WO2010126065A1 - 照明装置 - Google Patents

照明装置 Download PDF

Info

Publication number
WO2010126065A1
WO2010126065A1 PCT/JP2010/057508 JP2010057508W WO2010126065A1 WO 2010126065 A1 WO2010126065 A1 WO 2010126065A1 JP 2010057508 W JP2010057508 W JP 2010057508W WO 2010126065 A1 WO2010126065 A1 WO 2010126065A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color
white
chromaticity
led
Prior art date
Application number
PCT/JP2010/057508
Other languages
English (en)
French (fr)
Inventor
朋子 石渡
和徳 八代
勝友 内野
勇生 山崎
Original Assignee
東芝ライテック株式会社
株式会社東芝
三田 一敏
河野 仁志
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝ライテック株式会社, 株式会社東芝, 三田 一敏, 河野 仁志 filed Critical 東芝ライテック株式会社
Priority to US13/256,649 priority Critical patent/US20120008318A1/en
Priority to EP10769763A priority patent/EP2398079A1/en
Priority to CN2010800107691A priority patent/CN102341925A/zh
Publication of WO2010126065A1 publication Critical patent/WO2010126065A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an illuminating device including a light source such as a light emitting diode (LED).
  • a light source such as a light emitting diode (LED).
  • a light source device including a light source such as an LED has been used as a white light source of an illumination device.
  • a light source device in which a light source is composed of a blue LED and a yellow phosphor has a high luminous efficiency and a large luminous flux is obtained.
  • the white light emitting portion described in this document 1 obtains white light by applying the blue light emitted from the blue LED to the yellow phosphor that combines the remaining three primary colors red and green.
  • JIS Z 8726 Japanese Industrial Standard, JIS: Japanese Industrial Standard. This evaluation method quantifies the magnitude of color misregistration when 15 test colors are illuminated with a sample light source and reference illumination light.
  • the average color rendering index (Ra) is the average value of the special color rendering indices for the eight colors of the color rendering evaluation test colors 1 to 8, and the special color rendering index (R9) is the color rendering index for each test color. is there.
  • the color rendering index for the reference light is set to 100, and the color rendering index decreases as the color shift increases. That is, a light source with good color rendering properties has a large numerical value for color rendering index, and a light source with poor color rendering properties has a small numerical value for color rendering index.
  • the color rendering property of a light source is evaluated by a color rendering evaluation method using a color rendering evaluation number, mainly an average color rendering evaluation number (Ra).
  • a color rendering evaluation method is a relative evaluation with respect to a reference light source, and is not a sufficient evaluation method from the viewpoint of making colors appear vividly, and a conventional light source device has a sufficient effect of making colors appear vivid. There was a problem that could not be evaluated.
  • An illumination device includes a red LED having a peak wavelength of an emission spectrum of 610 to 630 nm and a half width of 10 to 20 nm; a peak wavelength of the emission spectrum of 500 to 520 nm, and a half width of 20
  • a green LED in the range of ⁇ 30 nm includes a blue LED having an emission spectrum peak wavelength in the range of 450-470 nm and a half-value width in the range of 10-20 nm; and a white LED composed of a blue light emitting element and a yellow phosphor;
  • the red LED light is generated in a luminous flux ratio of 26 to 38%;
  • the green LED light is generated in a luminous flux ratio of 35 to 50%;
  • the blue LED light is generated in a luminous flux ratio of 0 to 2%.
  • the white LED light is generated in a ratio of 12 to 33% in a luminous flux ratio; the light from the red, green, blue and white LEDs is additively mixed to obtain white light.
  • White light correlated color temperature is less than 3500K than 2800 K, and the absolute value of the deviation is within 0.02, JIS color rendering evaluation test color in the test light No.
  • Color gamut area when the test light is the white light with the ratio of the color gamut area formed by connecting 8 points on the chromaticity coordinates when 1 to 8 are illuminated with reference light as the gamut area ratio
  • the ratio is 120% or more and 140% or less.
  • the light of the red LED is generated in a luminous flux ratio of 18 to 30%; the light of the green LED is generated in a luminous flux ratio of 28 to 57%;
  • the white LED light is generated at a luminous flux ratio of 15 to 52%; the light from the red, green, blue and white LEDs is additively mixed to obtain white light.
  • the white light has a correlated color temperature of 5000 K to 10,000 K, an absolute value of deviation within 0.02, and a color gamut area ratio of 110% to 140% when the test light is the white light. It is characterized by the following.
  • a plurality of the red, green, blue and white LEDs are provided; LEDs having a complementary color relationship among the red, green, blue and white LEDs are arranged close to each other.
  • the same type of LEDs are arranged point-symmetrically.
  • an RGB sensor that detects a red component, a green component, and a blue component of incident light; and transmits and reflects light from the red, green, blue, and white LEDs.
  • a light-shielding member that blocks direct light from the red, green, blue, and white LEDs and applies mixed light from the diffuser to the RGB sensor; based on the detection result of the RGB sensor; And a controller that controls the light flux ratio of light from the green, blue, and white LEDs to be constant.
  • the light source further includes a light source that irradiates illumination light by additively mixing each color light from the red LED, the green LED, the blue LED, and the white LED, and the light source Is JIS color rendering evaluation test color No. with test light.
  • the test light was used as illumination light emitted from the light source, with the ratio of the gamut area formed by connecting 8 points on the chromaticity coordinates when 1 to 8 were illuminated with reference light as the gamut area ratio.
  • the color gamut area ratio is 105% or more and 140% or less
  • the JIS color rendering evaluation test color No. is determined by the illumination light or the reference light emitted from the light source.
  • the chromaticity when 9 color charts are illuminated is arranged on an a * b * chromaticity coordinate diagram, and the chroma difference between the illumination light and the reference light on the a * b * chromaticity coordinate diagram is 4 or more.
  • the correlated color temperature is 2800K or more and less than 5000K, and the absolute value of the deviation duv is within 0.02.
  • the light source further has a color gamut area ratio of 105% or more and 140% or less when the test light is illumination light emitted from the light source.
  • JIS color rendering evaluation test color No. by illumination light or reference light emitted from The chromaticity when illuminating 11 color charts is arranged on an a * b * chromaticity coordinate diagram, and the chroma difference between the illumination light and the reference light on the a * b * chromaticity coordinate diagram is 3 or more.
  • the correlated color temperature is 2800K or more and less than 3500K, and the absolute value of the deviation duv is 0.02 or less.
  • the light source further has a color gamut area ratio of 105% or more and 140% or less when the test light is illumination light emitted from the light source.
  • JIS color rendering evaluation test color No. by illumination light or reference light emitted from The chromaticity when illuminating 11 color charts is arranged on an a * b * chromaticity coordinate diagram, and the chroma difference between the illumination light and the reference light on the a * b * chromaticity coordinate diagram is 2 or more.
  • the correlated color temperature is 5000 K or more, and the absolute value of the deviation duv is 0.02 or less.
  • the light source further has a color gamut area ratio of 105% or more and 140% or less when the test light is illumination light emitted from the light source.
  • JIS color rendering evaluation test color no The first chromaticity when the 9 color charts are illuminated is arranged on the a * b * chromaticity coordinate diagram, and the ab hue angle hab of the first chromaticity on the a * b * chromaticity coordinate diagram (No. 9) is an area of 0 ° to 45 ° or an area of 315 ° to 360 °, and JIS color rendering evaluation test color No.
  • the second chromaticity when the 11 color charts are illuminated is arranged on the a * b * chromaticity coordinate diagram, and the ab hue angle hab of the second chromaticity on the a * b * chromaticity coordinate diagram.
  • (No. 11) is an area of 135 ° to 225 °, the correlated color temperature is 2800K or more and less than 5000K, and the absolute value of the deviation duv is within 0.02.
  • the second chromaticity when the 11 color charts are illuminated is arranged on the a * b * chromaticity coordinate diagram, and the ab hue angle hab of the second chromaticity on the a * b * chromaticity coordinate diagram. (No. 11) is a region of 135 ° to 225 °.
  • the light source further has a color gamut area ratio of 105% or more and 140% or less when the test light is illumination light emitted from the light source.
  • JIS color rendering evaluation test color No. by illumination light or reference light emitted from The chromaticity when illuminating 11 color charts is arranged on an a * b * chromaticity coordinate diagram, and the chroma difference between the illumination light and the reference light on the a * b * chromaticity coordinate diagram is 2 or more.
  • the correlated color temperature is 5000 K
  • the absolute value of the deviation duv is 0.02 or less
  • the illumination light is JIS color rendering evaluation test color No.
  • the light from the red, green, blue, and white LEDs is additively mixed to obtain white light
  • the white light includes the test light as the light.
  • the color gamut area ratio in the case of white light is 105% or more and 140% or less
  • the JIS color rendering evaluation test color No. is determined by illumination light or reference light emitted from the light source.
  • the chromaticity when 9 color charts are illuminated is arranged on an a * b * chromaticity coordinate diagram, and the chroma difference between the illumination light and the reference light on the a * b * chromaticity coordinate diagram is 4 or more. It is characterized by being.
  • the light from the red, green, blue and white LEDs is additively mixed to obtain white light, and the white light is used to convert the test light into the white light.
  • the color gamut area ratio is 105% or more and 140% or less, and the JIS color rendering evaluation test color No. is determined by the illumination light or the reference light emitted from the light source.
  • the chromaticity when 9 color charts are illuminated is arranged on an a * b * chromaticity coordinate diagram, and the chroma difference between the illumination light and the reference light on the a * b * chromaticity coordinate diagram is 4 or more. It is characterized by being.
  • the light from the red, green, blue and white LEDs is additively mixed to obtain white light, and the white light is used to convert the test light into the white light.
  • the color gamut area ratio is 105% or more and 140% or less, and the JIS color rendering evaluation test color No. is determined by the illumination light or the reference light emitted from the light source.
  • the chromaticity when 9 color charts are illuminated is arranged on an a * b * chromaticity coordinate diagram, and the chroma difference between the illumination light and the reference light on the a * b * chromaticity coordinate diagram is 4 or more. It is characterized by being.
  • the light from the red, green, blue and white LEDs is additively mixed to obtain white light, and the white light is used to convert the test light into the white light.
  • the color gamut area ratio is 105% or more and 140% or less, and the JIS color rendering evaluation test color No. is determined by the illumination light or the reference light emitted from the light source.
  • the chromaticity when illuminating 11 color charts is arranged on an a * b * chromaticity coordinate diagram, and the chroma difference between the illumination light and the reference light on the a * b * chromaticity coordinate diagram is 3 or more. It is characterized by being.
  • the light from the red, green, blue and white LEDs is additively mixed to obtain white light, and the white light is used to convert the test light into the white light.
  • the color gamut area ratio is 105% or more and 140% or less, and the JIS color rendering evaluation test color No. is determined by the illumination light or the reference light emitted from the light source.
  • the chromaticity when illuminating 11 color charts is arranged on an a * b * chromaticity coordinate diagram, and the chroma difference between the illumination light and the reference light on the a * b * chromaticity coordinate diagram is 3 or more. It is characterized by being.
  • the light from the red, green, blue and white LEDs is additively mixed to obtain white light, and the white light is used to convert the test light into the white light.
  • the color gamut area ratio is 105% or more and 140% or less, and the JIS color rendering evaluation test color No. is determined by the illumination light or the reference light emitted from the light source.
  • the chromaticity when illuminating 11 color charts is arranged on an a * b * chromaticity coordinate diagram, and the chroma difference between the illumination light and the reference light on the a * b * chromaticity coordinate diagram is 2 or more. It is characterized by being.
  • the block diagram which shows schematic structure of this illuminating device concerning one Embodiment of the illuminating device provided with the light source device of this invention The block diagram which shows the specific structure of the RGB chip
  • the chromaticity is shown on the chromaticity diagram when the reference light is set to 100 and the four colors of the color rendering evaluation test colors Nos. 9 to 12 are illuminated using the illumination light of the light source device 3, the reference light, and the white LED.
  • the chromaticity is shown in the chromaticity diagram when the reference light is set to 100 and the eight colors of the color rendering evaluation test colors Nos. 1 to 8 are illuminated using the illumination light of the light source device 3, the reference light, and the white LED.
  • the graph which shows a color gamut area.
  • FIG. Explanatory drawing for demonstrating the characteristic of the illuminating device designed according to the flowchart of FIG.
  • the block diagram which shows schematic structure of a light source device.
  • FIG. 1 is a block diagram showing a schematic configuration of an illumination apparatus according to an embodiment of the illumination apparatus of the present invention.
  • the illumination device 1 includes a device main body 2, a light source device 3 disposed in the device main body 2, and lighting that controls a lighting state or a light-off state of the light source device 3.
  • the apparatus 4 is comprised.
  • the apparatus main body 2 is arranged on a ceiling or the like in a building, for example, and is configured in a shape in which the light source device 3 can be disposed.
  • the apparatus main body 2 is formed in a casing shape or a plate shape having a low height, but is not limited to these shapes, and may be any shape as long as the light source device 3 can be disposed.
  • the light source device 3 has a light source that includes a plurality of white LEDs 3a that emit first white light and a plurality of RGB chips 3b that emit second white light.
  • the light source emits illumination light that is white light by mixing the first white light and the second white light.
  • the white LED 3a is composed of a blue LED chip that emits blue light and a yellow phosphor that emits yellow light.
  • the white LED 3a is configured to include a resin portion in which a yellow phosphor is dispersed in an epoxy resin so as to cover a blue LED chip.
  • FIG. 2 shows the configuration of the RGB chip 3b that constitutes a light source with the white LED 3a.
  • FIG. 2 is a configuration diagram showing a specific configuration of the RGB chip 3b.
  • the RGB chip 3b includes a red LED (RLED) 5a that emits red (R), a green LED (GLED) 5b that emits green (G), and a blue that emits blue (B).
  • LED (BLED) 5c and these RGB LEDs 5a to 5c are arranged on a substrate 3b1.
  • the light source device 3 is provided with a plurality of the white LEDs 3a in the vertical direction and the horizontal direction on the device main body 2, and surrounds one RGB chip 3b with, for example, four white LEDs 3a. As described above, a plurality of RGB chips 3b are arranged.
  • the RGB chip 3b has a blue component having a peak relative value between about 460 (nm) and 470 (nm), and about 520 (nm) to 530 (nm). And an optical characteristic having a green component having a relative value of the peak between and a red component having a relative value of the peak between about 630 (nm) to 640 (nm).
  • the RGB chip 3b is not limited to the spectral distribution shown in FIG. 4, and may have a blue component, a green component, and a red component. Then, the second white light is obtained by irradiating light with such a spectral distribution by the RGB chip 3b.
  • the spectral distribution of the light source of the light source device 3 is shown in FIG. That is, as shown in FIG. 5, the light source of the light source device 3 includes a blue component having a peak relative value between about 460 (nm) and 470 (nm), and about 530 (nm) to 540 (nm). It has an optical characteristic having a green component having a relative value of a peak in between and a red component having a relative value of a peak between about 630 (nm) and 640 (nm).
  • the light source of the light source device 3 can irradiate white light supplemented with a red component as compared with conventional white light alone as shown in FIG. .
  • the light source device 3 (light source) having such characteristics is configured to satisfy the color rendering evaluation conditions of the light source described later.
  • Such a color rendering property evaluation condition of the light source will be described with reference to FIGS.
  • FIG. 6 is a chromaticity diagram showing the chromaticity when the four colors of the color rendering evaluation test colors No. 9 to No. 12 are illuminated using the illumination light of the light source device 3, the reference light, and the white LED of the present embodiment. It is a graph which shows the color gamut area shown.
