WO2008055464A2 - Hydraulische steuerung für ein doppelkupplungsgetriebe - Google Patents

Hydraulische steuerung für ein doppelkupplungsgetriebe Download PDF

Info

Publication number
WO2008055464A2
WO2008055464A2 PCT/DE2007/001877 DE2007001877W WO2008055464A2 WO 2008055464 A2 WO2008055464 A2 WO 2008055464A2 DE 2007001877 W DE2007001877 W DE 2007001877W WO 2008055464 A2 WO2008055464 A2 WO 2008055464A2
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
dual
clutch transmission
hydraulic cylinder
clutch
Prior art date
Application number
PCT/DE2007/001877
Other languages
English (en)
French (fr)
Other versions
WO2008055464A3 (de
Inventor
Marco Grethel
Manfred Homm
Eric MÜLLER
Martin Staudinger
Original Assignee
Luk Lamellen Und Kupplungsbau Beteiligungs Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luk Lamellen Und Kupplungsbau Beteiligungs Kg filed Critical Luk Lamellen Und Kupplungsbau Beteiligungs Kg
Priority to CN200780041597.2A priority Critical patent/CN101535688B/zh
Priority to DE112007002087T priority patent/DE112007002087A5/de
Publication of WO2008055464A2 publication Critical patent/WO2008055464A2/de
Publication of WO2008055464A3 publication Critical patent/WO2008055464A3/de
Priority to US12/437,854 priority patent/US7707911B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/0021Generation or control of line pressure
    • F16H61/0025Supply of control fluid; Pumps therefore
    • F16H61/0031Supply of control fluid; Pumps therefore using auxiliary pumps, e.g. pump driven by a different power source than the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • F16H57/0436Pumps
    • F16H57/0439Pumps using multiple pumps with different power sources or a single pump with different power sources, e.g. one and the same pump may selectively be driven by either the engine or an electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0473Friction devices, e.g. clutches or brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/688Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/19149Gearing with fluid drive

