WO2010127659A1 - Hydraulische energiequelle zum versorgen eines nachgeschalteten hydrauliksystems mit hydraulischer energie - Google Patents

Hydraulische energiequelle zum versorgen eines nachgeschalteten hydrauliksystems mit hydraulischer energie Download PDF

Info

Publication number
WO2010127659A1
WO2010127659A1 PCT/DE2010/000473 DE2010000473W WO2010127659A1 WO 2010127659 A1 WO2010127659 A1 WO 2010127659A1 DE 2010000473 W DE2010000473 W DE 2010000473W WO 2010127659 A1 WO2010127659 A1 WO 2010127659A1
Authority
WO
WIPO (PCT)
Prior art keywords
volume flow
pump
hydraulic energy
source
hydraulic
Prior art date
Application number
PCT/DE2010/000473
Other languages
English (en)
French (fr)
Inventor
Marco Grethel
Martin Staudinger
Original Assignee
Schaeffler Technologies Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies Gmbh & Co. Kg filed Critical Schaeffler Technologies Gmbh & Co. Kg
Priority to DE112010001921T priority Critical patent/DE112010001921A5/de
Priority to CN201080018559.7A priority patent/CN102414455B/zh
Publication of WO2010127659A1 publication Critical patent/WO2010127659A1/de
Priority to US13/240,210 priority patent/US8572958B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H2061/0037Generation or control of line pressure characterised by controlled fluid supply to lubrication circuits of the gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0436Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0446Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control the supply forming part of the transmission control unit, e.g. for automatic transmissions

