2010002137W WO2010131839A2 WO 2010131839 A2 WO2010131839 A2 WO 2010131839A2 KR 2010002137 W KR2010002137 W KR 2010002137W WO 2010131839 A2 WO2010131839 A2 WO 2010131839A2
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
thin film
catalyst
multilayer thin
carrier
Prior art date
Application number
PCT/KR2010/002137
Other languages
English (en)
French (fr)
Other versions
WO2010131839A3 (ko
Inventor
정영민
권용탁
김태진
오승훈
이창수
김보열
Original Assignee
에스케이에너지 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이에너지 주식회사 filed Critical 에스케이에너지 주식회사
Priority to US13/319,814 priority Critical patent/US8784769B2/en
Priority to CN201080021088.5A priority patent/CN102421525B/zh
Priority to EP10775041.6A priority patent/EP2431093B1/en
Priority to JP2012510735A priority patent/JP5504337B2/ja
Publication of WO2010131839A2 publication Critical patent/WO2010131839A2/ko
Publication of WO2010131839A3 publication Critical patent/WO2010131839A3/ko
Priority to US13/550,941 priority patent/US20130004411A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/029Preparation from hydrogen and oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less

Definitions

  • the present invention relates to a catalyst comprising a polymer electrolyte multilayer thin film having metal particles inserted on a carrier, a method for preparing the same, and a method for directly producing hydrogen peroxide from oxygen and hydrogen using the catalyst.
  • the first problem is the problem of mixing oxygen and hydrogen.
  • the mixture of oxygen and hydrogen has a very wide explosive range depending on the mixing ratio, so the risk of explosion is quite high.
  • the concentration of hydrogen in the air is 4 to 75 mol%, which can be exploded by the ignition source. This range widens with increasing pressure, thereby increasing the probability of explosion [C. Samanta, V.R. Choudhary, Catal. Commun., Vol. 8, 73 (2007)]. Therefore, in the direct production reaction of hydrogen peroxide using hydrogen and oxygen as a reactant, methods such as controlling the mixing ratio of hydrogen and oxygen within a safe range and diluting the concentration of hydrogen and oxygen using an inert gas such as nitrogen or carbon dioxide are used. It is becoming.
  • the direct production of hydrogen peroxide has been carried out mainly using noble metal catalysts such as gold, platinum and palladium [P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely, G.J. Hutchings, Chem. Commun., P. 2058 (2002); G. Li, J. Edwards, A.F. Carley, G.J. Hutchings, Catal. Commun., Vol. 8, p. 247 (2007); D.P. Dissanayake, J.H. Lunsford, J. Catal., 206, 173 (2002); D.P. Dissanayake, J.H. Lunsford, J. Catal., Vol.
  • noble metal catalysts such as gold, platinum and palladium
  • the present inventors have tried to develop a catalyst which is easy to manufacture and shows high activity in producing hydrogen peroxide.
  • a catalyst in which a polymer electrolyte multilayer thin film containing metal particles is formed on a carrier yields a higher yield of hydrogen peroxide than a conventional catalyst. It can be confirmed, showing the high activity even under the condition of addition of only a very small amount of halogen ions without addition of acid to complete the present invention.
  • the main object of the present invention is to provide a catalyst having high activity in various reactions.
  • Another object of the present invention is to provide a method for forming a polymer electrolyte multilayer thin film in which metal particles are inserted on a carrier.
  • Another object of the present invention to provide a method for producing hydrogen peroxide directly from hydrogen and oxygen using the catalyst.
  • the present invention provides a catalyst, a polymer electrolyte multilayer thin film formed on the surface of the carrier and a catalyst comprising a metal particle inserted in the multilayer thin film.
  • the present invention also provides a method of forming a polymer electrolyte multilayer thin film on a carrier; Inserting a metal precursor into the polymer electrolyte; And it provides a method for producing a catalyst comprising the step of reducing the metal precursor to a metal through a reducing agent.
  • the present invention also comprises the steps of forming a polymer electrolyte multilayer thin film complexed with a metal precursor on a carrier; And it provides a method for producing a catalyst comprising the step of reducing the metal precursor to metal particles through a reducing agent.
  • the present invention also provides a method for producing hydrogen peroxide from hydrogen and oxygen in a reaction solvent containing no acid promoter using the catalyst.
  • the metal is strongly bonded between the polymer electrolyte multilayer thin films, so that elution of the metal does not occur during the reaction, and thus the activity is not reduced.
  • the catalyst according to the present invention can be used to increase the activity in various reactions using metal particles as a catalyst, as well as preparing hydrogen peroxide, while being easy to prepare.
  • FIG. 1 is a schematic view showing a method of preparing a catalyst by sequentially stacking a cationic and anionic polymer electrolyte on an anion carrier, mixing the metal precursor solution and reducing the metal.
  • FIG. 2 is a schematic view showing a method of preparing a catalyst in a manner of sequentially stacking an anionic polymer electrolyte complexed with a cationic polymer electrolyte and a metal precursor on an anion carrier, and then reducing a metal.
  • FIG. 3 is a schematic view showing a method of preparing a catalyst by sequentially stacking anionic and cationic polymer electrolytes on a cationic carrier, followed by mixing and reducing metal in a metal precursor solution.
  • FIG. 4 is a schematic view showing a method of preparing a catalyst in a manner of sequentially stacking an anionic polymer electrolyte and a cationic polymer electrolyte complexed with a metal precursor on a cationic carrier, and then reducing metals.
  • the present invention provides a catalyst comprising a carrier, a multilayer polymer electrolyte thin film formed on the surface of the carrier, and metal particles inserted into the multilayer thin film.
  • the carrier of the present invention preferably has a constant charge so that the cationic or anionic polymer electrolyte can be easily fixed. Therefore, according to a preferred embodiment of the present invention, the carrier is a cationic resin or an anionic resin.
  • a polymer resin having a cationic functional group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, and phosphonic acid groups in the side chain can be used.
  • the ion resin having a cationic functional group examples include fluorine polymer, benzimidazole polymer, polyimide polymer, polyetherimide polymer, polyphenylene sulfide polymer, polysulfone polymer, polyether sulfone polymer, poly It may include one or more selected from ether ketone-based polymers, polyether-ether ketone-based polymers and polyphenylquinoxaline-based polymers, preferably poly (perfluorosulfonic acid) (generally marketed as Nafion) , Poly (perfluorocarboxylic acid), copolymer of tetrafluoroethylene and fluorovinyl ether containing sulfonic acid group, defluorinated sulfide polyether ketone, aryl ketone, poly [2,2 '-(m-phenyl Lene) -5,5'-bibenzimidazole] and poly (2,5-benzimidazole).
  • Anionic resins used in the carrier include halogen compounds and / or bicarbonate type anionic resins and carbonate and hydroxide type resins or mixtures thereof.
  • halogen compound type resins are described in JP-A-57-139026, which is incorporated herein by reference.
  • bicarbonate-type resins are described in WO 95/20559, WO 97/33850, RU Patents 2002726 and 2001901, each of which are incorporated herein by reference.
  • Suitable anionic resins on the market are Amberlite TM IRA 400 and 900 classes (polystyrene-based resins crosslinked with divinylbenzene) (Rohm and Haas), Lewatit TM M 500 WS (Bayer), duol Duolite TM A 368, A-101D, ES-131 and A-161 (Rohm and Haas), and DOWEX TM MSA-1, Marathon A and Marathon the dow chemical company Etc.
  • the carrier of the present invention may be a nonionic carrier, and such a nonionic carrier is not limited to the kind as long as a polymer electrolyte material having a charge can be formed on the carrier.
  • suitable carriers for the present invention may be activated carbon, silica, alumina, silica-alumina, zeolite and other materials well known in the art, preferably alumina. .
  • Such nonionic carriers are inexpensive in terms of cost compared to the ionic resin carriers, and thus are frequently used in the art. Therefore, in the present invention, nonionic carriers such as alumina can be used in terms of cost reduction, even if they have the same efficiency or somewhat lower efficiency than the ionic resin carrier.
  • the polymer electrolyte fixed to the surface of the carrier of the present invention is a cationic or anionic electrolyte.
  • the cationic polymer electrolyte is at least one electrolyte selected from the group consisting of poly (allylamine), polydiallyldimethylammonium, poly (ethylenediamine), and poly (acrylamide-co-diallyldimethylammonium), but is not limited thereto. .
  • the anionic polymer electrolyte of the present invention is poly (4-styrenesulfonate), poly (acrylic acid), poly (acrylamide), poly (vinylphosphonic acid), poly (2-acrylamido-2-methyl- 11-propanesulfonic acid), poly (antetolesulfonic acid) and poly (vinyl sulfonate), one or more electrolytes selected from the group consisting of, but not limited to.
  • the cationic or anionic polymer electrolyte in various ways, the ionic bond strength of the polymer electrolyte can be controlled. Accordingly, when the metal precursor is reduced using a reducing agent, the size of the metal particles can be controlled.
  • the thickness of the polymer electrolyte multilayer thin film is controlled by controlling the molecular weight of the polymer electrolyte, and thus the concentration and particle size of the inserted metal can be controlled. Therefore, according to a preferred embodiment of the present invention, the molecular weight of the polymer electrolyte is 1,000 to 1,000,000, more preferably 2,000 to 500,000.
  • a polymer electrolyte may be formed using a molecular weight of 3,000 to 20,000, preferably 4,000 to 12,000.
  • the number of layers of the multilayer thin film of the polymer electrolyte of the present invention is 2 to 30, more preferably 2 to 15.
  • the catalyst of the present invention is characterized in that the metal particles are inserted between the polymer electrolyte and not the surface of the carrier, through which the activity is very excellent compared to the catalyst consisting of a single layer of the polymer electrolyte. Therefore, if the number of layers of the multilayer thin film is less than 2, the multilayer thin film of the present invention cannot be formed. If the multilayer thin film is larger than 30, there is no significant difference in the activity, and it is unnecessary to form more layers.
  • the metal particles embedded in the multilayer thin film of the present invention are palladium, platinum, ruthenium, rhodium, iridium, silver, osmium, nickel, copper, cobalt, titanium or mixtures thereof, preferably palladium, platinum or mixtures thereof.
  • Such metal particles are produced by inserting a metal precursor into the polymer electrolyte and then reducing the metal precursor with a reducing agent.
  • metal precursors containing palladium preferably used in the present invention include tetrachloroplatinic acid (II) (H 2 PtCl 4 ), hexachloroplatinic acid (IV) H 2 PtCl 6 ) and tetrachloroplatinum (II) potassium ( K 2 PtCl 4 ), hexachloroplatinic acid (IV) potassium (H 2 PtCl 6 ), or mixtures thereof, but is not limited thereto.
  • the metal particles of the present invention can be variously adjusted according to the purpose of use, and the average size of the particles is 1 to 1,000 nm, preferably 1 to 500 nm, more preferably 1 to 100 nm.
  • the present invention (a) by mixing the carrier with the first polymer electrolyte solution and the second polymer electrolyte solution to form a multilayer polymer thin film on the carrier (wherein the first polymer The electrolyte solution and the second polymer electrolyte solution are different from each other and are a cationic or anionic electrolyte solution; (b) mixing the carrier on which the polymer electrolyte multilayer thin film is formed with a metal precursor solution to insert the metal precursor into the polymer electrolyte; And (c) provides a method for producing a catalyst comprising the step of reducing the metal precursor inserted into the polymer electrolyte multilayer thin film to the metal through a reducing agent.
  • Such a manufacturing method may come in several cases depending on the type of charge of the carrier used and the alternating order of the polymer electrolyte solution.
  • the first embodiment is a sulfonic acid functional group (SO 3 -) using the (a) distilled water and with a solvent comprising: laminating a cationic polymer electrolyte on an anionic resin having an ion; (b) stacking an anionic polymer electrolyte on the stacked cationic polymer electrolyte; (c) repeating the lamination to form a polymer electrolyte multilayer thin film; (d) inserting a material in which a polymer electrolyte multilayer thin film is formed on a carrier into a metal precursor solution to insert metal ions between the polymer electrolyte multilayer thin film; And (e) preparing a catalyst by forming a polymer electrolyte multilayer thin film including metal particles on a carrier, the method including reducing the metal interposed between the polymer electrolyte multilayer thin film through a reducing agent.
  • SO 3 - sulfonic acid functional group
  • a solvent for dissolving the polymer electrolyte used in the production method for example, water, normal-hexane (n-hexane), ethanol, triethylamine, THF (tetrahydrofuran), DMSO (dimethyl sulfoxide), ethyl acetate, Isopropyl alcohol, acetone, acetonitrile, benzene, butyl alcohol, chloroform, diethyl ether, or mixtures thereof can be used.
  • the pH of the cationic polymer electrolyte solution used in the catalyst production method of the present invention is 8 to 11, more preferably 8 to 10.
  • the pH of the anionic polymer electrolyte solution is 2 to 6, more preferably 4 to 6.
  • the metal precursor used in the catalyst preparation method of the present invention can be used in addition to the general solvent such as distilled water, a precursor dissolved by adjusting the pH of the solution by adding an acid or a base. It is also possible to use two metal precursors simultaneously.