  • FIG. 7 shows the chromaticity when the eight colors of the color rendering evaluation test colors Nos. 1 to 8 are illuminated using the illumination light of the light source device 3, the reference light, and the white LED of the present embodiment. It is a graph which shows the color gamut area shown on the figure.
  • the light source 52 of the light source device 3 of the present embodiment arranges the chromaticity when illuminating at least three kinds of color charts having different hues by the illumination light emitted from the light source 52 on the chromaticity diagram, A polygon corresponding to the light source 52 is formed by connecting the arranged points.
  • the light source 52 of the light source device 3 can emit illumination light that is white light in which the ratio of the polygonal area corresponding to the light source 52 and the polygonal area corresponding to the reference light is greater than 1.
  • the irradiance light of the reference light 50 is illuminated on the color charts of the four colors P9 to P12 of the color rendering evaluation test colors 9 to 12 defined in JIS Z 8726, and each chromaticity at that time is expressed as chromaticity.
  • chromaticity points 9a, 10a, 11a and 12a corresponding to the respective color charts P9 to P12 are obtained.
  • the illuminating light of the light source 52 of the light source device 3 of the present embodiment is illuminated against the color charts of the four colors P9 to P12 of the color rendering evaluation test colors Nos. 9 to 12, and the respective chromaticities at that time are determined.
  • chromaticity points 9c, 10c, 11c, and 12c corresponding to the respective color charts P9 to P12 are obtained as shown in FIG.
  • quadrangles are formed by connecting chromaticity points corresponding to the reference light 50, the white LED 51, and the light source 52 of the light source device 3. These square areas are defined as color gamut areas 50A, 51A, and 52A.
  • the reference light 50 is assumed to have the same correlated color temperature as the irradiation light from the light source 52 of the light source device 3.
  • the polygonal color gamut area (hereinafter referred to as the color gamut area of the reference light 50) 50A formed as a result is 100, a calculation result of 119 was obtained as shown in Table 1 below. That is, the ratio between the color gamut area 52A of the light source 52 and the color gamut area 50A of the reference light 50 is 1.19, which is larger than 1.
  • a polygonal color gamut area (hereinafter referred to as a color gamut area of the white LED 51) 51A formed by connecting the chromaticity points corresponding to the white LED 51 is 76 as shown in Table 1 above. It can be seen that the ratio between the color gamut area 51A of the white LED 51 and the color gamut area 50A of the reference light 50 is 0.76, which is lower than the color gamut area ratio of the light source 52 of the present embodiment.
  • chromaticity points 1a, 2a, 3a, 4a, 6a, 7a and 8a corresponding to the respective color charts P1 to P8 are obtained.
  • FIG. 1 chromaticity points 1b, 2b, 3b, 4b, 5b, 6b, 7b and 8b corresponding to the respective color charts P1 to P8 are obtained.
  • the irradiating light of the light source 52 of the light source device 3 of the present embodiment is illuminated on the color charts of the eight colors P1 to P8 of the color rendering evaluation test colors Nos. 1 to 8, and each chromaticity at that time is represented by a chromaticity diagram. As shown in FIG. 7, chromaticity points 1c, 2c, 3c, 4c, 5c, 6c, 7c, and 8c corresponding to the respective color charts P1 to P8 are obtained.
  • octagons are formed by connecting the chromaticity points corresponding to the reference light 50, the white LED 51, and the light source 52 of the light source device 3. These octagonal areas are defined as color gamut areas 50A, 51A, and 52A.
  • the calculation result is 108 as shown in Table 1 above. That is, the ratio between the color gamut area 52A of the light source 52 and the color gamut area 50A of the reference light 50 is 1.08, which is also larger than 1.
  • the color gamut area 51A of the white LED 51 is 76 as shown in Table 1, and the ratio between the color gamut area 51A of the white LED 51 and the reference light 50 is 50A. It is 0.76, which is understood to be lower than the color gamut area ratio of the light source 52 of the present embodiment.
  • the color charts (red, yellow, green, blue) of the four colors P9 to P12 of the color rendering evaluation test colors 9 to 12 have relatively high saturation, and such color rendering evaluation test colors 9 to 12 are used.
  • the color gamut area ratio of the colors as a color rendering evaluation method of the light source, it can be evaluated as illumination light that makes a relatively vivid color appear more vividly.
  • the light emitted from the light source device 3 is significantly larger than the white LED 51 because the red chromaticity of the color rendering evaluation test color No. 9 is larger than the reference light 50. , It becomes white light that can show red vividly.
  • the light emitted from the light source device 3 is formed by illuminating the color charts of the eight colors P1 to P8 of the color rendering evaluation test colors Nos. 1 to 8 defined by the JIS Z 8726.
  • the color gamut area 52A has a color gamut area ratio of 1.08 with the color gamut area 50A of the reference light 50, and as shown in FIG. Since the chromaticity of each of the colors No. 1, No. 3, No. 6, and No. 8 is larger than that of the reference light 50, it is white light that can make the color look brighter than the white LED 51. .
  • the light source device 3 satisfies the condition that each color gamut area ratio corresponding to the color rendering evaluation test color defined in JIS Z 8726 is greater than 1, and particularly the red component. It is possible to irradiate white light supplemented with.
  • step S2 the computer determines a peak wavelength and a half-value width for each of these four types of LEDs.
  • the computer calculates the light mixture ratio of the red LED, the green LED, and the blue LED (step S3), and calculates the average color rendering index Ra, the color gamut area ratio Ga, and the efficiency (step S4).
  • a control unit in the lighting device controls driving of each LED. That is, the control unit drives and controls the LEDs based on the half-value width, peak wavelength, and output ratio of each LED chip obtained so as to obtain the optimized spectral distribution as described above.
  • the color of the lit object looks bright and constitutes an efficient lighting device.
  • Tables 2 to 5 below show the calculation results of the optimization calculation shown in FIG. Tables 2 to 5 show examples of settings for obtaining the target color gamut area ratio Ga as 2800K, 3500K, 5000K, or 10000K.
  • a number (No.) is assigned to each setting example, and the peak wavelength and half-value width set for each of the red LED (R), the green LED (G), and the blue LED (B), and these
  • the light mixing ratio of the red LED (R), green LED (G), blue LED (B), and white LED (W) is shown as a percentage.
  • the gamut area ratio Ga and efficiency obtained by setting these peak wavelength, half width and light mixture ratio are shown (the gamut area ratio Ga in Tables 2 to 5 is the gamut of the reference light source). The area is shown as 100).
  • the setting numbers (No.) 1 to 18 have a gamut area ratio Ga of 120 or more
  • the setting numbers (No.) 19 to 34 have a gamut area ratio Ga of 110 or more
  • the control unit in the lighting device sets the half-value width, peak wavelength, and light mixture ratio of each LED, so that the color is vividly displayed by illumination from the illumination device be able to.
  • Table 6 summarizes the maximum and minimum values of the light mixture ratio for each correlated color temperature from Tables 2 to 5 above, and shows the fluctuation of the light mixture ratio of each LED due to the change of the correlated color temperature. Is.
  • FIG. 9 shows the light mixture color in the vicinity of 2800K in Table 2, the warm color as the light source color near 3500K, the light mixture ratio for obtaining the daytime white color as the light source color near 5000K, the spectral distribution and the color. It is explanatory drawing which shows a degree figure correspondingly.
  • the lighting device having a correlated color temperature (CCT) of 2800K and an absolute value of deviation (duv) of 0.0000, a red LED (R), a green LED ( It is understood that 134 is obtained as the color gamut area ratio Ga by configuring the G), the blue LED (B), and the white LED (W) so that the light mixture ratio 29: 38: 0: 33 is obtained.
  • CCT correlated color temperature
  • duv absolute value of deviation
  • 121 is obtained as the color gamut area ratio Ga by configuring (W) such that the light mixture ratio is 14: 31: 2: 53.
  • a plurality of red LEDs, green LEDs, blue LEDs, and white LEDs are disposed on the substrate 100, and a lighting device (not shown) for lighting each LED is disposed in the housing 110. Electric power is supplied to each LED and lighting device via a base 111.
  • a diffusion plate 112 is attached to the housing 110, and light emitted from each LED in the housing 110 is emitted through the diffusion plate 112.
  • an illumination device such as a downlight illuminator, in which the uneven color of the irradiated surface and the uneven color of the shadow are improved.
  • an illumination device having a desired correlated color temperature and a desired color gamut area ratio Ga can be configured by controlling the light mixture ratio of each color LED.
  • each LED has a different state such as a decrease in luminous flux due to heat and aged deterioration due to the chip material, there is a possibility that the light color of the illumination due to mixed light may change over time.
  • the state of light mixing by each LED is detected and each LED is controlled to prevent the light color from changing.
  • the LEDs 121 are arranged in a matrix on the substrate 120 except for the substantially central portion of the substrate 120.
  • An RGB sensor 124 is disposed at the center portion of the substrate 120, and the RGB sensor 124 is covered with a light shielding hood 123 erected up to a position higher than the emission surface of the LED 121. Light emitted from each LED 121 is emitted through the diffusion plate 112 of FIG.
  • the control unit 125 Based on the detected color light components in the mixed light, the control unit 125 sets the light mixture ratio of the red LED, green LED, blue LED, or white LED to, for example, the set values in Tables 2 to 5 or FIG. As such, the half-value width, peak wavelength, and light mixture ratio of each LED are controlled.
  • each LED 121 can always be driven at a constant light mixture ratio regardless of the characteristics of each LED or the difference in aging. As a result, it is possible to stably obtain a lighting device having a desired correlated color temperature and deviation, and having target efficiency, average color rendering index Ra, and color gamut area ratio Ga.
  • the illuminating apparatus configured in the same manner as in FIG. 1 has a desired value for the chroma difference on the a * b * chromaticity coordinate diagram based on the JIS color rendering evaluation test color as well as the color gamut area ratio. Is designed.
  • the color gamut area ratio Ga is used as a color rendering evaluation method for making colors appear vividly. However, in store lighting or the like, it may be required to make an object appear prominently and vividly.
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-045206
  • Patent Document 3 Japanese Patent Laid-Open No. 2006-261702
  • the color gamut area ratio Ga, Ga4 is used as an index for preventing vividness from being lowered.
  • Ga is JIS color rendering evaluation test color No.
  • Ga4 is JIS color rendering evaluation test color No. Color gamut area formed by connecting 4 points on chromaticity coordinates when illuminated with reference light 9 to 12 and color formed by connecting 4 points on chromaticity coordinates when illuminated with test light It is the ratio of area. And in the proposal of the said patent documents 2 and 3, Ga ⁇ Ga4 is mentioned as conditions for not reducing vigor.
  • the color gamut spreads in the green direction on the chromaticity coordinates and narrows in the red direction, and the color gamut is red on the chromaticity coordinates.
  • the green is not visible vividly, and the object cannot be illuminated so that the object appears sufficiently vivid. Further, it is not possible to obtain a sufficient value as the average color rendering index Ra.
  • the color gamut area ratio Ga but also the chroma difference from the reference light for the red test color, which is an index of the vividness of red in particular, is set to a specified value. It is designed to improve the vividness of red objects while improving the vividness.
  • JIS color rendering evaluation test color No. is used as the chroma difference from the reference light for the red test color. From the distance between the point on the a * b * chromaticity coordinate diagram and the origin when 9 is illuminated with the test light, the distance between the point on the a * b * chromaticity coordinate diagram and the origin when illuminated with the reference light Is used (hereinafter referred to as ⁇ C * ab (No. 9)).
  • a white LED composed of a blue LED that emits blue light and a yellow phosphor that emits yellow light
  • a red LED, a green LED, and a blue LED for obtaining white light The light source device is constituted by a total of four LEDs, and the output ratio of the four LEDs is changed, whereby the color gamut area ratio Ga is improved to 105% or more or 110% or more, and the index ⁇ C * ab (No. 9 ) Is 4 or more.
  • FIGS. 14 to 16 show colors when food is illuminated by a light source device composed of red, green, blue, and white LEDs, with the color gamut area ratio Ga on the horizontal axis and the evaluation value of vividness on the vertical axis. It is a graph which shows the relationship between area area ratio Ga and evaluation of the freshness of foodstuffs.
  • FIGS. 14 to 16 show a light source device that obtains illumination with a correlated color temperature of 2800K and an absolute value of deviation within 0.02, and an illumination with a correlated color temperature of 3500K and an absolute value of deviation within 0.02. Or a light source device that obtains illumination with a correlated color temperature of 5000 K and an absolute value of deviation within 0.02.
  • a color gamut area ratio Ga As shown in FIG. 14, in a light source device having a correlated color temperature of 2800K, a color gamut area ratio Ga of approximately 110% or more and 140% or less is obtained in order to obtain an evaluation value of 5 or more that is judged to be relatively fresh. It turns out that it is necessary.
  • a color gamut area ratio of approximately 105% or more and 140% or less is obtained in order to obtain an evaluation value of 5 or more that is judged to be relatively fresh. It can be seen that Ga is necessary.
  • a color gamut area ratio of approximately 105% to 140% is obtained in order to obtain an evaluation value of 5 or more that is judged to be relatively fresh. It can be seen that Ga is necessary.
  • FIGS. 17 to 19 show ⁇ C * ab (No. 9) on the horizontal axis and the evaluation value of red vividness on the vertical axis, and food is served by a light source device composed of red, green, blue and white LEDs. It is a graph which shows the relationship between (DELTA) C * ab (No. 9) and evaluation of the vividness of red at the time of illuminating.
  • FIGS. 17 to 19 are light source devices that obtain illumination with a correlated color temperature of 2800K and an absolute value of deviation within 0.02, respectively, and illumination with a correlated color temperature of 3500K and an absolute value of deviation within 0.02. Or a light source device that obtains illumination with a correlated color temperature of 5000 K and an absolute value of deviation within 0.02.
  • the color gamut area ratio Ga is set to 105% or more (or 110% or more) 140% or less, and red
  • the index ⁇ C * ab (No. 9) based on the chroma difference using the test colors is set to 4 or more.
  • the object to be illuminated is designed while designing the color gamut area ratio, the average color rendering index (Ra), and the efficiency to desired values. It is possible to make it look vivid.
  • 20 to 22 are graphs for explaining the sixth embodiment of the present invention.
  • This embodiment is different from the fifth embodiment in that the light source device is designed using a chroma difference using a green test color instead of a chroma difference using a red test color.
  • Other configurations are the same as those of the fifth embodiment.
  • the average vibrancy is improved, and in particular, the vibrancy of the green object is improved.
  • the JIS color rendering evaluation test color No. is used as the chroma difference using the green test color.
  • the distance between the point on the a * b * chromaticity coordinate diagram and the origin when 11 is illuminated with the test light, and the distance between the point on the a * b * chromaticity coordinate diagram and the origin when illuminated with the reference light Is used hereinafter referred to as ⁇ C * ab (No. 11)).
  • a white LED composed of a blue LED that emits blue light and a yellow phosphor that emits yellow light
  • a red LED, a green LED, and a blue LED for obtaining white light The light source device is configured by a total of four LEDs, and the output ratio of the four LEDs is changed to improve the color gamut area ratio Ga to 105% or more or 110% or more, and the index ⁇ C * ab (No. 11 ) Is set to 3 or more or 2 or more.
  • the color gamut area ratio Ga is set to 105% or more and 140% or less, and the green test color is used.
  • the index ⁇ C * ab (No. 11) due to chroma difference is set to 2 or 3 or more.
  • the example of defining the color gamut area ratio and the hue on the a * b * chromaticity coordinate diagram has been described.
  • the color gamut is described. It is obvious that the area ratio, the chroma difference value on the a * b * chromaticity coordinate diagram, and the hue on the a * b * chromaticity coordinate diagram may be defined.
  • the color gamut area ratio Ga is set to 105% or more and 140% or less, and a * b * chromaticity coordinates.
  • the hue in the figure is the red range and the ab hue angle hab is about 0 ° to 45 ° or 315 ° to 360 °, and the green range is the ab hue angle hab is about 135 ° to 225 ° Set to.
  • the color gamut area ratio, the average color rendering index (Ra), and the efficiency are designed to desired values, and the illumination target is illuminated. It is possible to make things look vivid.