Definitions

  • Hydraulic energy source for supplying hydraulic power to a downstream hydraulic system
  • the invention relates to a hydraulic energy source for supplying a downstream hydraulic system with hydraulic energy, in particular a hydraulic system for controlling and / or cooling a transmission, in particular a dual-clutch transmission, by means of a standing under a comparatively high system pressure first partial flow to supply an actuator system of the hydraulic system and a under a comparatively low cooling pressure stationary second partial volume flow for supplying a cooling of the hydraulic system can be generated.
  • Hydraulic energy sources for supplying hydraulic power to a downstream hydraulic system are known.
  • an oil supply (usually pump with pump drive) is necessary.
  • the pump drive is a mechanical pump drive, which is coupled to the combustion engine.
  • the object of the invention is to provide an improved and / or alternative hydraulic energy source for supplying a downstream hydraulic system with hydraulic energy, in particular a hydraulic system for controlling and / or cooling a transmission, in particular dual-clutch transmission, in particular an energy-efficient and / or structurally optimized supply to enable.
  • the object is with a hydraulic energy source for supplying a downstream hydraulic system with hydraulic energy, in particular a hydraulic system for controlling and / or cooling a transmission, in particular dual-clutch transmission, by means of a standing under a comparatively high system pressure first partial flow to supply an actuator of the hydraulic system and a in that the hydraulic energy source has an electrically drivable or driven first volumetric flow source for generating the first partial volumetric flow and a second volumetric flow source for generating the second partial volumetric flow, wherein the second volumetric flow source comprises a second partial volumetric flow Volume flow source is drivingly independent of an internal combustion engine.
  • the volumetric flow sources can be adapted to a pressure and / or volumetric flow requirement of the actuators and the cooling.
  • volumetric flow source can be understood to be any arrangement for generating a volumetric flow, wherein dividing the volumetric flow into two partial volumetric flows by means of downstream components or actuation can, if appropriate, also be understood as two volumetric flow sources.
  • the first volume flow source can be driven by means of a first electric motor.
  • the first volumetric flow source can be supplied with mechanical energy independently of a further component, for example an internal combustion engine associated with the transmission.
  • the first volumetric flow source has a first pump and the second volumetric flow source has a second pump, wherein the second volumetric flow source is drivable or unpowered by means of a switchable clutch, optionally by means of the first electric motor.
  • the first electric motor is variable in speed.
  • a rotational speed of the first electric motor by adjusting a rotational speed of the first electric motor, a corresponding volume flow driven thereby can also be varied, that is to say adapted to a corresponding requirement of the downstream actuator system and / or cooling, for example.
  • first volume flow source by means of a downstream control valve either the actuator or the cooling can be assigned.
  • first partial volume flow and the second partial volume flow can be generated by means of the first volume flow source, for example by pulses.
  • a pressure accumulator for example, to provide the system pressure when the second partial volume flow is operated.
  • the actuator is associated with a hydraulic energy storage.
  • storage and delivery of hydraulic energy can take place by means of the energy accumulator, for example to cover peak loads, temporarily switch off the hydraulic energy source and / or split a volumetric flow so as to be able to realize two volumetric flow sources with only one pump.
  • the first volume flow source and the second volume flow source are realized by means of a common pump, wherein depending on a direction of rotation of the first electric motor, which is assigned by means of a speed-dependent transmission of the common pump, in a first switching position of Control valve and a first direction of rotation of the first electric motor, the actuator with the first partial volume flow and in a second switching position of the control valve and a second direction of rotation of the first electric motor, the cooling can be supplied with the second partial volume flow.
  • the direction-dependent gear can advantageously have a different ratio, so that, for example, depending on the direction of rotation, a low volume flow for providing the system pressure and a high volume flow for providing the cooling pressure, ie for supplying the cooling, can be realized a pump and an electric motor are needed.
  • the second volume flow source has a jet pump.
  • pressure energy can be converted into kinetic energy, resulting in a decrease in pressure, an increase in the volume flow, for example, advantageous to provide a comparatively large volume flow at a relatively low pressure for cooling.
  • the first volumetric flow source has a first pumping flow of a multi-flow pump and the second volumetric flow source has a second pumping flow of the multiple-flow pump.
  • the partial volume flows can be generated by means of the various pump flows of the multiple-flow source, it being possible, for example, to design the first pump flow for a comparatively small volume flow and the high system pressure and the second pump flow correspondingly larger for a high flow rate at the comparatively low cooling pressure.
  • the second volume flow source can be driven by means of a hydraulic motor connected downstream of the first volume flow source.
  • this arrangement is a hydrotransformer, which can transform a comparatively small volume flow, which is at a high pressure into a comparatively large volume flow, which is at a low pressure.
  • the energy resulting from the high system pressure can thus be transformed as energy-efficiently as possible into the comparatively large second partial volume flow, which is below the low cooling pressure.
  • the first partial volume flow source is followed by a storage charging valve.
  • the shut-off valve can be used in combination with a pressure accumulator, so that by means of the shut-off valve, the first partial volume flow source can optionally be decoupled, thereby preventing an undesirable backflow into the first volume flow source.
  • the second electric motor is variable in speed.
  • the second partial volume flow can be varied by means of the second electric motor.
  • the first electric motor is rotationally variable.
  • the first electric motor can be varied in one direction of rotation, which advantageously makes it possible to adjust the first volume flow and the second volume flow.
  • the volume flow sources are driven by the first electric motor, wherein the first electric motor of the first volume flow source is assigned by means of a first freewheel and the second volume flow source is assigned by means of a counter to the first freewheel second freewheel. It is advantageously possible to selectively operate either the first volumetric flow source or the second volumetric flow source by changing the direction of rotation of the first electric motor.
  • the first volumetric flow source can be driven by means of the first electric motor and the second volumetric flow source can be driven by means of a second electric motor.
  • the electric motors can be controlled differently, so that the volume flow sources are advantageously adjustable to the requirements of the actuators and cooling.
  • it may be entirely separate branches, which are each supplied by means of one of the volumetric flow sources with hydraulic energy.
  • Figure 1 is a hydraulic energy source having a jet pump for supplying a cooling.
  • FIG. 2 shows a further hydraulic energy source, which has a variable-speed electric motor, by means of which a multi-flow pump can be driven;
  • FIG. 3 shows a further hydraulic energy source with a first electric motor and a second electric motor for supplying an actuator system and the cooling;
  • Fig. 4 is a hydraulic energy source analogous to that shown in Figure 3, wherein in
  • a control valve for selectively supplying the actuator or the cooling is connected downstream;
  • Fig. 5 is a hydraulic energy source analogous to that shown in Figure 4, wherein in
  • Difference only one electric motor is provided, which drives two pumps, wherein a second pump can be separated by means of a clutch;
  • Fig. 6 is a hydraulic energy source analogous to that shown in Figure 5, wherein in
  • Difference of the electric motor is dependent on the direction of rotation and is associated with two counter-rotating freewheels two pumps;
  • FIG. 7 shows a further hydraulic energy source with an electric motor and a pump, wherein the electric motor is dependent on the direction of rotation and is assigned to the pump by means of a direction of rotation-dependent transmission and
  • FIG. 8 shows a further hydraulic energy source with an electric motor and a pump associated therewith and a hydraulic motor arranged downstream of the pump for driving a further pump for supplying the cooling.
  • FIG. 1 shows a hydraulic energy source for supplying an actuator 70 and a cooling system 100 of a transmission, which is shown only partially, for example a dual-clutch transmission with wet clutches, which can be cooled by means of the cooling system 100.
  • the hydraulic power source has a first electric motor 20 that is variable in speed.
  • the first electric motor 20 is assigned by means of a drive connection 30 of a first pump 10.
  • the first pump 10 is designed for a high pressure and a low pressure, for example a system pressure for supplying the actuators 70 and a comparatively lower cooling pressure for supplying the cooling 100.
  • the first pump 10 is a suction filter 40 and the suction filter 40, a tank 110 connected upstream.
  • the first pump 10 is followed by a changeover valve 50, by means of which the first pump 10 can be assigned either to the downstream actuator 70 and the cooling 100 or can be separated from it.
  • the switching valve 50 is followed by a pressure accumulator 60, by means of the hydraulic energy, in particular at the level of the system pressure to supply the actuators 70 can be stored.
  • the switching valve 50 is in two branches, the actuator 70 and in another branch an oil cooler 80 for cooling a pumped from the tank 110 hydraulic medium and the oil cooler 80 downstream of a jet pump 90th
  • FIG. 2 shows a further hydraulic energy source, which can likewise be driven by means of a first variable-speed electric motor 27.
  • two drive connections 37 and 38 are provided.
  • the first electric motor 27 is coupled to a first pump 17 or a pump surge.
  • the first pump 17 or the first pumping flow of the first pump 17 is assigned by means of the drive connection 38 to a second pumping flow of a second pump 18.
  • the pumps 17 and 18 form a multi-flow pump, wherein the first pumping flow of the first pump 17 is designed to be smaller than the second pumping flow of the second pump 18.
  • the first pump 17 serves to supply the actuators 70.
  • the second pump 18 serves to supply the cooling device 100
  • the second pump is followed by a bypass valve 52, by means of which the second pump can be short-circuited or switched on the tank 110.
  • the second pump can be separated from the cooling 100 by means of the bypass valve 52 with a comparatively low cooling requirement of the cooling 100.
  • the jet pump 90 is optional.
  • FIG. 3 shows a further hydraulic energy source which, in contrast to the representation according to FIGS. 1 and 2, has a first electric motor 21 and a second electric motor 22 which supply entirely independent branches for supplying the actuator 70 and the cooling 100 with hydraulic energy.
  • the first electric motor 21 is assigned by means of a drive connection 31 of a first pump 11, wherein the first pump 11 is designed to generate a high pressure, ie the system pressure to supply the actuators at a comparatively small first partial flow.
  • the second electric motor 22 is assigned by means of a drive connection 32 of a second pump 12.
  • the second pump 12 is designed to generate a comparatively large second partial volume flow below the comparatively low cooling pressure for supplying the cooling 100.
  • the first pump 11, a storage charging valve 51 is connected downstream, by means of which the pressure accumulator 60 and the actuator 70 are selectively separable from the first pump 11 or this can be assigned.
  • the second pump 12, the oil cooler 80 and the jet pump 90 is connected downstream.
  • the jet pump 90 is optional.
  • the second electric motor 22 for variable drive of the second pump 12 is variable in speed, wherein advantageously the cooling 100 can be supplied as needed for cooling with the hydraulic medium.
  • FIG. 4 shows a further hydraulic energy source which has a first electric motor 25 and a second electric motor 26.
  • the first electric motor 25 is assigned by means of a drive connection 35 to a first pump 15 for generating the first partial volume flow for supplying the actuators 70.
  • the second electric motor 26 is assigned by means of a drive connection 36 to a second pump 16 for generating the second partial volume flow for supplying or cooling the cooling 100.
  • the first pump 15 is associated with the switching valve 50, so that it can also be used to supply the cooling.
  • the first pump 15 may be made smaller than the second pump 16.
  • the jet pump 19 shown in FIG. 4 is optional.
  • FIG. 5 shows a further hydraulic energy source with a first electric motor 23, which is variable in speed.
  • the first electric motor 23 is assigned by means of a drive connection 330 to a first pump 13 for supplying the actuators 70 with the first partial volume flow under the system pressure.
  • the first pump 13 is assigned to a second pump 14 by means of a switchable drive connection 331.
  • the second pump 14 is designed to be larger than the first pump 13 and serves to generate the second partial volume flow below the lower ren cooling pressure to supply the cooling 100.
  • the first pump 13, the switching valve 50 is connected downstream.
  • the switchable drive connection 331 has a switchable coupling.
  • a corresponding control for switching the shiftable clutch 120 is not shown in detail in FIG.
  • the second pump 14 can optionally be assigned to the first variable-speed electric motor 23.
  • the second pump 14 can be switched on as needed, that is, for example, when the cooling system 100 has an increased cooling requirement. If the cooling system 100 has no volume flow or cooling requirement, the second pump 14 can be disconnected from the first electric motor 23 by means of the switchable coupling 120 of the drive connection 331.
  • the jet pump 90 shown in Figure 5 is optional.
  • the first electric motor 291 is speed-variable and assigned by means of a direction-dependent drive connection 391 of a first pump 191 and by means of a direction of rotation-dependent drive connection 392 of a second pump 192.
  • the first pump 191 is designed smaller than the second pump 192.
  • the direction of rotation-dependent drive connection 391 has a freewheel 150 connected between the first pump 191 and the first electric motor 291.
  • the rotational direction-dependent drive connection 392 has a freewheel connected between the first electric motor 291 and the second pump 192.
  • the freewheels 150 and 151 are in opposite directions, so that only the first pump 191 are driven for a first direction of rotation of the first electric motor 291 and only the second pump 192 for a second direction of rotation.
  • it can be controlled by a choice of the direction of rotation of the first electric motor 291, whether only the first pump 191 or only the second pump 192 promotes or is driven.
  • the first pump 191, the switching valve 50 is connected downstream.
  • the second pump 192, the oil cooler 80, the jet pump 90 and the cooling 100 are connected downstream.
  • the jet pump 90 shown in Figure 6 is optional.
  • FIG. 7 shows a further hydraulic energy source with a first pump 193.
  • the first pump 193 is connected by means of a drive connection 156 to a direction-dependent gearbox 155 assigned.
  • the transmission 155 has a first gear stage 163 and a second gear stage 164.
  • a first electric motor 293 is assigned to the first gear stage 163 by means of a first direction-dependent drive connection 393.
  • a second direction of rotation dependent drive connection 394 By means of a second direction of rotation dependent drive connection 394, the first electric motor 293 of the second gear stage 164 is assigned.
  • the first drive connection 393 has a first freewheel 153.
  • the second drive connection 394 has a second freewheel 154.
  • the first 153 and the second freewheel 154 are in opposite directions, so that depending on a direction of rotation of the first electric motor 293, with the first electric motor 293 being designed to be speed-dependent, either the first gear stage 163 or the second gear stage 164 is driven.
  • the first gear stage 163 has three gears and about a 1 to 1 ratio.
  • the second gear stage 164 has two gears and translates into the fast.
  • the first pump 193, the switching valve 50 is connected downstream.
  • a comparatively small first partial volume flow standing under the high system pressure for supplying the actuators 70 or a comparatively large second partial volume flow standing below the comparatively low cooling pressure for supplying the cooling 100 can be provided.
  • the jet pump illustrated in FIG. 7 is optional.
  • FIG. 8 shows a further hydraulic energy source with a first electric motor 29, which is designed to be variable in speed.
  • the first electric motor 29 is assigned to a first pump 19 by means of a drive connection 39.
  • the first pump 19 may be designed comparatively small for generating the comparatively high system pressure with a comparatively small first partial volume flow.
  • the first pump 19, the switching valve 50 is connected downstream.
  • the switching valve 50 is followed by a further switching valve 53 that the switching valve 50 optionally either the cooling 100 or a hydraulic motor of a hydrotransformer 130 assigns.
  • the hydraulic motor of the hydrotransformer 130 is assigned by means of a drive connection of a second pump 130, wherein the second pump 133 is driven by means of the hydraulic motor 131 via the drive connection 132.
  • the first partial volume flow which is under the high system pressure, can be transformed into the second partial volume flow, which is below the comparatively low cooling pressure and greater than the first partial volume flow.
  • the jet pump 90 shown in Figure 8 is optional.
  • Figure 1 shows a variable speed electric drive with the jet pump 19 for the cooling function of the cooling 100, wherein advantageously the pump size of the first pump 10 and thus the moment at higher pressures can be reduced.
  • FIG. 2 shows a variable-speed electric drive with the multiple-flow pump and the optional suction jet pump 90.
  • the first pump 17 for generating the high system pressure has to be driven by the first electric motor 27.
  • the hydraulic energy source according to FIG. 3 makes it possible, by means of the first electric motor 21 and the second variable-speed motor 22, to have two completely independent branches for supplying the actuators and the cooling system 100.
  • the branches can be coupled by means of the switching valve 50.
  • FIG. 5 shows a hydraulic energy source with a speed-controlled first electric motor associated with the pumps 13 and 14.
  • the larger sized second pump 14 can be connected via the switchable clutch.
  • FIG. 6 shows a hydraulic power source having a first electric motor that is variable in speed and rotationally variable, with the smaller first pump 191 configured for generating one of the high system pressure and the low cooling pressure and one for the second, larger pump 192; which is designed for the generation of the lower cooling pressure.
  • the freewheels 150 and 151 are installed, so that in a first direction of rotation, the smaller first pump and in a second direction of rotation, the larger second pump 192 is driven.
  • FIG. 7 shows a hydraulic energy source which has the first directionally variable electric motor 293 and a directionally variable transmission 155.
  • FIG. 8 shows a hydraulic energy source with a variable-speed first electric motor 29, which is provided with a first pump 19, which is designed for high-pressure and low-pressure, and the hydrotransformer 130, for providing large amounts of cooling.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Die Erfindung betrifft eine hydraulische Energiequelle zum Versorgen eines nachgeschalteten Hydrauliksystems mit hydraulischer Energie, insbesondere eines Hydrauliksystems zur Steuerung und/oder Kühlung eines Getriebes, insbesondere Doppelkupplungsgetriebes, mittels der ein unter einem vergleichsweise hohen Systemdruck stehender erster Teilvolumenstrom zum Versorgen einer Aktorik (70) des Hydrauliksystems und ein unter einem vergleichsweise niedrigen Kühldruck stehender zweiter Teilvolumenstrom zum Versorgen einer Kühlung (100) des Hydrauliksystems erzeugbar sind. Um eine verbesserte Versorgung des Hydrauliksystems mit hydraulischer Energie zu ermöglichen ist vorgesehen, dass die hydraulische Energiequelle (15) eine elektrisch antreibbare erste Volumenstromquelle zum Erzeugen des ersten Teilvolumenstroms und eine zweite Volumenstromquelle (16) zum Erzeugen des zweiten Teilvolumenstroms aufweist, wobei die zweite Volumenstromquelle antriebsmäßig von einer Brennkraftmaschine unabhängig ist.