Definitions

  • the invention relates to a dual-clutch transmission with a first clutch which is actuated by a first hydraulic cylinder, a second clutch which is actuated by a second hydraulic cylinder, a plurality of switching devices for shifting gears, which are each actuated by a hydraulic cylinder, and a hydraulic Energy source for supplying the hydraulic cylinders and the hydraulic cylinders with hydraulic energy.
  • the object of the invention is to provide a further developed, in particular adapted to the requirements of advanced drive technologies, dual-clutch transmission.
  • the object is with a dual-clutch transmission with a first clutch which is actuated by a first hydraulic cylinder, a second clutch which is actuated by a second hydraulic cylinder, a plurality of switching devices for shifting gears, which are each actuated by a hydraulic cylinder, and with a hydraulic power source for supplying the hydraulic cylinders and the hydraulic hydraulic power cylinder solved in that the hydraulic power source comprises a first pump, a second pump and a second pump driving electric drive.
  • the first pump by means of an internal combustion engine connected by the dual-clutch transmission, that is to say to remove the hydraulic energy from the drive train of the internal combustion engine.
  • the second, electrically driven pump can apply the necessary to actuate the dual-clutch transmission hydraulic energy. This can be advantageously used to realize a start-stop function.
  • the object is also provided with a dual-clutch transmission having a first clutch which is actuated by a first hydraulic cylinder, a second clutch which is actuated by a second hydraulic cylinder, a plurality of switching devices for switching gears. each actuated by a hydraulic cylinder, and with a hydraulic power source for supplying the hydraulic cylinder and the hydraulic hydraulic power cylinder solved in that a third clutch is provided, which is actuated by a third hydraulic cylinder.
  • the third clutch can, for example, connect an electric motor to the conventional drive train of the internal combustion engine.
  • the object is also a dual-clutch transmission with a first clutch which is actuated by a first hydraulic cylinder, a second clutch which is actuated by a second hydraulic cylinder, a plurality of switching devices for shifting gears, which are each actuated by a hydraulic cylinder, and with a hydraulic energy source for supplying the hydraulic cylinder and the hydraulic cylinder with hydraulic energy achieved in that for cooling the first, second and / or third clutch, a cooling oil device is provided.
  • the wear can be minimized by means of the cooling oil device and the maximum transmissible torque of the clutch or of the clutches can be increased.
  • the object is also a dual-clutch transmission with a first clutch which is actuated by a first hydraulic cylinder, a second clutch which is actuated by a second hydraulic cylinder, a plurality of switching devices for shifting gears, which are each actuated by a hydraulic cylinder, and with a hydraulic power source for supplying the hydraulic cylinder and the hydraulic cylinder with hydraulic energy solved in that a total of five switching devices are provided.
  • the switching devices are coupled to the corresponding hydraulic cylinders and serve to engage the different gears of the dual-clutch transmission.
  • the switching devices may have with the hydraulic cylinders coupled shift forks, which in turn are associated with corresponding shift rails of the dual clutch transmission.
  • any number of gears can be switched, for example up to ten gears or more.
  • Preferred embodiments are characterized in that the first pump is connected in parallel with the second pump.
  • both the first pump as well the second pump will supply the dual-clutch gearbox individually or in parallel with hydraulic power.
  • first pump a first check valve and the second pump
  • second check valve is connected downstream.
  • the check valves can advantageously prevent a backflow of hydraulic medium, for example if one of the pumps is switched off.
  • cooling oil device has an oil cooler arranged downstream of the pumps. As a result, the hydraulic medium delivered by the first and / or second pump can be cooled.
  • FIG. 1 For example suitable cooling and / or hydraulic medium.
  • the cooling oil device has an ejector pump for increasing the diverted cooling oil volume flow.
  • the suction jet pump which promotes from a tank of the hydraulic system, increase the volume flow of the branched cooling oil.
  • the suction jet pump can relax the supplied from the hydraulic power source medium from the comparatively high working pressure to a pressure near the tank pressure, which is sufficient to supply the cooling couplings with the cooling oil. Consequently, the stored energy in the form of the working pressure in the hydraulic medium is advantageously used to increase the cooling oil volume flow or to promote the entire cooling oil volume flow.
  • the otherwise useless in the relaxation of the cooling oil in the form of heat released energy can thus be implemented advantageously by means of the suction jet pump in kinetic energy of the enlarged cooling oil volume flow.
  • suction jet pump is connected downstream of the oil cooler.
  • a safety valve block which disconnects the hydraulic energy source from the first and second hydraulic cylinders in a safety position and switches them without pressure, in particular connects to the tank.
  • the first and second clutch can be opened.
  • hydraulic cylinders and the hydraulic cylinders have displacement sensors for detecting the current cylinder positions.
  • the displacement sensors for controlling and / or regulating the dual-clutch transmission can advantageously provide necessary information. In addition, potentially required more expensive pressure sensors can be saved.
  • a first pressure reducing unit for driving the second hydraulic cylinder, a second pressure reducing unit and for controlling the third hydraulic cylinder, a third pressure reducing unit are provided.
  • the respective hydraulic cylinders of the clutches can be supplied separately and metered with hydraulic energy.
  • a gentle engagement or disengagement of the clutches can be controlled via the pressure reducer units.
  • each of the pressure reducing units is assigned in each case a hydraulic control valve.
  • the control and / or regulation of the dual-clutch transmission can thus be done hydraulically by means of the hydraulic control valves.
  • a switching valve arrangement is provided for the hydraulic actuation of the hydraulic cylinders.
  • the switching valve assembly takes over the complete hydraulic control of the hydraulic cylinder.
  • any gear of the dual-clutch transmission can be set or selected by a corresponding adjustment of the switching valve arrangement.
  • the switching valve arrangement for example, have a plurality of hydraulic slide valves.
  • the switching valve arrangement may comprise a rotary valve.
  • Figure 1 is a hydraulic diagram of a hydraulic system for controlling a dual-clutch transmission.
  • FIG. 1 shows schematically the hydraulic circuit diagram of a dual-clutch transmission 1 and a hydraulic system 3 for the hydraulic control of the dual-clutch transmission 1.
  • the hydraulic system 3 of the dual-clutch transmission 1 has a hydraulic power source 5.
  • the hydraulic power source 5 is indicated by a dot-dash line 7 and serves to supply the downstream hydraulic system 3 with hydraulic energy.
  • the hydraulic power source 5 is fed in a known manner from a tank 9 with a suitable hydraulic medium. Between the tank 9 and the hydraulic power source 5, one or more suction filter 11 may be connected for cleaning the hydraulic medium.
  • the dual-clutch transmission 1 has a first clutch 13, a second clutch 15 and a third clutch 17.
  • the clutches 13 to 17 can be actuated by means of the hydraulic system 3.
  • the first clutch 13 has a first hydraulic cylinder 19, the second clutch 15 a second hydraulic cylinder 21 and the third clutch 17 to a third hydraulic cylinder 23, each via a first pressure reducer unit 25, a second pressure reducer unit 27 and a third pressure reducer unit 29 of the hydraulic system 3 are controllable.
  • the pressure reducing units 25 to 29 each have an actuating piston 31, wherein a linear adjustment of the actuating piston 31 proportional to the supply of the hydraulic energy source 5 supplied hydraulic energy to the corresponding downstream hydraulic cylinders 19 to 23 of the clutches 13 to 17 causes.
  • the clutches 13 to 17 are designed so that an increase in the pressure in the corresponding hydraulic cylinders 19 to 23 causes closing of the respective clutch 13 to 17.
  • the clutches 13 to 17 are thus opened in the pressureless state.
  • the hydraulic system 3 For adjusting the gears of the dual-clutch transmission 1, the hydraulic system 3 has a switching valve arrangement 33.
  • the switching valve arrangement 33 is likewise supplied with hydraulic energy by means of the hydraulic energy source 5 and serves to control hydraulic cylinders of the dual-clutch transmission 1.
  • the switching valve arrangement has a reversing valve 35 as well as a rotary slide valve 37 downstream of it.
  • the rotary valve 37 is associated with a first hydraulic cylinder 39, a second hydraulic cylinder 41, a third hydraulic cylinder 43, a fourth hydraulic cylinder 45 and a fifth hydraulic cylinder 47.
  • the first hydraulic cylinder 39 controls a first switching device 49, for example designed to engage the reverse gear.
  • the second hydraulic cylinder 41 controls a second switching device 51, for example for engaging the first or third gear of the dual clutch transmission 1.
  • the third hydraulic cylinder 43 controls a third switching device 53, for example, designed to engage the second or fourth gear of the dual clutch transmission 1.
  • the fourth hydraulic Cylinder 45 controls a fourth switching device 55, for example, designed to engage the fifth or seventh gear.
  • the fifth hydraulic cylinder 47 controls a fifth switching device 57, for example, designed to engage the sixth or eighth gear of the dual clutch transmission 1.
  • the hydraulic cylinders 39 to 47 are each designed to be double-acting, so in each case have two opposite, pressurizable surfaces , It is also possible to control the shift rails each with correspondingly oppositely acting individual hydraulic cylinders.
  • the rotary valve 37 can be moved by means of a stepping motor 59 in a total of five different switching positions.
  • the rotary valve 37 may have a neutral position. In this case, in each of the switching positions, only one of the hydraulic cylinders 39 to 47 -in the orientation of FIG. 1 -is connected on the right-hand side to an output of the reversing valve 35. On the left side, regardless of the switching position of the rotary valve 37 all hydraulic cylinders 39 to 47 assigned to another output of the reversing valve.
  • the rotary valve 37 is shown in a fourth switching position, wherein the fourth switching device 55 and the associated fourth hydraulic cylinder 45 is hydraulically connected to the reversing valve 35 that the fourth hydraulic cylinder 45, as seen in alignment of Figure 1, either Coming from the left or from the right coming pressurized and can be connected on the opposite side with the tank 9.
  • the fifth or the seventh gear of the dual-clutch transmission 1 can be inserted.
  • the remaining hydraulic cylinders 39, 41, 43, 47 are jammed on the right side because of the closed for this rotary valve valve 37.
  • these are either at a high pressure level, for example about system pressure, or at a low pressure level, for example about tank pressure, jammed. So it can also be ensured that an already engaged gear does not accidentally jump out again, for example, in particularly unfavorable driving conditions.
  • the reversing valve 35 can be brought into a switching position, which is shown in Figure 1, wherein the complete fourth hydraulic cylinder 45 is depressurized, that is connected to the tank 9.
  • the switching of the other gears is analogous to the switching positions of the reversing valve 35 and the downstream rotary valve 37.
  • To change the translation can be sequentially inserted the corresponding gears of a desired gear pair.
  • the switching valve assembly 33 can also be modified accordingly or supplemented or reduced by the corresponding switching options.
  • the hydraulic energy source 5 has a first pump 61 and a first pump 61 connected in parallel second pump 63.
  • the first pump 61 is a first check valve 65 downstream.
  • the second pump 63 is followed by a second check valve 67.
  • the first pump 61 can by means of a non-illustrated in Figure 1 Internal combustion engine to be driven.
  • the hydraulic energy transmitted by means of the first pump 61 is thus taken from the drive train of the correspondingly connected internal combustion engine connected by means of the dual-clutch transmission 1.
  • the second pump 63 can supply the hydraulic system 3 of the dual-clutch transmission 1 with hydraulic energy, since the second pump 63 is coupled to an electric drive 69.
  • the electric drive 69 drives the second pump 63 and may, for example, have an electric motor.
  • the hydraulic power source 5 is followed by a branch 71.
  • the branch 71 branches off the medium conveyed by the hydraulic energy source 5 into a cooling oil line 73 and a supply line 75.
  • the cooling oil line 73 is part of a cooling oil device 77.
  • the cooling oil device 77 is designed to cool at least one of the clutches 13, 15 and / or 17 by applying the medium diverted via the cooling oil line 73.
  • the cooling oil device 77 has a fourth pressure-reducing unit 79 connected in the cooling oil line 73.
  • the fourth pressure reducing unit 79 can control the guided in the cooling oil pipe 73 cooling oil volume flow.
  • the cooling oil device 77 Downstream of the fourth pressure reducing unit 79, has an oil cooler 81 and a third non-return valve 83 connected in parallel to the oil cooler 81.
  • the third check valve 83 is connected in parallel with the oil cooler 81 in such a way that it opens when a certain back pressure occurring at the oil cooler 81 is exceeded.
  • the oil cooler 81 Due to the viscosity of the cooling oil, which also changes as the temperature changes, the oil cooler 81 can therefore be bypassed via the third check valve 83 when the cooling oil is relatively cool. Only at higher temperatures, that is, when cooling is required, closes the third check valve 83. Thus, via the third check valve 83, within certain limits, a control of the temperature of the cooling oil possible. In addition, this valuable hydraulic energy can be saved. In particular, in the case of cool cooling oil, the hydraulic resistance and hence the heat loss energy that has been converted into heat can thus be reduced.
  • the control valve 85 can supply the cooling oil line 73 via a return lead 87 directly to the first pump 61 and / or the tank 9 couple, so short in a certain way. In this switching position no cooling oil reaches the clutches 13 to 17.
  • the control valve 85 is followed by the cooling oil device 77, a suction jet pump 89 on.
  • the suction jet pump 89 can advantageously convey additional medium from the tank 9 via a fourth check valve 91 in order to increase the cooling oil volume flow.
  • the energy stored via the pressure can advantageously be converted into a higher volume flow. This reduces the power loss of the hydraulic system 3.
  • the supply line 75 feeds the reversing valve 35 of the switching valve assembly 33 with hydraulic energy.
  • the supply line 75 is connected to a pilot pressure valve 93, which a pilot line 95 and a system line 97 are connected downstream.
  • the pilot pressure relief valve 93 generates a pilot pressure in the pilot control line 95 and a system pressure in the system line 97.
  • the system line 97, the pressure reducer units 25 to 29 are connected downstream.
  • a safety valve block 99 is connected between the first hydraulic cylinder 19 and the first pressure-reducing unit 25 and between the second hydraulic cylinder 21 and the associated second pressure-reducing unit 27, a safety valve block 99 is connected. In the switching position, as shown in Figure 1, the safety valve block 99 allows a direct connection of the hydraulic cylinders 19 and 21 with the associated pressure reducing units 25 and 27.
  • the first and second clutch 13 and 15 are opened.
  • the third Clutch 17 may be a hybrid clutch for coupling a further unit, for example an electric motor. This unit is therefore not connected via the dual-clutch transmission 1 and therefore does not have to be emptied as quickly as possible via the safety valve block 99 in the event of a fault of the dual-clutch transmission 1.
  • the control and / or regulation of the hydraulic system 3 of the first dual-clutch transmission 1 is fully hydraulically by means of corresponding, for example, electrically actuated, hydraulic control valves 101.
  • the control valves 101 are connected in a known manner via throttles 103 of the pilot line 95 downstream coupled to the tank 9 and upstream with respective control spools 105 of the valves of the hydraulic system 3.
  • the pressure reducer units 25 to 29 have, for example, pressure reducing valves controlled by way of control valves 101, which are designed, for example, as proportional valves.
  • the hydraulic system 3 of the dual-clutch transmission 1 has a pressure gauge 107.
  • the hydraulic system 3 has a downstream of the tank 9 connected pressure relief valve 109.
  • the hydraulic cylinders 19, 21, 23 and the hydraulic cylinders 39, 41, 43, 45, 47 may include displacement sensors 111 for detecting the current cylinder position.
  • a displacement sensor 111 is indicated by way of example on the hydraulic cylinder 39.