Abstract

 照明装置は、赤色LEDと;緑色LEDと;青色LEDと;青色発光素子と黄色蛍光体とによって構成される白色LEDと;を有し、赤色LED26~38%;緑色LED35~50%;青色LED0~2%し;白色LED12~33%とし;赤色、緑色、青色及び白色LEDからの光を加法混色得る白色光が、相関色温度が2800K以上3500K未満、偏差0.02以内であり、色域面積比が120%以上140%以下であることを特徴とし、色を鮮やかに見せる照明光を照射できる。

Description

照明装置
 本発明は、発光ダイオード(LED:Light Emitting Diode)等の光源を備えた照明装置に関する。
 従来より、LED等の光源を備えた光源装置は、照明装置の白色光源として利用されている。特に、光源が青色LEDと黄色蛍光体とで構成される光源装置は、発光効率が高く、大きな光束が得られるため、白色光源の主流となっている。
 この種の光源としては、例えば、特開2005-101296号公報(以下、文献1)に記載されているように、単色に発光するLEDチップを有する単色発光部分と、別のLEDチップを含む白色発光部分とを有し、この白色発光部分が青色に発光する青色LEDチップと、黄色に発光する蛍光体(黄色蛍光体に相当)とで構成された可変色発光ダイオード素子がある。
 この文献1に記載の白色発光部分は、青色LEDが発光する青色の光を、残る3原色である赤色と緑色を組み合わせた黄色の蛍光体に当てることにより白色光を得ている。
 ところが、このような青色LEDと黄色蛍光体とで構成される光源では、長波長域発光の成分が少ないため、特に赤色の見え方が劣ってしまうといった問題がある。すなわち、赤色の見え方が劣ってしまうことは、前記光源から照射される照明光が、赤色成分が少ない白色光であることを意味している。
 ところで、光源の演色性を評価する方法としては、JIS Z 8726(日本工業規格JIS:Japanese Industrial Standard、光源の演色性評価方法)で規定されたものがある。この評価方法は、15色の試験色を、試料光源と基準となる照明光で照明したときの色ずれの大きさを数値化するものである。 
 平均演色評価数(Ra)は、演色評価試験色1番~8番の8色に対する特殊演色評価数の平均値であり、特殊演色評価数(R9)は、個々の試験色に対する演色評価数である。
 この演色性評価方法では、基準光に対する演色評価数を100とし、色ずれが大きくなるにしたがって演色評価数は小さくなる。すなわち、演色性が良い光源は、演色評価数の数値が大きく、演色性の劣る光源は演色評価数の数値が小さくなる。
 従来、LED等を用いた照明装置においても、演色評価数、主に平均演色評価数(Ra)を用いた演色評価方法によって、光源の演色性を評価している。しかしながら、このような演色性評価方法は、基準光源に対する相対評価であって、色を鮮やかに見せるという観点では、十分な評価方法ではなく、従来の光源装置においては色を鮮やかに見せる効果が十分に評価できないという問題があった。
 本発明の1実施形態としての照明装置は、発光スペクトルのピーク波長が610~630nm、半値幅が10~20nmの範囲にある赤色LEDと;発光スペクトルのピーク波長が500~520nm、半値幅が20~30nmの範囲にある緑色LEDと;発光スペクトルのピーク波長が450~470nm、半値幅が10~20nmの範囲にある青色LEDと;青色発光素子と黄色蛍光体とによって構成される白色LEDと;を有し、前記赤色LEDの光を光束比で26~38%発生し;前記緑色LEDの光を光束比で35~50%発生し;前記青色LEDの光を光束比で0~2%発生し;前記白色LEDの光を光束比で12~33%発生し;前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、前記白色光は、相関色温度が2800K以上3500K未満、偏差の絶対値が0.02以内であり、試験光でJIS演色評価試験色No.1~8を照らしたときの色度座標上の8点を結んで形成される色域面積と前記JIS演色評価試験色No.1~8を基準光で照らしたときの色度座標上の8点を結んで形成される色域面積との比を色域面積比として前記試験光を前記白色光とした場合の色域面積比が120%以上140%以下であることを特徴とする。
 本発明の1実施形態に記載の照明装置において、前記赤色LEDの光を光束比で18~31%発生し;前記緑色LEDの光を光束比で28~46%発生し;前記青色LEDの光を光束比で0~2%発生し;前記白色LEDの光を光束比で23~52%発生し;前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、前記白色光は、相関色温度が3500K以上5000未満、偏差の絶対値が0.02以内であり、前記試験光を前記白色光とした場合の色域面積比が120%以上140%以下であることを特徴とする。
 本発明の1実施形態に記載の照明装置において、前記赤色LEDの光を光束比で18~30%発生し;前記緑色LEDの光を光束比で28~57%発生し;前記青色LEDの光を光束比で0~3%発生し;前記白色LEDの光を光束比で15~52%発生し;前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、前記白色光は、相関色温度が5000K以上10000K以下、偏差の絶対値が0.02以内であり、前記試験光を前記白色光とした場合の色域面積比が110%以上140%以下であることを特徴とする。
 本発明の1実施形態に記載の照明装置において、前記赤色、緑色、青色及び白色LEDは、いずれも複数設けられ;前記赤色、緑色、青色及び白色LEDのうち補色関係を有するLED同士を近接配置すると共に、同一種類のLED同士を点対称に配置することを特徴とする。
 本発明の1実施形態に記載の照明装置において、入射した光の赤色成分、緑色成分及び青色成分を検出するRGBセンサと;前記赤色、緑色、青色及び白色LEDからの光を透過させると共に反射させる拡散板と;前記赤色、緑色、青色及び白色LEDからの直接光を阻止し前記拡散板からの混光を前記RGBセンサに与える遮光部材と;前記RGBセンサの検出結果に基づいて、前記赤色、緑色、青色及び白色LEDからの光の光束比を一定に制御する制御部と;を具備したことを特徴とする。
 本発明の2実施形態としての照明装置において、さらに赤色LEDと、緑色LEDと、記青色LEDと、白色LEDからの各色光を加法混色して、照明光を照射する光源を有し、前記光源は、試験光でJIS演色評価試験色No.1~8を照らしたときの色度座標上の8点を結んで形成される色域面積と前記JIS演色評価試験色No.1~8を基準光で照らしたときの色度座標上の8点を結んで形成される色域面積との比を色域面積比として前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.9の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が4以上であり、相関色温度が2800K以上5000K未満であり、偏差duvの絶対値が0.02以内であることを特徴とする。
 本発明の2実施形態に記載の照明装置において、さらに前記光源は、前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が3以上であり、相関色温度が2800K以上3500K未満であり、偏差duvの絶対値が0.02以内であることを特徴とする。
 本発明の2実施形態に記載の照明装置において、さらに前記光源は、前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が2以上であり、相関色温度が5000K以上であり、偏差duvの絶対値が0.02以内であることを特徴とする。
 本発明の2実施形態に記載の照明装置において、さらに前記光源は、前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光によりJIS演色評価試験色No.9の色票を照らしたときの第1の色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記第1の色度のab色相角hab(No.9)が0°~45°の領域又は315°~360°の領域であり、前記照明光によりJIS演色評価試験色No.11の色票を照らしたときの第2の色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記第2の色度のab色相角hab(No.11)が135°~225°の領域であり、相関色温度が2800K以上5000K未満であり、偏差duvの絶対値が0.02以内であることを特徴とする。
 本発明の2実施形態に記載の照明装置において、さらに前記光源は、前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.9の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が4以上であり、相関色温度が2800K以上5000K未満であり、偏差duvの絶対値が0.02以内であり、更に、前記照明光によりJIS演色評価試験色No.9の色票を照らしたときの第1の色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記第1の色度のab色相角hab(No.9)が0°~45°の領域又は315°~360°の領域であることを特徴とする。
 本発明の2実施形態に記載の照明装置において、さらに前記光源は、前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が3以上であり、相関色温度が2800K以上3500K未満であり、偏差duvの絶対値が0.02以内であり、更に、前記照明光によりJIS演色評価試験色No.11の色票を照らしたときの第2の色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記第2の色度のab色相角hab(No.11)が135°~225°の領域であることを特徴とする。
 本発明の2実施形態に記載の照明装置において、さらに前記光源は、前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が2以上であり、相関色温度が5000Kであり、偏差duvの絶対値が0.02以内であり、更に、前記照明光によりJIS演色評価試験色No.11の色票を照らしたときの第2の色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記第2の色度のab色相角hab(No.11)が135°~225°の領域であることを特徴とする。
 本発明の1実施形態に記載の照明装置において、さらに前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、前記白色光は、前記試験光を前記白色光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.9の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が4以上であることを特徴とする。
 本発明の1実施形態の照明装置において、さらに前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、前記白色光は、前記試験光を前記白色光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.9の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が4以上であることを特徴とする。
 本発明の1実施形態の照明装置において、さらに前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、前記白色光は、前記試験光を前記白色光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.9の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が4以上であることを特徴とする。
 本発明の1実施形態の照明装置において、さらに前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、前記白色光は、前記試験光を前記白色光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が3以上であることを特徴とする。
 本発明の1実施形態の照明装置において、さらに前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、前記白色光は、前記試験光を前記白色光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が3以上であることを特徴とする。
 本発明の1実施形態の照明装置において、さらに前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、前記白色光は、前記試験光を前記白色光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が2以上であることを特徴とする。
 本発明の1実施形態の照明装置において、さらに赤色LEDと、緑色LEDと、記青色LEDと、白色LEDを配設する装置本体と;前記赤色LEDと、緑色LEDと、記青色LEDと、白色LEDの点灯状態又は消灯状態を制御する点灯装置と;を具備したことを特徴とする。