Description

Hydraulische Energiequelle zum Versorgen eines nachqeschalteten Hydrauliksvstems mit hydraulischer Energie
Die Erfindung betrifft eine hydraulische Energiequelle zum Versorgen eines nachgeschalteten Hydrauliksystems mit hydraulischer Energie, insbesondere eines Hydrauliksystems zur Steuerung und/oder Kühlung eines Getriebes, insbesondere eines Doppelkupplungsgetriebes, mittels der ein unter einem vergleichsweise hohen Systemdruck stehender erster Teilvolumenstrom zum Versorgen einer Aktorik des Hydrauliksystems und ein unter einem vergleichsweise niedrigen Kühldruck stehender zweiter Teilvolumenstrom zum Versorgen einer Kühlung des Hydrauliksystems erzeugbar sind.
Hydraulische Energiequellen zum Versorgen eines nachgeschalteten Hydrauliksystems mit hydraulischer Energie sind bekannt.
Bei Automatikgetrieben, wie beispielsweise Stufenautomaten, CVT-Getrieben oder Doppelkupplungsgetrieben, mit hydraulischer Steuerung, das heißt Aktoransteuerung, wie Kupplungsaktor- oder Schaltaktor-Steuerung, und Kühl-/ Schmierölversorgung ist eine Ölversorgung (zumeist Pumpe mit Pumpenantrieb) notwendig. Meist handelt es sich beim Pumpenantrieb um einen mechanischen Pumpenantrieb, der an den Verbrennungsmotor gekoppelt ist.
Bei modernen Getrieben kann dieser mechanische Pumpenantrieb um eine E-Pumpenanord- nung (das heißt Elektromotor mit Pumpe) ergänzt sein.
Weiterhin sind Ölversorgungen bekannt, die für die Getriebe- und Kupplungsaktorik ohne mechanisch getriebene Pumpe auskommen. Hier gibt es allerdings aufgrund der Bauart der Kupplung als Trockenkupplung keinen Kühlölbedarf.
Soll auf einen mechanischen Antrieb gerade bei nass laufenden Kupplungen verzichtet werden, so muss bei den bekannten Systemen die hierfür erforderliche hydraulische Leistung komplett von der elektrisch angetriebenen Pumpe bereitgestellt werden. Die dabei auftretenden Betriebszustände sind aber sehr unterschiedlich. So sind sowohl Situationen mit hohem Volumenstrom- und geringem Druckbedarf als auch Situationen mit hohem Druck- und geringem Volumenstrombedarf gegeben. Diese vollständig verschiedenen Randbedingungen er- fordern bei einer konventionellen E-Motor / Pumpen - Anordnung (drehzahlgeregelter Antrieb) sehr große E-Motoren (Kosten, Gewicht, Bordnetzbelastung), um die unterschiedlichen Be- triebszustände in einem Ölversorgungssystem darzustellen.
Aufgabe der Erfindung ist es, eine verbesserte und/oder alternative hydraulische Energiequelle zum Versorgen eines nachgeschalteten Hydrauliksystems mit hydraulischer Energie, insbesondere eines Hydrauliksystems zur Steuerung und/oder Kühlung eines Getriebes, insbesondere Doppelkupplungsgetriebes, zu schaffen, insbesondere ein energieeffizientes und/oder konstruktiv optimiertes Versorgen zu ermöglichen.
Die Aufgabe ist bei einer hydraulischen Energiequelle zum Versorgen eines nachgeschalteten Hydrauliksystems mit hydraulischer Energie, insbesondere eines Hydrauliksystems zur Steuerung und/oder Kühlung eines Getriebes, insbesondere Doppelkupplungsgetriebes, mittels der ein unter einem vergleichsweise hohen Systemdruck stehender erster Teilvolumenstrom zum Versorgen einer Aktorik des Hydrauliksystems und ein unter einem vergleichsweise niedrigen Kühldruck stehender zweiter Teilvolumenstrom zum Versorgen einer Kühlung des Hydrauliksystems erzeugbar sind, dadurch gelöst, dass die hydraulische Energiequelle eine elektrisch antreibbare beziehungsweise angetriebene erste Volumenstromquelle zum Erzeugen des ersten Teilvolumenstroms und eine zweite Volumenstromquelle zum Erzeugen des zweiten Teilvolumenstroms aufweist, wobei die zweite Volumenstromquelle antriebsmäßig von einer Brennkraftmaschine unabhängig ist. Vorteilhaft können die Volumenstromquellen an einen Druck und/oder Volumenstrombedarf der Aktorik und der Kühlung angepasst werden. Die Teilvolumenströme können variieren, also je nach Bedarf der nachgeschalteten Aktorik oder Kühlung gegebenenfalls zeitweise auch quasi zum Erliegen kommen, wobei an der nachgeschalteten Aktorik beispielsweise der Systemdruck anliegt. Unter Volumenstromquelle kann eine beliebige Anordnung zum Erzeugen eines Volumenstroms verstanden werden, wobei ein Aufteilen des Volumenstroms in zwei Teilvolumenströme mittels nachgeschalteter Komponenten oder Ansteuern gegebenenfalls auch als zwei Volumenstromquellen verstanden werden kann.
Bei einem Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass die erste Volumenstromquelle mittels eines ersten Elektromotors antreibbar ist. Vorteilhaft kann die erste Volumenstromquelle unabhängig von einer weiteren Komponente, beispielsweise einem dem Getriebe zugeordneten Verbrennungsmotor, mit mechanischer Energie versorgt werden. Bei einem weiteren Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass die erste Volumenstromquelle eine erste Pumpe aufweist und die zweite Volumenstromquelle eine zweite Pumpe aufweist, wobei die zweite Volumenstromquelle mittels einer schaltbaren Kupplung wahlweise mittels des ersten Elektromotors antreibbar oder antriebslos ist. Vorteilhaft ist es möglich, die zweite Volumenstromquelle für einen erhöhten Kühlungsbedarf zuzuschalten.
Bei einem weiteren Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass der erste Elektromotor drehzahlvariabel ist. Vorteilhaft kann durch eine Anpassung einer Drehzahl des ersten Elektromotors auch ein entsprechender damit angetriebener Volumenstrom variiert werden, also beispielsweise an einen entsprechenden Bedarf der nachgeschalteten Aktorik und/oder Kühlung angepasst werden.
Bei einem weiteren Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass die erste Volumenstromquelle mittels eines nachgeschalteten Steuerventils wahlweise der Aktorik oder der Kühlung zuordenbar ist. Vorteilhaft kann mittels der ersten Volumenstromquelle, beispielsweise durch Pulsen, der erste Teilvolumenstrom und der zweite Teilvolumenstrom erzeugt werden. Außerdem ist es möglich, einen Druckspeicher vorzusehen, beispielsweise um den Systemdruck bereitzustellen, wenn der zweite Teilvolumenstrom bedient wird.
Bei einem weiteren Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass der Aktorik ein hydraulischer Energiespeicher zugeordnet ist. Vorteilhaft kann mittels des Energiespeichers eine Speicherung und Abgabe hydraulischer Energie erfolgen, beispielsweise um Lastspitzen abzudecken, die hydraulische Energiequelle zeitweise abzuschalten und/oder einen Volumenstrom aufzusplitten, um so mit nur einer Pumpe zwei Volumenstromquellen realisieren zu können.
Bei einem weiteren Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass die erste Volumenstromquelle und die zweite Volumenstromquelle mittels einer gemeinsamen Pumpe realisiert sind, wobei abhängig von einer Drehrichtung des ersten Elektromotors, der mittels eines drehzahlabhängigen Getriebes der gemeinsamen Pumpe zugeordnet ist, in einer ersten Schaltstellung des Steuerventils und einer ersten Drehrichtung des ersten Elektromotors die Aktorik mit dem ersten Teilvolumenstrom und in einer zweiten Schaltstellung des Steuerventils und einer zweiten Drehrichtung des ersten Elektromotors die Kühlung mit dem zweiten Teilvolumenstrom versorgbar ist. Vorteilhaft kann das drehrichtungsabhängi- ge Getriebe abhängig von einer Drehrichtung eine unterschiedliche Übersetzung aufweisen, so dass beispielsweise abhängig von der Drehrichtung ein niedriger Volumenstrom zum Bereitstellen des Systemsdrucks und ein hoher Volumenstrom zum Bereitstellen des Kühldrucks, also zur Versorgung der Kühlung realisierbar sind, wobei dazu lediglich eine Pumpe und ein Elektromotor benötigt werden. Gegebenenfalls ist es möglich, einen von der Pumpe geforderten Gesamtvolumenstrom zeitlich zu multiplexen, insbesondere mit einem hydraulischen E- nergiespeicher kombiniert, um so die Teilvolumenströme zu erzeugen.
Bei einem weiteren Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass die zweite Volumenstromquelle eine Strahlpumpe aufweist. Vorteilhaft kann mittels einer Strahlquelle Druckenergie in kinetische Energie umgewandelt werden, wobei sich bei einem Druckabfall eine Vergrößerung des Volumenstroms ergibt, beispielsweise vorteilhaft um einen vergleichsweise großen Volumenstrom bei einem vergleichsweise kleinen Druck für die Kühlung bereitzustellen.
Bei einem weiteren Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass die erste Volumenstromquelle eine erste Pumpenflut einer Mehrflutpumpe aufweist und die zweite Volumenstromquelle eine zweite Pumpenflut der Mehrflutpumpe aufweist. Vorteilhaft können mittels den verschiedenen Pumpenfluten der Mehrflutquelle die Teilvolumenströme erzeugt werden, wobei es beispielsweise möglich ist, die erste Pumpenflut für einen vergleichsweise geringen Volumenstrom und dem hohen Systemdruck und die zweite Pumpenflut entsprechend größer für einen hohen Durchfluss bei dem vergleichsweise geringen Kühldruck auszulegen.