Abstract

Es wird ein Doppelkupplungsgetriebe mit einer ersten Kupplung (13), die durch einen ersten Hydraulikzylinder (19) betätigt wird, einer zweiten Kupplung (15), die durch einen zweiten Hydraulikzylinder (21) betätigt wird, mehreren Schaltvorrichtungen (49, 51, 53, 55, 57) zur Schaltung von Gängen, die jeweils durch einen hydraulischen Zylinder (39, 41, 43, 45, 47) betätigt werden, und mit einer hydraulischen Energiequelle (7) zur Versorgung der Hydraulikzylinder und der hydraulischen Zylinder mit hydraulischer Energie, vorgeschlagen. Die Erfindung zeichnet sich dadurch aus, dass die hydraulische Energiequelle eine erste Pumpe (61), eine zweite Pumpe (63) und einen die zweite Pumpe (63) antreibenden Elektroantrieb (69) aufweist.

Description

Hydraulische Steuerung für ein Doppelkupplungsqetriebe
Die Erfindung betrifft ein Doppelkupplungsgetriebe mit einer ersten Kupplung, die durch einen ersten Hydraulikzylinder betätigt wird, einer zweiten Kupplung, die durch einen zweiten Hydraulikzylinder betätigt wird, mehreren Schaltvorrichtungen zur Schaltung von Gängen, die jeweils durch einen hydraulischen Zylinder betätigt werden, und mit einer hydraulischen Energiequelle zur Versorgung der Hydraulikzylinder und der hydraulischen Zylinder mit hydraulischer Energie.
Es ist bekannt, Schältgetriebe, insbesondere Doppelkupplungsgetriebe, hydraulisch zu schalten sowie die beiden Kupplungen hydraulisch zu betätigen.
Aufgabe der Erfindung ist es, ein weiterentwickeltes, insbesondere an die Anforderungen weiterentwickelter Antriebstechnologien angepasstes, Doppelkupplungsgetriebe bereitzustellen.
Die Aufgabe ist mit einem Doppelkupplungsgetriebe mit einer ersten Kupplung, die durch einen ersten Hydraulikzylinder betätigt wird, einer zweiten Kupplung, die durch einen zweiten Hydraulikzylinder betätigt wird, mehreren Schaltvorrichtungen zur Schaltung von Gängen, die jeweils durch einen hydraulischen Zylinder betätigt werden, und mit einer hydraulischen Energiequelle zur Versorgung der Hydraulikzylinder und der hydraulischen Zylinder mit hydraulischer Energie dadurch gelöst, dass die hydraulische Energiequelle eine erste Pumpe, eine zweite Pumpe und einen die zweite Pumpe antreibenden Elektroantrieb aufweist. So ist es vorteilhaft möglich, beispielsweise die erste Pumpe mittels eines von dem Doppelkupplungsgetriebe geschalteten Verbrennungsmotors anzutreiben, also die hydraulische Energie dem Triebstrang des Verbrennungsmotors zu entnehmen. Um bei abgeschalteter Brennkraftmaschine weiter über hydraulische Energie zu verfügen, kann in solchen Fällen die zweite, elektrisch angetriebene Pumpe die zur Betätigung des Doppelkupplungsgetriebes notwendige hydraulische Energie aufbringen. Dies kann vorteilhaft zur Realisierung einer Start-Stopp- Funktion ausgenutzt werden.
Die Aufgabe ist außerdem mit einem Doppelkupplungsgetriebe mit einer ersten Kupplung, die durch einen ersten Hydraulikzylinder betätigt wird, einer zweiten Kupplung, die durch einen zweiten Hydraulikzylinder betätigt wird, mehreren Schaltvorrichtungen zur Schaltung von Gän- gen, die jeweils durch einen hydraulischen Zylinder betätigt werden, und mit einer hydraulischen Energiequelle zur Versorgung der Hydraulikzylinder und der hydraulischen Zylinder mit hydraulischer Energie dadurch gelöst, dass eine dritte Kupplung vorgesehen ist, die durch einen dritten Hydraulikzylinder betätigt wird. Die dritte Kupplung kann beispielsweise einen E- lektromotor dem herkömmlichen Triebstrang des Verbrennungsmotors zuschalten. Mithin ist es mittels der dritten Kupplung möglich, einen Hybridantrieb mit dem Verbrennungsmotor und dem Elektromotor zu realisieren. Außerdem ist es denkbar, über die dritte Kupplung ein beliebiges anderes Aggregat, beispielsweise einen zweiten Verbrennungsmotor, zuzuschalten oder von dem Triebstrang zu trennen.
Die Aufgabe ist außerdem mit einem Doppelkupplungsgetriebe mit einer ersten Kupplung, die durch einen ersten Hydraulikzylinder betätigt wird, einer zweiten Kupplung, die durch einen zweiten Hydraulikzylinder betätigt wird, mehreren Schaltvorrichtungen zur Schaltung von Gängen, die jeweils durch einen hydraulischen Zylinder betätigt werden, und mit einer hydraulischen Energiequelle zur Versorgung der Hydraulikzylinder und der hydraulischen Zylinder mit hydraulischer Energie dadurch gelöst, dass zur Kühlung der ersten, zweiten und/oder dritten Kupplung eine Kühlölvorrichtung vorgesehen ist. Vorteilhaft kann mittels der Kühlölvorrichtung der Verschleiß minimiert sowie das maximal übertragbare Drehmoment der Kupplung beziehungsweise der Kupplungen erhöht werden.
Die Aufgabe ist außerdem mit einem Doppelkupplungsgetriebe mit einer ersten Kupplung, die durch einen ersten Hydraulikzylinder betätigt wird, einer zweiten Kupplung, die durch einen zweiten Hydraulikzylinder betätigt wird, mehreren Schaltvorrichtungen zur Schaltung von Gängen, die jeweils durch einen hydraulischen Zylinder betätigt werden, und mit einer hydraulischen Energiequelle zur Versorgung der Hydraulikzylinder und der hydraulischen Zylinder mit hydraulischer Energie dadurch gelöst, dass insgesamt fünf Schaltvorrichtungen vorgesehen sind. Die Schaltvorrichtungen sind mit den entsprechenden hydraulischen Zylindern gekoppelt und dienen zum Einlegen der unterschiedlichen Gänge des Doppelkupplungsgetriebes. Dazu können die Schaltvorrichtungen mit den hydraulischen Zylindern gekoppelte Schaltgabeln aufweisen, die wiederum entsprechenden Schaltstangen des Doppelkupplungsgetriebes zugeordnet sind. Vorteilhaft kann eine beliebige Anzahl von Gängen geschaltet werden, beispielsweise bis zu zehn Gänge oder mehr.
Bevorzugte Ausführungsbeispiele zeichnen sich dadurch aus, dass die erste Pumpe mit der zweiten Pumpe parallel geschaltet ist. Vorteilhaft können sowohl die erste Pumpe wie auch die zweite Pumpe das Doppelkupplungsgetriebe jeweils einzeln oder auch im Parallelbetrieb mit hydraulischer Energie versorgen.
Weitere bevorzugte Ausführungsbeispiele zeichnen sich dadurch aus, dass der ersten Pumpe ein erstes Rückschlagventil und der zweiten Pumpe ein zweites Rückschlagventil nachgeschaltet ist. Die Rückschlagventile können vorteilhaft einen Rückfluss von Hydraulikmedium verhindern, beispielsweise falls eine der Pumpen abgeschaltet ist.
Weitere bevorzugte Ausführungsbeispiele zeichnen sich dadurch aus, dass die Kühlölvorrich- tung einen den Pumpen nachgeschalteten Ölkühler aufweist. Mithin kann das von der ersten und/oder zweiten Pumpe geförderte Hydraulikmedium gekühlt werden.
Weitere bevorzugte Ausführungsbeispiele zeichnen sich dadurch aus, dass zwischen die hydraulische Energiequelle und den Ölkühler eine Verzweigung zum Abzweigen eines Kühlöl- volumenstroms geschaltet ist. Mittels der Abzweigung kann also von dem Hydraulikmedium ein Kühlölvolumenstrom abgezweigt werden. Mithin kann die hydraulische Energiequelle gleichermaßen den Ölkühler sowie das übrige hydraulische System des Doppelkupplungsgetriebes mit einem entsprechenden Medium, beispielsweise geeignetes Kühl- und/oder Hydraulikmedium, versorgen.
Weitere bevorzugte Ausführungsbeispiele zeichnen sich dadurch aus, dass die Kühlölvorrich- tung eine Saugstrahlpumpe zur Erhöhung des abgezweigten Kühlölvolumenstroms aufweist. Vorteilhaft kann mittels der Saugstrahlpumpe, die von einem Tank des hydraulischen Systems fördert, den Volumenstrom des abgezweigten Kühlöls erhöhen. Hierzu kann die Saugstrahlpumpe das von der hydraulischen Energiequelle gelieferte Medium von dem vergleichsweise hohen Arbeitsdruck auf einen Druck nahe des Tankdrucks entspannen, der zur Versorgung der zu kühlenden Kupplungen mit dem Kühlöl genügt. Mithin wird vorteilhaft die in Form des Arbeitsdruckes in dem Hydraulikmedium gespeicherte Energie zur Erhöhung des Kühlölvolumenstroms beziehungsweise zur Förderung des gesamten Kühlölvolumenstroms ausgenutzt. Die sonst nutzlos bei der Entspannung des Kühlöls in Form von Wärme frei werdende Energie kann also vorteilhaft mittels der Saugstrahlpumpe in Bewegungsenergie des vergrößerten Kühlölvolumenstroms umgesetzt werden.
Weitere bevorzugte Ausführungsbeispiele zeichnen sich dadurch aus, dass die Saugstrahlpumpe dem Ölkühler nachgeschaltet ist. Mithin ist es also möglich, mittels der Saugstrahl- pumpe das abgekühlte Kühlöl mit frischem, vom Tank stammendem Öl zu vermischen und den Kupplungen zur Kühlung zuzuführen.
Weitere bevorzugte Ausführungsbeispiele sind dadurch gekennzeichnet, dass ein Sicherheitsventilblock vorgesehen ist, der in einer Sicherheitsstellung die hydraulische Energiequelle von dem ersten und zweiten Hydraulikzylinder abtrennt und diese drucklos schaltet, insbesondere mit dem Tank verbindet. Vorteilhaft kann bei einer möglicherweise auftretenden Störung beim Schalten des Doppelkupplungsgetriebes sofort durch das Drucklosschalten der entsprechenden Hydraulikzylinder die erste und zweite Kupplung geöffnet werden. Mithin kann selbst für den Fall, dass eine Fehlschaltung erfolgt, die möglicherweise zu einem Blockieren des Getriebes führen könnte, durch ein Öffnen der nachgeschalteten Kupplungen zumindest Schaden von den übrigen Komponenten abgewendet und auch ein Blockieren von dem Doppelkupplungsgetriebe nach geschalteten Antriebsrädern, beispielsweise eines Kraftfahrzeugs, vermieden werden.