本発明の光源装置を備えた照明装置の一実施の形態に係り、該照明装置の概略構成を示す構成図。 図1のRGBチップ3bの具体的な構成を示す構成図。 白色LED3aの分光分布を示すグラフ。 RGBチップ3bの分光分布を示すグラフ。 白色LED3aとRGBチップ3bとを合わせた光源の分光分布を示すグラフ。 基準光を100とし、光源装置3、基準光、及び白色LEDの各照明光を用いて演色評価試験色9番~12番の4色を照らした場合の色度を色度図上に示した色域面積を示すグラフ。 基準光を100とし、光源装置3、基準光、及び白色LEDの各照明光を用いて演色評価試験色1番~8番の8色を照らした場合の色度を色度図上に示した色域面積を示すグラフ。 色域面積比等を求めるためのフローチャート。 図8のフローチャートに従って設計した照明装置の特性を説明するための説明図。 光源装置の概略構成を示す構成図。 図10の光源装置が組み込まれた照明装置の外観を示す説明図。 光源装置の平面形状を示す説明図。 光源装置の断面形状及び点灯装置の一部を示す説明図。 本発明の第5の実施の形態を説明するためのグラフ。 本発明の第5の実施の形態を説明するためのグラフ。 本発明の第5の実施の形態を説明するためのグラフ。 本発明の第5の実施の形態を説明するためのグラフ。 本発明の第5の実施の形態を説明するためのグラフ。 本発明の第5の実施の形態を説明するためのグラフ。 本発明の第6の実施の形態を説明するためのグラフ。 本発明の第6の実施の形態を説明するためのグラフ。 本発明の第6の実施の形態を説明するためのグラフ。 本発明の第7の実施の形態を説明するための説明図。
 以下、図面を参照して本発明の実施の形態について説明する。 
 図1は本発明の照明装置の一実施の形態に係り、該照明装置の概略構成を示す構成図である。
 図1に示すように、本実施の形態の照明装置1は、装置本体2と、この装置本体2に配設される光源装置3と、この光源装置3の点灯状態又は消灯状態を制御する点灯装置4とを有して構成されている。
 装置本体2は、例えば建物内の天井等に配置され、光源装置3が配設可能な形状に構成されている。尚、装置本体2は、高さの低い筐体形状、又は板形状に形成されるが、これらの形状に限定されるものではなく、光源装置3が配設可能な形状であれば良い。
 光源装置3は、第1の白色光を発光する複数の白色LED3aと、第2の白色光を発光する複数のRGBチップ3bとを有して構成された光源を有している。この光源は、第1の白色光と第2の白色光とが混光することで白色光である照明光を発する。
 白色LED3aは、青色に発光する青色LEDチップと、黄色に発光する黄色蛍光体とで構成されている。例えば、白色LED3aは、図示はしないが、青色LEDチップを覆うようにエポキシ樹脂に黄色蛍光体を分散させた樹脂部を有して構成される。
 一方、この白色LED3aとで光源を構成するRGBチップ3bの構成を図2に示している。図2は、RGBチップ3bの具体的な構成を示す構成図である。
 図2に示すように、RGBチップ3bは、赤色(R)に発光する赤色LED(RLED)5aと、緑色(G)に発光する緑色LED(GLED)5bと、青色(B)に発光する青色LED(BLED)5cとを有し、これらRGB各色のLED5a~5cが基板3b1上に配設されて構成されている。
 そして、光源装置3は、図1に示すように、前記白色LED3aを装置本体2上の縦方向及び横方向に複数配設するとともに、例えば4個の白色LED3aで1個のRGBチップ3bを囲むように、複数のRGBチップ3bを配設して構成している。
 尚、勿論、白色LED3a及びRGBチップ3bの配置位置は、図1に示す構成に限定されるものではなく、適宜配置位置を変更して構成しても良い。
 図3は、前記白色LED3aの分光分布を示すグラフ、図4は、前記RGBチップ3bの分光分布を示すグラフ、図5は、前記白色LED3aとRGBチップ3bとを合わせた光源の分光分布を示すグラフをそれぞれ示している。尚、図3から図5における横軸は波長を示し、縦軸は波長に対する相対値(相対エネルギー)を示している。
 白色LED3aは、図3の分光分布に示すように、約430(nm)から450(nm)の間にピークの相対値を有する青色成分と、約540(nm)から570(nm)の間にピークの相対値を有する黄色成分とを有した光学特性を備えている。勿論、白色LED3aは、図3に示す分光分布に限定されることはなく、青色成分と黄色成分とを有していれば良い。 
 そして、白色LED3aによってこのような分光分布で光が照射されることにより、第1の白色光が得られる。
 また、RGBチップ3bは、図4の分光分布に示すように、約460(nm)から470(nm)の間にピークの相対値を有する青色成分と、約520(nm)から530(nm)の間にピークの相対値を有する緑色成分と、約630(nm)から640(nm)の間にピークの相対値を有する赤色成分とを有した光学特性を備えている。勿論、RGBチップ3bは、図4に示す分光分布に限定されることはなく、青色成分と緑色成分と赤色成分を有していれば良い。 
 そして、RGBチップ3bによってこのような分光分布で光が照射されることにより、第2の白色光が得られる。
 本実施の形態では、光源装置3の光源は、このような分光特性の白色LED3aとRGBチップ3bとを合わせて構成されている。そのため、光源装置3の光源は、白色LED3aからの第1の白色光と、RGBチップ3bからの第2の白色光とが混光された白色光を照明光として照射することになる。
 この光源装置3の光源の分光分布を、図5に示している。 
 すなわち、光源装置3の光源は、図5に示すように、約460(nm)から470(nm)の間にピークの相対値を有する青色成分と、約530(nm)から540(nm)の間にピークの相対値を有する緑色成分と、約630(nm)から640(nm)の間にピークの相対値を有する赤色成分とを有した光学特性を備えている。
 このような構成とすることにより、光源装置3の光源は、図5に示すように、従来、白色LEDのみの白色光よりも、赤色成分が補われた白色光を照射することが可能となる。
 本実施の形態では、このような特性を備えた光源装置3(光源)は、後述する光源の演色評価条件を満足するように構成されている。このような光源の演色性評価条件について、図6及び図7を用いて説明する。
 図6は、本実施の形態の光源装置3、基準光、及び白色LEDの各照明光を用いて演色評価試験色9番~12番の4色を照らした場合の色度を色度図上に示した色域面積を示すグラフである。
 また、図7は、本実施の形態の光源装置3、基準光、及び白色LEDの各照明光を用いて演色評価試験色1番~8番の8色を照らした場合の色度を色度図上に示した色域面積を示すグラフである。
 尚、図6及び図7において、前記JIS Z 8726で規定された、15色の試験色の内、演色評価試験色1番~8番の8色と演色評価試験色9番~12番の4色の色度については、P1~P12と示している。また、図6及び図7に示す破線は基準光50を示し、一点鎖線は白色LED51を示し、実線は本実施の形態の光源装置3の光源52を示している。
 本実施の形態の光源装置3の光源52は、この光源52から照射された照明光により色相が異なる少なくとも3種類以上の色票を照らしたときの色度を色度図上にそれぞれ配置し、それぞれ配置した点を結んで光源52に対応する多角形を形成する。
 また、光源装置3の光源52は、この光源52による照明光と相関色温度が等しい基準光により前記少なくとも3種類以上の色票を照らしたときの色度を前記色度図上にそれぞれ配置し、それぞれ配置した点を結んで基準光対応の多角形を形成する。
 そして、光源装置3の光源52は、光源52に対応する多角形の面積と基準光に対応する多角形の面積との比が1より大きい白色光である照明光を照射できる。
 例えば、前記JIS Z 8726で規定された、演色評価試験色9番~12番の4色P9~P12の色票に対して、基準光50の照射光を照らし、そのときの各色度を色度図に配置(プロット)すると、図6に示すように、各色票P9~P12に対応する色度点9a、10a、11a、及び12aが得られる。
 また、同様に、演色評価試験色9番~12番の4色P9~P12の色票に対して、白色LED51の照射光を照らし、そのときの各色度を色度図に配置(プロット)すると、図6に示すように、各色票P9~P12に対応する色度点9b、10b、11b、及び12bが得られる。
 また、同様に、演色評価試験色9番~12番の4色P9~P12の色票に対して、本実施の形態の光源装置3の光源52の照射光を照らし、そのときの各色度を色度図に配置(プロット)すると、図6に示すように、各色票P9~P12に対応する色度点9c、10c、11c、及び12cが得られる。
 そして、図6において、基準光50、白色LED51、及び光源装置3の光源52に対応する色度点を結ぶことによって、4角形がそれぞれ形成される。これらの4角形の面積を、色域面積50A、51A、52Aとする。 
 尚、基準光50は、光源装置3の光源52による照射光と相関色温度が等しいものとしている。
 ここで、光源52に対応する色度点を結ぶことにより形成される多角形の色域面積(以下、光源52の色域面積と称す)52Aは、基準光50に対応する色度点を結ぶことにより形成される多角形の色域面積(以下、基準光50の色域面積と称す)50Aを100とした場合、下記の表1に示すように119となる計算結果が得られた。即ち、光源52の色域面積52Aと、基準光50の色域面積50Aとの比が、1.19となり、1より大きいものとなる。
Figure JPOXMLDOC01-appb-T000001
 また、白色LED51に対応する色度点を結ぶことにより形成される多角形の色域面積(以下、白色LED51の色域面積と称す)51Aは、上記表1に示すように、76となり、この白色LED51の色域面積51Aと、基準光50の色域面積50Aとの比が、0.76となり、本実施の形態の光源52の色域面積比よりも下回ることが解る。
 また、例えば、前記JIS Z 8726で規定された、演色評価試験色1番~8番の8色P1~P8の色票に対して、基準光50の照射光を照らし、そのときの各色度を色度図に配置(プロット)すると、図7に示すように、各色票P1~P8に対応する色度点1a、2a、3a、4a、6a、7a及び8aが得られる。
 また、演色評価試験色1番~8番の8色P1~P8の色票に対して、白色LED51の照射光を照らし、そのときの各色度を色度図に配置(プロット)すると、図7に示すように、各色票P1~P8に対応する色度点1b、2b、3b、4b、5b、6b、7b及び8bが得られる。
 さらに、演色評価試験色1番~8番の8色P1~P8の色票に対して、本実施の形態の光源装置3の光源52の照射光を照らし、そのときの各色度を色度図に配置(プロット)すると、図7に示すように、各色票P1~P8に対応する色度点1c、2c、3c、4c、5c、6c、7c及び8cが得られる。
 そして、図6において、基準光50、白色LED51、及び光源装置3の光源52に対応する色度点を結ぶことによって、8角形がそれぞれ形成される。これらの8角形の面積を、色域面積50A、51A、52Aとする。
 ここで、光源52の色域面積52Aは、基準光50の色域面積50Aを100とした場合、上記表1に示すように108となる計算結果が得られた。即ち、光源52の色域面積52Aと、基準光50の色域面積50Aとの比が、1.08となり、この場合も1より大きいものとなる。
 また、この場合についても白色LED51の色域面積51Aは、前記同様に、上記表1に示すように、76となり、この白色LED51の色域面積51Aと、基準光50の50Aとの比が、0.76となって、本実施の形態の光源52の色域面積比よりも下回ることが解る。
 ここで、演色評価試験色9番~12番の4色P9~P12の色票(赤、黄色、緑、青)は比較的彩度が高く、このような演色評価試験色9番~12番の色の色域面積比を光源の演色評価方法として用いることにより、比較的鮮やかな色をより鮮やかに見せる照明光として評価することができる。
 この場合、光源装置3の照射光は、図6に示すように、特に、演色評価試験色9番の赤色の色度が基準光50よりも大きくなっているので、白色LED51に比べて大幅に、赤色を鮮やかに見せることができる白色光となる。
 また、本実施の形態では、光源装置3の照射光を、前記JIS Z 8726で規定された、演色評価試験色1番~8番の8色P1~P8の色票を照らすことによって形成される色域面積52Aは、図7及び上記表1に示すように、基準光50の色域面積50Aとの色域面積比が1.08となり、図7に示すように、特に、演色性評価試験色1番、3番、6番、及び8番の各色の色度が基準光50よりも大きくなっているので、白色LED51に比べて大幅に、色を鮮やかに見せることができる白色光となる。
 したがって、本実施の形態の光源装置3は、このようなJIS Z 8726で規定された演色評価試験色に応じた各色域面積比が1より大きなものとなる条件を満足することで、特に赤色成分が補われた白色光を照射することが可能となる。
 なお、基準光50は、平均演色評価数(Ra)が100であるため、演色評価試験色1番~8番の色票を照らすことによって得られる図6に示す試験光の色域面積の比が1に近いほど、この平均演色評価数(Ra)が高くなる。
 したがって、本実施の形態では、光源装置3の照射光を、前記JIS Z 8726で規定された、演色評価試験色1番~8番の8色P1~P8の色票を照らすことによって形成される色域面積52Aは、図6及び上記表1に示すように、基準光50の色域面積50Aとの色域面積比が1.08となり、白色LED51の色域面積51Aと基準光の色域面積50Aとの色域面積比の0.76よりも1に近いので、平均演色評価数(R9)も白色LED51よりも高くなり、演色性の良好な照射光となる。
 すなわち、色域面積比が大きいほど色を鮮やかに見せることができ、1に近いほど平均演色評価数(Ra)を100に近づけることができる。例えば色域面積比が1よりも大きく1.2以下、好ましくは1.1以下程度が望ましい。
 本実施の形態では、光源装置3の光源を構成する白色LED3a及びRGBチップ3bの各光束を適宜設定することによって、色域面積を制御している。 
 参考技術として例えば、各色の混光比(光束比)が、上記表1の色域面積比を得るために、 
 赤:緑:青:白=(14.7):(18.8):(3.4):100 となるように設定した。
 勿論、照明光の使用用途に応じて、前記各色の混光比(光束比)を適宜変更しても良い。例えば、白の割合を少なくするとともに、赤、緑、青の割合を高くすることで、さらに色域面積52Aを大きくした照明光を得るようにしても良い。
