WO2010131311A1 - 半導体メモリセルおよびその製造方法 - Google Patents

半導体メモリセルおよびその製造方法 Download PDF

Info

Publication number
WO2010131311A1
WO2010131311A1 PCT/JP2009/006875 JP2009006875W WO2010131311A1 WO 2010131311 A1 WO2010131311 A1 WO 2010131311A1 JP 2009006875 W JP2009006875 W JP 2009006875W WO 2010131311 A1 WO2010131311 A1 WO 2010131311A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
memory cell
semiconductor memory
semiconductor
gate electrode
Prior art date
Application number
PCT/JP2009/006875
Other languages
English (en)
French (fr)
Inventor
金子幸広
加藤剛久
田中浩之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2009801588253A priority Critical patent/CN102405521A/zh
Publication of WO2010131311A1 publication Critical patent/WO2010131311A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40111Multistep manufacturing processes for data storage electrodes the electrodes comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1251Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs comprising TFTs having a different architecture, e.g. top- and bottom gate TFTs

Definitions

  • the present invention relates to a semiconductor memory cell comprising a field effect transistor in which a gate insulating film is composed of a ferroelectric film.
  • Nonvolatile memories using ferroelectrics are roughly classified into two types: a capacitor type and a field effect transistor (FET) type in which a gate insulating film is formed of a ferroelectric film.
  • FET field effect transistor
  • the capacitor type has a structure similar to that of a dynamic random access memory (DRAM), holds charges in a ferroelectric capacitor, and distinguishes the 0 and 1 states of data depending on the polarization direction of the ferroelectric.
  • DRAM dynamic random access memory
  • the stored data is destroyed, so that a data rewrite operation is required.
  • the polarization is inverted every time reading is performed, and polarization inversion fatigue becomes a problem.
  • a charge amount typically 100 fC
  • a ferroelectric has a polarization charge per area inherent to the material, and even when the memory cell is miniaturized, the electrode area needs to have a certain size as long as the same material is used. Therefore, it is difficult to reduce the capacitor size in proportion to the miniaturization of the process rule, which is not suitable for increasing the capacity.
  • FET-type ferroelectric memory MFSFET: Metal-Ferroelectric-Semiconductor FET
  • MFSFET Metal-Ferroelectric-Semiconductor FET
  • binary data is written into the ferroelectric memory by using a gate electrode connected to the word line of the selected memory cell, a source This is done by applying a voltage pulse between the source electrodes connected to the line. However, at that time, a voltage is also applied to the non-access target memory cell connected to the word line and the source line of the selected memory cell, so that erroneous data writing occurs.
  • a selection switch element made of, for example, a MISFET (Metal-Insulator-Semiconductor FET) is inserted between the word line and the gate electrode and / or between the source line and the source electrode to prevent erroneous writing. ing. With such a configuration, random access to each memory cell becomes possible (see, for example, Patent Document 1).
  • MISFET Metal-Insulator-Semiconductor FET
  • the MISFETs that are the selection switch elements are arranged in a plane on the MFSFET that is the memory element, at least a region that electrically isolates the gate electrodes of these FETs is required, which increases the cell size. There is a problem.
  • the semiconductor memory cell of this new structure is composed of a ferroelectric film that forms the gate insulating film of the MFSFET that is a memory element, and a paraelectric film that forms the gate insulating film of the MISFET that is a selective switching element.
  • the semiconductor film is used as a common channel layer for the MFSFET and the MISFET.
  • a ferroelectric film and a semiconductor are usually formed so as to cover the first gate electrode on the substrate after forming the first gate electrode of the MFSFET on the substrate. It is manufactured by stacking films, forming source / drain electrodes on the semiconductor film, and then forming a paraelectric film.
  • CMOS Complementary Metal Oxide Semiconductor
  • the present invention has been made in view of such problems, and its main object is to provide a semiconductor memory cell having excellent switching characteristics and a small cell size.
  • a semiconductor memory cell includes a memory element including a first field effect transistor (MFSFET) in which a gate insulating film is formed of a ferroelectric film, and a gate insulating film formed of a paraelectric film. And a selective switching element made of a second field effect transistor (MISFET), and the first gate electrode of the first field effect transistor is made of a crystalline conductive film formed on the surface of the crystalline insulating film on the substrate.
  • MFSFET first field effect transistor
  • MISFET selective switching element made of a second field effect transistor
  • the ferroelectric film is formed on the crystalline insulating film so as to cover the first gate electrode, the paraelectric film is formed on the ferroelectric film through the semiconductor film, and the second field effect transistor
  • the second gate electrode is formed on the paraelectric film, and the semiconductor film forms a common channel layer of the first field-effect transistor and the second field-effect transistor.
  • a first field effect transistor and the second common source electrode and a drain electrode to the field effect transistor are formed.
  • the crystallinity of the ferroelectric film and the semiconductor film formed on the crystalline insulating film and the crystalline conductive film (first gate electrode) is improved, thereby improving the switching characteristics and the cell.
  • a small-sized semiconductor memory cell can be obtained.
  • the surface of the ferroelectric film is preferably flattened.
  • the first gate electrode is preferably embedded in a crystalline insulating film.
  • the ferroelectric film formed on the crystalline insulating film and the crystalline conductive film (first gate electrode) becomes a film with excellent crystallinity without a step, so that it is formed on the crystalline insulating film.
  • the crystallinity of the semiconductor film can be further improved, so that a semiconductor memory cell having excellent switching characteristics and a small cell size can be obtained.
  • a ferroelectric film and a semiconductor film excellent in crystallinity are obtained by forming a ferroelectric film of MFSFET on a crystalline insulating film and a crystalline conductive film (gate electrode of MFSFET).
  • a semiconductor memory cell having excellent switching characteristics and a small cell size can be realized.
  • FIGS. 1A and 1B are diagrams illustrating a configuration of a semiconductor memory cell disclosed in Patent Document 2.
  • FIG. 1A is a cross-sectional view thereof, and FIG. 1B is an equivalent circuit diagram thereof.
  • 2A to 2D are cross-sectional views illustrating a method for manufacturing a semiconductor memory cell.
  • FIG. 3 is a cross-sectional view illustrating the crystallinity of the ferroelectric film and the semiconductor film in the semiconductor memory cell.
  • 4A and 4B are diagrams showing the configuration of the semiconductor memory cell according to the first embodiment of the present invention.
  • FIG. 4A is a sectional view thereof, and FIG. 4B is an equivalent circuit thereof.
  • FIG. 5A to 5D are cross-sectional views showing a method for manufacturing a semiconductor memory cell according to the first embodiment.
  • 6A to 6C are cross-sectional views illustrating a method for manufacturing a semiconductor memory cell according to the first embodiment.
  • FIG. 7 is a table showing the read current of the semiconductor memory cell in the first embodiment.
  • FIG. 8 is a circuit diagram showing the configuration of the semiconductor memory device in which the semiconductor memory cells in the first embodiment are arranged in an array.
  • FIG. 9 is a cross-sectional view showing the crystallinity of the ferroelectric film and the semiconductor film of the semiconductor memory cell in the first embodiment.
  • FIG. 10 is a cross-sectional view showing a configuration of a semiconductor memory cell according to the second embodiment of the present invention.
  • FIGS. 11A to 11D are cross-sectional views illustrating a method for manufacturing a semiconductor memory cell according to the second embodiment.
  • 12A to 12C are cross-sectional views illustrating a method for manufacturing a semiconductor memory cell according to the second embodiment.
  • FIGS. 13A and 13B are diagrams showing the configuration of a semiconductor memory cell according to the third embodiment of the present invention.
  • FIG. 13A is a sectional view thereof, and
  • FIG. 13B is an equivalent circuit thereof.
  • FIG. 14A to 14D are cross-sectional views illustrating a method for manufacturing a semiconductor memory cell according to the third embodiment.
  • FIG. 15 is a table showing the read current of the semiconductor memory cell in the third embodiment.
  • FIG. 16A and 16B are diagrams showing a configuration of a memory block in a semiconductor memory device in which a plurality of semiconductor memory cells according to the third embodiment are connected in series.
  • FIG. 16A is a circuit diagram thereof.
  • FIG. 16B is a sectional view thereof.
  • FIG. 17 is a circuit diagram showing a configuration of the semiconductor memory device according to the third embodiment.
  • FIG. 1A and 1B are diagrams showing a configuration of a semiconductor memory cell 120 disclosed in Patent Document 2 by the applicant of the present application.
  • FIG. 1A is a cross-sectional view thereof, and
  • FIG. 1B is an equivalent circuit diagram thereof. is there.
  • a ferroelectric film 104 and a paraelectric film 109 are stacked on a substrate 101 with a semiconductor film 105 interposed therebetween.
  • the gate electrode 103 of the MFSFET 121 is formed, and the gate electrode 110 of the MISFET 122 is formed on the paraelectric film 109 side.
  • the semiconductor film 105 constitutes a channel layer common to the MFSFET 121 and the MISFET 122, and the source electrode 106, the drain electrode 108, and the intermediate electrode 107 common to the MFSFET 121 and the MISFET 122 are formed on the semiconductor film 105. Yes.
  • the semiconductor memory cell 120 has a structure in which a bottom gate type MFSFET (memory element) 121 and a top gate type MISFET (selective switching element) 122 are stacked. ), The MFSFET 121 and the MISFET 122 are connected in series.
  • MFSFET memory element
  • MISFET selective switching element
  • Data is written to the memory element by applying a predetermined voltage to the gate electrode 110 of the MISFET 122 to turn on the selective switching element and applying a predetermined voltage between the gate electrode 103 and the drain electrode 108 of the MFSFET 121.