Weitere bevorzugte Ausführungsbeispiele zeichnen sich dadurch aus, dass die Hydraulikzylinder und die hydraulischen Zylinder Wegsensoren zur Erfassung der aktuellen Zylinderpositionen aufweisen. Vorteilhaft können die Wegsensoren zur Steuerung und/oder Regelung des Doppelkupplungsgetriebes notwendige Informationen liefern. Außerdem können möglicherweise erforderliche teurere Drucksensoren eingespart werden.
Weitere bevorzugte Ausführungsbeispiele zeichnen sich dadurch aus, dass zur hydraulischen Ansteuerung des ersten Hydraulikzylinders eine erste Druckmindereinheit, zur Ansteuerung des zweiten Hydraulikzylinders eine zweite Druckmindereinheit und zur Ansteuerung des dritten Hydraulikzylinders eine dritte Druckmindereinheit vorgesehen sind. Über die Druckmindereinheiten können die entsprechenden Hydraulikzylinder der Kupplungen jeweils separat und dosiert mit hydraulischer Energie versorgt werden. Mithin kann über die Druckmindereinheiten ein sanftes Einkuppeln beziehungsweise Auskuppeln der Kupplungen gesteuert werden.
Weitere bevorzugte Ausführungsbeispiele sind dadurch gekennzeichnet, dass zur Ansteuerung jeder der Druckmindereinheiten jeweils ein hydraulisches Steuerventil zugeordnet ist. Die Steuerung und/oder Regelung des Doppelkupplungsgetriebes kann also hydraulisch mittels der hydraulischen Steuerventile erfolgen. Weitere bevorzugte Ausführungsbeispiele zeichnen sich dadurch aus, dass zur hydraulischen Ansteuerung der hydraulischen Zylinder eine Schaltventilanordnung vorgesehen ist. Die Schaltventilanordnung übernimmt die komplette hydraulische Ansteuerung der hydraulischen Zylinder. Mithin kann durch eine entsprechende Einstellung der Schaltventilanordnung ein beliebiger Gang des Doppelkupplungsgetriebes eingestellt beziehungsweise angewählt werden. Hierzu kann die Schaltventilanordnung beispielsweise eine Vielzahl von hydraulischen Schiebeventilen aufweisen. Außerdem kann die Schaltventilanordnung ein Drehschieberventil aufweisen.
Weitere Vorteile, Merkmale und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezug auf die Zeichnung ein Ausführungsbeispiel im Einzelnen beschrieben ist. Es zeigt:
Figur 1 ein Hydraulikschema eines hydraulischen Systems zur Steuerung eines Doppelkupplungsgetriebes.
Figur 1 zeigt schematisch den Hydraulikschaltplan eines Doppelkupplungsgetriebes 1 beziehungsweise eines hydraulischen Systems 3 zur hydraulischen Ansteuerung des Doppelkupplungsgetriebes 1.
Das hydraulische System 3 des Doppelkupplungsgetriebes 1 verfügt über eine hydraulische Energiequelle 5. Die hydraulische Energiequelle 5 ist mittels einer strichpunktierten Linie 7 angedeutet und dient zur Versorgung des nachgeschalteten hydraulischen Systems 3 mit hydraulischer Energie. Die hydraulische Energiequelle 5 wird auf bekannte Art und Weise aus einem Tank 9 mit einem geeigneten Hydraulikmedium gespeist. Zwischen dem Tank 9 und die hydraulische Energiequelle 5 können ein oder mehrere Saugfilter 11 zur Reinigung des Hydraulikmediums geschaltet sein.
Das Doppelkupplungsgetriebe 1 weist eine erste Kupplung 13, eine zweite Kupplung 15 sowie eine dritte Kupplung 17 auf. Die Kupplungen 13 bis 17 sind mittels des hydraulischen Systems 3 betätigbar. Dazu weist die erste Kupplung 13 einen ersten Hydraulikzylinder 19, die zweite Kupplung 15 einen zweiten Hydraulikzylinder 21 und die dritte Kupplung 17 einen dritten Hydraulikzylinder 23 auf, die jeweils über eine erste Druckmindereinheit 25, eine zweite Druckmindereinheit 27 und eine dritte Druckmindereinheit 29 des hydraulischen Systems 3 ansteuerbar sind. Die Druckmindereinheiten 25 bis 29 weisen jeweils einen Stellkolben 31 auf, wobei eine lineare Verstellung des Stellkolbens 31 proportional dazu die Zufuhr von der hydraulischen Energiequelle 5 gelieferten hydraulischen Energie zu den entsprechenden nachgeschalteten Hydraulikzylindern 19 bis 23 der Kupplungen 13 bis 17 bewirkt. Dabei sind die Kupplungen 13 bis 17 so ausgelegt, dass eine Erhöhung des Drucks in den entsprechenden Hydraulikzylindern 19 bis 23 ein Schließen der jeweiligen Kupplung 13 bis 17 bewirkt. Die Kupplungen 13 bis 17 sind also im drucklosen Zustand geöffnet. Es ist jedoch auch eine umgekehrte Auslegung möglich, bei der zumindest eine der oder alle Kupplungen 13 bis 17 im drucklosen Zustand geschlossen sind.
Zum Einstellen der Gänge des Doppelkupplungsgetriebes 1 weist das hydraulische System 3 eine Schaltventilanordnung 33 auf. Die Schaltventilanordnung 33 wird ebenfalls mittels der hydraulischen Energiequelle 5 mit hydraulischer Energie versorgt und dient der Ansteuerung von hydraulischen Zylindern des Doppelkupplungsgetriebes 1.
In Figur 1 weist die Schaltventilanordnung ein Umkehrventil 35 sowie ein diesem nachgeschaltetes Drehschieberventil 37 auf. Dem Drehschieberventil 37 sind ein erster hydraulischer Zylinder 39, ein zweiter hydraulischer Zylinder 41 , ein dritter hydraulischer Zylinder 43, ein vierter hydraulischer Zylinder 45 und ein fünfter hydraulischer Zylinder 47 zugeordnet. Der erste hydraulische Zylinder 39 steuert eine erste Schaltvorrichtung 49, beispielsweise ausgelegt zum Einlegen des Rückwärtsganges. Der zweite hydraulische Zylinder 41 steuert eine zweite Schaltvorrichtung 51 , beispielsweise zum Einlegen des ersten oder dritten Ganges des Doppelkupplungsgetriebes 1. Der dritte hydraulische Zylinder 43 steuert eine dritte Schaltvorrichtung 53, beispielsweise ausgelegt zum Einlegen des zweiten oder vierten Ganges des Doppelkupplungsgetriebes 1. Der vierte hydraulische Zylinder 45 steuert eine vierte Schaltvorrichtung 55, beispielsweise ausgelegt zum Einlegen des fünften oder siebten Ganges. Der fünfte hydraulische Zylinder 47 steuert eine fünfte Schaltvorrichtung 57, beispielsweise ausgelegt zum Einlegen des sechsten oder achten Ganges des Doppelkupplungsgetriebes 1. Hierzu sind die hydraulischen Zylinder 39 bis 47 jeweils doppelt wirkend ausgelegt, weisen also jeweils zwei sich gegenüber liegende, mit Druck beaufschlagbare Flächen auf. Es ist auch möglich, die Schaltstangen jeweils mit entsprechend entgegengesetzt wirkenden einzelnen hydraulischen Zylindern anzusteuern. Das Drehschieberventil 37 kann mittels eines Schrittmotors 59 in insgesamt fünf verschiedene Schaltstellungen bewegt werden. Zusätzlich kann das Drehschieberventil 37 eine Neutralstellung aufweisen. Dabei ist in jeder der Schaltstellungen nur einer der hydraulischen Zylinder 39 bis 47 -in Ausrichtung der Figur 1- rechtsseitig mit einem Ausgang des Umkehrventils 35 verbunden. Linksseitig sind unabhängig von der Schalt- stellung des Drehschieberventils 37 alle hydraulischen Zylinder 39 bis 47 einem weiteren Ausgang des Umkehrventils zugeordnet.
In Figur 1 ist das Drehschieberventil 37 in einer vierten Schaltstellung gezeigt, wobei die vierte Schaltvorrichtung 55 beziehungsweise der dazu gehörige vierte hydraulische Zylinder 45 so mit dem Umkehrventil 35 hydraulisch verbunden ist, dass der vierte hydraulische Zylinder 45, in Ausrichtung der Figur 1 gesehen, entweder von links kommend oder von rechts kommend mit Druck beaufschlagt und auf der jeweils gegenüber liegenden Seite mit dem Tank 9 verbunden werden kann. Hierdurch kann also je nach Schaltstellung des Umkehrventils 35 der fünfte oder der siebte Gang des Doppelkupplungsgetriebes 1 eingelegt werden.
Die übrigen hydraulischen Zylinder 39, 41, 43, 47 sind rechtsseitig wegen dem für diese geschlossenen Drehschieberventil 37 verklemmt. Je nach Schaltstellung des Umkehrventils 35 sind diese dabei entweder auf einem hohen Druckniveau, beispielsweise ungefähr Systemdruck, oder auf einem niedrigen Druckniveau, beispielsweise ungefähr Tankdruck, verklemmt. So kann auch gewährleistet werden, dass ein bereits eingelegter Gang nicht versehentlich, beispielsweise bei besonders ungünstigen Fahrzuständen, wieder herausspringt.
Außerdem kann das Umkehrventil 35 in eine Schaltstellung gebracht werden, die in Figur 1 gezeigt ist, wobei der komplette vierte hydraulische Zylinder 45 drucklos geschaltet, also mit dem Tank 9 verbunden ist.
Das Schalten der übrigen Gänge erfolgt analog entsprechend der Schaltstellungen des Umkehrventils 35 und des nachgeschalteten Drehschieberventils 37. Zum Wechseln der Übersetzung können so nacheinander die entsprechenden Gänge eines erwünschten Gangpaares eingelegt werden.
Zum Schalten von mehr oder weniger Gängen können beliebig viele Schaltstangen sowie dazugehörige hydraulische Zylinder zur Ansteuerung zusätzlich vorgesehen oder weggelassen sein. Die Schaltventilanordnung 33 kann dazu ebenfalls entsprechend modifiziert beziehungsweise um die entsprechenden Schaltmöglichkeiten ergänzt oder reduziert werden.