Bei einem weiteren Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass die zweite Volumenstromquelle mittels eines der ersten Volumenstromquelle nachgeschalteten hydraulischen Motors antreibbar ist. Vorteilhaft stellt diese Anordnung einen Hydrotransformer dar, der einen vergleichsweise geringen Volumenstrom, der unter einem hohen Druck besteht in einen vergleichsweise großen Volumenstrom, der unter einem niedrigen Druck steht, transformieren kann. Vorteilhaft kann dadurch die von dem hohen Systemdruck herrührende Energie in den vergleichsweise großen zweiten Teilvolumenstrom, der unter dem niedrigen Kühldruck steht, möglichst energieeffizient transformiert werden. Bei einem weiteren Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass der ersten Teilvolumenstromquelle ein Speicherladeventil nachgeschaltet ist. Vorteilhaft kann das Absperrventil in Kombination mit einem Druckspeicher verwendet werden, so dass mittels des Absperrventils die erste Teilvolumenstromquelle gegebenenfalls abkoppelbar ist, um dadurch einen unerwünschten Rückfluss in die erste Volumenstromquelle zu verhindern.
Bei einem weiteren Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass der zweite Elektromotor drehzahlvariabel ist. Vorteilhaft kann mittels des zweiten Elektromotors der zweite Teilvolumenstrom variiert werden.
Bei einem weiteren Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass der erste Elektromotor drehrichtungsvariabel ist. Vorteilhaft kann der erste Elektromotor in einer Drehrichtung variiert werden, wobei dadurch vorteilhaft eine Stellmöglichkeit zum Einstellen des ersten Volumenstroms und des zweiten Volumenstroms möglich ist.
Bei einem weiteren Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass die Volumenstromquellen mittels des ersten Elektromotors antreibbar sind, wobei der erste Elektromotor der ersten Volumenstromquelle mittels eines ersten Freilaufs zugeordnet ist und der zweiten Volumenstromquelle mittels eines zu dem ersten Freilauf gegensinnigen zweiten Freilaufs zugeordnet ist. Vorteilhaft ist es möglich, durch eine Drehrichtungsänderung des ersten Elektromotors entweder die erste Volumenstromquelle oder die zweite Volumenstromquelle wahlweise zu betreiben.
Bei einem weiteren Ausführungsbeispiel der hydraulischen Energiequelle ist vorgesehen, dass die erste Volumenstromquelle mittels des ersten Elektromotors und die zweite Volumenstromquelle mittels eines zweiten Elektromotors antreibbar sind. Vorteilhaft können die Elektromotoren unterschiedlich angesteuert werden, so dass die Volumenstromquellen vorteilhaft auf die Anforderungen der Aktorik und Kühlung einstellbar sind. Gegebenenfalls kann es sich um gänzlich separate Zweige handeln, die jeweils mittels einer der Volumenstromquellen mit hydraulischer Energie versorgbar sind.
Die Aufgabe ist außerdem bei einem Getriebe, insbesondere einem Doppelkupplungsgetriebe, mit einem Hydrauliksystem mit einer vorab beschriebenen hydraulischen Energiequelle gelöst. Es ergeben sich die vorab beschriebenen Vorteile. Weitere Vorteile, Merkmale und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung ein Ausführungsbeispiel im Einzelnen beschrieben ist. Gleiche, ähnliche und/oder funktionsgleiche Teile sind mit gleichen Bezugszeichen versehen. Es zeigen:
Fig. 1 eine hydraulische Energiequelle, die zur Versorgung einer Kühlung eine Strahlpumpe aufweist;
Fig. 2 eine weitere hydraulische Energiequelle, die einen drehzahlvariablen Elektromotor aufweist, mittels dem eine Mehrflutpumpe antreibbar ist;
Fig. 3 eine weitere hydraulische Energiequelle mit einem ersten Elektromotor und einem zweiten Elektromotor zur Versorgung einer Aktorik und der Kühlung;
Fig. 4 eine hydraulische Energiequelle analog der in Figur 3 gezeigten, wobei im
Unterschied einer dem ersten Elektromotor zugeordneten Pumpe ein Steuerventil zum wahlweisen Versorgen der Aktorik oder der Kühlung nachgeschaltet ist;
Fig. 5 eine hydraulische Energiequelle analog der in Figur 4 dargestellten, wobei im
Unterschied nur ein Elektromotor vorgesehen ist, der zwei Pumpen antreibt, wobei eine zweite Pumpe mittels einer Kupplung abtrennbar ist;
Fig. 6 eine hydraulische Energiequelle analog der in Figur 5 dargestellten, wobei im
Unterschied der Elektromotor drehrichtungsabhängig ist und mittels zwei gegenläufigen Freiläufen zwei Pumpen zugeordnet ist;
Fig. 7 eine weitere hydraulische Energiequelle mit einem Elektromotor und einer Pumpe, wobei der Elektromotor drehrichtungsabhängig ist und mittels eines drehrichtungsab- hängigen Getriebes der Pumpe zugeordnet ist und
Fig. 8 eine weitere hydraulische Energiequelle mit einem Elektromotor und einer diesem zugeordneten Pumpe sowie einem der Pumpe nachgeschalteten hydraulischen Motor zum Antrieb einer weiteren Pumpe zur Versorgung der Kühlung. Figur 1 zeigt eine hydraulische Energiequelle zur Versorgung einer Aktorik 70 und einer Kühlung 100 eines nur teilweise dargestellten Getriebes, beispielsweise eines Doppelkupplungsgetriebes mit nassen Kupplungen, die mittels der Kühlung 100 kühlbar sind. Die hydraulische Energiequelle weist einen ersten Elektromotor 20 auf, der drehzahlvariabel ist. Der erste Elektromotor 20 ist mittels einer Antriebsverbindung 30 einer ersten Pumpe 10 zugeordnet. Die erste Pumpe 10 ist für einen Hochdruck und einen Niederdruck, beispielsweise einen Systemdruck zur Versorgung der Aktorik 70 und einen vergleichsweise niedrigeren Kühlungsdruck zur Versorgung der Kühlung 100 ausgelegt. Der ersten Pumpe 10 ist ein Saugfilter 40 und dem Saugfilter 40 ein Tank 110 vorgeschaltet. Der ersten Pumpe 10 ist ein Umschaltventil 50 nachgeschaltet, mittels dem die erste Pumpe 10 wahlweise der nachgeschalteten Aktorik 70 und der Kühlung 100 zuordenbar oder von dieser abtrennbar ist. Dem Umschaltventil 50 ist ein Druckspeicher 60 nachgeschaltet, mittels dem hydraulische Energie, insbesondere auf dem Niveau des Systemsdrucks zur Versorgung der Aktorik 70 speicherbar ist. Dem Umschaltventil 50 ist in zwei Zweigen die Aktorik 70 und in einem weiteren Zweig ein Ölkühler 80 zum Kühlen eines von dem Tank 110 geförderten Hydraulikmediums sowie dem Ölkühler 80 nachgeschaltet eine Strahlpumpe 90.
Figur 2 zeigt eine weitere hydraulische Energiequelle, die ebenfalls mittels eines ersten drehzahlvariablen Elektromotors 27 antreibbar ist. Im Unterschied sind zwei Antriebsverbindungen 37 sowie 38 vorgesehen. Mittels der Antriebsverbindung 37 ist der erste Elektromotor 27 mit einer ersten Pumpe 17 beziehungsweise einer Pumpenflut gekoppelt. Die erste Pumpe 17 beziehungsweise die erste Pumpenflut der ersten Pumpe 17 ist mittels der Antriebsverbindung 38 einer zweiten Pumpenflut einer zweiten Pumpe 18 zugeordnet. Die Pumpen 17 und 18 bilden eine Mehrflutpumpe, wobei die erste Pumpenflut der ersten Pumpe 17 kleiner ausgelegt ist als die zweite Pumpenflut der zweiten Pumpe 18. Die erste Pumpe 17 dient zur Versorgung der Aktorik 70. Die zweite Pumpe 18 dient zur Versorgung der Kühlung 100. Der zweiten Pumpe ist ein Bypassventil 52 nachgeschaltet, mittels dem die zweite Pumpe kurz- schließbar beziehungsweise auf dem Tank 110 schaltbar ist. Vorteilhaft kann mittels des By- passventils 52 bei einem vergleichsweise geringen Kühlbedarf der Kühlung 100 die zweite Pumpe von der Kühlung 100 abgetrennt werden.
In der in Figur 2 gezeigten hydraulischen Energiequelle ist die Strahlpumpe 90 optional.
Figur 3 zeigt eine weitere hydraulische Energiequelle die im Unterschied zur Darstellung gemäß den Figuren 1 und 2 einen ersten Elektromotor 21 und einen zweiten Elektromotor 22 aufweist, die gänzlich voneinander unabhängige Zweige zur Versorgung der Aktorik 70 und der Kühlung 100 mit hydraulischer Energie versorgen. Dazu ist der erste Elektromotor 21 mittels einer Antriebsverbindung 31 einer ersten Pumpe 11 zugeordnet, wobei die erste Pumpe 11 zum Erzeugen eines Hochdrucks, also des Systemdrucks zur Versorgung der Aktorik, bei einem vergleichsweise kleinen ersten Teilvolumenstrom ausgelegt ist. Der zweite Elektromotor 22 ist mittels einer Antriebsverbindung 32 einer zweiten Pumpe 12 zugeordnet. Die zweite Pumpe 12 ist zum Erzeugen eines vergleichsweise großen zweiten Teilvolumenstroms unter dem vergleichsweise geringen Kühlungsdruck zur Versorgung der Kühlung 100 ausgelegt.
Der ersten Pumpe 11 ist ein Speicherladeventil 51 nachgeschaltet, mittels dem der Druckspeicher 60 sowie die Aktorik 70 wahlweise von der ersten Pumpe 11 trennbar oder dieser zuordenbar sind.
Der zweiten Pumpe 12 ist der Ölkühler 80 sowie die Strahlpumpe 90 nachgeschaltet. In der Darstellung gemäß Figur 3 ist die Strahlpumpe 90 optional. Außerdem ist der zweite Elektromotor 22 zum variablen Antrieb der zweiten Pumpe 12 drehzahlvariabel, wobei vorteilhaft die Kühlung 100 bedarfsgerecht zur Kühlung mit dem Hydraulikmedium versorgbar ist.