 ここで、実際に、白色LED3aと、赤色LED5a、緑色LED5b及び青色LED5cで構成されるRGBチップ3bとで、光源装置3の光源を構成し、これらの各色を混光した場合の物の色の見え方の変化を、主観評価実験によって調べた。
 その結果、赤色LED5a、緑色LED5b及び青色LED5cの混光した照明光の下で、有彩色物体を観察した場合、全般的に彩度が上がって見え、照明空間がすっきり美しく見えるという結果が得られた。
 したがって、本実施の形態によれば、色を鮮やかに見せるための演色評価方法を規定し、且つこの演色評価方法に基づき光源装置3の光源を構成したことで、色を鮮やかに見せる照明光を照射できる光源を備えた光源装置3及びその光源装置3を用いた照明装置1の実現が可能となる。
 尚、本実施の形態では、白色LED3aにRGBチップ3bを加えたことにより、光源装置3による照射光の分光分布を変えていたが、この構成に限定されるものではなく、例えば、白色LED3aに赤色LED5aのみを加えて、色域面積比を制御することで例えば、赤系のものを鮮やかに見せることができる。また、照明光の使用用途、又は照らす空間に合わせて、鮮やかにみせたい色に合わせた蛍光体材料を選択し、各色の混光比を上げるように構成しても良い。
 図8及び図9は本発明の第2の実施の形態に係り、図8は色域面積比等を求めるためのフローチャートを示し、図9は図8のフローチャートに従って設計した照明装置の特性を説明するための説明図である。
 本実施の形態は図1と同様に構成された照明装置において、色域面積比、平均演色評価数(Ra)及び効率を所望の値に設計することを可能にする。
 上述したように、同一の相関色温度、平均演色評価数(Ra)の照明であっても、色域面積比を適宜設定することで、光の色を一層鮮やかさに見せることが可能である。そして、各色LEDの混光比(光束比)を適宜設定することで、色域面積比を制御することが可能である。
 本実施の形態においても、青色に発光する青色LEDと黄色に発光する黄色蛍光体とによって構成される白色LEDと、白色光を得るための赤色LED、緑色LED及び青色LEDの3つのLEDとの計4つのLEDによって光源装置を構成する。本実施の形態は、図8のフローに対応したコンピュータプログラムをコンピュータによって実行することによって、設計を行うことが可能である。
 1種類のLEDの分光分布は、複数のガウシアンの線形結合として表現され、複数のLEDによる分光分布は、各LEDの半値幅、ピーク波長及び混光比を制御することによって規定することができる。本実施の形態において設計する照明装置は、所望の相関色温度、偏差を有し、且つ目標とする効率、平均演色評価数Ra及び色域面積比Gaを有するものである。本実施の形態においては、このような光源の分光分布が得られるように、各LEDの半値幅、ピーク波長、混光比を変化させながら、最適化計算により所望の分光分布を得る。
 先ず、ステップS1において、色度(x,y)の設定値が入力される。x,yは、色度座標上の座標値である。本実施の形態においては、コンピュータは、白色LEDの混光比(光束比)を設定し、これに合わせて他の赤色LED、緑色LED及び青色LEDの混光比を決定する。
 即ち、コンピュータは、ステップS2において、これらの4種類のLEDについてピーク波長及び半値幅を夫々決定する。次に、コンピュータは、赤色LED、緑色LED及び青色LEDの混光比を算出し(ステップS3)、平均演色評価数Ra、色域面積比Ga及び効率を算出する(ステップS4)。
 コンピュータは、ステップS4において求めた平均演色評価数Ra、色域面積比Ga及び効率が目標値に到達しているか否かを判定する。到達していない場合には、ステップS2に処理を戻して、コンピュータは、赤色LED、緑色LED及び青色LEDの混光比を再設定する。以後同様の動作により、平均演色評価数Ra、色域面積比Ga及び効率が目標値に到達するまでステップS2~S5を繰り返す。コンピュータは、平均演色評価数Ra、色域面積比Ga及び効率が目標値に到達すると、ステップS6において、値を出力する。
 本実施の形態においては、ステップS6において出力された値に基づいて、点灯装置内の図示しない制御部が各LEDの駆動を制御する。即ち、制御部は、上述のような最適化された分光分布が得られるように求められた各LEDチップの半値幅、ピーク波長、出力比を基にして、LEDを駆動制御することにより、照らされた物の色があざやかに見え、効率が良い照明装置を構成する。
 下記表2~5は図8に示す最適化計算の計算結果を示している。表2~5は夫々目標とする色域面積比Gaとして2800K、3500K、5000K又は10000Kを得るための設定の一例を示している。
 表2~5では、各設定例毎に番号(No.)を付し、赤色LED(R)、緑色LED(G)、青色LED(B)について夫々設定されたピーク波長及び半値幅と、これらの赤色LED(R)、緑色LED(G)、青色LED(B)及び白色LED(W)の混光比を百分率で示している。そして、これらのピーク波長、半値幅及び混光比の各設定によって得られる色域面積比Ga及び効率について示してある(なお、表2~5における色域面積比Gaは、基準光源の色域面積を100として示してある)。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表2~5に示すように、設定番号(No.)1~18は、色域面積比Gaが120以上であるとともに、設定番号(No.)19~34については、色域面積比Gaが110以上であり、このような計算結果に基づいて、点灯装置内の制御部が各LEDの半値幅、ピーク波長及び混光比を設定することにより、照明装置からの照明によって色を鮮やかに見せることができる。
 また、下記表6は上記表2~5から各相関色温度毎に混光比の最大値及び最小値をまとめて示し、相関色温度の変化によるそれぞれのLEDの混光比の変動を示したものである。
Figure JPOXMLDOC01-appb-T000006
 また、図9は表2の2800K近傍の光源色である電球色、3500K近傍の光源色である温白色、5000K近傍の光源色である昼白色を得るための混光比と、分光分布及び色度図を対応させて示す説明図である。
 図9はピーク波長630nm、半値幅20nmの赤色LED、ピーク波長520nm、半値幅40nmの緑色LED、ピーク波長460nm、半値幅20nmの青色LEDを採用した例を示している。
 図9の電球色の照明装置を得る例、即ち、相関色温度(CCT)が2800Kで偏差(duv)の絶対値が0.0000である照明装置については、赤色LED(R)、緑色LED(G)、青色LED(B)及び白色LED(W)を、混光比29:38:0:33が得られるように構成することで、色域面積比Gaとして134が得られることが分かる。
 同様に、相関色温度(CCT)が3339Kで偏差(duv)の絶対値が0.0008である照明装置については、赤色LED(R)、緑色LED(G)、青色LED(B)及び白色LED(W)を、混光比25:39:1:35が得られるように構成することで、色域面積比Gaとして132が得られることが分かる。
 同様に、相関色温度(CCT)が4950Kで偏差(duv)の絶対値が0.0005である照明装置については、赤色LED(R)、緑色LED(G)、青色LED(B)及び白色LED(W)を、混光比14:31:2:53が得られるように構成することで、色域面積比Gaとして121が得られることが分かる。
 なお、表2~5及び図9においては、色域面積比Gaが目標値となる例について説明したが、平均演色評価数Ra及び効率が目標値となるように構成することができることは明らかである。
 図1の装置において、表2~5及び図9等の光束比を実現することが可能である。例えば、図1の各LEDに並列に図示しない抵抗を接続し、各LEDに流す電流値を点灯装置内の制御部において制御することで、光束比を制御可能である。
 なお、赤色LEDは、他の緑色LED、青色LED又は白色LEDに比べて、時間の経過と共に出力が急激に減少することがある。そこで、長時間の使用が想定される照明装置においては、予め赤色LEDの出力が、本来設定されるべき光束比の約1.5倍になるように制御してもよい。
 また加法混色する際の各LEDの出力比は必ずしも電流で制御する必要はなく、LEDの個数によって制御してもよい。例えば、全てのLEDに流れる電流を一定にし、光源装置内に設ける各色のLEDの個数の比を変えて出力比を変化させることにより、光束比を制御するようにしてもよい。
 このように本実施の形態においては、各LEDの半値幅、ピーク波長及び混光比を制御することによって、所望の相関色温度、偏差を有し、且つ目標とする効率、平均演色評価数Ra及び色域面積比Gaを有する照明装置を得ることができる。例えば、所望の相関色温度を有しながらも、色域面積比Gaが120以上170以下とあざやかに見える照明用白色LED電球を得ることが可能となる。
 また、本実施の形態においては、このような照明装置の設計をプログラムによって実現することができ、設計に要する時間を短縮することができる。更に、照明装置の効率を適宜設定することができ、経済性の観点からも有利である。
 なお、上記実施の形態においては、白色LEDの混光比を設定する場合において、白色LED中の黄色蛍光体の発光を制御して白色LEDの混光比を制御するようにしてもよい。
 また、図8に示すプログラムでは、最適化計算によってJIS演色評価試験色No.1~8についての色域面積を拡大させているが、JuddのFlattery Indexで表現される最も好ましい色の色域以内に色域面積を制限してもよい。
 図10及び図11は本発明の第3の実施の形態に係り、図10は光源装置の概略構成を示す構成図であり、図11は図10の光源装置が組み込まれた照明装置の外観を示す説明図である。
 図10の基板100は図11の筐体110内に配置されている。基板100上には複数の赤色LED、緑色LED、青色LED及び白色LEDが配設されており、筐体110内には各LEDを点灯させるための図示しない点灯装置が配設されている。各LED及び点灯装置には、口金111を介して電力が供給される。筐体110には拡散板112が取り付けられ、筐体110内の各LEDからの出射光は、拡散板112を介して出射されるようになっている。
 本実施の形態においては、光源装置は、第1の白色光を発光する白色LED105と、赤色LED102と、緑色LED103と、青色LED104とがいずれも基板100上に複数配設されている。図10中の各ハッチングは、ハッチングの種類によって同一種類のLEDであることを示している。図10のハッチングにて示すように、赤色LED102と緑色LED103とは基板100の中心に対して点対称になるように配置される。これらの赤色LED102及び緑色LED103の周囲において、青色LED104と白色LED105とが、基板100の中心に対して点対称になるように配置される。
 即ち、本実施の形態においては、基板100の中心に対して点対称な位置に同一色光を発する各LEDを配置すると共に、隣接位置に相互に補色の関係を有する色光を発するLEDを配置している。これにり、近接した位置のLED同士で白色光を出しやすくなると共に、むらの少ない混光が可能である。
 また、本実施の形態においても、点灯装置は、赤色LED102、緑色LED103、青色LED104及び白色LED105について、上記表2~5又は図9のように、各LEDの半値幅、ピーク波長及び混光比を制御しており、所望の相関色温度、偏差を有し、且つ目標とする効率、平均演色評価数Ra及び色域面積比Gaを有する照明装置を構成している。
 本実施の形態においては、このように各LEDを配置することによって、照射面の色のむらを抑制することができる。また各LED相互の間隔を1mm以下となるように構成することで、照射面にできる影のむらを数ミリ以下の気にならないレベルに抑制することが可能となる。
 このように、本実施の形態においては、照射面の色むら、影の色むらを改善した照明装置、例えばダウンライト照明器具等を構成することができる。
 図12及び図13は本発明の第4の実施の形態に係り、図12及び図13は照明装置の概略構成を示す説明図であり、図12は光源装置の平面形状を示し、図13は光源装置の断面形状及び点灯装置の一部を示している。なお、本実施の形態に係る光源装置が組み込まれた照明装置の外観は図11と同様であり、図示を省略する。
 上述したように、各色のLEDの混光比を制御することにより、所望の相関色温度を有し、所望の色域面積比Gaを有する照明装置を構成することができる。しかしながら、各LED毎に、熱による光束低下や、チップ材料による経年劣化等の状態が相違することから、混光による照明は、時間の経過に伴って光色が変化してしまう虞がある。
 そこで、本実施の形態は、各LEDによる混光の状態を検出して各LEDを制御することで、光色が変化することを防止するものである。
 図12の基板120は、筐体110(図11参照)内に配置されている。図12及び図13に示すように、光源装置は、基板120上に複数のLED121が配置されて構成される。各LED121は、赤色LED、緑色LED、青色LED又は白色LEDである。
 図12の例では、各LED121は、基板120の略中央部分を除き、基板120上にマトリクス状に配置されている。基板120の中央部分には、RGBセンサ124が配設されており、このRGBセンサ124は、LED121の出射面よりも高い位置まで立設された遮光フード123によって周囲が覆われている。各LED121からの出射光は、図11の拡散板112を介して出射されるようになっている。
 また、各LED121の出射光は、拡散板112によって反射されて、RGBセンサ124にも入射するようになっている。RGBセンサ124が各LED121からの直射光を検出すると、RGBセンサ124の検出結果は、RGBセンサ124近傍のLED121の光色の影響を大きく受ける。そこで、本実施の形態においては、LED121の出射面の高さよりも高い位置まで立設された遮光フード123を設け、RGBセンサ124に各LED121からの直接光が入射されることを阻止する。