  • a predetermined voltage to the gate electrode 110 of the MISFET 122 to turn on the selective switching element and applying a predetermined voltage between the gate electrode 103 and the drain electrode 108 of the MFSFET 121.
  • a predetermined voltage is applied to the gate electrode 110 of the MISFET 122 to turn on the selective switching element, and a predetermined voltage is applied between the source electrode 106 and the drain electrode 108.
  • the detection is performed by detecting the current flowing through the channel layer (semiconductor film 105) in accordance with the polarization state of the ferroelectric film 104.
  • the semiconductor memory cell 120 can be formed, for example, by the manufacturing method shown in FIGS.
  • a gate electrode 103 made of a stacked film of platinum (Pt) and strontium ruthenate (SRO) is formed. .
  • a strong titanium / zirconate (Pb (Zr, Ti) O 3 , hereinafter referred to as PZT) film is formed on the SiO 2 film 102 so as to cover the gate electrode 103.
  • a dielectric film 104 is formed, and a semiconductor film 105 made of zinc oxide (ZnO) is further formed thereon.
  • a source electrode 106, an intermediate electrode 107, and a drain electrode 108 made of a laminated film of platinum and titanium (Ti) are formed on the ZnO film 105, and then the ZnO film 105 is formed.
  • a paraelectric film 109 made of a silicon nitride film (SiNx) is formed thereon.
  • a gate electrode 110 made of a laminated film of gold (Au) and titanium is formed on the SiNx film 109, and further, a source electrode 106, an intermediate electrode 107, and a drain electrode 108 are formed. Electrodes 111a to 111c are formed in contact with the semiconductor memory cell 120 to complete the semiconductor memory cell 120.
  • the crystallinity of the semiconductor film (ZnO film) 105 constituting the channel layer of the MISFET 122 is measured, the crystallinity of the semiconductor film 105a in the region on the gate electrode 103 is good as shown in FIG. The crystallinity of the semiconductor film 105 in other regions was poor.
  • the ferroelectric film 104a formed on the gate electrode 103 having crystallinity has crystallinity
  • the ferroelectric film formed on the other amorphous SiO 2 film 102 has a crystallinity. This is probably because the film 104 was amorphous (or microcrystalline).
  • the present inventors have formed a crystalline insulating film on the base of the ferroelectric film in place of the SiO 2 film, and thereby the entire ferroelectric film.
  • the inventors have noticed that a film having good crystallinity can be formed, and have come up with the present invention.
  • FIG. 4A is a cross-sectional view showing the configuration of the semiconductor memory cell 20 in the first embodiment of the present invention
  • FIG. 4B is an equivalent circuit diagram thereof.
  • the semiconductor memory cell 20 includes a memory element including a first field effect transistor (MFSFET) 21 having a gate insulating film made of a ferroelectric film 4, and a gate. And a selective switching element including a second field effect transistor (MISFET) 22 having an insulating film made of a paraelectric film 9.
  • MFSFET field effect transistor
  • MISFET second field effect transistor
  • a crystalline insulating film 2 is formed on the substrate 1, and a first gate electrode 3 of the MFSFET 21 made of a crystalline conductive film is formed on the surface thereof.
  • the ferroelectric film 4 is formed on the crystalline insulating film 2 so as to cover the first gate electrode 3, and the paraelectric film 9 is formed on the ferroelectric film 4 via the semiconductor film 5, and the MISFET 22
  • the second gate electrode 10 is formed on the paraelectric film 9.
  • the semiconductor film 5 constitutes a channel layer common to the MFSFET 21 and the MISFET 22, and the source electrode 6 and the drain electrode 8 common to the MFSFET 21 and the MISFET 22 are formed on the semiconductor film 5.
  • the semiconductor memory cell 20 in the present embodiment has a structure in which a bottom gate type MFSFET (memory element) 21 and a top gate type MISFET (selective switching element) 22 are stacked.
  • the MFSFET 21 and the MISFET 22 are connected in series.
  • a crystalline insulating film 2 is formed.
  • the crystalline insulating film 2 is made of, for example, Yttria Stabilized Zirconia (YSZ) having a thickness of 50 nm formed by sputtering.
  • YSZ Yttria Stabilized Zirconia
  • a crystalline conductive film 3 is formed on the crystalline insulating film 2.
  • the crystalline conductive film 3 is composed of, for example, a three-layer film formed by the following method.
  • the thickness is increased in a state where the substrate temperature is set to 700 ° C. by a pulsed laser deposition (PLD) method.
  • PLD pulsed laser deposition
  • the crystalline conductive film 3 is etched by ion milling using a resist mask (not shown) to form the first gate electrode 3.
  • a PZT film having a thickness of 450 nm is formed on the crystalline insulating film 2 by a PLD method at a substrate temperature of 700 ° C. so as to cover the first gate electrode 3.
  • a ferroelectric film (gate insulating film of MFSFET) 4 is deposited.
  • the YSZ film 2 and the Pt film have strong self-orientation, and the YSZ film 2 and the Pt film formed on the amorphous SiO 2 film are both (111) oriented. Therefore, the PZT film 4 epitaxially grown on the YSZ film 2 and the Pt film has a (111) orientation and has good crystallinity not only in the region on the first gate electrode 3 but also in all regions. It has become. That is, the YSZ film 2 serving as a base functions as a template layer for ensuring the crystallinity of the ferroelectric film 4.
  • a semiconductor film 5 made of a ZnO film having a thickness of 30 nm is deposited on the PZT film 4 at a substrate temperature of 400 ° C. by a PLD method.
  • the ZnO film 5 is formed on a PZT film with good crystallinity, unlike the case shown in FIG. 3, it is a film with good crystallinity over the entire region.
  • the ZnO film 5 other than the active region is removed by etching with dilute nitric acid using a resist mask (not shown).
  • a source electrode 6, an intermediate electrode 7, and a drain electrode 8 made of a laminated film of platinum and titanium are formed on the ZnO film 5 by a lift-off method.
  • an Al 2 O 3 film is formed on the ZnO film 5 by an ALD (Atomic Layer Deposition) method so as to cover the source electrode 6, the intermediate electrode 7, and the drain electrode 8.
  • a paraelectric film (MISFET gate insulating film) 9 is formed.
  • a second gate electrode 10 made of an iridium (Ir) film having a thickness of 200 nm is formed on the Al 2 O 3 film 9 by a lift-off method.
  • electrodes 11a to 11c that are in contact with the source electrode 6, the intermediate electrode 7, and the drain electrode 8 are formed.
  • the semiconductor memory cell 20 having a structure in which the MFSFET (memory element) 21 and the MISFET (selective switching element) 22 are stacked is completed.
  • the PZT film (ferroelectric film) 3 and the ZnO film (semiconductor film) 5 are formed on the YSZ film (crystalline insulating film) 2 and the first gate electrode (crystalline conductive film) with good crystallinity. Since it is formed, it is a film having good crystallinity over the entire region, whereby the switching characteristics of the MISFET 22 can be improved.
  • the data is written into the memory element 21 by applying a predetermined voltage to the second gate electrode 10 of the MISFET 22 to turn on the selective switching element 22 and the first gate electrode 3 and the drain of the MFSFET 21.
  • a predetermined voltage between the electrodes 8 an electric field is generated in the ferroelectric film 4, thereby changing the polarization state of the ferroelectric film 4. That is, when a positive voltage is applied to the first gate electrode 3, the polarization axis in the ferroelectric film 4 faces upward, and as a result, electrons accumulate at the interface between the semiconductor film 5 and the ferroelectric film 4. Thus, a low resistance state (on state) is established between the source and drain electrodes.
  • Reading of the data written in the memory element 21 is performed by applying a predetermined voltage to the second gate electrode 10 of the MISFET 22 to turn on the selective switching element, and at a predetermined interval between the source electrode 6 and the drain electrode 8. This is performed by applying a voltage and detecting a current flowing through the channel layer (semiconductor film 5) in accordance with the polarization state of the ferroelectric film 4. That is, since the MFSFET 21 and the MISFET 22 constitute a series circuit, the read current is the data written in the memory element 21 (on / off state of the MFSFET 21) and the on / off of the selective switching element (MISFET) 22. It changes as shown in FIG. 7 depending on the state. That is, a large current value can be obtained if both the MFSFET 21 and the MISFET 22 are on. Therefore, the data written in the memory element can be determined by measuring the current value when the MISFET 22 is turned on.
  • FIG. 8 is a circuit diagram showing a configuration of a semiconductor memory device in which the semiconductor memory cells 20 in this embodiment are arranged in an array.
  • FIG. 8 shows an example in which the semiconductor memory cells 20A to 20D are arranged in 2 rows and 2 columns.
  • the second gate electrode of the MISFET 22 is connected to the first word line WL1 for each row, and the first gate electrode of the MFSFET 21 is connected to the second word line WL2 for each row.
  • the source electrode 6 is connected to the source line SL for each column, and the drain electrode 8 is connected to the bit line BL for each column.
  • the material of the crystalline insulating film 2 in the present invention is not particularly limited.
  • manganese oxide (MnOx) can be used in addition to the YSZ film exemplified in the present embodiment.
  • the MnOx film formed on the amorphous SiO 2 film is formed with (001) orientation.
  • the Pt film constituting the first gate electrode 3 is formed with (111) orientation.
  • the crystal orientation of the PZT film 4a in the region on the Pt film (first gate electrode) 3 grows following the crystal orientation (111) of the Pt film 3, and the other The crystal orientation of the PZT film 4 in the region on the MnOx film 2 grows following the crystal orientation (001) of the MnOx film.
  • the ZnO film 5 formed on the PZT film 4 is a film having good crystallinity not only in the ZnO film 5a in the region on the first gate electrode 3, but also in all regions.
  • the material of the crystalline conductive film 3 in the present invention is not particularly limited, but other than the Pt film exemplified in the present embodiment, for example, iridium (Ir), iridium oxide (IrOx), or lanthanum nickel oxide A film made of (LaNiOx) or the like, or a laminated film including these films may be used.
  • the material of the ferroelectric film 4 in the present invention is not particularly limited, but other than the PZT film exemplified in the present embodiment, for example, SrBi 2 Ta 2 O 9 , Bi 4-x La x Ti 3 O 12 Etc. may be used.