Die hydraulische Energiequelle 5 verfügt über eine erste Pumpe 61 und eine der ersten Pumpe 61 parallel geschaltete zweite Pumpe 63. Der ersten Pumpe 61 ist ein erstes Rückschlagventil 65 nachgeschaltet. Der zweiten Pumpe 63 ist ein zweites Rückschlagventil 67 nachgeschaltet. Die erste Pumpe 61 kann mittels eines in Figur 1 nicht näher dargestellten Verbrennungsmotors angetrieben werden. Die mittels der ersten Pumpe 61 übertragene hydraulische Energie wird also dem mittels des Doppelkupplungsgetriebes 1 geschalteten Triebstrang des entsprechend angeschlossenen Verbrennungsmotors entnommen. Vorteilhaft kann bei stillstehendem Verbrennungsmotor die zweite Pumpe 63 das hydraulische System 3 des Doppelkupplungsgetriebes 1 mit hydraulischer Energie versorgen, da die zweite Pumpe 63 mit einem Elektroantrieb 69 gekoppelt ist. Der Elektroantrieb 69 treibt die zweite Pumpe 63 an und kann beispielsweise einen Elektromotor aufweisen.
Mittels der Rückschlagventile 65 und 67 ist es möglich, die Pumpen 61 und 63 wahlweise einzeln oder gemeinsam zur Versorgung des hydraulischen Systems 3 mit hydraulischer Energie zu betreiben.
Der hydraulischen Energiequelle 5 ist eine Verzweigung 71 nachgeschaltet. Die Verzweigung 71 verzweigt das von der hydraulischen Energiequelle 5 geförderte Medium in eine Kühlölleitung 73 und eine Versorgungsleitung 75.
Die Kühlölleitung 73 ist Bestandteil einer Kühlölvorrichtung 77. Die Kühlölvorrichtung 77 ist zur Kühlung von zumindest einer der Kupplungen 13, 15 und/oder 17 mittels Beaufschlagung des über die Kühlölleitung 73 abgezweigten Mediums ausgelegt. Die Kühlölvorrichtung 77 weist eine in die Kühlölleitung 73 geschaltete vierte Druckmindereinheit 79 auf. Die vierte Druckmindereinheit 79 kann den in der Kühlölleitung 73 geführten Kühlölvolumenstrom steuern. Der vierten Druckmindereinheit 79 nachgeschaltet, weist die Kühlölvorrichtung 77 einen Ölkühler 81 sowie ein dem Ölkühler 81 parallel geschaltetes drittes Rückschlagventil 83 auf. Das dritte Rückschlagventil 83 ist so zum Ölkühler 81 parallel geschaltet, dass sich dieses bei Überschreiten eines bestimmten am Ölkühler 81 auftretenden Staudrucks öffnet. Aufgrund der sich bei ändernder Temperatur ebenfalls ändernden Viskosität des Kühlöls kann mithin der Ölkühler 81 bei verhältnismäßig kühlem Kühlöl über das dritte Rückschlagventil 83 umgangen werden. Erst bei höheren Temperaturen, also wenn eine Kühlung erforderlich ist, schließt das dritte Rückschlagventil 83. Mithin ist über das dritte Rückschlagventil 83 in gewissen Grenzen eine Regelung der Temperatur des Kühlöls möglich. Außerdem kann hierdurch wertvolle hydraulische Energie eingespart werden. Insbesondere bei kühlem Kühlöl kann so der hydraulische Widerstand und mithin die anfallende in Wärme umgewandelte Verlustenergie reduziert werden.
Dem Ölkühler 81 und dem dritten Rückschlagventil 83 nachgeschaltet, weist die Kühlölvorrichtung 77 ein Steuerventil 85 auf. Das Steuerventil 85 kann die Kühlölleitung 73 über eine Rück- führleitung 87 direkt mit der ersten Pumpe 61 und/oder den Tank 9 koppeln, also in gewisser Weise kurzschließen. In dieser Schaltstellung gelangt kein Kühlöl zu den Kupplungen 13 bis 17. Dem Steuerventil 85 nachgeschaltet weist die Kühlölvorrichtung 77 eine Saugstrahlpumpe 89 auf. Vorteilhaft kann die Saugstrahlpumpe 89 über ein viertes Rückschlagventil 91 zur Erhöhung des Kühlölvolumenstroms zusätzliches Medium aus dem Tank 9 fördern. Hierzu kann vorteilhaft die über den Druck gespeicherte Energie in einen höheren Volumenstrom umgesetzt werden. Hierdurch verringert sich die Verlustleistung des hydraulischen Systems 3. Der Saugstrahlpumpe 89 nachgeschaltet und in Figur 1 nicht mehr dargestellt, kann über die Kühlölleitung 73 der Kühlölvorrichtung 77 der über die Saugstrahlpumpe 89 vergrößerte Volumenstrom am Kühlöl zumindest einer der Kupplungen 13 bis 17 zur Kühlung zugeführt werden. Bei Ausführungsbeispielen mit trockenen Kupplungen 13 bis 17 können die Kühlölvorrichtung 77 und/oder die Saugstrahlpumpe 89 einfach entfallen.
Die Versorgungsleitung 75 speist das Umkehrventil 35 der Schaltventilanordnung 33 mit hydraulischer Energie.
Außerdem ist die Versorgungsleitung 75 an ein Vorsteuerdruckventil 93 angeschlossen, dem eine Vorsteuerleitung 95 und eine Systemleitung 97 nachgeschaltet sind. Das Vorsteuerdruckventil 93 erzeugt in der Vorsteuerleitung 95 einen Vorsteuerdruck und in der Systemleitung 97 einen Systemdruck. Der Systemleitung 97 sind die Druckmindereinheiten 25 bis 29 nachgeschaltet. Zwischen den ersten Hydraulikzylinder 19 und die erste Druckmindereinheit 25 sowie zwischen den zweiten Hydraulikzylinder 21 und die dazugehörige zweite Druckmindereinheit 27 ist ein Sicherheitsventilblock 99 geschaltet. In der Schaltstellung, wie in Figur 1 gezeigt, ermöglicht der Sicherheitsventilblock 99 eine direkte Verbindung der Hydraulikzylinder 19 und 21 mit den dazugehörigen Druckmindereinheiten 25 und 27. Mithin können in dieser Stellung mittels der Druckmindereinheiten 25 und 27 die nachgeschalteten Hydraulikzylinder 19 und 21 angesteuert werden. In einer zweiten Schaltstellung des Sicherheitsventilblocks 99 kann dieser die erste und zweite Druckmindereinheit 25 und 27 absperren und gleichzeitig den ersten Hydraulikzylinder 19 und den zweiten Hydraulikzylinder 21 drucklos schalten beziehungsweise dazu mit dem Tank 9 verbinden. Es ist ersichtlich, dass in dieser zweiten Schaltstellung erstens keinerlei hydraulische Energie den Hydraulikzylindern 19 und 21 zugeführt werden kann und zweitens eventuell aufgebauter Druck sofort über den Tank 9 abgebaut werden kann, was zu einem sofortigen Öffnen der dazugehörigen ersten Kupplung 13 und der zweiten Kupplung 15 führt. Vorteilhaft können also, beispielsweise im Falle einer unerwünschten, jedoch bemerkten Fehlschaltung des Doppelkupplungsgetriebes 1 mittels des Sicherheitsventilblocks 99 die erste und zweite Kupplung 13 und 15 geöffnet werden. Bei der dritten Kupplung 17 kann es sich um eine Hybridkupplung zur Ankopplung eines weiteren Aggregats, beispielsweise eines Elektromotors handeln. Dieses Aggregat ist also nicht über das Doppelkupplungsgetriebe 1 geschaltet und muss daher im Falle eines Fehlers des Doppelkupplungsgetriebes 1 auch nicht schnellstmöglich über den Sicherheitsventilblock 99 entleert werden. Es ist jedoch auch möglich, die dritte Kupplung 17 analog der übrigen Kupplungen 13 und 15 zu schalten.
Die Steuerung und/oder Regelung des hydraulischen Systems 3 des ersten Doppelkupplungsgetriebes 1 erfolgt vollhydraulisch mittels entsprechender, beispielsweise elektrisch betätigbarer, hydraulischer Steuerventile 101. Die Steuerventile 101 sind auf bekannte Art und Weise über Drosseln 103 der Vorsteuerleitung 95 nachgeschaltet, stromabwärts mit dem Tank 9 gekoppelt und stromaufwärts mit entsprechenden Steuerkolben 105 der Ventile des hydraulischen Systems 3 geschaltet. Die Druckmindereinheiten 25 bis 29 weisen beispielsweise über solche beispielsweise als Proportionalventile ausgebildete Steuerventile 101 gesteuerte Druckminderventile auf. Zur Messung des Vorsteuerdrucks in der Vorsteuerleitung 95 weist das hydraulische System 3 des Doppelkupplungsgetriebes 1 einen Druckmesser 107 auf. Zur Begrenzung des Systemdrucks weist das hydraulische System 3 ein stromabwärts mit dem Tank 9 verbundenes Druckbegrenzungsventil 109 auf. Die Hydraulikzylinder 19, 21 , 23 und die hydraulischen Zylinder 39, 41 , 43, 45, 47 können Wegsensoren 111 zur Erfassung der aktuellen Zylinderposition aufweisen. In Figur 1 ist beispielhaft am hydraulischen Zylinder 39 ein Wegsensor 111 angedeutet.
Bezugszeichenliste
1. Doppelkupplungsgetriebe 57. fünfte Schaltvorrichtung
3. hydraulisches System 59. Schrittmotor
5. hydraulische Energiequelle 61. erste Pumpe
7. Linie 63. zweite Pumpe
9. Tank 65. erstes Rückschlagventil
11. Saugfilter 67. zweites Rückschlagventil
13. erste Kupplung 69. Elektroantrieb
15. zweite Kupplung 71. Verzweigung
17. dritte Kupplung 73. Kühlölleitung
19. erster Hydraulikzylinder 75. Versorgungsleitung
21. zweiter Hydraulikzylinder 77. Kühlölvorrichtung
23. dritter Hydraulikzylinder 79. vierte Druckmindereinheit
25. erste Druckmindereinheit 81. Ölkühler
27. zweite Druckmindereinheit 83. drittes Rückschlagventil
29. dritte Druckmindereinheit 85. Steuerventil
31. Stellkolben 87. Rückführleitung
33. Schaltventilanordnung 89. Saugstrahlpumpe
35. Umkehrventil 91. viertes Rückschlagventil
37. Drehschieberventil 93. Vorsteuerdruckventil
39. erster hydraulischer Zylinder 95. Vorsteuerleitung
41. zweiter hydraulischer Zylinder 97. Systemleitung
43. dritter hydraulischer Zylinder 99. Sicherheitsventilblock
45. vierter hydraulischer Zylinder 101. Steuerventil
47. fünfter hydraulischer Zylinder 103. Drossel
49. erste Schaltvorrichtung 105. Steuerkolben
51. zweite Schaltvorrichtung 107. Druckmesser
53. dritte Schaltvorrichtung 109. Druckbegrenzungsventil
55. vierte Schaltvorrichtung 111. Wegsensor