  • the reducing agent used to reduce the metal precursor in the present invention includes, but is not limited to, a chemical reducing agent and hydrogen.
  • the reducing agent is one of sodium borohydride (NaBH 4 ), hydrazine (N 2 H 4 ), sodium formate (HCOONa), ammonium bicarbonate (NH 4 HCO 3 ), hydrogen (H 2 ) or other materials not limited thereto. It may be selected and used above, more preferably sodium borohydride (NaBH 4 ) or hydrogen (H 2 ) can be used.
  • the present invention (a) by mixing the carrier with the first polymer electrolyte solution and the second polymer electrolyte solution to form a multilayer polymer thin film on the carrier, wherein the The first polymer electrolyte solution and the second polymer electrolyte solution are different from each other in a cationic or anionic manner, and at least one of the first polymer electrolyte solution and the second polymer electrolyte solution forms a complex with a metal precursor; And (b) provides a method for producing a catalyst comprising the step of reducing the metal precursor inserted into the polymer electrolyte multilayer thin film to the metal through a reducing agent.
  • Such a manufacturing method may come in several cases depending on the type of charge of the carrier used, the type of the polymer electrolyte solution or the polymer electrolyte solution complexed with the metal sphere, and the order of their alternation.
  • the first embodiment is a sulfonic acid functional group (SO 3 -) using the (a) distilled water and with a solvent comprising: laminating a cationic polymer electrolyte on an anionic resin having an ion; (b) stacking an anionic polymer electrolyte complexed with metal ions on the stacked cationic polymer electrolyte; (c) repeating the lamination to form a polymer electrolyte multilayer thin film; (d) inserting a material in which the polymer electrolyte multilayer thin film is formed on the carrier into a metal precursor solution to insert metal ions between the polymer electrolyte multilayer thin film; And (e) forming a polymer electrolyte multilayer thin film including metal particles on a carrier, the method including reducing the metal interposed between the polymer electrolyte multilayer thin film through a reducing agent.
  • SO 3 - sulfonic acid functional group
  • the polymer electrolyte multilayer thin film formed according to the manufacturing method of the present invention has electrostatic attraction, hydrogen bonding, van der waals interaction or covalent between each layer. bonding to form a highly stable structure physicochemically, and the metal interposed between the polymer electrolyte multilayer thin film is present in an encapsulation form or an embedded form. In addition, these intercalated metal particles are very strongly bonded with the polymer electrolyte multilayer thin film by electrostatic attraction, hydrogen bonding, van der waals interaction or covalent bonding. It is.
  • one of the problems of the metal-supported catalyst prepared by the conventional technology is the problem of dissolution caused by elution during the reaction, the catalyst production method of inserting a metal between the polymer electrolyte multilayer thin film provided by the present invention This can be solved fundamentally.
  • the present invention provides a method for producing hydrogen peroxide from hydrogen and oxygen in a reaction solvent containing no acid promoter in the presence of the catalyst.
  • the hydrogen peroxide production may be carried out in a liquid phase reaction using methanol, ethanol or water as a solvent (reaction medium). It is preferable to use a mixed gas diluted with nitrogen in order to reduce the explosion risk for the reactants, such as oxygen and hydrogen, and the volume ratio of hydrogen: oxygen: nitrogen is 3:40:57, and the total gas amount used in the reaction and the rate of solvent
  • the ratio is maintained at a reaction pressure of 30 to 60 bar, more preferably 45 to 55 bar, and a reaction temperature of 20 to 40 ° C using a tubular reactor equipped with a coolant jacket while maintaining the ratio of about 3200. It is good to proceed.
  • halogen additives include hydrobromic acid and sodium bromide (NaBr). ), Potassium bromide (KBr), and the like.
  • concentration of the halogen additive is preferably 1 to 100 ppm based on the mass of methanol used as the solvent, more preferably 5 to 50 ppm and most preferably 10 to 20 ppm.
  • reaction time was fixed at 150 hours unless otherwise specified in order to compare the activity of each catalyst in the reaction for producing hydrogen peroxide directly from oxygen and hydrogen.
  • a method of forming a polymer electrolyte multilayer thin film including metal particles on an anionic ion resin having a sulfonic acid functional group (SO 3 ⁇ ) is as follows. All procedures were conducted at room temperature.
  • PAH Poly (allyamine) hydrochloride (weight molecular weight 56,000) aqueous solution and 10 mM PSS (Poly (4-styrenesulfonate), weight molecular weight 70,000) aqueous solution were prepared, and the pH was adjusted to 9 using hydrochloric acid and sodium hydroxide. It was. K 2 PdCl 4 was used as a palladium precursor to dissolve in distilled water to 1 mM, and then the pH was adjusted to 3.
  • the PAH layer was formed on the anionic ion resin having the sulfonic acid functional group (SO 3 ⁇ ) in 300 ml of 10 mM PSS aqueous solution and stirred for 20 minutes. After removing the solution remaining in the beaker, and put again in distilled water 300 ml and washed for 5 minutes was repeated three times. Thereafter, the above process was repeated such that the number of multilayer thin films was 7.
  • the material in which the polymer electrolyte multilayer thin film was formed on the anionic ion resin having the sulfonic acid functional group (SO 3 ⁇ ) was placed in 250 ml of 1 mM K 2 PdCl 4 aqueous solution, and stirred for 30 minutes. After removing the solution remaining in the beaker, and put again in distilled water 300 ml and washed for 5 minutes was repeated three times.
  • the method for producing hydrogen peroxide from oxygen and hydrogen reaction using the material prepared by the above process as a catalyst is as follows.
  • Example 2-9 Formation of Polymer Electrolyte Multilayer Thin Film on Anionic Carrier
  • the polymer electrolyte multilayer thin film was formed by varying the type of the cationic / anionic polymer electrolyte, the pH of the aqueous polymer electrolyte solution, and the number of laminations.
  • the catalytic activity evaluation method was performed in the same manner as in Example 1.
  • PAH Poly (allyamine) hydrochloride, weight molecular weight 56,000
  • PDDA Polydiallyldimethylammonium
  • PEI Poly (ethyleneimine), weight molecular weight 25,000
  • PS Poly (4-styrenesulfonate), molecular weight 70,000
  • PAA Poly (acrylic) acid
  • a method of forming a polymer electrolyte multilayer thin film containing metal particles on a halogen-containing strongly basic cationic (NR 3 + Cl ⁇ ) ion resin is as follows. All procedures were conducted at room temperature.
  • Hydrogen peroxide was prepared from oxygen and hydrogen reaction in the same manner as in Example 1 using the prepared material as a catalyst.
  • Example 11-15 Formation of Polymer Electrolyte Multilayer Thin Film on Cationic (Strong-Based) Carrier
  • the polymer electrolyte multilayer thin film was formed by changing the type of the cationic / anionic polymer electrolyte, the pH of the polymer electrolyte solution, and the number of laminations with Example 10.
  • the catalytic activity evaluation method was performed in the same manner as in Example 1.
  • Example 16 Forming a Polymer Electrolyte Multilayer Thin Film on a Cationic (Base)
  • Ammonia-containing weakly basic cationic (NH 2 ) ion resin was used as the type of carrier, except that the multilayer polymer electrolyte thin film was formed under the same conditions as in Example 10. And activity evaluation was carried out in the same manner as in Example 10. As a result, the prepared catalyst contained 0.2% of palladium, and as a result of the activity evaluation, a hydrogen peroxide yield of 5.4 wt% and a hydrogen selectivity of 68% were obtained.
  • Example 17-22 formation of a polymer electrolyte multilayer thin film on a nonionic carrier
  • a polymer electrolyte multilayer thin film including metal particles was formed on an alumina inorganic carrier.
  • the catalyst production method and activity evaluation method except for the carrier type were the same as in Example 1.
  • Example 23 Forming an anionic polymer electrolyte multilayer thin film complexed with a metal precursor on an anionic carrier
  • Example 2 In the same manner as in Example 1, a polymer electrolyte multilayer thin film was formed on an anionic ion resin having a sulfonic acid functional group (SO 3 ⁇ ), but using an anionic polymer electrolyte (PSS --- Pd 2+ ) complexed with a metal was used. Laminated.
  • the anionic polyelectrolyte aqueous solution complexed with the metal was composed of 10 mM PSS and 0.25 mM K 2 PdCl 4, and the pH was adjusted to 5.
  • the polymer electrolyte multilayer thin film in which metal particles are inserted on an anionic ion resin having a sulfonic acid functional group (SO 3 ⁇ ) is reduced in the same manner as in Example 1 without a separate metal ion introduction process. Formed.
  • the prepared catalyst contains 0.25 wt% of palladium.
  • Example 24 Formation of a cationic polymer electrolyte multilayer thin film complexed with a metal precursor on an anionic carrier
  • Example 2 In the same manner as in Example 1, a polymer electrolyte multilayer thin film was formed on an anionic ion resin having a sulfonic acid functional group (SO 3 ⁇ ), but a cationic polymer electrolyte (PAH --- PdCl 4 2- ) complexed with a metal was used. Laminated by. The cationic polymer electrolyte solution complexed with the metal was composed of 10 mM PAH and 0.25 mM K 2 PdCl 4 , and the pH was adjusted to 5.
  • the polymer electrolyte multilayer thin film in which metal particles are inserted on an anionic ion resin having a sulfonic acid functional group (SO 3 ⁇ ) is reduced in the same manner as in Example 1 without a separate metal ion introduction process. Formed.
  • the prepared catalyst contains 0.19 wt% of palladium.
  • Example 25 Formation of an anionic polymer electrolyte multilayer thin film complexed with a metal precursor on a cationic carrier
  • Example 10 a multilayer polymer electrolyte thin film was formed on a halogen-containing cationic (NR 3 + Cl ⁇ ) ion resin, but using an anionic polymer electrolyte (PSS --- Pd 2+ ) complexed with a metal was used. Laminated.
  • the anionic polyelectrolyte aqueous solution complexed with the metal was composed of 10 mM PSS and 0.25 mM K 2 PdCl 4 , and the pH was adjusted to 5.
  • the polymer electrolyte multilayer thin film in which metal particles are inserted on a halogen-containing cationic (NR 3 + Cl ⁇ ) ion resin is reduced in the same manner as in Example 10 without any additional metal ion introduction process. Formed.
  • the prepared catalyst contains 0.18 wt% of palladium.
  • Example 26 Formation of a Cationic Polymer Electrolyte Multilayer Thin Film Complexed with a Metal Precursor on a Cationic Carrier
  • Example 10 In the same manner as in Example 10, a polymer electrolyte multilayer thin film was formed on a halogen-containing cationic (NR 3 + Cl ⁇ ) ion resin, but a cationic polymer electrolyte (PAH --- PdCl 4 2- ) having a complex with a metal was used. Laminated by. The cationic polymer electrolyte solution complexed with the metal was composed of 10 mM PAH and 0.25 mM K 2 PdCl 4 , and the pH was adjusted to 5.
  • the polymer electrolyte multilayer thin film in which metal particles are inserted on a halogen-containing cationic (NR 3 + Cl ⁇ ) ion resin is reduced in the same manner as in Example 10 without any additional metal ion introduction process. Formed.
  • the prepared catalyst contains 0.14 wt% of palladium.
  • Example 2 Activity evaluation was carried out in the same manner as in Example 1 using a commercially available Pd / C catalyst loaded with 1 wt% palladium on activated carbon. As a result of the activity evaluation, the hydrogen peroxide yield was 0.1 wt% and the hydrogen selectivity 30% after 48 hours. Got.
  • the activity evaluation was carried out in the same manner as in Example 1 using a catalyst on a commercial resin doped with palladium of 0.23wt% on an anionic ion resin having a sulfonic acid functional group (SO 3 ⁇ ). After 80 hours, a yield of 2.9 wt% hydrogen peroxide and 68% hydrogen selectivity were obtained.
  • aqueous solution 300 ml of 10 mM PAH aqueous solution was added to a beaker containing 10 g of anionic ion resin having a sulfonic acid functional group (SO 3 ⁇ ), followed by stirring for 20 minutes. Thereafter, palladium metal ions were inserted between the anionic ion resin and the cationic polymer electrolyte in the same manner as in Example 1, and then a metal was reduced by using a reducing agent to prepare a catalyst.
  • the prepared catalyst contains 0.12 wt% of palladium.
  • Activity evaluation was carried out in the same manner as in Example 1, and the activity evaluation resulted in a hydrogen peroxide yield of 1.4 wt% and a hydrogen selectivity of 67% after 80 hours of reaction time.
  • Activity evaluation was carried out in the same manner as in Example 1, and the activity evaluation resulted in a hydrogen peroxide yield of 0.4 wt% and a hydrogen selectivity of 62% after 80 hours of reaction time.
  • Example 2 300 ml of 10 mM PSS aqueous solution was added to a beaker containing 10 g of an alumina inorganic carrier, followed by stirring for 20 minutes. Thereafter, palladium metal ions were inserted between the carrier and the anionic polymer electrolyte in the same manner as in Example 1, and then a metal was reduced by using a reducing agent to prepare a catalyst.
  • the prepared catalyst contains 0.07 wt% of palladium.
  • Activity evaluation was carried out in the same manner as in Example 1, and the activity evaluation resulted in a hydrogen peroxide yield of 0.8 wt% and a hydrogen selectivity of 64% after 80 hours of reaction time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 담체 위에 금속 입자가 삽입된 고분자 전해질 다층 박막을 포함하는 촉매, 그 제조방법 및 이러한 촉매를 이용하여 산소 및 수소로부터 과산화수소를 직접 제조하는 방법에 관한 것이다. 본 발명에 따른 촉매는 그 제조가 수월하면서도, 이를 과산화수소를 제조하는 공정에 이용할 경우, 산 촉진제를 포함하지 않은 반응용매 하에서 높은 수율의 과산화수소를 얻을 수 있다.