  • the material of the semiconductor film 5 in the present invention is not particularly limited, but other than the ZnO film exemplified in the present embodiment, for example, WO 3 , ITO (InO—SnO), IGZO (InGaO 3 (ZnO) 5 ), STO, LSCO (La 2-x Sr x CuO 4 ), LCMO (La 1-x Ca x MnO 3 ), PCMO (Pr 1-x Ca x MnO 3 ), and the like, exhibiting superconductivity
  • an oxide semiconductor including one exhibiting a Mott transition, a nitride semiconductor such as indium nitride (InN), gallium nitride (GaN), or the like may be used.
  • the ZnO film When a ZnO film is used as the semiconductor film 5, the ZnO film is spontaneously polarized. Therefore, when the polarization axis of the ZnO film is perpendicular to the film surface, the polarization causes the ZnO film 5 and the PZT film 4 to A charge is induced at the interface. Since the spontaneous polarization of ZnO is not reversed by the electric field, the induced charge is retained. Accordingly, since the channel resistance can be reduced, the MISFET 22 having good switching characteristics can be obtained.
  • the ZnO film since the ZnO film has a large band gap, it usually exhibits n-type conductivity in which only electrons exist. For this reason, electrons are induced and become carriers when turned on, so that the channel layer is in a low resistance state, and when turned off, holes are not easily induced even after electrons are eliminated, and thus are in a high resistance state. Thereby, the MISFET 22 with good on / off characteristics can be obtained.
  • FIG. 10 is a cross-sectional view showing the configuration of the semiconductor memory cell 20 in the second embodiment of the present invention. This embodiment is different from the first embodiment in that the first gate electrode 3 is embedded in the crystalline insulating film 2. In the following description, detailed description of the same parts as those in the first embodiment will be omitted.
  • a crystalline insulating film 2 is formed on a substrate 1, and a first gate electrode 3 of an MFSFET 21 made of a crystalline conductive film is embedded in the film.
  • the ferroelectric film 4 is formed on the crystalline insulating film 2, and the paraelectric film 9 is formed on the ferroelectric film 4 via the semiconductor film 5.
  • the second gate electrode 10 of the MISFET 22 is formed on the paraelectric film 9, and the source electrode 6 and the drain electrode 8 common to the MFSFET 21 and the MISFET 22 are formed on the semiconductor film 5.
  • FIGS. 11A to 11D and FIGS. 12A to 12C are process cross-sectional views illustrating a method for manufacturing the semiconductor memory cell 20 in the present embodiment.
  • a crystalline insulating film 2 made of, for example, a YSZ film is formed on a silicon substrate 1. Thereafter, the crystalline insulating film 2 is etched by ion milling using a resist mask (not shown) to form a predetermined opening 12.
  • a crystalline conductive film 3 made of, for example, a Ti film / Pt film / SRO film is formed on the crystalline insulating film 2 so as to fill at least the opening 12. .
  • the surface of the crystalline insulating film 2 is exposed in a state where the crystalline conductive film 3 is planarized by chemical mechanical polishing and the crystalline conductive film 3 is embedded in the opening 12. Let Thereby, the first gate electrode 3 embedded in the crystalline conductive film 3 is formed.
  • a ferroelectric film 4 made of, for example, a PZT film is deposited on the crystalline insulating film 2 in which the first gate electrode 3 is embedded, and then the PZT film 4 The surface is smoothed by chemical mechanical polishing. Thereafter, a semiconductor film 5 made of, for example, a ZnO film is deposited on the PZT film 4.
  • the intermediate electrode 7 and the drain electrode 8 made of a laminated film of platinum and titanium on the ZnO film 5, for example, Al 2 O 3
  • a paraelectric film 9 made of a film is formed.
  • a second gate electrode 10 made of an Ir film is formed on the Al 2 O 3 film 9.
  • electrodes 11a to 11c that are in contact with the source electrode 6, the intermediate electrode 7, and the drain electrode 8 are formed.
  • the semiconductor memory cell 20 having a structure in which the MFSFET (memory element) 21 and the MISFET (selective switching element) 22 are stacked is completed.
  • the ferroelectric film 4 can be epitaxially grown on the flat crystalline insulating film 2. Accordingly, since the ferroelectric film 4 and the semiconductor film 5 are films having better crystallinity, the switching characteristics of the MISFET 22 can be further improved.
  • the example in which the first gate electrode 3 is embedded through the crystalline insulating film 2 is shown. It may be embedded only on the surface of the film 2.
  • FIG. 13A and 13B are diagrams schematically showing a configuration of a semiconductor memory cell 30 according to the third embodiment of the present invention, in which FIG. 13A is a sectional view thereof and FIG. 13B is an equivalent circuit diagram thereof.
  • a bottom gate type MFSFET (memory element) and a top gate type MISFET (selective switching element) are stacked in the same manner as in the first embodiment, but FIG. ) Is different from the first embodiment in that the MFSFET and the MISFET are connected in parallel in an equivalent circuit.
  • FIG. Is different from the first embodiment in that the MFSFET and the MISFET are connected in parallel in an equivalent circuit.
  • a crystalline insulating film 2 is formed on a substrate 1, and a ferroelectric film 4 and a paraelectric film 9 are formed on the upper side of the semiconductor film 5 via a semiconductor film 5. It is formed by stacking.
  • a first gate electrode 3 of the MFSFET 21 is formed on the ferroelectric film 4 side, and a second gate electrode 10 of the MISFET is formed on the paraelectric film 9 side.
  • the semiconductor film 5 constitutes a channel layer common to the MFSFET 21 and the MISFET 22, and the source electrode 6 and the drain electrode 8 common to the MFSFET 21 and the MISFET 22 are formed on the semiconductor film 5.
  • the first gate electrode 3 of the MFSFET 21 and the second gate electrode 10 of the MISFET 22 are arranged at positions substantially opposite to each other.
  • the MFSFET 21 and the MISFET 22 are configured to be connected in parallel in an equivalent circuit as shown in FIG.
  • 14A to 14D are process cross-sectional views illustrating a method for manufacturing the semiconductor memory cell 30 in the present embodiment.
  • a SiO 2 film (not shown) is formed on a silicon substrate 1
  • a crystalline insulating film (for example, YSZ film) 2 is formed.
  • a crystalline conductive film (for example, Ti film / Pt film / SRO film) 3 is formed on the crystalline insulating film 2.
  • the crystalline conductive film 3 is etched to form the first gate electrode 3.
  • a ferroelectric film for example, PZT film 4
  • a semiconductor film for example, ZnO film 5
  • source / drain electrodes for example, a laminated film of Ti film / Pt film
  • a paraelectric film for example, Al 2 O 3 film
  • a second gate electrode for example, an Ir film
  • data is written to the memory element 21 by applying a predetermined voltage between the first gate electrode 3 and the source / drain electrodes 6 and 8 of the MFSFET 21 to generate an electric field in the ferroelectric film 4.
  • the polarization state of the ferroelectric film 4 is changed. That is, when a positive voltage is applied to the first gate electrode 3, the polarization axis in the ferroelectric film 4 faces upward, and as a result, electrons accumulate at the interface between the semiconductor film 5 and the ferroelectric film 4. Thus, a low resistance state (on state) is established between the source and drain electrodes.
  • Reading of the data written in the memory element 21 is performed by applying a predetermined voltage to the second gate electrode 10 of the MISFET 22 to turn on the selective switching element, and at a predetermined interval between the source electrode 6 and the drain electrode 8. This is performed by applying a voltage and detecting a current flowing through the channel layer (semiconductor film 5) in accordance with the polarization state of the ferroelectric film 4. That is, since the MFSFET 21 and the MISFET 22 constitute a parallel circuit, the read current is the data written in the memory element 21 (ON / OFF state of the MFSFET 21) and the ON / OFF of the selective switching element (MISFET) 22. It changes as shown in FIG. 15 depending on the state. That is, if either one of the MFSFET 21 and the MISFET 22 is in an on state, a large current value can be obtained. Therefore, the data written in the memory element can be determined by measuring the current value when the MISFET 22 is turned off.
  • FIG. 16A is a circuit diagram showing a configuration of a memory block 41 in a semiconductor memory device in which a plurality of semiconductor memory cells 30 in this embodiment are connected in series and selection transistors 31 and 32 are provided at both ends thereof.
  • FIG. 16B is a sectional view thereof.
  • the ferroelectric film 4, the semiconductor film 5, and the paraelectric film 9 are shared by all the semiconductor memory cells 30 in the memory block 41.
  • the source / drain electrodes 6 and 8 are shared between adjacent semiconductor memory cells 30.
  • FIG. 17 is a diagram showing a configuration of a semiconductor memory device in which a plurality of memory blocks 41 are arranged, a word line 42 is provided at one end of each memory block 41, and a source line 43 is provided at the other end to form a memory array. is there.
  • the channel resistance of the semiconductor film 5 depends on the polarization state of the ferroelectric film 4 (data written in the MFSFET) and the voltage applied to the second gate electrode 10 (MISFET ON and OFF states) can be controlled independently. Therefore, when data written in each semiconductor memory cell 30 in the memory block 41 is read, only the MISFET 22 of the semiconductor memory cell to be read is turned off (the MISFETs 22 of other semiconductor memory cells are turned on). Thus, the data written in the semiconductor memory cell 30 can be easily read. As a result, when the semiconductor memory cells 30 in this embodiment are connected in series to form a NAND type semiconductor memory device, data writing and reading operations can be performed with simple control.
  • the first gate electrode 3 is formed on the crystalline insulating film 2, but it may be formed by being embedded in the crystalline insulating film 2 as in the second embodiment. Good.
  • the source / drain electrodes 6 and 8 are arranged between the semiconductor film 5 (channel layer) and the paraelectric film 9, but between the semiconductor film 5 and the ferroelectric film 4. You may arrange.
  • a Si substrate is used as the substrate 1.
  • a substrate made of STO (SrTiO 3 ), sapphire, lanthanum aluminum oxide (LaAlO 3 ), or a substrate on which a transistor is formed is used. May be.
  • the present invention is useful for a semiconductor memory cell including an FET type memory element having a small cell size.
  • Substrate 2 YSZ film (crystalline insulating film) 3
  • First gate electrode (crystalline conductive film) 4
  • PZT film (ferroelectric film) 5
  • ZnO film (semiconductor film) 6
  • Source electrode 7 Intermediate electrode 8
  • Memory block 42
  • Source line 43 Source line