Claims

Patentansprüche
1. Doppelkupplungsgetriebe (1) mit einer ersten Kupplung (13), die durch einen ersten Hydraulikzylinder (19) betätigt wird, einer zweiten Kupplung (15), die durch einen zweiten Hydraulikzylinder (21) betätigt wird, mehreren Schaltvorrichtungen (49,51,53,55,57) zur Schaltung von Gängen, die jeweils durch einen hydraulischen Zylinder (39,41 ,43,45,47) betätigt werden, und mit einer hydraulischen Energiequelle (5) zur Versorgung der Hydraulikzylinder (19,21,23) und der hydraulischen Zylinder (39,41,43,45,47) mit hydraulischer Energie, dadurch gekennzeichnet, dass die hydraulische Energiequelle (5) eine erste Pumpe (61), eine zweite Pumpe (63) und einen die zweite Pumpe (63) antreibenden Elektroantrieb (69) aufweist.
2. Doppelkupplungsgetriebe nach dem Oberbegriff des Anspruchs 1 , insbesondere nach Anspruch 1, dadurch gekennzeichnet, dass eine dritte Kupplung (17) vorgesehen ist, die durch einen dritten Hydraulikzylinder (23) betätigt wird.
3. Doppelkupplungsgetriebe nach dem Oberbegriff des Anspruchs 1 , insbesondere nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass zur Kühlung der ersten, zweiten und/oder dritten Kupplung (13,15,17) eine Kühlölvorrichtung (77) vorgesehen ist.
4. Doppelkupplungsgetriebe nach dem Oberbegriff des Anspruchs 1 , insbesondere nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass insgesamt fünf Schaltvorrich- tungen (49,51 ,53,55,57) vorgesehen sind.
5. Doppelkupplungsgetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die erste Pumpe (61) mit der zweiten Pumpe (63) parallel geschaltet ist.
6. Doppelkupplungsgetriebe nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der ersten Pumpe (61) ein erstes Rückschlagventil (65) und der zweiten Pumpe (63) ein zweites Rückschlagventil (67) nachgeschaltet sind.
7. Doppelkupplungsgetriebe nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass die Kühlölvorrichtung (77) einen der hydraulischen Energiequelle (5) nachgeschalteten Ölkühler (81) aufweist.
8. Doppelkupplungsgetriebe nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass zwischen die hydraulische Energiequelle (5) und den Ölkühler (81) eine Verzweigung (71) zum Abzweigen eines Kühlölvolumenstroms geschaltet ist.
9. Doppelkupplungsgetriebe nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Kühlölvorrichtung (77) eine Saugstrahlpumpe (89) zur Erhöhung des abgezweigten Kühlölvolumenstroms aufweist.
10. Doppelkupplungsgetriebe nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Saugstrahlpumpe (89) dem Ölkühler (81) nachgeschaltet ist.
11. Doppelkupplungsgetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Sicherheitsventilblock (99) vorgesehen ist, der in einer Sicherheitsschaltstellung die hydraulische Energiequelle (5) von dem ersten und zweiten Hydraulikzylinder (19,21) abtrennt und diese drucklos schaltet, insbesondere mit einem Tank (9) verbindet.
12. Doppelkupplungsgetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydraulikzylinder (19,21 ,23) und die hydraulischen Zylinder (39,41,43,45,47) Wegsensoren zur Erfassung der aktuellen Zylinderposition aufweisen.
13. Doppelkupplungsgetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur hydraulischen Ansteuerung des ersten Hydraulikzylinders (19) eine erste Druckmindereinheit (25), zur Ansteuerung des zweiten Hydraulikzylinders (21) eine zweite Druckmindereinheit (27) und zur Ansteuerung des dritten Hydraulikzylinders (23) eine dritte Druckmindereinheit (29) vorgesehen sind.
14. Doppelkupplungsgetriebe nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass zur Ansteuerung jeder der Druckmindereinheiten (25,27,29) jeweils ein hydraulisches Steuerventil (101) zugeordnet ist.
15. Doppelkupplungsgetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur hydraulischen Ansteuerung der hydraulischen Zylinder
(39,41 ,43,45,47) eine Schaltventilanordnung (33) vorgesehen ist.
16. Hydraulisches System (3) zur Betätigung eines Doppelkupplungsgetriebes (1) nach einem der vorhergehenden Ansprüche, insbesondere mit einer Merkmalskombination nach einem der vorhergehenden Ansprüche.
PCT/DE2007/001877 2006-11-08 2007-10-22 Hydraulische steuerung für ein doppelkupplungsgetriebe WO2008055464A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200780041597.2A CN101535688B (zh) 2006-11-08 2007-10-22 用于双离合器变速器的液压控制装置
DE112007002087T DE112007002087A5 (de) 2006-11-08 2007-10-22 Hydraulische Steuerung für ein Doppelkupplungsgetriebe
US12/437,854 US7707911B2 (en) 2006-11-08 2009-05-08 Hydraulic control for a dual clutch transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006052641 2006-11-08
DE102006052641.4 2006-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/437,854 Continuation US7707911B2 (en) 2006-11-08 2009-05-08 Hydraulic control for a dual clutch transmission