Description

고분자 전해질 다층박막 촉매 및 그 제조 방법
본 발명은 담체 위에 금속 입자가 삽입된 고분자 전해질 다층 박막을 포함하는 촉매, 그 제조방법 및 이러한 촉매를 이용하여 산소 및 수소로부터 과산화수소를 직접 제조하는 방법에 관한 것이다.
현재 과산화수소는 전체 공급량의 95% 이상이 안트라퀴논 공정(Anthraquinone Process)에 의해 생산되고 있으나, 이 공정은 과산화수소 생성을 위해 필요한 반응 단계의 수가 많으며, 각 단계를 거치면서 부반응에 의한 부생성물의 형성으로 인해 안트라퀴논 용액의 재생 과정 및 안트라퀴논 용액으로부터 과산화수소의 분리 및 정제 과정이 요구 된다[J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Angew. Chem. Int. Ed., 45권, 6962쪽 (2006)]. 따라서 안트라퀴논 공정에 의한 과산화수소 생산은 많은 에너지와 처리 비용을 필요로 하여 과산화수소의 가격 경쟁력을 떨어뜨리는 요인이 된다.
이러한 안트라퀴논 공정의 문제점을 해결하기 위한 방법 중 하나로, 물 이외에 부생성물이 발생하지 않는 산소와 수소로부터 과산화수소를 직접 제조하는 반응에 대한 연구가 오랫동안 진행되어 왔으나, 기술적인 난이도로 인해 아직까지 상용화 공정이 확립되지 못한 상태이다.
첫 번째 문제점은, 산소와 수소의 혼합 문제로, 산소와 수소의 혼합물은 혼합비에 따른 폭발 가능 범위가 매우 넓어 폭발의 위험성이 상당히 큰 점을 들 수 있다. 1 기압에서 공기 중의 수소 농도가 4~75 mol%이면 점화원에 의해 폭발 가능하며, 공기 대신 산소를 사용할 경우에는 폭발 가능한 수소 농도가 4~94 mol%로 더욱 넓어진다. 이러한 범위는 압력이 높아질수록 넓어지며 이에 따라 폭발 가능성 역시 증가 한다[C. Samanta, V.R. Choudhary, Catal. Commun., 8권, 73쪽 (2007)]. 따라서 수소와 산소를 반응물로 이용하는 과산화수소의 직접 제조 반응에서는 수소와 산소의 혼합비를 안전한 범위 내에서 조절하고, 질소나 이산화탄소와 같은 불활성 기체를 사용하여 수소와 산소의 농도를 희석하는 등의 방법이 이용되고 있다.
이러한 안전에 관한 문제와 더불어, 또 하나의 문제점으로는 과산화수소는 상당히 불안정한 화합물이므로 생성되더라도 물과 산소로 잘 분해 되는 점과, 과산화수소 생성에 유용한 촉매가 물 합성에도 유용하므로 높은 과산화수소 선택도를 얻기가 쉽지 않다는 점이다. 따라서 산소와 수소로부터 과산화수소를 제조하는 연구에서는 상기의 문제점들을 해결하고자 고활성 촉매 연구와 더불어 강산 및 할라이드 첨가제에 대한 연구가 진행되어 왔다.
과산화수소 직접 제조 반응은 주로 금, 백금, 팔라듐과 같은 귀금속 촉매를 사용하여 진행되어 왔다[P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely, G.J. Hutchings, Chem. Commun., 2058쪽 (2002); G. Li, J. Edwards, A.F. Carley, G.J. Hutchings, Catal. Commun., 8권, 247쪽(2007); D.P. Dissanayake, J.H. Lunsford, J. Catal., 206권, 173쪽 (2002); D.P. Dissanayake, J.H. Lunsford, J. Catal., 214권, 113쪽(2003); P. Landon, P.J. Collier, A.F. Carley, D. Chadwick, A.J. Papworth, A. Burrows, C.J. Kiely, G.J. Hutchings, Phys. Chem. Chem. Phys., 5권, 1917쪽(2003); J.K. Edwards, B.E. Solsona, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, G.J. Hutchings, J. Catal., 236권, 69쪽(2005); J.K. Edwards, A. Thomas, B.E. Solsona, P. Landon, A.F. Carley, G.J. Hutchings, Catal. Today, 122권, 397쪽 (2007); Q. Liu, J.C. Bauer, R.E. Schaak, J.H. Lunsford, Appl. Catal. A, 339권, 130쪽 (2008)]. 그 중에서 팔라듐 촉매가 비교적 우수한 활성을 나타낸다고 보고되어 있으며, 이는 보통 알루미나, 실리카, 탄소 등의 다양한 담체에 담지되어 사용되어 왔다 [V.R. Choudhary, C. Samanta, T.V. Choudhary, Appl. Catal. A, 308권, 128쪽 (2006)].
또한 촉매와 함께 과산화수소의 선택도를 향상시키기 위해, 일반적으로 과산화수소 분해 반응의 억제를 위하여 용매에 산을 첨가하여 반응을 진행시키며, 산소와 수소로부터 물이 형성되는 반응을 억제하기 위해서 할로겐 이온을 용매나 촉매에 첨가시킨다[Y.-F. Han, J.H. Lunsford, Catal. Lett., 99권, 13쪽 (2005); Y.-F. Han, J.H. Lunsford, J. Catal., 230권, 313쪽 (2005); V.R. Choudhary, C. Samanta, J. Catal., 238권, 28쪽 (2006); V.R. Choudhary, P. Jana, J. Catal., 246권, 434쪽 (2007); C. Samanta, V.R. Choudhary, Catal. Commun., 8권, 73쪽 (2007); C. Samanta, V.R. Choudhary, Appl. Catal. A, 326권, 28쪽 (2007); V.R. Choudhary, C. Samanta, T.V. Choudhary, Catal. Commun., 8권, 1310쪽 (2007)]. 이러한 산 및 할로겐 이온의 첨가제는 과산화수소의 선택도를 향상시키는 역할을 하지만, 부식의 문제를 유발함과 더불어 담체에 담지된 팔라듐과 같은 금속을 용출시켜 촉매의 활성을 떨어뜨리며, 과산화수소 제조 후 분리 및 정제 과정을 필요로 하는 문제점을 발생하게 한다. 한편, P. F. Escrig 등은 황산기를 포함한 이온 교환 수지와 착물을 형성한 팔라듐 촉매를 사용할 경우, 산 첨가 없이 극소량의 할로겐 이온만 첨가한 조건에서도 높은 활성을 나타낸다고 보고하였다(미국등록특허 제6,822,103 및 미국등록특허 제7,179,440).
최근에는 산소와 수소로부터 과산화수소의 직접 제조에 효율적인 고활성 촉매를 개발하기 위해 나노 기술이 접목된 다양한 방법이 시도 되고 있다. 예를 들어, Q. Liu 등은 활성탄 위에 팔라듐 나노 입자를 담지한 촉매를 개발 하였고(Q. Liu, J. C. Bauer, R. E. Schaak, J. H. Lunsford, Angew. Chem. Int. Ed., 47권, 6221쪽 (2008)), B. Zhou 등은 110면으로 상 조절 (Phase control)한 나노 입자가 우수한 활성을 나타낸다고 주장하였으며(미국등록특허 제6,168,775 및 미국등록특허 제6,746,597), J. K. Edwards 등은 질산으로 처리한 활성탄에 팔라듐-금 이원금속을 담지한 촉매가 우수한 수소 선택도를 나타낸다고 보고 하였다(J. K. Edwards, B. Solsona, D. Ntainjua, A. F. Carley, A. A. Herzing, C. J. Kiely, G. J. Hutchings, Science, 323권, 1037쪽 (2009)). 하지만, 고분산 나노 입자를 촉매로 이용하기 위해서는 대량 제조, 금속 용출 방지, 반응 중 소결 현상 및 금속 촉매 입자의 상전이에 따른 촉매 활성 변화 등의 여러 가지 기술적인 난점들이 존재하고 있다.
전술한 바와 같이, 산소와 수소로부터 과산화수소의 직접 제조법은 그 기술의 중요성으로 인해 오랫동안 연구가 진행되어 온 것은 사실이나, 아직까지 학문적인 연구 단계이며 소규모 촉매 제조 및 반응에 관한 연구에 국한되어 있다. 따라서 실제 상업화를 위해서는 제조가 수월하면서도 산 및 할로겐 이온의 첨가제 사용량을 최소화할 수 있는 반응조건에서 획기적인 성능을 지닌 촉매의 개발이 절실히 요구되고 있다.
이에 본 발명자들은 제조가 수월하면서도 과산화수소를 제조하는데 높은 활성을 보이는 촉매를 개발하고자 노력한 결과, 금속 입자가 삽입된 고분자 전해질 다층 박막을 담체 위에 형성시킨 촉매는 종래의 촉매에 비하여 높은 수율의 과산화수소를 얻을 수 있으며, 산 첨가 없이 극소량의 할로겐 이온만 첨가한 조건에서도 높은 활성을 보임을 확인하고 본 발명을 완성하기에 이르렀다.
따라서 본 발명의 주된 목적은 다양한 반응에서 높은 활성을 지닌 촉매를 제공하는데 있다.
본 발명의 다른 목적은 담체 위에 금속 입자가 삽입된 고분자 전해질 다층 박막을 형성시키는 방법을 제공하는데 있다.
본 발명의 또 다른 목적은 상기 촉매를 이용하여 수소와 산소로부터 과산화수소를 직접 제조하는 방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 담체, 상기 담체의 표면에 형성된 고분자 전해질 다층 박막 및 상기 다층 박막에 삽입된 금속 입자를 포함하는 촉매를 제공한다.
본 발명은 또한 담체 위에 고분자 전해질 다층박막을 형성하는 단계; 상기 고분자 전해질에 금속 전구체를 삽입하는 단계; 및 상기 금속 전구체를 환원제를 통해 금속으로 환원하는 단계를 포함하는 촉매의 제조방법을 제공한다.
본 발명은 또한 담체 위에 금속 전구체와 착물을 형성한 고분자 전해질 다층박막을 형성하는 단계; 및 상기 금속 전구체를 환원제를 통해 금속입자로 환원하는 단계를 포함하는 촉매의 제조방법을 제공한다.
본 발명은 또한 상기 촉매를 이용하여 산 촉진제를 포함하지 않는 반응용매 하에서 수소와 산소로부터 과산화수소를 제조하는 방법을 제공한다.
본 발명의 촉매는 고분자 전해질 다층 박막 사이에 금속이 강하게 결합되어 반응과정에서 금속의 용출이 일어나지 않아 활성이 저하되지 않는다. 또, 사용 목적에 따라 고분자 전해질의 종류, pH, 적층 회수 등을 조절하여 삽입된 금속의 농도 및 입자 크기를 조절할 수 있다. 본 발명에 따른 촉매는 그 제조가 수월하면서도 과산화수소 제조뿐만 아니라, 금속 입자를 촉매로 사용하는 다양한 반응에서 활성을 증가시키는데 이용될 수 있다.
도 1은 음이온 담체 위에 양이온계 및 음이온계 고분자 전해질을 순차적으로 교대로 적층한 뒤, 금속 전구체 용액에 혼합 및 금속을 환원시키는 방식으로 촉매를 제조하는 방법을 보여주는 개략도이다.