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Thin Film Transistor (AREA)

Abstract

 ゲート絶縁膜が強誘電体膜4で構成されたMFSFET21からなるメモリ素子と、ゲート絶縁膜が常誘電体膜9で構成されたMISFET22からなる選択スイッチング素子とを備えた半導体メモリセル20であって、MFSFETの第1のゲート電極3は、基板1上の結晶性絶縁膜2表面に形成された結晶性導電膜3からなり、強誘電体膜4は、第1のゲート電極3を覆って結晶性絶縁膜2上に形成され、常誘電体膜9は、半導体膜5を介して強誘電体膜4上に形成され、MISFET22の第2のゲート電極10は、常誘電体膜9上に形成されている。

Description

半導体メモリセルおよびその製造方法
 本発明は、ゲート絶縁膜が強誘電体膜で構成された電界効果トランジスタからなる半導体メモリセルに関する。
 強誘電体を用いた不揮発性メモリには、大きく分けてキャパシタ型と、ゲート絶縁膜を強誘電体膜で構成した電界効果トランジスタ(Field Effect Transistor、FET)型との2種類がある。
 キャパシタ型は、ダイナミック・ランダム・アクセス・メモリ(DRAM)と類似した構造であり、強誘電体キャパシタに電荷を保持し、強誘電体の分極方向によって、データの0、1状態を区別する。データを読み出す際に、記憶されていたデータを破壊してしまうため、データの再書き込み動作が必要となる。そのため、読み出すごとに分極反転させることになり、分極反転疲労が問題となる。また、この構造では分極電荷をセンスアンプで読み出すため、センスアンプの検知限界以上の電荷量(典型的には100fC)が必要である。強誘電体は面積あたりの分極電荷が材料固有であり、メモリセルを微細化する場合であっても、同じ材料を使う限り電極面積は一定の大きさが必要である。従って、プロセスルールの微細化に比例してキャパシタサイズを小さくすることは困難であり、大容量化に不適である。
 一方、FET型の強誘電体メモリ(MFSFET:Metal-Ferroelectric-Semiconductor FET)は、強誘電体膜の分極の向きによって変化するチャネルの導通状態を検出することによりデータを読み出すため、非破壊でのデータの読み出しが可能である。また、FETの増幅作用によって出力電圧振幅を大きくすることができ、スケーリング則に依存した微細化が可能である。そのため、キャパシタ型に比べて飛躍的に微細化することが可能である。
 ところで、FET型の強誘電体メモリを行列状にマトリクス配置したメモリセルアレイにおいて、強誘電体メモリへの2値データの書き込みは、選択されたメモリセルのワード線に接続されたゲート電極と、ソース線に接続されたソース電極間に電圧パルスを印加することによって行われる。しかしながら、その際、選択されたメモリセルのワード線及びソース線に接続された非アクセス対象のメモリセルにも電圧が印加されることから、データの誤書き込みが発生してしまう。そのため、通常は、ワード線とゲート電極間および/またはソース線とソース電極間に、例えば、MISFET(Metal-Insulator-Semiconductor FET)からなる選択スイッチ素子を挿入することによって、誤書き込みの防止を図っている。このような構成にすれば、各メモリセルへのランダムアクセスが可能になる(例えば、特許文献1を参照)。
 しかしながら、メモリ素子であるMFSFETに、選択スイッチ素子であるMISFETを平面的に並べて配置すると、少なくとも、これらFETのゲート電極を電気的に分離する領域が必要となるため、セルサイズが大きくなってしまうという問題がある。
 このような問題に対して、本願出願人は、セルサイズの小さい新構造の半導体メモリセルを提案している(特許文献2)。この新構造の半導体メモリセルは、メモリ素子であるMFSFETのゲート絶縁膜を構成する強誘電体膜と、選択スイッチング素子であるMISFETのゲート絶縁膜を構成する常誘電体膜とを、半導体膜を介して積層し、当該半導体膜を、MFSFET及びMISFETの共通のチャネル層とする構成を採用している。このような構成により、メモリ素子をなすMFSFETの第1のゲート電極と、選択スイッチング素子をなすMISFETの第2のゲート電極とを、平面的に近接して配置できるため、セルサイズを小さくすることができる。理想的にはセルサイズを6F(Fは最小加工寸法)まで小さくすることが可能である。
 なお、強誘電体膜と半導体膜との反応を防止するために、チャネル層となる半導体膜に酸化物半導体を用いた構造のMFSFETが、特許文献3に記載されている。
特開平5-205487号公報 特開2008-263019号公報 特開2008-166486号公報
 本願出願人が特許文献2に開示した半導体メモリセルは、通常、基板上にMFSFETの第1のゲート電極を形成した後、基板上に第1のゲート電極を覆うように強誘電体膜及び半導体膜を積層し、さらに、半導体膜上にソース・ドレイン電極を形成した後、常誘電体膜を形成することによって製造される。
 ところで、メモリセルを駆動するための周辺回路(デコーダやカラムアンプ等)との接続を考慮すると、CMOS(Complementary Metal Oxide Semiconductor)デバイスを容易に作りこめるシリコン基板上に、これらのメモリセルを形成することが望ましい。また、シリコン基板を用いることができれば、コスト削減にも繋がる。
 しかしながら、シリコン基板(またはシリコン基板上に形成されたシリコン酸化膜)上に、半導体メモリセルの構成要素である強誘電体膜や半導体膜といった酸化物薄膜を結晶性良く堆積することは容易でない。そのため、チャネル層を構成する半導体膜の移動度が低下し、スイッチング特性の良いFET素子が容易に得られないという課題がある。
 本発明は、かかる課題に鑑みなされたもので、その主な目的は、スイッチング特性に優れ、セルサイズの小さい半導体メモリセルを提供することにある。
 本発明の一側面における半導体メモリセルは、ゲート絶縁膜が強誘電体膜で構成された第1の電界効果トランジスタ(MFSFET)からなるメモリ素子と、ゲート絶縁膜が常誘電体膜で構成された第2の電界効果トランジスタ(MISFET)からなる選択スイッチング素子とを備え、第1の電界効果トランジスタの第1のゲート電極は、基板上の結晶性絶縁膜表面に形成された結晶性導電膜からなり、強誘電体膜は、第1のゲート電極を覆って結晶性絶縁膜上に形成され、常誘電体膜は、半導体膜を介して強誘電体膜上に形成され、第2の電界効果トランジスタの第2のゲート電極は、常誘電体膜上に形成されており、半導体膜は、第1の電界効果トランジスタ及び第2の電界効果トランジスタの共通のチャネル層を構成しており、半導体膜上には、第1の電界効果トランジスタ及び第2の電界効果トランジスタに共通のソース電極及びドレイン電極が形成されている。
 このような構成により、結晶性絶縁膜及び結晶性導電膜(第1のゲート電極)上に形成された強誘電体膜及び半導体膜の結晶性が向上し、これにより、スイッチング特性に優れ、セルサイズの小さい半導体メモリセルを得ることができる。
 本発明の他の側面において、上記強誘電体膜の表面は平坦化されていることが好ましい。また、上記第1のゲート電極は、結晶性絶縁膜に埋設されていることが好ましい。これにより、結晶性絶縁膜及び結晶性導電膜(第1のゲート電極)上に形成された強誘電体膜が段差のない結晶性に優れた膜となるため、結晶性絶縁膜上に形成された半導体膜の結晶性がさらに向上し、よりスイッチング特性に優れ、セルサイズの小さな半導体メモリセルを得ることができる。
 本発明によれば、MFSFETの強誘電体膜を、結晶性絶縁膜及び結晶性導電膜(MFSFETのゲート電極)上に形成することによって、結晶性に優れた強誘電体膜及び半導体膜が得られ、これにより、スイッチング特性に優れ、セルサイズの小さな半導体メモリセルを実現することができる。