Publications (2)

Publication Number Publication Date
WO2008055464A2 true WO2008055464A2 (de) 2008-05-15
WO2008055464A3 WO2008055464A3 (de) 2008-07-03

Family

ID=38983282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/001877 WO2008055464A2 (de) 2006-11-08 2007-10-22 Hydraulische steuerung für ein doppelkupplungsgetriebe

Country Status (4)

Country Link
US (1) US7707911B2 (de)
CN (1) CN101535688B (de)
DE (1) DE112007002087A5 (de)
WO (1) WO2008055464A2 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040665A1 (de) * 2008-07-24 2010-06-17 Zf Friedrichshafen Ag Verfahren zur Steuerung der Ölversorgungseinrichtung eines Planeten-Automatgetriebes
WO2010127659A1 (de) * 2009-05-06 2010-11-11 Schaeffler Technologies Gmbh & Co. Kg Hydraulische energiequelle zum versorgen eines nachgeschalteten hydrauliksystems mit hydraulischer energie
CN102022527A (zh) * 2009-09-09 2011-04-20 通用汽车环球科技运作公司 用于双离合变速器的液压控制系统
CN102022528A (zh) * 2009-09-09 2011-04-20 通用汽车环球科技运作公司 用于双离合变速器的液压控制系统
DE102012003415A1 (de) * 2012-02-14 2013-08-14 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Aktuatoranordnung für einen Kraftfahrzeugantriebsstrang
DE102014105899A1 (de) * 2014-04-28 2015-10-29 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Schalt-Aktuatoranordnung und Kraftfahrzeuggetriebe
WO2016066515A1 (de) * 2014-10-27 2016-05-06 Avl Commercial Driveline & Tractor Engineering Gmbh Hydraulikkreislauf und verfahren zum steuern eines hydraulikkreislaufes
WO2016096092A1 (de) * 2014-12-18 2016-06-23 Daimler Ag Hydrauliksystem für ein kraftfahrzeuggetriebe
EP2610517A3 (de) * 2011-12-30 2016-11-02 Shenzhen BYD Auto R&D Company Limited Hydrauliksystem, Antriebssystem und Elektrofahrzeug
DE102015218352A1 (de) 2015-09-24 2017-03-30 Voith Patent Gmbh Ölversorgung eines Automatgetriebes oder automatisierten Schaltgetriebes, Kraftfahrzeugantriebsstrang und Verfahren zur Versorgung eines solchen Getriebes
DE102018214430A1 (de) * 2018-08-27 2020-02-27 Zf Friedrichshafen Ag Hydrauliksystem für ein Doppelkupplungsgetriebe

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007002438A5 (de) * 2006-11-08 2009-07-16 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydraulische Steuerung für ein Doppelkupplungsgetriebe
US8402855B2 (en) * 2010-01-11 2013-03-26 GM Global Technology Operations LLC Hydraulic control systems for dual clutch transmissions
US8733521B2 (en) * 2010-12-06 2014-05-27 Gm Global Technology Operations Apparatus for and method of controlling a dual clutch transmission
DE102012209869A1 (de) * 2011-07-05 2013-01-10 Schaeffler Technologies AG & Co. KG Verfahren zum Überwachen einer Kupplung
US8771137B2 (en) * 2012-06-27 2014-07-08 GM Global Technology Operations LLC Method for use of hydraulically or electrically controlled solenoids under failed on conditions
EP3084273B1 (de) 2013-12-17 2018-08-01 Schaeffler Technologies AG & Co. KG Fluidanordnung
DE102014207797A1 (de) * 2014-04-25 2015-10-29 Zf Friedrichshafen Ag Getriebevorrichtung mit einem Hydrauliksystem
CN106321805A (zh) * 2015-06-26 2017-01-11 上海汽车集团股份有限公司 湿式双离合器变速箱的液压控制系统、变速箱、tcu及汽车
CN108006209B (zh) * 2017-03-29 2019-12-13 长城汽车股份有限公司 双离合自动变速箱冷却润滑液压控制系统及车辆
JP6535365B2 (ja) * 2017-05-26 2019-06-26 本田技研工業株式会社 油圧制御装置
DE102018214427A1 (de) * 2018-08-27 2020-02-27 Zf Friedrichshafen Ag Hydrauliksystem für ein Doppelkupplungsgetriebe
WO2022127966A1 (de) * 2020-12-14 2022-06-23 Schaeffler Technologies AG & Co. KG Hydraulikanordnung und elektrisch betreibbarer, mehrgängiger achsantriebsstrang

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415603A (en) * 1992-04-01 1995-05-16 Kabushikikaisha Equos Research Hydraulic control system for hybrid vehicle
US20010010027A1 (en) * 2000-01-25 2001-07-26 Honda Giken Kogyo Kabushiki Kaisha Hybrid vehicle control device
US6427550B1 (en) * 2001-01-12 2002-08-06 New Venture Gear, Inc. Twin clutch automated transaxle
US20050064975A1 (en) * 2003-09-18 2005-03-24 Denso Corporation Driving force transmitting system
EP1544513A2 (de) * 2001-01-12 2005-06-22 ZF Sachs AG Kraftfahrzeug mit einem eine Mehrfach-Kupplungseinrichtung aufweisenden Antriebsstrang
DE102005019516A1 (de) * 2004-05-15 2005-12-08 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Vorrichtung zum Ansteuern einer Mehrzahl von hydraulischen Schaltzylindern sowie Hydraulikversorgungssystem für ein Doppelkupplungsgetriebe
DE102004031021A1 (de) * 2004-06-26 2006-01-12 Zf Friedrichshafen Ag Getriebeanordnung mit einer Schaltelement-Sicherungseinrichtung zur Sicherung gegen ein Einlegen mehrerer Gänge eines Schaltgetriebes oder eines Teilgetriebes eines Schaltgetriebes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2518186C2 (de) * 1975-04-24 1977-06-08 Voith Getriebe Kg Hydrodynamisch-mechanischer fahrzeugantrieb
JP3939871B2 (ja) * 1998-12-22 2007-07-04 株式会社 神崎高級工機製作所 車両用の走行変速制御装置
ATE421655T1 (de) * 2004-05-15 2009-02-15 Luk Lamellen & Kupplungsbau Vorrichtung zum ansteuern einer mehrzahl von hydraulischen schaltzylindern sowie hydraulikversorgungssystem für ein doppelkupplungsgetriebe
CN100383435C (zh) * 2004-12-28 2008-04-23 广东工业大学 一种双动力输入自动切换减速器
CN100396971C (zh) * 2005-03-22 2008-06-25 广东工业大学 双动力双向自动切换蜗杆减速器
DE112008000383A5 (de) * 2007-03-07 2009-11-19 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Hydraulikanordnung zur Steuerung eines Doppelkupplungsgetriebes eines Kraftfahrzeuges