도 2는 음이온 담체 위에 양이온계 고분자 전해질 및 금속 전구체와 착물을 형성한 음이온계 고분자 전해질을 순차적으로 교대로 적층한 뒤, 금속을 환원시키는 방식으로 촉매를 제조하는 방법을 보여주는 개략도이다.
도 3은 양이온 담체 위에 음이온계 및 양이온계 고분자 전해질을 순차적으로 교대로 적층한 뒤, 금속 전구체 용액에 혼합 및 금속을 환원시키는 방식으로 촉매를 제조하는 방법을 보여주는 개략도이다.
도 4는 양이온 담체 위에 음이온계 고분자 전해질 및 금속 전구체와 착물을 형성한 양이온계 고분자 전해질을 순차적으로 교대로 적층한 뒤, 금속을 환원시키는 방식으로 촉매를 제조하는 방법을 보여주는 개략도이다.
이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.
본 발명의 일 양태에 따르면, 본 발명은 담체, 상기 담체의 표면에 형성된 고분자 전해질 다층 박막 및 상기 다층 박막에 삽입된 금속 입자를 포함하는 촉매를 제공한다.
본 발명의 담체는 양이온계 또는 음이온계 고분자 전해질이 용이하게 고정할 수 있도록 일정한 전하를 가지고 있는 것이 바람직하다. 따라서 본 발명의 바람직한 구현예에 따르면, 상기 담체는 양이온 수지 또는 음이온 수지이다.
담체에 사용되는 양이온 수지로 측쇄에 술폰산기, 카르복실산기, 인산기, 및 포스포닌산기로 이루어진 군에서 선택되는 양이온 작용기를 갖고 있는 고분자 수지를 사용할 수 있다. 이러한 양이온 작용기를 갖는 이온 수지의 예로는 플루오르계 고분자, 벤즈이미다졸계 고분자, 폴리이미드계 고분자, 폴리에테르이미드계 고분자, 폴리페닐렌술파이드계 고분자, 폴리술폰계 고분자, 폴리에테르술폰계 고분자, 폴리에테르케톤계 고분자, 폴리에테르-에테르케톤계 고분자 및 폴리페닐퀴녹살린계 고분자 중에서 선택되는 1종 이상을 포함할 수 있고, 바람직하게는 폴리(퍼플루오로술폰산)(일반적으로 나피온으로 시판됨), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤, 아릴 케톤, 폴리[2,2'-(m-페닐렌)-5,5'-바이벤즈이미다졸] 및 폴리(2,5-벤즈이미다졸) 중에서 선택되는 1종 이상을 들 수 있다.
담체에 사용되는 음이온 수지는 할로겐 화합물 및/또는 중탄산염형 음이온수지 및 탄산염 및 수산화물형 수지 또는 이들의 혼합물을 포함한다. 할로겐 화합물 유형 수지의 예는 JP-A-57-139026(본원에서 참조문헌으로 인용됨)에 기술되어 있다. 중탄산염-유형 수지의 예는 WO 제95/20559호, WO 제97/33850호, RU 특허 제2002726호 및 제2001901호(이들은 각각 본원에서 참조문헌으로 인용됨)에 기술되어 있다. 시판되는 적합한 음이온수지는 앰벌라이트(Amberlite)™ IRA 400 및 900 부류(디비닐벤젠과 가교결합된 폴리스티렌계 수지)(Rohm and Haas), 르와티트(Lewatit)™ M 500 WS(Bayer), 듀올라이트(Duolite)™ A 368, A-101D, ES-131 및 A-161(Rohm and Haas), 및 도웩스(DOWEX)™ MSA-1, 마라톤(MARATHON) A 및 마라톤 MSA(the dow chemical company)등이 있다.
본 발명의 담체는 상기 이온성 수지 담체 이외에도, 비이온성 담체를 사용할 수도 있으며, 이러한 비이온성 담체는 전하를 띄고 있는 고분자 전해질 물질이 담체 상에 형성할 수 있으면 그 종류에 한정되지 않는다. 본 발명에 적합한 담체의 예로는 활성탄, 실리카(silica), 알루미나(alumina), 실리카-알루미나(silica-alumina), 제올라이트(zeolite) 및 이 분야에서 잘 알려진 다른 물질일 수 있으며, 바람직하게는 알루미나이다. 이러한 비이온성 담체는 상기 이온성 수지 담체에 비하여 비용면에서 저렴하여 당업계에서는 자주 사용하는 물질이다. 따라서 본 발명에 있어서, 알루미나와 같은 비이온성 담체가 비록 이온성 수지 담체와 비교할 경우, 동일한 효율을 갖거나 또는 효율이 다소 낮더라도 비용절감 차원에서 사용될 수 있다.
본 발명의 상기 담체의 표면에 고정되는 고분자 전해질은 양이온계 또는 음이온계 전해질이다. 양이온계 고분자 전해질은 폴리(알릴아민), 폴리디알릴디메틸암모늄, 폴리(에틸렌디아민) 및 폴리(아크릴아미드-코-디알릴디메틸암모늄)로 이루어진 군에서 선택된 1종 이상의 전해질이나 이에 한정되는 것은 아니다. 또, 본 발명의 음이온계 고분자 전해질은 폴리(4-스티렌설포네이트), 폴리(아클릴산), 폴리(아크릴 아미드), 폴리(비닐포스폰산), 폴리(2-아크릴아미도-2-메틸-11-프로판술폰산), 폴리(아네톨레술폰산) 및 폴리(비닐 설포네이트)로 이루어진 군에서 선택된 1종 이상의 전해질이나 이에 한정되는 것이 아니다. 상기 양이온계 또는 음이온계 고분자 전해질 종류를 다양하게 사용함으로써, 고분자 전해질의 이온결합 세기를 조절할 수 있으며 따라서, 환원제를 사용하여 금속전구체를 환원할 경우 금속입자 크기를 조절할 수 있다.
본 발명에서 고분자 전해질을 이용하여 다층 박막을 형성할 경우 고분자 전해질의 분자량을 조절하여 고분자 전해질 다층 박막의 두께를 조절하고, 이를 통하여 삽입된 금속의 농도 및 입자 크기를 조절할 수 있게 된다. 따라서 본 발명의 바람직한 구현예에 따르면, 상기 고분자 전해질의 분자량은 1,000 내지 1,000,000이며, 보다 바람직하게는 2,000 내지 500,000이다. 예를 들면, PAH(poly(allyamine)hydrochloride)의 경우 3,000 내지 20,000, 바람직하게는 4,000 내지 12,000 중량분자량을 사용하여 고분자 전해질을 형성할 수 있다.
본 발명의 고분자 전해질의 다층 박막의 층수는 2 내지 30이며, 보다 바람직하게는 2 내지 15이다. 본 발명의 촉매는 금속입자가 담체 표면이 아닌 고분자 전해질 사이에 삽입되는 것을 특징으로 하며, 이를 통해 단층의 고분자 전해질로만 이루어진 촉매에 비하여 활성도가 매우 우수하다. 따라서 다층 박막의 층수가 2보다 작으면 본 발명의 다층 박막을 형성할 수 없게 되며, 30보다 클 경우는 그 활성도에 있어 큰 차이가 없어 그 이상의 층을 형성하는 것은 불필요하다.
본 발명의 다층박막에 삽입된 금속 입자는 팔라듐, 백금, 루테늄, 로듐, 이리듐, 은, 오스미움, 니켈, 구리, 코발트, 티타늄 또는 이의 혼합물이며, 바람직하게는 팔라듐, 백금 또는 이의 혼합물이다. 이러한 금속 입자는 금속전구체를 고분자 전해질에 삽입한 후 환원제로 환원시켜 생성된다. 본 발명에서 바람직하게 사용하는 팔라듐을 함유한 금속 전구체의 예로는 테트라클로로백금산(Ⅱ)(H2PtCl4), 헥사클로로백금산(Ⅳ)H2PtCl6), 테트라클로로백금(Ⅱ)산 칼륨(K2PtCl4), 헥사클로로백금산(Ⅳ) 칼륨(H2PtCl6) 또는 그 혼합물 등이 있으나 이에 한정되는 것이 아니다.
또 본 발명의 금속 입자는 사용목적에 따라 다양하게 조절할 수 있는 것으로 그 입자의 평균크기는 1 내지 1,000 nm이며, 바람직하게는 1 내지 500 nm, 보다 바람직하게는 1 내지 100 nm이다.
본 발명의 일 양태에 따르면, 본 발명은 (a) 담체를 제1 고분자 전해질 용액 및 제2 고분자 전해질 용액과 교대로 혼합하여, 상기 담체 상에 고분자 다층 박막을 형성시키는 단계(여기서 상기 제1 고분자 전해질 용액 및 제2 고분자 전해질 용액은 서로 상이하게 양이온계 또는 음이온계 전해질 용액임); (b) 상기 고분자 전해질 다층박막이 형성된 담체를 금속 전구체 용액과 혼합하여, 상기 고분자 전해질에 상기 금속 전구체를 삽입하는 단계; 및 (c) 상기 고분자 전해질 다층박막에 삽입된 금속 전구체를 환원제를 통해 금속으로 환원하는 단계를 포함하는 촉매의 제조방법을 제공한다.
이러한 제조방법은 사용된 담체의 전하 종류, 고분자 전해질 용액의 교대 순서에 따라 여러 가지 경우가 나올 수 있으며, 그 예를 설명하면 다음과 같다.
제 1 구현예로는 (a) 증류수를 용매로 사용하여 술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지 위에 양이온성 고분자 전해질을 적층하는 단계; (b) 적층된 양이온성 고분자 전해질 위에 음이온성 고분자 전해질을 적층하는 단계; (c) 적층을 반복하여 고분자 전해질 다층 박막을 형성하는 단계; (d) 담체 위에 고분자 전해질 다층 박막이 형성된 물질을 금속 전구체 용액에 넣어 고분자 전해질 다층 박막 사이에 금속 이온을 삽입하는 단계; 및 (e) 고분자 전해질 다층 박막 사이에 삽입된 금속을 환원제를 통해 환원시키는 단계를 포함하는 담체 위에 금속 입자가 포함된 고분자 전해질 다층 박막을 형성하는 방식을 통해 촉매를 제조한다.
제 2 구현예로는 (a) 증류수를 용매로 사용하여 할로겐 함유 양이온계 (NR3 +Cl-) 이온 수지 위에 음이온성 고분자 전해질을 적층하는 단계; (b) 적층된 음이온성 고분자 전해질 위에 양이온성 고분자 전해질을 적층하는 단계; (c) 적층을 반복하여 고분자 전해질 다층 박막을 형성하는 단계; (d) 담체 위에 고분자 전해질 다층 박막이 형성된 물질을 금속 전구체 용액에 넣어 고분자 전해질 다층 박막 사이에 금속 이온을 삽입하는 단계; 및 (e) 고분자 전해질 다층 박막 사이에 삽입된 금속을 환원제를 통해 환원시키는 단계를 포함하는 담체 위에 금속입자가 포함된 고분자 전해질 다층 박막을 형성하는 방식을 통해 촉매를 제조한다.
상기 제조방법에서 사용되는 고분자 전해질을 용해시키는 용매로는, 예를 들면, 물, 노말-헥산(n-hexane), 에탄올, 트리에틸아민, THF(tetrahydrofuran), DMSO(dimethyl sulfoxide), 에틸아세테이트, 이소프로필알코올, 아세톤, 아세토니트릴, 벤젠, 부틸알코올, 클로로포름, 디에틸에테르, 또는 이들의 혼합물을 사용할 수 있다.
또 본 발명의 촉매 제조방법에서 사용되는 양이온계 고분자 전해질 용액의 pH는 8 내지 11이며, 보다 바람직하게는 8 내지 10이다. 또 상기 음이온계 고분자 전해질 용액의 pH는 2 내지 6이며, 보다 바람직하게는 4 내지 6이다. 이러한 고분자 전해질의 pH 범위를 조절하면 고분자 전해질 다층 박막의 두께를 조절할 수 있으며, 이를 통하여 삽입된 금속의 농도 및 입자 크기를 조절할 수 있게 된다.
본 발명의 촉매 제조방법에서 사용된 금속 전구체는 증류수 등의 일반적인 용매이외에도 산이나 염기를 첨가하여 용액의 pH를 조절하여 용해시킨 전구체도 사용할 수 있다. 또 두 가지 금속의 전구체를 동시에 사용할 수도 있다.