 即ち、RGBセンサ124には、遮光フード123によって各LED121からの直接光の入射が阻止され、拡散板112からの反射光のみが入射される。拡散板112の反射光は、各LED121による混光であり、RGBセンサ124は、各LED121の出射光に基づく混光から赤色光成分、青色光成分、緑色光成分を夫々検出して、検出結果を点灯装置内の制御部125に出力するようになっている。
 制御部125は、検出された混光中の各色光成分に基づいて、赤色LED、緑色LED、青色LED又は白色LEDの混光比が、例えば、上記表2~5又は図9の設定値になるように、各LEDの半値幅、ピーク波長及び混光比を制御する。
 なお、LED121に流す電流とLED121からの光束との関係は、LEDチップの特性によって異なることから、制御部125は予めLEDの種類毎に、電流と光束との関係についての表や関係式を保持し、これらの表や関係式等を用いて、一定の混光比が得られるように制御する。
 このような構成によれば、各LED毎の特性又は経年変化の相違等に拘わらず、常に、常に一定の混光比で各LED121を駆動することができる。これにより、所望の相関色温度、偏差を有し、且つ目標とする効率、平均演色評価数Ra及び色域面積比Gaを有する照明装置を安定的に得ることができる。
 このように、本実施の形態においては、各LED毎の特性や経年劣化等に拘わらず、常に一定の混光比を設定して光色が変化することを防止することができる。
 なお、上記各実施の形態においては、青色LEDと黄色蛍光体によって構成される白色LEDを用いる例について説明したが、この白色LEDに代えて黄色の色光を発する黄色LEDを採用してもよい。
 図14乃至図19は本発明の第5の実施の形態を説明するためのグラフである。
 本実施の形態は図1と同様に構成された照明装置において、色域面積比だけでなく、JIS演色評価試験色を基準としたa*b*色度座標図上のクロマ差を所望の値に設計したものである。
 上記各実施の形態においては、色を鮮やかに見せるための演色評価方法として色域面積比Gaを用いた。しかし、店舗照明等においては、物体を際立ってあざやかに見せることが求められることがある。関連技術である特許文献2(特開2003-045206)及び特許文献3(特開2006-261702)等においては、鮮やかさを低下させないための指標として色域面積比Ga,Ga4を用いている。Gaは、JIS演色評価試験色No.1~8を基準光で照らした時の色度座標上の8点を結んで形成される色域面積と、試験光で照らした時の色度座標上の8点を結んで形成される色域面積の比である。また、Ga4は、JIS演色評価試験色No.9~12を基準光で照らした時の色度座標上の4点を結んで形成される色域面積と、試験光で照らした時の色度座標上の4点を結んで形成される色域面積の比である。そして、上記特許文献2,3の提案では、あざやかさを低下させないための条件として、Ga<Ga4を挙げている。
 しかしながら、Ga<Ga4であったとしても、色域が色度座標上で緑方向に広がり、赤方向には狭まっていて、赤があざやかに見えない場合や、色域が色度座標上で赤方向に広がり、緑方向に狭まっていて、緑が鮮やか見えない場合が存在し、特許文献2,3等の装置においては、物体を十分に鮮やかさに見えるように照明することはできない。また、平均演色評価数Raとして十分な値を得ることもできない。
 そこで、本実施の形態においては、色域面積比Gaだけでなく、特に赤の鮮やかさの指標である赤の試験色についての基準光とのクロマ差を規定の値とすることで、平均的なあざやかさを向上させつつ、赤色物体のあざやかさを向上させるようになっている。
 本実施の形態においては、赤の試験色についての基準光とのクロマ差として、JIS演色評価試験色No.9を試験光で照らした時のa*b*色度座標図上の点と原点との距離から、基準光で照らした時のa*b*色度座標図上の点と原点との距離を差し引いた値(以下、ΔC*ab(No.9)という)を用いる。
 即ち、本実施の形態においては、青色に発光する青色LEDと黄色に発光する黄色蛍光体とによって構成される白色LEDと、白色光を得るための赤色LED、緑色LED及び青色LEDの3つのLEDとの計4つのLEDによって光源装置を構成し、4つのLEDの出力比を変化させることで、色域面積比Gaを105%以上又は110%以上と向上させ、指標ΔC*ab(No.9)を4以上とするようになっている。
 図14乃至図16は横軸に色域面積比Gaをとり縦軸に鮮やかさの評価値をとって、赤色、緑色、青色及び白色LEDによって構成される光源装置により食品を照明した場合における色域面積比Gaと食品の新鮮さの評価との関係を示すグラフである。なお、図14乃至図16は、夫々相関色温度が2800Kで偏差の絶対値が0.02以内の照明を得る光源装置、相関色温度が3500Kで、偏差の絶対値が0.02以内の照明を得る光源装置又は相関色温度が5000Kで、偏差の絶対値が0.02以内の照明を得る光源装置についての例である。
 図14に示すように、相関色温度が2800Kの光源装置では、比較的新鮮に見えると判断される評価値5以上を得るためには、おおよそ110%以上140%以下の色域面積比Gaが必要であることが分かる。
 また、図15に示すように、相関色温度が3500Kの光源装置では、比較的新鮮に見えると判断される評価値5以上を得るためには、おおよそ105%以上140%以下の色域面積比Gaが必要であることが分かる。
 また、図16に示すように、相関色温度が5000Kの光源装置では、比較的新鮮に見えると判断される評価値5以上を得るためには、おおよそ105%以上140%以下の色域面積比Gaが必要であることが分かる。
 図17乃至図19は横軸にΔC*ab(No.9)をとり縦軸に赤の鮮やかさの評価値をとって、赤色、緑色、青色及び白色LEDによって構成される光源装置により食品を照明した場合におけるΔC*ab(No.9)と赤の鮮やかさの評価との関係を示すグラフである。なお、図17乃至図19は、夫々相関色温度が2800Kで偏差の絶対値が0.02以内の照明を得る光源装置、相関色温度が3500Kで、偏差の絶対値が0.02以内の照明を得る光源装置又は相関色温度が5000Kで、偏差の絶対値が0.02以内の照明を得る光源装置についての例である。
 図17乃至図19に示すように、相関色温度が2800K,3500K,5000Kの光源装置では、比較的赤が鮮やかに見えると判断される評価値5以上を得るためには、おおよそ4以上のΔC*ab(No.9)が必要であることが分かる。
 このように本実施の形態においては、赤色、緑色、青色及び白色LEDによって構成される光源装置において、色域面積比Gaを105%以上(又は110%以上)140%以下に設定すると共に、赤の試験色を用いたクロマ差による指標ΔC*ab(No.9)を4以上に設定する。これにより、本実施の形態における照明装置を用いることで、被照明物を際だって鮮やかに見せることが可能である。特に、店舗に陳列された食品を本実施の形態における光源装置によって照明すると、食品を新鮮に見せることができるという利点がある。
 なお、上記第2乃至第4の実施の形態を本実施の形態に適用することにより、色域面積比、平均演色評価数(Ra)及び効率を所望の値に設計しながら、被照明物を際だって鮮やかに見せることも可能である。
 図20乃至図22は本発明の第6の実施の形態を説明するためのグラフである。
 本実施の形態は赤の試験色を用いたクロマ差に代えて緑の試験色を用いたクロマ差を採用して光源装置を設計した点が第5の実施の形態と異なる。他の構成は第5の実施の形態と同様である。これにより、本実施の形態においては、平均的なあざやかさを向上させつつ、特に緑色物体のあざやかさを向上させるようになっている。
 本実施の形態においては、緑の試験色を用いたクロマ差として、JIS演色評価試験色No.11を試験光で照らした時のa*b*色度座標図上の点と原点との距離から、基準光で照らした時のa*b*色度座標図上の点と原点との距離を差し引いた値(以下、ΔC*ab(No.11)という)を用いる。
 即ち、本実施の形態においては、青色に発光する青色LEDと黄色に発光する黄色蛍光体とによって構成される白色LEDと、白色光を得るための赤色LED、緑色LED及び青色LEDの3つのLEDとの計4つのLEDによって光源装置を構成し、4つのLEDの出力比を変化させることで、色域面積比Gaを105%以上又は110%以上と向上させ、指標ΔC*ab(No.11)を3以上又は2以上とするようになっている。
 図20乃至図22は横軸にΔC*ab(No.11)をとり縦軸に緑の鮮やかさの評価値をとって、赤色、緑色、青色及び白色LEDによって構成される光源装置により食品を照明した場合におけるΔC*ab(No.11)と緑の鮮やかさの評価との関係を示すグラフである。なお、図20乃至図22は、夫々相関色温度が2800Kで偏差の絶対値が0.02以内の照明を得る光源装置、相関色温度が3500Kで、偏差の絶対値が0.02以内の照明を得る光源装置又は相関色温度が5000Kで、偏差の絶対値が0.02以内の照明を得る光源装置についての例である。
 図20及び図21に示すように、相関色温度が2800K,3500Kの光源装置では、比較的緑が鮮やかに見えると判断される評価値5以上を得るためには、おおよそ3以上のΔC*ab(No.11)が必要であることが分かる。
 また、図22に示すように、相関色温度が5000Kの光源装置では、比較的緑が鮮やかに見えると判断される評価値5以上を得るためには、おおよそ2以上のΔC*ab(No.11)が必要であることが分かる。
 なお、色域面積比Gaと食品の新鮮さの評価との関係については、図14乃至図16に示した通りであり、本実施の形態においても、色域面積比Gaについては105%以上140%以下に設定する。
 このように本実施の形態においては、赤色、緑色、青色及び白色LEDによって構成される光源装置において、色域面積比Gaを105%以上140%以下に設定すると共に、緑の試験色を用いたクロマ差による指標ΔC*ab(No.11)を2又は3以上に設定する。これにより、本実施の形態における照明装置を用いることで、被照明物を際だって鮮やかに見せることが可能である。特に、店舗に陳列された食品を本実施の形態における光源装置によって照明すると、食品を新鮮に見せることができるという利点がある。
 また、本実施の形態においても、上記第2乃至第4の実施の形態を適用することにより、色域面積比、平均演色評価数(Ra)及び効率を所望の値に設計しながら、被照明物を際だって鮮やかに見せることが可能である。
 図23は本発明の第7の実施の形態を説明するための説明図である。
 第5及び第6の実施の形態においては、光源装置における赤又は緑のa*b*色度座標図上のクロマ差の値を規定した。このクロマ差は、a*b*色度座標図上における原点と基準光に基づく点との距離と、原点と試験光に基づく点との距離との差であり、試験光に基づく点に対応する色相が赤又は緑から著しく相違する場合については考慮していない。
 本実施の形態は図1と同様に構成された照明装置において、色域面積比だけでなく、a*b*色度座標図上の色相を所望の値に設計したものである。
 図23はa*b*色度図とマンセル色相環における色相の関係を示したものである(A. R. Robertson, Color Research and Application, Vol.2, No.1, p.7-11, 1977)。赤の範囲はab色相角habがおよそ0°~45°の領域又は315°~360°の領域であり、緑の範囲はab色相角habがおよそ135°~225°の領域であることが分かる。
 そこで、本実施の形態においては、JIS演色評価試験色No.9を試験光で照らした時の、a*b*色度座標図上におけるab色相角hab(No.9)が、0°~45°の領域または315°~360°の領域に入るように設計を行う。なお、この領域から外れた場合には、赤は色相がずれて黄、青や緑に見えてしまう。
 また、JIS演色評価試験色No.11を試験光で照らした時の、a*b*色度座標図上のab色相角hab(No.11)が135°~225°の領域に入るように設計を行う。なお、この領域から外れると、緑は色相がずれて黄、青や赤に見えてしまう。
 なお、色域面積比Gaについては、上記第5又は第6の実施の形態と同様の設定でよい。
 また、本実施の形態においては、色域面積比とa*b*色度座標図上の色相とについて規定する例を説明したが、第4及び第5の実施の形態と同様に、色域面積比及びa*b*色度座標図上のクロマ差の値並びに、a*b*色度座標図上の色相について規定するようにしてもよいことは明らかである。
 このように本実施の形態においては、赤色、緑色、青色及び白色LEDによって構成される光源装置において、色域面積比Gaを105%以上140%以下に設定すると共に、a*b*色度座標図上の色相を、赤の範囲としてab色相角habがおよそ0°~45°の領域又は315°~360°の領域とし、緑の範囲としてab色相角habがおよそ135°~225°の領域に設定する。
 これにより、本実施の形態における照明装置を用いることで、被照明物を際だって鮮やかに見せることが可能である。特に、店舗に陳列された食品を本実施の形態における光源装置によって照明すると、食品を新鮮に見せることができるという利点がある。
 また、本実施の形態においても、上記第2乃至第4の実施の形態を適用することにより、色域面積比、平均演色評価数(Ra)及び効率を所望の値に設計しながら、被照明物を際だって鮮やかに見せることが可能である。
 以上の実施の形態に記載した発明は、その実施の形態に限ることなく、その他、実施段階ではその要旨を逸脱しない範囲で種々の変形を実施し得ることが可能である。さらに、前記実施の形態には、種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組合せにより種々の発明が抽出され得る。
 例えば、実施の形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。
 本出願は、2009年4月27日に日本国に出願された特願2009-108078号及び2010年3月1日に日本国に出願された特願2010-044704号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。