Figur 4 zeigt eine weitere hydraulische Energiequelle, die einen ersten Elektromotor 25 sowie einen zweiten Elektromotor 26 aufweist. Der erste Elektromotor 25 ist mittels einer Antriebsverbindung 35 einer ersten Pumpe 15 zum Erzeugen des ersten Teilvolumenstroms zur Versorgung der Aktorik 70 zugeordnet. Der zweite Elektromotor 26 ist mittels einer Antriebsverbindung 36 einer zweiten Pumpe 16 zum Erzeugen des zweiten Teilvolumenstroms zur Versorgung beziehungsweise Kühlung der Kühlung 100 zugeordnet. Der ersten Pumpe 15 ist das Umschaltventil 50 zugeordnet, so dass diese ebenfalls zur Versorgung der Kühlung verwendet werden kann. Die erste Pumpe 15 kann kleiner ausgelegt sein, als die zweite Pumpe 16.
Die in Figur 4 dargestellte Strahlpumpe 19 ist optional.
Figur 5 zeigt eine weitere hydraulische Energiequelle mit einem ersten Elektromotor 23, der drehzahlvariabel ist. Der erste Elektromotor 23 ist mittels einer Antriebsverbindung 330 einer ersten Pumpe 13 zur Versorgung der Aktorik 70 mit dem ersten Teilvolumenstrom unter dem Systemdruck zugeordnet. Die erste Pumpe 13 ist mittels einer schaltbaren Antriebsverbindung 331 einer zweiten Pumpe 14 zugeordnet. Die zweite Pumpe 14 ist größer ausgelegt als die erste Pumpe 13 und dient zum Erzeugen des zweiten Teilvolumenstroms unter dem niedrige- ren Kühlungsdruck zur Versorgung der Kühlung 100. Der ersten Pumpe 13 ist das Umschaltventil 50 nachgeschaltet.
Die schaltbare Antriebsverbindung 331 weist eine schaltbare Kupplung auf. Eine entsprechende Steuerung zum Schalten der schaltbaren Kupplung 120 ist in Figur 5 nicht näher dargestellt. Vorteilhaft kann mittels der schaltbaren Kupplung 120 die zweite Pumpe 14 wahlweise dem ersten drehzahlvariablen Elektromotor 23 zugeordnet werden. Vorteilhaft kann die zweite Pumpe 14 bedarfsgerecht, also beispielsweise dann wenn die Kühlung 100 einen erhöhten Kühlungsbedarf aufweist zugeschaltet werden. Falls die Kühlung 100 keinen Volumenstrom beziehungsweise Kühlungsbedarf aufweist, kann die zweite Pumpe 14 mittels der schaltbaren Kupplung 120 der Antriebsverbindung 331 von dem ersten Elektromotor 23 abgekoppelt werden.
Die in Figur 5 dargestellte Strahlpumpe 90 ist optional.
Figur 6 zeigt eine weitere hydraulische Energiequelle mit einem ersten Elektromotor 291. Der erste Elektromotor 291 ist drehzahlvariabel und mittels einer drehrichtungsabhängigen Antriebsverbindung 391 einer ersten Pumpe 191 und mittels einer drehrichtungsabhängigen Antriebsverbindung 392 einer zweiten Pumpe 192 zugeordnet. Die erste Pumpe 191 ist kleiner ausgelegt als die zweite Pumpe 192. Die drehrichtungsabhängige Antriebsverbindung 391 weist einen zwischen die erste Pumpe 191 und dem ersten Elektromotor 291 geschalteten Freilauf 150 auf. Die drehrichtungsabhängige Antriebsverbindung 392 weist einen zwischen dem ersten Elektromotor 291 und die zweite Pumpe 192 geschalteten Freilauf auf. Die Freiläufe 150 und 151 sind gegensinnig, so dass für eine erste Drehrichtung des ersten Elektromotors 291 nur die erste Pumpe 191 und für eine zweite Drehrichtung nur die zweite Pumpe 192 angetrieben werden. Vorteilhaft kann durch eine Wahl der Drehrichtung des ersten Elektromotors 291 gesteuert werden, ob nur die erste Pumpe 191 oder nur die zweite Pumpe 192 fördert beziehungsweise angetrieben wird. Der ersten Pumpe 191 ist das Umschaltventil 50 nachgeschaltet. Der zweiten Pumpe 192 sind der Ölkühler 80, die Strahlpumpe 90 sowie die Kühlung 100 nachgeschaltet.
Die in Figur 6 dargestellte Strahlpumpe 90 ist optional.
Figur 7 zeigt eine weitere hydraulische Energiequelle mit einer ersten Pumpe 193. Die erste Pumpe 193 ist mittels einer Antriebsverbindung 156 einem drehrichtungsabhängigen Getriebe 155 zugeordnet. Das Getriebe 155 weist eine erste Zahnradstufe 163 und eine zweite Zahnradstufe 164 auf.
Ein erster Elektromotor 293 ist mittels einer ersten drehrichtungsabhängigen Antriebsverbindung 393 der ersten Zahnradstufe 163 zugeordnet. Mittels einer zweiten drehrichtungsabhängigen Antriebsverbindung 394 ist der erste Elektromotor 293 der zweiten Zahnradstufe 164 zugeordnet. Die erste Antriebsverbindung 393 weist einen ersten Freilauf 153 auf. Die zweite Antriebsverbindung 394 weist einen zweiten Freilauf 154 auf. Der erste 153 und der zweite Freilauf 154 sind gegensinnig, so dass abhängig von einer Drehrichtung des ersten Elektromotors 293, wobei dazu der erste Elektromotor 293 drehzahlabhängig ausgelegt ist, entweder die erste Zahnradstufe 163 oder die zweite Zahnradstufe 164 angetrieben wird. Die erste Zahnradstufe 163 weist drei Zahnräder und ungefähr eine Übersetzung von 1 zu 1 auf. Die zweite Zahnradstufe 164 weist zwei Zahnräder auf und übersetzt ins Schnelle. Es ist ersichtlich, dass abhängig von der Drehrichtung des ersten Elektromotors 293 sich bei sonst gleicher Drehzahl des ersten Elektromotors 293 unterschiedliche Drehzahlen an der ersten Pumpe 193 einstellen. Vorteilhaft kann so durch eine einfache Wahl der Drehrichtung des ersten Elektromotors 293 ein größerer oder ein kleinerer Volumenstrom an der ersten Pumpe 193 eingestellt werden.
Der ersten Pumpe 193 ist das Umschaltventil 50 nachgeschaltet. Vorteilhaft kann abhängig von der Drehrichtung des ersten Elektromotors 293 entweder ein vergleichsweise kleiner, unter dem hohen Systemdruck stehender erster Teilvolumenstrom zur Versorgung der Aktorik 70 oder ein vergleichsweise großer, unter dem vergleichsweise geringen Kühlungsdruck stehender zweiter Teilvolumenstrom zur Versorgung der Kühlung 100 bereitgestellt werden.
Die in Figur 7 dargestellte Strahlpumpe ist optional.
Figur 8 zeigt eine weitere hydraulische Energiequelle mit einem ersten Elektromotor 29, der drehzahlvariabel ausgelegt ist. Der erste Elektromotor 29 ist mittels einer Antriebsverbindung 39 einer ersten Pumpe 19 zugeordnet. Die erste Pumpe 19 kann vergleichsweise klein zum Erzeugen des vergleichsweise hohen Systemdrucks bei vergleichsweise geringem ersten Teilvolumenstrom ausgelegt sein. Der ersten Pumpe 19 ist das Umschaltventil 50 nachgeschaltet. Dem Umschaltventil 50 ist ein weiteres Umschaltventil 53 nachgeschaltet, dass das Umschaltventil 50 wahlweise entweder der Kühlung 100 oder einem hydraulischen Motor eines Hydrotransformers 130 zuordnet. Der hydraulische Motor des Hydrotransformers 130 ist mittels einer Antriebsverbindung einer zweiten Pumpe 130 zugeordnet, wobei die zweite Pumpe 133 mittels des hydraulischen Motors 131 über die Antriebsverbindung 132 antreibbar ist. Vorteilhaft kann mittels des Hydrotransformers 130 der erste Teilvolumenstrom, der unter dem hohen Systemdruck steht, in den zweiten Teilvolumenstrom, der unter dem vergleichsweise geringen Kühldruck steht und größer ist als der erste Teilvolumenstrom transformiert werden.
Die in Figur 8 gezeigte Strahlpumpe 90 ist optional.
Figur 1 zeigt einen drehzahlgeregelten Elektroantrieb mit der Strahlpumpe 19 für die Kühlfunktion der Kühlung 100, wobei vorteilhaft die Pumpengröße der ersten Pumpe 10 und somit das Moment bei höheren Drücken reduzierbar ist.
Figur 2 zeigt einen drehzahlgeregelten Elektroantrieb mit der Mehrflutpumpe und der optionalen Saugstrahlpumpe 90. Vorteilhaft muss nur die erste Pumpe 17 für die Erzeugung des hohen Systemdrucks von dem ersten Elektromotor 27 angetrieben werden.
Die hydraulische Energiequelle gemäß Figur 3 ermöglicht mittels des ersten Elektromotors 21 und des zweiten drehzahlgeregelten Motors 22 zwei gänzlich voneinander unabhängige Zweige zur Versorgung der Aktorik und der Kühlung 100. Gemäß Figur 4 kann eine Kopplung der Zweige mittels des Umschaltventils 50 vorgesehen sein.
Figur 5 zeigt eine hydraulische Energiequelle mit einem drehzahlgeregelten ersten Elektromotor der den Pumpen 13 und 14 zugeordnet ist. Die größer ausgelegte zweite Pumpe 14 ist über die schaltbare Kupplung zuschaltbar.
Figur 6 zeigt eine hydraulische Energiequelle mit einem ersten Elektromotor, der drehzahlvariabel und drehrichtungsvariabel ist, wobei für die kleinere erste Pumpe 191, die für eine Erzeugung eines des hohen Systemdrucks und des niedrigen Kühldrucks ausgelegt ist und für ein für die zweite, größere Pumpe 192, die für die Erzeugung des niedrigeren Kühldrucks ausgelegt ist. In den Antriebsverbindungen 391 und 392 zwischen dem ersten Elektromotor und entsprechenden Pumpenwellen sind die Freiläufe 150 und 151 eingebaut, so dass in einer ersten Drehrichtung die kleinere erste Pumpe und in einer zweiten Drehrichtung die größere zweite Pumpe 192 angetrieben wird. Alternativ ist es möglich, dem mechanischen Leis- tungsfluss durch eine der Pumpen 191 oder 192 hindurch zu führen und einen gegensinnigen Freilauf am Ende der ersten Pumpe 191 vorzusehen.
Figur 7 zeigt eine hydraulische Energiequelle die dem ersten drehrichtungsvariablen Elektromotor 293 und einem drehrichtungsvariables Getriebe 155 aufweist.
Figur 8 zeigt eine hydraulische Energiequelle mit einem drehzahlvariablen ersten Elektromotor 29, der mit einer ersten Pumpe 19, die für einen Hochdruck und einen Niederdruck ausgelegt ist und dem Hydrotransformer 130 zur Bereitstellung großer Kühlmengen.
Bezugszeichenliste
Figure imgf000015_0001
Figure imgf000016_0001