또, 본 발명에서 금속 전구체를 환원시키는데 사용되는 환원제는 화학적 환원제 및 수소 등을 포함하나 이에 한정되는 것이 아니다. 따라서 상기 환원제는 수소화붕소나트륨(NaBH4), 히드라진(N2H4), 포름산나트륨(HCOONa), 탄산수소암모늄(NH4HCO3), 수소(H2) 또는 이에 한정되지 않는 다른 물질에서 하나 이상 선택하여 사용할 수 있으며, 보다 바람직하게는 수소화붕소나트륨(NaBH4) 또는 수소(H2)를 사용할 수 있다.
본 발명의 담체위에 금속입자가 삽입된 고분자 전해질 다층박막을 형성하기 위해서는 상기 방법 이외에 다른 방법이 사용될 수도 있다. 따라서 본 발명의 또 다른 일 양태에 따르면, 본 발명은 (a) 담체를 제1 고분자 전해질 용액 및 제2 고분자 전해질 용액과 교대로 혼합하여, 상기 담체 상에 고분자 다층 박막을 형성시키는 단계, 여기서 상기 제1 고분자 전해질 용액 및 제2 고분자 전해질 용액은 서로 상이하게 양이온계 또는 음이온계이고, 상기 제1 고분자 전해질 용액 또는 제2 고분자 전해질 용액 중 하나 이상은 금속 전구체와 착물을 형성한 것임; 및 (b) 상기 고분자 전해질 다층박막에 삽입된 금속 전구체를 환원제를 통해 금속으로 환원하는 단계를 포함하는 촉매의 제조방법을 제공한다.
이러한 제조방법은 사용된 담체의 전하 종류, 고분자 전해질 용액 또는 금속 전체구와 착물을 형성한 고분자 전해질 용액의 종류 및 그 교대 순서에 따라 여러 경우가 나올 수 있으며, 그 예를 설명하면 다음과 같다.
제 1 구현예로는 (a) 증류수를 용매로 사용하여 술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지 위에 양이온성 고분자 전해질을 적층하는 단계; (b) 적층된 양이온성 고분자 전해질 위에 금속 이온과 착물을 형성한 음이온성 고분자 전해질을 적층하는 단계; (c) 적층을 반복하여 고분자 전해질 다층 박막을 형성하는 단계; (d) 담체 위에 고분자 전해질 다층 박막이 형성된 물질을 금속 전구체 용액에 넣어 고분자 전해질 다층 박막 사이에 금속 이온을 삽입하는 단계; 및 (e) 고분자 전해질 다층 박막 사이에 삽입된 금속을 환원제를 통해 환원시키는 단계를 포함하는 담체 위에 금속 입자가 포함된 고분자 전해질 다층 박막을 형성하는 방식을 통해 촉매를 제조한다.
제 2 구현예로는 (a) 증류수를 용매로 사용하여 할로겐 함유 양이온계 (NR3 +Cl-) 이온 수지 위에 음이온성 고분자 전해질을 적층하는 단계; (b) 적층된 음이온성 고분자 전해질 위에 금속 이온과 착물을 형성한 양이온성 고분자 전해질을 적층하는 단계; (c) 적층을 반복하여 고분자 전해질 다층 박막을 형성하는 단계; (d) 담체 위에 고분자 전해질 다층 박막이 형성된 물질을 금속 전구체 용액에 넣어 고분자 전해질 다층 박막 사이에 금속 이온을 삽입하는 단계; 및 (e) 고분자 전해질 다층 박막 사이에 삽입된 금속을 환원제를 통해 환원시키는 단계를 포함하는 담체 위에 금속 입자가 포함된 고분자 전해질 다층 박막을 형성하는 방식을 통해 촉매를 제조한다.
본 발명의 제조방법에 따라 형성된 고분자 전해질 다층 박막은 각각의 층과 층 사이에 정전기적 인력 (electrostatic interaction), 수소결합 (hydrogen bonding), 반데르발스 결합(van der waals interaction) 또는 공유결합 (covalent bonding) 등으로 연결되어 물리화학적으로 매우 안정적인 구조를 이루며, 이러한 고분자 전해질 다층 박막 사이에 삽입된 금속은 포접된 (encapsulation) 형태 또는 함유된 형태 (embedment)로 존재하게 된다. 또한, 이 삽입된 금속 입자들은 고분자 전해질 다층 박막과 정전기적 인력 (electrostatic interaction), 수소결합 (hydrogen bonding), 반데르발스 결합(van der waals interaction) 또는 공유결합 (covalent bonding) 등으로 매우 강하게 결합되어 있다. 따라서 일반적으로 종래의 기술로 제조되는 금속을 담지한 촉매의 문제점 중 하나인 반응 중 용출이 일어나 활성 저하가 발생하는 문제점은, 본 발명에서 제공하는 고분자 전해질 다층 박막 사이에 금속을 삽입하는 촉매 제조 방식을 통해 근본적으로 해결할 수 있다.
본 발명의 일 양태에 따르면, 본 발명은 상기 촉매의 존재 하에서 산 촉진제를 포함하지 않은 반응용매 하에서 수소와 산소로부터 과산화수소를 제조하는 방법을 제공한다.
상기 과산화수소 제조는 용매(반응매질)로 메탄올, 에탄올 또는 물을 사용하여 액상반응으로 진행할 수 있다. 반응물인 산소와 수소는 폭발 위험성을 줄이기 위하여 질소로 희석된 혼합 가스를 사용하는 것이 바람직하며, 수소 : 산소 : 질소의 부피비는 3 : 40 : 57로 유지하며 반응에 사용되는 전체 가스 양과 용매의 속도 비는 3200 정도를 유지하면서 냉각수 자켓이 설치된 관형반응기를 사용하여 반응 압력 30 내지 60 bar, 보다 바람직하게는 45내지 55 bar, 반응 온도 20 내지 40℃ 보다 바람직하게는 20 내지 30℃를 유지하면서 반응을 진행하는 것이 좋다.
산소와 수소 반응으로부터 과산화수소를 제조하는 반응에서는 반응기의 부식을 방지하기 위해 강산 첨가 없이 극소량의 할로겐 첨가제만 첨가하는 것이 바람직하며, 할로겐 첨가제로는 브롬산 (Hydrobromic acid), 브롬화나트륨(Sodium Bromide: NaBr), 브롬화칼륨(Potassium Bromide: KBr) 등을 사용할 수 있다. 할로겐 첨가제의 농도는 용매로 사용한 메탄올의 질량을 기준으로 1 내지 100ppm이 바람직하며, 보다 바람직하게는 5 내지 50 ppm 가장 바람직하게는 10 내지 20 ppm으로 설정하는 것이 바람직하다.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다.
하기 실시예에 있어서, 산소 및 수소로부터 과산화수소를 직접 제조하는 반응에서 각 촉매의 활성을 비교하기 위하여 반응 시간은 특별히 명시하지 않는 한, 150시간으로 고정하였다.
실시예 1 : 음이온계 담체 상에 고분자 전해질 다층박막 형성
술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지 위에 금속 입자가 포함된 고분자 전해질 다층 박막을 형성하는 방법은 아래와 같다. 모든 과정은 상온에서 실시하였다.
먼저 10 mM PAH(Poly(allyamine)hydrochloride,무게분자량 56,000) 수용액 및 10 mM PSS(Poly(4-styrenesulfonate), 무게분자량 70,000) 수용액을 제조한 후, 염산 및 수산화나트륨을 이용하여 pH를 9로 조정하였다. K2PdCl4를 팔라듐 전구체로 사용하여 증류수에 1 mM이 되도록 용해시킨 후, pH를 3으로 조정하였다.
술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지10 g을 증류수 300 ml에 넣고 10분간 세척하는 것을 3회 반복하였다. 세척한 증류수를 제거한 이후 술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지가 담겨진 비이커에 10 mM PAH 수용액 300 ml를 넣고 20분간 교반하였다. 비이커에 남아 있는 용액을 제거 한 후에, 다시 증류수 300 ml에 넣고 5분간 세척하는 것을 3회 반복하였다.
상기 술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지 위에 PAH 층이 형성된 물질을 10 mM PSS 수용액 300 ml에 넣고 20분간 교반하였다. 비이커에 남아 있는 용액을 제거 한 후에, 다시 증류수 300 ml에 넣고 5분간 세척하는 것을 3회 반복하였다. 이후 다층 박막의 적층 수가 7이 되도록 상기 과정을 반복하였다.
상기 술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지 위에 고분자 전해질 다층 박막이 형성된 물질을 1 mM K2PdCl4 수용액250 ml에 넣고 30분간 교반 하였다. 비이커에 남아 있는 용액을 제거 한 후에, 다시 증류수 300 ml에 넣고 5분간 세척하는 것을 3회 반복하였다.
상기 술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지 위에 금속 이온이 삽입된 고분자 전해질 다층 박막이 형성된 물질을 증류수 300 ml에 넣고 교반하면서 50 mM NaBH4 수용액 20 ml를 천천히 적하하여 환원하였다. 추가로 30분간 교반 뒤, 남아 있는 용액을 제거 한 후에, 다시 증류수 300 ml에 넣고 5분간 세척하는 것을 3회 반복하였다.
상기 과정을 통해 제조한 물질을 촉매로 사용하여 산소 및 수소 반응으로부터 과산화수소를 제조하는 방법은 아래와 같다.
냉각수 자켓이 설치된 자체 제작한 관형반응기에 촉매 10 cc를 충진한 후 1 bar, 반응 온도 25℃를 유지한 상태에서 메탄올을 3시간 동안 넣어주며 세척을 하였다. 이후 메탄올 대신 HBr 15 ppm이 포함된 메탄올로 용매를 교체하여 넣어주며 반응 압력을 50 bar로 올린 후, 수소 : 산소 : 질소의 부피비는 3 : 40 : 57, 반응에 사용되는 전체 가스와 용매의 속도 비는 3200 정도를 유지한 상태에서 반응을 진행하였다. 반응 후 과산화수소의 수율은 적정을 통하여 계산하였으며, 수소선택도는 가스 크로마토그래피를 이용하여 분석하였으며, 그 결과를 표 1에 나타내었다.
실시예 2-9: 음이온계 담체 상에 고분자 전해질 다층박막 형성
상기 실시예 1과 양이온성/음이온성 고분자 전해질의 종류, 고분자 전해질 수용액의 pH 및 적층 횟수를 달리하여 고분자 전해질 다층박막을 형성하였다. 또한 촉매 활성 평가방법은 실시예 1과 동일하게 수행하였다.
본 발명에서는 양이온계 고분자 전해질로 PAH(Poly(allyamine)hydrochloride, 무게분자량 56,000), PDDA ((Polydiallyldimethylammonium), 무게분자량 100,000) 및 PEI (Poly(ethyleneimine), 무게분자량 25,000)을 사용하였으며, 음이온계 고분자 전해질로 PSS(Poly(4-styrenesulfonate), 무게분자량 70,000) 및 PAA(Poly(acrylic)acid)을 사용하였다.
자세한 촉매 제조 조건 및 활성평가 결과를 표 1에 나타내었다.
표 1
Figure PCTKR2010002137-appb-T000001