図1(a)、(b)は、特許文献2に開示された半導体メモリセルの構成を説明した図で、図1(a)はその断面図、図1(b)はその等価回路図である。 図2(a)~(d)は、半導体メモリセルの製造方法を説明した断面図である。 図3は、半導体メモリセルにおける強誘電体膜及び半導体膜の結晶性を説明した断面図である。 図4(a)、(b)は、本発明の第1の実施形態における半導体メモリセルの構成を示した図で、図4(a)はその断面図、図4(b)はその等価回路図である。 図5(a)~(d)は、第1の実施形態における半導体メモリセルの製造方法を示した断面図である。 図6(a)~(c)は、第1の実施形態における半導体メモリセルの製造方法を示した断面図である。 図7は、第1の実施形態における半導体メモリセルの読み出し電流を示した表である。 図8は、第1の実施形態における半導体メモリセルをアレイ状に配列した半導体記憶装置の構成を示した回路図である。 図9は、第1の実施形態における半導体メモリセルの強誘電体膜及び半導体膜の結晶性を示した断面図である。 図10は、本発明の第2の実施形態における半導体メモリセルの構成を示した断面図である。 図11(a)~(d)は、第2の実施形態における半導体メモリセルの製造方法を示した断面図である。 図12(a)~(c)は、第2の実施形態における半導体メモリセルの製造方法を示した断面図である。 図13(a)、(b)は、本発明の第3の実施形態における半導体メモリセルの構成を示した図で、図13(a)はその断面図、図13(b)はその等価回路図である。 図14(a)~(d)は、第3の実施形態における半導体メモリセルの製造方法を示した断面図である。 図15は、第3の実施形態における半導体メモリセルの読み出し電流を示した表である。 図16(a)、(b)は、第3の実施形態における半導体メモリセルを複数個直列に接続した半導体記憶装置におけるメモリブロックの構成を示した図で、図16(a)はその回路図、図16(b)はその断面図である。 図17は、第3の実施形態における半導体記憶装置の構成を示した回路図である。
 図1(a)、(b)は、本願出願人が特許文献2に開示した半導体メモリセル120の構成を示した図で、(a)はその断面図、(b)はその等価回路図である。
 図1(a)に示すように、基板101上に、強誘電体膜104と常誘電体膜109とが、半導体膜105を介して積層されて形成されており、強誘電体膜104側には、MFSFET121のゲート電極103が形成され、常誘電体膜109側には、MISFET122のゲート電極110が形成されている。また、半導体膜105は、MFSFET121及びMISFET122に共通のチャネル層を構成しており、半導体膜105上には、MFSFET121及びMISFET122に共通のソース電極106、ドレイン電極108、及び中間電極107が形成されている。
 すなわち、半導体メモリセル120は、ボトムゲート型のMFSFET(メモリ素子)121と、トップゲート型のMISFET(選択スイッチング素子)122とが積層された構造をなし、等価回路的には、図1(b)に示すように、MFSFET121とMISFET122とが直列接続された構成をなす。
 メモリ素子へのデータの書き込みは、MISFET122のゲート電極110に所定の電圧を印加して、選択スイッチング素子をオン状態にして、MFSFET121のゲート電極103とドレイン電極108間に所定の電圧を印加することによって、強誘電体膜104に電界を発生させ、これにより、強誘電体膜104の分極状態を変化させることによって行われる。
 メモリ素子に書き込まれたデータの読み出しは、MISFET122のゲート電極110に所定の電圧を印加して、選択スイッチング素子をオン状態にするとともに、ソース電極106とドレイン電極108間に所定の電圧を印加して、強誘電体膜104の分極状態に応じてチャネル層(半導体膜105)を流れる電流を検出することによって行われる。
 上記半導体メモリセル120は、例えば、図2(a)~(d)に示す製造方法によって形成することができる。
 図2(a)に示すように、シリコン基板101上にシリコン酸化膜(SiO)102を形成した後、白金(Pt)とルテニウム酸ストロンチウム(SRO)の積層膜からなるゲート電極103を形成する。
 次に、図2(b)に示すように、SiO膜102上に、ゲート電極103を覆うように、チタン・ジルコン酸鉛(Pb(Zr,Ti)O、以下PZT)膜からなる強誘電体膜104を形成し、さらにその上に、酸化亜鉛(ZnO)からなる半導体膜105を形成する。
 次に、図2(c)に示すように、ZnO膜105上に、白金とチタン(Ti)の積層膜からなるソース電極106、中間電極107、及びドレイン電極108を形成した後、ZnO膜105上に、シリコン窒化膜(SiNx)からなる常誘電体膜109を形成する。
 最後に、図2(d)に示すように、SiNx膜109上に、金(Au)とチタンの積層膜からなるゲート電極110を形成し、さらに、ソース電極106、中間電極107、ドレイン電極108とコンタクトする電極111a~111cを形成して、半導体メモリセル120を完成する。
 しかしながら、このような方法で形成された半導体メモリセル120のMISFET122のサブスレッショルド特性を測定すると、スイッチング特性があまりよくないことが分かった。
 そこで、MISFET122のチャネル層を構成する半導体膜(ZnO膜)105の結晶性を測定してみると、図3に示すように、ゲート電極103上の領域にある半導体膜105aの結晶性は良いが、それ以外の領域の半導体膜105の結晶性が悪かった。
 これは、結晶性を有するゲート電極103上に形成された強誘電体膜104aは結晶性を有していたのに対して、それ以外のアモルファスのSiO膜102上に形成された強誘電体膜104はアモルファス(または微結晶)になっていたためと考えられる。
 本発明者等は、このような知見に基づき、種々検討を行った結果、SiO膜に代えて、強誘電体膜の下地に結晶性の絶縁膜を形成することによって、強誘電体膜全体に亘って、結晶性の良い膜を形成することができることに気がつき、本発明を想到するに至った。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。さらに、他の実施形態との組み合わせも可能である。
 (第1の実施形態)
 図4(a)は、本発明の第1の実施形態における半導体メモリセル20の構成を示した断面図で、図4(b)はその等価回路図である。
 図4(a)、(b)に示すように、半導体メモリセル20は、ゲート絶縁膜が強誘電体膜4で構成された第1の電界効果トランジスタ(MFSFET)21からなるメモリ素子と、ゲート絶縁膜が常誘電体膜9で構成された第2の電界効果トランジスタ(MISFET)22からなる選択スイッチング素子とを備えている。そして、基板1上には結晶性絶縁膜2が形成され、その表面に、結晶性導電膜からなるMFSFET21の第1のゲート電極3が形成されている。強誘電体膜4は、第1のゲート電極3を覆って結晶性絶縁膜2上に形成され、常誘電体膜9は、半導体膜5を介して強誘電体膜4上に形成され、MISFET22の第2のゲート電極10は、常誘電体膜9上に形成されている。ここで、半導体膜5は、MFSFET21及びMISFET22の共通のチャネル層を構成しており、半導体膜5上には、MFSFET21及びMISFET22に共通のソース電極6及びドレイン電極8が形成されている。
 すなわち、本実施形態における半導体メモリセル20は、ボトムゲート型のMFSFET(メモリ素子)21と、トップゲート型のMISFET(選択スイッチング素子)22とが積層された構造をなし、等価回路的には、MFSFET21とMISFET22とが直列接続された構成をなす。
 次に、図5(a)~(d)、及び図6(a)~(c)を参照しながら、本実施形態における半導体メモリセル20の製造方法を説明する。
 まず、図5(a)に示すように、シリコン基板1上に、厚さ200nmのSiO膜上(不図示)を形成した後、結晶性絶縁膜2を形成する。ここで、結晶性絶縁膜2は、例えば、スパッタ法により形成された厚さ50nmのイットリウム安定化ジルコニア(Yttria Stabilized Zirconia;YSZ)からなる。さらに、結晶性絶縁膜2上に、結晶性導電膜3を形成する。結晶性導電膜3は、例えば、以下のような方法で形成された3層膜からなる。
 まず、厚さ5nmのTi膜と、厚さ30nmのPt膜をスパッタ法で成膜した後、パルスレーザ堆積(Pulsed Laser Deposition;PLD)法により、基板温度を700℃にした状態で、厚さ15nmのSRO膜を成膜する。
 次に、図5(b)に示すように、結晶性導電膜3をレジストマスク(不図示)を用いてイオンミリング法によりエッチングし、第1のゲート電極3を形成する。
 次に、図5(c)に示すように、結晶性絶縁膜2上に、第1のゲート電極3を覆うように、PLD法により、700℃の基板温度で、厚さ450nmのPZT膜からなる強誘電体膜(MFSFETのゲート絶縁膜)4を堆積する。ターゲットに用いる焼結体の組成は、Pb:Zr:Ti=1:0.3:0.7である。この組成で形成されたPZT膜4は、下地であるYSZ膜2及び第1のゲート電極(Pt膜/SRO膜)3との格子ミスマッチは少ないため、エピタキシャル成長することができる。また、YSZ膜2及びPt膜は、自己配向性が強く、アモルファスのSiO膜上に形成されたYSZ膜2及びPt膜は、共に(111)配向されている。従って、YSZ膜2及びPt膜の上にエピタキシャル成長したPZT膜4は、(111)配向を有し、かつ、第1のゲート電極3上の領域のみならず、全ての領域において結晶性の良い膜となっている。すなわち、下地となるYSZ膜2は、強誘電体膜4の結晶性を確保するためのテンプレート層として機能する。