Claims

Patentansprüche
1. Hydraulische Energiequelle zum Versorgen eines nachgeschalteten Hydrauliksystems mit hydraulischer Energie, insbesondere eines Hydrauliksystems zur Steuerung und/oder Kühlung eines Getriebes, insbesondere eines Doppelkupplungsgetriebes, mittels der ein unter einem vergleichsweise hohen Systemdruck stehender erster Teilvolumenstrom zum Versorgen einer Aktorik (70) des Hydrauliksystems und ein unter einem vergleichsweise niedrigen Kühldruck stehender zweiter Teilvolumenstrom zum Versorgen einer Kühlung (100) des Hydrauliksystems erzeugbar sind, dadurch gekennzeichnet, dass die hydraulische Energiequelle eine elektrisch antreibbare erste Volumenstromquelle zum Erzeugen des ersten Teilvolumenstroms und eine zweite Volumenstromquelle zum Erzeugen des zweiten Teilvolumenstroms aufweist, wobei die zweite Volumenstromquelle antriebsmäßig von einer Brennkraftmaschine unabhängig ist.
2. Hydraulische Energiequelle nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die erste Volumenstromquelle mittels eines ersten Elektromotors (20;21 ;23;25;29) antreibbar ist.
3. Hydraulische Energiequelle nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die erste Volumenstromquelle eine erste Pumpe (13) aufweist und die zweite Volumenstromquelle eine zweite Pumpe (14) aufweist, wobei die zweite Volumenstromquelle mittels einer schaltbaren Kupplung (120) wahlweise mittels des ersten Elektromotors (330) antreibbar oder antriebslos ist.
4. Hydraulische Energiequelle nach einem der vorhergehenden zwei Ansprüche, dadurch gekennzeichnet, dass der erste Elektromotor (20;21 ;23;25;29) drehzahlvariabel ist.
5. Hydraulische Energiequelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Volumenstromquelle mittels eines nachgeschalteten Umschaltventils (50) wahlweise der Aktorik (70) oder der Kühlung (100) zuordenbar ist.
6. Hydraulische Energiequelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Aktorik (70) ein hydraulischer Energiespeicher (60) zugeordnet ist.
7. Hydraulische Energiequelle nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die erste Volumenstromquelle und die zweite Volumenstromquelle mittels einer gemeinsamen ersten Pumpe (193) realisiert sind, wobei abhängig von einer Drehrichtung des ersten Elektromotors (293), der mittels eines drehzahlabhängigen Getriebes (155) der gemeinsamen ersten Pumpe (193) zugeordnet ist, in einer ersten Schaltstellung des Umschaltventils (50) und einer ersten Drehrichtung des ersten Elektromotors (293) die Aktorik (70) mit dem ersten Teilvolumenstrom und in einer zweiten Schaltstellung des Umschaltventils (50) und einer zweiten Drehrichtung des ersten Elektromotors (293) die Kühlung (100) mit dem zweiten Teilvolumenstrom versorgbar ist.
8. Hydraulische Energiequelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Volumenstromquelle eine Strahlpumpe (90) aufweist.
9. Hydraulische Energiequelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Volumenstromquelle eine erste Pumpenflut einer Mehrflutpumpe (38,18) aufweist und die zweite Volumenstromquelle eine zweite Pumpenflut der Mehrflutquelle (38,18) aufweist.
10. Hydraulische Energiequelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zweite Volumenstromquelle mittels eines der ersten Volumenstromquelle nachgeschalteten hydraulischen Motors (131) antreibbar ist.
PCT/DE2010/000473 2009-05-06 2010-04-26 Hydraulische energiequelle zum versorgen eines nachgeschalteten hydrauliksystems mit hydraulischer energie WO2010127659A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112010001921T DE112010001921A5 (de) 2009-05-06 2010-04-26 Hydraulische energiequelle zum versorgen eines nachgeschalteten hydrauliksystems mit hydraulischer energie
CN201080018559.7A CN102414455B (zh) 2009-05-06 2010-04-26 用于对联接在后面的液压系统供给液压能量的液压能源
US13/240,210 US8572958B2 (en) 2009-05-06 2011-09-22 Hydraulic energy source for supplying a downstream hydraulic system with hydraulic energy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102009019877 2009-05-06
DE102009019877.6 2009-05-06
DE102009054276.0 2009-11-23
DE102009054276 2009-11-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/240,210 Continuation US8572958B2 (en) 2009-05-06 2011-09-22 Hydraulic energy source for supplying a downstream hydraulic system with hydraulic energy