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5415603A (en) * 1992-04-01 1995-05-16 Kabushikikaisha Equos Research Hydraulic control system for hybrid vehicle
US20010010027A1 (en) * 2000-01-25 2001-07-26 Honda Giken Kogyo Kabushiki Kaisha Hybrid vehicle control device
US6427550B1 (en) * 2001-01-12 2002-08-06 New Venture Gear, Inc. Twin clutch automated transaxle
EP1544513A2 (de) * 2001-01-12 2005-06-22 ZF Sachs AG Kraftfahrzeug mit einem eine Mehrfach-Kupplungseinrichtung aufweisenden Antriebsstrang
US20050064975A1 (en) * 2003-09-18 2005-03-24 Denso Corporation Driving force transmitting system
DE102005019516A1 (de) * 2004-05-15 2005-12-08 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Vorrichtung zum Ansteuern einer Mehrzahl von hydraulischen Schaltzylindern sowie Hydraulikversorgungssystem für ein Doppelkupplungsgetriebe
DE102004031021A1 (de) * 2004-06-26 2006-01-12 Zf Friedrichshafen Ag Getriebeanordnung mit einer Schaltelement-Sicherungseinrichtung zur Sicherung gegen ein Einlegen mehrerer Gänge eines Schaltgetriebes oder eines Teilgetriebes eines Schaltgetriebes

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187151B2 (en) 2008-07-24 2012-05-29 Zf Friedrichshafen Ag Method for controlling the oil supply of an automatic planetary transmission
DE102008040665A1 (de) * 2008-07-24 2010-06-17 Zf Friedrichshafen Ag Verfahren zur Steuerung der Ölversorgungseinrichtung eines Planeten-Automatgetriebes
CN102414455B (zh) * 2009-05-06 2014-10-01 舍弗勒技术股份两合公司 用于对联接在后面的液压系统供给液压能量的液压能源
US20120060488A1 (en) * 2009-05-06 2012-03-15 Schaeffler Technologies Gmbh & Co. Kg Hydraulic energy source for supplying a downstream hydraulic system with hydraulic energy
CN102414455A (zh) * 2009-05-06 2012-04-11 舍弗勒技术两合公司 用于对联接在后面的液压系统供给液压能量的液压能源
US8572958B2 (en) 2009-05-06 2013-11-05 Schaeffler Technologies AG & Co. KG Hydraulic energy source for supplying a downstream hydraulic system with hydraulic energy
WO2010127659A1 (de) * 2009-05-06 2010-11-11 Schaeffler Technologies Gmbh & Co. Kg Hydraulische energiequelle zum versorgen eines nachgeschalteten hydrauliksystems mit hydraulischer energie
CN102022527A (zh) * 2009-09-09 2011-04-20 通用汽车环球科技运作公司 用于双离合变速器的液压控制系统
CN102022528B (zh) * 2009-09-09 2013-12-11 通用汽车环球科技运作公司 用于双离合变速器的液压控制系统
CN102022528A (zh) * 2009-09-09 2011-04-20 通用汽车环球科技运作公司 用于双离合变速器的液压控制系统
EP2610517A3 (de) * 2011-12-30 2016-11-02 Shenzhen BYD Auto R&D Company Limited Hydrauliksystem, Antriebssystem und Elektrofahrzeug
DE102012003415A1 (de) * 2012-02-14 2013-08-14 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Aktuatoranordnung für einen Kraftfahrzeugantriebsstrang
DE102014105899A1 (de) * 2014-04-28 2015-10-29 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Schalt-Aktuatoranordnung und Kraftfahrzeuggetriebe
EP2940349A3 (de) * 2014-04-28 2015-12-30 GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG Schalt-Akutatoranordnung und Kraftfahrzeuggetriebe
WO2016066515A1 (de) * 2014-10-27 2016-05-06 Avl Commercial Driveline & Tractor Engineering Gmbh Hydraulikkreislauf und verfahren zum steuern eines hydraulikkreislaufes
AT516475A1 (de) * 2014-10-27 2016-05-15 Avl Commercial Driveline & Tractor Engineering Gmbh Hydraulikkreislauf und verfahren zum steuern eines hydraulikkreislaufes
AT516475B1 (de) * 2014-10-27 2017-04-15 Avl Commercial Driveline & Tractor Eng Gmbh Hydraulikkreislauf und verfahren zum steuern eines hydraulikkreislaufes
WO2016096092A1 (de) * 2014-12-18 2016-06-23 Daimler Ag Hydrauliksystem für ein kraftfahrzeuggetriebe
US10612648B2 (en) 2014-12-18 2020-04-07 Daimler Ag Hydraulic system for a motor vehicle transmission
DE102015218352A1 (de) 2015-09-24 2017-03-30 Voith Patent Gmbh Ölversorgung eines Automatgetriebes oder automatisierten Schaltgetriebes, Kraftfahrzeugantriebsstrang und Verfahren zur Versorgung eines solchen Getriebes
DE102018214430A1 (de) * 2018-08-27 2020-02-27 Zf Friedrichshafen Ag Hydrauliksystem für ein Doppelkupplungsgetriebe

Also Published As

Publication number Publication date
CN101535688A (zh) 2009-09-16
US20090215585A1 (en) 2009-08-27
CN101535688B (zh) 2013-08-14
US7707911B2 (en) 2010-05-04
DE112007002087A5 (de) 2009-06-10
WO2008055464A3 (de) 2008-07-03

Similar Documents

Publication Publication Date Title
WO2008055464A2 (de) Hydraulische steuerung für ein doppelkupplungsgetriebe
EP1965100B1 (de) Hydraulische Schaltung für ein automatisiertes Doppelkupplungsgetriebe für Kraftfahrzeuge
EP2520832B1 (de) Kupplungsgetriebe
EP2382402B1 (de) Hydraulische steuerung für ein automatisiertes getriebe
DE112007002509B4 (de) Hydraulische Steuerung für ein Doppelkupplungsgetriebe
EP1420186B1 (de) Kraftfahrzeug- Antriebsstrang mit einer Pumpenanordnung zur Versorgung einer Kupplungseinrichtung mit Druckmedium
EP2382404B1 (de) Steuerungseinrichtung für ein automatisiertes zahnräderwechselgetriebe
EP1420185B2 (de) Kraftfahrzeug-Antriebsstrang mit einer Pumpenanordnung zur Versorgung einer Kupplungseinrichtung mit Druckmedium
EP1767824B1 (de) Hydraulische Steuerungsvorrichtung für ein automatisiertes Doppelkupplungsgetriebe
DE102006016397B4 (de) Getriebe und ein Verfahren zur Steuerung eines Getriebes für ein Kraftfahrzeug
WO2011015182A1 (de) Hydrauliksystem zum hydraulischen ansteuern eines doppelkupplungsgetriebes
EP2587097B1 (de) Schaltanordnung für ein Kraftfahrzeuggetriebe
EP2382403B1 (de) Steuerungseinrichtung für ein automatisiertes zahnräderwechselgetriebe
EP1994310A1 (de) Hydraulische steuerung für ein doppelkupplungsgetriebe
EP2815154A1 (de) Aktuatoranordnung für einen kraftfahrzeugantriebsstrang
EP2587085B1 (de) Kraftfahrzeugantriebsstrang und Hydraulikkreis dafür
EP1950463A1 (de) Hydraulische Steuerungsvorrichtung für ein automatisiertes Doppelkupplungsgetriebe
DE102011100799B4 (de) Doppelkupplungsgetriebe, Verfahren zum Betreiben
WO2008055463A2 (de) Hydraulische steuerung für ein doppelkupplungsgetriebe
DE102020205759B3 (de) Hydraulikkreis für ein Doppelkupplungsgetriebe sowie ein Verfahren zum Betreiben des Hydraulikkreises
DE102007033690A1 (de) Hydraulisches System zur Steuerung eines Doppelkupplungsgetriebes
DE102009005754B4 (de) Hydraulische Steuerung für ein automatisiertes Zahnräderwechselgetriebe eines Kraftfahrzeugs
DE102009005752A1 (de) Steuerungseinrichtung für ein automatisiertes Zahnräderwechselgetriebe eines Kraftfahrzeugs
WO2011047667A1 (de) Hydraulikanordnung zum ansteuern einer vielzahl von schaltschienen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780041597.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07817711

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1120070020873

Country of ref document: DE

REF Corresponds to

Ref document number: 112007002087

Country of ref document: DE

Date of ref document: 20090610

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07817711

Country of ref document: EP

Kind code of ref document: A2