실시예 10 :양이온계(강염기성) 담체 상에 고분자 전해질 다층박막 형성
할로겐 함유 강염기성 양이온계 (NR3 +Cl-) 이온 수지 위에 금속 입자가 포함된 고분자 전해질 다층 박막을 형성하는 방법은 아래와 같다. 모든 과정은 상온에서 실시하였다.
할로겐 함유 강염기성 양이온계 (NR3 +Cl-) 이온 수지 10 g을 증류수 300 ml에 넣고 10분간 세척하는 것을 3회 반복하였다. 세척한 증류수를 제거한 이후 할로겐 함유 강염기성 양이온계 (NR3 +Cl-) 이온 수지가 담겨진 비이커에 10 mM PSS 수용액 300 ml를 넣고 20분간 교반하였다. 비이커에 남아 있는 용액을 제거 한 후에, 다시 증류수 300 ml에 넣고 5분간 세척하는 것을 3회 반복하였다.
할로겐 함유 강염기성 양이온계 (NR3 +Cl-) 이온 수지 위에 PSS 층이 형성된 물질에 10 mM PAH 수용액 300 ml를 넣고 20분간 교반하였다. 비이커에 남아 있는 용액을 제거 한 후에, 다시 증류수 300 ml에 넣고 5분간 세척하는 것을 3회 반복하였다. 다층 박막의 적층 수가 6이 되도록 상기 과정을 반복하였다.
이후 실시예 1과 동일한 방법으로 할로겐 함유 강염기성 양이온계 (NR3 +Cl-) 이온 수지 위에 금속 입자가 삽입된 고분자 전해질 다층 박막 물질을 제조하였다.
제조한 물질을 촉매로 사용하여 실시예 1과 동일한 방법으로 산소와 수소 반응으로부터 과산화수소를 제조하였다.
실시예 11-15 :양이온계(강염기성) 담체 상에 고분자 전해질 다층박막 형성
상기 실시예 10과 양이온성/음이온성 고분자 전해질의 종류, 고분자 전해질 수용액의 pH 및 적층 횟수를 달리하여 고분자 전해질 다층박막을 형성하였다. 또한 촉매 활성 평가방법은 실시예 1과 동일하게 수행하였다.
자세한 촉매 제조 조건과 활성평가 결과를 아래 표 2에 나타내었다.
표 2
Figure PCTKR2010002137-appb-T000002
실시예 16 :양이온계(약염기성) 담체 상에 고분자 전해질 다층박막 형성
담체의 종류로 암모니아 함유 약염기성 양이온계(NH2) 이온 수지를 사용하였으며, 이를 제외하고는 실시예 10과 동일한 조건에서 고분자 전해질 다층 박막을 형성하였다. 그리고 실시예 10과 동일한 방법으로 활성평가를 실시하였다. 그 결과 제조된 촉매에는 팔라듐이 0.2% 포함되어 있었으며, 활성 평가 결과 과산화수소 수율 5.4wt%, 수소 선택도 68%를 얻을 수 있었다.
실시예 17-22: 비이온계 담체 상에 고분자 전해질 다층박막 형성
알루미나 무기 담체 위에 금속 입자가 포함된 고분자 전해질 다층 박막을 형성하였다. 담체 종류를 제외한 촉매 제조 방법 및 활성 평가 방법은 실시예 1과 동일하다.
자세한 촉매 제조 조건과 활성평가 결과를 아래 표 3에 나타내었다.
표 3
Figure PCTKR2010002137-appb-T000003
실시예 23 : 음이온계 담체 상에 금속전구체와 착물 형성한 음이온계 고분자 전해질 다층박막 형성
실시예 1과 동일하게 술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지 위에 고분자 전해질 다층 박막을 형성하였으나, 금속과 착물을 형성한 음이온계 고분자 전해질 (PSS---Pd2+)을 사용하여 적층 하였다. 금속과 착물을 형성한 음이온계 고분자 전해질 수용액은 10 mM PSS 및 0.25 mM K2PdCl4로 구성되어 있으며, pH을 5로 조절하였다.
적층 횟수가 7이 되도록 적층 후, 별도의 금속 이온 도입 과정 없이, 실시예 1과 동일하게 환원을 수행하여 술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지 위에 금속 입자가 삽입된 고분자 전해질 다층 박막을 형성하였다. 제조된 촉매에는 팔라듐이 0.25wt% 포함되어 있다.
이후, 실시예 1과 동일한 방법으로 활성평가를 실시하였으며, 활성 평가 결과 과산화수소 수율 6.9wt%, 수소 선택도 70%를 얻었다.
실시예 24: 음이온계 담체 상에 금속전구체와 착물 형성한 양이온계 고분자 전해질 다층박막 형성
실시예 1과 동일하게 술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지 위에 고분자 전해질 다층 박막을 형성하였으나, 금속과 착물을 형성한 양이온계 고분자 전해질 (PAH---PdCl4 2-)을 사용하여 적층 하였다. 금속과 착물을 형성한 양이온계 고분자 전해질 수용액은 10 mM PAH 및 0.25 mM K2PdCl4로 구성되어 있으며, pH를 5로 조절하였다.
적층 횟수가 7이 되도록 적층 후, 별도의 금속 이온 도입 과정 없이, 실시예 1과 동일하게 환원을 수행하여 술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지 위에 금속 입자가 삽입된 고분자 전해질 다층 박막을 형성하였다. 제조된 촉매에는 팔라듐이 0.19wt% 포함되어 있다.
이후, 실시예 1과 동일한 방법으로 활성평가를 실시하였으며, 활성 평가 결과 과산화수소 수율 5.8wt%, 수소 선택도 69%를 얻었다.
실시예 25: 양이온계 담체 상에 금속전구체와 착물 형성한 음이온계 고분자 전해질 다층박막 형성
실시예 10과 동일하게 할로겐 함유 양이온계 (NR3 +Cl-) 이온 수지 위에 고분자 전해질 다층 박막을 형성하였으나, 금속과 착물을 형성한 음이온계 고분자 전해질 (PSS---Pd2+)을 사용하여 적층 하였다. 금속과 착물을 형성한 음이온계 고분자 전해질 수용액은 10 mM PSS 및 0.25 mM K2PdCl4로 구성되어 있으며, pH를 5로 조절하였다.
적층 횟수가 6이 되도록 적층 후, 별도의 금속 이온 도입 과정 없이, 실시예 10과 동일하게 환원을 수행하여 할로겐 함유 양이온계 (NR3 +Cl-) 이온 수지 위에 금속 입자가 삽입된 고분자 전해질 다층 박막을 형성하였다. 제조된 촉매에는 팔라듐이0.18wt% 포함되어 있다.
이후, 실시예 10과 동일한 방법으로 활성평가를 실시하였으며, 활성 평가 결과 과산화수소 수율 4.3wt%, 수소 선택도 68%를 얻었다.
실시예 26 : 양이온계 담체 상에 금속전구체와 착물 형성한 양이온계 고분자 전해질 다층박막 형성
실시예 10과 동일하게 할로겐 함유 양이온계 (NR3 +Cl-) 이온 수지 위에 고분자 전해질 다층 박막을 형성하였으나, 금속과 착물을 형성한 양이온계 고분자 전해질 (PAH---PdCl4 2-)을 사용하여 적층 하였다. 금속과 착물을 형성한 양이온계 고분자 전해질 수용액은 10 mM PAH 및 0.25 mM K2PdCl4로 구성되어 있으며, pH를 5로 조절하였다.
적층 횟수가 6이 되도록 적층 후, 별도의 금속 이온 도입 과정 없이, 실시예 10과 동일하게 환원을 수행하여 할로겐 함유 양이온계 (NR3 +Cl-) 이온 수지 위에 금속 입자가 삽입된 고분자 전해질 다층 박막을 형성하였다. 제조된 촉매에는 팔라듐이 0.14wt% 포함되어 있다.
이후, 실시예 10과 동일한 방법으로 활성평가를 실시하였으며, 활성 평가 결과 과산화수소 수율 2.4wt%, 수소 선택도 65%를 얻었다.
비교예 1
활성탄에 1wt%의 팔라듐이 담지된 상용 Pd/C 촉매를 이용하여 실시예 1과 동일한 방법으로 활성평가를 실시하였으며, 활성 평가 결과 반응 시간 48시간 경과 후 과산화수소 수율 0.1wt%, 수소 선택도 30%를 얻었다.
이러한 결과는 본 발명의 고분자 전해질 다층박막을 포함하는 촉매가 고분자 전해질을 사용하지 않은 촉매에 비하여 활성이 높음을 반영하는 것이다.
비교예 2
술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지 위에 0.23wt%의 팔라듐이 도핑(dopping) 된 상용 수지를 촉매를 이용하여 실시예 1과 동일한 방법으로 활성평가를 실시하였으며, 활성평가 결과 반응 시간 80시간 경과 후 과산화수소 수율 2.9wt%, 수소 선택도 68%를 얻었다.
이러한 결과는 본 발명의 이온 수지 위에 고분자 전해질 다층박막을 형성한 촉매가 고분자 전해질 층을 형성하지 않은 촉매에 비하여 활성이 높음을 반영하는 것이다.
비교예 3
술폰산 관능기 (SO3 -)를 가진 음이온계 이온 수지 10g이 담겨진 비이커에 10 mM PAH 수용액 300 ml를 넣고 20분간 교반하였다. 이후 실시예 1과 동일한 방식으로 음이온계 이온 수지와 양이온계 고분자 전해질 사이에 팔라듐 금속 이온을 삽입한 후, 환원제를 이용하여 금속을 환원 시켜 촉매를 제조하였다. 제조된 촉매에는 팔라듐이 0.12wt% 함유되어 있다.
실시예 1과 동일한 방법으로 활성평가를 실시하였으며, 활성 평가 결과 반응 시간 80시간 경과 후 과산화수소 수율 1.4wt%, 수소 선택도 67%를 얻었다.
이러한 결과는 본 발명의 이온 수지 위에 고분자 전해질 다층박막을 형성한 촉매가 단일의 고분자 전해질 층만을 형성한 촉매에 비하여 활성이 높음을 반영하는 것이다.
비교예 4
알루미나 무기 담체 10g이 담겨진 비이커에 10 mM PAH 수용액 300 ml를 넣고 20분간 교반하였다. 이후 실시예 1과 동일한 방식으로 담체와 양이온계 고분자 전해질 사이에 팔라듐 금속 이온을 삽입한 후, 환원제를 이용하여 금속을 환원 시켜 촉매를 제조하였다. 제조된 촉매에는 팔라듐이 0.05wt% 함유되어 있다.
실시예 1과 동일한 방법으로 활성평가를 실시하였으며, 활성 평가 결과 반응 시간 80시간 경과 후 과산화수소 수율 0.4wt%, 수소 선택도 62%를 얻었다.
이러한 결과는 본 발명의 비이온성 알루미나 담체 위에 고분자 전해질 다층박막을 형성한 촉매가 단일의 고분자 전해질 층만을 형성한 촉매에 비하여 활성이 높음을 반영하는 것이다.
비교예 5
알루미나 무기 담체 10g이 담겨진 비이커에 10 mM PSS 수용액 300 ml를 넣고 20분간 교반하였다. 이후 실시예 1과 동일한 방식으로 담체와 음이온계 고분자 전해질 사이에 팔라듐 금속 이온을 삽입한 후, 환원제를 이용하여 금속을 환원 시켜 촉매를 제조하였다. 제조된 촉매에는 팔라듐이 0.07wt% 함유되어 있다.
실시예 1과 동일한 방법으로 활성평가를 실시하였으며, 활성 평가 결과 반응 시간 80시간 경과 후 과산화수소 수율 0.8wt%, 수소 선택도 64%를 얻었다.
이러한 결과는 본 발명의 비이온성 알루미나 담체 위에 고분자 전해질 다층박막을 형성한 촉매가 단일의 고분자 전해질 층만을 형성한 촉매에 비하여 활성이 높음을 반영하는 것이다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아니다.