Claims (19)

  1.  発光スペクトルのピーク波長が610~630nm、半値幅が10~20nmの範囲にある赤色LEDと;
     発光スペクトルのピーク波長が500~520nm、半値幅が20~30nmの範囲にある緑色LEDと;
     発光スペクトルのピーク波長が450~470nm、半値幅が10~20nmの範囲にある青色LEDと;
     青色発光素子と黄色蛍光体とによって構成される白色LEDと;
    を有し、
     前記赤色LEDの光を光束比で26~38%発生し;
     前記緑色LEDの光を光束比で35~50%発生し;
     前記青色LEDの光を光束比で0~2%発生し;
     前記白色LEDの光を光束比で12~33%発生し;
     前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、
     前記白色光は、相関色温度が2800K以上3500K未満、偏差の絶対値が0.02以内であり、試験光でJIS演色評価試験色No.1~8を照らしたときの色度座標上の8点を結んで形成される色域面積と前記JIS演色評価試験色No.1~8を基準光で照らしたときの色度座標上の8点を結んで形成される色域面積との比を色域面積比として前記試験光を前記白色光とした場合の色域面積比が120%以上140%以下であることを特徴とする照明装置。
  2.  前記赤色LEDの光を光束比で18~31%発生し;
     前記緑色LEDの光を光束比で28~46%発生し;
     前記青色LEDの光を光束比で0~2%発生し;
     前記白色LEDの光を光束比で23~52%発生し;
     前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、
     前記白色光は、相関色温度が3500K以上5000K未満、偏差の絶対値が0.02以内であり、前記試験光を前記白色光とした場合の色域面積比が120%以上140%以下であることを特徴とする請求項1に記載の照明装置。
  3.  前記赤色LEDの光を光束比で18~30%発生し;
     前記緑色LEDの光を光束比で28~57%発生し;
     前記青色LEDの光を光束比で0~3%発生し;
     前記白色LEDの光を光束比で15~52%発生し;
     前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、
     前記白色光は、相関色温度が5000K以上10000K以下、偏差の絶対値が0.02以内であり、前記試験光を前記白色光とした場合の色域面積比が110%以上140%以下であることを特徴とする請求項1に記載の照明装置。
  4.  前記赤色、緑色、青色及び白色LEDは、いずれも複数設けられ;
     前記赤色、緑色、青色及び白色LEDのうち補色関係を有するLED同士を近接配置すると共に、同一種類のLED同士を点対称に配置することを特徴とする請求項1に記載の照明装置。
  5.  入射した光の赤色成分、緑色成分及び青色成分を検出するRGBセンサと;
     前記赤色、緑色、青色及び白色LEDからの光を透過させると共に反射させる拡散板と;
     前記赤色、緑色、青色及び白色LEDからの直接光を阻止し前記拡散板からの混光を前記RGBセンサに与える遮光部材と;
     前記RGBセンサの検出結果に基づいて、前記赤色、緑色、青色及び白色LEDからの光の光束比を一定に制御する制御部と;
     を具備したことを特徴とする請求項1に記載の照明装置。
  6.  赤色LEDと、緑色LEDと、記青色LEDと、白色LEDからの各色光を加法混色して、照明光を照射する光源を有し、
     前記光源は、
     試験光でJIS演色評価試験色No.9~12を照らしたときの色度座標上の4点を結んで形成される色域面積と前記JIS演色評価試験色No.9~12を基準光で照らしたときの色度座標上の4点を結んで形成される色域面積との比を色域面積比として前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.9の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が4以上であり、相関色温度が2800K以上5000K未満であり、偏差duvの絶対値が0.02以内であることを特徴とする照明装置。
  7.  前記光源は、
     前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が3以上であり、相関色温度が2800K以上3500K未満であり、偏差duvの絶対値が0.02以内であることを特徴とする請求項6に記載の照明装置。
  8.  前記光源は、
     前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が2以上であり、相関色温度が5000K以上であり、偏差duvの絶対値が0.02以内であることを特徴とする請求項6に記載の照明装置。
  9.  前記光源は、
     前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光によりJIS演色評価試験色No.9の色票を照らしたときの第1の色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記第1の色度のab色相角hab(No.9)が0°~45°の領域又は315°~360°の領域であり、前記照明光によりJIS演色評価試験色No.11の色票を照らしたときの第2の色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記第2の色度のab色相角hab(No.11)が135°~225°の領域であり、相関色温度が2800K以上5000K未満であり、偏差duvの絶対値が0.02以内であることを特徴とする請求項6に記載の照明装置。
  10.  前記光源は、
     前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.9の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が4以上であり、相関色温度が2800K以上5000K未満であり、偏差duvの絶対値が0.02以内であり、更に、前記照明光によりJIS演色評価試験色No.9の色票を照らしたときの第1の色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記第1の色度のab色相角hab(No.9)が0°~45°の領域又は315°~360°の領域であることを特徴とする請求項6に記載の照明装置。
  11.  前記光源は、
     前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が3以上であり、相関色温度が2800K以上3500K未満であり、偏差duvの絶対値が0.02以内であり、更に、前記照明光によりJIS演色評価試験色No.11の色票を照らしたときの第2の色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記第2の色度のab色相角hab(No.11)が135°~225°の領域であることを特徴とする請求項6に記載の照明装置。
  12.  前記光源は、
     前記試験光を前記光源から照射された照明光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が2以上であり、相関色温度が5000Kであり、偏差duvの絶対値が0.02以内であり、更に、前記照明光によりJIS演色評価試験色No.11の色票を照らしたときの第2の色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記第2の色度のab色相角hab(No.11)が135°~225°の領域であることを特徴とする請求項6に記載の照明装置。
  13.  前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、
     前記白色光は、前記試験光を前記白色光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.9の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が4以上であることを特徴とする請求項1に記載の照明装置。
  14.  前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、
     前記白色光は、前記試験光を前記白色光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.9の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が4以上であることを特徴とする請求項2に記載の照明装置。
  15.  前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、
     前記白色光は、前記試験光を前記白色光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.9の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が4以上であることを特徴とする請求項3に記載の照明装置。
  16.  前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、
     前記白色光は、前記試験光を前記白色光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が3以上であることを特徴とする請求項1に記載の照明装置。
  17.  前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、
     前記白色光は、前記試験光を前記白色光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が3以上であることを特徴とする請求項2に記載の照明装置。
  18.  前記赤色、緑色、青色及び白色LEDからの光を加法混色して白色光を得るものであって、
     前記白色光は、前記試験光を前記白色光とした場合の色域面積比が105%以上140%以下であり、前記光源から照射された照明光又は基準光によりJIS演色評価試験色No.11の色票を照らしたときの色度をa*b*色度座標図上に配置し、前記a*b*色度座標図上における前記照明光と前記基準光とのクロマ差が2以上であることを特徴とする請求項3に記載の照明装置。
  19.  赤色LEDと、緑色LEDと、記青色LEDと、白色LEDを配設する装置本体と;
     前記赤色LEDと、緑色LEDと、記青色LEDと、白色LEDの点灯状態又は消灯状態を制御する点灯装置と;
     を具備したことを特徴とする請求項1に記載の照明装置。
PCT/JP2010/057508 2009-04-27 2010-04-27 照明装置 WO2010126065A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/256,649 US20120008318A1 (en) 2009-04-27 2010-04-27 Lighting apparatus
EP10769763A EP2398079A1 (en) 2009-04-27 2010-04-27 Illuminating device
CN2010800107691A CN102341925A (zh) 2009-04-27 2010-04-27 照明装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009108078 2009-04-27
JP2009-108078 2009-04-27
JP2010-044704 2010-03-01
JP2010044704 2010-03-01

Publications (1)

Publication Number Publication Date
WO2010126065A1 true WO2010126065A1 (ja) 2010-11-04

Family

ID=43032209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057508 WO2010126065A1 (ja) 2009-04-27 2010-04-27 照明装置

Country Status (5)

Country Link
US (1) US20120008318A1 (ja)
EP (1) EP2398079A1 (ja)
JP (1) JP2011204659A (ja)
CN (1) CN102341925A (ja)
WO (1) WO2010126065A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734715A (zh) * 2011-04-01 2012-10-17 上海广茂达光艺科技股份有限公司 Led吸顶灯
WO2013031943A1 (ja) * 2011-09-02 2013-03-07 三菱化学株式会社 照明方法及び発光装置
WO2013031942A1 (ja) * 2011-09-02 2013-03-07 三菱化学株式会社 照明方法及び発光装置
JP2013127855A (ja) * 2011-12-16 2013-06-27 Panasonic Corp 照明装置
WO2014034228A1 (ja) * 2012-08-31 2014-03-06 三菱化学株式会社 照明方法及び発光装置
JP2014090171A (ja) * 2011-06-03 2014-05-15 Mitsubishi Chemicals Corp 展示物を展示するための装置
US9755118B2 (en) 2013-03-04 2017-09-05 Citizen Electronics Co., Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
US11450789B2 (en) 2013-12-27 2022-09-20 Citizen Electronics Co., Ltd. Illumination method using a light-emitting device