Publications (1)

Publication Number Publication Date
WO2010127659A1 true WO2010127659A1 (de) 2010-11-11

Family

ID=42536353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/000473 WO2010127659A1 (de) 2009-05-06 2010-04-26 Hydraulische energiequelle zum versorgen eines nachgeschalteten hydrauliksystems mit hydraulischer energie

Country Status (4)

Country Link
US (1) US8572958B2 (de)
CN (1) CN102414455B (de)
DE (2) DE102010018192A1 (de)
WO (1) WO2010127659A1 (de)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012010322A1 (de) * 2012-05-21 2013-11-21 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Kühlanordnung und Kühlverfahren für KFZ-Antriebsstrang
CN103518081A (zh) * 2011-05-06 2014-01-15 奥迪股份公司 双离合变速器
WO2015086009A1 (de) 2013-12-09 2015-06-18 Schaeffler Technologies AG & Co. KG Hydraulikanordnung für doppelkupplung sowie verfahren zum ansteuern oder kühlen der doppelkupplung
WO2015043586A3 (de) * 2013-09-25 2015-11-26 Schaeffler Technologies AG & Co. KG Hydraulische steuerung für ein nutzfahrzeug-doppelkupplungsgetriebe
EP2933519A3 (de) * 2014-04-11 2016-08-10 GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG Kupplungsanordnung, Antriebsstrang und Kupplungsbetätigungsverfahren
CN107725744A (zh) * 2016-08-12 2018-02-23 丰田自动车株式会社 车辆的润滑装置
DE102018214438A1 (de) * 2018-08-27 2020-02-27 Zf Friedrichshafen Ag Hydrauliksystem für ein Getriebe eines Kraftfahrzeug-Antriebsstrangs
DE102018130528A1 (de) 2018-11-30 2020-06-04 Schaeffler Technologies AG & Co. KG Versorgungssystem und Verfahren zum Betrieb eines Versorgungssystems
DE102018130820A1 (de) 2018-12-04 2020-06-04 Schaeffler Technologies AG & Co. KG Versorgungssystem und Verfahren zum Betrieb eines Versorgungssystems
DE102018131272A1 (de) 2018-12-07 2020-06-10 Schaeffler Technologies AG & Co. KG Versorgungssystem und Verfahren zum Betrieb eines Versorgungssystems
DE102019100865A1 (de) 2019-01-15 2020-07-16 Schaeffler Technologies AG & Co. KG Vorrichtung und Verfahren zum Bereitstellen von Hydraulikmedium, insbesondere in einem Fahrzeug
CN111503250A (zh) * 2019-01-31 2020-08-07 东风格特拉克汽车变速箱有限公司 一种双离合变速箱的轴与轴承润滑系统
EP3848592A1 (de) * 2020-01-13 2021-07-14 Schwäbische Hüttenwerke Automotive GmbH Fluidversorgungssystem zur versorgung mehrerer fluidverbraucher eines kraftfahrzeugs mit fluid
DE102020004975A1 (de) 2020-07-15 2021-08-26 Daimler Ag Automatikgetriebe für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, sowie Kraftfahrzeug

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011015631A1 (de) 2011-03-31 2012-10-04 Schaeffler Technologies Gmbh & Co. Kg Hydraulikdruckversorgungssystem
DE102011100801B4 (de) 2011-05-06 2018-06-28 Audi Ag Kupplungsgetriebe mit einem Pumpen-Elektromotor, der mechanisch mit einem Ventil wirkverbunden ist, um das Ventil in Abhängigkeit der Drehrichtung des Elektromotors zu betätigen, Verfahren zum Betreiben dieses Kupplungsgetriebes
DE102011100807B4 (de) 2011-05-06 2018-06-28 Audi Ag Kupplungsgetriebe, insbesondere Doppelkupplungsgetriebe
DE102011100845B4 (de) * 2011-05-06 2019-07-18 Audi Ag Kupplungsgetriebe, insbesondere Doppelkupplungsgetriebe, mit einem Druckspeicher
DE102011108535A1 (de) * 2011-07-26 2013-01-31 Airbus Operations Gmbh Hydraulische Motor-Pumpen-Anordnung und Hydrauliksystem für ein Fahrzeug
US9115731B2 (en) * 2011-10-24 2015-08-25 Eaton Corporation Hydraulic distribution system employing dual pumps
US9488285B2 (en) 2011-10-24 2016-11-08 Eaton Corporation Line pressure valve to selectively control distribution of pressurized fluid
US9726056B2 (en) * 2012-05-21 2017-08-08 Fca Us Llc High efficiency oil circuit
BR112014029269A2 (pt) * 2012-05-23 2017-06-27 Dti Group Bv sistema hidráulico em particular para o acionamento de sistema de transmissão
DE102012220742A1 (de) * 2012-11-14 2014-05-15 Zf Friedrichshafen Ag Anordnung zum Antrieb von Ölpumpen
DE102013212428A1 (de) * 2013-06-27 2014-12-31 Zf Friedrichshafen Ag Getriebe eines Kraftfahrzeugs und Verfahren zum Betreiben desselben
WO2015067259A1 (de) * 2013-11-08 2015-05-14 Schaeffler Technologies AG & Co. KG Fluidanordnung
US9605694B2 (en) * 2013-12-20 2017-03-28 Georgia Tech Research Corporation Energy recapture system for hydraulic elevators
DE102014209856A1 (de) 2014-05-23 2015-11-26 Volkswagen Aktiengesellschaft Hydraulische Versorgungsvorrichtung
CN106662245B (zh) 2014-08-15 2019-05-10 博格华纳公司 用于自动变速器的多压力液压供给系统
CN104314887B (zh) * 2014-10-15 2016-06-01 中国矿业大学 一种沿线液压储能系统及方法
KR101703621B1 (ko) * 2015-08-25 2017-02-07 현대자동차 주식회사 차량용 자동변속기의 유압공급시스템
CN105465068A (zh) * 2015-12-29 2016-04-06 南京浦镇海泰制动设备有限公司 一种液压供油系统的供油方法
DE102016213319A1 (de) 2016-07-21 2018-01-25 Schaeffler Technologies AG & Co. KG Fluidanordnung
US10473210B2 (en) * 2016-08-17 2019-11-12 GM Global Technology Operations LLC Sealed low leak controls system in an automatic transmission
DE102018113677A1 (de) * 2018-06-08 2019-12-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft KFZ-Pumpenanordnung
DE102018214427A1 (de) * 2018-08-27 2020-02-27 Zf Friedrichshafen Ag Hydrauliksystem für ein Doppelkupplungsgetriebe
DE102019129142A1 (de) * 2019-10-29 2021-04-29 Schaeffler Technologies AG & Co. KG Hydraulisches Aktoriksystem für einen Kraftfahrzeugantrieb mit passivem Systemdruckventil; sowie Antriebseinheit
DE102020204675B4 (de) * 2020-04-14 2022-03-10 Hanon Systems Efp Deutschland Gmbh Pumpen-System mit Kupplungen
DE102020204756A1 (de) 2020-04-15 2021-10-21 Deere & Company Hydraulische Anordnung für ein Fahrzeuggetriebe
CN112065988B (zh) * 2020-08-31 2022-02-25 安徽江淮汽车集团股份有限公司 液压供油系统
DE102021124487B3 (de) 2021-09-22 2022-12-01 Schaeffler Technologies AG & Co. KG Hydrauliksystem und Verfahren zum Betreiben eines Hydrauliksystems
DE102022100573B3 (de) * 2022-01-12 2023-05-17 Schaeffler Technologies AG & Co. KG Hydrauliksystem mit Hoch- und Trockensumpf
DE102023106431A1 (de) 2023-03-15 2024-09-19 Schwing Gmbh Autobetonpumpe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813234A (en) * 1984-03-15 1989-03-21 Mannesmann Rexroth Gmbh Hydraulic transmission
EP0764799A1 (de) * 1995-09-25 1997-03-26 Van Doorne's Transmissie B.V. Stufenlos regelbares Getriebe
US20030047410A1 (en) * 2001-09-07 2003-03-13 Zf Sachs Ag Clutch system
EP1602849A1 (de) * 2004-06-03 2005-12-07 BorgWarner Inc. Hydraulische Schaltungsanordnung und Verfahren zur Ansteuerung einer nasslaufenden Doppelkupplung
DE102004058261A1 (de) * 2004-12-03 2006-06-08 Volkswagen Ag Pumpe mit zwei Pumpstufen und Verfahren zur Ölversorgung eines Fahrzeuggetriebes und einer dem Fahrzeuggetriebe zugehörigen Kupplungsanordnung
WO2008055464A2 (de) * 2006-11-08 2008-05-15 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydraulische steuerung für ein doppelkupplungsgetriebe
DE102008009653A1 (de) * 2007-03-07 2008-09-11 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydraulikanordnung zur Steuerung eines Doppelkupplungsgetriebes eines Kraftfahrzeuges