Claims (14)

  1. 담체, 상기 담체의 표면에 형성된 고분자 전해질 다층 박막 및 상기 다층 박막에 삽입된 금속 입자를 포함하는 촉매.
  2. 제 1항에 있어서,
    상기 담체는 양이온 수지, 음이온 수지 또는 비이온성 담체인 촉매.
  3. 제 1항에 있어서,
    상기 고분자 전해질 다층 박막은 양이온계 고분자 전해질 및 음이온계 고분자 전해질이 교대로 반복되어 이루어진 촉매.
  4. 제 3항에 있어서,
    상기 양이온계 고분자 전해질은 폴리(알릴아민), 폴리디알릴디메틸암모늄, 폴리(에틸렌디아민) 및 폴리(아크릴아미드-코-디알릴디메틸암모늄)로 이루어진 군 중에서 선택된 1종 이상의 전해질인 촉매.
  5. 제 3항에 있어서,
    상기 음이온계 고분자 전해질은 폴리(4-스티렌설포네이트), 폴리(아클릴산), 폴리(아크릴 아미드), 폴리(비닐포스폰산), 폴리(2-아크릴아미도-2-메틸-11-프로판술폰산), 폴리(아네톨레술폰산) 및 폴리(비닐 설포네이트)로 이루어진 군 중에서 선택된 1종 이상의 전해질인 촉매.
  6. 제 1항에 있어서,
    상기 고분자 전해질의 분자량은 1,000 내지 1,000,000인 촉매.
  7. 제 1항에 있어서,
    상기 다층 박막의 층수는 2 내지 15인 촉매.
  8. 제 1항에 있어서,
    상기 금속 입자는 팔라듐, 백금, 루테늄, 로듐, 이리듐, 은, 오스미움, 니켈, 구리, 코발트, 티타늄 또는 이의 혼합물인 촉매.
  9. 제 1항에 있어서,
    상기 금속 입자의 평균크기가 1 내지 1,000 nm인 촉매.
  10. (a) 담체를 제 1 고분자 전해질 용액 및 제 2 고분자 전해질 용액과 교대로 혼합하여, 상기 담체 상에 고분자 다층 박막을 형성시키는 단계, 여기서 상기 제1 고분자 전해질 용액 및 제2 고분자 전해질 용액은 서로 상이하게 양이온계 또는 음이온계 전해질 용액임;
    (b) 상기 고분자 전해질 다층박막이 형성된 담체를 금속 전구체 용액과 혼합하여, 상기 고분자 전해질에 상기 금속 전구체를 삽입하는 단계; 및
    (c) 상기 다층박막에 삽입된 금속 전구체를 환원제를 이용하여 금속으로 환원하는 단계를 포함하는 촉매의 제조방법.
  11. (a) 담체를 제 1 고분자 전해질 용액 및 제2 고분자 전해질 용액과 교대로 혼합하여, 상기 담체 상에 고분자 다층 박막을 형성시키는 단계, 여기서 상기 제 1 고분자 전해질 용액 및 제 2 고분자 전해질 용액은 서로 상이하게 양이온계 또는 음이온계이고, 상기 제1 고분자 전해질 용액 또는 제2 고분자 전해질 용액 중 하나 이상은 금속 전구체와 착물을 형성한 것임;
    (b) 상기 고분자 전해질 다층박막에 삽입된 금속 전구체를 환원제를 통해 금속으로 환원하는 단계를 포함하는 촉매의 제조방법.
  12. 제 10항 또는 제 11항에 있어서,
    상기 양이온계 고분자 전해질 용액의 pH는 8 내지 11이며, 상기 음이온계 고분자 전해질 용액의 pH는 2 내지 6인 촉매의 제조방법.
  13. 제 10항 또는 제 11항에 있어서,
    상기 환원제는 수소화붕소나트륨(NaBH4), 히드라진(N2H4), 포름산나트륨(HCOONa), 탄산수소암모늄(NH4HCO3) 또는 수소(H2)로부터 선택된 1종 이상인 촉매의 제조방법.
  14. 제 1항 내지 제 9항 중 어느 한 항에 따른 촉매의 존재 하에서 수소와 산소로부터 과산화수소를 제조하는 방법.
PCT/KR2010/002137 2009-05-13 2010-04-07 고분자 전해질 다층박막 촉매 및 그 제조 방법 WO2010131839A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/319,814 US8784769B2 (en) 2009-05-13 2010-04-07 Polyelectrolyte multilayer thin film catalyst and method for producing same
CN201080021088.5A CN102421525B (zh) 2009-05-13 2010-04-07 聚合物电解质多层薄膜催化剂及其制备方法
EP10775041.6A EP2431093B1 (en) 2009-05-13 2010-04-07 Polyelectrolyte multilayer thin film catalyst and method for producing same
JP2012510735A JP5504337B2 (ja) 2009-05-13 2010-04-07 高分子電解質多層薄膜触媒およびその製造方法
US13/550,941 US20130004411A1 (en) 2009-05-13 2012-07-17 Polyelectrolyte multilayer thin film catalyst and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0041657 2009-05-13
KR1020090041657A KR101474571B1 (ko) 2009-05-13 2009-05-13 고분자 전해질 다층박막 촉매 및 그 제조 방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/550,941 Division US20130004411A1 (en) 2009-05-13 2012-07-17 Polyelectrolyte multilayer thin film catalyst and method for producing same

Publications (2)

Publication Number Publication Date
WO2010131839A2 true WO2010131839A2 (ko) 2010-11-18
WO2010131839A3 WO2010131839A3 (ko) 2011-01-06

Family

ID=43085413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002137 WO2010131839A2 (ko) 2009-05-13 2010-04-07 고분자 전해질 다층박막 촉매 및 그 제조 방법

Country Status (9)

Country Link
US (2) US8784769B2 (ko)
EP (1) EP2431093B1 (ko)
JP (1) JP5504337B2 (ko)
KR (1) KR101474571B1 (ko)
CN (1) CN102421525B (ko)
MY (2) MY173052A (ko)
SA (1) SA110310371B1 (ko)
TW (1) TWI476049B (ko)
WO (1) WO2010131839A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140154168A1 (en) * 2011-07-15 2014-06-05 Solvay Sa Process to obtain hydrogen peroxide, and catalyst supports for the same process
CN108480155A (zh) * 2011-12-30 2018-09-04 米其林集团总公司 来自多层薄膜的改进的内衬阻挡层