 次に、PZT膜4の表面を化学機械研磨によって平滑化した後、PZT膜4上に、PLD法により、基板温度400℃で、厚さ30nmのZnO膜からなる半導体膜5を堆積する。ここで、ZnO膜5は、結晶性の良いPZT膜上に形成されているため、図3に示した場合と異なり、全領域に亘って結晶性の良い膜となっている。その後、レジストマスク(不図示)を用いて、活性領域以外のZnO膜5を、希硝酸でエッチング除去する。
 次に、図5(d)に示すように、ZnO膜5上に、白金とチタンの積層膜からなるソース電極6、中間電極7、及びドレイン電極8をリフトオフ法によって形成する。
 次に、図6(a)に示すように、ZnO膜5上に、ソース電極6、中間電極7、及びドレイン電極8を覆うように、ALD(Atomic Layer Deposition)法により、Al膜からなる常誘電体膜(MISFETのゲート絶縁膜)9を形成する。
 次に、図6(b)に示すように、Al膜9上に、厚さ200nmのイリジウム(Ir))膜からなる第2のゲート電極10をリフトオフ法により形成する。
 最後に、図6(c)に示すように、ソース電極6、中間電極7、ドレイン電極8とコンタクトする電極11a~11cを形成する。これにより、MFSFET(メモリ素子)21と、MISFET(選択スイッチング素子)22とが積層された構造の半導体メモリセル20が完成する。
 このように、PZT膜(強誘電体膜)3及びZnO膜(半導体膜)5は、結晶性の良いYSZ膜(結晶性絶縁膜)2及び第1のゲート電極(結晶性導電膜)上に形成されているため、全領域に亘って結晶性の良い膜となっており、これにより、MISFET22のスイッチング特性を向上させることができる。
 ここで、メモリ素子21へのデータの書き込みは、MISFET22の第2のゲート電極10に所定の電圧を印加して、選択スイッチング素子22をオン状態にして、MFSFET21の第1のゲート電極3とドレイン電極8間に所定の電圧を印加することによって、強誘電体膜4に電界を発生させ、これにより、強誘電体膜4の分極状態を変化させることによって行われる。すなわち、第1のゲート電極3に正電圧を印加した場合、強誘電体膜4中の分極軸は上を向き、その結果、半導体膜5と強誘電体膜4の界面に電子が蓄積することで、ソース・ドレイン電極間は低抵抗状態(オン状態)となる。逆に、第1のゲート電極3に負電圧を印加した場合、強誘電体膜4中の分極軸は下を向き、その結果、半導体膜5と強誘電体膜4の界面の蓄電子が排斥されることで、ソース・ドレイン電極間は高抵抗状態(オフ状態)となる。
 メモリ素子21に書き込まれたデータの読み出しは、MISFET22の第2のゲート電極10に所定の電圧を印加して、選択スイッチング素子をオン状態にするとともに、ソース電極6とドレイン電極8間に所定の電圧を印加して、強誘電体膜4の分極状態に応じてチャネル層(半導体膜5)を流れる電流を検出することによって行われる。すなわち、MFSFET21とMISFET22とは直列回路を構成しているため、読み出される電流は、メモリ素子21に書き込まれたデータ(MFSFET21のオン・オフ状態)と、選択スイッチング素子(MISFET)22のオン・オフ状態によって、図7のように変化する。すなわち、MFSFET21及びMISFET22の両方がオン状態であれば大きな電流値が得られる。従って、メモリ素子に書き込まれたデータは、MISFET22をオン状態にしたときの電流値を測定することにより判別することができる。
 図8は、本実施形態における半導体メモリセル20をアレイ状に配列した半導体記憶装置の構成を示した回路図である。図8では、半導体メモリセル20A~20Dを、2行2列に配列した例を示す。
 図8に示すように、MISFET22の第2のゲート電極は、行毎に第1のワード線WL1に接続され、MFSFET21の第1のゲート電極は、行毎に第2のワード線WL2に接続されている。そして、ソース電極6は、列毎にソース線SLに接続され、ドレイン電極8は、列毎にビット線BLに接続されている。
 ここで、本発明における結晶性絶縁膜2は、特にその材料は限定されないが、本実施形態で例示したYSZ膜以外に、例えば、酸化マンガン(MnOx)等を用いることができる。
 結晶性絶縁膜2として、MnOx膜を用いた場合、アモルファスのSiO膜上に形成されたMnOx膜は、(001)配向して形成される。一方、前述したように、第1のゲート電極3を構成するPt膜は、(111)配向して形成される。この場合、図9に示すように、Pt膜(第1のゲート電極)3上の領域のPZT膜4aの結晶配向は、Pt膜3の結晶配向(111)に倣って成長し、それ以外のMnOx膜2上の領域のPZT膜4の結晶配向は、MnOx膜の結晶配向(001)に倣って成長する。なお、この場合、PZT膜4上に形成されたZnO膜5は、第1のゲート電極3上の領域のZnO膜5aのみならず、全ての領域において結晶性の良い膜となっている。
 また、本発明における結晶性導電膜3は、特にその材料は限定されないが、本実施形態で例示したPt膜以外に、例えば、イリジウム(Ir)、イリジウム酸化物(IrOx)、若しくはランタンニッケル酸化物(LaNiOx)等からなる膜、又はそれらの膜を含む積層膜を用いてもよい。
 また、本発明における強誘電体膜4は、特にその材料は限定されないが、本実施形態で例示したPZT膜以外に、例えば、SrBiTa、Bi4-xLaTi12等を用いてもよい。
 また、本発明にける半導体膜5は、特にその材料は限定されないが、本実施形態で例示したZnO膜以外に、例えば、WO、ITO(InO-SnO)、IGZO(InGaO(ZnO))、STO、LSCO(La2-xSrCuO)、LCMO(La1-xCaMnO)、PCMO(Pr1-xCaMnO)等の、透明なもの、超伝導を示すもの、モット転移を示すものを含む酸化物半導体、あるいは窒化インジウム(InN)、窒化ガリウム(GaN)などの窒化物半導体などを用いてもよい。
 なお、半導体膜5にZnO膜を用いた場合、ZnO膜は自発分極するため、ZnO膜の分極軸が膜面に対して垂直になった場合、その分極によって、ZnO膜5とPZT膜4との界面に電荷が誘起される。ZnOの自発分極は電界によって反転しないので、誘起された電荷は保持される。従って、チャネル抵抗を小さくすることができるため、スイッチング特性の良いMISFET22を得ることができる。
 また、ZnO膜は、バンドギャップが大きいため、通常、キャリアが電子しか存在しないn型導電性を示す。そのため、オン時には電子が誘起されてキャリアとなるため、チャネル層は低抵抗状態になり、オフ時には、電子が排斥された後もホールが誘起されにくいため、高抵抗状態となる。これにより、オン・オフ特性の良いMISFET22を得ることができる。
 (第2の実施形態)
 図10は、本発明の第2の実施形態における半導体メモリセル20の構成を示した断面図である。本実施形態では、第1のゲート電極3が結晶性絶縁膜2に埋設されている点において、第1の実施形態と異なる。なお、以下の説明において、第1の実施形態と重複する部分については、詳細な説明は省略する。
 図10に示すように、基板1上に結晶性絶縁膜2が形成され、その膜中に、結晶性導電膜からなるMFSFET21の第1のゲート電極3が埋設されている。強誘電体膜4は、結晶性絶縁膜2上に形成され、常誘電体膜9は、半導体膜5を介して強誘電体膜4上に形成されている。MISFET22の第2のゲート電極10は、常誘電体膜9上に形成され、半導体膜5上には、MFSFET21及びMISFET22に共通のソース電極6及びドレイン電極8が形成されている。
 図11(a)~(d)、及び図12(a)~(c)は、本実施形態における半導体メモリセル20の製造方法を示した工程断面図である。
 まず、図11(a)に示すように、シリコン基板1上に、厚さ200nmのSiO膜上(不図示)を形成した後、例えば、YSZ膜からなる結晶性絶縁膜2を形成する。その後、レジストマスク(不図示)を用いてイオンミリング法により結晶性絶縁膜2をエッチングし、所定の開口部12を形成する。
 次に、図11(b)に示すように、少なくとも開口部12を埋めるように、結晶性絶縁膜2上に、例えば、Ti膜/Pt膜/SRO膜からなる結晶性導電膜3を形成する。
 次に、図11(c)に示すように、化学機械研磨によって結晶性導電膜3を平坦化し、開口部12に結晶性導電膜3を埋設した状態で、結晶性絶縁膜2の表面を露出させる。これにより、結晶性導電膜3に埋設された第1のゲート電極3が形成される。