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6973782B2 (en) * 2003-12-19 2005-12-13 Dana Corporation Pressurized hydraulic fluid system with remote charge pump

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4813234A (en) * 1984-03-15 1989-03-21 Mannesmann Rexroth Gmbh Hydraulic transmission
EP0764799A1 (de) * 1995-09-25 1997-03-26 Van Doorne's Transmissie B.V. Stufenlos regelbares Getriebe
US20030047410A1 (en) * 2001-09-07 2003-03-13 Zf Sachs Ag Clutch system
EP1602849A1 (de) * 2004-06-03 2005-12-07 BorgWarner Inc. Hydraulische Schaltungsanordnung und Verfahren zur Ansteuerung einer nasslaufenden Doppelkupplung
DE102004058261A1 (de) * 2004-12-03 2006-06-08 Volkswagen Ag Pumpe mit zwei Pumpstufen und Verfahren zur Ölversorgung eines Fahrzeuggetriebes und einer dem Fahrzeuggetriebe zugehörigen Kupplungsanordnung
WO2008055464A2 (de) * 2006-11-08 2008-05-15 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydraulische steuerung für ein doppelkupplungsgetriebe
DE102008009653A1 (de) * 2007-03-07 2008-09-11 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydraulikanordnung zur Steuerung eines Doppelkupplungsgetriebes eines Kraftfahrzeuges

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103518081A (zh) * 2011-05-06 2014-01-15 奥迪股份公司 双离合变速器
DE102012010322A1 (de) * 2012-05-21 2013-11-21 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Kühlanordnung und Kühlverfahren für KFZ-Antriebsstrang
EP2667053B1 (de) * 2012-05-21 2017-08-23 GETRAG B.V. & Co. KG Kühlanordnung und Kühlverfahren für KFZ-Antriebsstrang
WO2015043586A3 (de) * 2013-09-25 2015-11-26 Schaeffler Technologies AG & Co. KG Hydraulische steuerung für ein nutzfahrzeug-doppelkupplungsgetriebe
WO2015086009A1 (de) 2013-12-09 2015-06-18 Schaeffler Technologies AG & Co. KG Hydraulikanordnung für doppelkupplung sowie verfahren zum ansteuern oder kühlen der doppelkupplung
EP2933519A3 (de) * 2014-04-11 2016-08-10 GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG Kupplungsanordnung, Antriebsstrang und Kupplungsbetätigungsverfahren
CN107725744B (zh) * 2016-08-12 2020-03-10 丰田自动车株式会社 车辆的润滑装置
CN107725744A (zh) * 2016-08-12 2018-02-23 丰田自动车株式会社 车辆的润滑装置
DE102018214438A1 (de) * 2018-08-27 2020-02-27 Zf Friedrichshafen Ag Hydrauliksystem für ein Getriebe eines Kraftfahrzeug-Antriebsstrangs
DE102018130528A1 (de) 2018-11-30 2020-06-04 Schaeffler Technologies AG & Co. KG Versorgungssystem und Verfahren zum Betrieb eines Versorgungssystems
DE102018130820A1 (de) 2018-12-04 2020-06-04 Schaeffler Technologies AG & Co. KG Versorgungssystem und Verfahren zum Betrieb eines Versorgungssystems
DE102018131272A1 (de) 2018-12-07 2020-06-10 Schaeffler Technologies AG & Co. KG Versorgungssystem und Verfahren zum Betrieb eines Versorgungssystems
DE102018131272B4 (de) 2018-12-07 2023-05-17 Schaeffler Technologies AG & Co. KG Versorgungssystem und Verfahren zum Betrieb eines Versorgungssystems
DE102019100865A1 (de) 2019-01-15 2020-07-16 Schaeffler Technologies AG & Co. KG Vorrichtung und Verfahren zum Bereitstellen von Hydraulikmedium, insbesondere in einem Fahrzeug
CN111503250A (zh) * 2019-01-31 2020-08-07 东风格特拉克汽车变速箱有限公司 一种双离合变速箱的轴与轴承润滑系统
CN111503250B (zh) * 2019-01-31 2021-07-20 东风格特拉克汽车变速箱有限公司 一种双离合变速箱的轴与轴承润滑系统
EP3848592A1 (de) * 2020-01-13 2021-07-14 Schwäbische Hüttenwerke Automotive GmbH Fluidversorgungssystem zur versorgung mehrerer fluidverbraucher eines kraftfahrzeugs mit fluid
DE102020004975A1 (de) 2020-07-15 2021-08-26 Daimler Ag Automatikgetriebe für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, sowie Kraftfahrzeug

Also Published As

Publication number Publication date
DE102010018192A1 (de) 2010-12-16
DE112010001921A5 (de) 2012-05-31
US8572958B2 (en) 2013-11-05
CN102414455B (zh) 2014-10-01
CN102414455A (zh) 2012-04-11
US20120060488A1 (en) 2012-03-15

Similar Documents

Publication Publication Date Title
WO2010127659A1 (de) Hydraulische energiequelle zum versorgen eines nachgeschalteten hydrauliksystems mit hydraulischer energie
EP2466169B1 (de) Einrichtung für ein Getriebe
DE102015113839B4 (de) Hydrauliksystem für ein Fahrzeug mit zwei Ölpumpen und zwei Rückschlagventilen
WO2010010040A2 (de) Hydrauliksystem einer getriebeeinrichtung mit einer getriebehauptpumpe und einer zusatzpumpe
EP2370285A2 (de) Hybrid-antriebseinheit und verfahren zu deren betrieb
EP3049687A2 (de) Hydraulische steuerung für ein nutzfahrzeug-doppelkupplungsgetriebe
DE102009019959A1 (de) Antriebsstrangvorrichtung
DE102016116942B4 (de) Hydraulikdruck-Zuführ-System für ein automatisches Getriebe
WO2007068319A1 (de) Hydrauliksystem an kraftfahrzeugen
DE102016116952A1 (de) Hydraulikdruck-Zuführ-System für ein automatisches Getriebe
DE102011077552A1 (de) Hydraulikanordnung für ein Getriebe
DE102013222984A1 (de) Getriebevorrichtung mit einem eine Pumpeneinrichtung umfassenden Hydrauliksystem
DE112016001216T5 (de) Verdrängungspumpenanordnung für antriebsstrangsysteme und hydrauliksteuersystem, das diese einbezieht
DE102012010536A1 (de) Hydraulisches System zurBremsenergierückgewinnung
DE102020204675B4 (de) Pumpen-System mit Kupplungen
WO2015144155A1 (de) Antriebskoppelbarer aktor mit verstellpumpe
DE102018214427A1 (de) Hydrauliksystem für ein Doppelkupplungsgetriebe
DE102015219503A1 (de) Antriebsstrang für ein Kraftfahrzeug mit einer Pumpeneinrichtung
WO2020043235A1 (de) Hydrauliksystem und antriebseinheit
DE102017103648A1 (de) Hydraulisches steuersystem
DE102011100796B4 (de) Kupplungsgetriebe, insbesondere Doppelkupplungsgetriebe, aufweisend einen Hydraulikkreis mit einem Filter, der mehreren Pumpen als gemeinsamer Filter zugeordnet ist
DE102017118525A1 (de) Hydraulisches steuersystem für ein getriebe
DE102019100872A1 (de) Hydrauliksystem zur Steuerung eines Antriebsstrangs eines Kraftfahrzeugs
DE102014204641A1 (de) Hydrauliksystem für eine Getriebevorrichtung
DE102012211431A1 (de) Hybridfahrzeuggetriebe mit einer einzigen elektrischen pumpe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080018559.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10722554

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112010001921

Country of ref document: DE

Ref document number: 1120100019215

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112010001921

Country of ref document: DE

Effective date: 20120531

122 Ep: pct application non-entry in european phase

Ref document number: 10722554

Country of ref document: EP

Kind code of ref document: A1