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101764923B1 (ko) 2010-03-29 2017-08-04 에스케이이노베이션 주식회사 고분자 전해질 박막이 형성된 고정상에 표면 개질된 금속 나노 입자가 고정된 촉매 및 그 제조방법
US9718013B2 (en) * 2012-02-27 2017-08-01 Kx Technologies Llc Formation and immobilization of small particles by using polyelectrolyte multilayers
KR102055389B1 (ko) * 2013-11-26 2019-12-12 에스케이이노베이션 주식회사 황산 처리된 Pt-Pd 담지 고분자 전해질 다층박막 촉매의 제조방법
WO2017031060A1 (en) * 2015-08-14 2017-02-23 Board Of Regents Of The University Of Nebraska Substrate delivery of embedded liposomes
RU172363U1 (ru) * 2016-10-12 2017-07-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет" (ФГБОУ ВО "ВГУ") Наноструктурный композит для глубокого удаления кислорода из воды
CN107486026B (zh) * 2017-08-18 2021-04-02 清华大学 抗生物污染的分离膜及其制备方法
WO2019059625A1 (ko) * 2017-09-19 2019-03-28 주식회사 엘지화학 담체-나노 입자 복합체, 이를 포함하는 촉매 및 촉매를 포함하는 전기화학 전지 및 담체-나노 입자 복합체의 제조방법
WO2019059569A2 (ko) * 2017-09-20 2019-03-28 주식회사 엘지화학 전극 촉매용 담체의 제조 방법, 전극 촉매용 담체의 전구체 및 이를 포함하는 전극 촉매용 담체
CN109647522A (zh) * 2017-10-12 2019-04-19 中国科学院大连化学物理研究所 含固体酸交联共聚物负载钯纳米颗粒催化剂及制备和应用
US11484865B2 (en) * 2019-05-06 2022-11-01 Yale University Hydrogen peroxide selective catalysts, methods of using thereof, and methods of making thereof
US11328877B2 (en) 2019-10-21 2022-05-10 Imam Abdulrahman Bin Faisal University Redox-mediated poly(vinylphosphonic acid) useful in capacitors
CN111313036B (zh) * 2020-02-26 2021-02-02 安徽正洁高新材料股份有限公司 一种燃料电池电极用铂金催化剂及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139026A (en) 1981-02-24 1982-08-27 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation of alkylene glycol
RU2001901C1 (ru) 1992-05-19 1993-10-30 Государственное научно-производственное предпри тие "Совинтех" Способ получени алкиленгликолей
RU2002726C1 (ru) 1992-05-19 1993-11-15 Государственное научно-производственное предпри тие "Совинтех" Способ получени алкиленгликолей
WO1995020559A1 (en) 1994-01-31 1995-08-03 Shell Internationale Research Maatschappij B.V. Process for the preparation of alkylene glycols
WO1997033850A1 (fr) 1996-03-11 1997-09-18 Valery Fedorovich Shvets Procede de production d'alcyleneglycols
US6168775B1 (en) 1998-08-26 2001-01-02 Hydrocarbon Technologies, Inc. Catalyst and process for direct catalystic production of hydrogen peroxide, (H2O2)
US6746597B2 (en) 2002-01-31 2004-06-08 Hydrocarbon Technologies, Inc. Supported noble metal nanometer catalyst particles containing controlled (111) crystal face exposure
US6822103B2 (en) 2003-02-03 2004-11-23 Repsol Quimica, S.A. Integrated process for selective oxidation of organic compounds
US7179440B2 (en) 2002-03-14 2007-02-20 Repsol Quimica, S.A. Process to obtain hydrogen peroxide

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357105A (ja) * 1990-12-27 1992-12-10 Mitsubishi Gas Chem Co Inc 過酸化水素の製造方法
JPH05124803A (ja) * 1991-10-31 1993-05-21 Mitsubishi Gas Chem Co Inc 過酸化水素の製造方法
BR9305759A (pt) * 1992-11-20 1997-01-28 Showa Denko Kk Processo para a produçao de peróxido de hidrogenio
FR2796312B1 (fr) 1999-07-16 2001-09-07 Atofina Catalyseur metallique supporte, sa preparation et ses applications dans la fabrication directe du peroxyde d'hydrogene
FR2806399B1 (fr) 2000-03-17 2002-09-13 Atofina Procede d'obtention directe du peroxyde d'hydrogene
DE10048844A1 (de) * 2000-10-02 2002-04-11 Basf Ag Verfahren zur Herstellung von Platinmetall-Katalysatoren
JP2002220677A (ja) * 2001-01-26 2002-08-09 Dainippon Printing Co Ltd 金属膜を有する部材
WO2003001575A2 (en) * 2001-06-25 2003-01-03 The Board Of Regents For Oklahoma State University Preparation of graded semiconductor films by the layer-by-layer assembly of nanoparticles
US7718158B2 (en) * 2005-10-13 2010-05-18 Lyondell Chemical Technology, L.P. Polymer-encapsulated ion-exchange resin
US7834274B2 (en) * 2005-12-30 2010-11-16 Industrial Technology Research Institute Multi-layer printed circuit board and method for fabricating the same
US7842637B2 (en) * 2008-05-23 2010-11-30 Lumimove, Inc. Electroactivated film with polymer gel electrolyte

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139026A (en) 1981-02-24 1982-08-27 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation of alkylene glycol
RU2001901C1 (ru) 1992-05-19 1993-10-30 Государственное научно-производственное предпри тие "Совинтех" Способ получени алкиленгликолей
RU2002726C1 (ru) 1992-05-19 1993-11-15 Государственное научно-производственное предпри тие "Совинтех" Способ получени алкиленгликолей
WO1995020559A1 (en) 1994-01-31 1995-08-03 Shell Internationale Research Maatschappij B.V. Process for the preparation of alkylene glycols
WO1997033850A1 (fr) 1996-03-11 1997-09-18 Valery Fedorovich Shvets Procede de production d'alcyleneglycols
US6168775B1 (en) 1998-08-26 2001-01-02 Hydrocarbon Technologies, Inc. Catalyst and process for direct catalystic production of hydrogen peroxide, (H2O2)
US6746597B2 (en) 2002-01-31 2004-06-08 Hydrocarbon Technologies, Inc. Supported noble metal nanometer catalyst particles containing controlled (111) crystal face exposure
US7179440B2 (en) 2002-03-14 2007-02-20 Repsol Quimica, S.A. Process to obtain hydrogen peroxide
US6822103B2 (en) 2003-02-03 2004-11-23 Repsol Quimica, S.A. Integrated process for selective oxidation of organic compounds

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
C. SAMANTA; V.R CHOUDHARY, CATAL. COMMUN., vol. 8, 2007, pages 73
C. SAMANTA; V.R. CHOUDHARY, APPL. CATAL. A, vol. 326, 2007, pages 28
C. SAMANTA; V.R. CHOUDHARY, CATAL. COMMUN., vol. 8, 2007, pages 73
D.P. DISSANAYAKE; J.H. LUNSFORD, J. CATAL., vol. 206, 2002, pages 173
D.P. DISSANAYAKE; J.H. LUNSFORD, J. CATAL., vol. 214, 2003, pages 113
G. LI; J. EDWARDS; A.F. CARLEY; G.J. HUTCHINGS, CATAL. COMMUN., vol. 8, 2007, pages 247
J. K. EDWARDS; B. SOLSONA; D. NTAINJUA; A. F. CARLEY; A. A. HERZING; C. J. KIELY; G. J. HUTCHINGS, SCIENCE, vol. 323, 2009, pages 1037
J.K. EDWARDS; A. THOMAS; B.E. SOLSONA; P. LANDON; A.F. CARLEY; G.J. HUTCHINGS, CATAL. TODAY, vol. 122, 2007, pages 397
J.K. EDWARDS; B.E. SOLSONA; P. LANDON; A.F. CARLEY; A. HERZING; C.J. KIELY; G.J. HUTCHINGS, J. CATAL., vol. 236, 2005, pages 69
J.M. CAMPOS-MARTIN; G. BLANCO-BRIEVA; J.L.G. FIERRO, ANGEW. CHEM. INT. ED., vol. 45, 2006, pages 6962
P. LANDON; P.J. COLLIER; A.F. CARLEY; D. CHADWICK; A.J. PAPWORTH; A. BURROWS; C.J. KIELY; G.J. HUTCHINGS, PHYS. CHEM. CHEM. PHYS., vol. 5, 2003, pages 1917
P. LANDON; P.J. COLLIER; A.J. PAPWORTH; C.J. KIELY; G.J. HUTCHINGS, CHEM. COMMUN., 2002, pages 2058
Q. LIU; J. C. BAUER; R. E. SCHAAK; J. H. LUNSFORD, ANGEW. CHEM. INT. ED., vol. 47, 2008, pages 6221
Q. LIU; J.C. BAUER; RE. SCHAAK; J.H. LUNSFORD, APPL. CATAL. A, vol. 339, 2008, pages 130
V.R. CHOUDHARY; C. SAMANTA, J. CATAL., vol. 238, 2006, pages 28
V.R. CHOUDHARY; C. SAMANTA; T.V. CHOUDHARY, CATAL. COMMUN., vol. 8, 2007, pages 1310
V.R. CHOUDHARY; P. JANA, J. CATAL., vol. 246, 2007, pages 434
Y.-F. HAN; J.H. LUNSFORD, CATAL. LETT., vol. 99, 2005, pages 13
Y.-F. HAN; J.H. LUNSFORD, J. CATAL., vol. 230, 2005, pages 313

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140154168A1 (en) * 2011-07-15 2014-06-05 Solvay Sa Process to obtain hydrogen peroxide, and catalyst supports for the same process
US9610573B2 (en) * 2011-07-15 2017-04-04 Solvay Sa Process to obtain hydrogen peroxide, and catalyst supports for the same process
CN108480155A (zh) * 2011-12-30 2018-09-04 米其林集团总公司 来自多层薄膜的改进的内衬阻挡层

Also Published As

Publication number Publication date
MY173052A (en) 2019-12-23
US20120051999A1 (en) 2012-03-01
KR101474571B1 (ko) 2014-12-19
KR20100122654A (ko) 2010-11-23
US8784769B2 (en) 2014-07-22
TW201039916A (en) 2010-11-16
CN102421525B (zh) 2015-10-14
WO2010131839A3 (ko) 2011-01-06
CN102421525A (zh) 2012-04-18
EP2431093B1 (en) 2021-02-24
US20130004411A1 (en) 2013-01-03
JP2012526652A (ja) 2012-11-01
EP2431093A2 (en) 2012-03-21
JP5504337B2 (ja) 2014-05-28
MY157844A (en) 2016-07-29
SA110310371B1 (ar) 2014-10-16
TWI476049B (zh) 2015-03-11
EP2431093A4 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2010131839A2 (ko) 고분자 전해질 다층박막 촉매 및 그 제조 방법
WO2011122791A9 (ko) 고분자 전해질 박막이 형성된 고정상에 표면 개질된 금속 나노 입자가 고정된 촉매 및 그 제조방법
JP3429001B2 (ja) 化学合成用複合膜
US20120165482A1 (en) Carbon nanomaterial-supported catalyst and application thereof in cyclic carbonate synthesis
EP0853687B1 (en) Composite membrane and use thereof for chemical synthesis
WO2017052222A1 (ko) 담체-나노입자 복합체, 이의 제조방법, 및 이를 포함하는 막전극 접합체
ZA200300070B (en) Electrochemical cell.
CN116262729A (zh) 一类依托咪酯杂质化合物、制备方法及其应用
US20220033979A1 (en) Catalyst for synthesizing organic carbonate and method of producing thereof, electrode for synthesizing organic carbonate, cell for synthesizing organic carbonate, method of producing organic carbonate, and synthesis system
KR19990076862A (ko) 할로겐화카르보닐의 제조
KR102055389B1 (ko) 황산 처리된 Pt-Pd 담지 고분자 전해질 다층박막 촉매의 제조방법
US3985679A (en) Transition metal catalyst supported on particulate high surface area BBB type polymer
WO2013069898A1 (ko) 촉매 조성물, 및 이의 용도
WO2023096263A1 (ko) 카보네이트의 제조 방법
US20120231367A1 (en) Composite proton conducting membrane with low degradation and membrane electrode assembly for fuel cells
JP5054309B2 (ja) 固体高分子電解質
WO2007072619A1 (ja) 遷移金属クラスター触媒
JPH04334341A (ja) アセトアルデヒドの製造方法
JPH02217486A (ja) 芳香族化合物の部分酸化物の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080021088.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10775041

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012510735

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13319814

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010775041

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9211/CHENP/2011

Country of ref document: IN