 次に、図11(d)に示すように、第1のゲート電極3が埋設された結晶性絶縁膜2上に、例えば、PZT膜からなる強誘電体膜4を堆積した後、PZT膜4の表面を化学機械研磨によって平滑化する。その後、PZT膜4上に、例えば、ZnO膜からなる半導体膜5を堆積する。
 次に、図12(a)に示すように、ZnO膜5上に、白金とチタンの積層膜からなるソース電極6、中間電極7、及びドレイン電極8を形成した後、例えば、Al膜からなる常誘電体膜9を形成する。
 次に、図12(b)に示すように、Al膜9上に、Ir膜からなる第2のゲート電極10を形成する。
 最後に、図12(c)に示すように、ソース電極6、中間電極7、ドレイン電極8とコンタクトする電極11a~11cを形成する。これにより、MFSFET(メモリ素子)21と、MISFET(選択スイッチング素子)22とが積層された構造の半導体メモリセル20が完成する。
 本実施形態において、第1のゲート電極3は、結晶性絶縁膜2に埋設されているため、平坦な結晶性絶縁膜2上に強誘電体膜4をエピタキシャル成長させることができる。これにとり、強誘電体膜4及び半導体膜5は、より結晶性の良い膜となるため、MISFET22のスイッチング特性をより向上させることができる。
 なお、本実施形態においては、図9に示したように、第1のゲート電極3は、結晶性絶縁膜2を貫通して埋設された例を示したが、これに限らず、結晶性絶縁膜2の表面にのみ埋設されたものであってもよい。
 (第3の実施形態)
 図13は、本発明の第3の実施形態における半導体メモリセル30の構成を模式的に示した図で、(a)はその断面図、(b)はその等価回路図である。本実施形態では、ボトムゲート型のMFSFET(メモリ素子)と、トップゲート型のMISFET(選択スイッチング素子)とが積層されている点は、第1の実施形態と同じであるが、図13(b)に示すように、MFSFETとMISFETとが等価回路的に並列接続されている点が、第1の実施形態と異なる。なお、以下の説明において、第1の実施形態と重複する部分については、詳細な説明は省略する。
 図13(a)に示すように、基板1上に、結晶性絶縁膜2が形成されており、その上部に、強誘電体膜4と常誘電体膜9とが、半導体膜5を介して積層されて形成されている。強誘電体膜4側には、MFSFET21の第1のゲート電極3が形成され、常誘電体膜9側には、MISFETの第2のゲート電極10が形成されている。半導体膜5は、MFSFET21及びMISFET22に共通のチャネル層を構成しており、半導体膜5上には、MFSFET21及びMISFET22に共通のソース電極6及びドレイン電極8が形成されている。
 ここで、MFSFET21の第1のゲート電極3と、MISFET22の第2のゲート電極10は、図13(a)に示すように、互いに略対向する位置に配置されている。このような配置により、MFSFET21とMISFET22とは、図13(b)に示すように、等価回路的に並列接続された構成をなす。
 図14(a)~(d)は、本実施形態における半導体メモリセル30の製造方法を示した工程断面図である。
 まず、図14(a)に示すように、シリコン基板1上にSiO膜上(不図示)を形成した後、結晶性絶縁膜(例えば、YSZ膜)2を形成する。その後、結晶性絶縁膜2上に、結晶性導電膜(例えば、Ti膜/Pt膜/SRO膜)3を形成する。
 次に、図14(b)に示すように、結晶性導電膜3をエッチングして、第1のゲート電極3を形成する。
 次に、図14(c)に示すように、結晶性絶縁膜2上に、強誘電体膜(例えば、PZT膜4)、及び半導体膜(例えば、ZnO膜)5を堆積する。
 次に、図14(d)に示すように、半導体膜5上に、ソース電極・ドレイン電極(例えば、Ti膜/Pt膜の積層膜)6、8を形成した後、常誘電体膜(例えば、Al膜)9を形成する。その後、常誘電体膜9上に、第1のゲート電極3と対向する位置に、第2のゲート電極(例えば、Ir膜)10を形成する。
 ここで、メモリ素子21へのデータの書き込みは、MFSFET21の第1のゲート電極3とソース・ドレイン電極6、8間に所定の電圧を印加することによって、強誘電体膜4に電界を発生させ、これにより、強誘電体膜4の分極状態を変化させることによって行われる。すなわち、第1のゲート電極3に正電圧を印加した場合、強誘電体膜4中の分極軸は上を向き、その結果、半導体膜5と強誘電体膜4の界面に電子が蓄積することで、ソース・ドレイン電極間は低抵抗状態(オン状態)となる。逆に、第1のゲート電極3に負電圧を印加した場合、強誘電体膜4中の分極軸は下を向き、その結果、半導体膜5と強誘電体膜4の界面の蓄電子が排斥されることで、ソース・ドレイン電極間は高抵抗状態(オフ状態)となる。
 メモリ素子21に書き込まれたデータの読み出しは、MISFET22の第2のゲート電極10に所定の電圧を印加して、選択スイッチング素子をオン状態にするとともに、ソース電極6とドレイン電極8間に所定の電圧を印加して、強誘電体膜4の分極状態に応じてチャネル層(半導体膜5)を流れる電流を検出することによって行われる。すなわち、MFSFET21とMISFET22とは並列回路を構成しているため、読み出される電流は、メモリ素子21に書き込まれたデータ(MFSFET21のオン・オフ状態)と、選択スイッチング素子(MISFET)22のオン・オフ状態によって、図15のように変化する。すなわち、MFSFET21及びMISFET22の何れか一方がオン状態であれば大きな電流値が得られる。従って、メモリ素子に書き込まれたデータは、MISFET22をオフ状態にしたときの電流値を測定することにより判別することができる。
 図16(a)は、本実施形態における半導体メモリセル30を複数個直列に接続し、その両端に選択トランジスタ31、32を設けた半導体記憶装置におけるメモリブロック41の構成を示した回路図で、図16(b)はその断面図である。
 図16(b)に示すように、強誘電体膜4,半導体膜5、及び常誘電体膜9は、メモリブロック41内の全ての半導体メモリセル30に共有化されている。また、ソース・ドレイン電極6、8は、隣接する半導体メモリセル30間で共有化されている。
 図17は、メモリブロック41を複数個配置し、各メモリブロック41の一端にワード線42、他端にソース線43を設けて、メモリアレイの構成にした半導体記憶装置の構成を示した図である。
 本実施形態における半導体メモリセル30では、半導体膜5のチャネル抵抗は、強誘電体膜4の分極状態(MFSFETに書き込まれたデータ)と、第2のゲート電極10に印加される電圧(MISFETのオン、オフ状態)とによって独立に制御することができる。そのため、メモリブロック41内の各半導体メモリセル30に書き込まれたデータを読み出す場合、読み出そうとする半導体メモリセルのMISFET22のみをオフ状態(他の半導体メモリセルのMISFET22はオン状態)にすることによって、当該半導体メモリセル30に書き込まれたデータを容易に読み出すことができる。これにより、本実施形態における半導体メモリセル30を直列に接続してNAND型の半導体記憶装置を構成したとき、データの書き込み及び読み出し動作を、簡単な制御で行うことが可能となる。
 ここで、本実施形態において、第1のゲート電極3は、結晶性絶縁膜2上に形成したが、第2の実施形態と同様に、結晶性絶縁膜2内に埋設して形成してもよい。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。例えば、上記実施形態では、ソース・ドレイン電極6、8は、半導体膜5(チャネル層)と常誘電体膜9との間に配置したが、半導体膜5と強誘電体膜4との間に配置してもよい。また、上記実施形態では、基板1にSi基板を用いたが、例えば、STO(SrTiO)、サファイア、ランタン・アルミ酸化物(LaAlO)からなる基板や、トランジスタなどが形成された基板を用いてもよい。
 本発明は、セルサイズの小さなFET型のメモリ素子を備えた半導体メモリセルに有用である。
 1   基板
 2   YSZ膜(結晶性絶縁膜)
 3   第1のゲート電極(結晶性導電膜)
 4   PZT膜(強誘電体膜)
 5   ZnO膜(半導体膜)
 6   ソース電極
 7   中間電極
 8   ドレイン電極
 9   常誘電体膜
 10  第2のゲート電極
 11a~11c 電極
 12  開口部 
 20、30   半導体メモリセル
 21   MFSFET(第1の電界効果トランジスタ)
 22   MISFET(第2の電界効果トランジスタ)
 31、32   選択トランジスタ
 41   メモリブロック
 42   ワード線
 43   ソース線

Claims (16)

  1.  ゲート絶縁膜が強誘電体膜で構成された第1の電界効果トランジスタからなるメモリ素子と、
     ゲート絶縁膜が常誘電体膜で構成された第2の電界効果トランジスタからなる選択スイッチング素子と
    を備えた半導体メモリセルであって、
     前記第1の電界効果トランジスタの第1のゲート電極は、基板上の結晶性絶縁膜表面に形成された結晶性導電膜からなり、
     前記強誘電体膜は、前記第1のゲート電極を覆って前記結晶性絶縁膜上に形成され、
     前記常誘電体膜は、半導体膜を介して前記強誘電体膜上に形成され、
     前記第2の電界効果トランジスタの第2のゲート電極は、前記常誘電体膜上に形成されており、
     前記半導体膜は、前記第1の電界効果トランジスタ及び前記第2の電界効果トランジスタの共通のチャネル層を構成しており、
     前記半導体膜上には、前記第1の電界効果トランジスタ及び前記第2の電界効果トランジスタに共通のソース電極及びドレイン電極が形成されている、半導体メモリセル。
  2.  前記第2のゲート電極に所定の電圧を印加して、前記選択スイッチング素子をオン状態にし、
     前記第1のゲート電極と前記ドレイン電極間に所定の電圧を印加して、前記強誘電体膜の分極状態を変化させることによって、前記メモリ素子にデータの書き込みが行われる、請求項1に記載の半導体メモリセル。
  3.  前記第2のゲート電極に所定の電圧を印加して、前記選択スイッチング素子をオン状態にし、
     前記ソース電極と前記ドレイン電極間に所定の電圧を印加して、前記強誘電体膜の分極状態に応じて前記チャネル層を流れる電流を検出することによって、前記メモリ素子に書き込まれたデータの読み出しが行われる、請求項1に記載の半導体メモリセル。
  4.  前記強誘電体膜は、前記結晶性絶縁膜及び前記結晶性導電膜上をエピタキシャル成長して形成された膜からなる、請求項1に記載の半導体メモリセル。
  5.  前記強誘電体膜の表面は平坦化されている、請求項1に記載の半導体メモリセル。
  6.  前記第1のゲート電極は、前記結晶性絶縁膜に埋設されている、請求項1に記載の半導体メモリセル。
  7.  前記結晶性絶縁膜は、イットリウム安定化ジルコニア(YSZ)または酸化マンガン(MnOx)からなる、請求項1に記載の半導体メモリセル。
  8.  前記結晶性導電膜は、白金(Pt)、イリジウム(Ir)、イリジウム酸化物(IrOx)、若しくはランタンニッケル酸化物(LaNiOx)からなる膜、又はそれらの膜を含む積層膜からなる、請求項1に記載の半導体メモリセル。
  9.  前記結晶性絶縁膜上の前記強誘電体膜の結晶配向は、前記結晶性絶縁膜の結晶配向に倣って成長しており、前記結晶性導電膜上の前記強誘電体膜の結晶配向は、前記結晶性導電膜の結晶配向に倣って成長している、請求項1に記載の半導体メモリセル。
  10.  前記強誘電体膜の結晶配向は、面内で全て同じ方向に揃っている、請求項9に記載の半導体メモリセル。
  11.  前記半導体膜は、自発分極を有する材料からなる、請求項1に記載の半導体メモリセル。
  12.  前記半導体膜の自発分極は、膜面に対して垂直である、請求項11に記載の半導体メモリセル。
  13.  前記強誘電体膜と前記半導体膜との界面、または前記常誘電体膜と前記半導体膜の界面に、前記半導体膜の自発分極による電子蓄積層が存在している、請求項12に記載の半導体メモリセル。
  14.  請求項1に記載の半導体メモリセルを製造する方法であって、
     基板上に前記結晶性絶縁膜を形成する工程(a)と、
     前記結晶性導電膜の表面に前記結晶性導電膜からなる前記第1のゲート電極を形成する工程(b)と、
     前記第1のゲート電極を覆うように、前記結晶性絶縁膜上に前記強誘電体膜を形成する工程(c)と、
     前記強誘電体膜上に、前記半導体膜を形成する工程(d)と、
     前記半導体膜上に、前記ソース電極及びドレイン電極を形成する工程(e)と、
     前記ソース電極及びドレイン電極を覆うように、前記半導体膜上に前記常誘電体膜を形成する工程(f)と、
     前記常誘電体膜上に、前記第2のゲート電極を形成する工程(g)と
    を含む、半導体メモリセルの製造方法。
  15.  前記工程(c)の後、前記工程(d)の前に、前記強誘電体膜の表面を平滑化処理する工程をさらに含む、請求項14に記載の半導体メモリセルの製造方法。
  16.  前記工程(b)は、前記結晶性導電膜に前記結晶性導電膜からなる前記第1のゲート電極を埋設する工程を含む、請求項14に記載の半導体メモリセルの製造方法。
PCT/JP2009/006875 2009-05-13 2009-12-15 半導体メモリセルおよびその製造方法 WO2010131311A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801588253A CN102405521A (zh) 2009-05-13 2009-12-15 半导体存储单元及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009116441A JP2010267704A (ja) 2009-05-13 2009-05-13 半導体メモリセルおよびその製造方法
JP2009-116441 2009-05-13

Publications (1)

Publication Number Publication Date
WO2010131311A1 true WO2010131311A1 (ja) 2010-11-18

Family

ID=43084703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006875 WO2010131311A1 (ja) 2009-05-13 2009-12-15 半導体メモリセルおよびその製造方法

Country Status (3)

Country Link
JP (1) JP2010267704A (ja)
CN (1) CN102405521A (ja)
WO (1) WO2010131311A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033106A1 (ja) * 2010-09-10 2012-03-15 独立行政法人科学技術振興機構 メモリーセルブロック及びその製造方法、メモリー装置並びにメモリー装置の駆動方法
JP2012216797A (ja) * 2011-03-25 2012-11-08 Semiconductor Energy Lab Co Ltd 半導体装置および当該半導体装置の作製方法
US9496138B2 (en) 2011-07-08 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film, method for manufacturing semiconductor device, and semiconductor device
WO2017154385A1 (ja) * 2016-03-07 2017-09-14 ソニー株式会社 半導体記憶素子、半導体装置、電子機器、および半導体記憶素子の製造方法
WO2022106955A1 (ja) * 2020-11-20 2022-05-27 株式会社半導体エネルギー研究所 トランジスタ、及び半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10079053B2 (en) * 2011-04-22 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Memory element and memory device
US11729987B2 (en) * 2020-06-30 2023-08-15 Taiwan Semiconductor Manufacturing Company, Ltd. Memory array source/drain electrode structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335645A (ja) * 1995-06-08 1996-12-17 Mitsubishi Electric Corp 半導体装置とその制御方法
JPH09135009A (ja) * 1995-09-05 1997-05-20 Mitsubishi Chem Corp 不揮発性半導体記憶装置及び素子
JP2000340759A (ja) * 1999-05-31 2000-12-08 Sony Corp 不揮発性半導体メモリおよびその駆動方法
JP2005310881A (ja) * 2004-04-19 2005-11-04 Matsushita Electric Ind Co Ltd Fet型強誘電体メモリセルおよびfet型強誘電体メモリ
JP2008263019A (ja) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd 半導体メモリセル及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335645A (ja) * 1995-06-08 1996-12-17 Mitsubishi Electric Corp 半導体装置とその制御方法
JPH09135009A (ja) * 1995-09-05 1997-05-20 Mitsubishi Chem Corp 不揮発性半導体記憶装置及び素子
JP2000340759A (ja) * 1999-05-31 2000-12-08 Sony Corp 不揮発性半導体メモリおよびその駆動方法
JP2005310881A (ja) * 2004-04-19 2005-11-04 Matsushita Electric Ind Co Ltd Fet型強誘電体メモリセルおよびfet型強誘電体メモリ
JP2008263019A (ja) * 2007-04-11 2008-10-30 Matsushita Electric Ind Co Ltd 半導体メモリセル及びその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033106A1 (ja) * 2010-09-10 2012-03-15 独立行政法人科学技術振興機構 メモリーセルブロック及びその製造方法、メモリー装置並びにメモリー装置の駆動方法
JP2012216797A (ja) * 2011-03-25 2012-11-08 Semiconductor Energy Lab Co Ltd 半導体装置および当該半導体装置の作製方法
US9490351B2 (en) 2011-03-25 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US9496138B2 (en) 2011-07-08 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film, method for manufacturing semiconductor device, and semiconductor device
WO2017154385A1 (ja) * 2016-03-07 2017-09-14 ソニー株式会社 半導体記憶素子、半導体装置、電子機器、および半導体記憶素子の製造方法
JPWO2017154385A1 (ja) * 2016-03-07 2019-01-10 ソニー株式会社 半導体記憶素子、半導体装置、電子機器、および半導体記憶素子の製造方法
US11171155B2 (en) 2016-03-07 2021-11-09 Sony Corporation Multi-layer semiconductor element, semiconductor device, and electronic device for storage, and method of manufacturing the same
WO2022106955A1 (ja) * 2020-11-20 2022-05-27 株式会社半導体エネルギー研究所 トランジスタ、及び半導体装置

Also Published As

Publication number Publication date
CN102405521A (zh) 2012-04-04
JP2010267704A (ja) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5190275B2 (ja) 半導体メモリセル及びそれを用いた半導体メモリアレイ
US8385099B2 (en) Semiconductor memory cell and manufacturing method thereof, and semiconductor memory devices
US10600808B2 (en) Ferroelectric memory cell for an integrated circuit
JP2008270313A (ja) 半導体記憶素子
JP5064094B2 (ja) 半導体記憶装置およびその製造方法
US8004871B2 (en) Semiconductor memory device including FET memory elements
WO2010131311A1 (ja) 半導体メモリセルおよびその製造方法
WO2010131310A1 (ja) 半導体メモリセルおよびその製造方法
JP2009099606A (ja) 半導体記憶装置及びその製造方法並びに半導体スイッチング装置
US20090152607A1 (en) Ferroelectric stacked-layer structure, field effect transistor, and ferroelectric capacitor and fabrication methods thereof
US20220005814A1 (en) Capacitor comprising a bismuth metal oxide-based lead titanate thin film
JP5081069B2 (ja) 半導体記憶装置
JP2008263019A (ja) 半導体メモリセル及びその製造方法
WO2012033106A1 (ja) メモリーセルブロック及びその製造方法、メモリー装置並びにメモリー装置の駆動方法
US20100252867A1 (en) MFMS-FET, Ferroelectric Memory Device, And Methods Of Manufacturing The Same
EP1168454B1 (en) Nonvolatile semiconductor memory
JP2009283877A (ja) 半導体記憶装置
JP2003060170A (ja) 酸化物半導体を用いた強誘電体メモリ素子
JPH08330451A (ja) 半導体記憶装置
JP2008166486A (ja) 半導体記憶素子
US20230403862A1 (en) Ferroelectric tunnel junctions with conductive electrodes having asymmetric nitrogen or oxygen profiles
US20060071255A1 (en) Non-destructive read ferroelectric memory cell, array and integrated circuit device
JP2007184350A (ja) 半導体記憶装置及びその駆動方法
JP2011155198A (ja) 半導体装置
JP2008172133A (ja) 半導体記憶装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158825.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844585

Country of ref document: EP

Kind code of ref document: A1