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2574148A2 (en) * 2011-09-26 2013-03-27 Toshiba Lighting & Technology Corporation Lighting device, lighting equipment, and lighting control system
WO2013094481A1 (ja) * 2011-12-19 2013-06-27 シャープ株式会社 照明装置、シーリングライト、バックライト、液晶表示装置、及びテレビジョン受信装置
KR102177372B1 (ko) * 2011-12-22 2020-11-12 헵타곤 마이크로 옵틱스 피티이. 리미티드 광전자 모듈, 특히 플래시 모듈, 및 그것을 제조하기 위한 방법
JP5980516B2 (ja) * 2012-02-10 2016-08-31 シチズン電子株式会社 Led発光装置
JP2013201274A (ja) * 2012-03-23 2013-10-03 Toshiba Lighting & Technology Corp 照明装置
US9897284B2 (en) * 2012-03-28 2018-02-20 Ledengin, Inc. LED-based MR16 replacement lamp
JP6157173B2 (ja) * 2012-06-01 2017-07-05 地方独立行政法人東京都立産業技術研究センター Led照明の分光分布設計方法
JP2013258037A (ja) * 2012-06-12 2013-12-26 Panasonic Corp 照明装置
US8613526B1 (en) * 2012-08-14 2013-12-24 Huizhou Light Engine, Ltd LED aquarium lighting device
JP5891423B2 (ja) 2012-10-12 2016-03-23 パナソニックIpマネジメント株式会社 照明器具、照明装置および発光モジュール
DE102012111564A1 (de) * 2012-11-29 2014-06-18 Osram Opto Semiconductors Gmbh Beleuchtungsvorrichtung
JP6362877B2 (ja) * 2013-03-04 2018-07-25 シチズン電子株式会社 半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法
JP6271301B2 (ja) * 2013-03-04 2018-01-31 シチズン電子株式会社 発光装置及び発光装置の製造方法
JP6384704B2 (ja) * 2013-03-28 2018-09-05 パナソニックIpマネジメント株式会社 照明装置
JP6176525B2 (ja) 2013-07-19 2017-08-09 パナソニックIpマネジメント株式会社 発光モジュール、照明装置および照明器具
JP6394935B2 (ja) * 2013-07-26 2018-09-26 パナソニックIpマネジメント株式会社 照明装置
CN103411145B (zh) * 2013-08-08 2018-07-27 复旦大学 一种四通道健康led照明系统的设计方法
JP6156213B2 (ja) 2013-09-17 2017-07-05 豊田合成株式会社 発光装置及びその製造方法
JP6128488B2 (ja) * 2013-10-08 2017-05-17 パナソニックIpマネジメント株式会社 Led照明装置及び照明器具
JP2015176775A (ja) * 2014-03-15 2015-10-05 サムテック・イノベーションズ株式会社 医療用無影灯
US9859529B2 (en) * 2014-11-13 2018-01-02 Lg Display Co., Ltd. Organic light emitting display device
JP6480714B2 (ja) * 2014-11-19 2019-03-13 サムテック・イノベーションズ株式会社 物品検査装置
CN104613394A (zh) * 2015-02-12 2015-05-13 矽照光电(厦门)有限公司 一种大功率的led照明装置
US9974138B2 (en) 2015-04-21 2018-05-15 GE Lighting Solutions, LLC Multi-channel lamp system and method with mixed spectrum
CN105163419B (zh) * 2015-07-08 2017-07-07 复旦大学 高色饱和度白光led照明系统及其混色设计方法
JP6694153B2 (ja) * 2015-09-24 2020-05-13 東芝ライテック株式会社 発光装置、および照明装置
CN105718273B (zh) * 2016-04-01 2023-01-31 苏州工艺美术职业技术学院 基于灯光的时间信息可视化表达系统
JP6835344B2 (ja) * 2016-04-06 2021-02-24 インテックス株式会社 高演色光源装置
JP6706795B2 (ja) 2016-07-28 2020-06-10 パナソニックIpマネジメント株式会社 照明システム及び移動体
CN106229312B (zh) * 2016-08-30 2018-10-12 厦门华联电子股份有限公司 一种全光谱csp封装光源及其制造方法
JP6823800B2 (ja) * 2016-09-30 2021-02-03 東芝ライテック株式会社 発光モジュールおよび照明装置
US10900839B2 (en) 2019-05-06 2021-01-26 Behr Process Corporation Systems and methods for illuminating paint color chip locations within a display assembly
US11118740B1 (en) * 2020-06-30 2021-09-14 Xiamen Leedarson Lighting Co. Ltd Light apparatus
US20230402434A1 (en) * 2022-04-28 2023-12-14 Seoul Viosys Co., Ltd. Light emitting module and display device having the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045206A (ja) 2001-05-24 2003-02-14 Matsushita Electric Ind Co Ltd 照明光源
JP2005101296A (ja) 2003-09-25 2005-04-14 Osram-Melco Ltd 可変色発光ダイオード素子及び可変色発光ダイオードモジュール及び可変色発光ダイオード照明器具
JP2006261702A (ja) 2001-05-24 2006-09-28 Matsushita Electric Ind Co Ltd 照明光源
JP2007080533A (ja) * 2005-09-09 2007-03-29 Matsushita Electric Works Ltd Led照明器具
JP2008288412A (ja) * 2007-05-18 2008-11-27 Citizen Electronics Co Ltd Led発光装置
WO2009041171A1 (ja) * 2007-09-26 2009-04-02 Toshiba Lighting & Technology Corporation 照明装置
JP2009108078A (ja) 1999-06-04 2009-05-21 Soc De Conseils De Recherches & D'applications Scientifiques Sas ニューロメジンbおよびソマトスタチンレセプターアゴニスト
JP2010044704A (ja) 2008-08-18 2010-02-25 Alaxala Networks Corp 情報処理装置
JP2010092993A (ja) * 2008-10-06 2010-04-22 Sharp Corp 照明装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4113017B2 (ja) * 2002-03-27 2008-07-02 シチズンホールディングス株式会社 光源装置および表示装置
US7256557B2 (en) * 2004-03-11 2007-08-14 Avago Technologies General Ip(Singapore) Pte. Ltd. System and method for producing white light using a combination of phosphor-converted white LEDs and non-phosphor-converted color LEDs

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009108078A (ja) 1999-06-04 2009-05-21 Soc De Conseils De Recherches & D'applications Scientifiques Sas ニューロメジンbおよびソマトスタチンレセプターアゴニスト
JP2003045206A (ja) 2001-05-24 2003-02-14 Matsushita Electric Ind Co Ltd 照明光源
JP2006261702A (ja) 2001-05-24 2006-09-28 Matsushita Electric Ind Co Ltd 照明光源
JP2005101296A (ja) 2003-09-25 2005-04-14 Osram-Melco Ltd 可変色発光ダイオード素子及び可変色発光ダイオードモジュール及び可変色発光ダイオード照明器具
JP2007080533A (ja) * 2005-09-09 2007-03-29 Matsushita Electric Works Ltd Led照明器具
JP2008288412A (ja) * 2007-05-18 2008-11-27 Citizen Electronics Co Ltd Led発光装置
WO2009041171A1 (ja) * 2007-09-26 2009-04-02 Toshiba Lighting & Technology Corporation 照明装置
JP2010044704A (ja) 2008-08-18 2010-02-25 Alaxala Networks Corp 情報処理装置
JP2010092993A (ja) * 2008-10-06 2010-04-22 Sharp Corp 照明装置

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102734715A (zh) * 2011-04-01 2012-10-17 上海广茂达光艺科技股份有限公司 Led吸顶灯
JP2018056581A (ja) * 2011-06-03 2018-04-05 シチズン電子株式会社 展示物を展示するための装置
JP2017038080A (ja) * 2011-06-03 2017-02-16 シチズン電子株式会社 展示物を展示するための装置
JP2014090171A (ja) * 2011-06-03 2014-05-15 Mitsubishi Chemicals Corp 展示物を展示するための装置
JP2013201132A (ja) * 2011-09-02 2013-10-03 Mitsubishi Chemicals Corp 照明方法及び発光装置
US9490399B2 (en) 2011-09-02 2016-11-08 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
JP2013179060A (ja) * 2011-09-02 2013-09-09 Mitsubishi Chemicals Corp 照明方法及び発光装置
CN103299719A (zh) * 2011-09-02 2013-09-11 三菱化学株式会社 照明方法和发光装置
CN103299718A (zh) * 2011-09-02 2013-09-11 三菱化学株式会社 照明方法和发光装置
JP2013093311A (ja) * 2011-09-02 2013-05-16 Mitsubishi Chemicals Corp 照明方法及び発光装置
JP2019149573A (ja) * 2011-09-02 2019-09-05 シチズン電子株式会社 照明方法及び発光装置
JP2013065555A (ja) * 2011-09-02 2013-04-11 Mitsubishi Chemicals Corp 照明方法及び発光装置
CN103299719B (zh) * 2011-09-02 2014-10-22 三菱化学株式会社 照明方法和发光装置
JP2014225464A (ja) * 2011-09-02 2014-12-04 三菱化学株式会社 照明方法及び発光装置
JP2014225463A (ja) * 2011-09-02 2014-12-04 三菱化学株式会社 照明方法及び発光装置
CN105357796A (zh) * 2011-09-02 2016-02-24 西铁城电子株式会社 照明方法和发光装置
US9305970B2 (en) 2011-09-02 2016-04-05 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9373757B2 (en) 2011-09-02 2016-06-21 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US10355177B2 (en) 2011-09-02 2019-07-16 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
JP2016184761A (ja) * 2011-09-02 2016-10-20 シチズン電子株式会社 照明方法及び発光装置
US9478714B2 (en) 2011-09-02 2016-10-25 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US10236424B2 (en) 2011-09-02 2019-03-19 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
WO2013031942A1 (ja) * 2011-09-02 2013-03-07 三菱化学株式会社 照明方法及び発光装置
US9722150B2 (en) 2011-09-02 2017-08-01 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
CN105357796B (zh) * 2011-09-02 2019-02-15 西铁城电子株式会社 照明方法和发光装置
US20180198036A1 (en) 2011-09-02 2018-07-12 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9818914B2 (en) 2011-09-02 2017-11-14 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
WO2013031943A1 (ja) * 2011-09-02 2013-03-07 三菱化学株式会社 照明方法及び発光装置
US9954149B2 (en) 2011-09-02 2018-04-24 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9997677B2 (en) 2011-09-02 2018-06-12 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
JP2013127855A (ja) * 2011-12-16 2013-06-27 Panasonic Corp 照明装置
JP2017138617A (ja) * 2012-08-31 2017-08-10 シチズン電子株式会社 照明方法及び発光装置
JPWO2014034228A1 (ja) * 2012-08-31 2016-08-08 シチズン電子株式会社 照明方法及び発光装置
WO2014034228A1 (ja) * 2012-08-31 2014-03-06 三菱化学株式会社 照明方法及び発光装置
US9997678B2 (en) 2013-03-04 2018-06-12 Citizen Electronics Co. Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
US9755118B2 (en) 2013-03-04 2017-09-05 Citizen Electronics Co., Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
US10930823B2 (en) 2013-03-04 2021-02-23 Citizen Electronics Co., Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
US11450789B2 (en) 2013-12-27 2022-09-20 Citizen Electronics Co., Ltd. Illumination method using a light-emitting device

Also Published As

Publication number Publication date
CN102341925A (zh) 2012-02-01
JP2011204659A (ja) 2011-10-13
US20120008318A1 (en) 2012-01-12
EP2398079A1 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
WO2010126065A1 (ja) 照明装置
US10008484B2 (en) Solid state light fixtures suitable for high temperature operation having separate blue-shifted-yellow/green and blue-shifted-red emitters
US8760074B2 (en) Tunable white luminaire
US9574723B2 (en) LED module, LED illumination means, and LED lamp for the energy-efficient reproduction of white light
JP6038083B2 (ja) 照明方法及び発光装置
JP5964365B2 (ja) 照明方法及び発光装置
US8766555B2 (en) Tunable white color methods and uses thereof
KR101659503B1 (ko) 색상 광원들을 의존적으로 제어하는 방법 및 시스템
US9320109B2 (en) Color temperature adjusting method of solid state light emitting device and solid state light emitting device using the method
JP6820064B2 (ja) 半導体発光素子を含む発光装置、発光装置の設計方法、発光装置の駆動方法、および照明方法
JP2015528187A5 (ja)
JP2009048989A (ja) 照明装置
JP2012511801A (ja) 照明器具のパフォーマンスを最大化する方法
JP2007227681A (ja) 発光ダイオードを用いた白色照明装置
US10999907B2 (en) Selecting parameters in a color-tuning application
CN109982478B (zh) 白光发光二极管的调光方法
JP5102453B2 (ja) 発光ダイオードを用いた白色照明装置
RU2651794C2 (ru) Светоизлучающая компоновка с регулируемой силой света
JP2008227490A (ja) 特に手術用顕微鏡のための照明モジュール
JP2010040425A (ja) 照明装置
KR101692290B1 (ko) 색온도 조절이 가능한 엘이디 조명장치
JP6652785B2 (ja) Led照明の分光分布設計方法
KR101080698B1 (ko) 조명 장치 및 조명 장치의 제어 방법
CN117337368A (zh) 发光模块及照明装置
US20120176787A1 (en) Method of making high color rendering (cri) led lights and high color rendering index led lights

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010769.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769763

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010769763

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13256649

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE